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Abstract

Knowledge Graphs (KGs) are structured
databases that capture real-world entities and
their relationships. The task of entity retrieval
from a KG aims at retrieving a ranked list of
entities relevant to a given user query. While
English-only entity retrieval has attracted con-
siderable attention, user queries, as well as the
information contained in the KG, may be rep-
resented in multiple—and possibly distinct—
languages. Furthermore, KG content may
vary between languages due to different infor-
mation sources and points of view. Recent
advances in language representation have en-
abled natural ways of bridging gaps between
languages. In this paper, we, therefore, pro-
pose to utilise language models (LMs) and
diverse entity representations to enable truly
multilingual entity retrieval. We propose two
approaches: (i) an array of monolingual re-
trievers and (ii) a single multilingual retriever
trained using queries and documents in mul-
tiple languages. We show that while our ap-
proach is on par with the significantly more
complex state-of-the-art method for the En-
glish task, it can be successfully applied to vir-
tually any language with an LM. Furthermore,
it allows languages to benefit from one another,
yielding significantly better performance, both
for low- and high-resource languages.

1 Introduction

Knowledge graphs (KGs) are key for many search
applications. Consider, for example, the user query
“chess world champions”. Modern search engines
often present users with a list of world chess cham-
pions along with additional facts encoded as rela-
tions in a KG. The queries themselves, as well
as the information contained in a KG, may be
represented in multiple—and possibly distinct—
languages. This poses a challenge to traditional

∗Research conducted when the author was doing an in-
ternship at Bloomberg.

entity retrieval methods usually optimised for a sin-
gle language. In this work, we aim to tackle the
task of multilingual entity retrieval: given a query
in any language, and a KG holding data in multiple
languages, retrieve a ranked list of relevant entities.

The task of entity retrieval, when both the
query and KG are in English, is well-studied. Re-
cent years have seen remarkable progress, result-
ing in over 20% improvement on DBpedia-Entity
v2 (DE-v2), the standard test collection for the
task (Hasibi et al., 2017). Works like ESim (Ger-
ritse et al., 2020) and KEWER (Nikolaev and Ko-
tov, 2020) utilised word embedding techniques to
represent entities and user queries in the same la-
tent space. Meanwhile, EM-BERT (Gerritse et al.,
2022) combines a powerful entity extractor that
enhances user queries with a pre-trained language
model (LM), fine-tuned on another ranking task,
to establish a new state-of-the-art. These methods,
however, operated on a single language at a time
and were not studied in a multilingual setting.

While DE-v2 is an English-only collection,
Wikipedia and DBpedia (Auer et al., 2007) provide
a unique opportunity: because the contributors to
each language edition come from different back-
grounds and have different views, we often see rich
and diverse entity representations that go well be-
yond word-for-word translation. Moreover, many
entities are available only in some chapters but not
in others (see Appendix G for examples). Thanks
to its graph-based nature, DBpedia facilitates map-
ping between languages and different entities rep-
resenting the same subject. This, in turn, allows us
to build rich, multilingual representations.

Expanding DE-v2 to multiple languages, how-
ever, carries several risks. The collection was de-
veloped based on English DBpedia; therefore, its
pooling stage uses keyword-based retrievers opti-
mised for English. Moreover, annotators were only
presented with English content. In this paper, we
discuss these challenges through example queries
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and stress the importance of building a truly multi-
lingual collection end-to-end.

To address the task of multilingual entity re-
trieval, we introduce BERTE, a multi- and cross-
lingual entity ranking framework. Despite its sim-
ple design and its flexibility to use any LM out of
the box, it is comparable to the state-of-the-art on
DE-v2 in its original English form and thrives in
a variety of languages, including Spanish, Arabic,
and Hebrew. Furthermore, our experiments show
that BERTE can benefit greatly from combining
information from multiple languages to boost its
performance, establishing a new state-of-the-art for
a large subset of the queries.

The main contributions of our work are three-
fold: (i) A novel and simple yet effective entity
retriever for the monolingual setup; (ii) A system
for multilingual entity retrieval; and (iii) A system-
atic way to extend DE-v2 to multiple languages
accompanied with a set of strong baseline results.

2 Background and Related Work

Entity Retrieval While earlier works on retriev-
ing entities from a KG relied heavily on the graph’s
structure (Ciglan et al., 2012; Neumayer et al.,
2012; Nikolaev et al., 2016), recent works have
shown a tendency towards using graph embeddings
instead (Gerritse et al., 2020; Nikolaev and Kotov,
2020; Komamizu, 2020; Jameel et al., 2017; Liu
et al., 2019; Naseri et al., 2018). These methods
generally implement a keyword-based first-stage
ranker, such as BM25 (Robertson et al., 1995) and
then a learned reranker. Meanwhile, the current
state-of-the-art on DE-v2, EM-BERT, relies on a
state-of-the-art entity extractor (van Hulst et al.,
2020) to add textual representations of entities
to user queries, combined with a pretrained LM,
which already entails part of the domain knowl-
edge (Petroni et al., 2019). To do so, they apply a
linear transformation with aligned entity and word
piece vectors, similar to E-BERT (Poerner et al.,
2020). EM-BERT also uses a two-stage fine-tuning
procedure: First, on MS MARCO (Campos et al.,
2016), a large passage ranking dataset. Then, the
model is further fine-tuned on the actual query-
entity pairs from the training set of DE-v2. While
powerful, this approach is restricted due to its re-
quirements. On the other hand, our work achieves
similar performance in English without relying on
an entity extractor, pre-calculated entity embed-
dings, or additional large-scale fine-tuning. It is,

therefore, much easier to extend to other languages
Entity Linking Entity linking aims at identify-
ing and assigning entity mentions in a piece of
text (FitzGerald et al., 2021; van Hulst et al., 2020;
Shen et al., 2021). GENRE (De Cao et al., 2020),
for instance, uses BART (Lewis et al., 2019) and
Beam Search to generate names of entities. On
the other hand, BLINK (Wu et al., 2020) uses
a two-stage zero-shot linking algorithm, where a
very short textual description represents each entity.
While methods could be shared between both tasks,
here we focus purely on a retrieval task, where user
queries are formed by a specific information need.
Neural Information Retrieval Neural methods
have been shown to improve significantly keyword-
based retrievers in a wide range of tasks (Mitra
and Craswell, 2018), including ad-hoc retrieval
(Nogueira et al., 2019; Dai and Callan, 2020; Yu
et al., 2021; Nogueira and Cho, 2019; Akkaly-
oncu Yilmaz et al., 2019; MacAvaney et al., 2019;
Câmara and Hauff, 2020), question answering (Yu
et al., 2021), semantic reasoning (Xu et al., 2020),
and link prediction (Daza et al., 2021). Several Re-
trievers that ditch the initial keyword-based rank-
ing in favour of an end-to-end approach have re-
cently been proposed (Khattab and Zaharia, 2020;
Karpukhin et al., 2020; Xiong et al., 2020; Formal
et al., 2021). While we do not tackle this problem
in this paper, we acknowledge that it is a natural
direction for future work on entity retrieval.
Knowledge Graph Embeddings Graph embed-
dings have evolved greatly. With the intro-
duction of Graph Neural Networks (Wu et al.,
2021), methods like TransH (Wang et al., 2014),
HINGE (Rosso et al., 2020) and StarE (Galkin
et al., 2020) rose quickly in popularity. With the
inclusion of LMs, even more powerful methods ap-
peared (Poerner et al., 2020; Broscheit, 2019; Liu
et al., 2020a). These methods are usually focused
on general-purpose embeddings and then utilised
by entity retrieval systems, such as EM-BERT.
Multilingual and Crosslingual Retrieval A
system is considered multilingual when informa-
tion can be retrieved in two or more languages.
Meanwhile, crosslingual systems enable queries to
benefit from information sources in different lan-
guages, even if not explicitly trained in these (Pe-
ters et al., 2012; Conneau and Lample, 2019). For
example, Nair et al. (2020) use neural methods to
translate queries in context, while Litschko et al.
(2018) employ an unsupervised approach with mul-
tilingual embeddings. Recently, van der Heijden
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et al. (2021) studied how meta-learning can help
with multilingual and crosslingual text classifica-
tions using a version of XLM. (Conneau and Lam-
ple, 2019). These multilingual models, even be-
fore the fine-tuning stage, Even before the fine-
tuning stage, these multilingual models already
have crosslingual capabilities thanks to the multilin-
gual sources presented during pretraining (Muller
et al., 2021). Winata et al. (2021) studied the ap-
plicability of few-shot learning in a multilingual
setting on natural language understanding tasks.
They demonstrated that given a few examples in
English, the model could perform better than ran-
dom in other unseen languages. Zhang et al. (2021)
presented Mr. TYDI, a multilingual collection for
mono-lingual retrieval in multiple languages, de-
signed to evaluate ranking with learned representa-
tions and zero-shot results.
Multilingual Entity Retrieval The task of mul-
tilingual entity retrieval is somewhat unexplored,
given the lack of a truly multilingual benchmark.
De Cao et al. (2021) presented mGENRE for mul-
tilingual entity linking. It matches its input against
generated entity names from multiple languages,
which allows for exploiting language connections
and the richness of Wikipedia. Similarly, Botha
et al. (2020) provided a method for linking entities
in 100 languages using BERT encoders. Tsai and
Roth (2016) addressed the related task of crosslin-
gual Wikification, where the goal is to find the
English title given a foreign mention.

3 Multilingual Entity Retrieval

To tackle the entity retrieval task, we follow a stan-
dard two-staged approach: we first use a keyword-
based method to retrieve a set of entities and then
rerank them. Both steps rely exclusively on tex-
tual information extracted from the KG. Similar
to the guidelines in DE-v2, each entity repre-
sentation is composed by concatenating its direct
literal attributes.1 For an entity e, with na tex-
tual attributes, its representation ed is defined as
[at, ala, a1, . . . , ana ], where at is the title, ala is the
long abstract and ai is the ith attribute. Appendix A
provides an overview of our proposed system.

For the first-stage retrieval, we use the well-
established and language-agnostic BM25. It scores
documents in relation to a query based on term fre-
quency, document frequency, document length and
term saturation. Where possible, and to allow a fair

1Unlike DE-v2, we use flat, unfielded documents.

comparison with earlier works, we use officially
available run files2 of BM25 or BM25Fca.3

3.1 Neural Reranker
BERT-based rankers are generally classified as
cross or bi-encoders. The former concatenate
queries and documents to form a single input to the
base LM (Nogueira and Cho, 2019; MacAvaney
et al., 2019), while the latter computes query and
entity embeddings separately and uses the simi-
larity between their embeddings to estimate rel-
evance (Hofstätter et al., 2020; Karpukhin et al.,
2020). Here we opt for bi-encoders, given their
ability to compute document embeddings offline.

In practical terms, given a query q (up to nq =
32 tokens) and an entity textual representation e
(up to ne = 200 tokens), we score the pair using
the dot product of their embeddings Eq ·Ee, where:

Eq =W T · BERT(“[Q]q0q1, ...qnq”), (1)

Ee =W T · BERT(“[D]e0e1, ...ene”). (2)

While the score from the dot product is sufficient
to rerank, we follow the common practice in Entity
Retrieval (Gerritse et al., 2020; Nikolaev and Ko-
tov, 2020) of mixing the LM-based score with the
normalised scores of the first-stage retriever:
BERTE(q, e)=β·BM25(q, e)+(1−β)·(Eq ·Ee)

3.2 Monolingual Entity Reranking
The wide adoption of LMs in English NLP led to
the introduction of many language-specific models,
such as ArBERT (Abdul-Mageed et al., 2021) for
Arabic, AlephBERT (Seker et al., 2021) for He-
brew, and Berto (Cañete et al., 2020) for Spanish.
Recall that our first-stage retriever uses the lan-
guage agnostic BM25. In the monolingual setup,
with queries and documents in the same language l,
we first retrieve entities covered in the l subgraph
of the KG and then rerank using a BERT model pre-
trained on l and fine-tuned on triples 〈q, e+, e−〉
built from that subgraph. We refer to this version
as BERTEl. While including the structural compo-
nents of the KG can be useful, we hypothesise that
fine-tuning BERT using queries and textual data
of entities is sufficient. Beyond that, it has been
shown that a pretrained BERT model already has
implicit domain knowledge (Bouraoui et al., 2020;
Wang et al., 2020; Petroni et al., 2019).

2The run file provides, for each query, a scored list of 1000
entities retrieved by a keyword-based model.

3A fine-tuned version that uses fielded documents.
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3.3 Entity Retrieval by Query Translation

Given a multilingual KG and a query in a non-
English language l, a system could Machine
Translation (MT) to obtain an English version of
the query and then feed it to the English BERTEen.
It then utilises the graph to map the ranked entities
back to l, if they exist.4 We refer to this query trans-
lation method in our experiments as qtBERTEen.

Due to its simplicity, qtBERTEen suffers from
several shortcomings when used on a multilingual
KG, such as DBpedia. Mainly, it is restricted to
content in English, even if the graph holds infor-
mation in multiple languages, and entities without
English representation or entities with additional
essential information in other languages will be
missed. This forces the English point of view on all
users and ignores other, potentially more diverse,
viewpoints. Another issue with qtBERTEen is its
reliance on MT. Despite the impressive progress,
MT still needs improvement, especially for low-
resource languages, with named entities presenting
a significant challenge (Li et al., 2021). Moreover,
in gender-marking languages, like Arabic, Hebrew
and Spanish, gender hints will be lost.

3.4 Multilingual Entity Retrieval System

BERTEl, by design, supports a single language. To
handle queries and entities in multiple languages,
an array of BERTEl models is needed, each of
which uses a different LM. However, training an
LM for a new language requires large amounts of
data and significant computing power, limiting ad-
vances in NLP to a small subset of languages (Joshi
et al., 2020). Moreover, fine-tuning and storing a
model for each language is prohibitively expen-
sive when the task involves more than a handful of
languages. To overcome these challenges, multilin-
gual LMs such as mBERT (Devlin et al., 2019) and
mLUKE (Ri et al., 2021) were proposed, with the
idea of training a single model for many languages.

multiBERTE, our proposed multilingual ranker,
can handle any language supported by its base
multilingual LM. We explore two approaches for
multiBERTE: multienBERTE, which fine-tunes the
multilingual BERT model using English data only,
and a few-shot approach, multifewBERTE, where
training data from a few languages is concatenated.
In the latter, the model has no explicit knowledge
of what language it will use and only has a few
training samples in each (Longpre et al., 2021).

4Section 4 shows how the DBpedia entity mapping works.

Given training data in a language l, we can ex-
tend it to another language l× by: (i) machine-
translating the queries; and (ii) using the entity
documents generated from the subgraph of l×.

Figure 1 compares the workflows of BERTEl and
multiBERTE. The former only sees data in one lan-
guage, both when pretrained and fine-tuned. There-
fore, an array of BERTEl models is needed in a mul-
tilingual setup. multiBERTE, on the other hand, is
pretrained with over 100 languages and can handle
pairs in any of these languages, even if fine-tuned
only on a subset of them.

3.5 Mixture of Language Rankers

Given a query written in a language l, qtBERTEen
searches the English subgraph only, and its re-
sults are limited to entities that can be mapped
to l. BERTEl, on the other hand, considers only
entities represented in l and uses the textual rep-
resentation available in l in both stages. Con-
sequently, information in other languages is not
utilised. multifewBERTE can take advantage of con-
tent from multiple sources during the fine-tuning
stage but uses only l for retrieval.

We believe that, by mixing multiple models dur-
ing retrieval, we can further benefit from the unique
traits of individual subgraphs while diminishing bi-
ases that may have been encoded due to reliance
on a single source. One option is to concatenate
the different textual representations into a single
multilingual document and use the combined doc-
ument for fine-tuning and scoring. This approach
will only work with multiBERTE. Even then, the lim-
ited document size most LMs can handle presents
a barrier. An alternative is to translate the query to
multiple languages and retrieve a scored list of enti-
ties for each language. We denote this approach of
using multiple retrievers by adding the superscript
Lmix to the model name. Formally, let l be the
target language and Lmix be the set of additional
languages we want to blend in, the mixed score is:

BERTELmix
l (q, e)=

∑

l⊕∈{l}∪Lmix

µl⊕ · BERTEl⊕(q, e). (3)

Note that BERTEl⊕ could be a different BERTEl
model for each language or a single multiBERTE
model shared between all languages. µl⊕ , the
weight each language gets in the final score can
be learned based on factors including geographical
location, language similarity, or user preference. In
this work, we assign a fixed weight of µl = 0.75 to
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Figure 1: We consider two architectures for a multilingual retrieval system: BERTEl, a collection of monolingual
retrievers (left) and a single multilingual model, multiBERTE, trained using query-document pairs from multiple
languages (right).

the target language ranker and split the remaining
weight equally between the rest. For example, if
the target language is Arabic, BERTE

{en}
ar will be

a mixture of BERTEar and BERTEen. The Arabic
and English versions of the queries are used. The
weight of the BERTEar score will be µ = 0.75 and
the weight of BERTEen will be 0.25.

Appendix B compares the various configurations
in our multilingual retrieval system.

4 Empirical Evaluation

We conducted a series of experiments on DE-v2
to analyse our proposed approaches. We also used
DE-v2’s 5-fold train-test split to allow comparison
with previous works. β, the weight given to the
first-stage retriever, is fine-tuned using a validation
set (one training fold). We found β = 0.75 to work
best for English and used it across all experiments.

In each language l, we adopt the same procedure
when training the respective BERTEl model. For
every training query q and relevant entity e+, we
generate 10 triplets of the form 〈q, e+, e−〉, where
e− is a randomly drawn judged non-relevant entity
for q. We use a pairwise softmax cross-entropy
loss, AdamW optimiser, with a learning rate of
1e−6, and train for 20,000 steps, with a batch size
of 32. The embedding vectors are of size 128.

We first evaluate BERTE on the original En-
glish collection and the Arabic subset of DE-v2,
the only publicly available non-English resource
for the task. We then discuss how to extend
DE-v2 to other languages systematically and eval-
uate BERTEl (monolingual LMs) and multiBERTE
(multilingual LMs) on the complete set of queries,
machine-translated to Spanish, Arabic, and Hebrew.
Finally, we demonstrate how English can benefit
from other languages. Note that we optimise for
English only and fix β = 0.75 for all experiments
and languages. Optimising β per language will
likely further improve results.

Table 1: Reranking results. Statistically significant im-
provements (paired t-test with α = 0.05) over ESim
and KEWER are indicated by (?) and (†) respectively.

Model nDCG10 nDCG100 MAP

BM25Fca 0.461 0.551 0.380
KEWER 0.483 0.560 0.396
ESim 0.487 0.572 0.403
EM-BERT 0.541?† 0.604?† -

BERTEen 0.525?† 0.602?† 0.433?†

4.1 Evaluating BERTE on English

DE-v2 comes with a set of baseline results. The
official metrics are nDCG (Normalized Discounted
Cumulative Gain) at 10 and 100. Similar to other
works, we also report MAP (Mean Average Preci-
sion) at 1,000. We utilise the recently introduced
embedding-based techniques KEWER and ESim,
as well as EM-BERT, which uses LMs, as base-
lines.5 We reproduced the baselines reported re-
sults using their published runs, if available. Ta-
ble 1 shows the overall results. 6 Our proposed
BERTEen and the current state-of-the-art EM-BERT
significantly outperform the other methods (paired
t-test with α = 0.05). Between them, the differ-
ences in nDCG are statistically insignificant. We
believe, however, that BERTEen is preferred, even
in a monolingual setting, for the following reasons:
(i) it uses a smaller LM (BERT-base vs BERT-large);
(ii) it does not require additional annotated data and
instead has a single fine-tuning step; (iii) it does
not depend on the availability of entity embeddings
and entity extractors; (iv) it re-ranks directly from
BM25 instead of ESim.

Our main focus in this work, nevertheless, is the
multilingual setting. We, therefore, use Appendix

5We use the model with the best reported overall result
for each: BM25Fca+KEWER, BM25Fca+ESimCG, and EM-
BERT with GEEER and dual fine-tuning.

6Note that KEWER used a custom 5-fold split for cross-
validation. MAP at 1000 could not be reported for EM-BERT
because the run files are limited to 100 results.
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C to dive deeper into the differences between the
different methods in the English setup and show
that an even better result can be achieved by com-
bining them. In Appendix D, we also present in-
sights from sample query analysis.

4.2 Evaluating BERTE on Arabic

Esmeir (2021) has recently used human-translators
to extend DE-v2 to Arabic. Only 139 queries
with sufficient relevant entities in Arabic were in-
cluded. Along the translations, two baseline results
were reported: BM25 and SERAG, an adaption of
KEWER to Arabic.

Table 2: Reranking results on the Arabic collection.
Significant improvements over SERAG and BM25 are
indicated by (?) and (†) respectively.

Model nDCG10 nDCG100 MAP

SERAG 0.226 0.303 0.183

BM25 0.273? 0.3482? 0.223?

BERTEar 0.308?† 0.382?† 0.247?†

As shown in Table 2, our BM25 first stage is
already enough to outperform SERAG. We be-
lieve that this is due to better document generation.
BERTEar model provides a further statistically sig-
nificant improvement.

4.3 Extending DE-v2

DBpedia can be viewed as a large-scale multilin-
gual KG (Lehmann et al., 2015). Each chapter
holds structured content extracted from the corre-
sponding Wikipedia edition. Inter-language entity-
mapping files allow us to link entity URIs from one
language to another. Given an entity in the graph,
we can extract its multilingual counterparts using
the owl#sameAs property. Figure 2 illustrates
how this linking works for the entity represent-
ing “Ibn Khaldun”. Appendix E provides coverage
statistics of the DBpedia 2015 chapters we use.

While there is at most one Wikipedia article per
topic per language, the content of the articles may
vary across languages. Moreover, editors and ad-
ministrators from different editions may have dif-
ferent points of view. They may also have access
to different sources, only available in that specific
language. Finally, different languages may encode
different biases into the LM (Bartl et al., 2020).
Consider, for example, the topic "Mujaddara", a
popular dish in several parts of the world. Examin-
ing the info-boxes in different languages, we found
over ten different answers to where they originated

(as of early 2022). A good retriever, therefore, will
attempt to benefit from the richness of DBpedia by
considering information from multiple languages.

