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Abstract

Many natural language processing tasks in-
volve text spans and thus high-quality span
representations are needed to enhance neural
approaches to these tasks. Most existing meth-
ods of span representation are based on sim-
ple derivations (such as max-pooling) from
word representations and do not utilize compo-
sitional structures of natural language. In this
paper, we aim to improve representations of
constituent spans using a novel hypertree neural
networks (HTNN) that is structured with con-
stituency parse trees. Each node in the HTNN
represents a constituent of the input sentence
and each hyperedge represents a composition
of smaller child constituents into a larger par-
ent constituent. In each update iteration of the
HTNN, the representation of each constituent
is computed based on all the hyperedges con-
nected to it, thus incorporating both bottom-up
and top-down compositional information. We
conduct comprehensive experiments to evalu-
ate HTNNs against other span representation
models and the results show the effectiveness
of HTNN.

1 Introduction

Distributed span representations are useful in vari-
ous natural language processing tasks such as ques-
tion answering (Seo et al., 2019), coreference res-
olution (Lee et al., 2017), sentiment classification
(Yin et al., 2020) and semantic role labeling (He
et al., 2018). Since spans can have arbitrary length,
to get fix-dimensional span representations, exist-
ing methods are mostly based on simple derivations
from word or sub-word representations. These
methods either apply some form of pooling over all
the words within the target span or utilize only the
boundary words of the target span to compute the
span representation. There have also been efforts

∗Kewei Tu is the corresponding author. This work was
conducted when Hao Zhou was a visiting student at Shang-
haiTech University.

Figure 1: An example binarized constituency parse tree
(a) and its corresponding hypertree (b). For each hy-
peredge, P/L/R denote the parent, left-child, right-child
constituent spans respectively.

to improve word representation learning using in-
formation from text spans, which may at the same
time improve span representations built on top of
word representations (Joshi et al., 2020). Further,
some previous methods introduce short text spans
(phrases or n-grams) as additional inputs to BERT
and thus learn contextual representations for such
spans along with word representations (Lai et al.,
2021; Zhang et al., 2021).

However, it is known that natural language text
has underlying compositional structure, which can
often be represented with constituency parse trees
(Chomsky, 1957). What is missing from the afore-
mentioned span representation methods is the uti-
lization of compositional structures both within
and outside text spans. Specifically, the recursive
compositional structure inside a text span suggests
more structured bottom-up computation of the span
representation from word representations; the com-
positional structure outside a text span specifies
how the span joins its sibling spans to form a larger
span, implying top-down computation of the span
representation from its parent and siblings1. By

1This is only possible for constituent spans and one has to
revert to aforementioned methods for distituent spans. How-
ever, we note that most NLP tasks concern constituents more
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taking into account such compositional structures,
we could obtain better span representations and
avoid problems with existing methods such as in-
sufficient modeling of meaning composition (Yu
and Ettinger, 2020).

There are several existing methods of incorporat-
ing constituency tree structures in neural networks
that can be used to produce constituent span rep-
resentations. These methods fall into two main
categories: recursive neural networks (RvNNs)
(Goller and Kuchler, 1996) and graph neural net-
works (GNNs). RvNN-based models recursively
compose span representations from their sub-spans
following a constituency tree structure (Socher
et al., 2011; Tai et al., 2015). They hence only
model bottom-up composition and miss informa-
tion from parent and sibling spans in their span rep-
resentations. Some extensions of RvNNs (Le and
Zuidema, 2014; Drozdov et al., 2019) try to tackle
this problem by additionally modeling top-down
(de-)composition in a similar recursive fashion.
However, they separate the representations com-
puted from the directions and disallow them to di-
rectly interact with (and potentially disambiguate)
each other. GNN-based models, such as graph
convolutional networks (GCN) (Kipf and Welling,
2016) and graph attention networks (Veličković
et al., 2017), have been applied based on con-
stituency tree structures to compute word and span
representations (Marcheggiani and Titov, 2020; Li
et al., 2020). One important flaw of GNN-based
methods is that a GNN represents each composi-
tion with multiple edges that become mixed up
with edges from other compositions during GNN
updates, thus losing critical information of the com-
positional structure. More specifically, a GNN does
not adequately formulate and differentiate bottom-
up computation from all the child spans versus
top-down computation from the parent and sibling
spans. In addition, most GNN-based methods do
not model relations between sibling spans.

