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Abstract

Event schema depicts the typical structure of
complex events, serving as a scaffolding to ef-
fectively analyze, predict, and possibly inter-
vene in the ongoing events. To induce event
schemas from historical events, previous work
uses an event-by-event scheme, ignoring the
global structure of the entire schema graph. We
propose a new event schema induction frame-
work using double graph autoencoders, which
captures the global dependencies among nodes
in event graphs. Specifically, we first extract
the event skeleton from an event graph and de-
sign a variational directed acyclic graph (DAG)
autoencoder to learn its global structure. Then
we further fill in the event arguments for the
skeleton, and use another Graph Convolutional
Network (GCN) based autoencoder to recon-
struct entity-entity relations as well as to detect
coreferential entities. By performing this two-
stage induction decomposition, the model can
avoid reconstructing the entire graph in one
step, allowing it to focus on learning global
structures between events. Experimental re-
sults on three event graph datasets demonstrate
that our method achieves state-of-the-art perfor-
mance and induces high-quality event schemas
with global consistency. 1

1 Introduction

Event Schema (Chambers and Jurafsky, 2008, 2009;
Balasubramanian et al., 2013; Nguyen et al., 2015;
Modi et al., 2016; Li et al., 2021) is induced from
historical events to describe the common or stereo-
typical evolution pattern of complex events. Figure
1b shows an example schema of complex event
“IED-bombing” (Improvised Explosive Device),
where multiple events are inter-connected via tem-
poral links (e.g., TRANSPORT happens after AS-
SEMBLE) and arguments (e.g., the transporting EN-
TITY is the weapon that is being assembled; the

1The programs, data and resources are made publicly
available for research purpose in https://github.com/
tracyjin/DoubleGAE.git

transporting DESTINATION is controlled by the as-
sembler, i.e., the AGENT). It enables a descriptive
analysis of inter-event structures, as well as the pre-
diction of future events over temporal-based and
argument-based structures.

A number of methods have been proposed
for learning event schemas from instance event
graphs, called event schema induction, which
fall into three categories. The set-based (Cham-
bers, 2013; Sha et al., 2016; Huang et al., 2016)
and sequence-based (Granroth-Wilding and Clark,
2016; Rudinger et al., 2015) methods treat a com-
plex event as a set or a linear sequence of atomic
events, respectively. However, they fail to cap-
ture the multi-dimensional evolution of real-world
complex events, i.e., multiple events may precede
or follow one event. Graph-based methods (Li
et al., 2020, 2021), instead, adopt graphs to for-
mulate event schemas. A graph model is usually
learned from instance event graphs through gener-
ating the schema event by event. Although graph-
based methods are theoretically superior to the first
two categories, existing graph-based methods are
limited to modeling only the local structure of event
graphs, i.e., the first-order dependency of an event
node with respect to its neighbors, while ignor-
ing the high-order and global dependencies among
atomic events in the entire graph.

However, modeling the global structure of event
graphs is crucial to event schema induction. The
global structure enables the model to be aware of
the position of each event node in the entire graph.
It allows the model to better comprehend the role of
a specific event in the complex event. For example,
in Figure 1b, there are three TRANSPORT events in
the schema, but they differ regarding the item being
transported, i.e., bombs, the injured, or suspects.
The global structure context enables the model to
differentiate the position of the three TRANSPORT

events and predict their neighbor events precisely.
Moreover, when the model only has access to local
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The September 11 attacks were a series of four coordinated terrorist 
attacks. Four commercial airliners traveling from the northeastern 
U.S. to California were hijacked mid-flight by 19 al-Qaeda terrorists. 
Each group had one hijacker who took over control of the aircraft. 
Their explicit goal was to crash each plane into a prominent American 
building, causing mass casualties and partial or complete destruction
of the targeted buildings. The attacks resulted in 2,977 fatalities, over 
25,000 injuries, and substantial long-term health consequences.
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Figure 1: An illustrative example of (a) an instance event
graph of 9/11 Attacks extracted from a news article and
(b) graph-based event schema of IED bombings. We use
circles to denote events and squares to represent event
arguments (entities). The solid blue arrows represent
temporal links between events (i.e., event skeleton), the
solid yellow lines represent argument roles between
events and entities, and the dashed blue lines represent
entity-entity relations.

structure information during the generation process,
the schema generated may only be consistent at the
local level, but not at the global level. For example,
the schema may keep repeating the sequence of
ASSEMBLE - TRANSPORT - ATTACK. From this
perspective, the global structure information can
be viewed as the supervision that guides the entire
generation process to be globally consistent.

