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Abstract

Self-learning paradigms in large-scale conver-
sational AI agents tend to leverage user feed-
back in bridging between what they say and
what they mean. However, such learning, par-
ticularly in Markov-based query rewriting sys-
tems have far from addressed the impact of
these models on future training where succes-
sive feedback is inevitably contingent on the
rewrite itself, especially in a continually up-
dating environment. In this paper, we explore
the consequences of this inherent lack of self-
awareness towards impairing the model perfor-
mance, ultimately resulting in both Type I and
II errors over time. To that end, we propose aug-
menting the Markov Graph construction with
a superposition-based adjacency matrix. Here,
our method leverages an induced stochastic-
ity to reactively learn a locally-adaptive deci-
sion boundary based on the performance of
the individual rewrites in a bi-variate beta set-
ting. We also surface a data augmentation strat-
egy that leverages template-based generation
in abridging complex conversation hierarchies
of dialogs so as to simplify the learning pro-
cess. All in all, we demonstrate that our self-
aware model improves the overall PR-AUC by
27.45%, achieves a relative defect reduction
of up to 31.22%, and is able to adapt quicker
to changes in global preferences across a large
number of customers.

1 Introduction

Large-scale conversational AI systems such as
Alexa, Google, Siri etc. serve millions of users
daily all over the planet, who speak diverse lan-
guages and have a myriad of regional preferences.
These models need to be constantly updated with
new data to adapt to changing customer behav-
ior and trends. Data curation processes that rely
solely on human annotations cannot possibly scale
to sustain the rapid update pace of these systems.

∗ Equal contribution

Therefore, quite naturally, these AI agents have
increased their reliance on explicit and implicit
feedback from customer interactions to automate
the learning process while limiting manual annota-
tion efforts selectively only to auditing and quality
control purposes.

In such feedback-based self-learning systems
where new streams of data are being funneled in to
continually update the system, the mere presence
of the ML model itself inevitably impacts future
training data. This is rather evident with query
rewriting models where the reformulated query be-
comes intertwined with the original utterance to
the extent where the successive feedback in the
customer-system interaction paths become contin-
gent on the rewrite. Here, we show that as these
models continue to be updated without account-
ing for this unintended interference, they tend to
learn false equivalencies between the original re-
quests and rewrites, thereby impeding their own
self-learning capabilities.

In this work, we build upon an absorbing Markov
Chain model to make the model self-aware i.e. it
can distinguish between customer requests and sys-
tem rewrites, and adapt its decision boundary based
on the quality of the rewrites. Note that the system
can also be an ensemble of heterogeneous agents
proposing different reformulations for the same
query. The self-learning Markov model does not
require any agent specific information and rather
treats them all as a single entity. Thus, this work
can be integrated into any conversational AI system
to enable self-learning at a system-level without
major changes to the rest of the architecture.

2 Related Work

Query rewriting techniques, particularly in the form
of suggestive disambiguation have been extensively
employed in online search systems (Jansen et al.,
2009; Antonellis et al., 2008; He et al., 2016; Rie-
zler and Liu, 2010), so as to increase recall and im-
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Figure 1: A general walk-through for motivating a meta-state augmented Graph: Beginning with the original
construction of chains in (a) where utterances, U are projected into the hypothesis space, H before being encoded
into the absorbing Markov model in (b) showing how a target rewrite in U ′ is resolved given a source in U .
Thereafter, upon deployment, the effect of continuing to model the Graph as before i.e. by discounting the presence
of rewrites, Gd in (c) and choosing to always unroll the internal rewrites as an externalized state, Gu in (d), both
lead to Type II and I errors respectively. Note that the decision boundaries over discrete spaces here are to illustrate
the nature of mis-classifications. Naturally, in attempt to balance these two categories of error, a superposition of Gd

and Gu is constructed in (e) wherein the rewrites act as meta-states that induce stochasticity within the Graph, G′.

prove click-through rates. Naturally, conversational
AI systems have also adopted similar techniques to
reduce customer defects (Sodhi et al., 2021; Hao
et al., 2020; Su et al., 2019; Rastogi et al., 2019;
Roshan-Ghias et al., 2020; Yuan et al., 2021; Fan
et al., 2021). To the best of our knowledge, none
of them address feedback issues that arise from
model-in-the-loop environments.

Previous work has analyzed biases and noises
in the feedback loop of machine learning models,
particularly in recommendation systems (Chaney
et al., 2018; Mansoury et al., 2020; Sun et al., 2019;
Mehrabi et al., 2021; Lim et al., 2015; Saito et al.,
2020). Khritankov (2021); Sculley et al. (2015);
Amodei et al. (2016) delve into the effects of un-
wanted feedback loops that can lead to AI system
instability. These works do not consider misplaced
attribution of the feedback itself, which is exacer-
bated in query-rewriting systems.