To overcome the above drawbacks, we propose
hypertree neural networks (HTNN) to improve con-
stituent span representations. Specifically, we view
a constituency parse tree as a hypertree (Figure
1(b)), in which each node represents a constituent
and each hyperedge is a tuple of multiple nodes
representing a composition of smaller child con-
stituents into a larger parent constituent. We then
build an HTNN with the hypertree as its skele-

than distituents. See statistics in Section 3.4.

ton. During iterative update in the HTNN, we first
visit each hyperedge, computing a representation of
each node in the hyperedge from the other nodes us-
ing a direction-specific composition function; then
we visit each node, aggregating its representations
computed from all the hyperedges connected to
it. In this way, not only can we keep the hierar-
chical information during encoding process, but
also update the representation of constituents si-
multaneously. HTNNs combine the strengths of
RvNNs and GNNs in span representation while
avoid their drawbacks. Like GNNs, HTNNs com-
pute a single unified representation for each span
that integrates information from all the directions
in the constituency tree. On the other hand, HTNNs
follow RvNNs and utilize direction-specific compo-
sition functions to group and integrate information
from different directions.

To evaluate the effectiveness of our method, we
firstly conduct detailed experiments on three prob-
ing tasks: semantic role classification, named entity
labeling, coreference arc prediction. Then we apply
our method to the task of semantic role labeling.
The results show that our method is superior to
word-based, RvNN-based models and GNN-based
models.

2 Hypertree Neural Networks

2.1 Overview

A hypergraph is a generalization of a graph in
which an edge can join any number of nodes. A
hypertree is a hypergraph H such that there exists a
tree T and every hyperedge of H is the set of nodes
of a connected subtree of T . We consider a directed
version of hypertree that defines a hyperedge as a
tuple of nodes instead of a set.

There is a long tradition of representing con-
stituency parse trees with hypergraphs or hyper-
trees (Klein and Manning, 2001; Huang and Chi-
ang, 2005). We define the hypertree representation
of a constituency parse tree as follows. Each node
in the hypertree represents a constituent in the parse
tree and is labeled with the nonterminal symbol of
the constituent. Each hyperedge represents a com-
position of smaller child constituents into a larger
parent constituent. In this paper, we assume that
the constituency parse tree is binarized, so each hy-
peredge contains exactly three nodes, marked with
P (parent), L (left child) and R (right child) respec-
tively. Figure 1 shows the hypertree representation
of an example constituency parse tree.
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Figure 2: Illustration of an HTNN. We show the update process of node (2,4). (a) The hypertree structure. (b)
Composition within hyperedges. (c) Aggregation of multiple representations.

We generalize the methodology of GNNs on hy-
pertrees and propose hypertree neural networks
(HTNN, Figure 2). Similar to GNNs, several
HTNN layers are stacked to form the model. Each
layer is composed of two modules: composition
within hyperedges (Section 2.3), which computes
a representation of each node in a hyperedge us-
ing the other nodes from the same hyperedge; and
aggregation of multiple representations (Section
2.4), which aggregates the representations of a
node from all the hyperedges connected to it and
forms a single unified representation. Each layer is
fed with the node representation from the previous
layer. The initial node representation in the first
layer is computed from word representation using
the attention pooling method (Section 2.2).

We treat the node representation from the last
layer as the final constituent span representations
and feed them into downstream task-specific de-
coders. For example, we may run an MLP classifier
on top of a span representation for named entity
recognition, or run a biaffine classifier on top of
the representations of two spans for semantic role
labeling. Training of HTNN can be done by opti-
mizing any task-specific objective in an end-to-end
manner along with the initial span encoder and the
task-specific decoder.

2.2 Initialization of Node Representation
We follow Toshniwal et al. (2020) to compute
initial span representations from word represen-
tations produced by a pretrained language model.
We choose to use their attention pooling method
because it performs the best in our pilot exper-

iments. Specifically, the input sentence x =
{w1, w2, ..., wl} of l words, is firstly tokenized
and passed through a pretrained language model to
get contextual token embeddings {e1, e2, ..., eT }.
These embeddings are then fed to the attention
pooling module to get fix-dimensional span embed-
dings. For a span s = [i, j] whose corresponding
contextualized embeddings are {ei, ..., ej−1}, the
span representation sij is calculated as:

sij =

j−1∑

k=i

ak · ek

ak = Softmax(vT
1 · ek)

where v1 is a learned parameter vector. Note that
in a constituency parse tree, each constituent is
attached with a nonterminal tag. We use an embed-
ding layer to convert the tag to distributed vector
space, and then concatenate it to sij .

s′ij = Concat([sij ;Embedding(tag)])

We project s′ij using two different learned matri-
ces to obtain hij and cij , the initial hidden state and
memory cell of the node representing span [i, j].

