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Abstract

Multi-task learning (MTL) aims to solve mul-
tiple tasks jointly by sharing a base representa-
tion among them. This can lead to more ef-
ficient learning and better generalization, as
compared to learning each task individually.
However, one issue that often arises in MTL
is the convergence speed between tasks varies
due to differences in task difficulty, so it can be
a challenge to simultaneously achieve the best
performance on all tasks with a single model
checkpoint. Various techniques have been pro-
posed to address discrepancies in task conver-
gence rate, including weighting the per-task
losses and modifying task gradients. In this
work, we propose a novel approach that avoids
the problem of requiring all tasks to converge
at the same rate, but rather allows for “asyn-
chronous” convergence among the tasks where
each task can converge on its own schedule.
As our main contribution, we monitor per-task
validation metrics and switch to a knowledge
distillation loss once a task has converged in-
stead of continuing to train on the true labels.
This prevents the model from overfitting on
converged tasks while it learns the remaining
tasks. We evaluate the proposed method in
two 5-task MTL setups consisting of internal e-
commerce datasets. The results show that our
method consistently outperforms existing loss
weighting and gradient balancing approaches,
achieving average improvements of 0.9% and
1.5% over the best performing baseline model
in the two setups, respectively.

1 Introduction

Over the past few years, large pretrained models
have achieved great success on a variety of tasks
in natural language processing (Devlin et al., 2019;
Yang et al., 2019; Raffel et al., 2020; Brown et al.,
2020; Lewis et al., 2020; Clark et al., 2020; He
et al., 2021). Most work in this area typically fol-
lows the pretraining-finetuning paradigm, in which
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the model is first pretrained on large text corpora
using a self-supervised language modeling objec-
tive and then finetuned using supervised data from
a target task. In particular, when evaluating on
a benchmark that contains multiple tasks such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019), a common method is to finetune a
separate model for each task in order to achieve
the best performance. Although such an approach
produces excellent results, it has several drawbacks,
including incurring the costs of repeated finetuning
efforts and precluding the possibility of knowledge
sharing among related tasks. In addition, when it
comes to deploying these models for real-world ap-
plications, a separate model is deployed for each in-
dividual task which can pose challenges for model
hosting and maintenance.

An alternative approach is multi-task learning
(MTL), which solves multiple tasks together by
sharing representations among them. This not only
offers benefits in computational and storage effi-
ciency, but also makes it possible to share knowl-
edge among related tasks and encourages the model
to learn more robust and generalizable representa-
tions (Ruder, 2017; Zhang and Yang, 2017; Craw-
shaw, 2020). However, one of the biggest chal-
lenges in MTL is to balance the convergence sched-
ule across tasks. Differences in task difficulty can
result in faster convergence on some tasks over oth-
ers. As a result, the naive approach which simply
adds together the losses of all tasks is typically
sub-optimal (Sener and Koltun, 2018; Liu et al.,
2019a), since the final model may overfit the tasks
that have converged early on during training, while
underfitting the others. To tackle this, a large body
of work has explored various loss and gradient bal-
ancing strategies (Kendall et al., 2018; Sener and
Koltun, 2018; Chen et al., 2018; Liu et al., 2019a;
Yu et al., 2020; Wang et al., 2021), in order to
enforce the same convergence speed across tasks.
Despite these efforts, the problem still remains un-
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solved. As we show in our experiments, existing
approaches can still fail to balance learning across
different tasks in practice.

In this work, we propose a different approach
for coordinating the learning across tasks in MTL.
Instead of artificially forcing all tasks to converge
at the same rate, we allow each task to converge
according to its own schedule. We call this asyn-
chronous convergence, as opposed to previous
methods which seek to achieve a synchronous con-
vergence schedule across tasks. After each task
converges, we avoid overfitting by switching to
a knowledge distillation loss for that task for the
remaining training steps. The intuition is that con-
tinuing to train using the true labels can lead to
overfitting. Instead, the knowledge distillation loss
encourages the model to maintain its output distri-
bution and thus its performance on the converged
tasks at the best level, while the model learns the
remaining tasks. We evaluate the proposed method
in two different 5-task MTL setups. Our results
show that existing loss and gradient balancing ap-
proaches fail to produce meaningful improvements
over the simple baseline which sums the losses
from all tasks or lead to more costly and less ef-
ficient training. In contrast, our method achieves
consistent improvements. In particular, when com-
paring the final checkpoint performance, our best
performing approach achieves an average improve-
ment of 0.9% over the best baseline model in the
first setup and 1.5% in the second setup.