In Ponnusamy et al. (2020), customer interac-
tions are modeled as an absorbing chain Markov
model, and the candidate that is most likely to re-
sult in a successful absorbing state is predicted as
the rewrite. This work does not address the equiva-
lence conflation problem that occurs over time in
such a setup. We update the Markov formulation
to enable self-awareness and resolve the ambiguity
in feedback attribution.

In Shi et al. (2021), the Markov model is lever-
aged as a recall layer that produces candidates
which are re-ranked by a self-learning neural model

that relies on negative user feedback. While there
is not much information on the performance of
the recall layer, their neural ranking mechanism
is richly augmented with common sense and var-
ious user preferences. They do not mention any
degradation of the Markov model over time but
it is possible that the enriched re-ranker could be
compensating for this. In contrast, our work solves
the issue within the self-learning Markov model
itself as opposed to deferring it to a downstream
model. This has the added benefit of accelerating
the rate of self-learning.

3 Dataset

To extract the chains of successive customer inter-
actions for the eventual Graph, we first pre-process
about 90 days of de-identified time-series utterance
data from a representative sample of customers
worldwide to construct our dataset of sessions, D.
Here, conceptually speaking, each such session
represents a time-delimited snapshot of a particular
customer’s conversation history. To illustrate this,
consider the session in Figure 1(a) that encapsulates
a series of consecutive utterances which follows a
customer interjecting with a “stop” and following
up with a rephrase of their original request to play
the song “Enemy”. Note that in practice, to maxi-
mize the consistency of a conversational goal, the
time delay between consecutive turns is heuristi-
cally bounded.

Now, while the vast majority of interactions are
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indeed stateless, there are those which trigger di-
alogs so as to solicit the user to disambiguate. This
inevitably creates conversational hierarchies that
span multiple turns. To ground this, consider the
dialog in Figure 2(a) where the system is unable to
fulfill the initiating request without first clarifying
which playlist to add the song to. To address this
complexity and improve the overall intelligibility
of the corresponding session, such multi-turn di-
alogs are abridged by connecting the initiating turn
with a synthetic one as shown in Figure 2(c). This
is accomplished via template-based DAGs (the con-
struction of which is explored with greater detail
in the Appendix Section 8.1) wherein the resolved
entities towards the end of the corresponding di-
alog are passed through to generate the synthetic
utterance e.g. the DAG in Figure 2(b) is fed with
“SongName:escape”, “ArtistName:enrique igle-
sias”, and “PlaylistName:kacey’s” so as to surface
the eventual synthesized utterance, “add escape by
enrique iglesias to kacey’s playlist”.

4 Self-Aware Markov Model

Much akin to the original formulation of the
Markov model by Ponnusamy et al. (2020), which
we henceforth regard as our baseline, our dataset
of ordered linear sequence of utterances is first
projected into the hypothesis space, H e.g. the
utterance “play one me” is mapped with the aid
of the system’s NLU component to the hypothe-
sis, “Music|PlayMusicIntent|SongName:one me”.
Thereafter, they are each terminated with an absorb-
ing state. The union of these disjoint chains tanta-
mount to our Markov Graph, G = (V,E) where
V = H ∪ S represents the set of all transient and
absorbing states respectively, while E = V × V ,
naturally corresponds to the set of edges. In a more
canonical form, the Graph can be represented via
the transition matrix A:

A =

[
Q S
0 I2

]
(1)

where Q ∈ R|H|×|H| is the sub-matrix of transi-
tion probabilities between transient states such that
its (i, j)-th element corresponds to the probability
of some source transition state, hi transitioning to
some target transition state, hj in a single step or
mathematically speaking, qi,j = P (hj |hi). The
sub-matrix S ∈ R2×|H| refers to the immediate
absorption probabilities of the corresponding tran-
sient states i.e. S = [s+, s−].

Figure 2: Dialog abridging via template-based DAG
with (a) being the original dialog, (b) the extracted tem-
plate graph, and (c) original with the synthesized utter-
ance.

