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Abstract

Extreme multi-label classification (XMC) sys-
tems have been successfully applied in e-
commerce (Shen et al., 2020; Dahiya et al.,
2021) for retrieving products based on cus-
tomer behavior. Such systems require large
amounts of customer behavior data (e.g.
queries, clicks, purchases) for training. How-
ever, behavioral data is limited in low-traffic
e-commerce stores, impacting performance of
these systems. In this paper, we present a tech-
nique that augments behavioral training data
via query reformulation. We use the Aggre-
gated Label eXtreme Multi-label Classification
(AL-XMC) system (Shen et al., 2020) as an ex-
ample semantic matching model and show via
crowd-sourced human judgments that, when
the training data is augmented through query
reformulations, the quality of AL-XMC im-
proves over a baseline that does not use query
reformulation. We also show in online A/B
tests that our method significantly improves
business metrics for the AL-XMC model.

1 Introduction

E-commerce search engines are primarily keyword-
based information retrieval (IR) systems com-
prising two main operations–matching and rank-
ing (Manning et al., 2008). Lexical and/or se-
mantic matching algorithms generate a recall-
focused matchset which is then ranked based on
the match quality of the document (product) to
the query (Joachims et al., 2007). Lexical match-
ing algorithms such as Okapi-BM25 (Robertson
and Walker, 1994; Robertson and Zaragoza, 2009)
score a query-product pair as a weighted sum of
overlapping keywords. These approaches, used
in many retrieval tasks (Lee et al., 2019; Boytsov
and Nyberg, 2020), do not capture customer behav-
ior signals (purchase, stream, etc) and thus do not
capture customer preferences.

Semantic matching learns representations of
queries and products based on customer behavior

Figure 1: Overview of our approach. We induce query
reformulation pairs from behavioral training data to fine-
tune a reformulation model (T5). We then augment the
original behavioral data with reformulated queries to
train an AL-XMC semantic model.

and hence captures the products that customers
prefer. Semantic matching can be implemented
using dual encoders (Nigam et al., 2019; Huang
et al., 2013), that separately build query and prod-
uct representations, then combine the two in a fi-
nal shared space to determine the similarity of the
pair. It is also implemented using extreme multi-
label classification (XMC) systems. In particular,
Aggregated Label eXtreme Multi-label Classifica-
tion (AL-XMC) (Shen et al., 2020) partitions the
label (product) space by clustering labels into hier-
archically granular clusters in a b-ary tree structure.
Irrespective of the approach, semantic matching
requires a large amount of behavioral data to train.
But in newly launched sites or for new products,
this behavioral data is not abundant.

In this paper, we propose a method to augment
the data available to train semantic models in low-
resource e-commerce stores. We use item-to-item
collaborative filtering to identify queries that show
strong behavioral associations. Such query pairs
elicit a similar behavioral response from customers
and so represent the same purchase intent. We
use these query pairs to fine-tune the text-to-text-
transfer-transformer (T5) language model (Raffel
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et al., 2020) to generate query paraphrases, which
we then use to augment the data available to train
the semantic model.

We test our method on an AL-XMC semantic
model, though it can be easily used to augment
training data for any semantic model. We show, by
offline crowd-sourced human judgments as well as
online A/B tests, that our data augmentation tech-
nique generates reliable training data that improves
the performance of the AL-XMC semantic model.

2 Approach

A pipeline diagram of our system is shown in Fig-
ure 1. The main goal of this work is to increase
good quality query-product pairs with which to
train an AL-XMC model; we do this by generat-
ing alternative queries from known queries using
a fine-tuned T5 model. To fine-tune the T5 model,
we identify purchase-intent-preserving query pairs
from historical customer data. In Section 3 we de-
scribe our approach to constructing the data used
to fine-tune the T5 model.

3 Constructing query reformulations

We regard customer interaction data as tuples of the
form ⟨q, t, p⟩, each consisting of a query q, interac-
tion type t (eg: search, purchase, etc.) and product
p. It is generally the case that newer stores do not
have sufficient interaction data to train robust se-
mantic models. To increase the data available to
train semantic models, we can either increase the
number of queries associated with the product, the
number of products associated with the queries, or
both. In a typical e-commerce site the number of
products is usually fixed. It is not usually possible
or desirable to artificially augment this set. Instead
we fine-tune a language model to generate query re-
formulations and associate the reformulated queries
to products using the same interaction type t as the
original query. The reformulated queries increase
the variance of the tokens, including those from
rare queries, in accordance with their distribution
in the target store. In order for this to happen, the
reformulated queries need to encompass the same
purchase intent as the original queries.