2 Related Work

As already mentioned, one key challenge in MTL
is to balance the learning speed across tasks. Some
existing methods address this by applying static
weights to the losses of different tasks (Kendall
et al., 2015; Liao et al., 2016; Kokkinos, 2017),
where the weights are usually determined through
extensive hyper-parameter search. However, such
an approach tends to be sub-optimal (Sener and
Koltun, 2018). One line of research improves this
by designing algorithms to automatically determine
the weights and dynamically adjust them during
training (Guo et al., 2018; Kendall et al., 2018;
Liu et al., 2019a). Going beyond the loss weight-
ing approaches, there is also work that leverages
gradient information and proposes to manipulate
the magnitude and/or direction of the gradients
from different tasks in order to better coordinate
the learning among the tasks (Sener and Koltun,

2018; Chen et al., 2018; Yu et al., 2020; Wang et al.,
2021). Recently, Liu et al. (2021) shows improved
results by combining loss weighting and gradient
manipulation approaches. In all above methods, the
goal is to enforce roughly the same convergence
speed across tasks, so that the final model fits all
tasks well. However, we hypothesize that imposing
such an artificial constraint leads to optimization
challenges. Instead, we propose a simpler method
which allows for asynchronous convergence among
the tasks, where each task converges on its own
schedule. We focus on avoiding overfitting after a
task has converged, which is achieved by distilling
from the task’s best checkpoint for the remaining
training steps.

On the subject of maintaining the performance
of converged tasks, a related research area is contin-
ual learning (CL) (Parisi et al., 2018; Lange et al.,
2021). CL studies the problem of learning tasks
in a sequential manner with the goal of avoiding
catastrophic forgetting (Goodfellow et al., 2014) of
previous tasks while learning new tasks. Replay-
based CL approaches are most relevant to our work.
The idea is to periodically present the model with
examples from past tasks to avoid forgetting (Re-
buffi et al., 2017; de Masson d’Autume et al., 2019;
Sun et al., 2020a). In particular, Hou et al. (2018)
proposes to avoid forgetting by adding a distillation
loss formulated using a small subset of examples
from previous tasks. In our case, we experiment
with a similar setup where we sequentially add one
task at a time while using a distillation loss to pre-
serve performance on converged tasks. However,
because our focus is on MTL where we have access
to the data of all tasks throughout training, we do
not down-sample the data of converged tasks. Addi-
tionally, our use of the distillation loss is to not only
avoid catastrophic forgetting but also overfitting.

Finally, our work is also related to the field of
knowledge distillation (KD) (Hinton et al., 2015;
Gou et al., 2021), where the goal is to transfer the
knowledge of one network to another by training
the latter network to mimic the predictions of the
former network. It is widely used to distill the
knowledge of a large teacher model to a small stu-
dent model (Hinton et al., 2015; Kim and Rush,
2016; Urban et al., 2017) but has also been applied
in MTL (Liu et al., 2019b; Clark et al., 2019) and
CL (Hou et al., 2018; Chuang et al., 2020). In par-
ticular, Clark et al. (2019) train a multi-task model
by distilling from multiple single-task models and
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show this outperforms directly training a multi-task
model. The main difference between this approach
and our work is that we do not require separate
teacher models per-task, but rather use intermedi-
ate checkpoints as teachers as the model converges
on each task. Another related work by Wei et al.
(2019) also similarly uses intermediate checkpoints
for distillation. However, their focus is on training
a single machine translation model, whereas we
use the technique to train a multi-task model.

3 Proposal: Asynchronous Convergence
via Knowledge Distillation

Consider a MTL scenario where we have T tasks
and have Dt =

{(
x
(i)
t , y

(i)
t

)}Nt

i=1
as the training

set of task t, with t ∈ {1, . . . , T} and Nt being the
total number of training examples for task t. Let f
represent a neural network with parameters θ. In
standard supervised training, we would train the
network on task t by minimizing a loss LST

t (where
ST stands for supervised training) formulated as
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where f
(
x
(i)
t ; θ

)
denotes the prediction of the

model, e.g. probability distribution over all classes
for a classification task or predicted score for a
regression task, and `t denotes the corresponding
loss function, e.g. cross entropy for classification
or mean squared error for regression. As discussed,
the challenge of MTL lies in balancing the opti-
mization of the losses across different tasks. In
this work, we propose to simply minimize the sum
of all task losses, except that after the model has
converged on task t, we would change the task’s
loss from LST

t to a KD loss LKD
t formulated against

the best checkpoint of task t.
Specifically, let θ̂t denote the parameters of the

checkpoint when the model converges on task
t. We first use the checkpoint to run inference
on the task’s training set Dt to obtain D̂t ={(
x
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)}Nt
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.