To capture the global structure information of
complex events, in this paper, we propose a new
event schema induction approach using double
graph autoencoders. Graph Autoencoder (Salha
et al., 2019; Zhang and Chen, 2018) is known to be
able to preserve the structural information of an en-
tire graph in the embedding space. Therefore, our
key idea is to use graph autoencoders to capture the

global dependency among nodes in event graphs.
Specifically, our model contains two graph auto-

encoders that are organized in a hierarchical man-
ner: (1) To model the skeleton of an event graph,
we design a high-level variational graph autoen-
coder for directed acyclic graphs (DAGs). Event
skeleton is a subgraph of an event graph, which
consists of salient events and their temporal orders,
representing the fundamental structure of event evo-
lution. (2) With the event skeleton as the global
context, we decorate entity nodes in the skeleton by
introducing a low-level graph autoencoder based on
Graph Convolutional Network (GCN). It takes as
input an expanded event skeleton and reconstructs
the original event graph by adding coreferential
entities and entity-entity relations.

These two graph autoencoders decompose the
process of event schema induction into two steps,
thereby avoiding the need to reconstruct the entire
graph directly, and improving the schema learn-
ing efficiently at both the high level (event schema
skeleton) and the lower level (entity-entity rela-
tions).

We conduct extensive experiments on three event
graph datasets. The experimental results demon-
strate that our proposed method achieves state-of-
the-art performance on event schema induction.
Additionally, we show in a case study that the event
schema generated by our method is more reason-
able and globally consistent.

We make the following novel contributions:

• We propose a two-stage global structure aware
schema induction framework, providing a
global context of event skeleton to determine
inter-event interactions via arguments.

• We introduce a double graph autoencoder that
preserves the global structural information,
allowing the model to capture high-order de-
pendencies between nodes.

• We propose a comprehensive set of metrics for
structure-aware comparison between schema
graphs and instance graphs.

• Our method significantly outperforms base-
lines, demonstrating the effectiveness of con-
sidering global structure context in event
schema induction.

2 Problem Formulation

Our data resources come from news and Wikipedia
articles that describe a series of complex events.
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Figure 2: The architecture of our model.

We extract events, entities, as well as their relations
using Information Extraction (IE) tools (Wu et al.,
2008; Li et al., 2011; Hogenboom et al., 2013; Lin
et al., 2020), then construct instance event graphs.
An instance event graph consists of two types of
nodes: event nodes and entity nodes, and we use
ti to represent the type of node i. Similarly, we
use tij to denote the edge type between node i and
node j. Accordingly, there are three types of edges
in an instance graph: (1) the event-event temporal
link (i, j), which represents a temporal order that
event j happens after event i, with ti and tj indicat-
ing their event types, such as TRANSPORT; (2) the
event-entity argument link (i, a,m), which repre-
sents that event i has an argument entity m, which
plays the argument role tim = a, such as AGENT;
(3) the entity-entity relation (m, r, n), which rep-
resents that there is a relation tmn = r between
entity m and entity n, such as AFFILIATION.

Given a set of instance graphs {G1, G2, · · · }
that belong to the same topic, our goal is to learn
a schema S that summarizes the instance graphs
and represents their underlying common evolution
pattern. Note that different from instance graphs,
nodes (events and entities) in the schema S are not
instantiated but represented by their types.

3 Our Approach

3.1 Overview

We design two graph autoencoders, where the first
autoencoder deals with the high-level skeleton of
an event graph and the second autoencoder focuses

on the low-level arguments of an event graph.
As shown in the upper side of Figure 2, the high-

level autoencoder, which is specially designed for
directed acyclic graphs (DAGs), takes an instance
event skeleton as input, and encodes the event skele-
ton as a probability distribution in the embedding
space. Then it reconstructs the input skeleton by
feeding a vector sampled from the distribution into
the decoder.