In DE-v2, retrieving an entity that does not exist
in English may hurt the results. First, only entities
with English content were judged by the annotators.
Other entities, even if relevant to the query, will not
have a judgement and will default to non-relevancy.
Second, placing a relevant but unjudged entity in a
high-ranking position may push other judged rele-
vant entities outside the top k and hurt the measured
performance. We restrict the first-stage retrieval to
entities available in English DBpedia to solve the
latter. This step, however, should not be applied
in the general case, where judgements are truly
multilingual.

To translate the queries, we opted for MT. While
human translation provides major benefits, MT al-
lows it to scale to over 100 languages.7

4.4 Monolingual Language Models

We next study Spanish, Arabic, and Hebrew
versions of DE-v2, using the set of machine-
translated queries. Table 3 shows the results. We
first consider models that use a single-language
subgraph (top three lines), where the language-
agnostic BM25 is provided as a baseline. Simi-
lar to the English results, a BERTEl model fine-
tuned in the same language significantly outper-
forms BM25. Interestingly, qtBERTEen, which uses
English queries to search the English chapter of
DE-v2 and maps the results back to the target lan-
guage, outperforms BERTEl.

While the “English-first” approach seems to per-
form better than searching specifically on a given
language, we must treat this result with caution due
to the “English nature” of DE-v2: (i) English is the
largest chapter with the most coverage, (ii) entities
were pooled using methods optimised for English,
and (iii) the annotators had English Wikipedia in
mind when judging the entities. In addition, re-
call that we have the original queries in English
so BERTEen operated on optimal translations. We
view this result as a strong baseline but not one that
can generalise for the wealth of retrieval tasks in a
truly multilingual universe.

Next, we investigate what happens if we mix
the scores of BERTEl on a language l with those of

7We used http://translate.google.com and
asked native speakers to verify that the output was generally
in line with the input. We did not have to make any changes.
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Figure 2: Entity mapping between entities in DBpedia chapters. In this example, the English entity for “Ibn
Khaldun” is mapped to the respective entities in Arabic, Hebrew and Spanish. The graph and content in each
language may differ (the texts in the example are for illustration only).

Table 3: Reranking results in the multilingual setup. BERTEl is trained solely on l. qtBERTEen uses query
translation from l to English, searches the English KG and maps the results to entities in the l graph. multienBERTE
and multifewBERTE are multilingual models, fine-tuned in English or few languages, respectively. multienBERTE{en}

and multifewBERTE{en} mix in the scores from qtBERTEen. Best result in each column in bold. ↑ denotes
significant improvements over the preceding line.

English Spanish Arabic Hebrew

Model nDCG10 nDCG100 nDCG10 nDCG100 nDCG10 nDCG100 nDCG10 nDCG100

BM25 (BM25Fca for English) 0.461 0.551 0.271 0.320 0.216 0.265 0.216 0.266
BERTEl 0.525 ↑ 0.602 ↑ 0.299 ↑ 0.353 ↑ 0.242 ↑ 0.293 ↑ 0.238 ↑ 0.290 ↑

qtBERTEen - - 0.345 ↑ 0.446 ↑ 0.271 ↑ 0.349 ↑ 0.263 ↑ 0.345 ↑

BERTEl
{en} - - 0.472 ↑ 0.497 ↑ 0.421 ↑ 0.452 ↑ 0.415 ↑ 0.439 ↑

multienBERTE 0.530 0.608 0.311 0.363 0.236 0.287 0.244 0.293
multienBERTE{en} - - 0.473 ↑ 0.498 ↑ 0.420 ↑ 0.452 ↑ 0.414 ↑ 0.437 ↑

multifewBERTE 0.529 0.607 0.317 0.371 0.238 0.289 0.249 0.299
multifewBERTE{en} - - 0.473 ↑ 0.497 ↑ 0.422 ↑ 0.453 ↑ 0.417 ↑ 0.440 ↑

qtBERTEen. The results in the fourth row of Table 3
shows that mixing languages is highly beneficial.

To illustrate that, consider the Hebrew version
of the query “Chefs with a show on the Food Net-
work”. “Julia Child” is the highest-scored entity
from DBpedia Hebrew. While BM25 includes it
in the first stage, BERTEl ranks it outside the top
100. “the Food Network” was translated literally
into RESHET HAMAZON, failing to identify the
named entity. By mixing in the English score, “Ju-
lia Child” breaks into the top 10. In some cases,
however, mixing scores is not strictly beneficial:
The Spanish BERTEl, for example, does better on
the query “Madrid” without mixing English, per-
haps unsurprisingly.

In our experiments, while models could lever-
age information from multiple languages, they re-
turn only entities covered in the language of the
query. In some scenarios, however, it is useful to
see entities that exist only in other languages. In
Appendix G, we provide further insights into this
setup and explain how BERTE can be adapted to
handle it using score mixing.

4.5 Multilingual LMs

The results for the multiBERTE variants are pre-
sented in the last four rows of Table 3. Both
multienBERTE (a multilingual model fine-tuned on
English queries) and multifewBERTE (a multilin-
gual model fine-tuned with queries in multiple
languages) exhibit comparable performance to the
respective monolingual models, especially when
mixing in the scores from English (rows 6 and 8),
indicating that score blending offers an orthogo-
nal advantage. While not reflected in the numbers,
we believe that multifewBERTE is the better choice,
given its ability to incorporate knowledge from
multiple languages and the fact that it can adapt
quickly to a new language. We expect it to shine
when using information from multiple languages
is essential. We hope to collaborate with the com-
munity to build such truly multilingual collections.

Another advantage of multiBERTE variants is that
they can be used for over 100 languages without
having to fine-tune the models on these, thanks to
the cross lingual capabilities of multilingual LMs,
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Table 4: Results on queries with good coverage across
languages. Sig. improvements are denoted by (?).

Model nDCG10 nDCG100 MAP

BERTEen 0.515 0.616 0.434
BERTE{es,ar,he}en 0.540? 0.634? 0.452?

leading to a strong baseline for many languages on
the task. In Appendix F we provide results for six
additional languages obtained following the same
methodology as our main result. multifewBERTE{en}

was consistently the best performer, and its advan-
tage over BM25 and multifewBERTEwas statistically
significant.

While the multiBERTE variants offer apparent ad-
vantages, there are cases where BERTEl is neces-
sary: (i) there are hundreds of languages that are
not supported by existing multilingual LMs but
have their own monolingual LM, and (ii) domain
specific LMs, such as FinBERT (Liu et al., 2020b),
were shown to be superior in many tasks.

4.6 English Benefits from Collaboration

Above, we demonstrated that mixing in the scores
from BERTEen helps other languages. We next
ask if English, the largest and richest chapter, can
also benefit from the diverse coverage in other lan-
guages. To answer this, we mix Spanish, Arabic,
and Hebrew scores to rerank English entities. We
refer to this model as BERTE

{es,ar,he}
en .

When tested on the entire dataset, this approach
did not yield any improvement. Error analysis,
however, indicated that for queries where the Span-
ish, Arabic, and Hebrew runs of BM25 obtained a
sufficient number of relevant entities, and the per-
formance of BERTE

{es,ar,he}
en on English improved.

When entities do not exist in another language,
or when their representation does not match the
query textually, BM25 fails to retrieve them, neg-
atively impacting the corresponding BERTEl and
subsequently BERTE

{es,ar,he}
en . We, therefore, fo-

cus on a subset of the queries with good perfor-
mance of BM25 in the other three languages. More
formally, we calculate the optimal nDCG100 of
the first-stage retrieval, which provides an upper
bound on reranking performance. Queries with a
score of 0.3 or more in all languages are kept, re-
sulting in a subset of 113 queries. Table 4 lists
the results for this subset showing that the per-
formance of BERTE

{es,ar,he}
en is significantly better

than BERTEen. Consider, for example, the query

“Chess world champions”. The query is about
a global topic with coverage in many languages.
BERTEen listed 4 relevant names in its top 10 re-
sults. With the help of other languages, this num-
ber increased to 6. This demonstrates that even
high resource languages can benefit from multilin-
gual retrieval. Instead of pre-selecting a subset
of queries, in the future, we plan to apply a meta-
learner to decide which languages a query should
use automatically.

5 Conclusion

In this paper, we introduced BERTE, a highly ef-
fective multilingual entity retrieval system. We
showed that in a monolingual environment, it is
on par with current state-of-the-art methods on
DE-v2 despite being simpler and requiring less
data. We then explored the multilingual setup,
where both the graph and the queries may be pre-
sented in multiple languages. We proposed a sys-
tematic way to extend DE-v2 beyond English and
discussed the risks of such approach. We believe it
is vital for the community to curate truly multilin-
gual collections that come from different sources
and involve native speakers. To address the mul-
tilingual retrieval task, we considered both a col-
lection of monolingual models and a single multi-
lingual one. We showed that combining the scores
from different languages significantly boosts the
performance of low and high-resourced languages.

Our work can enable many downstream tasks.
Consider, for example, a virtual assistant answering
questions in Arabic about a topic covered mainly
in the English edition of Wikipedia or an English
speaker analyst covering a multi-national company
interested in taking diverse points of view com-
ing from content in different languages. In both
cases, BERTE allows handling queries and KGs in
multiple languages.

We hope that this work opens interesting av-
enues of research. As discussed in Appendix C, the
improvements brought by BERTE are orthogonal
to those by the other state-of-the-art method, EM-
BERT. Therefore, we hope that combining each
method’s contributions will establish a new state-
of-the-art for the English task. On the multilingual
front, works that adapt the retrieval task to user
preference, such as language, region, or past ac-
tions, may benefit from the flexibility of BERTE in
combining different sources.

8



References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2021. ARBERT
& MARBERT: Deep bidirectional transformers for
Arabic. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 7088–7105, Online. Association for Computa-
tional Linguistics.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei
Yang, Haotian Zhang, and Jimmy Lin. 2019. Apply-
ing BERT to document retrieval with birch. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstra-
tions, pages 19–24, Hong Kong, China. Association
for Computational Linguistics.

S. Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC.

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020.
Unmasking contextual stereotypes: Measuring and
mitigating BERT’s gender bias. In Proceedings
of the Second Workshop on Gender Bias in Natu-
ral Language Processing, pages 1–16, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Jan A. Botha, Zifei Shan, and Daniel Gillick. 2020. En-
tity Linking in 100 Languages. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 7833–
7845, Online. Association for Computational Lin-
guistics.

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge
from bert. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7456–7463.

Samuel Broscheit. 2019. Investigating entity knowl-
edge in BERT with simple neural end-to-end en-
tity linking. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 677–685, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Arthur Câmara and Claudia Hauff. 2020. Diagnosing
bert with retrieval heuristics. In Advances in Infor-
mation Retrieval, pages 605–618, Cham. Springer
International Publishing.

Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg,
Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, Li Deng, and Bhaskar Mitra. 2016. Ms
marco: A human generated machine reading com-
prehension dataset. ArXiv, abs/1611.09268.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Marek Ciglan, Kjetil Nørvåg, and Ladislav Hluchý.
2012. The SemSets model for ad-hoc semantic list
search. In Proceedings of the 21st international con-
ference on World Wide Web, WWW ’12, pages 131–
140, New York, NY, USA. Association for Comput-
ing Machinery.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Proceedings
of NeurIPS.

Zhuyun Dai and Jamie Callan. 2020. Context-aware
document term weighting for ad-hoc search. In Pro-
ceedings of The Web Conference 2020, WWW ’20,
page 1897–1907, New York, NY, USA. Association
for Computing Machinery.

Daniel Daza, Michael Cochez, and Paul Groth. 2021.
Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference
2021, WWW ’21, page 798–808, New York, NY,
USA. Association for Computing Machinery.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
arXiv preprint arXiv:2010.00904.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel
Artetxe, Naman Goyal, Mikhail Plekhanov,
Luke Zettlemoyer, Nicola Cancedda, Sebastian
Riedel, and Fabio Petroni. 2021. Multilingual
autoregressive entity linking. arXiv preprint
arXiv:2103.12528.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Saher Esmeir. 2021. SERAG: Semantic entity retrieval
from Arabic knowledge graphs. In Proceedings of
the Sixth Arabic Natural Language Processing Work-
shop, pages 219–225, Kyiv, Ukraine (Virtual). Asso-
ciation for Computational Linguistics.

Nicholas FitzGerald, Dan Bikel, Jan Botha, Daniel
Gillick, Tom Kwiatkowski, and Andrew McCallum.
2021. MOLEMAN: Mention-only linking of enti-
ties with a mention annotation network. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 278–285,
Online. Association for Computational Linguistics.

9

https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.18653/v1/D19-3004
https://aclanthology.org/2020.gebnlp-1.1
https://aclanthology.org/2020.gebnlp-1.1
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.1609/aaai.v34i05.6242
https://doi.org/10.1609/aaai.v34i05.6242
https://doi.org/10.18653/v1/K19-1063
https://doi.org/10.18653/v1/K19-1063
https://doi.org/10.18653/v1/K19-1063
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_40
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_40
https://doi.org/10.1145/3442381.3449830
https://doi.org/10.1145/3442381.3449830
https://doi.org/10.1145/3366423.3380258
https://doi.org/10.1145/3366423.3380258
https://doi.org/10.1145/3442381.3450141
https://doi.org/10.1145/3442381.3450141
https://aclanthology.org/2021.wanlp-1.24
https://aclanthology.org/2021.wanlp-1.24
https://doi.org/10.18653/v1/2021.acl-short.37
https://doi.org/10.18653/v1/2021.acl-short.37


Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. Splade: Sparse lexical and expan-
sion model for first stage ranking. Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari,
Ricardo Usbeck, and Jens Lehmann. 2020. Message
passing for Hyper-Relational knowledge graphs. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7346–7359. Association for Computational
Linguistics.

Emma Gerritse, Faegheh Hasibi, and Arjen De Vries.
2022. Entity-aware Transformers for Entity Search.
In Proc. of the 45th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, SIGIR ’22.

Emma J. Gerritse, Faegheh Hasibi, and Arjen P.
de Vries. 2020. Graph-embedding empowered en-
tity retrieval. Advances in Information Retrieval,
pages 97–110.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong,
Krisztian Balog, Svein Erik Bratsberg, Alexander
Kotov, and Jamie Callan. 2017. Dbpedia-entity v2:
A test collection for entity search. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’17, pages 1265–1268. ACM.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with
cross-architecture knowledge distillation. arXiv
preprint arXiv:2010.02666.

Shoaib Jameel, Zied Bouraoui, and Steven Schockaert.
2017. MEmbER: Max-Margin based embeddings
for entity retrieval. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’17,
pages 783–792, New York, NY, USA. Association
for Computing Machinery.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6282–6293, Online. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
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A Entity Retrieval Illustration

An overview of the task setup and our proposed
system can be seen in Figure 3.

B Characteristics of the Various Models

In Section 3 we presented various configurations
of BERTE and Table 5 compares them when used
on a set of languages L. For each configuration,
the table lists the number of pretrained LMs used,
the languages involved in each retrieval stage, the
direction of query translation (if any), and whether
the system can handle languages unseen during
fine-tuning.

qtBERTEen needs a single LM and uses only
English sources in all stages, with non-English con-
tent being ignored. Because of that, queries in
other languages should be translated into English.
Hence, the system may be sensitive to translation
errors. Recall that, in this work, we had the English
version of all queries, with no need for translation.

Each BERTEl model can support a single lan-
guage. Therefore, to support all languages in L, we
need an array of |L| BERTEl models, each of which
is initialised with a different pretrained LM. For
each language l ∈ L, the retriever only considers
entities covered in l.

For multiBERTE variants, on the other hand,
a single multilingual LM is sufficient to sup-
port all languages in L and beyond. Multilin-
gual LMs can then be tuned only on the English
dataset or on a subset of languages (Lfew). In
all cases, scores from the target language can be
mixed with scores from other languages to im-
prove the ranking, in which case query transla-
tion from l is needed. One main difference be-
tween multienBERTE and multifewBERTE is in what
language the training tuples are used when fine-
tuning. While multienBERTE uses only English
tuples, multifewBERTE uses triples in several lan-
guages.

C English Results Deep Dive

To test whether the improvements from BERTE
and EM-BERT are orthogonal, we linearly com-
bine their scores (with equal weights). This hybrid
retriever outperforms each of its components sig-
nificantly, achieving an nDCG10 score of 0.571,
nDCG100 of 0.634, and MAP of 0.467. While such
a retriever is cumbersome and has many dependen-
cies, it indicates that each model is complementary

to each other, and combining them further increases
their performance.

Another consideration to be made is about the
type of queries each method excels in. Recall that
DE-v2 consists of a set of heterogeneous entity-
bearing queries assembled from various bench-
marking efforts. Queries are therefore categorised
into four groups based on their source. Table 6
breaks down the English results of BERTEen by
category. For three out of the four categories,
BERTEen and EM-BERT were significantly bet-
ter than the other methods. Specifically for Sem-
Search, which consisted of named entities, such
as “Brooklyn Bridge”, all methods were compa-
rable and achieved relatively high scores. We hy-
pothesise that this is due to the simpler nature of
these queries. The simpler queries, usually only
consisting of the target’s name, make keyword-
based retrieval methods, such as BM25, effective
for most queries. Another noteworthy fact is that,
like KEWER and ESim, a mixture model that com-
bines BM25Fca and a neural ranker was better than
its components, indicating that, despite the deep
representation of entities in BERTEen, term match-
ing based techniques were still extremely valuable
in many scenarios. Between BERTEen and EM-
BERT, BERTEen had better performance for INEX-
LD (IR style queries), while EM-BERT was better
at QALD-2 (natural language questions).

D BERTEen Query Analysis

We analyse several queries to study the effective-
ness of BERTEen. For the query “What is the
capital of Canada?”, BERTEen ranks the entity for
“Ottawa” in the 6th position, while KEWER and
ESim leave it outside the top 10. Meanwhile, for
the query “Ellis college”, there is only one rele-
vant judged entity, “Ellis University”. While other
methods focused on people named Ellis or on insti-
tutes with “college” in their name, BERTEen ranked
“Ellis University” in the top 10. It shows how
BERTEen properly leveraged the contextual sim-
ilarity of “college” and “university”. to rank the
correct entity. In their work, Nikolaev and Kotov
(2020) specifically mentioned the query “goodwill
of michigan” as one where KEWER struggled with
disambiguation (“Goodwill Games” vs “Goodwill
Industries”). BERTEen, however, had no problems
with this query, with most top 10 results being cor-
rectly related to “Goodwill Industries”.

One of the queries where BERTEen underper-
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Figure 3: Entity documents are generated by concatenating their literal attributes. BERTE starts with a set of candi-
date entities. Queries and entity documents are fed separately through the same BERT model and a fully connected
layer, resulting in two vector embeddings. Final relevance estimation is computed using cosine similarity.

Table 5: Let l be the target language, L be the set of languages available to the system, and Lmix and Lfew be
subsets of L used for fine-tuning and mixing respectively. Here we summarise the different characteristics of the
models we explore.

Model No. of LMs First Stage Fine-tuning Reranking Query translate Handle unseen

qtBERTEen 1 en en en l→ en
√

{BERTEl⊕ |l⊕ ∈ L} |L| l l l − ×
multienBERTE 1 l en l − √
multifewBERTE 1 l Lfew l − √

BERTEl
Lmix |L| {l} ∪ Lmix {l} ∪ Lmix {l} ∪ Lmix l→ Lmix ×

multienBERTELmix 1 {l} ∪ Lmix en {l} ∪ Lmix l→ Lmix
√

multifewBERTELmix 1 {l} ∪ Lmix Lfew {l} ∪ Lmix l→ Lmix
√

Table 6: Results by query category. The following symbols indicate statistically significant improvement over:
ESim (?), KEWER (†), EM-BERT (�) , and BERTEen (◦). Best result in each column is in boldface.

SemSearch INEX-LD QALD-2 ListSearch

Model nDCG10 nDCG100 MAP nDCG10 nDCG100 MAP nDCG10 nDCG100 MAP nDCG10 nDCG100 MAP

BM25Fca 0.628 0.72 0.529 0.439 0.5296 0.341 0.3689 0.461 0.305 0.425 0.511 0.359
KEWER 0.661 0.733 0.563 0.467 0.53 0.342 0.467 0.53 0.315 0.44 0.521 0.375
ESim 0.660 0.736 0.55 0.466 0.552† 0.364† 0.39 0.483 0.326 0.452 0.535 0.386
EM-BERT 0.664 0.744 - 0.479 0.561† - 0.483?†◦ 0.543?† - 0.544?†◦ 0.579?† -

BERTEen 0.669 0.734 0.557 0.509?†� 0.585?†� 0.392?† 0.441?† 0.521?† 0.361?† 0.499?† 0.58?† 0.434?†

Table 7: Reranking results using multifewBERTE and multifewBERTE{en} for a range of additional languages. The
best result for each language and metric pair is in boldface.

BM25 multifewBERTE multifewBERTE{en}

Model nDCG10 nDCG100 MAP nDCG10 nDCG100 MAP nDCG10 nDCG100 MAP

Dutch 0.223 0.265 0.184 0.26 0.305 0.215 0.317 0.411 0.262
German 0.208 0.25 0.171 0.254 0.296 0.208 0.361 0.459 0.297
Turkish 0.155 0.184 0.129 0.181 0.214 0.15 0.254 0.332 0.212
Portuguese 0.202 0.243 0.158 0.24 0.288 0.191 0.336 0.431 0.279
Farsi 0.218 0.276 0.185 0.249 0.31 0.209 0.285 0.374 0.232
Russian 0.177 0.214 0.138 0.205 0.246 0.16 0.345 0.441 0.286
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Table 8: Statistics of the studied chapters with respect
to DE-v2. The last two rows differ due to entities rele-
vant to more than one query.

English Spanish Hebrew Arabic

Has abstract 4,641,784 1,100,382 161,769 368,330
No English - 383,963 36,710 135,527

DE-v2 Judged 45,685 17,028 6,749 7,924
DE-v2 Relevant 16,700 7,082 2,629 3,025

formed, however, is “Madrid”. Examining the re-
sults, however, shows that the poor performance
can be attributed in part to the annotation step.
Without context, this query is open-ended and am-
biguous. However, in its top 10, BERTEen included
7 Madrid-based sports teams, of which only 3 were
judged as relevant. For example, the entity “Real
Madrid C.F.”, an arguably highly relevant entity
that was included in the top-10 by BERTEen, was
not judged by the annotators. On the other hand,
the top 10 lists of ESim and KEWER were more
diverse and better matched the annotators.