Then for the remaining training steps, the model
would be trained on task t using a KD loss LKD

t

formulated as

LKD
t

(
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)
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Essentially, after the model has converged on
task t, we no longer train on the true labels of the
task. Rather, we use the KD loss to encourage the
model to mimic the predictions from the checkpoint
where the best performance is achieved. As we
show in our experiments, this method effectively
maintains the model’s performance on converged
tasks without overfitting, while the model continues
to learn the remaining tasks. To summarize, we
propose to minimize the following loss

L =
T∑

t=1

Lt, where Lt =
{
LST
t ,

if task t has
not converged;

LKD
t , otherwise.

(3)
The question of determining when a task has

converged still remains. For this, we monitor the
validation performance of each task given some
patience nt. If the performance does not improve
for nt consecutive validation steps, we consider
the model to have converged on task t. However,
one issue with this approach is that, when the pa-
tience runs out, we would have already trained the
model for some extra steps, and the latest check-
point could already overfit the task. To resolve this,
we rewind back to the checkpoint when the best
validation performance is achieved, and use that
checkpoint as the best checkpoint θ̂t to formulate
LKD
t . We also rewind and resume training from that

checkpoint, effectively discarding the latest steps.
Using this method, we experiment with two dif-

ferent training settings. The first is called the joint
setting, which is similar to the conventional MTL
setup. The model is trained on all tasks together,
and we swap in the KD loss as the model converges
on different tasks. Training stops when all tasks
converge. The second setting is called the sequen-
tial setting and is inspired by the typical CL setup.
Here we start training on a single task and then add
one new task at a time after the previous task con-
verges. Following our proposal, we use the KD loss
for all converged tasks, while training the model
on the true labels of the new task. The process
continues until all tasks converge.

One additional hyper-parameter in the sequential
setting is the order in which to train the tasks. We
experiment with a few different orders, including
ordering from (1) the smallest to the largest task by
dataset size (Sequential (Small)), (2) the largest to
the smallest dataset size (Sequential (Large)), and
(3) the easiest to the hardest (Sequential (Easy)).
For lack of a better heuristic, Sequential (Easy)
uses the order in which the tasks converge in the
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Task Task Type Size (Train
/ Val / Test)

Duplicate Detection
(Dedup)

Binary clas-
sification

3M / 435K /
849K

Perceived Duplicates
I (PD-I)

Binary clas-
sification

107K / 8K /
29K

Perceived Duplicates
II (PD-II)

Binary clas-
sification

609K / 30K
/ 52K

Variations (Var) Binary clas-
sification

5M / 598K /
612K

Unit of Measurement
Identification (UoMI)

3-class clas-
sification

494K / - /
10K

Table 1: Datasets used in the Related 5-task setup.

Task Task Type Size (Train
/ Val / Test)

Relevant Attribute
Identification (RAI)

1359-class multi-
label classification

4M / 474K /
474K

Purchase Similarities
(SIMS)

Regression 3M / 391K /
390K

Tariff Classification
(TC)

93-class classifica-
tion

28K / - / 3K

Product Type Classifi-
cation (PTC)

709-class classifi-
cation

957K / - /
106K

Duplicate Detection
(Dedup)

Binary classifica-
tion

3M / 435K /
849K

Table 2: Datasets used in the Diverse 5-task setup.

joint setting as a proxy for task difficulty ranking.
There are potentially better strategies to determine
the task order or even strategies that can make the
performance invariant of task order. We leave such
investigations as future work.

4 Experiments

4.1 Data

We evaluate on proprietary datasets from an e-
commerce company. The datasets are in English
and include text attributes of product listings, such
as title and product description. We experiment
with two different 5-task MTL setups. The tasks in
the first setup are more similar to each other and
are all some form of classification task, while the
ones in the second setup are more diverse in terms
of application and task type. We evaluate on these
two benchmarks to test the effectiveness and ro-
bustness of our method in different MTL scenarios.
A summary of the tasks used in the two setups is
provided in Table 1 and 2, respectively.