After the event skeleton is reconstructed, we dec-
orate the entity nodes according to the pre-defined
argument roles of each event (as shown on the right
side of Figure 2). However, the entity-entity rela-
tions and coreference links among arguments are
still missing in the expanded event skeleton. There-
fore we introduce a low-level graph autoencoder
to take as input an expanded event skeleton and
reconstruct the original event graph (as shown in
the lower part of Figure 2). The low-level graph au-
toencoder employs Graph Convolutional Network
(GCN) to encode each node into an embedding
vector, then predicts the type of an entity-entity
relation based on the learned entity embeddings.

3.2 Event Skeleton Generation

An instance event graph can contain up to hundreds
of nodes, but the majority are entity nodes that are
associated with event nodes. Therefore, as shown
in the upper left of Figure 2, our first step is to
extract the event skeleton GS from the instance
graph G, which serves as the backbone of G.

For a given instance event graph G, we use a
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graph neural network (GNN) based variational au-
toencoder to process its event skeleton GS ⊆ G.
Traditional GNNs learn the node representations
by aggregating information from their neighbors
iteratively, then apply a readout function to all node
representations and output the representation of the
entire graph (Xu et al., 2019). However, off-the-
shelf GNNs are not suitable for modeling event
skeleton, because event skeleton is a DAG whose
nodes follow an intrinsic partial order, whereas ex-
isting GNN models focus more on capturing the
local structure of a graph.

Encoding. To capture the global structure of event
skeleton GS , inspired by Zhang et al. (2019), we
design a new GNN architecture for the encoder, in
which messages can only pass forward following
event-event temporal orders. Specifically, for a
given event node i in the event skeleton GS , its
representation si is computed by:

si = AGG
(
{sj | (j, i) ∈ GS} ∪ ti

)
, (1)

where ti is the one-hot event type vector of an event
node i, and we use it as the initial feature for the
event. AGG(·) is the aggregate function. In Eq.
(1), we only consider predecessors as neighbors,
allowing the model to capture the temporal flow
of the event graph. Considering that predecessors
contribute differently to predicting the current event
node, we utilize a self-attention function as the
aggregate function to characterize the importance
of different predecessors:

si = σ

(
W1

∑

j:(j,i)∈GE

SoftMax
(
αij

)
sj+W2ti

)
,

(2)
where αij = LeakyReLU

(
w⊤[W1sj ,W2ti

])

is (unnormalized) attention weight, w is a learn-
able vector, W1 and W2 are learnable matrices,
[·, ·] denotes concatenate operation, and σ(·) is a
nonlinear activation function.

It is worth noting that according to Eq. (1), si
can only be computed after its predecessors’ rep-
resentations have been computed, which implies
that the encoder computation sequence naturally
follows the topological order of the event skele-
ton. Specifically, we first create a dummy event
node START that has an outgoing link to each
event node that has no predecessor, and a dummy
event node END with an incoming link from each
event node that has no successor. Then we compute
the representations of all event nodes according to

Algorithm 1: Event Skeleton Generation
Input: Graph embedding sEND for GS output by the

encoder
Output: Reconstructed event skeleton G′

S

1 G′
S ← ∅;

2 µ← MLPµ(sEND),Σ← MLPσ(sEND);
3 Sample the global graph representation:

sG ∼ N (µ,Σ);
4 Initialize the state of the generated graph as zero:

g← 0;
5 while True do

// Generate a new event i
6 Sample the type for the generated new event i:

ti ∼ MLPnode_type([sG,g]);
7 Add event node i with type ti into G′

S ;
8 if ti = END then
9 Add edge (j, i) to G′

S for every j ∈ G′
S\i if

j has no successor;
10 break;
11 else
12 for j ∈ G′

S\i do
13 pij ← MLPedge_prob([ti, sj ]);
14 if pij > 0.5 then
15 Add edge (j, i) into G′

S ;

16 Compute si according to Eq. (2);
17 Update the state of the generated graph:

g← si;

18 return G′
S

their topological order. Finally, the representation
of END, i.e., sEND, is taken as the output of the
encoder.

Decoding. The decoder follows a GNN architec-
ture similar to the encoder, as presented in Algo-
rithm 1. The input is the encoder output sEND

for GS , and our goal is to reconstruct the skeleton
graph G′

S . Specifically, we first obtain the pos-
terior approximation p(·|GS) by calculating the
mean vector µ and the diagonal covariance matrix
Σ via two Multi-Layer Perceptrons (MLPs) (line 2).
Then we sample a vector sG from the Gaussian dis-
tribution N (µ,Σ) as the global representation of
the skeleton graph, which will be used throughout
the following generation process (line 3). The rep-
resentation of the generated graph g is initialized
as an all-zero vector (line 4).