E DBpedia Language Chapters

DE-v2 consists of 467 queries, with entities drawn
from the 2015-10 dump from DBPedia. Addition-
ally, relevance assessments are provided for 49,280
query-entity pairs using a 0–2 scale, with 0 being
not relevant and 2 highly relevant.

The size of Wikipedia, and thus DBpedia, varies
significantly across languages. Table 8 provides
statistics of DBpedia 2015 for the languages we
studied. English has the largest number of entities,
while Arabic and Hebrew are significantly smaller,
with Spanish somewhere in the middle. In the
context of DE-v2, the lower coverage results in a
smaller number of judged entities. Thanks to the
Wikimedia foundation’s efforts (Redi et al., 2021),
the gap between languages is narrowing, but many
languages remain low-resourced, covering 10,000
entities or less, with tens of languages, as of 2022,
with chapters even smaller than Arabic or Hebrew
in 2015.

F Additional Languages

Recall that multienBERTE and multifewBERTE can be
used for over 100 languages without fine-tuning
the models on these. This allows multienBERTE
to be a strong baseline for many languages on
the task, thanks to the domain knowledge ob-
tained in the pretraining stage and to the cross
lingual capabilities of multilingual LMs. Table 7

lists the results for six additional languages, ob-
tained following the same methodology as our
main results. multifewBERTE{en} was consistently
the best performer and its advantage over BM25
and multifewBERTE was statistically significant.

G Missing Entities

In this work, we assumed that while information
from different languages may be utilised to rank
entities, only entities with coverage in the target
language should be returned. There are scenarios,
however, where the user would like to retrieve rele-
vant entities even if they are covered only in other
languages. Consider, for example, the query “chess
world champions”. Of the 93 relevant entities cov-
ered in the English chapter of DBpedia 2015, only
31 had an Arabic entity. While a user who submits
this query in Arabic would typically prefer to see
entities in Arabic, they may also be interested in
English (or some other language) if relevant entities
are unavailable in Arabic.

While the English version of DBPedia is by far
the largest, Spanish, Arabic, and Hebrew still offer
many entities do not have an English counterpart.
For instance, the entities “Roman Ornament” and
“Mais el Reem” are only present in the Arabic ver-
sion. The former, arguably relevant to the query
“Roman architecture” (part of DE-v2), was ranked
by BERTE in the top 10 for that query. The latter, a
play starring Fairuz, a famous Arab singer, demon-
strates that, in some cases, entities may only be of
interest to speakers of the respective language.

While we hope to explore this setup in future
work, initial experiments indicate that, at least in
the case of Arabic queries, allowing English enti-
ties without Arabic coverage to be returned in the
first stage and blending in the English scores like
in multifewBERTE{en}, can improve performance by
over 30%. We would stress, however, that the way
to judge non-Arabic entities is not trivial and may
depend on the task.

This brings the question: Are all languages equal
in terms of their relevance, or do users prefer some
languages over others? We hope that truly multi-
lingual collections will be made available to allow
evaluation of this scenario.
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Abstract

Cross-Lingual Event Detection (CLED) mod-
els are capable of performing the Event De-
tection (ED) task in multiple languages. Such
models are trained using data from a source
language and then evaluated on data from a dis-
tinct target language. Training is usually per-
formed in the standard supervised setting with
labeled data available in the source language.
The Few-Shot Learning (FSL) paradigm is yet
to be explored for CLED despite its inherent
advantage of allowing models to better gener-
alize to unseen event types. As such, in this
work we study the CLED task under an FSL
setting. Our contribution is threefold: first, we
introduce a novel FSL classification method
based on Optimal Transport (OT); second, we
present a novel regularization term to incorpo-
rate the global distance between the support and
query sets; and third, we adapt our approach
to the cross-lingual setting by exploiting the
alignment between source and target data. Our
experiments on three, syntactically-different,
target languages show the applicability of our
approach and its effectiveness at improving the
cross-lingual performance of few-shot models
for event detection.

1 Introduction

Event Detection (ED) is a significant sub-task
within the larger task of Information Extraction
(IE) in Natural Language Processing (NLP). Its
core purpose is to identify the words, or phrases,
that most clearly express the occurrence of an event,
known as event triggers, and to correctly categorize
them into a discrete set of classes. For instance, in
the sentence:

Frank purchased his dream house yesterday.

the word “purchased” should be identi-
fied by an ED system as the trigger of a
Transaction:Transfer-Ownership
event type1. Event detection is a highly active

1Event type example taken from ACE05 dataset.

research area which has been lately dominated by
deep-learning-based approaches (Sha et al., 2018;
Wadden et al., 2019; Zhang et al., 2019a; Yang
et al., 2019a; Nguyen and Nguyen, 2019; Zhang
et al., 2020; Liu et al., 2020; Lu et al., 2021). Most
of these works use the standard supervised learning
paradigm in which lots of labeled data is required
during training. However, a significant limitation
of models trained in this manner is their inability
to properly generalize to new event types that were
unobserved during training (Lai et al., 2020b).
Few-Shot Learning: In contrast to the supervised
approach, Few-Shot Learning (FSL) proposes a
training setting in which a model must quickly
learn new concepts from just a few examples, simi-
lar to how humans can learn to detect and identify
new objects after having observed only a couple
of instances. During an FSL training iteration, a
model is given a support set and a query set, each
of which contains only a handful of examples for
a set of classes. Then, the model is trained to pre-
dict the classes for the query samples based on the
labeled support samples. Under these constrained
training settings, supervised training easily results
in model overfitting due to the limited availability
of training data. Furthermore, in FSL, a model is
evaluated on its ability to generalize to new, un-
observed types. To achieve this, during testing an
FSL model is provided with new support and query
sets whose samples belong to entirely new classes
never observed during training.

Typical FSL approaches consist of obtain-
ing a vector representation for each sample
and then performing classification based on the
distance between such vectors, e.g., Matching
Networks (Vinyals et al., 2016), Relation Net-
works (Sung et al., 2018), and Prototypical Net-
works (Snell et al., 2017). The key differences
between these approaches often come down to the
way the sample representations are generated, and
how the distance between such representations is
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determined.
FSL training allows a model to easily extend to

new classes as it only needs to see a few labeled ex-
amples in order to successfully classify them. FSL
has been applied successfully for many tasks. Re-
cently, there have been several efforts that explore
event detection under a few-shot learning setting
(FSLED) (Lai et al., 2020a,b; Deng et al., 2020;
Lai et al., 2021a,b; Cong et al., 2021; Shen et al.,
2021; Chen et al., 2021).
Cross-Lingual Event Detection: Cross-Lingual
Learning (CLL) is a paradigm that aims at trans-
ferring the knowledge from one language to an-
other (Pikuliak et al., 2021). CLL can help over-
come the lack of data availability that plagues many
languages and allow for the creation of NLP-based
tools that can benefit their communities.

As such, Cross-lingual Event Detection (CLED)
aims at detecting and classifying event triggers with
the added complexity of operating on two sepa-
rate languages. These two languages are referred
to as source and target, respectively. In standard
zero-shot training, a CLED model is trained us-
ing labeled data belonging to the source language
exclusively. Then, at testing time, data from the
target language is used to evaluate the model’s per-
formance (M’hamdi et al., 2019; Majewska et al.,
2021; Nguyen et al., 2021; Guzman-Nateras et al.,
2022).
Contributions: A proper effort on CLED under
FSL conditions has yet to be explored despite the
potential advantages it could contribute to cross-
lingual models. Hence, we recognize this opportu-
nity and propose the novel Few-Shot Cross-Lingual
Event Detection (FSCLED) task to integrate these
two settings. We consider the following as our
main contributions:

• To the best of our knowledge, this is the first
effort at integrating the few-shot and cross-
lingual settings for the event detection task.
To provide foundation for future research, we
first evaluate the performance of representa-
tive FSL methods (Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018) in this task.

• We propose a novel optimal-transport-based
method for FSL classification that leverages
the optimal alignment between the support
and query samples.

• We address a limitation of traditional FSL
methods by incorporating a novel regulariza-

tion term that considers the global distance
between the support and query sets.

• To adapt our approach to the cross-lingual
setting, we promote language-invariant repre-
sentation learning by integrating the distance
between source and target data into our model.

• Our experiments on three diverse target
languages (Arabic, Chinese, and Spanish)
show that our approach improves the best-
performing FSL methods in the new FSCLED
setting and that our proposed training signals
can be seamlessly incorporated with other
FSL models to improve their performance on
the challenging FSCLED task.

The rest of the paper is organized as follows:
Section 2 provides a formal definition for FSCLED
task, Section 3 describes the details our proposed
approach, Section 4 presents the results of our ex-
periments, and finally, we present our conclusions
in Section 6.

2 Problem Definition

2.1 Few-shot Event Detection
We follow the same problem formulation as in prior
work for few-shot ED (Lai et al., 2020b; Deng et al.,
2020; Lai et al., 2021a). In particular, we cast event
detection as a token classification task in which a
model must learn to correctly classify the trigger
tokens. In a standard FSL setting, an iteration in-
volves a support set S and a query set Q that cover
sample sentences for N distinct classes; each class
is represented by K ∈ [1, 10] examples. Addition-
ally, for event detection, S and Q are extended with
an additional negative, or non-event, type NULL
(also with K examples) (Lai et al., 2021a). In this
manner, given an input sentence along with an trig-
ger candidate, an FSL model for ED should be able
to predict whether the candidate is an event trigger
as well as which event type is evoked by the trigger
(if any).

Hence, the formal definition of the FSL task is
as follows. The S and Q sets are defined by:

S = {(sj(S)i , t
j(S)
i , y

j(S)
i )}

Q = {(sj(Q)
i , t

j(Q)
i , y

j(Q)
i )}

where i ∈ [1,K]2, j ∈ [0, N ] (j = 0 is
used for the non-event type), and a single sample

2We use the same number of samples for each class in both
the support and query sets.
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(s
j(·)
i , t

j(·)
i , y

j(·)
i ) contains a sentence s

j(·)
i , a trig-

ger candidate word t
j(·)
i in s

j(·)
i , and an event label

type y
j(·)
i . As per FSL requirements, the label set

used when training the model must be disjoint from
those used when evaluating the model to properly
assess the model’s ability to generalize to unob-
served classes.

2.2 Few-shot Cross-lingual Event Detection
Cross-Lingual Learning (CLL) methods (Pikuliak
et al., 2021) emerged from the need to create NLP
models for low-resource target languages that lack
the required labeled data to perform supervised
learning. The core idea is to train models using
available labeled data from a high-resource source
language with techniques that allow them to learn
task-specific language-invariant features. The mod-
els are then evaluated on the desired target language
without access to target-language labeled data dur-
ing training. This setting is known as zero-shot
cross-lingual transfer learning3.

As such in the zero-shot cross-lingual ED task,
the labeled samples used during training Dtrain and
development Ddev belong to the source language
while the ones used for testing Dtest correspond to
the target languages (M’hamdi et al., 2019; Majew-
ska et al., 2021).

In this work, we combine the aforementioned
zero-shot approach to cross-lingual evaluation with
the added intricacy of the standard few-shot setting.
During training, the models are presented with a
support set Ssrc and a query set Qsrc that belong to
the source language. Then, at testing time, the sup-
port set Stgt and query set Qtgt are taken from the
target language for evaluation. Furthermore, given
the FSL setting, the label set used during training
is disjoint from the label set for development and
testing. We designate this novel task as Few-Shot
Cross-Lingual Event Detection (FSCLED).

3 Model

As done in prior FSL models for ED (Lai et al.,
2021a), our model for FSCLED involves two main
components: an encoder E and a classifier C.

3.1 Encoder
The encoder’s purpose is to obtain a representation
vector vj(·)i for each sample in the support S and

3Not to be confused with standard zero-shot learning where
zero data for a new class is used by models to perform predic-
tion.

query Q sets:

v
j(·)
i = E(s

j(·)
i , t

j(·)
i ) ∈ Rd

where d is the vector size, and · can be either S or
Q.

Following recent work on CLED, we lever-
age the pretrained multilingual language model
(mLM) mBERT (Devlin et al., 2019) for our
encoder to take advantage of its ability to in-
duce language-invariant representations (Majewska
et al., 2021). Additionally, we stack a Multi-Layer
Perceptron (MLP) layer on top of the transformer
outputs to create our multilingual encoder, called
BERTMLP (Yang et al., 2019b). Then, we em-
ploy the vector representation for tj(·)i generated by
BERTMLP to serve as the representation v

j(·)
i .

3.2 Classifier
For convenience, let vs and vq be the representa-
tion vectors for the sample s ∈ S and q ∈ Q, and
V (S) and V (Q) be the sets of representation vec-
tors for all samples in the support and query sets,
respectively.

The classifier C aims to predict a label yq for
each instance q in the query set based on its repre-
sentation vq and the representations of the samples
in the support set V (S):

yq = C(vq, V (S))

Given the multilingual representations v
j(·)
i , a

feasible approach is to employ existing FSL models
(e.g., Matching, Relation, or Prototypical networks)
to perform classification in FSCLED. The models
can then be trained using the standard cross-entropy
loss.

3.2.1 Optimal Transport
We recognize, nonetheless, a potential issue with
traditional FSL models in that they only consider
local distances between individual pairs of samples
in the support and query sets. In the case of Proto-
typical Networks (Snell et al., 2017), for example,
the distance is between a query sample and a class
prototype. Hence, if the overall global distance
between the support and query sets is large, a small
difference between the distances of two individual
samples becomes less reliable to determine the la-
bel assignments. In turn, we argue that the global
distances between S and Q should be minimized
to improve the reliability of the distances between
individual pairs for accurate FSCLED.
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To this end, we propose utilizing Optimal Trans-
port (OT) (Villani, 2008) to estimate the distance
between the support S and query Q sets for FS-
CLED. In broad terms, OT aims to find the most
cost-effective transformation between two discrete
probability distributions. Optimal transport em-
ploys a cost function to compute the cost of trans-
forming data points from one distribution to the
other. If a distance function (Euclidean, Cosine,
etc.) is used as such cost function, the obtained min-
imum cost is known as the Wasserstein distance.
Formally, OT solves the following optimization
problem:

π∗(x, z) = min
π∈∏(x,z)

∑

x∈X

∑

z∈Z
π(x, z) D(x, z)

s.t. x ∼ P (x) and z ∼ P (z)

where P (x) and P (z) are probability distributions
for the X and Z domains, and D is a distance-
based cost function for mapping X to Z , D(x, z) :
X × Z −→ R+. Finally, π∗(x, z) is the optimal
joint distribution over the set of all joint distribu-
tions

∏
(x, z) (i.e., the optimal transformation be-

tween Z and X ). The described OT optimization
problem is, however, intractable as it requires op-
timizing over the infinite set

∏
(x, z). In practice,

we instead solve an entropy-based relaxation of
the discrete OT problem using the Sinkhorn algo-
rithm (Cuturi, 2013).

3.2.2 Few-Shot Classification via OT
To adapt FSL classification into an OT formulation
we consider the support S and query Q sets as the
two domains to be transformed. Each sample in
S and Q represents a data point in the correspond-
ing distribution. The probability distributions P (S)
and P (Q) are estimated using an event-presence
module F . In our work, F is a feed-forward neural
network (FFNN) with a single output and sigmoid
activation that scores the likelihood that a trigger
candidate word is actually an event trigger. F re-
ceives as input the vector representation of a trigger
v(·) from either S or Q, and outputs a scalar in the
range [0-1]. Then, the probability distributions for
S and Q are obtained by computing the Softmax
over F ’s outputs for the samples in each set:

P (S) = Softmax(F (V (S)))

P (Q) = Softmax(F (V (Q)))

To supervise the event-presence module F , we

include the cross-entropy loss for event identifica-
tion into the overall loss function:

Lident =∑

s∈S
is · σ(F (vs)) + (1− is) · σ(1− F (vs))

where is is the golden binary variable to indicate if
s corresponds to an event trigger or not, and σ is
the sigmoid function.

In our model, the distance D(q, s) between a
sample in q ∈ Q and a sample s ∈ S is based on
the Euclidean distance between their representation
vectors vs and vq:

D(q, s) =

√∑

i∈d
(vqi − vsi )

2

Once the OT algorithm converges, or the maxi-
mum number of iterations is reached, the obtained
optimal alignment matrix π∗ is a squared matrix
with dimensions ((N + 1) ∗K)× ((N + 1) ∗K)
where each entry π∗

r,c represents the alignment
score between the r-th query sample and c-th sup-
port sample.

The conversion from matrix index (r, c) to event
type (j) and sample number (i) can be computed
in a straightforward manner as all samples from
the same class (event type) are contiguous: j =
r//K, i = r % K where // and % are the integer
division and modulo operators.

To perform sample classification and train our
FSCLED model, we first use the optimal alignment
matrix π∗ to compute a likelihood vector α for each
query sample (i.e., the r-th) by performing class-
based pooling with respect to the N + 1 classes:

αj
r =

∑

i∈[0,K−1]

π∗
r,(j∗K)+i

where j ∈ [0, N ]. As such, the resulting αr vec-
tors have N + 1 dimensions. And the complete α
matrix has a ((N + 1) ∗K) × (N + 1) size. We
then apply a Softmax operation over αr to obtain
a class distribution Pr for the r-th query sample:
Pr = Softmax(αr). Pr will then be used for train-
ing and inference in our model. In particular, we
use the negative log-likelihood loss as the main
term of our overall training loss:

Lclass = −
∑

r

Pr(yr)
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Figure 1: OT-based classification procedure example for a 3-way, 3-shot setting.

where yr is the golden class for the r-th query exam-
ple. Figure 1 shows a visualization of the described
procedure for a 3-way, 3-shot setting. As such, a
key distinction is that the class distribution Pr in
our FSL method is obtained from the support-query
alignment scores π∗ in optimal transport. This is
in contrast to previous FSL models where the class
distributions tend to be computed directly from
sample representations.

3.3 Support-Query Distance

In addition to our optimal-transport-based FSL clas-
sifier, we propose computing the Wasserstein dis-
tance between S and Q and including it into the
loss function as a regularization term to minimize
the overall distance between the support and query
sets for reliable predictions. We obtain the afore-
mentioned Wasserstein distance using the optimal
alignment matrix π∗:

Ldist =
∑

s∈S

∑

q∈Q
π∗
r,c D(q, s)

where r and c are the matrix indexes for q and s,
respectively.

3.4 Cross-Lingual Distance

To adapt our approach to the cross-lingual setting,
we aim to encourage language-invariant represen-
tation learning by regularizing our model so the
representation vectors of samples in the source and
target languages are closer to each other in the em-
bedding space.

Following the work by Guzman-Nateras et al.
(2022), which leveraged OT to successfully align
samples taken the source and target languages to
improve adversarial language adaptation, we pro-

pose to further use OT to estimate the distance be-
tween samples in the source and target languages so
that it can be included in the overall loss function as
an additional regularization term for minimization.

To this end, given the unavailability of labeled
data in the target language, we make use of unla-
beled data – often readily available for most lan-
guages – instead. For convenience, let R and T
represent the source-language and target-language
data set respectively. In any given FSL training iter-
ation, the support S and the query Q sets comprise
the R set for the source language. To constitute the
set representing the target language T , we collect
enough unlabeled samples to match the size of R.

Thus, similarly to the OT formulation described
in section 3.2.2 that computes the optimal align-
ment between two domains S and Q, in this context
we consider the source- and target-language data
set R and T as the domains to be transformed.
Subsequently, we employ our BERTMLP multilin-
gual encoder to obtain representation vectors for
the samples in both R and T that will serve as the
inputs for the OT algorithm.

It is important to note that, due to the unavailabil-
ity of the class information for the target-language
samples T for training, it is less reliable to estimate
the probability distribution P (T ) for the target lan-
guage using the event-presence prediction module
F as performed for P (S) and P (Q). Hence, we
initialize P (R) and P (T ) as uniform distributions
for the OT computation in this case.

Under this setting, we solve the OT equation to
obtain the optimal alignment matrix ρ∗ between
R and T . The Wasserstein distance Lcross is then
computed and integrated into the overall loss func-
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tion for regularization:

Lcross =
∑

r∈R

∑

t∈T
ρ∗n,m D(r, t)

where n and m are the matrix indexes for r and t,
respectively.

3.4.1 Full Model
Finally, the overall loss function L used to train our
Optimal-Transport-based Event Detection (OTED)
model is: L = Lclass+αLident+βLdist+γLcross

where α, β, and γ are trade-off hyperparameters.

4 Experiments

4.1 Datasets

We use the ACE05 (Walker et al., 2006) and
ERE05 (Song et al., 2015) datasets, which are fre-
quently used as the standard benchmarks in cross-
lingual event detection efforts (M’hamdi et al.,
2019; Majewska et al., 2021; Nguyen et al., 2021;
Guzman-Nateras et al., 2022), to evaluate our FS-
CLED models. In particular, we utilize data in
three languages (English, Chinese, and Arabic)
from ACE05 and two languages (English and Span-
ish) from ERE05. Both ACE05 and ERE05 or-
ganize their event classes in a hierarchical struc-
ture of types and subtypes. For example, in
the Transaction:Transfer-Ownership
class, Transaction is the main event type and
Transfer-Ownership is the subtype. The two
datasets have distinct label sets as ACE05 includes
33 event subtypes and ACE05-ERE has 38 event
subtypes. Each language in the datasets has its own
training/development/test split.

4.1.1 FSL Preprocessing
Standard datasets used for supervised learning,
such as ACE05 and ERE05, can also be exploited
for FSL by simulating a limited-data-availability
setting via episodic training (Lai et al., 2021a). An
episode is created by sampling a set of K exam-
ples from a small subset of classes N out of the
total number of classes in the dataset. This setting
is referred to as N-way, K-shot and N and K are
usually selected in the range of 1 to 10.

Following previous work on FSL for ED (Lai
et al., 2020b), we further truncate the training, de-
velopment, and testing portions of the datasets for
each language to satisfy the conditions for FSL: (1)
the set of event types in the training data must be
disjoint from those for the development and test

Dataset # Types Removed Types

ACE05-English (train) 19
Justice:Extradite
Justice:Pardon

ACE05-English (dev) 12
ACE05-Chinese (test) 11 Life:Divorce

ACE05-Arabic (test) 9
Life:Be-Born
Life:Divorce

Personnel:Nominate
ERE05-English (train) 22 Business:Bankrupcy
ERE05-English (dev) 15
ERE05-Spanish (test) 14 Personnel:Nominate

Table 1: Dataset preparation for FSCLED. The total
number of remaining types is shown for each data sec-
tion alongside the removed subtypes without a sufficient
number of samples for episodic training.

data; (2) the types in each set must contain at least
5 samples (to facilitate 5+1-way 5-shot learning
with the additional +1 class being used for non-
triggers); and (3) the training set should have as
many samples as possible.