2.3 Composition within Hyperedge
Within each hyperedge, there are three nodes:
parent (p), left child (l), right child (r). Tradi-
tional RvNN-based methods model the relation-
ships among them mainly in a bottom-up manner: a
composition function combines the representations
of the two children to obtain the representation of
the parent. Le and Zuidema (2014) extend such

1684



methods by adding a top-down process, where a
node’s representation can also be computed from
its parent and sibling. We follow this idea that any
node can be computed from the others within each
hyperedge. The computation is direction-specific,
meaning that the composition function is different
for each of the three nodes.

Our composition function is inspired by TreeL-
STM (Tai et al., 2015). The computing process can
be denoted as:

[h′
p; c

′
p] = Compose(hp,hl,hr, cl, cr) (1)

[h′
l; c

′
l] = Compose(hl,hp,hr, cp, cr) (2)

[h′
r; c

′
r] = Compose(hr,hp,hl, cp, cl) (3)

where subscript p, l, r denote the parent, left child
and right child respectively, h and c denote hidden
state and memory cell vectors from the previous
layer, and h′ and c′ denote newly composed vec-
tors.

We illustrate the detailed computation process
of equation (1), in which we compose the left child
node and the right child node to get the representa-
tion of the parent node.

i = σ
(
W(i)hp +U

(i)
l hl +U(i)

r hr + b(i)
)

f l = σ
(
W(fl)hp +U

(fl)
l hl +U(fl)

r hr + b(f)
)

f r = σ
(
W(fr)hp +U

(fr)
l hl +U(fr)

r hr + b(f)
)

o = σ
(
W(o)hp +U

(o)
l hl +U(o)

r hr + b(o)
)

u = tanh
(
W(u)hp +U

(u)
l hl +U(u)

r hr + b(u)
)

c′p = i⊙ u+ f l ⊙ cl + f r ⊙ cr

h′
p = o⊙ tanh(c′p)

i, f l, f r,o ∈ Rd represent the input gate, two
forget gates and output gate respectively. u ∈ Rd

is the newly composed input for the memory cell.
U and W ∈ Rd×d denote trainable weight ma-
trices and b ∈ Rd denotes trainable bias vectors.
The superscript of a matrix denotes which gate it
is used for, and the subscript of a matrix denotes
which node representation it is multiplied to. The
computation processes of equation (2) and (3) are
similarly defined, and they share some of the train-
able matrices. (See more details in Appendix A.1)

2.4 Aggregation of Multiple Representations
With the exception of the root and the leaf nodes,
a node in the HTNN is connected with two hyper-
edges, one connecting to its parent and sibling and

the other connecting to its two children. The com-
putation process in Section 2.3 is independently
carried out for each of the two hyperedges, result-
ing in two different representations for the node.
Besides, we assume that the representation of the
nodes from the previous layer also conveys impor-
tant information. Therefore, we aggregate these
three representations using the attention mecha-
nism. Specifically, we use h′

0 to denote the output
hidden state from the previous layer, and h′

1, h′
2 to

denote the representations computed from the two
hyperedges. We use h′

0 as the query vector, to at-
tend to h′

0, h′
1, h′

2 and compute a single aggregated
representation h′.

ai = Softmax(vT
2 tanh(W[h′

0;h
′
i]))

h′ =
∑

i

ai · h′
i, i ∈ {0, 1, 2}

where W ∈ R2d×d and v2 ∈ Rd are trainable
parameters. Note that the memory cell c′ is aggre-
gated in the same process with shared parameters.