Next, the decoder generates a DAG node by node
(line 5-17). When generating a new event node i,
the decoder computes the event type distribution
for node i to obtain a sampled type ti (line 6). The
distribution is learned based on the concatenation
of sG and g, summarizing the input skeleton graph
and the generated graph. Based on the value of
ti, the decoder performs one of the following two
steps:
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• If the generated event node i is END, then the
decoder will stop the generation procedure,
and connect all nodes that do not have any
predecessor to the END node (line 8-10).

• Otherwise, the decoder uses another MLP to
predict the edge probability of node i with ex-
isting nodes, and add the generated edges into
the graph (line 12-15). After the generation
step for node i is completed, the decoder then
computes the representation si for node i ac-
cording to Eq. (2) (line 16), and updates the
generated graph representation g by si (line
17). The updated g will be further used to
generate a new node for the next iteration.

Different from existing event schema induction
methods that are only able to model the local struc-
tural information of event graphs, our method en-
codes the global information of an event graph as
the global graph representation sG, and further ap-
plies this global state to guide the entire generation
process. This enables our model to fully capture
the structural information of event graphs, which
has been shown to be extremely important for event
schema induction.

3.3 Entity-Entity Relation Completion
After generating the event skeleton, we aim to com-
plete the generated event schema graph by adding
back entities as well as edges associated with these
entities. We take advantage of the event ontology,
where each event has a predefined set of argument
roles. For example, an ATTACK event has an AT-
TACKER argument role whose type can be PERSON

(PER), as well as a TARGET argument role whose
type can be LOCATION (LOC). Therefore, we first
expand the event skeleton by adding the predefined
event arguments back to each event, as shown in
the right of Figure 2. Yet, such an expanded event
skeleton GE is not the final event schema, because:
(1) entity-entity relations are missing, e.g., the LO-
CATED_IN relation between a PER entity and a
LOC entity in Figure 1b; (2) entities in GE can
be coreferential, which require to be merged. For
example, in Figure 1b, the DESTINATION of the
TRANSPORT event is also the PLACE where the
ATTACK event happens.

We formulate the above two cases as a unified
entity-entity edge missing problem, by treating
coreference as a special type of entity-entity re-
lation between unmerged nodes. To predict miss-
ing entity-entity relations, we design a low-level

graph autoencoder. It reads the expanded event
skeleton GE as input, and then reconstructs the
original event graph G by adding entity-entity re-
lations back, as shown in the lower part of Figure
2. During the inference stage, the learned graph
autoencoder can therefore take a generated event
skeleton as input, and output a comprehensive event
schema graph.

Encoding. Different from the high-level autoen-
coder whose purpose is to generate event skele-
ton, the low-level autoencoder is to reconstruct
the relations between entities, therefore, the low-
level graph autoencoder is expected to be non-
probabilistic, and therefore we adopt Graph Convo-
lutional Networks (GCN) (Kipf and Welling, 2017)
as our encoder. Let ski denote the representation
at iteration k for the node i ∈ GE , which can be
either an event or an entity. The encoder updates
node representations iteratively for k = 1, · · · ,K,
where K is the layer number of the GCN encoder:

ski = σ
(
Wk

∑
j∈N (i)∪{i}

αijs
k−1
j

)
. (3)

Here N (·) denotes the set of neighbors of node
i, αij = 1/

√
|N (i)| · |N (j)|, Wk is a learnable

matrix, and σ is an activation function. s0i is ini-
tialized as the one-hot type vector of node i, i.e.,
s0i = ti. All edges in GE , including event-event
temporal links and event-entity argument links, are
treated as undirected when counting neighbors, due
to our focus on the local graph structure. The en-
coder output is the final representation sKi of node
i ∈ GE .