The tasks in the first setup, referred to as the Re-
lated 5-task setup, include (1) Dedup, which clas-
sifies whether two product listings are duplicates
of each other, (2) PD-I, which classifies whether
two listings have subtle differences but may be per-

ceived as duplicates in search results, (3) PD-II,
which is the same as PD-I but considers a different
set of attributes for defining perceived duplicates,
(4) Var, which classifies whether two listings are
variations of each other along certain set of dimen-
sions (e.g. color, size, flavor, etc.), and (5) UoMI,
which classifies the unit of measurement of a list-
ing. Among the tasks, the first 4 are closely related,
in that they all focus on classifying some sort of
similarity between two listings.

The tasks in the second setup, called the Diverse
5-task setup, include (1) RAI, which classifies
whether a listing has any of the 1359 pre-defined
attributes, (2) SIMS, which predicts how similar
two products are in customers’ purchase decisions,
(3) TC, which classifies the tariff category of a list-
ing, (4) PTC, which classifies the product type of
a listing, and (5) Dedup, which classifies whether
two product listings are duplicates of each other.

Note that Dedup is used in both setups. Also,
UoMI, TC, and PTC do not have separate vali-
dation sets, and therefore, we monitor the perfor-
mance directly on their test sets during training.

4.2 Baselines
We compare our proposal against several baselines,
including the naive uniform loss weighting ap-
proach, static and dynamic loss weighting methods,
and a method which leverages gradient information.
Specifically, the baseline models include (1) Uni.
Weight: This is the uniform weighting baseline
where we simply optimize the sum of all task losses.
(2) Muppet: This is a static loss weighting method
proposed in Aghajanyan et al. (2021), which uses a
simple heuristic to compute a loss weight for each
task such that the losses will roughly be on the same
scale after applying the weights. (3) DWA: This
is the Dynamic Weight Averaging (DWA) method
proposed in Liu et al. (2019a), which automatically
and dynamically computes the loss weights of dif-
ferent tasks during training. The motivation is to
ensure roughly the same decreasing rate across all
task losses. (4) GradNorm: This is proposed in
Chen et al. (2018), which is a method to dynami-
cally adjust the loss weights such that the gradients
of different tasks have roughly the same magnitude.
See Appendix A for implementation details and
hyper-parameters.

4.3 Results
Table 3 shows the results in the Related 5-task setup.
Among the baseline approaches, Muppet and DWA
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Name Train
Steps Dedup PD-I PD-II Var UoMI Avg

Baselines
Uni.
Weight
(Final) 8200

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Uni.
Weight
(Best)

+0.30 +1.00 +1.50 +1.00 +0.10 +0.78

Muppet 8200 +0.10 -0.10 +0.10 -0.20 -0.20 -0.06
DWA 8200 +0.10 -0.30 +0.10 -0.10 +0.00 -0.04
GradNorm 8200 -15.50 -15.50 -12.70 -4.80 -2.30 -10.16

This
Work
Joint 8200 +0.60 +1.10 +1.60 +0.90 -0.30 +0.78
Sequential
(Small)

9000 +0.00 -1.20 +1.30 +0.60 +0.10 +0.16

Sequential
(Large)

12000 +0.50 +1.30 +1.50 +0.90 +0.30 +0.90

Sequential
(Easy)

11000 +0.30 +0.90 +1.50 +0.90 +0.10 +0.74

Table 3: Results in the Related 5-task setup. We re-
port accuracy for UoMI and PRAUC for all other tasks.
For all models, we report the performance of the final
checkpoint, while for Uni. Weight, in addition to the
final performance (Uni. Weight (Final)), we also report
the performance using the respective best checkpoint
for each task (Uni. Weight (Best)). All results are re-
ported as changes over Uni. Weight (Final). The best
performance of each task is in bold, while the second
best is underlined.

produce similar results as those of the final check-
point of Uni. Weight, while GradNorm produces
much worse results than all other methods. The
reason that GradNorm underperforms is because
the model still underfits most tasks when training
finishes, which suggests that the method is less effi-
cient than others. Overall, there is a substantial gap
between the performance of the best checkpoint
of Uni. Weight and all other baseline methods,
suggesting that none of the methods are able to
effectively balance the learning across tasks.