3 Experiments

3.1 Implementation Details

We use gold constituency parse trees from the
datasets, and binarize them using NLTK Toolkit
(Bird et al., 2009). We use pretrained RoBERTa-
large2 (Liu et al., 2019) from HuggingFace (Wolf
et al., 2019) as the word encoder. We also tried
SpanBERT (Joshi et al., 2020) for word encoding
but found it inferior to RoBERTa-large in our pilot
experiments. We freeze the parameters in the pre-
trained language model for all experiments. The
dimension of attention pooling is 192 and the di-
mension of tag embedding is 64. The dimensions
of hidden state and memory cell in HTNN are all
set to 256. We set the default number of HTNN
layers to 3. For each layer, the number of train-
ing parameters is 1,707,520. During training, the
model is evaluated on the validation set every 1000
training steps. We adopt the Adam optimizer with
an initial learning rate of 2e-3, which is halved if
the validation score is stuck for 3 evaluations. The
batch size is 64 and the dropout probability is 0.2.
We train our model for 40 epochs on 4 NVIDIA
Tesla P40 GPUs. 3

2https://huggingface.co/roberta-large
3The source code and trained model are available on

https://github.com/GreyChou98/HTNN
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3.2 Datasets
CoNLL-2012 We conduct both probing and SRL
experiments on the CoNLL-2012 dataset (Pradhan
et al., 2012). This dataset is extracted from the
OntoNotes v5.0 corpus, which provides gold con-
stituency parses.

CoNLL-2005 We also conduct SRL experi-
ments on the CoNLL-2005 dataset (Carreras and
Màrquez, 2005), which takes section 2-21 of the
Wall Street Journal (WSJ) corpus as the training
set, and section 24 as the development set. The
test set consists of section 23 of WSJ for in-domain
evaluation together with 3 sections from the Brown
corpus for out-of-domain evaluation. CoNLL-2005
is also annotated with gold constituency parses.

3.3 Models for Comparison
Pooling A baseline model that computes span
representations using attention pooling (Toshniwal
et al., 2020). Our method and all the methods listed
below use this representation for initialization.

SentiBERT A model for composing sentiment
semantics on top of BERT (Yin et al., 2020). We
re-implement their composition module based on
the attention mechanism for span representation,
instead of using their full model designed for senti-
ment analysis. We consider SentiBERT as a GNN-
based model because it updates representations of
all nodes simultaneously, though it only applies the
attention mechanism from each parent node to its
child nodes.

TreeLSTM An RvNN-based model, proposed
by Tai et al. (2015), that generalizes the standard
LSTM architecture to tree-structures.

Bi-TreeLSTM Le and Zuidema (2014) proposed
IORNN to capture top-down decomposition be-
sides bottom-up composition. We extend their
model by using the composition function of TreeL-
STMs. We refer to this model as bidirectional
TreeLSTM (Bi-TreeLSTM).

GCN/GCN-sib Marcheggiani and Titov (2020)
apply GCN structured with constituency trees in an
SRL system. We re-implement their constituent
GCN module to produce span representations,
omitting their decomposition stage that is used
for word representations. Furthermore, we extend
GCN by adding sibling nodes in constituency trees
for better comparison with our method. We refer
to this modification as GCN-sib.

GAT/GAT-sib Li et al. (2020) use GAT to gen-
erate representations of the nodes in constituency
parse trees. Similarly, we extend GAT by connect-
ing sibling nodes, and we refer to this modification
as GAT-sib.

3.4 Probing Experiments

We firstly conduct a probing evaluation of span
representations, following Toshniwal et al. (2020).
We conduct experiments on three of their probing
tasks, omitting the other two tasks that probe syntax
because constituency syntactic parses are input to
most of the methods compared here.

• Named entity labeling (NEL): a task of pre-
dicting the entity type of a given span corre-
sponding to an entity.

• Semantic role classification (SRC): a task of
predicting the semantic roles of phrases in a
sentence. Unlike the standard SRL task, in
this probing task, predicates and their argu-
ment spans are given , so the goal is to clas-
sify the argument spans into specific semantic
roles.

• Coreference arc prediction (COREF): a task
of predicting whether a pair of spans refer to
the same entity.

The task-specific decoder for these probing tasks
is a two-layer MLP followed by sigmoid layers to
predict the labels. For SRC and COREF, which
involve two spans, the MLP takes the concatena-
tion of the representations of the two spans as input.
Following Toshniwal et al. (2020), we make pre-
dictions for each label independently, which allows
using the micro-averaged F1 score as the evaluation
metric. Note that in all the methods except Pooling,
we only compute representations for constituent
spans (those appearing in constituency parse trees).
Therefore, given a distituent span, we simply pre-
dict no label. Fortunately, almost all the spans of
interest in three tasks are constituent spans (98.5%
for NEL, 99.7% for SRC, and 99.4% for COREF)4.
We report F1 scores for all the spans (F1-all) as
well as for constituent spans only (F1-const).