Now, with Q being a square matrix1 whose
norm, ∥Q∥ < 1, the fundamental matrix of the
Markov model, N as formulated in Definition 11.3
by Grinstead and Snell (2012) is therefore given
by N =

∑∞
n=0Q

n =
(
I|H| −Q

)−1 where Qn

refers to the transition probability sub-matrix Q
after exactly n steps. The fundamental matrix, N
is leveraged in resolving the Markov model so as
to surface rewrite candidates. Specifically, for a
given initial transient state, hi, a particular target
transient state, ht would be classified as a poten-
tial candidate should it be both reachable by hi and
conditioned on hi, it leads to a higher chance of suc-
cess. Mathematically speaking, this optimization
objective can be expressed as Φ∞(ht) > Φ∞(hi)
where Φk(hj) refers to the probability of reaching
a successful absorbing state, s+ from hi via another
state hj that is at most k hops away i.e.:

Φk(hj) = P (s+|hj) ·Ni,j (2)

Here, by identifying the initial transient states that
have at least one relatively more successful target
transient state and thereby learning a measure of
equivalency between states in the hypothesis space,
H , the model is effectively able to partition H into
those that require reformulation i.e. the defective
sub-space, H− and those that don’t i.e. the suc-
cessful sub-space, H+. This nature of automatic
partitioning leads the model to predict rewritability
ŷ of a given hi as follows:

ŷ(hi) = 1

{(
argmax

h∈H
Φ∞(h)

)
̸= hi

}
(3)

1As every atomic chain in the Graph is terminated with an
absorbing state, these terminal states are guaranteed to always
be reachable by any given source transient state, thus ensuring
their convergence i.e. lim

n→∞
Qn = 0.
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4.1 Decision Boundary Degeneracy

Upon deployment however, the very presence of
rewrites can significantly destabilize the Graph and
impair the integrity of its learned partitioning. To
ground this, consider, in the absence of any rewrite,
a commonly misrecognized utterance, "play theme"
(u1) is followed up with rephrases of "play team",
"play the song team by lorde", etc. Now, when the
first Markov model G(0)

d is trained initially at T0

(Figure 1b), it learns to rewrite u1 to "play team by
lorde" (r1). Once deployed, as the Markov model
continually learns from customer feedback, u1 be-
comes more and more successful than it actually is,
since r1 is not explicitly modeled. Conceptually,
this deterministic discounting deforms the deci-
sion boundary around u1, resulting in a Type II er-
ror (Figure 1c). Such a misclassification will even-
tually shed the rewrite, forcing the graph to revert
to G

(0)
d . This increases the rephrases to u1 as pre-

viously observed at T0 and as it gathers sufficient
defect statistics, the pattern would repeat, resulting
in an unstable oscillatory system that struggles to
maintain a consistent decision boundary.

One way of solving the above problem, is to ac-
count for rewrites by always including them in the
original interaction chain. While this might allevi-
ate the Type II error described above, we show that
this limits the system’s capability to handle defec-
tive rewrites. Imagine a case where a successful
utterance, say "play la da dee" is followed up by
a defective system rewrite "play lady" (Figure 1d).
This may arise due to a number of reasons such as
epistemic or systemic errors, multi-agent interac-
tion, etc. as it is the nature of any statistical model.
This process of deterministic unrolling, which
presumes rewrites to have some degree of latent in-
tent equivalency with the original utterance, would
cause the original hypothesis to become more and
more defective than it actually is, resulting in a
Type I error. To recover the original intent, the
customers would need to rephrase following the
defective rewrite e.g. "play la da dee by cody simp-
son" or some external guardrail mechanism would
need to intervene. Yet again, the Graph will be
slow to adapt the decision boundary in response to
a Type I error or even worse, may completely fail
to recover.

4.2 Meta-State Augmentation

A natural way to balance out these Type I and II er-
rors and thereby maximizing the eventual precision

and recall of the rewrites would to be to learn to
unroll the rewrite should it improve the customer
experience and discount it otherwise. This form of
adaptive preservation and suppression of rewrites
gives rise to a probabilistic decision making pro-
cess where the rewrites act as a kind of meta-states
that induce stochasticity within the Graph. Concep-
tually speaking, this is equivalent to both Gd and
Gu being in a state of superposition as shown in
Figure 1(e) where in the event that a particular tran-
sient state, hi is both rewritten to hk and followed-
up by hj , a meta-state triplet (MST) is formed. In
more robust terms, each of these MSTs within the
Graph are comprised of a viability edge, (hi, hk), a
succeeding edge, (hk, hj), and a discounting edge,
(hi, hj) and are uniquely parameterized by their
own set of probabilistic values, namely in this case,
αik, βkj , and γij respectively so as to allow the
Graph to truly be locally adaptive in its learning. To
that extent, we first construct a superposition-based
transition matrix A′ by updating the probabilities
as below:

A′ = (λ ◦C)⊤D−1

λ = α ◦ J(α) + β ◦ J(β) + γ ◦ J(γ) + J(ϵ)
(4)

where C ∈ Z|V |×|V |
0+ such that Cxy refers to the

co-occurrence count of the directed edge exy =
(hx, hy) in the superposition Graph, G′ and D is
the diagonal matrix whose entries are row-wise
sum of the matrix C i.e. diag(D) = (λ ◦ C) · 1.
The entries J(α)

xy ,J
(β)
xy and J

(γ)
xy on the other hand,

are the ratios of exy occurring as either a viabil-
ity, succeeding or discounting edge respectively.
J
(ϵ)
xy , however, is the complementary ratio of exy

not being a part of any MST. As a matter of com-
pleteness, it’s worth noting here that α,β,γ,J(·) ∈
[0, 1]|V |×|V | such that J(α)

xy +J
(β)
xy +J

(γ)
xy +J

(ϵ)
xy = 1.

Consequently, this modified transition matrix is
then used in resolving the Markov Graph as before,
to generate rewrite candidates.

4.3 Meta-State Triplet Parameters
In order to adaptively preserve or suppress the
rewrites, the weights on the viability edges, α
should reflect the performance of rewriting. As
such, for a given viability edge exy we compare
the interaction quality (IQ), as scored by a neural
dialog model (Gupta et al., 2021) of the popula-
tion where hx was not rewritten, X against that
where hx was rewritten to hy, Y |X = W . Now,
suppose that the probability of success in each
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of these populations follows Beta distributions i.e.
pX ∼ Beta(ax, bx) and pW ∼ Beta(aw, bw). Then,
leveraging the beta bi-variate hypothesis testing
model as formalized by Miller (2015), the proba-
bility that rewriting is comparatively better is given
by:

P (pW > pX) = 1−
∫ 1

0
f(pX , pW ) · dpX

f(pX , pW ) =
pax−1
X (1− pX)bx−1

B(ax, bx)
· IpX (aw, bw)

where, B is the beta function and I , the regularized
incomplete beta function. Thereafter, αxy is com-
puted as a variant of P (pX > pY ) by leveraging
different probability arguments depending on sup-
port sufficiency for both pX and pY as detailed in
the appendix.

Then, while α reflects the rewrite quality via
historical statistics, the weights on the succeeding
edge, β = αρ are designed to maintain the seman-
tic connectivity between the rewrite and the suc-
ceeding states. Here, we rely on Levenshtein ratio
to score on both the grapheme and phoneme levels
so as to compute a relevance measure, ρ ∈ [0, 1].
Intuitively speaking, it allows the α-β flow to be
dampened in the event the rewrite is followed up
with a semantically similar rephrase, indicating that
it may not have quite achieved the customer’s true
intent. In a complementary fashion, the weight of
the discounting edge γ = 1 − α · β acts as a re-
sponse whose magnitude correspond to how much
the corresponding rewrite in its MST needs to be
suppressed. Thus, the locally adaptive Markov
model is self-aware to be able to tailor the deci-
sion boundary so as to surgically maximize the
precision and recall over the space of rewrites.

5 Experiments

We build an evaluation dataset of request-rewrite
pairs annotated by a cascaded labeling pipeline
comprising of an interaction quality model, NLU
scores and manual verification. This fundamentally
enables us to surface, for a given request, u, both
the set of rewrites which significantly improve the
customer experience, r+u and the set that signifi-
cantly worsen, r−u to collectively yield our core
evaluation dataset, De. Then, for any given request,
we further define its rewritability, i.e. a binary la-
bel which indicates whether a particular request, u,
should at all be rewritten, as yu = 1(|r+u | > 0).

We benchmark our self-aware Markov model
variant Ms against the baseline Mb (Ponnusamy
et al., 2020) 2 and measure the gains introduced
by our template-based generation strategy on both
model variants, denoted by the subscript +g.
Specifically, we measure their performance on the
evaluation set De over three tasks, namely their
ability to partition the requests based on their pre-
dicted rewritability, learn the optimal rewrite for
a given request i.e. equivalence learning, and re-
act to changing customer preferences i.e reactivity
rate.

5.1 Partitioning
The automatic partitioning task is a binary classifi-
cation problem where the ground truth label yu is
compared against the model prediction (Equation
3). We observe that the self-aware models signif-
icantly improve precision and recall compared to
their baseline counterparts as shown in Table 1.
Here, it is worth mentioning that the consistent

Model Mb+g Ms Ms+g

Precision +0.0961 +0.1808 +0.1688
Recall +0.1724 +0.4674 +0.5110
Accuracy +0.0606 +0.1922 +0.2047
F1 +0.2555 +0.5547 +0.5834

Table 1: Partitioning metrics measured as improvement
over Mb

significant gain in recall with template-based gen-
eration enabled is in part due to a strong correlating
property between the need for rewriting and the
need for disambiguation, which otherwise would
have been lost due to the local Markov property.