Adapting these criteria to cross-lingual FSL, we
separate the samples belonging to the Business,
Contact, Conflict, and Justice types to
be used for training purposes. Meanwhile, we leave
the samples belonging to the Life, Movement,
Personnel, and Transaction event types for
development and testing. Furthermore, we remove
any subtypes that do not contain enough samples to
construct an episode (5 samples minimum). Table 1
shows the total number of remaining classes for
each portion of data in different languages for our
FSCLED setting. We also list the event subtypes
that are removed to meet the criteria in each dataset
portion. Note that, while the training label set must
be disjoint from the development and testing label
sets, there is no requirement for the latter two to be
disjoint as done in (Lai et al., 2020b).

As the final step in our data preprocessing, we
obtain the samples for the non-event type by se-
lecting words, other than the actual triggers, from
annotated sentences similar to the approach taken
by Lai et al. (2020b).

4.2 Training Details

4.2.1 Episode Composition
In all our experiments, English is considered the
sole source language as it is often used as the bench-
mark source language in cross-lingual efforts. As
such, training and development episodes are con-
structed from English data. However, given the
FSL constraints, their samples must come from
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Target Language
Chinese Arabic Spanish

Model Version P R F1 P R F1 P R F1
Relation 78.62 79.1 78.86 52.89 53.35 53.12 48.53 48.77 48.65
Matching 85.44 85.79 85.64 66.21 65.92 66.06 56.77 56.95 56.86

Prototypical 85.81 86.12 85.96 70.02 70.44 70.23 60.87 61.17 61.02
OTED (ours) 86.05 86.29 86.17 70.66 70.98 70.82 62.25 62.49 62.37

Table 2: Performance for cross-lingual few-shot event detection. English is the source language used for training.
The experiments for Chinese and Arabic are done over ACE05 while ERE05 is used for Spanish.

disjoint label sets. Hence, in any training iter-
ation, the samples used for both the support S
and query Q sets are in English and belong to the
training subtypes of the Business, Contact,
Conflict, or Justice types. In contrast, dur-
ing validation, S and Q will still be in English
but their samples belong to the validation sub-
types of the Life, Movement, Personnel,
or Transaction types.

Furthermore, as cross-lingual models are evalu-
ated on the target language, during testing, episodes
are created from target-language data and their
samples belong to the same types as the devel-
opment episodes, i.e., the Life, Movement,
Personnel, or Transaction types.

4.2.2 Additional Settings
We utilize a fixed 6-way (5 event types plus
the non-event), 5-shot setting for all the experi-
ments. We initialize our encoder E with the pre-
trained bert-base-multilingual-cased
transformer model (Devlin et al., 2019) and add a
single linear layer followed by a hyperbolic tangent
non-linearity on top. Our final encoder representa-
tions have 512 dimensions. All hyperparameters
were tuned on the development data of the source
language, and all reported values are the average
obtained from five runs with different random seeds.
Our fine-tuning process suggests the following val-
ues:

• AdamW (Loshchilov and Hutter, 2017) as the
optimizer.

• Using 5 warm up epochs.

• Learning rate is set to 3e−4.

• The α, β and γ hyper-parameters are set to
0.1, 0.01, and 0.01 respectively.

• The batch size is set to 16.

• 512 for the dimensionality of the layers in the
feed-forward networks.

• A dropout of 10% for added regularization
during training.

4.3 Results
We compare our Optimal-Transport-based Event
Detection (OTED) model, against three typical
FSL models adapted to FSCLED as the baselines:
Matching networks (Vinyals et al., 2016), Proto-
typical networks (Snell et al., 2017), and Relation
networks (Sung et al., 2018). All models utilize the
same mBERT-based encoder for a fair comparison.
We use English as the source language during train-
ing as it is recurrently utilized the source-language
benchmark (M’hamdi et al., 2019; Majewska et al.,
2021) due to its high-resource availability.

Our main experiment results are presented in
Table 2 which shows that our OTED model consis-
tently outperforms the best-performing baselines
in every target language: Chinese (+0.21%), Ara-
bic (+0.59%), and Spanish (+1.35%). We believe
these results validate OTED as a suitable and effec-
tive alternative for FSCLED.

Furthermore, an additional benefit of OTED’s
training signals (i.e., the loss terms Lident, Ldist,
and Lcross) is that they can be directly integrated
into any existing FSL methods. Thus, we conduct
a supplementary set of experiments where we inte-
grate the loss function terms from OTED into Re-
lation, Matching, and Prototypical networks (i.e.,
combining our training signals in OTED with the
standard cross-entropy losses of such FSL base-
lines). The performance for these integrated mod-
els are presented in Table 3. Comparing the cor-
responding performance in Tables 2 and 3, it is
evident that integrating OTED with traditional FSL
methods leads to overall performance improvement
across different target languages and FSL models,
further demonstrating the benefits and applicability
of OTED for FSCLED.
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Target Language
Model Version Chinese Arabic Spanish

Relation + OTED 79.36 53.41 48.89
Matching + OTED 85.88 66.21 56.97

Prototypical + OTED 86.42 71.11 62.43

Table 3: Model performance for integrating OTED into
traditional FSL methods. F1 scores are reported.

Target Language
Model Chinese Arabic Spanish

OTED (full) 86.17 70.82 62.37
-Ldist 85.63 70.57 61.85
-Lcross 85.45 70.22 61.78

-Ldist -Lcross 85.25 69.44 61.19
-Lident - Ldist - Lcross 84.67 68.21 60.65

Table 4: Ablation results over the test data.

4.4 Ablation study
To evaluate the contribution of different proposed
components (i.e., Lident, Ldist, and Lcross), we
perform an ablation study whose outcomes are pre-
sented in Table 4. The left-most column indicates
the components being removed from the overall
loss L. The first two rows show the performance
when either the Wasserstein-distance loss term, i.e.,
Ldist or Lcross is removed. As expected, removing
any of them hurts the performance of OTED across
different target languages. This demonstrates the
importance of considering the global distances be-
tween query and support sets, and the necessity
of adapting to the cross-lingual setting by leverag-
ing unlabeled target-language data. Furthermore,
the performance of OTED suffers even more when
both Ldist and Lcross are excluded.

Similarly, when Lident is removed in the last row,
the performance is also further reduced, dropping
significantly by more than 1.5% for Chinese and
Arabic compared to the full model. Note that re-
moving Lident has deeper implications as, in such
case, the event-presence module F is not trained.
In turn, the P (S) and P (Q) distributions for the
support and query sets cannot be estimated reliably
and are instead initialized using uniform distribu-
tions in the OT computation. These results thus
confirm the usefulness of the event identification
loss to support the OT computation in our model.

5 Related Work

Event detection has been thoroughly studied over
the years. Early ED efforts were based on hand-
crafted features (Ahn, 2006; Ji and Grishman,

2008; Patwardhan and Riloff, 2009; Liao and Grish-
man, 2010a,b; Hong et al., 2011; McClosky et al.,
2011; Li et al., 2013; Miwa et al., 2014; Yang and
Mitchell, 2016). More recently, deep learning tech-
niques such as recurrent neural networks (Nguyen
et al., 2016a; Sha et al., 2018; Nguyen and Nguyen,
2019), convolutional neural networks (Nguyen and
Grishman, 2015; Chen et al., 2015; Nguyen et al.,
2016b), graph convolutional networks (Nguyen and
Grishman, 2018a; Yan et al., 2019), adversarial net-
works (Hong et al., 2018)(Zhang et al., 2019b),
pre-trained language models (Wadden et al., 2019;
Zhang et al., 2019a; Yang et al., 2019a; Zhang et al.,
2020; Liu et al., 2020), and generative models (Lu
et al., 2021) have been prevalent. Nevertheless,
these works study ED under a supervised or semi-
supervised setting.

Alternatively, ED was recently formulated as a
few-shot task (Lai et al., 2021a). In a short time,
several methods have been proposed using a va-
riety of techniques such as meta-learning(Deng
et al., 2020; Shen et al., 2021), cross-task pro-
totyping (Lai et al., 2021a), dependency graphs
(Lai et al., 2021b), causal modeling (Cong et al.,
2021), and label dependency via conditional ran-
dom fields (Chen et al., 2021).

Previous works on cross-lingual ED generally
make use of cross-lingual resources such as bilin-
gual dictionaries or parallel corpora (Muis et al.,
2018; Liu et al., 2019) to address the differences be-
tween languages. More recent approaches exploit
the language-invariant characteristics of pre-trained
multilingual language models (Hambardzumyan
et al., 2020) along with complementary features
such as label dependency (M’hamdi et al., 2019),
verb-class knowledge (Majewska et al., 2021), and
class-aware cross-lingual alignment (Nguyen et al.,
2021).

Optimal transport has also been recently used
in cross-lingual settings for information extraction
tasks such as event co-reference resolution (Phung
et al., 2021) and event detection (Guzman-Nateras
et al., 2022). However, the amalgamation of the
few-shot and cross-lingual settings creates unique
challenges that have not been tackled by any re-
lated work. Consequently, our proposed use of OT
differs from related works as it addresses the global
alignment between the support and query sets for
few-shot learning and between source and target
languages for the cross-lingual setting.
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6 Conclusion

We explore a novel few-shot cross-lingual set-
ting for event detection that combines the lim-
ited training-data conditions of FSL with zero-shot
cross-lingual transfer learning. We provide the per-
formance of typical FSL models as the foundations
for future research. More importantly, we introduce
a novel method for FSCLED that leverages the op-
timal alignment between query and support sets
obtained via OT to perform FSL classification. Our
method is complemented by two additional regular-
ization terms that aim at integrating the global dis-
tance between support and query sets and fostering
language-invariant representations by leveraging
unlabeled data in the target language. Our exper-
iments on three target languages demonstrate the
advantages of our approach and its general appli-
cability to traditional FSL models. As future work,
we intend to extend our method to other related
tasks in IE such as relation extraction.

7 Limitations

As is the case for any research effort, the scale of
our work is restricted by time and resource limi-
tations. Supplementary experiments with diverse
source/target language pairs could provide a more
comprehensive overview of our method’s perfor-
mance and additional insight into its strengths and
weaknesses. Episode composition also plays an
key role during few-shot training which can intro-
duce some variance in the results. Furthermore, the
cross-lingual setting and casting the problem as a
token classification task places some important re-
strictions as prior knowledge of event triggers is re-
quired even for target-language data (only the trig-
ger is required, not its label) which could limit the
applicability of our method for some low-resource
languages. Finally, considerable GPU resources
are required to be able to train our model, partic-
ularly in order to fit the multilingual transformer
encoder.
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Abstract

Counterfactual statements describe events that
did not or cannot take place unless some
conditions are satisfied. Existing counter-
factual detection (CFD) methods assume the
availability of manually labelled statements
for each language they consider, limiting the
broad applicability of CFD. In this paper,
we consider the problem of zero-shot cross-
lingual transfer learning for CFD. Specifically,
we propose a novel loss function based on the
clue phrase prediction for generalising a CFD
model trained on a source language to mul-
tiple target languages, without requiring any
human-labelled data. We obtain clue phrases
that express various language-specific lexi-
cal indicators of counterfactuality in the tar-
get language in an unsupervised manner us-
ing a neural alignment model. We evaluate our
method on the Amazon Multilingual Counter-
factual Dataset (AMCD) for English, German,
and Japanese languages in the zero-shot cross-
lingual transfer setup where no manual anno-
tations are used for the target language dur-
ing training. The best CFD model fine-tuned
on XLM-R improves the macro F1 score by
25% for German and 20% for Japanese target
languages compared to a model that is trained
only using English source language data.

1 Introduction

A counterfactual statement describes an event that
may not, did not, or cannot take place, and the sub-
sequent consequence(s) or alternative(s) did not
take place (Milmed, 1957). Counterfactual state-
ments can take the form – If p was true, then q
would be true (i.e. assertions whose antecedent
(p) and consequent (q) are known or assumed to
be false). Counterfactual detection (CFD) is an
important task in NLP, which has found broad
applications such as customer review analysis in
e-commerce (O’Neill et al., 2021), social media
analysis (Son et al., 2017) and automatic psycho-
logical assessment (Janocko et al., 2016). To fur-

ther explain the CFD task, consider the following
counterfactual statement extracted from a product
review: I wish the trouser had ruching so that it
could fit me well. This is considered a counterfac-
tual statement because it has the subjunctive mood
wished and the author of the review wishes that
the trouser had ruching, whereas it does not have
in reality. In this particular example, trouser had
ruching is the antecedent and it could fit me well is
the consequent. Ideally, for a user who is search-
ing for trousers with ruching we should not dis-
play this particular trouser because it does not have
rouching. By accurately detecting counterfactual
statements, we can prevent such irrelevant search
results.

Almost all prior work on CFD has been limited
to the English language (Yang et al., 2020; Son
et al., 2017; Ding et al., 2020; Fajcik et al., 2020;
Lu et al., 2020; Ojha et al., 2020; Yabloko, 2020)
with the notable exception of O’Neill et al. (2021),
who looked at German and Japanese counterfac-
tuals in addition to English. However, all existing
work on CFD require manually labelled language-
specific counterfactual statements for the target
language of choice. Extending CFD to differ-
ent target languages has been hindered so far by
two main challenges. First, manual annotation
of counterfactuality is a time consuming and a
costly task, which requires professional linguists
as shown by O’Neill et al. (2021). Moreover, such
expert annotators might not be available for all
languages we would like to perform CFD. Second,
counterfactual clues such as wished, would have
(in English) or fehlt, wenn es (in German) etc. are
highly language-specific, which makes it difficult
to transfer a model trained on a source language to
a different target language without neither labelled
counterfactual examples nor clue phrase lists.

To address the above-mentioned challenges, we
propose a zero-shot cross-lingual transfer learning
method for CFD that learns a CFD model for a tar-
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get language without using any labelled data for
that target language. Our proposed method con-
sists of two steps: (a) automatic clue phrase ex-
traction for the target language and (b) learning
a CFD classifier for the target language by pre-
dicting the clue phrases in the text. We use a
neural alignment model (Dou and Neubig, 2021)
to align machine-translated source language coun-
terfactual sentences to find clue phrases for the tar-
get language. We then use those automatically ex-
tracted target language clue phrases to induce se-
quential labels for the sentences in the target lan-
guage to train a CFD model. For this purpose, we
propose a novel training objective that consists of a
main task (i.e. predicting whether a given sentence
contains a counterfactual statement or not) and an
auxiliary task (i.e. predicting whether a given to-
ken in a sentence is a clue phrase or not). To the
best of our knowledge, we are the first to propose
a transfer learning method for cross-lingual CFD,
let alone in a zero-shot setting that does not require
neither counterfactual clues nor labelled training
instances for the target language.

Using the Amazon Multilingual Counterfactual
Detection dataset (AMCD) (O’Neill et al., 2021),
we evaluate the proposed method for its ability to
perform cross-lingual zero-shot transfer. Specif-
ically, we use token-embeddings obtained from
XLM-R (Conneau et al., 2019) and mBERT1 to
train CFD models for German and Japanese tar-
get languages using counterfact labelled sentences
for English source language and automatically ex-
tracted clue phrases for each target language. In
particular, no human counterfact annotations for
the target language are used during training. Our
proposed method establishes a new state-of-the-
art for zero-shot cross-lingual transfer with an im-
provement of 25% in macro-averaged F1 score for
German and that of 20% for Japanese. The Source
code implementation for the proposed method will
be publicly released upon paper acceptance.

2 Related Work

For training and evaluating CFD methods, a
dataset was annotated in the SemEval-2020 Task
5 (Yang et al., 2020) covering two subtasks. The
first subtask is to classify a given sentence as to
whether it expresses a counterfactual statement or
not, whereas in the second subtask the participat-

1https://github.com/google-research/
bert/blob/master/multilingual.md

ing teams must extract the antecedent and conse-
quent from a given counterfactual statement. Our
goal in this paper is close to the first subtask,
which can be modelled as a sentence-level binary
classification problem. Most of the high perform-
ing methods (Ding et al., 2020; Fajcik et al., 2020;
Lu et al., 2020; Ojha et al., 2020; Yabloko, 2020)
submitted to SemEval-2020 Task 5 use state-of-
the-art pretrained language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019; Yang
et al., 2019) to represent sentences. Traditional
machine learning methods, such as support vec-
tor machines and random forests were also used
but with less success (Ojha et al., 2020). How-
ever, none of these previously proposed methods
consider cross-lingual nor zero-shot CFD settings.
To achieve the best prediction quality, ensem-
ble strategies are employed. The top performing
systems use an ensemble of transformers (Ding
et al., 2020; Fajcik et al., 2020; Lu et al., 2020),
while others include Convolutional Neural Net-
works (CNNs) with Global Vectors (Pennington
et al., 2014) embeddings (Ojha et al., 2020). Var-
ious structures are used on top of transformers.
For example, Lu et al. (2020); Ojha et al. (2020)
use a CNN as the top layer, while Bai and Zhou
(2020) use a Bi-GRUs and Bi-LSTMs. Some other
proposed methods use additional modules, such as
constituency and dependency parsers in the lower
layers of the architectures (Yabloko, 2020).

O’Neill et al. (2021) created the AMCD coun-
terfactual dataset by annotating sentences selected
from Amazon product reviews. Unlike the Se-
mEval dataset, which covers only English coun-
terfactuals, AMCD covers Japanese and German
counterfactuals in addition to English. AMCD
is the only publicly available multilingual CFD
dataset. Therefore, we use AMCD to evaluate the
cross-lingual zero-shot CFD models we propose
in this paper. O’Neill et al. (2021) trained CFD
models using different approaches such as bag-
of-words representations of sentences as well as
by fine-tuning pre-trained masked language mod-
els for each language separately. They also con-
sidered a cross-lingual zero-shot setting where
they first machine translated the source (English)
dataset into each of the target languages (German
and Japanese), and train CFD models for those
target languages using the translated training in-
stances. However, the performance of this ap-
proach was significantly worse than that of the in-
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(a) Alignment-based clue phrase extraction.

(b) End-to-end pipeline for extracting clue phrases.

Figure 1: An example of extracting clue phrase can-
didates for Japanese target language from a pair of
sentences obtained by machine translating an English
source language sentence to Japanese. The alignment
model aligns the English clue phrase wished with the
Japanese termあれば(areba), which is then extracted
as a candidate Japanese clue phrase.

language baselines, which lead to their conclusion
“simply applying MT on test data is not an alter-
native to annotating counterfactual datasets from
scratch for a novel target language.” This high-
lights the difficulty of the cross-lingual zero-shot
transfer problem setting for CFD, which we con-
sider in this paper.

One approach to learn accurate multilingual
representations with less supervision in down-
stream tasks is the few-shot or zero-shot cross-
lingual transfer learning. Here, the goal is to
transfer a model trained in the source language
into the target language with minimal loss in per-
formance. Few-shot transfer learning assumes
the availability of a small number of labelled in-
stances in the target language, while the zero-shot
setting assumes none. Recently, Pfeiffer et al.
(2020) proposed MAD-X, a zero-shot and few-
shot language model transfer framework based
on the adaptor framework (Houlsby et al., 2019).
Moreover, XTREME (Hu et al., 2020), a multilin-
gual benchmark containing many tasks, reported
the translate-train performance, where a model
is trained on a machine-translated version of the
source language dataset into the target languages
as a baseline for zero-shot transfer learning. How-
ever, to the best of our knowledge, ours is the first-
ever model proposed for cross-lingual zero-shot
transfer for CFD.

3 Cross-lingual Zero-shot CFD

Let us denote a sentence x = w1, w2, . . . , w|x|
consisting of a sequence of |x| tokens wj . CFD
is considered as a binary classification task in
this paper, where the goal is to predict whether
a sentence x contains a counterfactual statement
(y(x) = 1) or otherwise (y(x) = 0), indi-
cated by the binary label y(x). In the cross-
lingual zero-shot CFD setting, we consider the
problem of transferring a CFD model trained on
a source language s to a different target lan-
guage t. For this purpose we assume the avail-
ability of a counterfactual-labelled dataset, Ds =

{(xs,i, y(xs,i))}|Ds|
i=1 for the source language and

an unlabelled dataset, Dt = {xt,i}|Dt|
i=1 , for the tar-

get language. Here, we use the notation xs,i to
indicate the i-th sentence in the source (for the tar-
get xt,i) language dataset and its associated coun-
terfactual label y(xs,i). The source language is as-
sumed to be a language for which it is relatively
easier to create a large annotated dataset because
it is easier to recruit annotators than for the target
language. Following prior work on cross-lingual
transfer (Hu et al., 2020; O’Neill et al., 2021), we
use a machine translation (MT) system to trans-
late the sentences in Ds into the target language
with the labels unchanged to create a machine-
translated version of Ds, denoted by Dmt.

Counterfactual statements are rare in natural
language sentences and Son et al. (2017) report
that only 1-2% of sentences contain counterfactual
statements in a random collection of sentences.
Therefore, randomly selecting sentences for anno-
tation purposes results in a waste of annotation re-
sources such as annotator time and cost, and will
only result in an imbalanced and low-coverage
datasets. To address this issue, prior work (Son
et al., 2017; O’Neill et al., 2021; Yang et al., 2020)
creating annotated datasets for counterfactuality
has used language-specific clue phrases that indi-
cate various expressions frequently used to indi-
cate the presence of a counterfactual to filter candi-
date sentences for annotation. We use such coun-
terfactual clue phrases as auxiliary training data
for cross-lingual transfer. Specifically, we require
that a CDF model can not only (a) predict whether
a given sentence x is a counterfactual or not (main
task), but also be able to (b) predict whether a
token w in x is a clue phrase or not (auxiliary
task). Unlike obtaining annotations for counter-
factual statements in the target language, it is rela-
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tively easier to obtain a list of counterfactual clue
phrases for the target language. More importantly,
as we show later in § 3.1, it is possible to auto-
matically extract an accurate set of target language
clue phrases, Vt, using Ds, Dmt and a set of clue
phrases for the source language, Vs.