For a language model to create high-fidelity re-
formulations, we need an adequate corpus of intent-
preserving query paraphrase pairs. However, gen-
erating such a corpus is not trivial. Queries vary
widely in specificity, from highly generic (gifts
for teens) to highly specific (HP 63XL). Also, a

(a) Similarities of aquarium filter brush

(b) Similarities of heart name tag for dog

Figure 2: Top 6 similarities of two example queries,
sorted by PMI. While all the top matches to aquarium
filter brush appear to refer to the same product as the
key, many of the top matches to heart name tag for dog
refer to products that are not good matches.

product can satisfy multiple shopping intents. For
example, the same product can be purchased for
kids laptop and cheap laptop. In this section, we
describe our methodology to generate high fidelity
query reformulations.

3.1 Identifying related queries using
Collaborative Filtering

To generate fine-tuning data for a query reformu-
lation model, we need to identify query pairs that
have the same purchase intent. We adapt item-to-
item collaborative filtering (Linden et al., 2003) to
generate query-to-query similarities. In this formu-
lation, we interpret common product interactions
of queries as query co-occurrence. For our case,
we say two queries co-occur iff they lead to the
purchase of the same product. Given this inter-
pretation, we can then use different measures like
pointwise mutual information (PMI) to quantify de-
pendence between queries. Figures 2a and 2b show
the top 6 similar queries (or similarities) associated
with seed queries aquarium filter brush and heart
name tag for dog, respectively. As we can see from
these figures, the similarities are generally related
to the seeds. However, as seen in Figure 2b, the
similarities, while related, do not preserve purchase
intent in all cases.

3.2 Clustering the query graph
Since our purpose is to identify queries that have
the same purchase intent, for every seed query, we
filter out any similarities with a query specificity
that is not within 10% of the specificity of the seed.
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Figure 3: Queries and similarities associated with prod-
uct Lily’s 8-Inch Japanese 440C Pet Dog Chunker
Shears. This sub-graph shows three clusters that can be
visually identified.

We define specificity, sQ(q), as the inverse normal-
ized click entropy (H(q)) of clicks for a query, q.

H(q) = −
∑

p∈c(q)
P (p|q) logP (p|q)

sQ(q) = 1− H(q)

maxq′∈QH(q′)

where P (p|q) is the probability that a customer will
click on product p after issuing query q and c(q) is
the set of all products clicked by users after issuing
q. A very specific query (e.g.: k-cup coffee pods 72
count) will have low H(q) and thus high specificity
sQ(q) while broad queries (e.g.: party dress) will
have high H(q) and low sQ(q).

Even after specificity filtering, similarities can
still show associations that do not preserve query
intent (Figure 2b). To further reduce noise, we
identify clusters in the query similarities graph. We
form this graph by considering every query to be
a vertex, and an edge to connect vertices if there
is a similarity relation between them. The whole
graph, though extremely sparse (< 0.0001% of the
edges of a fully connected graph), can still con-
tain tens of millions of vertices and hundreds of
millions of edges for some e-stores. Since our
objective is to identify queries that lead to the pur-
chase of similar products, we break the similarities
graph into product sub-graphs for each product p
as Gp = (Vp, Ep) where Vp = (VQp ∪ VNp) is
the set of vertices formed as follows: VQp is the
set of queries associated with (i.e. that lead to the
purchase of) p, and VNp is the set of similarities
of VQp . An edge connecting (vi, vj) is in Ep iff

vi, vj ∈ Vp and there exists a similarity relation be-
tween them. By processing each product sub-graph
independently, we can parallelize the clustering
problem and operate only on small sub-graphs.

Figure 3 shows the sub-graph of the product
Lily’s 8-Inch Japanese 440C Pet Dog Chunker
Shears. The graph naturally separates the queries
into multiple sets: thinning shears, grooming
shears, and professional grooming scissors, each
marked in different colors in the figure.

We cluster each similarities subgraph to identify
sets of queries that show high connectivity within
the cluster and low connectivity outside it. The
aim of clustering is to find groups of behaviorally
related queries that satisfy the same customer intent.
The subgraph edges already tell us that two queries
are related, in that they lead to the purchase of
the same product more frequently than would be
expected by chance alone. By clustering we can
identify groups of mutually related queries. If two
queries are behaviorally related to a similar set of
queries we can consider them to be related as well.

Graph clustering, though, is an ambiguous prob-
lem, with no universal definition of a cluster. De-
pending on the algorithm used, we can detect one,
two, or three clusters in the graph in Figure 4.