The results of three probing tasks are shown in
Table 1. As a baseline model, Pooling’s architec-
ture is the simplest. Surprisingly, it outperforms all
the other methods (except for HTNN on F1-const)
on the NEL task. We believe this is because NEL
is so simple that contextual word representations

4See more details of the statistics in Appendix A.2
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NEL SRC COREF AVG
F1-const F1-all F1-const F1-all F1-const F1-all F1-const F1-all

Pooling 96.18 96.07 93.08 93.05 92.99 93.01 94.08 94.04
TreeLSTM 95.05 94.22 90.02 89.88 90.07 89.70 91.71 91.27
Bi-TreeLSTM 95.25 94.42 90.49 90.35 90.33 89.96 92.02 91.58
SentiBERT 92.98 92.84 95.92 95.09 96.01 95.64 94.97 94.52
GAT 96.01 95.18 93.41 93.26 96.13 95.76 95.18 94.73
GCN 96.03 95.20 93.51 93.37 96.22 95.85 95.25 94.81
GAT-sib 95.79 94.96 92.85 92.71 95.66 95.29 94.77 94.32
GCN-sib 95.87 95.04 93.27 93.13 95.68 95.31 94.94 94.50
HTNN 96.28 95.45 93.88 93.74 96.33 95.96 95.50 95.05

Table 1: Results of probing experiments.

already provide sufficient information. More com-
plicated models show poor performance possibly
because they overfit this simple task. On the other
hand, Pooling underperforms many other methods
on the SRC and COREF tasks, showing the utility
of syntactic information. For COREF in particular,
many input spans are pronouns and their meanings
may be more difficult to capture without syntactic
information.

The RvNN-based models TreeLSTM and Bi-
TreeLSTM perform worst on all these three tasks.
Previous recursive models are mostly used for
sentence-level tasks, and our results show their de-
ficiencies in composing semantics for fine-grained
spans rather than sentences.

For GNN-based models, SentiBERT, GAT and
GCN all show great improvement over recursive
models, and they are also better than Pooling on
average on these three tasks. Both GAT and GCN
show slight superiority over SentiBERT, probably
because they take parent node into computation,
rather than only children nodes. Moreover, GCN
performs slightly better than GAT.

As for HTNN, we can see that it achieves the
best performance overall. The fact that HTNN
outperforms GAT and GCN while GAT-sib and
GCN-sib underperform GAT and GCN suggests
that the superiority of HTNN does not simply come
from adding sibling information into computation.
It is the ability to group and integrate bottom-up
and top-down information that leads to the superior
performance of HTNN.

It is worth noting that for the NEL task, HTNN
outperforms Pooling on F1-const but underper-
forms it on F1-all because HTNN predicts no label
for distituent spans. A simple remedy is to combine
HTNN and Pooling, using HTNN for constituent

spans and reverting to Pooling for distituent spans.
This yields 96.27 F1-all for NEL, surpassing the
strongest Pooling baseline.

3.5 SRL Experiments

We extend SRL in probing tasks to the general set-
ting, in which the predicate is given and we conduct
argument identification and role classification. Our
SRL model is most closely related to the work of
He et al. (2018). The difference is that instead of
using a separate argument pruning module, we sim-
ply prune all the distituent spans and keep all the
constituent spans. Given a predicate and a candi-
date span, we use their biaffine scorer to predict
a label, where the label set is the set of semantic
roles plus a null label indicating the span not being
an argument.

The results of SRL experiments are shown in Ta-
ble 2. Once again, we show F1 scores for both all
the spans (F1-all) and constituent spans only (F1-
const) . We only show the results of GNN-based
models since RvNN-based models have shown
their disadvantages in the probing experiments.
SentiBERT does not perform well in this task,
falling behind even the simple baseline Pooling.
GCN and GAT show significant gain against base-
line, and GCN is still better than GAT on all the
three datasets, especially on the out-of-domain
BROWN test dataset. We also find that taking
sibling nodes into computation causes opposite ef-
fects on GAT and GCN. It does great harm to GAT,
similar to the case in the probing experiments, but
GCN-sib shows small gains over GCN, which is
different from the case in the probing experiments.