The auxiliary task is motivated by prior work in
semi-supervised learning (Ando and Zhang, 2005)
and masked language modelling (Devlin et al.,
2019), where it has been shown that by predicting
tokens that are highly related (i.e. clue phrases) to
the downstream task (i.e. sentence-level counter-
factual detection) we can learn task-specific cor-
relations between tokens. In contrast to the main
task, which is modelled as a sentence-level binary
classification task, we model the auxiliary task as
a token-level sequence labelling task. However,
unlike for the main task, where we have at least
counterfactual labelled sentences from the source
language (i.e. Ds), we do not have any manually
annotated training data neither for the source nor
for the target languages for the auxiliary task. For
this reason, we automatically label training data
for the auxiliary task as follows. For the source
language, we assign a binary-valued token label
y(wj) for each token wj in each sentence xi in Ds,
where y(wj) = 1, if wj ∈ Vs and y(wj) = 0 oth-
erwise. For example, given a sentence “The bot-
tom fits fine, but I wished there was more ruching
like in the photo.” we label “wished”, correspond-
ing to a clue phrase in English as 1 and other to-
kens as 0. To generate training data for the tar-
get language we can use either sentences in Dt or
Dmt. We empirically compare the different com-
binations of training data later in §5.1.

Next, we describe the training objectives asso-
ciated with the main and auxiliary tasks. Let us
consider a multilingual masked language model
(MLM), h, with pretrained parameters θ that as-
signs a vector h(w, x; θ) to a word w in a sen-
tence x. We train a feed forward neural network f
with parameters ϕ and a sigmoid output unit such
that given the embedding x of a sentence x it pre-
dicts whether x is counterfactual (i.e. f(x;ϕ) =
1) or otherwise (i.e. f(x;ϕ) = 0). Different
methods can be used to create sentence embed-
dings from MLMs such as mean or max pool-
ing, attention-based weighting or by simply con-
sidering the embedding for the classification (i.e.
[CLS]) token (Devlin et al., 2019). In our prelim-
inary investigations we found that considering the

[CLS] token embedding as a sentence representa-
tion to produce the best cross-lingual CFD perfor-
mance despite its simplicity. However, we note
that our proposed method is independent of the
choice of the sentence encoder and can be com-
bined with more complex sentence encoder archi-
tectures. In the subsequent discussion we denote
x = h([CLS], x;θ). Given that our main task of
CFD is modelled as a binary classification task, the
negative log-likelihood (NLL) loss for this predic-
tion task can be written as in (1).

Lcfd(D) = −
∑

x∈D

[
(1− y(x))(log(f(x))− 1)

+ y(x) log(f(x))
]

(1)

For the auxiliary task, we train a feed forward
neural network, g(h(w, x);ψ), that takes in the
contextualised embedding h(w, x) of token w in
sentence x and returns 1, if w is a clue phrase or 0
otherwise. We compute the NLL loss for the clue
phrase prediction task as in (2).

Lcp(D) = −
∑

x∈D

|x|∑

j=1

[
(1− y(wj))(1− log(z))

+ y(wj) log(z)
]

(2)

z = g(h(wj , x);ψ)

Finally we add the losses for the main and auxil-
iary tasks to compute the total loss. Our zero-shot
transfer model uses Dmt on the main task (1) and
either of Dmt or Dt on the auxiliary task (2), i.e.
Lcfd(Dmt) + Lcp(Dt) or Lcfd(Dmt) + Lcp(Dmt)
where we have dropped the model parameters for
notational convenience. Further details on model
training are provided in §4.

3.1 Automatic Clue Phrase Extraction

In some target languages such as low-resource lan-
guages, it might be even challenging to obtain a
sufficiently large list of clue phrases covering var-
ious constructions used to express counterfactual-
ity because of the difficulties in recruiting annota-
tors. Moreover, in a true zero-shot spirit it is de-
sirable not to assume any human supervision for
the target language – neither for the main nor aux-
iliary tasks. Therefore, in this section, we propose
a method to automatically extract clue phrases for
the target language using the list of clue phrases
for the source language, Vs, counterfactual la-
belled dataset for the source language, Ds, and
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its machine translated version, Dmt. First, we
use Awesome Aligner (Dou and Neubig, 2021),
an off-the-shelf neural alignment model, and com-
pute the alignment between each sentence xs,i in
Ds and its translation xmt,i. Next, for a token ws

in xs,i, which is a clue phrase in the source lan-
guage (i.e. ws ∈ Vs), we find the list of target
language tokens, At(ws). aligned with ws in all
sentence pairs, ∀|Ds|

i=1 (xs,i, xmt,i). The candidate
clue phrases in At(ws) are further filtered follow-
ing three criteria as described below. The end-to-
end pipeline for target language clue phrase ex-
traction is illustrated in Figure 1b between English
(source) and Japanese (target) languages. To dif-
ferentiate from the human annotated clue phrases
(referred to as gold clue phrases here onwards), we
call the clue phrases extracted via this alignment
process as auto-generated clue phrases.

Criterion 1: Non-counterfactual Sentence Ex-
clusion: Note that clue phrases can be ambigu-
ous with regard to whether they express counter-
factuality or not. For example, the clue phrase
wish indicates a counterfactual statement in the
sentence I wish this shirt was available in red,
whereas it does not in My wish came true. Such
ambiguous occurrences of counterfactual clues are
likely to be aligned with non-counterfactual ex-
pressions in the target language. To reduce the
noise due to this ambiguity in the unsupervised
alignment process, we exclude non-counterfactual
sentences from Ds and Dmt during the alignment
process. In other words, we consider alignment
between only sentence pairs (xs,i, xmt,i) such that
y(xs,i) = 1.

Criterion 2: Shared Term Exclusion: If a par-
ticular term wt appears in candidate sets At(ws)
extracted for many distinct source language clue
phrases ws, it is likely that wt is not a clue phrase
but a high frequent functional word or a stop
word. Therefore, we remove candidates appear-
ing in more than one candidate set At(ws) from
target language clue phrase set.

Criterion 3: Majority Filtering: If a target lan-
guage token wt is aligned with the same source
language clue phrase ws in multiple sentence
pairs, (xs,i, xmt,i), it increases the reliability of wt

as a clue phrase in the target language. We use this
intuition to filter candidates, where for each source
language clue phrase we select only the most fre-
quently aligned target language token as a clue

EN DE JA

Train 807 / 7,193 3865 / 1735 525 / 5,075
Dev 73 / 593 325 / 141 46 / 420
Test 150 / 1,184 650 / 284 96 / 838

Table 1: The number of sentences in AMCD with pos-
itive/negative label are shown respectively.

phrase. We refer to this filtering criterion as the
majority filtering. In cases where there are mul-
tiple target language tokens with the same high-
est frequency of alignment with a specific source
language clue phrase, we select all such tokens as
target language clue phrases according to the ma-
jority filtering criterion.

4 Experimental Settings

Dataset: We use the AMCD dataset, which con-
tains counterfactual statements annotated from
Amazon product reviews for three languages:
English (EN), German (DE), and Japanese
(JA). We use the original published train-
ing/development/test splits2 in our experiments,
for which the number of sentences are shown in
Table 1. Throughout the experiments, we regard
EN as the source language and DE and JA as the
target languages. To create machine translated
versions (i.e. Dmt) of the EN dataset into the tar-
get languages, we use Amazon MT.3

Clue Phrase: The human annotated clue
phrases provided by AMCD are considered as
the gold clue phrases for each language. For the
automatic clue phrase extraction described in
§3.1, we use Awesome Aligner (Dou and Neubig,
2021) as the neural alignment model.

To evaluate the level of cross-lingual counter-
factual detection (XCFD) performance that can
be obtained by directly translating the source lan-
guage clue phrases to the target language, we cre-
ate a Clue Phrase Translation (CP Translation)
baseline. This baseline uses Google Translate 4

to translate individual clue phrases in the source
language to the target language without using any
contexts for those clue phrases.

Models and Hyperparameters: To obtain
token embeddings, we use two multilin-
gual language models in our experiments:

2https://github.com/amazon-research/
amazon-multilingual-counterfactual-dataset

3https://aws.amazon.com/translate/
4https://translate.google.com

32

https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset
https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset
https://aws.amazon.com/translate/
https://translate.google.com


Model Lcfd Lcp DE JA

mBERT

Dt 90.3 [88.1, 92.2] 83.7 [79.7, 87.3]
Ds 28.4 [26.0, 30.9] 47.3 [46.7, 47.8]
Dmt 70.9 [67.9, 73.8] 67.3 [62.7, 71.7]
Dmt Dt 65.7 [62.6, 68.7] 68.6 [64.6, 72.4]
Dmt Dmt 73.0 [70.1, 75.9] 68.3 [64.0, 72.4]

XLM-R

Dt 89.3 [87.1, 91.4] 86.2 [82.4, 89.8]
Ds 45.1 [41.8, 48.3] 59.2 [53.8, 64.6]
Dmt 64.7 [61.7, 67.7] 81.1 [76.8, 84.9]
Dmt Dt 68.0 [65.1, 71.0] 82.9 [79.0, 86.6]
Dmt Dmt 70.3 [67.4, 73.3] 81.9 [77.6, 85.8]

Table 2: F1 scores on the test set of each target lan-
guage with 95% confidence intervals in the brackets.
The columns Lcfd and Lcp represent the dataset used
respectively for the main (1) and auxiliary tasks (2).
Models with blank Lcp are trained without the auxil-
iary task. The results of in-domain performance where
labelled data from the target language is used to train
a CDF model are shown in italics, the results with the
auxiliary task are in shown bold face, and the best zero-
shot result in each language is underlined.

mBERT (Devlin et al., 2019) and XLM-R
(large model) (Conneau et al., 2019). Both of
those models are transformer-based (Vaswani
et al., 2017), but mBERT has been pretrained
Wikipedia articles covering the 104 languages
with the largest Wikipedias. On the other
hand, XLM-R has been trained on 2.5TB of
filtered CommonCrawl data containing 100
languages. The initial weights are taken from
the bert-base-multilingual-cased and
xlm-roberta-large model checkpoints,
made available at the Huggingface transformers
model hub (Wolf et al., 2020). We use the Adam
optimizer (Kingma and Ba, 2014) with a batch
size of 128, an initial learning rate of 0.00001 and
train our CFD models for 5 epochs. As the eval-
uation metric, we report the macro-averaged F1
scores with 95% bootstrap estimated confidence
intervals (Efron and Tibshirani, 1994).5

5 Results

5.1 Zero-shot Transfer with Auxiliary Task

Table 2 shows our main results of zero-shot cross-
lingual transfer with the auxiliary task Lcp (2) to-
gether with the main task Lcfd (1). As an upper
bound on performance, we train a CFD model us-
ing labelled data for the target language Lcfd(Dt)

5https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.
bootstrap.html

Lcp Clue Phrase Type DE JA

Dt

Human 66.9 [64.0, 69.9] 79.0 [76.0, 83.7]
CP Translation 67.4 [64.4, 70.3] 79.0 [74.9, 82.7]
Alignment 64.9 [61.8, 68.0] 80.1 [75.9, 83.9]
Alignment1 66.0 [63.0, 69.0] 82.9 [79.0, 86.6]
Alignment2 62.9 [59.9, 66.0] 77.5 [73.4, 81.4]
Alignment3 68.0 [65.1, 71.0] 79.5 [75.4, 83.3]
Alignment1,2 58.5 [55.4, 61.7] 79.1 [74.6, 83.2]
Alignment2,3 65.5 [62.5, 68.5] 80.0 [75.7, 83.9]
Alignment1,2,3 63.4 [60.3, 66.5] 78.9 [74.7, 82.7]
Alignment1,3 65.8 [62.7, 68.9] 80.4 [76.3, 84.1]

Dmt

Human 70.3 [67.4, 73.3] 81.6 [77.4, 85.6]
CP Translation 64.2 [61.1, 67.2] 81.3 [77.1, 85.3]
Alignment 65.8 [62.9, 68.8] 81.6 [77.4, 85.5]
Alignment1 68.0 [65.0, 70.9] 79.5 [75.5, 83.4]
Alignment2 67.4 [64.4, 70.3] 81.7 [77.4, 85.6]
Alignment3 66.8 [63.7, 69.7] 81.9 [77.6, 85.8]
Alignment1,2 64.2 [61.1, 67.2] 78.2 [73.8, 82.2]
Alignment2,3 65.3 [62.3, 68.3] 75.7 [70.5, 80.5]
Alignment1,2,3 63.2 [60.1, 66.3] 78.4 [73.8, 82.4]
Alignment1,3 65.3 [62.3, 68.3] 79.6 [75.6, 83.3]

Table 3: F1 scores of XLM-R trained along different
clue phrase types. All the scores are evaluated on the
test set of each target language with 95% confidence
intervals shown in the brackets. The filtering criteria
used in each alignment approach is noted in its super-
script. The best results in each language and Lcp are in
bold face.

with mBERT and XLM-R separately. Recall that
in the zero-shot setting we consider in this pa-
per, we will not have access to such counterfac-
tual labelled sentences for the target language.
As a comparison, we report baselines, which are
models trained on the main task with the source
Lcfd(Ds) or the translation Lcfd(Dmt) without the
auxiliary task. We see that the best zero-shot
cross-lingual transfer results are obtained using
our proposed method for mBERT as well as XLM-
R for both DE and JA. Specifically, F-score for DE
improves from 70.9 to 73.0 in mBERT and for JA
it improves from 81.1 to 82.9 in XLM-R by adding
the auxiliary task to the main task on Dmt. This
supports our proposal to use clue phrase predic-
tion in the target language as an auxiliary task for
cross-lingual CFD.

From Table 2 we see that among the models
trained with the auxiliary tasks, XLM-R-based
models (Lcp ∈ {Dmt,Dt}) perform better for
JA than those obtained with mBERT, while the
best model for DE (Lcp = Dmt) is obtained us-
ing mBERT. In particular the best performance
for JA is obtained with XLM-R (82.9), which is
significantly better than the best performance for
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Lcp Clue Phrase Type DE JA

Dt

Human 63.7 [60.6, 66.8] 65.3 [61.6, 69.2]
CP Translation 61.9 [58.7, 65.0] 66.4 [62.4, 70.2]
Alignment 63.6 [60.5, 66.7] 64.7 [61.0, 68.6]
Alignment1 63.7 [60.5, 66.7] 61.9 [58.3, 65.5]
Alignment2 63.7 [60.6, 66.7] 68.6 [64.6, 72.4]
Alignment3 64.4 [61.3, 67.4] 66.4 [62.4, 70.3]
Alignment1,2 62.6 [59.5, 65.7] 68.6 [64.6, 72.4]
Alignment2,3 64.3 [61.2, 67.3] 66.1 [62.2, 69.9]
Alignment1,2,3 65.2 [62.1, 68.3] 65.4 [61.6, 69.3]
Alignment1,3 65.7 [62.6, 68.7] 67.6 [63.5, 71.5]

Dmt

Human 70.7 [67.8, 73.7] 68.3 [64.0, 72.4]
CP Translation 71.6 [68.7, 74.5] 68.3 [63.9, 72.4]
Alignment 70.8 [67.9, 73.8] 65.8 [61.1, 70.2]
Alignment1 70.8 [67.8, 73.7] 67.0 [62.3, 71.5]
Alignment2 70.0 [67.0, 73.0] 64.9 [60.1, 69.5]
Alignment3 72.7 [69.8, 75.6] 66.4 [61.9, 70.7]
Alignment1,2 71.7 [68.7, 74.6] 66.2 [61.6, 70.4]
Alignment2,3 72.5 [69.6, 75.4] 66.7 [62.1, 70.9]
Alignment1,2,3 73.0 [70.1, 75.9] 65.1 [60.4, 69.5]
Alignment1,3 72.4 [69.5, 75.3] 64.5 [59.8, 69.0]

Table 4: F1 scores of mBERT trained along different
clue phrase types. All the scores are evaluated on the
test set of each target language with 95% confidence
intervals shown in brackets. The filtering criteria used
in each alignment approach is noted in its superscript.
The best results in each language and Lcp are in bold
face.

JA obtained with mBERT (68.6). Although the
best performance for DE obtained with mBERT
(73.0) is better than that with XLM-R (70.3),
the performance difference between these two re-
sults are not statistically significant as evident
from the overlapping confidence intervals. Note
that compared to mBERT, which is trained on
Wikipedias for different languages, XLM-R is
trained on a much larger CommonCrawl corpus.
Moreover, JA Wikipedia (530M tokens) is sig-
nificantly smaller than that of DE (10297M to-
kens). Because mBERT tokenises CJK languages
into individual characters and uses a 110K shared
WordPiece vocabulary, the coverage of Japanese
(which has lower overlap of subtokens with other
languages) is less in mBERT. Therefore, XLM-
R is capable of learning better representations for
Japanese than mBERT, leading to better XCFD
performance for JA.

In terms of the datasets used for the auxiliary
task, the best model in DE uses the translation
Dmt, while that in JA uses the target corpus Dt for
both mBERT and XLM-R. In general, the trans-
lation from EN to JA is harder than that from EN
to DE as reported in Aiken (2019). Therefore, it

Model Lcfd Lcp DE JA

mBERT Dmt
Dt 63.9 [60.7, 66.9] 68.1 [64.1, 72.0]
Dmt 73.1 [70.2, 76.0] 67.3 [63.0, 71.4]

XLM-R Dmt
Dt 63.5 [60.5, 66.6] 79.7 [75.5, 83.4]
Dmt 68.8 [65.8, 71.6] 77.5 [73.5, 81.2]

Table 5: F1 scores of models trained on both of the
human annotated and the automatically extracted clue
phrase (the best clue phrase type shown in Table 2
is used). All the scores are evaluated on the test set
of each target language with 95% confidence intervals
shown in brackets.

is better to use Dt for the auxiliary task instead
of Dmt when the translation quality for the target
language is low such as from English to Japanese.
Considering that Dmt is already used for the main
task, by using Dt for the auxiliary task, which
provides additional information not available by
simply machine translating the sentences from the
source language, we can provide extra supervision
to the model.

5.2 Effect of Clue Phrase Choices

Table 3 and Table 4 show the results when using
respectively XLM-R and mBERT as the text en-
coders with different clue phrase types including
the human annotation, clue phrase translation, and
our proposed alignment-based method (see §4 for
detailed setting). The alignment-based method op-
tionally has the three criteria described in §3.1 for
filtering clue phrase candidates in the target lan-
guage: 1 (non-counterfactual sentence exclusion),
2 (shared term exclusion), and 3 (majority filter-
ing). We evaluate all possible combinations of fil-
tering methods with the Alignment method, indi-
cated by superscripts in Table 3. Alignment with-
out any superscripts correspond to applying none
of the candidate filtering criteria. Note that the re-
sults of XLM-R with the auxiliary task in Table 2
are the best results within each target language in
Table 3.

From Table 3, we see that our alignment-based
clue phrases can outperform manual clue phrases
in both of Lcp(Dt) and Lcp(Dmt) in JA, and
Lcp(Dt) in DE with the best configuration. Fur-
thermore, the best alignment-based clue phrases
are better than clue phrase translation, which is
still competitive compared to the human annotated
clue phrases. This shows that high quality clue
phrases can be automatically extracted using the
method described in § 3.1. We reemphasize that
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clue context

wäre (would be) dieses Produkt wäre toll, wenn... (This product would be great if ...)
wünschte (wished) ich wünschte dieses Produkt wäre ...(I wish this product was ...)
hätte (would have) hätte dieses Produkt ... (would this product ...)
könnte (could) dieses Produkt könnte besser sein, wenn es ... (this product could be better if it ...)

と思っていた (thought it was) Mサイズだと思っていた (thought it was M-size)
希望 (hope) プラスチック製の物を希望していた (hope it was made from plastic)
かもしれない(could) もう少し小さければ良かったかもしれない (could be better if it was smaller )
があれば(if it had) 蓋があれば良かった (if it had a lid)

Table 6: Automatically extracted clue phrases and their contexts for German (top) and Japanese (bottom) target
languages. English translations are shown in brackets.

it is beneficial to be able to automatically extract
clue phrases in zero-shot adaptation, because we
might not always be able to recruit human anno-
tators to manually compile clue phrase lists for all
the target languages we would like to adapt to.

Table 4 shows the level of performance the pro-
posed method would obtain if mBERT was used
as the text encoding model. We see that the
best performance for DE (73.0) is obtained by ap-
plying all filtering criteria, whereas with XLM-R
the best performance for DE (70.3) was obtained
with human-written clue phrases. However, as
explained previously in § 5.1, the differences be-
tween these two results are not statistically sig-
nificant. On the other hand, for JA we see that
mBERT results are consistently lower than the cor-
responding XLM-R results across all filtering set-
tings considered in Table 4 and Table 3. This com-
parison shows that the multilingual MLM used to
encode text is an important choice for the perfor-
mance of XCFD. However, this choice has been
largely overlooked in prior work. For example,
O’Neill et al. (2021) used only a single multilin-
gual MLM (i.e mBERT only) in their cross-lingual
evaluations. Although their reported best XCFD
results with mBERT for JA and DE is better than
those with our mBERT results, these results can-
not be directly compared because unlike our zero-
shot approach that does not use any labelled data
for the target language, O’Neill et al. (2021) pro-
posed a fully-supervised method where they use
all of the available labelled data for the target lan-
guage.

5.3 Combining Automatic Clue Phrase with
Human Annotated Clue Phrase

We study the effect of incorporating both types
of clue phrases (human annotated and automati-
cally extracted) in the training process for the aux-

iliary task in Table 5. Compared to the best per-
formances reported in Table 2 and Table 3 using
the automatically extracted clue phrases, we see
no further gains (in some cases even a drop) in
performances for the target languages when us-
ing human annotated clue phrases in addition to
the automatically extracted clue phrases in the
auxiliary task. This shows that automatically ex-
tracted clue phrases are of a higher quality than the
human-written clue phrases, and already capture
the counterfactual clues contained in the human-
written gold clue phrases. Some example clue
phrases automatically extracted by the method de-
scribed in § 3.1 are shown in Table 6 for German
and Japanese target languages. We see that infor-
mative clue phrases are extracted by the proposed
method for both of those target languages.

6 Conclusion

We studied zero-shot cross-lingual transfer learn-
ing for CFD and proposed a novel training ob-
jective that combines (a) token-level clue phrase
prediction in target language sentences and (b)
sentence-level counterfactuality prediction for
source language (and translated to target language)
sentences. Moreover, we proposed a method to au-
tomatically extract clue phrase for a given target
language, which obviates the need for manually
compiled clue phrases. Predicting clue phrases
as an auxiliary task improves cross-lingual trans-
fer from English source to German and Japanese
target languages, obtaining state-of-the-art perfor-
mances on AMCD.