Decoding. The decoder takes as input the final
node representations sKi from the encoder, and
reconstructs entity-entity relations in the original
event graph G. The entity-entity relation can be
one of the following three cases: no relation, coref-
erence, or predefined entity-entity relation types in
the ontology. Therefore, we create two new rela-
tion types NO-RELATION and CO-REFERENCE,
and add them into the original set of entity-entity
relations as the prediction target. Specifically, the
decoder predicts the relation type tij of two given
entities i and j by a MLP:

t̂ij = MLPentity_rel
(
[sKi , sKj ]

)
, (4)

where t̂ij denotes the predicted relation type. It is
noteworthy that NO-RELATION dominates the pre-
diction targets, making the classification problem
highly unbalanced. To address this issue, we divide
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the task into two steps: predicting the existence of
edges and then predicting the type of a known edge,
to optimize the learning effectiveness.

3.4 Training and Generation
Training. The training objective for the high-level
variational graph autoencoder consists of a recon-
struction loss and a regularization loss:

Lhigh = Dist(GS , G
′
S)+KL

(
N (µ,Σ),N (0,1)

)
,

(5)
where the first term Dist(GS , G

′
S) measures the

distance between the input event skeleton GS and
the reconstructed event skeleton G′

S . We sum
up the negative log-likelihood of each decoding
step by forcing them to generate the ground truth
event type or edge at each step. The second
term KL

(
N (µ,Σ),N (0,1)

)
forces the distribu-

tion output by the encoder to be close to the stan-
dard Gaussian distribution, to ensure a smooth em-
bedding space.

The loss function for the low-level GCN graph
autoencoder is the cross-entropy loss between pre-
dicted and ground-truth entity-entity relations:

Llow =
∑

event i,j

CELoss(t̂ij , tij). (6)

Schema Generation. We are able to generate the
event schema by decoding the trained model. We
first sample a global graph representation from
N (0,1) in the embedding space of the high-level
variational graph autoencoder. It is then fed into the
decoder to generate a schema skeleton with event
nodes only. Afterwards, the skeleton is further
fed into the low-level graph autoencoder to predict
coreferential entities and entity-entity relations.

4 Experiments

4.1 Datasets
We conduct experiments in the scenario of IED
bombings following the state-of-the-art graph-
based schema induction literature (Li et al., 2021).
Specifically, three subtypes of complex events for
IED are considered, including General IED, Car
bombing IED, and Suicide IED. To construct the
dataset, we select a set of Wikipedia articles re-
lated to IED bombings and identify the references
in each Wikipedia article, then collect news articles
from those references 2. We use RESIN (Wen et al.,

2We select news articles that are rich in events from the
IED article collections (Li et al., 2021) with further curation.
The curated dataset is included in our released code base.

2021; Du et al., 2022), a state-of-the-art IE system,
to extract event mentions, relations, and entity men-
tions from these news articles, and perform entity
coreference resolution. We also do human curation
to correct obviously erroneous event-event links
(e.g., a temporal link indicating that an INJURE

event happens after a DIE event for one person).
The statistics of these three datasets are summa-
rized in Table 1.

4.2 Baselines

We compare our proposed method with graph
schema induction baselines:

(1) Temporal Event Graph Model (TEGM) (Li
et al., 2021). It is the state-of-the-art graph schema
induction model, which generates the entire event
graph using an auto-regressive graph generation
model. We compare with it to explore the effec-
tiveness of the two-stage framework that generates
event skeleton first and provides a global context
for argument generation.

(2) Frequency-Based Sampling (FBS). To ex-
amine the effectiveness of our graph autoencoder
to generate event skeleton, we compare with a
frequency-based baseline. It constructs the event
schema based on the frequency of event-event tem-
poral links in the training data. Specifically, for
each possible pair of event types (t, t′), we com-
pute the number of edges in training graphs whose
two associated events exactly have type t and t′.
After that, we construct a schema graph in which
each node corresponds to one event type, and there
is no edge in the schema graph initially. Then at
each timestamp, we sample one pair of event types
according to their frequency, and add this sampled
edge into the schema graph. The procedure is re-
peated until we detect a cycle in the schema graph
after adding a new edge.