5.2 Equivalence Learning
Once the requests are partitioned, the performance
of the model in selecting rewrites i.e. its ability to
optimally learn equivalencies for those in H− are
evaluated. To this end, we compare the score of the
models (Φ∞ from Equation 2) against the ground
truth annotations in De i.e. whether a given rewrite
candidate makes the customer experience signif-
icantly better (+1) or worse (-1). The precision-
recall curves are then obtained as in Figure 3. The

2To the best of our knowledge, this is a novel space where
widely peer-reviewed work on continual adaptive self-learning
systems are few and far between. As such, this Markov-based
baseline which has already shown to outperform a pointer-
generator LSTM is chosen given its already established pro-
duction impact.

328



self-aware models exhibit much better precision
vs. recall trade-offs and have significantly higher
areas under the curve. To highlight, the template
augmented self-aware model Ms+g improves the
PR-AUC by 27.45% relative to Mb+g.

Figure 3: Precision-Recall Characteristics of Equiva-
lence Learning.

5.3 Reactivity Rate

A key paradigm in designing large-scale AI solu-
tions is the adaptability of the system to changing
customer preferences. In the query rewriting do-
main, this quality can be expressed via the rate
at which the top rewrite candidate changes over
time i.e. the reactivity rate. Figure 4 shows the
distribution of reactivity rate for common requests
across the graph over a 30 day time period. The

Figure 4: Reactivity Rate Distribution.

self-aware model exhibits higher reactivity as seen
by the right shift in the distribution with respect to
the baseline. To study the impact on performance
over time, we compare the relative change in F1

scores of the models ∆F
(t)
1 =

F
(t)
1

F
(0)
1

−1 where, F (t)
1

is the F1 score of the given model at a given times-
tamp t on the equivalence learning task. It can be
seen from Figure 5 that the self-aware model shows
relative increase in the score over time, whereas the

baseline is subject to a degradation in performance.
Thus the higher reactivity rate of self-awareness is
correlated to increased self-learning with the mod-
els adapting to customer feedback.

Figure 5: Relative change in F1 score over time t. Note
that for every timestamp, both models were retrained
with new customer feedback.

5.4 Online Performance

With our approach for template-based generation
being inherently scalable across languages and our
self-aware Markov Graph naturally being language
agnostic, we successfully deployed the model
across 11 locales spanning 6 languages worldwide.
To facilitate the models’ ability to be continually
adaptive, they are refreshed daily with new cus-
tomer feedback. After nearly 6 weeks of in-depth
A/B testing in production, we observed a strongly
significant reduction (i.e. achieving a p-value of
≤ 0.0001) in defects experienced by the customers
compared to the baseline (see Table 2) with a rela-
tive defect reduction of up to 31.22%.

6 Deployment

In similar fashion to the well-established architec-
ture of modern conversational AI systems (Gao
et al., 2018), Alexa follows suit in which the user-
spoken audio is first transcribed into an utterance
text by an automatic speech recognition (ASR) sys-
tem and thereafter has its domain, intent and enti-
ties inferred by the natural language understanding
(NLU) system. However, with the presence of our
reformulation engine as shown in Figure 6 below,
the utterance text is intercepted so as to vend out
a rewrite by means of an online database-backed
lookup system before being funneled through to
NLU. Thereafter, the resulting interpretation in con-
text of the active dialog is leveraged to execute the
corresponding action and respond back to the user.
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Language Defect Reduction Example Request Example Rewrite

English 25.78% play tokyo take out
OLD: play tokyo takedown
NEW: play towkyo takeout by michael giacchino

French 31.22%
mets la chanson le OLD: mets le dimanche à bamako

dimanche à bamako NEW: joue la album dimanche à bamako par amadou

Italian 23.98%
metti campioni del mondo OLD: metti la canzone campioni del mondo

NEW: riproduci canzone italia campione del mondo di gigione

German 22.73%
spiel sun goes down von lenas x. OLD: spiel sun goes down von lil nas you

NEW: spiel sun goes down von lil nas x.

Spanish 28.06%
reproducir feliz cumpleaños OLD: pon las mañanitas con alejandro fernández

de alejandro fernández NEW: reproduce las mañanitas de alejandro fernández

Portuguese 26.21% toca mulher chorona
OLD: toca mulher chorona de corpo e alma
NEW: tocar mulher chorona de trio parada bruta

Table 2: Online Performance of Ms+g with Qualitative Examples.