7 Ethical Considerations

In this section, we discuss the ethical considera-
tions related to these contributions. With regard to
the dataset, we use the AMCD where the sentences
were selected from a publicly available Amazon
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product review dataset. We do not collect or re-
lease any additional product reviews not included
in the original AMCD as part of this paper. Al-
though the dataset is manually verified that the
sentences in the dataset do not contain any cus-
tomer sensitive information, product reviews can
contain socially biased opinions. However, we
do not apply any bias mitigation methods in this
paper, thus it is possible that the dataset biases
present (if any) in AMCD are also encoded in
the models we train in this paper. We use two
pretrained multilingual language models, mBERT
and XLM-RoBERTa, to obtain cross-lingual zero-
shot CFD models. Those pretrained language
models are known to be biased due to the curated
pretraining corpus from web (Bommasani et al.,
2020). Likewise for the dataset, we do not fil-
ter such social biases in the the language models.
Therefore, we recommend that further evaluations
to be performed before deploying the CFD models
we train in this paper in real-world NLP systems.
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Abstract

Most entity linking systems, whether mono or
multilingual, link mentions to a single English
knowledge base. Few have considered link-
ing non-English text to a non-English KB, and
therefore, transferring an English entity link-
ing model to both a new document and KB lan-
guage. We consider the task of zero-shot cross-
language transfer of entity linking systems to
a new language and KB. We find that a system
trained with multilingual representations does
reasonably well, and propose improvements to
system training that lead to improved recall in
most datasets, often matching the in-language
performance. We further conduct a detailed
evaluation to elucidate the challenges of this
setting.

1 Introduction

Entity linking – the process of matching mentions
of people, places or organizations with a relevant
knowledge base (KB) entry – has often focused on
linking English text. Cross-language linking often
uses English KBs for matching to non-English text.
While transferring a system to a new document
language presents challenges, it does not consider
issues that arise when transferring to a new KB
language. KBs in different languages consider dif-
ferent topics, and matching text within the same
language presents different challenges from build-
ing cross-language representations. People build
KBs in many different languages, and we should
explore how to link documents to these KBs.

This paper considers zero-shot cross-language
adaptation of a trained entity linking system to a
new monolingual setting: the same new language
for both the query document and KB. We consider
adaptation so as to utilize the extensive annotated
data resources for English, improving entity link-
ing on languages that have little to no training
data. Consider the example in Figure 1, which
links the Spanish language mention Senado (Sen-

ate) to the KB entry Senado de la República (Sen-
ate of the Republic of Mexico). An entity linker
uses the mention text and surrounding sentence
paired with the KB entry (including information
such as the name, description) to score the likeli-
hood of a match. Many approaches to entity linking
learn these linkages by training on a set of hand-
annotated links in the desired language. If there are
no or few language-specific annotations, how can
we train a model on an annotation-rich language to
perform well on other languages?

Similar to the architecture used in a cross-
language setting (Schumacher et al., 2021), we
take a neural approach to entity linking and use a
multilingual pretrained transformer model, XLM-
Roberta (XLM-R) (Conneau et al., 2019), to build
representations of the available text for a mention
and candidate entity pair. We feed each of these rep-
resentations through a feed forward neural model
to produce a likelihood score. XLM-R is a mul-
tilingual model that yields robust representations
of text in a wide variety of languages. However,
we find that even with the cross-language ability of
XLM-R, in-language annotation data is key to an
accurate linker. We thus propose ways to improve
zero-shot cross-language transfer of a trained linker
from one language to another.

We adapt a method from Chen and Cardie
(2018) to add an adversarial objective to linker
training which uses an intermediate layer in the
linker to transform language-specific embeddings
to language-agnostic via a language classification
module. Similar approaches (Chen et al., 2019)
have been used in other multilingual NLP tasks,
but have yet to be explored in EL. To train this
language-agnostic layer, we force the language
classifier alone to predict the incorrect language
label for unannotated portions of the source (e.g.,
English) and target (e.g., Spanish) text. We jointly
train the ranker and the language classifier using
the correct source (e.g., English) language labels.
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...lo acompañan el presidente del Senado ...

name Senado de la República

desc. El Senado de los Estados Unidos ...

Figure 1: Example Spanish mention Senado, which is
a link to the Spanish KB entity Senado de la República
(the Senate of Mexico)

which encourages the name and mention represen-
tation to be language-independent.

Second, we augment the entity linker with in-
formation from the target language KB to capture
popularity of each entity, better handling entities
that are common in the target language but rare in
the source. We find that both model adjustments im-
prove zero-shot performance on several language
pairs, and that the adversarial model specifically
produces consistent improvement in recall. Overall,
we demonstrate that entity linking models can be
effectively adapted to a new language for both the
query document and KB.

2 Entity Linking Model

Figure 1 shows an example mention in Spanish
(Senado) linked to a Spanish-language KB entry –
Senado de la República for the Spanish mention.
A linker will compare the text of the mention to the
name of the entity, and consider information avail-
able in the context of the mention (the surrounding
sentences). the entity description, and the mention
and entity types.

One approach to handling linking in multiple lan-
gages is to train separate models. While this works
well for languages with a large amount of anno-
tated data (English), others have far less (Span-
ish). Additionally, training a new model for each
language does not scale well to many languages.
Instead, we pursue building a model that can be
trained on entity linking annotations in a single lan-
guage and transferred to another without additional
annotations: cross-language entity linking.

2.1 Architecture

We use a standard neural ranking architecture to
focus on the mechanisms of transfer that has been
applied successfully in cross-language entity link-
ing (Schumacher et al., 2021). To score a men-
tion m and and candidate entity e, we leverage a
pointwise neural ranker inspired by the architecture
of Dehghani et al. (2017). This produces a score

for each mention-entity pair, creating a ranking of
entities specific to each mention. Additionally, this
pointwise approach allows scoring of previously
unseen entities. We select a subset of entities to
score using a triage system (§5.)

Our ranker captures two common sources of in-
formation about the entity – the mention string and
entity name, and the context of the mention and
the entity description. These sources are not KB
specific (e.g., type information) and thus transfer to
different KBs. We create separate multilingual rep-
resentations for the mention string and entity name
(ms and es), and the mention and entity context
(mc and ec). The string and context pairs are fed
into separate multilayer perceptrons (MLP), out-
putting an embedding that models the relationship
between the entity and the mention. For exam-
ple, we input ms and es into a text-specific hidden
layer hs which outputs a combined representation
rs, and we input mc and ec into a context-specific
hidden layer hc which outputs a representation rc.
These representations rs and rc are then fed into
a final MLP, which produces a score between −1
and 1.

To train our model parameters θ, we score a men-
tion m and a correct entity link e+, and separately
score the same mention paired with n randomly
sampled negative entities e−. We apply hinge loss
between the positive pair and the best performing
negative pair;

L(θ) = max{0, ε− (S({m, e+}; θ)−
max{S({m, e0−}; θ) . . . S({m, cn−}; θ)}}

We use the resulting loss to backpropagate through
the entire network. We use random combinations
of parameters to select the best model configuration.
For parameter values see Appendix Table 3.

2.2 Multilingual Representations
To create representations of the name and con-
text for a mention-entity pair, we use XLM-
Roberta (XLM-R) (Conneau et al., 2019), a mul-
tilingual transformer representation model. XLM-
R outperforms other transformer models (such as
mBERT (Devlin et al., 2019)) on multilingual tasks,
and we confirmed this behavior in our initial ex-
periments. Consider the Spanish example in Fig-
ure 1. We create a representation of the mention
text ms, Senado, by feeding the entire sentence
through XLM-R, and form a single representation
using max pooling on only the subwords of the
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mention. We create a representation of the entity
name es, Senado de la República in the same way,
except without any surrounding context.

To create mc, we select the sentences surround-
ing the mention up to XLM-R’s sub-word limit.
We use max pooling over XLM-R to create a single
representation, following Schumacher et al. (2021).
The same process is used to encode the entity con-
text ec, but uses the definition in the KB, using the
first 512 subword tokens from that description.

3 Multilingual Transfer

The use of XLM-R makes our model inherently
multilingual, allowing a single model to build rep-
resentations in several languages. While this allows
our models to do fairly well on previously unseen
languages, we consider ways to further improve
models during transfer: adaptation of the name
matching model, and adaptation to the new knowl-
edge base.

3.1 Language Adaptation

One source of error may arise from a linker learning
language-specific patterns which do not generalize
to other languages. Consider the example in Figure
1: would the model recognize that Spanish mention
Senado is not linked to the United States Senate?
While XLM-R provides a multilingual representa-
tion, the entity linking model has not been trained
to learn this nuance in Spanish.

We add an adversarial objective to ensure that
the model focuses on language-agnostic represen-
tations of the text, which will better transfer to
other languages. The advantage of this approach is
that it does not require annotated training data, but
uses unannotated data to encourage desired model
behavior. Chen and Cardie (2018) train a text clas-
sification system with an adversarial objective that
forces the network to learn domain-invariant fea-
tures. In addition to a standard text classifier that
uses features from a shared and domain specific
feature extractor, they add a domain discriminator
which uses the shared feature extractor as input.
They run two training passes: 1) a training pass
for the entire network that uses the correct clas-
sification and domain labels; 2) an adversarially
trained domain discriminator and only the shared
feature extractor, which uses the inverse of domain
labels as the target. Prediction only uses the stan-
dard classification output. This objective improves
performance when classifying text from previously

unseen domains. We use this approach to learn
language-invariant representations for our linking
task, so they can be transferred to a new languages
using only source-language linking annotations.

Our proposed adversarial approach is described
in Algorithm 1 and illustrated in Figure 2. For each
epoch, we first adversarially train the language clas-
sifier. Using pairs of unannotated English A and
L2 B text, we create representations in the same
method as for ms as described §2.2. Initially, we
use randomly selected names from the ontology
for A and B (see §6.3 for other approaches). Each
of the two representations are fed into the shared
invariant layer hs0, the language classifier hadv,
and softmaxed to produce separate language like-
lihood scores for the English pA and L2 pB text.
Importantly, we calculate the mean squared error
(MSE) using the inverted language labels – for the
English input, we calculate the error as if it was
labelled as L2, and for the L2 input, we treat it as
English. If we train with multiple L2 languages at
the same time; all incorrect labels are applied with
equal probability. We stop training the adversarial
step after 50 epochs for one dataset (Wiki) based
on development data performance.

We also run a standard entity linking training
pass, in which we jointly train the linker and the
language classifier using our set of training men-
tions M and corresponding entity labels E. The
entity linking loss is unchanged from §2.1, except
that the ms and es are first fed separately through
the shared invariant layer hs0. All h hidden layers
in the model are randomly initialized weight vec-
tors and learned in the training process. The loss
for the language classifier is unchanged from the
first step except that the correct labels are used. The
effect of the language classifier loss is controlled by
the parameter λ, which we set to be either 0.25 or
0.01 depending on the dataset. Models including
this are referred to as +A. Further implementation
details are available in §6.3. We experimented with
adding the additional layers hs0 and not apply-
ing the adversarial objective, and feeding both the
language-invariant (e.g., m) and language-specific
representations (e.g., rm)) into the linker, but both
performed worse in development experiments.

4 Algorithms

4.1 KB Adaptation

A second source of error comes from a change in
the coverage of the KB, not necessarily due to the
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Figure 2: Our adversarial training approach consists of two steps – standard entity linking paired with training
a language classifier (center), and adversarially training the language classifier (right). The hidden layer hs0 is
shared.

Algorithm 1 Pseudo-code of adversarial model
training. In each epoch, a random set of text
(y = 5) is used to adversarially train the language
classifier. Then, the entity linker and the language
classifier with the correct labels are jointly trained.
Require: Mentions M, entity labels E; English

Text A; L2 Text B; Hyperparameter λ > 0, y,
z ∈ N , num_epochs

1: for ep = 0 to num_epochs do
2: ladv, l = 0
3: for i = 0 to y do . Adversarial Step
4: tA = representation of Ai

5: tB = representation of Bi

6: pA =Hadv(Hs0(tA))
7: pB =Hadv(Hs0(tB)) . Calculate

Lang scores
8: ladv += MSE(pA, L2) + MSE(pB ,

ENG) . Calculate Loss using reversed labels
9: UpdateHadv using ladv

10: for i = 0 to z do . Main Step
11: m = representation of Mi

12: rm =Hs0(m)
13: e = representation of Ei

14: re =Hs0(e)
15: l = EL Loss (Eq. 1) with rm and re
16: pM =Hadv(rm)
17: pE =Hadv(re)

. Calculate Lang scores
18: l += λ (MSE(pM , ENG) + MSE(pE ,

ENG)) . Calculate Loss using correct labels
19: Update all parameters exceptHadv using l

change in language. Trained entity linkers tend
to do well on popular, or previously seen entities.
New entities, which are common when a linker
changes to a new KB, do worse. Consider the ex-
ample in Figure 1: a linker trained on English will
favor the KB entry for the U.S. Senate, more com-
mon in English language documents, as opposed
to the Mexican Senate, which is more common in
Spanish documents. This is especially important
since we consider models transferred from TAC to
our Wiki data (§5), which cover different topics.

We adapt the model to a KB in a new lan-
guage by supplying the entity linker with popu-
larity measures drawn from the new KB. This in-
formation could normally be derived from some
annotated entity linking data, but in the zero-shot
cross-language transfer setting we instead leverage
the cross-links among entities in the KB, a good
indicator of entity popularity. For example, the
entity Senado de la República might have a link to
the lower legislature of Mexico, Cámara de Diputa-
dos, and the President of Senate, Presidente de la
Cámara de Senadores. Others, such as Senado de
Arizona, are likely to have fewer. We count unique
cross-links between entities, divide by the median
number of links, and feed the result into the final
feed forward neural network h (indicated as +P).

5 Datasets

We consider entity linking datasets in multiple lan-
guages from two sources. We treat each language
as having a distinct KB, although entities may over-
lap in different languages. We predict NILs (men-
tions with no matching entity) as those where all
candidate entities are below a given threshold (−1
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unless otherwise noted). We evaluate using the
script from Ji et al. (2015): Precision, Recall, F1,
and Micro-averaged precision. See Appendix Sec-
tion A for implementation details.

TAC. The 2015 TAC KBP Entity Discovery
and Linking dataset (Ji et al., 2015) consists of
newswire and discussion posts in English, Spanish,
and Mandarin Chinese. A mention is linked to NIL
if there is no relevant entity in the KB. The KB is
based on BaseKB. KB entities without non-English
names are omitted.

Wiki. We created a multi-language entity link-
ing dataset from Wikipedia links (Pan et al., 2017a)
for Farsi and Russian. A preprocessed version of
Wikipedia1 is annotated with links to in-language
pages, which we treat as entities. We consider this
to be silver-standard data because–unlike TAC –
the annotations are automatically derived. Thus
the resulting distribution of mentions is different.
Comparing the number of exact matches between
the mention text and the entity name in Wikipedia
(e.g.,, in Farsi 54.5%) to TAC (e.g.,, in Spanish
21.2%) underscores that TAC is a more illustrative
dataset, thus we caution against treating Wikipedia
as a replacement for a human-annotated entity link-
ing dataset.

Triage. We use the triage system of Upadhyay
et al. (2018), which retrieves a reduced set of en-
tities for a mention for us to score. For a given
gold mention m, a triage system will provide a set
of k candidate entities e1 . . . ek. The system uses
Wikipedia cross-links to generate a prior probabil-
ity Pprior(ei|m) by estimating counts from those
mentions. Originally, this system was designed to
produce links for non-English mentions to English
titles. We tweak this approach by applying the
same pipeline, but for in-language titles, which did
not require any major algorithmic adaptations.

6 Model Evaluation

We begin with a zero-shot evaluation: how well
does a model trained on English (TAC) transfer
to a new language without in-language training
data? This baseline, which uses the same architec-
ture as Schumacher et al. (2021), leverages only
the crosslingual ability of XLM-R to apply En-
glish language annotations to the new languages.
We evaluate the English trained model on Spanish

1We thank the authors of Pan et al. (2017a) for providing
us with a preprocessed Wikipedia. We will work with the
authors to release the dataset.

(es) and Chinese (zh) for TAC, and Russian (ru)
and Farsi (fa) for Wiki. We also train a separate
model for each of these languages to establish an
in-language performance baseline. We illustrate
the difference in performance of an English-only
model as compared to an in-language trained one in
Figure 3; the dashed line above each metric shows
the increase in performance. To control for the ef-
fect of training set size we ensure that the training
sets are of equivalent size for each language by ran-
domly downsizing the larger training dataset (e.g.,
English) to match the smaller (e.g., Spanish). For
comparison, we include a simple nearest neighbor
baseline (noted as nn), which selects the highest
scoring mention-entity pair using cosine similar-
ity between the mention name ms and the entity
representation es.

We then apply our language (noted as +A) and
KB (noted as +AP) adaptation strategies for each
language, and measure the performance on both the
target and English language. In all cases, reported
metrics are averaged over three runs. We report
results for each language in the form of micro-
averaged precision (micro), recall (r), and F1. See
Appendix Table 4 for full results and additional
metrics, and Tables 5 and 6 for development results.

6.1 Transfer Performance

Figure 3 shows that zero-shot cross-language trans-
fer from English gives worse performance com-
pared to in-language models. Absolute values are
included in Appendix Table 4. For TAC languages
(es and zh) there is a large decrease in micro-avg
and F1, and the same for Wiki languages (fa and ru),
except that F1 decreases more significantly than re-
call, illustrating a drop in precision. The overall
drop in performance is not large - the largest drop
in F1 is only .1 less compared to the in-language
baseline. This illustrates that the linker is able
to transfer across language and knowledge bases
effectively. Compared to the baseline nearest neigh-
bor model, which one has the higher performance
improvement depends on the language. For exam-
ple, while Spanish F1 is nearly the same, Chinese
F1 is slightly higher with the nn, but in Farsi the
English-trained model is an improvement for F1.

We also evaluate other languages as sources of
transfer. Appendix Table 4 shows results on train-
ing models on Chinese using the +A approach and
testing on Spanish, demonstrating that our results
are not specific to English. Note that the same
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pattern appears when transferring from a Chinese
trained model to a Spanish model. While the Span-
ish performance is understandably worse when
transferring from Chinese instead of English, the
reduction of F1 performance is only −.086.

6.2 Language and KB adaptation

We train the TAC and Wiki datasets with different
configurations based on development results (see
§6.3): TAC: λ = 0.25 and the adversarial step
covers all of training; Wiki: λ = 0.01 and stop the
adversarial step after 50 epochs.

Applying the adversarial objective to English-
trained models usually increases recall compared
to the baseline English-trained models, and often
even compared to the in-language trained models.
For example, the English-trained, Chinese-tested
model sees a large drop in recall which is almost
completely eliminated when applying the adver-
sarial objective. This increase in recall leads to
nearly-equivalent F1 performance in Spanish and
Chinese in-language models and English trained
models with the adversarial objective. In short, ad-
versarial training greatly improves the models abil-
ity to locate the right KB entry, suggesting better
name matching. This recall-focused improvement
is useful for settings where high-recall is desired,
such as in search. The exception to this is Farsi –
this is likely because the high recall 0.934 of the
zero-shot model established a high starting point.
Compared to the nearest neighbor baseline, the +A
outperforms the baseline in all languages for F1,
nn F1, micro-avg., and recall. The same pattern ap-
pears when transferring a Chinese model instead of
English. The F1 performance is only −.017 below
the in-language trained model despite not sharing
a writing system.

We also explored transferring a multilingual
model: training on English with +A and testing
on all target languages at once (see Appendix Table
4). In almost all cases, the multilingual adversarial
approach performs worse than a single-language
one, but only slightly; it may be preferable when
targeting multiple languages. KB popularity (+AP)
has the largest effect on micro-average precision
by doing much better on rarer entities, specifically
in the TAC dataset. While in Chinese the improve-
ment in micro-average is larger in the +AP models
than in +A, in all other cases the micro-average is
close to the +A model.

We explored model behavior on different types

of entities using the TAC evaluation dataset and
provided mention types (see Appendix Table A).
For Person mentions, we see consistent perfor-
mance between in-language, English, and En-
glish+A trained models. While this is not unex-
pected in Spanish (which has similar names to
English), it is also true in Chinese, which uses a
different orthography than English. The largest per-
formance change occurred in Geo-Political Entities.
For Chinese, F1 drops 0.15 for an English trained
model compared to an in-language trained model,
but the deficit is erased in the English+A model. A
similar pattern occurs in Spanish, suggesting that
the adversarial model is able to improve the more
challenging entity types.

6.3 Design of Adversarial objective

How does the configuration of the +A model
change its behavior? We vary three factors and
measure results on TAC evaluation (full results
shown in Table 1): 1) the size of the coefficient
λ; 2) whether to train using the entity linking ob-
jective only for an additional 50 epochs instead of
for all epochs (for lower λ and additional entity
linking training, we found that both worked bet-
ter on Wiki development data, while a higher λ
and full training worked better for TAC); and 3)
training +A using randomly selected names from
English and the target language plausibly learns a
better name model than it does language-invariant
representations, so we instead train with the first
512 subwords of randomly selected descriptions.

Comparing to a Chinese trained model, we
considered versions with all non-baseline models
trained on the joint entity linking and adversar-
ial objective for 50 epochs, and the +EL models
trained on EL data for an additional 50. Our re-
ported setting for TAC, λ = 0.25 with name data,
performs best on recall, F1, and non-NIL F1. How-
ever, when using the description data and λ = 0.01
with or without additional EL training, a better
micro-averaged precision is achieved. Generally,
the models using name data perform slightly better
than those using descriptions, but the overall dif-
ference is slight (e.g., +.009 F1 for λ = 0.25 with
name, −.015 F1 with description), suggesting that
the model is learning better multilingual representa-
tions. Finally, recall generally performs best with a
higher λ and full adversarial training, and improves
less with a lower λ and EL only training.
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Figure 3: Compared to an English-only baseline (0.0 on y-axis), how do models with the adversarial objective
(+A), the adversarial objective with popularity (+PA), and a nearest neighbor baseline (nn) perform? While in
most cases, the performance of all models is below that of an in-language trained model (dashed line), +A most
closely matches the recall in most cases. Additionally, +PA is best able to improve micro-average, especially
compared to the poor performance of nn. All results and additional metrics are provided in Appendix Table 4.