4.3 Experimental Setup

Evaluation Metrics. For a given dataset, we first
train our model on the training instance graphs,
then generate the event schema according to the
steps presented in Section 3.4. To evaluate the
quality of the generated schema, we compare the
schema with test instance graphs in terms of the
following metrics, to see how the schema captures
the structure information of test instance graphs:

(1) Event type match. We compute the set of
event types in the generated schema graph, as well
as the set of event types in one test instance graph,
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Datasets General-IED Car-IED Suicide-IED
# train/val/test instance graphs 88 / 11 / 12 75 / 9 / 10 176 / 22 / 22

Avg # e/v nodes per graph 90.8 / 251.5 146.5 / 421.3 117.4 / 381.7
Avg # ee/ev/vv links per graph 212.6 / 278.5 / 230.5 345.7 / 457.7 / 397.0 246.2 / 403.5 / 373.7

Table 1: Statistics of the three datasets. “e” and “v” are short for “event” and “entity”, respectively.

Datasets Methods Event type Event seq match (F1) KL divergence MCS
match (F1) l = 2 l = 3 Node type Edge type # nodes # edges

General-IED
TEGM 0.638 0.181 0.065 1.72 6.11 6.40 5.40

FBS 0.617 0.149 0.064 1.88 4.32 1.65 0.67
DoubleGAE 0.697 0.273 0.128 1.66 4.96 16.37 15.63

Car-IED
TEGM 0.588 0.162 0.044 2.92 6.60 5.67 4.78

FBS 0.542 0.126 0.038 4.12 6.37 1.74 0.72
DoubleGAE 0.674 0.259 0.081 2.14 5.42 10.98 10.33

Suicide-IED
TEGM 0.609 0.174 0.048 2.39 6.36 5.92 5.00

FBS 0.642 0.164 0.036 2.75 5.16 1.67 0.75
DoubleGAE 0.709 0.290 0.095 1.76 5.91 6.19 5.28

Table 2: The result of similarity measurement between the generated schema and test instance graphs. The best
results for each dataset are highlighted in bold.

then we compute how similar these two sets are by
calculating the F1 score between the two sets.

(2) Event sequence match. We collect all event
sequences with a length of 2 or 3 from the gen-
erated schema graph and one test instance graph,
respectively, and compute the F1 score between
these two multi-sets.

(3) Node/edge type distribution. We compute
the node type distribution and edge type distribu-
tion of the generated schema and one test instance
graph, respectively, then compute the KL diver-
gence between the node/edge type distributions of
the schema and each test instance graph.

(4) Maximum common subgraph (MCS). A max-
imum common subgraph of two graphs is an in-
duced subgraph of both graphs, and that has as
many nodes as possible. The size of the maximum
common subgraph can reflect the global structure
similarity between two graphs. Therefore, we com-
pute the number of nodes and edges of the maxi-
mum common subgraph between the schema and
each test instance graph.

Note that the last two metrics, i.e., node/edge
type distribution and maximum common subgraph,
are new metrics proposed by us. We compute the
above metrics between the schema and each test
instance graph, then report the average values on
all test instance graphs.
Hyperparameter Settings. For the high-level vari-
ational autoencoder, the dimension size of node
hidden state is 256, and the dimension size of the
Gaussian distribution is 56. The learning rate is
10−5, and the number of training epochs is 700.

For the low-level GCN autoencoder, we use a two-
layer GCN as the encoder, whose dimension sizes
of hidden layers are 256 and 64, respectively. The
learning rate is 10−5, and the number of training
epochs is 500. We investigate how the size of train-
ing instance graphs and the dimension of hidden
node state influence the model performance, with
results shown in Appendix A.

4.4 Results

Comparison with baselines. All methods are eval-
uated on the same test set. Our method achieves
the best performance on both original and revised
datasets. We only show results on the revised
dataset since it is cleaner and the induced schema
is more reasonable. In Table 2, our method Dou-
bleGAE achieves significant gains compared with
baselines on event type, event sequence matching,
and maximum common subgraph matching. It
demonstrates that capturing the global node de-
pendency in event graphs is essential to event
schema induction. In contrast, Temporal Event
Graph Model (TEGM) does not consider global
graph structure, thus has a large performance gap
compared to our model. It is worth noticing that
Frequency-Based Sampling (FBS) is a competitive
baseline according to the experimental result, espe-
cially when measured by KL divergence of edge
type distribution. This is because FBS constructs
an event schema exactly based on the frequency of
edges in the training instance graphs.
Case study. We plot the schema skeleton gen-
erated by Temporal Event Graph Model (TEGM)
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Figure 3: Case study on the generated event schema skeleton and full event schema.