In contrast, both our joint setting and sequential
setting are able to achieve the best or second best
results across tasks, which shows the effectiveness
of our methods. In particular, the joint setting is
able to match or surpass Uni. Weight (Best) on all
tasks, except for UoMI. Among the experiments
with the sequential setting, we can see that task
order does impact performance. The exact order-
ing of tasks in different experiments are shown in
Table 7 in Appendix B. Both ordering from the
largest to the smallest task and ordering from the
easiest to the hardest produce similar results overall,
and are comparable with the joint setting and Uni.
Weight (Best) in terms of average performance. On

Name Train
Steps RAI SIMS TC PTC Dedup Avg

Baselines
Uni.
Weight
(Final) 10600

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Uni.
Weight
(Best)

+1.10 +0.10 +1.10 +1.00 +0.10 +0.68

Muppet 10600 -1.00 -0.10 +0.50 +0.70 +0.10 +0.04
DWA 10600 +0.80 +0.00 +0.30 +0.10 +0.00 +0.24
GradNorm 10600 -10.40 -2.10 -1.20 -1.00 -14.30 -5.80

This
Work
Joint 10600 +5.70 +0.00 +0.60 +1.10 -0.40 +1.40
Sequential
(Small)

16800 +5.70 +0.10 +0.90 +1.40 +0.50 +1.72

Sequential
(Large)

37200∗ +7.20 -0.20 +0.30 +0.80 -2.10 +1.20

Sequential
(Easy)

45800∗ +4.00 -0.20 +0.50 +1.10 -1.10 +0.86

Table 4: Results in the Diverse 5-task setup. We re-
port accuracy for RAI, TC, and PTC, and PRAUC for
Dedup. For SIMS, its labels have been normalized to
be between 0 and 1, and we report (1-RMSE)×100.
For all models, we report the performance of the final
checkpoint, while for Uni. Weight, in addition to the
final performance (Uni. Weight (Final)), we also report
the performance using the respective best checkpoint
for each task (Uni. Weight (Best)). All results are re-
ported as changes over Uni. Weight (Final). The best
performance of each task is in bold, while the second
best is underlined. ∗These experiments have a smaller
learning rate. See text for more details.

the other hand, ordering from the smallest to the
largest task produces worst results overall. One pos-
sible explanation is that it is easier for the model
to overfit the smaller tasks, which not only harms
the performance on the tasks themselves, but also
provides a sub-optimal initialization point for the
later tasks. Finally, comparing the total training
steps, we can see that the sequential setting gener-
ally takes longer to run, suggesting that the joint
setting is a more efficient training method.

In addition to the results in Table 3, we also
show the validation plots of different methods in
Figure 1 in Appendix C. We can see that all base-
line methods show signs of overfitting on some
tasks (except for GradNorm which underfits). In
contrast, the plots of both our joint setting and se-
quential setting do not show downward trend in any
task, suggesting that our method is indeed effec-
tive in maintaining the performance of converged
tasks at the best level while the model learns the
remaining tasks.

Table 4 shows the results in the Diverse 5-task
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setup. This time, the Uni. Weight baseline shows
much less overfitting, as can be seen from the vali-
dation plot in Figure 2a in Appendix C. Nonethe-
less, there is still a substantial gap between Uni.
Weight (Final) and Uni. Weight (Best) on RAI, TC,
and PTC. Muppet is able to almost close the gap
on PTC, but it produces worse result on RAI, while
DWA almost closes the gap on RAI, but does not
improve the other tasks. GradNorm still underfits
all the tasks given the same training budget, again
showing its lack of efficiency.

Compared to the baseline methods, our joint
setting achieves a substantial performance boost
on RAI, greatly outperforming even Uni. Weight
(Best). It also matches the performance of Uni.
Weight (Best) on PTC, and improves over Uni.
Weight (Final) on TC. However, the performance
on Dedup turns out to be worse. Meanwhile, Se-
quential (Small), i.e. our sequential setting that
goes from the smallest to the largest task, also
achieves the same substantial performance gain
on RAI, and additionally outperforms or matches
Uni. Weight (Best) across tasks. This again vali-
dates the effectiveness of our proposed technique
in producing better MTL models. For the other
two sequential setting experiments with different
task orderings, we encountered some issues with
training stability when running the experiments,
and had to lower the learning rate to 10−5 , com-
pared to 10−4 used in all other experiments. While
fixing the stability issue, this likely prevented the
optimizer from fully exploring the loss landscape,
which resulted in worse performance on SIMS and
Dedup in these two experiments. Nonetheless, they
still outperform Uni. Weight (Final) on the other
tasks, with Sequential (Large) in particular achiev-
ing the highest score on RAI. It is also interesting
to note that Sequential (Small) produces the worst
results in the Related 5-task setup among the three
orders, but actually produces the best results in the
Diverse 5-task setup. This could suggest that the
effect of task ordering depends on the tasks used,
and the optimal ordering strategy differs among
the two setups. Another reason why Sequential
(Small) outperforms in the Diverse 5-task setup
could again be due to the sub-optimal learning rate
which we had to use with the other two orders. In
the future, we will continue to investigate the ef-
fects of task ordering, as well as tackle the training
stability issue with smarter learning rate schedules.
Also, we can see that the sequential setting again