Figure 6: System Architecture

Within the offline data cycle, the de-identified
logs are enriched with defect predictor labels by
the interaction quality (IQ) model before being
collectively used to train the self-aware Markov
model. The resulting rewrites surfaced by the
Markov model are successively uploaded to the
aforementioned online database. It is worth noting
here that the offline data cycle in entirely is exe-
cuted on a daily cadence so as to ensure the overall
reactivity of the system. In contrast to the baseline
Markov Graph, training the self-aware model in-
curs a rather moderate (∼ 8.33%) computational
overhead due to the additional α computation and
the increased amount of edges.

7 Conclusion

In this work, we address one of the key hurdles to
the achieving self-learning in continuously updated
feedback based systems, namely the deformation
of the partitioning decision boundary due to lack
of self-awareness. To overcome this degradation in
Markov-based query rewriting models, we propose
a superposition-based model that continually and
reactively learns locally-adaptive decision bound-
aries, maximizing its precision and recall over time.
Our proposed strategies show significant improve-

ments in self-learning tasks and overcome long-
term performance degradation. That being said,
its dependence on sufficient statistical evidence for
rewrite quality renders it subject to volatility with
regard to tail or highly personalized rewrites, which
we discuss further in the Appendix.

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul

Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Ioannis Antonellis, Hector Garcia-Molina, and Chi-
Chao Chang. 2008. Simrank++: Query rewriting
through link analysis of the clickgraph (poster). In
Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, page 1177–1178, New
York, NY, USA. Association for Computing Machin-
ery.

Allison J. B. Chaney, Brandon M. Stewart, and Bar-
bara E. Engelhardt. 2018. How algorithmic con-
founding in recommendation systems increases ho-
mogeneity and decreases utility. In Proceedings of
the 12th ACM Conference on Recommender Systems,
RecSys ’18, page 224–232, New York, NY, USA.
Association for Computing Machinery.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neu-
ral approaches to conversational ai.

Charles Miller Grinstead and James Laurie Snell. 2012.
Introduction to probability. American Mathematical
Soc.

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung KPham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework for

330

https://doi.org/10.1145/1367497.1367714
https://doi.org/10.1145/1367497.1367714
https://doi.org/10.1145/3240323.3240370
https://doi.org/10.1145/3240323.3240370
https://doi.org/10.1145/3240323.3240370
https://doi.org/10.48550/ARXIV.1809.08267
https://doi.org/10.48550/ARXIV.1809.08267


automatic interactionquality estimation of dialogue
systems.

Jie Hao, Linfeng Song, Liwei Wang, Kun Xu, Zhaopeng
Tu, and Dong Yu. 2020. Robust dialogue utter-
ance rewriting as sequence tagging. arXiv preprint
arXiv:2012.14535.

Yunlong He, Jiliang Tang, Hua Ouyang, Changsung
Kang, Dawei Yin, and Yi Chang. 2016. Learning to
rewrite queries. CIKM ’16, page 1443–1452, New
York, NY, USA. Association for Computing Machin-
ery.

Bernard J Jansen, Danielle L Booth, and Amanda Spink.
2009. Patterns of query reformulation during web
searching. Journal of the american society for infor-
mation science and technology, 60(7):1358–1371.

Anton Khritankov. 2021. Hidden feedback loops in
machine learning systems: A simulation model and
preliminary results. Lecture Notes in Business Infor-
mation Processing, page 54–65.

Daryl Lim, Julian McAuley, and Gert Lanckriet. 2015.
Top-n recommendation with missing implicit feed-
back. In Proceedings of the 9th ACM Conference on
Recommender Systems, pages 309–312.

Masoud Mansoury, Himan Abdollahpouri, Mykola
Pechenizkiy, Bamshad Mobasher, and Robin Burke.
2020. Feedback Loop and Bias Amplification in Rec-
ommender Systems, page 2145–2148. Association for
Computing Machinery, New York, NY, USA.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
Comput. Surv., 54(6).

Evan Miller. 2015. https://www.evanmiller.org/bayesian-
ab-testing.html.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2020. Feedback-based
self-learning in large-scale conversational ai agents.
34:13180–13187.

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and
Mathias Lambert. 2019. Scaling multi-domain dia-
logue state tracking via query reformulation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Industry Papers), pages 97–105, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Stefan Riezler and Yi Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569–582.

Alireza Roshan-Ghias, Clint Solomon Mathialagan, Pra-
gaash Ponnusamy, Lambert Mathias, and Chenlei
Guo. 2020. Personalized query rewriting in conver-
sational ai agents.

Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato
Sakata, and Kazuhide Nakata. 2020. Unbiased rec-
ommender learning from missing-not-at-random im-
plicit feedback. WSDM ’20, page 501–509, New
York, NY, USA. Association for Computing Machin-
ery.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davy-
dov, Todd Phillips, Dietmar Ebner, Vinay Chaud-
hary, Michael Young, Jean-François Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine
learning systems. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.

Chen Shi, Yuxiang Hu, Zengming Zhang, Liang Shao,
and Feijun Jiang. 2021. User Feedback and Ranking
In-a-Loop: Towards Self-Adaptive Dialogue Systems,
page 2046–2050. Association for Computing Ma-
chinery, New York, NY, USA.

Sukhdeep S. Sodhi, Ellie Ka-In Chio, Ambarish Jash,
Santiago Ontañón, Ajit Apte, Ankit Kumar, Ay-
ooluwakunmi Jeje, Dima Kuzmin, Harry Fung, Heng-
Tze Cheng, Jon Effrat, Tarush Bali, Nitin Jindal,
Pei Cao, Sarvjeet Singh, Senqiang Zhou, Tameen
Khan, Amol Wankhede, Moustafa Alzantot, Allen
Wu, and Tushar Chandra. 2021. Mondegreen: A
post-processing solution to speech recognition error
correction for voice search queries. In Proceedings
of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, KDD ’21, page
3569–3575, New York, NY, USA. Association for
Computing Machinery.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei
Hu, Cheng Niu, and Jie Zhou. 2019. Improving
multi-turn dialogue modelling with utterance rewriter.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 22–
31, Florence, Italy. Association for Computational
Linguistics.

Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and
Patrick Shafto. 2019. Debiasing the human-
recommender system feedback loop in collabora-
tive filtering. In Companion Proceedings of The
2019 World Wide Web Conference, WWW ’19, page
645–651, New York, NY, USA. Association for Com-
puting Machinery.

Siyang Yuan, Saurabh Gupta, Xing Fan, Derek Liu,
Yang Liu, and Chenlei Guo. 2021. Graph enhanced
query rewriting for spoken language understanding
system. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, pages 7997–8001.

8 Appendix

8.1 Template-Based Generation
While most interactions are single-turn, i.e. closed-
form requests that are information complete, there
are nonetheless dialogs that serve to disambiguate
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the user’s intention. Such multi-turn interactions in-
troduce conversational hierarchies, rendering each
subsequent dialog turn contextually and cumula-
tively dependent on all its preceding turns. To
ground this, consider the pair of requests – “set an
alarm for tomorrow" and “set an alarm for seven a.
m.". While the latter is informationally sufficient
for the system to take the requisite action, the for-
mer in contrast remains ambiguous and warrants
multiple turns. Under Markov conditions where
the conditional distributions are entirely uni-variate,
such hierarchies are not simultaneously observed
by the model and fundamentally prevent it from
providing an optimal rewrite.

Figure 7: Plate notation summarizing the relationship
between intents I , languages L, entity sets E, the
corresponding templates G and the consequent utter-
ances and confidences in the single-turn training dataset,
D(s)

t = {(u, z)(1), . . . , (u, z)(k)}.

Figure 8: Template DAG extraction via NER and POS
tagging with (a) showing multiple utterances with their
entities and articles in colored boxes, and (b) represent-
ing the DAG for those utterances.

To address the limitation of the local Markov
property in multi-turn dialogs, we introduce a syn-
thetic utterance generation strategy that abridges
the aforementioned hierarchy into a mere pair of
turns. We define the single-turn training dataset
D(s)

t as described in the plate notation in Figure
7. We form the dataset of utterances u by sam-
pling from a distribution of templates that are con-
ditioned on entity sets, languages, and user intents.
These templates are obtained by leveraging NER
and POS tagging results from NLU, as shown in

Figure 8a. Note, however, that a template g leads
to utterances that are not enforced to follow a
proper grammatical form—potentially reflecting
a low NLU confidence z. Thus, for a specific entity
set e, an intent i, and a language l, we determine
the most plausible template g∗ by maximizing the
expected value of the NLU confidence z:

g∗ = argmax
g∼pg|e,i,l

E[z | g] (5)

where pg|e,i,l denotes the sampling probability for
the template g conditioned on its corresponding
entity type, language, and intent. Once we have
the set of templates for a given language and intent,
we convert each template into a token chain and
unify nodes across chains to form a single graph
(see Figure 8b). Although this graph is constructed
from high-quality templates, it may contain cycles
that prevent a proper synthetic utterance generation.
Therefore, we factorize the graph into multiple di-
rected acyclic graphs (DAGs). We identify and
break cycles using depth-first search to ensure di-
rectedness while preserving the syntactic integrity
of the original linguistic structures. This process
results in multiple DAGs that account for all the
original valid paths.