Edge clustering (Ahn et al., 2010) combines fea-
tures of soft clustering, where clusters can share the
same members, with hierarchical clustering, where
clusters are nested into dendrograms that represent
progressive subdivision of a single cluster into a set
of singletons. We next describe an edge clustering
algorithm that is hierarchical but does not prohibit
vertex sharing between clusters.

3.3 Seeding query clusters

Hierarchical clustering recursively merges clusters
according to some merge criterion, beginning with
each vertex in its own cluster. This imposes a re-
striction that clusters not share vertices. To avoid
this, we let some vertices’ base clusters consist
of themselves and their neighbors (i.e. their sim-
ilarities). To determine which initial clusters are
singleton vertices and which contain vertices and
neighbors, we use the Clustering Coefficient (C3),
which measures the cliquishness of the neighbor-
hood of a vertex in a graph (Lind et al., 2005).
C3(i) is defined as the fraction of the number of
triangles observed in the graph out of the total num-
ber of possible triangles which may appear. For
a vertex i with a degree di, the total number of
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Figure 4: Different ways to cluster a graph

possible triangles is just the number of pairs of
neighbors, i.e. di(di − 1)/2. Then C3 is given by:

C3(i) =
2Ti

di(di − 1)
(1)

where Ti is the number of observed triangles inci-
dent on vertex i.

If a vertex has a high (> 0.33) C3 coefficient,
we are assured that the neighborhood has a high
internal degree (a large number of edges between
vertices in the neighborhood), and so we include its
neighbors in its initial cluster. Vertices not meeting
this criteria are added as singleton initial clusters.

3.4 Merging query clusters
We then merge clusters hierarchically, based on
the size of the vertex intersection between clusters.
Starting with the seed clusters (either neighbor-
hoods or singleton vertices), in each round, pairs of
clusters are chosen in order by intersection size. A
round terminates when for some cluster pair ci, cj
to be merged, |ci ∩ cj | < θ × min(|ci|, |cj |) for
some predefined hyperparameter θ,1 where |ci| is
the number of vertices in cluster ci.2

3.5 Pruning query clusters
Since we include entire neighborhoods as seed clus-
ters, we may also end up including rogue edges that
are tenuously connected to the clusters. After the
final merge, we prune the vertices that have an
internal-degree to external-degree ratio less than
a threshold.3 This removes noise and bolsters the
community structure (high intra-cluster connectiv-
ity and low inter-cluster connectivity).

Since query graphs are behavioral, it may not be
possible to get semantically distinct clusters. We

1We use θ = 0.4.
2We can interpret the round termination condition as a

modified Jaccard similarity, where our condition,
|ci∩cj |

min(|ci|,|cj |) < θ, is more amenable to clusters of dissimilar

sizes than |ci∩cj |
|ci∪cj | , the Jaccard coefficient.

3We use 0.5.

observe that overly large clusters (|c| > 10) include
queries with multiple (albeit related) purchase in-
tents. For example, in Figure 5, though mostly
semantically grouped, we see a mix of dog hal-
loween costumes and dog sweaters in one cluster.
We thus only consider clusters with fewer than 10
vertices.

Figure 5: Due to the behavioral nature of the graph,
some queries with different intents get grouped together.
In this example, ‘dog elsa costume’ and ‘dog dress
warm’ are grouped together, yet represent different in-
tents.

4 Experiments

From a low resource store we collect 2.4m in-
stances of behavioral association between queries
and products. We select behaviors over a threshold
level of activity (e.g. clicks and purchases), com-
prising 0.83m pairs, and use that to train a baseline
AL-XMC model; we call this data local. To apply
query reformulation (QR), we first fine-tune a pre-
trained T5-Base model for a sequence-to-sequence
prediction task that uses query pairs from the clus-
ters we generated in Section 3.4 We fine-tune for
two epochs using batches of 32 intent-preserving
query pairs and gradient accumulation with a fac-
tor of 16, for an effective batch size of 512. We

4We again impose the restriction that the specificity of the
target query be within 10% of that of the source query.
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size accuracy
130k 79.67%
460k 86.67%
4m 90.33%
40m 93.00%

Table 1: Impact of data size on fine-tuned T5 reformula-
tion’s intent preservation, showing that accuracy gener-
ally correlates with data size. The 130k and 460k data
points use only reformulated local data, while the 4m
and 40m data points use data from other high-resource
stores. Our QR experiments use the local-only 460k-
tuned T5 model.

optimize with Adam, with a learning rate of 3e− 4.
We fine-tune using 8 NVIDIA V100 GPUs; each
epoch takes around 24 hours to run.