Name Train
Steps Dedup PD-I PD-II Var UoMI Avg

Exp. 1
Joint 8200 +0.60 +1.10 +1.60 +0.90 -0.30 +0.78
BAM
(M→M)

16400∗ +0.40 +1.80 +1.70 +1.00 +0.00 +0.98

Exp. 2
Sequential
(Small)

9000 +0.00 -1.20 +1.30 +0.60 +0.10 +0.16

Continual
MTL

10200 +0.00 -0.70 -0.20 +0.50 -0.60 -0.20

Table 5: Results of two additional experiments on
the Related 5-task setup. The first experiment com-
pares our joint setting with BAM (M→M) (Clark
et al., 2019), while the second experiment compares
our sequential setting with Continual MTL (Sun et al.,
2020b). All results are reported as changes over Uni.
Weight (Final). ∗Training steps of BAM (M→M) in-
clude the training of Uni. Weight. See text for more
details.

requires substantially more training steps than does
the joint setting. This can also potentially be al-
leviated through a better learning rate schedule.
Besides, we will also explore other techniques that
can further improve the efficiency of our method,
such as reducing the batch proportion of converged
tasks.

5 Additional Discussions

In this section, we provide more discussions on
the effects of the design choices in both our joint
setting and sequential setting. We illustrate the
effects through two additional experiments on the
Related 5-task setup.

In the first experiment, we compare our joint
setting against an alternative approach where we
take the respective best checkpoints for each task
from the Uni. Weight baseline, and distill them to-
gether into a single multi-task model. We call this
approach BAM (M→M) as it is the Multi→Multi
strategy proposed in Clark et al. (2019). Through
this experiment, we seek to compare our way of
continued training with a mixture of KD and super-
vision from true labels against pure KD training.
We note that our setting is more challenging as
the model needs to learn all tasks from scratch,
whereas BAM (M→M) directly transfers previ-
ously learned knowledge for each task to the model.
Also, we train BAM (M→M) for the same num-
ber of training steps as that of our joint setting.
However, since we need to obtain the best check-
point for each task from Uni. Weight, which is also
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trained for 8200 steps, the total training budget for
BAM (M→M) is actually twice as large. The re-
sults of this experiment are shown in Table 5 under
Exp. 1. We can see that BAM (M→M) has better
performance on four out of the five tasks. Nonethe-
less, our joint setting achieves comparable average
performance, despite the fact that our model needs
to learn all tasks from scratch and that it receives
only half of the training budget.

In the second experiment, we compare our se-
quential setting with the Continual MTL method
proposed in Sun et al. (2020b). It is similar to our
sequential setting in that it adds one new task at
a time. The main difference is that they always
use real labels for training, whereas we use KD to
avoid overfitting on converged tasks. Through this
experiment, we seek to understand the effects of
the KD loss in our sequential setting. Specifically,
we choose Sequential (Small) and train Continual
MTL using the same task ordering. The results are
shown under Exp. 2 in Table 5. We can see that
Continual MTL has better performance on PD-I,
but is much worse on PD-II and UoMI. Figure 3 in
Appendix C shows the validation plots. It is clear
that continual MTL suffers from overfitting on PD-
II and UoMI, while our sequential setting does not
show signs of overfitting. This again validates our
assumption that the KD loss is effective in avoiding
overfitting on converged tasks.