Our model HTNN achieves the best performance
on all the three datasets. Since SRL is more chal-
lenging than the probing tasks, we can see that the
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CONLL12 CONLL05 WSJ CONLL05 BROWN
F1-const F1-all F1-const F1-all F1-const F1-all

Pooling 82.36 82.23 82.82 81.90 71.51 70.43
SentiBERT 75.31 75.18 74.52 73.69 66.52 65.51
GAT 85.29 85.16 84.69 83.74 73.32 72.24
GCN 87.91 87.77 88.06 87.08 79.22 78.09
GAT-sib 76.41 76.29 78.34 77.46 62.52 61.58
GCN-sib 88.40 88.27 88.45 87.46 80.03 79.87
HTNN 89.94 89.81 90.77 89.76 82.88 81.68
Wang et al. (2019)† - 84.21 - 85.23 - 75.36
Fei et al. (2021)∗ - 87.35 - 88.81 - 81.27

Table 2: Results of SRL experiments. “†”: reimplemented and reported by Fei et al. (2021). “∗”: results reported in
the original paper.

SRC NEL COREF CONLL12 WSJ BROWN
GAT -w/o tag -0.27 -0.14 -0.46 -7.74 -8.49 -7.36
GCN -w/o tag -0.37 0.02 -0.09 -1.74 -1.38 -0.76
GAT-sib -w/o tag -0.82 -0.34 -1.85 -7.09 -9.30 -7.05
GCN-sib -w/o tag -0.07 0.06 0.02 -2.06 -1.90 -1.11
HTNN -w/o tag -0.04 -0.07 0.13 -1.73 -2.29 -2.28
HTNN -tag-dim=32 0.07 -0.14 0.22 -0.03 0.00 0.15

Table 3: Influence of nonterminal tags in constituency parse tree. The value in this table is the variation against the
resuts in Table 1 and Table 2.

gap between HTNN and the other models is more
prominet. The improvements over the best baseline
model GCN-sib are 1.54 on the CONLL-2012 test
dataset, 2.32 on the CONLL-2005 WSJ test dataset,
2.85 on the CONLL-2005 BROWN test dataset.

We also show results of two other SRL models
that use gold constituency parse trees in Table 2.
HTNN outperforms both of them.

3.6 Ablation Study

Incorporation of Nonterminal Tags We incor-
porate nonterminal tags into HTNN as described in
Section 2.2. Here, we want to explore how nonter-
minal tags influence HTNN, as well as other mod-
els. When we use different embedding dimensions
for nonterminal tags, the dimension of the attention
pooling module changes accordingly to keep the
dimension of span representations unchanged.

The results are shown in Table 3. As we can see,
GAT, GCN and HTNN are negatively affected on
nearly all the tasks when we remove the incorpo-
ration of nonterminal tags. The influence on both
GCN and HTNN is quite small on the three prob-
ing tasks, compared with the SRL task. There are
even improvements for HTNN and GCN-sib when

Figure 3: Performance of different tasks as #layers of
HTNN changes.

removing nonterminal tags on NEL and COREF.
However, on the SRL task, the performance de-
creases notably for all the models.

We also conduct experiments of HTNN when
we set the dimension of nonterminal tags to 32 and
we observe little change in performance.

Number of Layers In each layer of an HTNN,
a node exchanges information with its neighbor.
Therefore, the more layers the HTNN has, the fur-
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Figure 4: Performance of different aggregation methods.

ther the information of a node would spread. In
theory, for a binary constituency tree with n leaf
nodes, to make each leaf node receive information
from arbitrary leaf nodes, the number of HTNN
layers should be set to n− 1. In practice, however,
this may be unnecessary and local information ex-
change may be sufficient. We conduct experiments
to analyze how the number of HTNN layers affect
the performance on different tasks.

The results are shown in Figure 3. We can see
that the tendency is not all the same on the four
tasks. As we increase the number of layers, the
increase of the F1 score is getting smaller, and in
some cases it even declines. Therefore, we regard
the number of layers as a hyperparameter which
should be tuned on specific tasks.

Aggregation Method We compare three differ-
ent methods for the aggregation module (Section
2.4):

• AVG, which simply takes the average of the
representations.

• ATTN, which is the default method we intro-
duce in Section 2.4.

• ATTN-2WAY, similar to ATTN, but does not
include the representation from previous layer.

The results are shown in Figure 4. It can be seen
that ATTN indeed performs the best.