We use the fine-tuned T5 model to reformulate
the query for each of the 2.4m collected query-
product-behavior tuples, and associate the reformu-
lation with the product and behavior, as if it was
additional data. We can then re-select tuples with
behavior over the same threshold level of activity
used to form the local data; now, however, more
tuples are above threshold and some new tuples
have been introduced. Altogether, this procedure
dramatically increases the size of the AL-XMC
training corpus, to 16.14m training tuples.

In addition to the local baseline and local+QR re-
formulation approaches, we compare our data aug-
mentation method to integrative knowledge trans-
fer (IKT) (Pan et al., 2008; Zhuo et al., 2008) from
a higher-resource store. To do this, we identify
queries in the high-resource store that show strong
interaction with a product that is available in both
stores. We add those query-product associations to
the training set in the target store. Such an approach
is of course only possible in a mature ecosystem
where previously-established high-resource stores
exist.

5 Evaluation

To intrinsically evaluate the impact of fine-tuning
data size on reformulation intent preservation, we
randomly select 300 QR tuples and determine to
what degree intent is preserved during reformula-
tion, using a variety of data conditions to fine-tune
T5. We count a reformulation as accurate if it has
the same manually judged purchase intent as the
input query and a search engine returns a similar
set of products for both queries. Table 1 shows
that for the reformulation fine-tuned on the 460k

pairs obtained as described in Section 3, accuracy
is about 87%. To put this in context, Table 1 also
shows results for T5 reformulation when fine-tuned
on a 130k subset of that data, as well as on larger
query reformulation fine-tuning data sets obtained
by including query pairs from other high-resource
stores. The trend indicates that intent preservation
is generally a function of the amount of data used
to fine-tune the T5 model. In the rest of this work
we use a T5 reformulation model fine-tuned on the
460k pairs obtained as described in Section 3, since
the availability of high-resource store data is not
guaranteed.

To extrinsically evaluate, we consider the effec-
tiveness of the AL-XMC models when built under
different data augmentation conditions. We con-
sider both offline and online evaluation paradigms.

5.1 Offline evaluation

Typically, evaluations are done by computing pre-
cision and recall metrics using customer purchases
as ground truth. Low-resource stores however, do
not have sufficient purchase data and suffer from
significant display bias—if a relevant product isn’t
shown to a customer, they cannot purchase it, result-
ing in an artificial drop in precision of a new (not
deployed) model. Thus, we train crowd-sourced
judges using the Toloka platform5 to evaluate if the
products predicted by the AL-XMC model for a
particular query are indicative of the query text. We
use 1,000 randomly sampled query-product pairs
to evaluate the models. Table 2 gives the product
accuracy improvement and coverage (average num-
ber of products generated per query) for AL-XMC
models. AL-XMC models trained using any data-
augmentation (local+∗) significantly outperform
the model trained using only local data, both in
terms of product accuracy (p-value in a one-sided
t-test is < 0.01 for all three results) and coverage.
Our QR data augmentation scheme outperforms
IKT (local+IKT18) when the size of data augmenta-
tion is similar. Using multiple high-resource stores
and hand-tuning the parameters for IKT, we can
increase the training data by almost 3x to a total
size of 47.58m. However, even with this massive
data increase (local+IKT48), IKT only achieves a
product accuracy comparable to our augmentation
scheme. If no high-resource store is available, IKT
is not even an option. Query reformulation, on
the other hand, only requires information from the

5https://toloka.yandex.com/
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Training Product accuracy Avg number of Num training
data improvement products/query pairs
local N/A 16.85 0.83m
local+IKT18 13.58% 22.27 18.11m
local+IKT48 19.85% 25.94 47.58m
local+QR (ours) 19.57% 21.08 16.14m

Table 2: Data augmentation method comparison. Product accuracy (proportion of relevant products) improvement
measures percent increase from local baseline. Product accuracy numbers use offline crowd sourced evaluations.
p-value is < 0.01 for all three data augmentation cases in a one-sided t-test.

Training data Improvement P(Treatment(SCR)> Improvement P(Treatment(CRR)>
in SCR Control(SCR)) in CRR Control(CRR))

local+QR 0.26% 0.82 -0.30% 0.15

Table 3: Online A/B test where control is the local model. For Search Click Rate (SCR), positive effect is better, for
Customer Reformulation Rate (CRR) negative effect is better.

low-resource store and a language model like T5.