and our model (DoubleGAE) in Figure 3. In Figure
3a, there is a recurrence of certain local structures
of events within the schema. e.g., TRANSPORT-
ATTACK and ATTACK-ATTACK. This demonstrates
that TEGM is able to successfully capture and
memorize the local structure information of event
graphs. However, such learned local structures may
not always be reasonable, since an ATTACK event
is not likely to repeat immediately after another
ATTACK multiple times. In addition, TEGM may
not be able to learn the correct position of an event
in the entire schema, for example, the INTERFERE

event happens at the very beginning of the schema.
The result indicates that TEGM fails to maintain
global consistency when generating schemas. In
contrast, there are no consecutively repeated events
in the schema induced by our model, and the entire
schema is more logically meaningful in both local
and global levels.

We also present the complete schema output
of our model after filling in event arguments and
entity-entity relations in Figure 3c. As we can
see, our model successfully identifies coreferential
entities, e.g., the transporter of TRANSPORT, the
perpetrator of CRIME, and the attacker of ATTACK

belong to one entity. Our model is also able to add
entity-entity relations between event arguments, for
example, the victim of a CRIME event is “located
near” the place where this CRIME event happens.

5 Related Work

Existing event schema induction methods can be
classified into three categories: set-based schema,
sequence-based schema, and graph-based schema.

The set-based methods represent event triggers
by a set without modeling their inter-relations
(Chambers, 2013; Cheung et al., 2013; Nguyen
et al., 2015; Sha et al., 2016; Huang et al., 2016;
Yuan et al., 2018; Huang and Ji, 2020; Shen et al.,
2021; Zeng et al., 2021), which can be regarded
as atomic schema induction. In contrast, we aim
to induce schemas for complex events involving

multiple events.
Another line of work focuses on the sequence-

based methods, which takes event-event relations
into account, and orders event structures into se-
quences (Chambers and Jurafsky, 2008, 2009;
Rudinger et al., 2015; Granroth-Wilding and Clark,
2016; Pichotta and Mooney, 2016; Modi, 2016;
Weber et al., 2018, 2020a). Instead of representing
events as structures, some work treats events as nat-
ural language steps and induces schema knowledge
through story ending prediction (Mostafazadeh
et al., 2016; Weber et al., 2020b; Kwon et al.,
2020), machine reading comprehension (Oster-
mann et al., 2018, 2019), and schema goal-step
prediction (Zhang et al., 2020; Yang et al., 2021).
Instead of ignoring event structures or organizing
events as simple sequences, we aim to capture the
multi-dimensional evolution of events, as well as
the structured connections.

As a further step, researchers propose to use
graphs to represent schemas (Wanzare et al., 2016;
Modi et al., 2016; Li et al., 2020, 2021), where
each event can be followed by multiple alterna-
tive outcomes. Li et al. (2021) introduce the con-
cept of “complex event schema”, a comprehensive
graph schema consisting of both temporal orders
and multi-hop argument relations, allowing time-,
location-, and argument-based tracking of events.
However, it adopts an auto-regressive graph gen-
eration model, which only models the first-order
dependency of an event node with respect to its
neighbors. In contrast, we propose to encode a
global graph context via event skeleton generation
using double auto-encoders.

6 Conclusion and Future Work

In this work, we propose a novel event schema
induction framework using double graph autoen-
coders, i.e., a high-level variational graph autoen-
coder to learn the event skeleton, followed by a
low-level GCN graph autoencoder to reconstruct
entity-entity relations. Our autoencoders are able
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to preserve the global structural information of
event graphs, thus capturing the multi-dimensional
evolution of complex events, and providing global
context to consolidate argument relations. Exper-
iments demonstrate that our method significantly
outperforms baselines by generating high-quality
and globally consistent event schemas.