When generating synthetic utterances, we extract
the entities from a multi-turn dialog and obtain the
template g∗ that maximizes the overlap between its
entity types e and the DAG nodes Ng:

argmax
g∗∈G∗

(i,l)

|e ∩Ng∗ | (6)

where G∗
(i,l) is the set of optimal templates that

defines the DAG and (i, l) denotes a common in-
tent and language across those templates. Once the
path has been determined, we replace the entities
in template g∗(i,l) with their corresponding values
and resolve the entity articles, if applicable. It is
possible, however, that the algorithm may not nec-
essarily find a satisfactory path among the DAGs
defined from G∗

(i,l). In such cases, we abridge the
entire dialog to merely retain the first turn of the
dialog. Additionally, our algorithm is only exe-
cuted when the multi-turn dialog has a successful
conversion (i.e., the user’s request was satisfied).
In the event of an unsuccessful dialog or an abrupt
end (e.g. “no”, “stop”), we terminate the dialog
with an interjectory utterance. Figure 2 describes
the high-level process of compressing a multi-turn
dialog into a single-turn dialog.
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8.2 Meta-State Augmentation
The weight α is chosen in a hierarchical fashion as
follows. We select the first α from the successive
preference relation, αc ≻ αg ≻ αe whose confi-
dence interval widths given by Wilson’s method
for both the utterance and rewrite are lesser than η.
Here, the Wilson’s score interval is computed with
a significance of 89% CI and η was calibrated via
cross-validation to an optimal value of 0.588. Each
of the αc, αg and αe is defined by the following
probability arguments,

αc = P (pW |c > pX|c)

αg = P (pW > pX)

αe = P (pWe > pXe)

where αc relies on the supporting statistics for a
given customer, c while αg extends that statistic
globally across all customers in the data. Unlike αc

and αg, however, we determine αe by the distribu-
tions of entity changes between the utterance and
the rewrite. Given the entity set e, along with their
corresponding changes between the original and
its rewrite (e.g., ArtistName added, SongName
changed, etc.), we compute αei for every entity
ei ∈ e and retrieve the maximum absolute devia-
tion as αe:

αe = max
ei∈e

|αei − 0.5| (7)

We choose the maximum absolute deviation be-
cause it linearly provides a sense of dispersion
without overly weighting values as in other for-
mulations (e.g., standard deviation). More impor-
tantly, Equation 7 defines αe based on a single
most-dispersed αei value, which can lead to either
suppress (i.e. low dispersion) or encourage (i.e.
high dispersion) the αβ-path.

8.3 Risks and Limitations
In order to be locally adaptive i.e. decisively un-
roll or discount a particular rewrite when warranted
so, the learning of the Graph hinges on its ability
to determine the viability i.e. the α value of the
said rewrite—the performance of which is squarely
correlated with that of the IQ model and thereby
inheriting the model’s limitations in its overall pre-
cision and recall. That being said, the Graph does
internally rely on its collaborative filtering ability
to regularize the model’s decision while external
guard-rail mechanisms are also in place to further
mitigate the impact of this dependency.

Another matter of concern here would be the
requisite for sufficient statistics when computing
α, which becomes a limiting factor for highly tail
or personalized rewrites, where the Graph would
essentially struggle to learn a consistent decision
boundary given a high entropy of plausible rewrite
alternatives, resulting in its equivalency learning to
be entirely contingent on the more prevalent cohort
within each learning cycle. In practice however,
this is far from being a considerable issue as the
over-arching system takes on a multi-stage hier-
archical approach that permits other personalized
agents to act in lieu of the Graph, while maintain-
ing the Graph’s role for its more confident set of
customer cohorts.

Conversely speaking, should there be a signifi-
cantly widespread rewrite that abruptly becomes
defective, the Graph would inevitably require a
substantial or quite possibly, an equally volumi-
nous source of negative feedback to counter the
highly successful prior. This in turn could subject
a vast number of customers to a bad experience
for a considerable amount of time that ultimately
drives down the engagement. As clear of a risk
this is in a deployed application setting, a veritable
solution here would be to adopt a sense of recency-
weighting in constructing the Graph’s adjacency
matrix, which stands as a worthwhile future effort.
In the meantime however, we rely on external gat-
ing mechanisms that refresh far more often than
the Graph to aid in mitigating the overall severity
of such an issue.
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