4 Related Work

To get distributed span representations, existing
methods are mostly based on simple derivations
from word or sub-word representations. Lee et al.
(2017) propose the attention-weighted pooling
strategy for coreference resolution. Stern et al.
(2017) concatenate the sum and the difference of

the span endpoints for parsing. Seo et al. (2019)
use the “coherent” endpoint-based representation
for question answering. All of these methods are
originally designed for specific tasks, but because
of their simplicity, they can be easily employed for
other tasks. Toshniwal et al. (2020) make a com-
prehensive survey on these methods and conduct
experiments to compare their performance. Some
other studies also focus on the representations of
sentences or longer texts (Wieting et al., 2015; Con-
neau et al., 2017; Shen et al., 2018).

Instead of representing an arbitrary, some stud-
ies consider composing span representations via
syntactic parse trees, which are more related to
our work. Le and Zuidema (2014) proposed a re-
cursive model IORNN to produce constituent rep-
resentations for supervised task. Drozdov et al.
(2019) proposed an unsupervised method for con-
stituency parse tree induction, during which span
representations are produced as a byproduct. More
recently, graph neural networks have been applied
with constituency parse trees. Marcheggiani and
Titov (2020) use GCN to encode constituent spans
in an SRL system. However, they decompose the
constituent span representations back to start and
end tokens instead of directly using them. Li et al.
(2020) use GAT to generate constituent span repre-
sentations for the sentiment analysis task.

5 Conclusion and Future Work

In this paper, we propose hypertree neural networks
(HTNN) to generate better representations of con-
stituent spans following constituency parse tree
structures. Each node in the HTNN represents a
constituent span and each hyperedge represents a
local composition structure. Each HTNN layer first
computes a representation of each node in a hyper-
edge using the other nodes from the same hyper-
edge, and then aggregates the representations of a
node from all the connected hyperedges. We empir-
ically compare HTNNs with previous RvNN-based
models and GNN-based models. The outstanding
performance of HTNNs on both probing and SRL
tasks shows the effectiveness of HTNN.

For future work, we plan to tackle two related
issues of our approach, namely its reliance on high-
quality constituency parses and its inability to repre-
sent distituent spans (some of which may nonethe-
less be important). We will also extend HTNNs
to more tasks such as sentiment analysis and doc-
ument classification, and incorporate HTNNs into
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popular pretrained language models as a method to
inject syntactic information.
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A Appendix

A.1 Details of Composition

The following is the detailed computation process
of equation (2), in which we compose the right
child node and the parent node to get the represen-
tation of the left child node:

i = σ
(
W(i)hr +U

(i)
l hl +U(i)

p hp + b(i)
)

f l = σ
(
W(fl)hr +U

(fl)
l hl +U(fl)

p hp + b(f)
)

fp = σ
(
W(fp)hr +U

(fp)
l hl +U(fp)

p hp + b(f)
)

o = σ
(
W(o)hr +U

(o)
l hl +U(o)

p hp + b(o)
)

u = tanh
(
W(u)hr +U

(u)
l hl +U(u)

p hp + b(u)
)

The following is the detailed computation pro-
cess of equation (3), in which we compose the left
child node and the parent node to get the represen-
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Task |L| #Instances (Train / Val. / Test) #Missing (Train / Val. / Test)
NEL 18 128738 / 20354 / 12586 1860 / 297 / 215
SRC 66 598983 / 83362 / 61716 1508 / 281 / 185
COREF 2 207830 / 26333 / 27800 1156 / 286 / 213
CoNLL-2005 53 235353 / 8549 / (14463 / 2228) 5897 / 225 / (315 / 63)

Table 4: Statistics of the CoNLL-2012 and CoNLL-2005 datasets. The NEL, SRC and COREF are from the
CoNLL-2012 dataset. “|L|” is the number of labels. “#Instances” means the total instances in the original datasets.
“#Missing” means the instances that contain distituent spans. Note that for the CoNLL-2005 dataset, the test set is
composed of WSJ and BROWN, so we show their numbers respectively.

tation of the right child node:

i = σ
(
W(i)hl +U(i)

r hr +U(i)
p hp + b(i)

)

f r = σ
(
W(fr)hl +U(fr)

r hr +U(fr)
p hp + b(f)

)

fp = σ
(
W(fp)hl +U(fp)

r hr +U(fp)
p hp + b(f)

)

o = σ
(
W(o)hl +U(o)

r hr +U(o)
p hp + b(o)

)

u = tanh
(
W(u)hl +U(u)

r hr +U(u)
p hp + b(u)

)

A.2 Dataset Statistics
We show the statistics of the datasets in Table 4.
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