6.4 Effect on English performance

What effect does forcing an English-trained model
to better orient to a target language have on English-
language performance? Table 2 shows TAC En-
glish evaluation results in three settings: 1) a base-
line linker with English training data matched to
the size of the target language’s training data; 2) the
added +A objective; 3) the added +AP objective.
These are the same models as in Table 2, except
tested on English.

Interestingly, the performance change is very
small: a small increase for micro-average and a
small decrease in F1 and non-NIL F1. The largest
drop in performance is less than 0.05. This illus-
trates the capacity of the model: it can adapt to a
new language while maintaining its performance
on the source language.

6.5 Analysis

While our training methods are effective, they are
inconsistent across our experiments. +A improves
performance more on TAC data (Spanish and Chi-
nese) than Wiki data (Farsi and Russian).

We postulate several explanations for this trend.

Test micro r F1 nn F1

zh 0.674 0.789 0.824 0.846
en base −.341 −.123 −.060 −.071

+A
na

m
e .25 −.190 −.001 +.009 −.003

.01 −.202 −.078 −.033 −.036
.25+ −.205 −.123 −.062 −.073
.01+ −.230 −.137 −.072 −.087

+A
de

sc

.25 −.317 −.048 −.015 −.012

.01 −.169 −.088 −.041 −.046
.25+ −.287 −.188 −.108 −.133
.01+ −.145 −.150 −.080 −.097

Table 1: How do adversarial settings affect perfor-
mance? We consider the coefficient λ, type of text
(names or descriptions), and entity-only training for 50
more epochs (i.e., we stop updating the language clas-
sifier, indiated by +). Comparing an in-language to an
English trained model using TAC Chinese evaluation,
we find that λ = .25 with name data performs best in
terms of recall, F1, and nn F1.
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First, the distribution of mentions is different be-
tween the two datasets. The lexical similarity be-
tween mentions and entity names – one measure
of how easy the mentions are to link – is much
higher in Wiki. For Farsi development mentions,
54.5% were exact matches and also had an over-
all Jaro-Winkler (Winkler, 1990) lexical similar-
ity of 94.1%. Compared to Spanish TAC (21.1%
exact, 71.4% similarity) and Chinese (28% exact,
66.1% similarity), the Farsi data is relatively easy
to link. While many entity linking studies rely on
Wikipedia data due to its availability, it is not rep-
resentative of other data types; we should build
more human-annotated entity linking resources in
non-English languages.

When comparing the drop in performance from
an in-language trained model to an English trained
model, recall drops in the TAC data, while preci-
sion drops in the Wiki data. The drop in precision
may be due to the fact that we use English TAC
data to train the zero-shot Wiki models, and that
recall is fairly easy given the high mention-entity
similarity. Another factor is the possibility that
Wikipedia text is less suited as adversarial training
data, compared to that from TAC. Thus, while see
an increase in recall in the Wiki models, but this
does not cancel out the reduction in precision.

7 Related Work

Many studies on entity linking (Dredze et al., 2010;
Durrett and Klein, 2014; Gupta et al., 2017; Lam-
ple et al., 2016; Francis-Landau et al., 2016; Cao
et al., 2018; Mueller and Durrett, 2018; Wang et al.,
2015; Witten and Milne, 2008; Piccinno and Fer-
ragina, 2014; Orr et al., 2020) have served as the
basis for developing cross-language systems, as has
increasing research in monolingual model transfer
in other information extraction tasks (Johnson et al.,
2019; Rahimi et al., 2019).

One multilingual model is Raiman and Raiman
(2018), which transfers an English-trained system
to French-language Wikipedia. They formulate a
type system as a mixed integer problem, which
they use to learn a type system from knowledge
graph relations. Their training approach uses broad
amounts of annotated data with type information
(e.g., all of English Wikipedia). Since we do not
train English Wikipedia models, and also do not
use that magnitude of training data, we were not
able to produce numbers using their system that are
comparable to ours despite our best efforts to do so.

Target micro F1 nn F1

en 0.484 0.672 0.797
zh+A +.009 +.014 +.015
zh+P +.030 −.025 −.031
en 0.472 0.678 0.802
es+A +.004 −.014 −.017
es+P +.011 −.036 −.043

Table 2: Compared to a baseline English TAC model
(with training set size reduced to the noted language’s
training set size), we find that English performance is
largely unchanged for both +A and +P.

Other recent work (Botha et al., 2020) uses a neural
approach to link mentions in multiple languages,
but differs from us by targeting language-agnostic
KBs that include text in multiple languages. Work
using unsupervised graph methods, such as Wang
et al. (2015), are applied in non-English language
pairs, such as Chinese, but are not transferred from
a secondary language.

The related task of cross-language entity link-
ing motivates approaches like transliteration (Mc-
Namee et al., 2011; Pan et al., 2017b), or mono-
lingual entity linking paired with translation (Ji
et al., 2015). Some (Tsai and Roth, 2016; Upad-
hyay et al., 2018) use the cross-language structure
of Wikipedia to build entity linkers, or Rijhwani
et al. (2019) study cross-language entity linking on
low-resource languages.

8 Conclusion

We explored how to build a monolingually-trained
entity linker that can be transferred to new lan-
guages that do not have annotated training data.
With a neural ranker model using XLM-R, we see
that while in-language trained models perform bet-
ter than English-trained models applied to second
languages, the performance decrease is not large.

We have validated several ways to improve these
zero-shot models and find that an adversarial lan-
guage classifier improves recall and F1 on many
datasets. Furthermore, by adjusting the adversarial
parameters, different performance objectives can
be achieved, such as maximizing recall. We also
present an analysis of our models, demonstrating
which settings have the highest expectation of suc-
cess. Overall, we find that training the model to
learn language-invariant representations is effec-
tive in improving performance when transferring
to both text and a KB in a new language.
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A Dataset

TAC The training set consists of mentions across
447 documents, and the evaluation set consists of
mention annotations across 502 documents. This
leaves us 14, 793 development mentions, of which
11, 344 are non-NIL.

Wiki Some BaseKB entities used in the TAC
dataset have Wikipedia links provided; we used
those links as seed entities for retrieving mentions,
retrieving a sample mention of those and adding
the remaining links in the page. We mark 20% of
the mentions as NIL.

Triage We use the system discussed in for both
the TAC and Wiki datasets. However, while the
triage system provides candidates in the same KB
as the Wiki data, not all entities in the TAC KB
have Wikipedia page titles. Therefore, the TAC
triage step requires an intermediate step - using the
Wikipedia titles generated by triage (k = 10), we
query a Lucene database of BaseKB for relevant
entities. For each title, we query BaseKB propor-
tional to the prior provided by the triage system,
meaning that we retrieve more BaseKB entities for
titles that have a higher triage score, resulting in
l = 200 entities. First, entities with Wikipedia ti-
tles are queried, followed by the entity name itself.
If none are found, we query the mention string -
this provides a small increase in triage recall.
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Parameter Values

Context Layer(s) [768], [512], [256], [512,256]
Mention Layer(s) [768], [512], [256], [512,256]
Final Layer(s) [512,256], [256,128], [128,64], [1024,512], [512], [256]
Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Table 3: To select parameters for the ranker, we tried 10 random combinations of the above parameters and selected
the configuration that performed best on the TAC development set. The selected parameter is in bold.

Spanish (es) evaluation Chinese (zh) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.623 0.910 0.711 0.798 0.870 0.670 0.862 0.787 0.822 0.844
nn 0.375 0.924 0.633 0.751 0.809 0.244 0.910 0.719 0.803 0.826
en 0.565 0.925 0.635 0.753 0.810 0.371 0.893 0.647 0.750 0.757
en+A 0.615 0.923 0.706 0.800 0.876 0.472 0.877 0.770 0.820 0.839
en+P 0.632 0.919 0.616 0.738 0.790 0.462 0.869 0.636 0.734 0.734
en+PA 0.628 0.921 0.633 0.750 0.808 0.622 0.871 0.698 0.775 0.790
en+A (all) 0.562 0.917 0.694 0.790 0.862 0.466 0.882 0.722 0.794 0.813
zh 0.492 0.924 0.579 0.712 0.755 — — — — —
zh+A 0.523 0.901 0.690 0.781 0.852 — — — — —

Farsi (fa) evaluation Russian (ru) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.838 0.902 0.958 0.929 0.908 0.526 0.729 0.827 0.775 0.721
nn 0.392 0.560 0.950 0.705 0.585 0.362 0.654 0.868 0.746 0.680
en 0.623 0.748 0.934 0.830 0.774 0.552 0.798 0.863 0.829 0.791
en+A 0.498 0.616 0.918 0.737 0.639 0.508 0.697 0.899 0.785 0.729
en+A (all) 0.525 0.631 0.955 0.759 0.668 0.516 0.758 0.852 0.802 0.755
en+P 0.627 0.700 0.958 0.809 0.741 0.565 0.700 0.889 0.783 0.728
en+PA 0.584 0.679 0.930 0.785 0.709 0.519 0.661 0.881 0.755 0.691

Table 4: Compared to an in-language trained model and a nearest-neighbor baseline (nn), how does a zero-shot
model trained only on English transfer? We find that while there is usually a performance improvement, it is
often not large. Can we recover some of that lost performance by using an adversarial objective (+A) or adding
knowledge base information (+P), or both (+PA)? We find that when applying an adversarial objective specifically,
recall is increased leading to higher F1 scores. For each setting, we report Micro-avg., precision, recall, F1, and
non-NIL F1 on TAC and Wiki datasets.
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Train /
Test

All Non-NIL
Model micro p r f1 micro p r f1 Epoch

zh/zh Baseline 0.795 0.890 0.830 0.859 0.801 0.884 0.884 0.884 50
en/zh Baseline 0.202 0.905 0.697 0.788 0.077 0.899 0.721 0.800 100
en/zh +A 0.439 0.897 0.732 0.806 0.367 0.892 0.764 0.823 50
en/zh +A 0.381 0.911 0.756 0.827 0.296 0.907 0.794 0.847 50
en/zh +PA 0.635 0.889 0.753 0.815 0.606 0.881 0.789 0.833 100
en/zh +A (Desc) 0.266 0.908 0.718 0.802 0.156 0.903 0.747 0.818
en/zh +PA (Desc) 0.645 0.885 0.774 0.826 0.618 0.877 0.815 0.845
en/zh +P 0.544 0.894 0.685 0.776 0.494 0.888 0.707 0.787 200
es/es Baseline 0.714 0.933 0.777 0.848 0.739 0.930 0.891 0.910 50
en/es Baseline 0.488 0.942 0.643 0.764 0.444 0.944 0.716 0.815 100
en/es +A 0.469 0.938 0.693 0.797 0.420 0.939 0.782 0.853 150
en/es +A (multi) 0.548 0.952 0.753 0.841 0.523 0.956 0.860 0.906 50
en/es +PA 0.654 0.931 0.695 0.796 0.660 0.931 0.784 0.851 100
en/es +A (Desc) 0.496 0.943 0.737 0.828 0.455 0.949 0.839 0.891
en/es +PA (Desc) 0.650 0.937 0.692 0.796 0.656 0.939 0.780 0.852
en/es +P 0.664 0.928 0.698 0.797 0.674 0.930 0.788 0.853 150
zh/es Baseline 0.378 0.942 0.661 0.777 0.301 0.943 0.739 0.829 550
zh/es +A 0.514 0.939 0.785 0.855 0.479 0.945 0.902 0.923 49

Table 5: Single runs of Development TAC results for our reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(zh and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes.

Train/Test Model micro p r f1 Eval Epoch
ru/ru Baseline 0.650 0.823 0.888 0.854 800
en/ru Baseline 0.484 0.762 0.855 0.806 550
en/ru +A 0.451 0.712 0.893 0.792 50
en/ru +A (multi) 0.4188 0.6517 0.8652 0.7434 200
en/ru +P 0.473 0.685 0.860 0.762 50
fa/fa Baseline 0.832 0.881 0.966 0.922 800
en/fa Baseline 0.603 0.720 0.928 0.811 150
en/fa +A 0.447 0.555 0.948 0.700 200
en/fa +A (multi) 0.448 0.538 0.966 0.691 50

Table 6: Single runs of Development Wiki results for select reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(ru and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes. For the +AP model, we report at Epoch 150 for Russian and 200 for Farsi, and for +P Farsi we
report Epoch 50 (same as in Russian). Note that with the Farsi +A (multi) model, since the best performing epoch
was at 50, in effect to EL-only training was performed.
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In-Language En En+A
type lang count micro r f1 micro r f1 micro r f1

CMN FAC 59 0.169 0.631 0.756 0.119 0.515 0.670 0.169 0.632 0.768
CMN GPE 3933 0.856 0.906 0.912 0.108 0.685 0.796 0.510 0.887 0.916
CMN LOC 461 0.729 0.947 0.886 0.488 0.810 0.840 0.547 0.933 0.892
CMN ORG 1441 0.160 0.726 0.774 0.299 0.629 0.722 0.127 0.799 0.821
CMN PER 3116 0.708 0.682 0.797 0.612 0.676 0.792 0.610 0.676 0.792
SPA FAC 59 0.051 0.294 0.454 0.068 0.285 0.444 0.102 0.289 0.448
SPA GPE 1570 0.664 0.891 0.927 0.338 0.674 0.791 0.532 0.830 0.888
SPA LOC 174 0.144 0.824 0.874 0.672 0.717 0.810 0.787 0.863 0.892
SPA ORG 799 0.451 0.681 0.782 0.444 0.678 0.779 0.444 0.691 0.788
SPA PER 2022 0.715 0.624 0.755 0.693 0.602 0.741 0.723 0.624 0.755

Table 7: How do the results of in-language training compare to English-only trained models and models trained
with the adversarial objective? We find that some types perform consistently, such as PER (or Persons) even in
languages that do not share scripts. Others, such as GPE (Geo-Political Entities) and ORG (Organizations) see a
substantial drop in performance when applying a English-only model, but see more of that regained when using an
adversarial objective. These results are taken from a single run of the TAC evaluation data.
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Abstract

This paper describes an approach for the mor-
phosyntactic analysis of clauses, including the
analysis of composite verb forms and both overt
and covert pronouns. The approach uses gram-
matical rules for verb inflection and clause-
internal word agreement to compute a clause’s
morphosyntactic features from the morpholog-
ical features of the individual words. The
approach is tested for eight typologically di-
verse languages in the 1st Shared Task on Mul-
tilingual Clause-Level Morphology, where it
achieves F1 scores between 79% and 99% (94%
in average).

1 Introduction

Until recently the prediction of clause-level mor-
phological / morphosyntactic features has been
approached for a few individual languages only
(see Žáčková et al. (2000) for Czech, Choudhary
et al. (2014) for Hindi, Faro and Pavone (2015)
for Italian, Ramm et al. (2017) for English, French
and German, Myers and Palmer (2019) for En-
glish revisited, and Dönicke (2020) for German
revisited). Most of the approaches are rule-based,
first of all because annotated training data barely
exists. On the other hand, it seems intuitive to
approach this task in a rule-based manner, since
morphosyntax follows strict grammatical rules (as
opposed to heuristics) that can be implemented by
a linguist. The first work to our knowledge which
considers multiple and typologically diverse lan-
guages at a time is that of Dönicke (2021), who
presents a cross-linguistic algorithm for composite-
verb analysis and implements it for 11 languages,
but refrains from evaluating the approach due to the
lack of annotated gold data. The 1st Shared Task on
Multilingual Clause-Level Morphology tackles this
lack of data and provides data sets for eight typo-
logically diverse languages. We re-implement and
extend Dönicke (2021)’s algorithm for the shared

task (Section 3), evaluate it (Section 4) and discuss
its advantages and shortcomings (Section 5).

2 Shared Task and Data

The 1st Shared Task on Multilingual Clause-Level
Morphology (Task 3 Analysis) provides data sets
for eight languages. Training sets (10,000 samples
each) and development sets (2,000 samples each)
for six languages were released first, and test sets
(1,000 samples each) as well as all sets for two
surprise languages (Spanish and Swahili) were re-
leased two weeks before the system submission
deadline. Each sample consists of a short sentence
and a gold analysis. The sentence consists of a
single clause and contains one verb form that can
be simple (e.g. he looks) or composite (e.g. he
had not been looking) as well as pronouns, adposi-
tions and a sentence-final punctuation mark. The
gold analysis consists of the main verb’s lemma,
the analysis of the verb form and the analyses of
all pronouns, both overtly expressed pronouns (as
in he looks) and covertly expressed ones (as in
∅ look!). The analyses are represented with Uni-
Morph features (Sylak-Glassman, 2016). The task
was to predict an analysis for an input sentence.
Since the test sets were provided without gold anal-
yses, the submission and evaluation of systems was
performed via CodaLab.1

3 Method

3.0 Motivation

Computing the morphosyntactic analysis of a
clause can be modeled as a mapping from word-
level morphological features to clause-level mor-
phological features. This process follows grammat-
ical rules, in particular (language-specific) rules for
verb inflection and (language-independent) rules
of agreement between words in a clause. Figure 1

1https://codalab.lisn.upsaclay.fr/competitions/6830?
secret_key=44e813c2-96c8-4889-b0fc-24dbe83ad2c6
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want IND;PRS;PROG;NOM(2,PL);NEG;ACC(3,SG,NEUT);ABL(2,PL,RFLX)

Figure 1: Mapping from word-level features to clause-level features for an English clause.

illustrates this for an English example sentence
with a dependency tree on top and morphological
analyses below each word. Some of the words are
morphologically ambiguous and thus have more
than one morphological analysis. The inflectional
paradigm of English tells us that a finite present-
tense (PRS) form of be and the present (PRS) partici-
ple (PTCP) of another verb expresses the indicative
(IND) present (PRS) progressive (PROG) form of the
latter verb, here want. To find the subject, it is to
find a pronoun with nominative case (NOM), which
could either be you or it. Since the subject has to
agree with the finite verb are in person and number,
the subject can only be you. In the consequence, it
must be an object and cannot have nominative case,
hence it receives the accusative (ACC) analysis. The
third pronoun, yourselves, is reflexive (RFLX) and
must therefore agree in person and number with
another pronoun in the clause, where the only can-
didate is you. Because of the agreement of you
and yourselves, you (which has no morphological
number feature) has to be analyzed as plural (PL)
and copies this features from yourselves. The ad-
position from, which is syntactically governed by
yourselves, overrides the morphological case of the
pronoun.

Our entirely rule-based approach analyzes a
clause in a very similar manner as in the exam-
ple. The following subsections give an overview
of the processing steps that an input sentence goes
through to compute the output analysis. There are
also two examples for French input sentences in
the appendix. Further details can also be found in
the documented source code.2

2https://gitlab.gwdg.de/tillmann.doenicke/mrl2022-tmvm

3.1 Preprocessing

All languages are preprocessed with spaCy.3 We
use the pretrained models for French, Russian and
Spanish, and trained new models on the Univer-
sal Dependencies (UD) treebanks (Zeman et al.,
2022) for German (HDT), English (GUM), Hebrew
(IAHLTwiki) and Turkish (Kenet). To improve the
tokenization of spaCy, the raw text is preprocessed
for some languages. For English, contractions are
converted to full forms (e.g. won’t 7→ will not)
using the Python package contractions4 and
some additional conversions using regular expres-
sions. Similarly, hyphenated contractions are con-
verted to full forms for French by replacing - and
-t- with a space (e.g. regarde-t-il 7→ regarde il,
m’avaient-elles 7→ m’avaient elles). Since we
could only train a spaCy model for unvocalized
Hebrew, vocalized Hebrew is converted to unvocal-
ized Hebrew using unikud5 before processing it
with spaCy and afterwards replaced back with the
original tokens.

Unfortunately, even for sentences as simple as
in the shared task’s data, spaCy makes errors in
all processing steps: part-of-speech (POS) tagging,
lemmatization and parsing. We fix the most errors
with a mix of language-independent and language-
specific rules. First, we look up the word-level anal-
ysis for every token in UniMorph (see Section 3.2
below) and overwrite the POS tag and/or lemma
assigned by spaCy with that from UniMorph if it
is unambiguous. Then, we apply some fixes to the
parse tree according to the POS tags.

As there is no UD treebank for Swahili, it is

3https://spacy.io/
4https://pypi.org/project/contractions/
5https://pypi.org/project/unikud/
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also not possible to train a spaCy model for the
language. Here, we directly set the POS tags and
lemmas according to the word-level analysis. As
far at is concerns the shared task, parsing is not
necessary for Swahili since we only need parses to
connect adpositions or verbal particles with their
heads, and Swahili has no such multi-word con-
structions.

3.2 Word-Level Analysis

We use UniMorph for word-level morphological
analysis. UniMorph provides large word lists with
POS and morphological analysis,6 however, only
for verbs, nouns and adjectives. We therefore added
analyses for pronouns, adpositions and in some lan-
guages also for auxiliary verbs (e.g. forms of be in
English) if they are missing in the UniMorph files.
Table 1 shows the number of word form analyses in
the files from UniMorph and our extensions. Since
UniMorph does not provide resources for Swahili,7

we only added analyses for the six personal pro-
nouns and assume that every other input word is
a verb, which we then analyze with the regular
expression8

(Prefix)?(Subject)?(Tense)?(Object)?
(Stem)(Vowel) ,

where Prefix, Subject, Tense and Object
can be any morpheme from an accord-
ing predefined dictionary, e.g. Subject ∈
{
ni :

{[
1
SG

]}
, u :

{[
2
SG

]
,

[
3
SG
M_MI

]
,

[
3
SG
U

]}
, . . .

}
,

Stem = .+?[aeiou]+[ˆaeiou]+ and Vowel =
([aeiou]?[aeiou])|(([aeiou]l)?(ia|ea)).

The word-level analyses are filtered and post-
corrected in some cases depending on the context
and using language-specific rules. For example, if
the Spanish (usually reflexive) pronoun se precedes
la, las, lo or los, it could also be a replacement for
le or les, so the analyses of le and les are added.

3.3 Clause-Level Analysis

Composite verb forms are analyzed with the al-
gorithm from Dönicke (2020, 2021), which maps
the word-level features of the involved verbs to
clause-level features. The algorithm itself is mostly
language-independent and its application to dif-

6https://github.com/unimorph/
7UniMorph provides resources for Congo Swahili, another

Swahili variant than that in the shared task’s data.
8The regular expression is mainly based on the

Swahili Cheat Sheet which can be found at https://www.
swahilicheatsheet.com/.