6 Conclusion

In this work, we propose a new approach to tackle
the challenge of task convergence in MTL. In con-
trast to conventional loss and gradient balancing
methods which attempt to enforce a synchronous
convergence schedule, we allow the tasks to con-
verge on asynchronous schedules and use a KD
loss to maintain the performance on converged
tasks while the model learns the remaining tasks.
We show that the proposed method consistently
outperforms existing loss and gradient balancing
approaches. For future work, we will explore strate-
gies to make model performance invariant of task
ordering in the sequential setting, or alternatively,
explore strategies to optimally determine task order-
ing. Additionally, we will investigate techniques
to improve the efficiency of our method, such as
dynamically adjusting the learning rate during train-
ing and the batch proportion of converged tasks.
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A Implementation Details and
Hyper-parameters

For all experiments, we use the same pretrained
model, which has a BERT-like architecture (Devlin
et al., 2019) and is pretrained using the masked
language modeling objective on an internal English
corpus consisting of online product listings. The
vocabulary is trained on the same corpus using Sen-
tencePiece (Kudo and Richardson, 2018) and has
32K tokens. The model has 38 transformer layers,
with each layer having 16 attention heads, 1024 hid-
den dimension, and 4098 intermediate feedforward
dimension. The total parameter count is roughly
500M. The model is trained using the LANS op-
timizer (Zheng et al., 2020) with a batch size of
8192 and a learning rate of 10−4. We had to use a
smaller learning rate in two experiments with our
sequential setting, which is discussed in Section 4.3.
For each batch, we sample heterogeneously from
all tasks, and the sampling distribution is roughly
based on the dataset sizes, with some manual ad-
justments to ensure the smaller tasks are not too
under-represented.

We validate every 200 training steps. For both
our joint setting and sequential setting, we use a
patience of 3 validation steps to determine whether
a task has converged, and training stops when all
tasks converge. For the baseline models, since
we lack an aggregated early stopping criterion, for
fair comparison, we train for the same number of
steps as it takes to train the model in our joint
setting. For Muppet, the loss weights for different
tasks are shown in Table 6. For DWA, we set the
temperature T to 2, which is recommended in Liu
et al. (2019a). For GradNorm, we experiment with
α ∈ {0.5, 1, 2} and choose the best performing
value based on validation performance, which turns
out to be 0.5 in the Related 5-task setup and 1 in
the Diverse 5-task setup.
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Task Dedup PD-I PD-II Var UoMI
Weight 3.3 3.3 3.3 3.3 2.1

Task RAI SIMS HS PTC Dedup
Weight 0.32 1 0.51 0.35 3.3

Table 6: Loss weights used in Muppet in both 5-task
setups.

For all models, we report the performance of the
final checkpoint on all tasks. For the Uni. Weight
baseline, we additionally report the performance
using the respective best checkpoint for each task,
which can be used as a reference for the model’s
best performance on each task without overfitting.

B Task Order in the Sequential Setting
Experiments

Task Order in the First 5-Task Setup
Sequential (Small) PD-I → UoMI → PD-II → Dedup → Var
Sequential (Large) Var → Dedup → PD-II → UoMI → PD-I
Sequential (Easy) Var → PD-I → PD-II → UoMI → Dedup

Task Order in the Second 5-Task Setup
Sequential (Small) TC → PTC → Dedup → SIMS → RAI
Sequential (Large) RAI → SIMS → Dedup → PTC → TC
Sequential (Easy) PTC → SIMS → TC → Dedup → RAI

Table 7: Task order in the experiments with the sequen-
tial setting in both 5-task setups. Sequential (Small)
orders the tasks from the smallest to the largest task by
dataset size; Sequential (Large) orders from the largest
to the smallest; Sequential (Easy) orders from the easi-
est to the hardest. For lack of a better heuristic, we use
the order in which the tasks converge in the joint setting
as a proxy for task difficulty ranking.

C Validation Plots

(a) Uni. Weight

(b) Muppet (c) DWA

(d) GradNorm (e) Joint

(f) Sequential (Large)

Figure 1: Validation plots of different methods in the
Related 5-task setup. For the sequential setting, we
only show the plot of Sequential (Large), as it has the
best overall performance among different task order-
ings. Best viewed in color.
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(a) Uni. Weight

(b) Muppet (c) DWA

(d) GradNorm (e) Joint

(f) Sequential (Small)

Figure 2: Validation plots of different methods in the
Diverse 5-task setup. The plot of SIMS is omitted be-
cause its values are on a much smaller scale. For the
sequential setting, we only show the plot of Sequential
(Small), as it has the best overall performance among
different task orderings. Best viewed in color.

(a) Sequential (Small) (b) Continual MTL

Figure 3: Validation plots of Experiment 2 on the Re-
lated 5-task setup. Best viewed in color.
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