In the future, we aim to effectively induce
schemas from graphs of different sizes, especially
extremely large graphs. We also plan to make
use of event hierarchies and induce hierarchical
schemas with optimal event type granularity.
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A Additional Discussions

Impact of training graph size. It is shown in Ta-
ble 1 that instance event graphs consist of hundreds
of nodes on average. To see if the size of training
instance graphs can affect the model performance,
we set a threshold for the size of training instance
graphs, and only train our method on those graphs
whose size is less than the given threshold. The
result is presented in Figure 4a, which shows that
our model achieves the best performance when the
threshold is relatively small. The result demon-
strates that including large training instance graphs
will not help improve the model performance, be-
cause larger instance graphs may have more noisy
events nodes with repeated types.
Impact of dimension of node hidden state. We
also investigate the impact of dimension of node
hidden state in the high-level variational graph au-
toencoder to model performance. The result is pre-
sented in Figure 4b, which demonstrates that our
model performs best when dim = 256 in all three
datasets, since a too large or a too small dimension
will lead to performance drop due to over-fitting or
under-fitting.
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Figure 4: Impact of (a) the threshold of training instance
graph size and (b) the dimension of node hidden state
on DoubleGAE.

B Implementation Details

B.1 Details of Dataset Cleaning Strategy
For each complex event, we construct an instance
graph, where coreferential events or entites are
merged. Among the events we include those that
are connected through entity coreference links, or
that have temporal relationships. The graph can
then be extended using related events that share
arguments or that are linked by a relation. We
consider isolated events to be irrelevant nodes
in schema induction, therefore they are excluded
from the instance graphs during graph construc-
tion. In schema graphs, type labels and node

indices are used to represent each node, with
mention level information ignored. Although
RESIN is a state-of-the-art IE system, there still
remains some errors in event temporal links. There-
fore, we do human curation to remove obviously
erroneous links. Below are some event-event
link examples that we delete from the instance
graphs: (DIE, INJURE), (ARRESTJAILDETAIN,
ATTACK), (ENDPOSITION, STARTPOSITION),
(DIE, DIE), (DEFEAT, EXCHANGEBUYSELL),
(SENTENCE, DIE), (ENDPOSITION, SENTENCE),
(THREATENCOERCE, RELEASEPAROLE).

C Scientific Artifacts

C.1 RESIN Information Extraction System

Data License and Usage We obtain the code from
the open-source information extraction system
RESIN (Wen et al., 2021). We run the code at
https://github.com/RESIN-KAIROS/
RESIN-pipeline-public. The system is
released for research purpose and is licensed
under the GNU General Public License v3 or later.
The system covers the general news domain and
supports three languages, i.e., English, Spanish
and Russian. It does not contain offensive content.
Discussions about IE Quality The performance
of each component is shown in Table 3 (Wen et al.,
2021). Although IE graphs are noisy, schema in-
duction can still benefit from it. It is because that
the schema induction task aims to find the recurring
patterns, which will still be preserved even in the
noisy data.

C.2 IED Schema Induction Corpus

Data License and Usage We obtain the dataset
from the state-of-the-art graph schema induction
literature (Li et al., 2021). The dataset is released
for research purpose and is licensed under the GNU
General Public License v3 or later. The system
covers the general news domain and is an English
corpus.
Data Collection We utilize the news articles in the
state-of-the-art graph schema induction literature
(Li et al., 2021) in https://github.com/
limanling/temporal-graph-schema.
We collect associated news articles concerning
each complex event type, such as Car-bombing
IED, using Wikipedia as a source. As a first step,
we search candidate Wikipedia categories based
on the name of the complex event type, and then
dig deeper into each page to identify complex
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Component Benchmark Metric Score

Mention
Extraction

En
Trigger ACE+ERE F1 64.1

Argument ACE+ERE F1 49.7
Relation ACE+ERE F1 49.5

Es
Trigger ACE+ERE F1 63.4

Argument ACE+ERE F1 46.0
Relation ACE+ERE F1 46.6

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

En Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8

Es Entity SemEval 2010 CoNLL 67.6
Event ERE-ES CoNLL 81.0

Temporal
Ordering

RoBERTa MATRES F1 78.8
T5 MATRES-b Acc. 89.6

Visual Event Extraction Video M2E2 Acc. 70.0

Table 3: Performance (%) of each component.
MATRES-b refers to MATRES binary classification
that only considers BEFORE and AFTER relations.

events that belong to that category. Afterwards,
we collect the reference news articles for each
complex event, use these articles as the cluster
of documents relating to the complex event, and
perform IE to construct the instance graph. Using
this Wikipedia-based data collection approach, we
have been able to cover a wide range of scenarios,
including most complex events that occur in
human society, such as Disease outbreak and
Disaster. Therefore, our schema induction method
does not depend on manual work and is not limited
to a specific complex event scenario.
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