5.2 Online evaluation

For the analysis of a single A/B test, it is common
to compute a p-value from the t-statistic. However,
in modern industrial settings, a large number of ran-
domized experiments are run every day. In this set-
ting, using only the Null Hypothesis test essentially
ignores the information from the whole population
of experiments. Stein’s paradox (Stein, 1956) states
that when estimating multiple parameters, there ex-
ist combined estimators more accurate on average
than any method that handles the parameters sep-
arately. In the case of A/B tests, this means that
the true effect of any one experiment can benefit
by including the information from prior tests. Also,
while the Null Hypothesis test is proper for testing
whether the true effect is below or above zero, it is
inconvenient to determine the true effect with re-
spect to a loss/utility function. For our evaluations,
we use an empirical Bayesian approach for anal-
ysis of large-scale experiments proposed by Guo
et al. (2020), that uses the Normal-Normal model
to determine the posterior probability of a positive
return on a loss metric. Adding a risk buffer, we
consider our effect positive if the posterior proba-
bility of a positive return, i.e., the treatment metric
being greater than the control metric, is > 0.66.

We ran a 14 day A/B test on a popular e-
commerce site in a low-resource English-speaking
store, using the AL-XMC model trained with pur-
chase data augmented with query reformulations as
Treatment and the purchase data alone as Control,
and observed a significant improvement in business

metrics—Search Click Rate (SCR, the proportion
of all searches that have at least one click) and Cus-
tomer Reformulation Rate (CRR, the proportion
of all searches where the customer had to reissue
the query with different wording). A reduction in
the CRR implies that the search returned relevant
products in the first query. Table 3 shows a signif-
icant increase in SCR and a significant reduction
(probability of positive effect < 0.33) in CRR.

6 Discussion

We compare the generated queries to those trans-
ferred by IKT48 and find that only 20k of the re-
formulated queries were not present in the IKT48
set. This indicates that the T5 model is able to gen-
erate high fidelity queries that customers are likely
to use. In addition, data augmentation with query
reformulations is able to achieve the same results
as that with IKT48 with only about a third of the
data. Thus, the reformulated queries are able to
capture the relevant information of the target locale.
Although IKT48 contains nearly the same infor-
mation as QR, it is also noisier in the sense that
it transfers queries that are relevant in the source
(high-resource) store but may not be relevant in the
target low-resource store. This noise necessitates
several times more data to achieve the same per-
formance. Model training with the larger IKT data
set takes approximately 4 times as long as training
with the query reformulations dataset.

7 Related Work

Data augmentation in the e-commerce space has
dealt with reformulating queries in several ways.
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Kuzi et al. (2016) expand user queries using se-
mantically similar terms according to a learned em-
bedding space, while Wang et al. (2021) use query
annotations to identify words to expand queries.
Both methods rely on a large amount of natural
query reformulation by users to train their models,
which we avoid. Zhang et al. (2015) and Wang
and Yang (2015) propose synonym or paraphrase
replacement reformulation approaches. The noisi-
ness of these approaches, some of which expect sig-
nificant context, are a bad fit for the product query
use case. Other works that leverage data enhance-
ment via model-based generation include Mao et al.
(2021), who augment queries in black-box question
answering tasks, Sennrich et al. (2016), who gener-
ate bilingual parallel data via backtranslation, and
Fadaee et al. (2017) who, similar to us, though in a
machine translation context, reformulate training
data via language model-based generation, in this
case focusing on rare word replacement.

8 Conclusion

In this paper, we have presented a method to aug-
ment training data for semantic models in low-
resource e-commerce stores. Our method is generic
enough to be applied as training data augmentation
for any model and does not require transfer from
high-resource store data. We have shown that aug-
menting training data using query reformulations
improves upon a baseline store-specific AL-XMC
semantic matching model in both offline evalua-
tions as well as online business metrics. Our meth-
ods increase the training data of a test low-traffic
store from 0.83m to 16.14m, resulting in a quality
improvement of 19.57% over the baseline model.
We also see a significant boost to business metrics
in online A/B tests. Next we will explore similar
data augmentation techniques for generating mul-
tilingual query reformulations, using the mT5 pre-
trained model (Xue et al., 2021). In addition to low
traffic stores, this technique may even be applied
to yet-to-be-launched locales where training data
is missing completely, by forming pseudo-queries
from product descriptions.

9 Ethics Statement

We have performed our research so far only for the
English language. Though we believe that similar
results can be obtained for non-English languages
we have yet to demonstrate this. We only use query
and product interaction data for our work. Any

identifiable user information is completely stripped
before we can access the data. As our method is
ultimately used to retrieve a set of products in an
e-commerce store, incorrect predictions will not
cause harm to the user besides an unsatisfactory
experience.
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