Language UM UM+ VF

English 652,482 43 25
French 367,732 123 10
German 519,143 93 15
Hebrew 33,177 190 6
Russian 473,481 109 6
Spanish 1,196,245 65 19
Swahili – 6 24
Turkish 570,420 193 60

Table 1: Number of analyses in UniMorph (UM) and in
our extension (UM+), and number of verb forms in the
look-up table (VF).

ferent languages is possible by setting language-
specific parameters, including the language’s ba-
sic word order (OV vs. VO) and a look-up
table with the complete inflectional paradigm
(i.e. all simple and composite forms, such as
{[

be
PRS

]
,
[
PTCP
PRS

]}
7→

[
IND
PRS
PROG

]
, for English). Table 1

shows the number of verb forms that are included
in the look-up table for every language. Since ev-
ery word may have several morphological analyses,
there might also be several clause-level analyses,
all of which we let return by the algorithm. The
algorithm further identifies the finite verb in each
composite analysis, which we return as well. This
gives us tuples of the form (a, v), where a is the
analysis of the (possibly composite) verb form and
v is the analysis of the finite verb in that form.

In a subsequent step, we determine all possible
morphological analyses for every pronoun in the in-
put clause. If a pronoun has an adposition, we over-
ride the case of the pronoun with the case assigned
by the adposition.9 Then, we construct all valid
combinations of analyses (a, v, s,N), where s is
the analysis of the subject pronoun and N ̸∋ s are
the analyses of the other pronouns. A combination
is valid iff s features nominative case and s agrees
with v in all nominal features, i.e. number, person,
formality and gender. If no valid combination is
found, a covert subject pronoun with nominative
case and the nominal features of v is introduced for
s (this largely affects pro-drop languages like He-

9In some languages, the case assigned by an adposition
can depend on the inherent case of the pronoun. For example,
the German adposition in assigns IN+ALL to a dative pronoun
and IN+ESS to an accusative pronoun. In these cases, we
created case-specific entries for adpositions in our UniMorph
extension and our algorithm selects the case for an adposition
based on the case of the pronoun.

54

https://github.com/unimorph/
https://www.swahilicheatsheet.com/
https://www.swahilicheatsheet.com/


brew but also imperatives in some other languages).
Covert object pronouns are also added to N if the
verb form encodes these (this only affects Swahili).

In a last step, we search the clause for question
marks and words of negation and add the corre-
sponding features if applicable, yielding combina-
tions of the form (a, v, s,N, c) with c ⊑

[
NEG
Q

]
.

3.4 Filtering and Pooling

The number of analyses can be quite high but some
analyses are more plausible than others. We there-
fore filter the analyses successively by the follow-
ing steps:

1. If the clause contains an exclamation mark,
only keep imperative analyses.
Motivation: In the shared task’s data, all clauses with an

exclamation mark contain an imperative verb and vice

versa.

2. For German only: If the clause contains a
question mark and the clause is in V2 word
order (i.e. it is not syntactically a question),
remove the Q feature and only keep quotative
analyses.10

Motivation: In the shared task’s data, all clauses with

a question mark contain the Q feature and vice versa,

except for German.

3. Only keep analyses where the subject pronoun
features nominative case.
Motivation: In the shared task’s data, the subject al-

ways features nominative case. Generally, the nomi-

native case marks the subject of a clause in many lan-

guages, although there are languages that also have

non-nominative subjects (e.g. Bejar, 2002, p. 313).11

4. Only keep analyses where a minimal number
of non-subject pronouns features nominative
case.
Motivation: In the shared task’s data, non-subject pro-

nouns never feature nominative case. Generally, nom-

inative non-subjects only occur in specific linguistic

constructions (e.g. to mark the predicate in copula con-

structions) or together with a non-nominative subject

(cf. Bejar, 2002, p. 313).

5. Only keep analyses with a non-reflexive sub-
ject pronoun.

10What is labeled as ‘quotative’ (QUOT) in the German data
is usually called present subjunctive or subjunctive I in the
literature and, unlike the labeling in the shared task suggests,
not only used in quoted speech.

11Not forgetting ergative languages, in which the subject’s
case depends on the (transitivity of the) verb.

Motivation: In the shared task’s data, there are no reflex-

ive subjects. Generally, there do not appear to be any

languages with reflexive subjects (Schachter, 1977).12

6. Only keep analyses where every reflexive pro-
noun agrees with a non-reflexive pronoun. In
case of agreement, the non-reflexive pronoun
copies missing features from the reflexive pro-
noun.
Motivation: In the shared task’s data, every reflexive

pronoun has an antecedent in the same clause. Gen-

erally, reflexive pronouns must have an antecedent in

the same sentence (“Binding Principle A” of Chomsky

(1981)).13

7. Only keep analyses where the pronouns fea-
ture a maximal number of different cases.
Motivation: In the shared task’s data, every case appears

maximally once per clause. Generally, cases encode

grammatical (and in a wider sense also semantic) roles

and clauses typically contain every role only once (cf.

Jaworski and Przepiórkowski, 2014, p. 84).

8. For French only: Only keep analyses where
every past participle agrees with the pronoun
determined by the non-trivial French partici-
ple agreement rules (cf. Past Participle Agree-
ment in French, 2017). In case of agreement,
the pronoun copies missing features from the
participle.
Motivation: In French and other Romance languages,

past participles do not always agree with the subject (as

it is usually the case) but sometimes with an object (cf.

Kayne, 1989).

9. Only keep analyses where a maximal number
of reflexive pronouns agrees with the subject
pronoun. In case of agreement, the reflexive
pronoun copies missing features from the sub-
ject pronoun.
Motivation: In the shared task’s data, reflexive pronouns

in ambiguous sentences are sometimes annotated as

having subjects and sometimes annotated as having

non-subjects as antecedents. Generally, subjects are

preferred over non-subjects as antecedents for reflexive

pronouns in ambiguous sentences (cf. White et al., 1997,

p. 148).

If one of the steps would filter out all analyses,
the step is skipped.

12English allows statistically rare exceptions (cf. Song
(2017), or Kirk and Kallen (2006, p. 104) for the use of
reflexive pronouns as subjects with a focus on Irish English).

13Again, English allows statistically rare exceptions (cf.
Kim et al., 2020, p. 296).

55



In a pooling step, redundant features are
removed from the analyses, which may result
in some of the analyses becoming identical
and hence collapsing into one. For example,
if there are three analyses for a French input
that differ in the analysis of the pronoun leur,


PRO
DAT
3
PL
MASC


 vs.




PRO
DAT
3
PL
FEM


 vs.




PRO
DAT
3
PL
NEUT


, then



PRO
DAT
3
PL


 be-

comes the reduced analysis of leur in each of the
analyses. If the three analyses are now completely
identical, they are combined into one analysis. On
the contrary, if there are two analyses for a German
input that differ in the analysis of the pronoun

ihm,




PRO
DAT
3
SG
MASC


 vs.




PRO
DAT
3
SG
NEUT


, the gender feature is not

redundant (since ihm cannot be feminine) and can
therefore not be removed.

3.5 Ranking
The analyses that are not filtered out are assumed
to be correct by the program and can all be output.
For the shared task, we rank the analyses according
to the following sorting procedures and choose the
first one as final result:

1. Choose verb analyses in this order: lemma of
non-auxiliary verb > lemma of auxiliary verb.
Motivation: Analyses with a lemma of an auxiliary verb

usually result from errors in the word- or clause-level

analysis steps, so we prefer analyses with a lemma of a

non-auxiliary verb.

2. Choose pronoun analyses in this order:
MASC > FEM > NEUT > no gender.
Motivation: We did not find a general preference for

any grammatical gender of ambiguous pronouns in the

shared task’s data, but we wanted our system to not ar-

bitrarily choose one and this is the order in which many

grammars name the genders.

3. Choose pronoun analyses in this order:
no class > any class (this only affects
Swahili).
Motivation: We experimented with both variants on the

training and development set for Swahili and matched

the gold analysis in more cases by preferring analyses

without class feature over analyses with class feature.

4. Choose pronoun analyses in this order:
not LGSPEC3 > LGSPEC3 (this only affects
Spanish).

Motivation: We experimented with both variants on the

training and development set for Spanish and matched

the gold analysis in more cases by preferring analyses

without LGSPEC3 feature over analyses with LGSPEC3

feature.

5. Choose pronoun analyses in this order: NOM >
ACC > DAT > other case (this effectively
prefers analyses where the cases of pronouns
appear in this word order).
Motivation: We observed that sentences with ambigu-

ous pronouns always receive cases in this order in the

shared task’s gold analyses.

6. Choose pronoun analyses in this order:
RFLX > not RFLX (except for Spanish, where
the sorting is reversed).
Motivation: We experimented with both variants on the

training and development set for every language and

(for all languages but Spanish) matched the gold analy-

sis in more cases by preferring reflexive readings over

non-reflexive readings for ambiguous pronouns.14

Note that later sorting procedures ignore the pre-
vious ones and are therefore more effective.

3.6 Postprocessing
Sometimes, UniMorph contains incorrect lemmas
with a trailing e for English (e.g. answere in-
stead of answer). We fix this using NLTK’s
WordNetLemmatizer15 and the Python package
pyspellchecker.16

The result analysis is then converted to a string
in the output format of the shared task.

4 Evaluation and Results

For the evaluation, the gold analysis and the pre-
dicted analysis are decomposed into features. For
example, the analysis
IND;PST;PFV;NOM(3,PL,MASC);ACC(1,PL,

MASC);NEG;Q
is decomposed into the features
Φ = {IND, PST, PFV, NOM-3, NOM-PL,

NOM-MASC, ACC-1, ACC-PL, ACC-MASC, NEG, Q}.
Given the features for the gold analysis Φg and

for the predicted analysis Φp, the F1 score for one
sample is calculated as follows:

P =
|Φp ∩ Φg|+ sℓ

|Φp|+ wℓ
R =

|Φp ∩ Φg|+ sℓ
|Φg|+ wℓ

14An example for an ambiguous pronoun is German mich,
which can mean ‘me’ or ‘myself’ (cf. Hole, 2005, p. 65).

15https://www.nltk.org/api/nltk.stem.wordnet.html
16https://pypi.org/project/pyspellchecker/
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Language Train Dev Test

English .994 .995 .993
French .973 .974 .977
German .946 .952 .974
Hebrew (unvoc) .959 .955 .965
Hebrew (voc) .966 .970 .955
Russian .908 .917 .931
Spanish .931 .920 .943
Swahili .730 .760 .789
Turkish .934 .928 .929
Average .927 .930 .940

Table 2: F1 scores for all languages on the respective
training, development and test sets.

F1 =
2 · P ·R
P +R

Hereby, sℓ = 3 if the predicted lemma matches
the gold lemma and sℓ = 0 otherwise, and wℓ = 3.
While the development and training sets always
contain only one gold analysis per sample, the test
sets contain multiple gold analyses for samples
with an ambiguous sentence. In case of such am-
biguous sentences, the predicted analysis is com-
pared to each gold analysis and the highest F1 score
is chosen. The F1 for a data set (e.g. for the English
test set) is the average F1 over all samples in that
set.

The results using our method are shown in
Table 2. We achieve F1 scores over 92% on the
test sets for each language except Swahili (79%),
and an average F1 score of 94% (96% without
Swahili). Since our approach is not based on ma-
chine learning methods, we observe a relatively
stable performance on all data splits (training, de-
velopment, test) and, in particular, no decrease on
the test set.

For completeness, we also show the accuracies
in terms of exact matches, i.e. the percentage of
predicted analyses that exactly match a gold analy-
sis (including ordering of the features), in Table 3,
although we consider this metric to be inadequate
for the evaluation of the task since the elements of
a feature structure are naturally unordered. Since
our rule-based approach cannot learn the ordering
of the features from examples, we hard-coded the
order of the features in the output string so that it
roughly complies with the ordering in the shared
task’s data for most languages. After the final sys-
tem submission, we noticed a mistake in the order-
ing of the features NEG and Q. Therefore, numbers

Language Train Dev Test

English .976 (.975) .977 (.977) .974
French .637 (.845) .676 (.870) .693
German .452 (.590) .465 (.619) .550
Hebrew (unvoc) .765 (.765) .744 (.739) .827
Hebrew (voc) .794 (.794) .807 (.815) .748
Russian .459 (.452) .456 (.472) .609
Spanish .492 (.537) .473 (.553) .637
Swahili .041 (.048) .048 (.066) .067
Turkish .841 (.842) .806 (.808) .816
Average .606 (.650) .606 (.658) .658

Table 3: Exact matches for all languages on the respec-
tive training, development and test sets.

in brackets in Table 3 show exact-match perfor-
mance after fixing their ordering, while the other
numbers are the performances of the system as
submitted.17 The high differences that result from
this small change in some languages (e.g. +15%
in German) further illustrate the inadequateness of
the metric.

5 Discussion

The main advantage of the presented method is
probably the performance, although there is nat-
urally some room for improvement. The second
major advantage of the method is that it does not re-
quire any training data. This makes it a promising
option for analyzing every language where man-
ually annotated gold data is not available. No
training also means that no training bias can be
induced by the data, which arguably makes the
method’s performance more stable across text do-
mains. In terms of languages, the algorithm is
relatively universally applicable since the underly-
ing mechanisms of inflection and agreement are
the same across natural languages. This is also
indicated by the performance that is very similar
across languages and language families.18

However, the method is not without shortcom-
ings, all of which are clearly visible in the case of

17Since gold analyses for the test data have not been re-
leased, yet, we cannot re-evaluate our system on the test sets,
but we can assume that the performance is nearly the same as
on the other splits, or even a bit higher since the test sets can
contain more than one gold analysis per sample.

18The languages in the shared task belong to the following
families: Indo-European (English, French, German, Russian,
Spanish), Afro-Asiatic (Hebrew), Niger-Congo (Swahili), Tur-
kic (Turkish). Dönicke (2021) also implements the composite-
verb analysis for languages from other families.
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Swahili. First of all, the method requires a (word-
level) morphological analysis and a parser for the
language to analyze. We decided to use UniMorph
because the output format in the shared task also
uses UniMorph features. Dönicke (2021), on the
other hand, does not only use the parser but also
the morphological analyzer that can be trained by
spaCy on a UD treebank.19 The current version
of the UD treebanks includes treebanks for 130
languages and 61 languages are listed as possible
future extensions—Swahili being one of them—,
and UniMorph currently provides resources for 167
languages. Nonetheless, the current lack of both a
treebank and morphological resources for Swahili
forced us to implement a workaround resulting in
a much lower performance compared to the other
languages. Another drawback of our method is that
knowledge about the grammar of the language to
analyze is required to set-up the language-specific
inflection table, the list of auxiliary verbs, the word-
order parameter (OV vs. VO), and in the current
implementation also a list of words of negation as
well as UniMorph-style entries for pronouns and
adpositions. Dönicke (2021) already mentions that
the study of composite verb forms in a foreign lan-
guage can be extensive, but it is also prone to errors.
It may be a coincidence that the languages with the
best performance (English, French, German) are
those languages which the author of this paper has
the profoundest knowledge of, but it may also be
due to the incomplete knowledge about the other
languages acquired in the short term. Although the
algorithm is designed to be language-independent
(with language-specific operations being controlled
through the aforementioned parameters), its perfor-
mance can be sometimes improved by language-
specific special rules (e.g. the rules for participle
agreement in French), which again can only be
implemented by someone who has the according
knowledge of the language. Table 4 shows how
many of these rules are hard-coded in our imple-
mentation. It should be added, however, that some
of these rules are only implemented to meet the
output format of the shared task and are not re-
lated to the morphosyntactic nature of the language.
For example, there is no apparent reason why all
gold analyses for Swahili have the feature V (verb)
while the analyses for the other languages do not;
but for the shared task there had to be a special

19McCarthy et al. (2018) compare UD features and Uni-
Morph features and also provide a tool to convert the former
into the latter.

Language P1 A1 A2 F R P2
∑∑∑

English 1 2 1 0 0 1 5
French 1 2 1 1 0 0 5
German 0 1 1 1 0 0 3
Hebrew 2 0 1 1 0 0 4
Russian 0 0 1 0 0 0 1
Spanish 0 1 0 0 1 0 2
Swahili 1 1 2 1 0 1 6
Turkish 0 0 1 0 0 1 2∑∑∑

5 7 8 4 1 3 28

Table 4: Number of hard-coded language-specific rules
in the code. P1: preprocessing, A1: word-level analysis,
A2: clause-level analysis, F: filtering and pooling, R:
ranking, P2: postprocessing.

rule that adds this feature to every output analysis
for Swahili. Probably, the requirement of linguis-
tic knowledge is not that much of a disadvantage,
since research teams working on a language usually
include some speakers of that language.

6 Conclusion

We presented a method to predict clause-level mor-
phological / morphosyntactic features. The main
advantages are its performance (94% F1 on aver-
age), that it does not require training data and that
it is applicable for multiple languages. The disad-
vantages are that it requires a preceding word-level
morphological analysis, linguistic knowledge about
the language to analyze and some time to set-up
the method for a new language. While the imple-
mentation within the frame of the shared task is not
applicable for general use (mainly because of the
pre- and postprocessing), interested readers may
want to have a look at the implementation from
Dönicke (2021).
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Eva Žáčková, Luboš Popelínský, and Miloslav Nepil.
2000. Automatic tagging of compound verb groups
in Czech corpora. In Text, Speech and Dialogue,
pages 115–120, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Elia
Ackermann, Noëmi Aepli, Hamid Aghaei, Željko
Agić, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy
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Phương Lê Hồng, Alessandro Lenci, Saran Lertpra-
dit, Herman Leung, Maria Levina, Cheuk Ying Li,
Josie Li, Keying Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Krister Lindén, Nikola Ljubešić,
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60



Larraitz Uria, Hans Uszkoreit, Andrius Utka, Elena
Vagnoni, Sowmya Vajjala, Rob van der Goot, Mar-
tine Vanhove, Daniel van Niekerk, Gertjan van No-
ord, Viktor Varga, Uliana Vedenina, Eric Villemonte
de la Clergerie, Veronika Vincze, Natalia Vlasova,
Aya Wakasa, Joel C. Wallenberg, Lars Wallin, Abi-
gail Walsh, Jing Xian Wang, Jonathan North Wash-
ington, Maximilan Wendt, Paul Widmer, Shira
Wigderson, Sri Hartati Wijono, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wróblewska, Mary Yako,
Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan,
Koichi Yasuoka, Marat M. Yavrumyan, Arife Betül
Yenice, Olcay Taner Yıldız, Zhuoran Yu, Arlisa Yu-
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A French Example 1

Input: ne nous avaient-ils pas acceptés?
Gold Output: accepter IND;PST;PFV;NOM(3,PL,MASC);ACC(1,PL,MASC);NEG;Q

After preprocessing and word-level analysis:

ne nous avaient ils pas acceptés ?
ADV PRON AUX PRON ADV VERB PUNCT

{[NEG]}
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DAT
1
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RFLX


 ,




PRO
ACC
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 ,



PRO
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PL


 ,

[
PRO
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PL

]
,



PRO
ACC
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 ,



PRO
DAT
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avoir
V
3
PL
IND
PST
IPFV















PRO
NOM
3
PL
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{[NEG]}








accepter
V
PTCP
PL
MASC
PST
PASS








{[Q]}

advmod

expl

aux

nsubj

advmod

ROOT

punct

After ... a v s N c

add a, v [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV]

add s [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC]

add N [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL RFLX]}
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL RFLX]}
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO NOM 1 PL]}
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO 1 PL]}
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]}
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]}

add c [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL RFLX]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL RFLX]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO NOM 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]} [NEG Q]

filter 4 [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL RFLX]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL RFLX]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]} [NEG Q]

filter 6 [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]} [NEG Q]

filter 7 [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]} [NEG Q]

ranking [accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO ACC 1 PL]} [NEG Q]
[accepter IND PST PFV] [avoir V 3 PL IND PST IPFV] [PRO NOM 3 PL MASC] {[PRO DAT 1 PL]} [NEG Q]

Pred. Output: accepter IND;PST;PFV;NOM(3,PL,MASC);ACC(1,PL,MASC);NEG;Q

62



B French Example 2

Input: ne te prouvez pas à elle par elles!
Gold Output: prouver IMP;PRS;NOM(2,PL);PROL(3,PL,FEM);ACC(2,SG);DAT(3,SG,FEM);NEG

After preprocessing and word-level analysis:

ne te prouvez pas à elle par elles !
ADV PRON VERB ADV ADP PRON ADP PRON PUNCT
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expl

ROOT

advmod case
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punct

After ... a v s N c

add a, v [prouver IND PRS] [prouver V 2 PL IND PRS]
[prouver IMP PRS] [prouver V 2 PL IMP PRS]

add s [prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL]

add N [prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO DAT 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO ACC 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]}

add c [prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO DAT 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IND PRS] [prouver V 2 PL IND PRS] [NOM 2 PL] {[PRO ACC 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]

filter 1 [prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG RFLX] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]

filter 6 [prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO DAT 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]
[prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]

filter 7 [prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]

ranking [prouver IMP PRS] [prouver V 2 PL IMP PRS] [NOM 2 PL] {[PRO ACC 2 SG] , [PRO DAT 3 SG FEM] , [PRO PROL 3 PL FEM]} [NEG]

Pred. Output: prouver IMP;PRS;NOM(2,PL);PROL(3,PL,FEM);ACC(2,SG);DAT(3,SG,FEM);NEG
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Abstract

Contextualized word embeddings have
emerged as the most important tool for
performing NLP tasks in a large variety of
languages. In order to improve the cross-
lingual representation and transfer learning
quality, contextualized embedding alignment
techniques, such as mapping and model
fine-tuning, are employed. Existing techniques
however are time-, data- and computational
resource-intensive. In this paper we analyze
these techniques by utilizing three tasks: bilin-
gual lexicon induction (BLI), word retrieval
and cross-lingual natural language inference
(XNLI) for a high resource (German-English)
and a low resource (Bengali-English) language
pair. In contrast to previous works which focus
only on a few popular models, we compare
five multilingual and seven monolingual
language models and investigate the effect of
various aspects on their performance, such
as vocabulary size, number of languages
used for training and number of parameters.
Additionally, we propose a parameter-, data-
and runtime-efficient technique which can
be trained with 10% of the data, less than
10% of the time and have less than 5% of
the trainable parameters compared to model
fine-tuning. We show that our proposed
method is competitive with resource heavy
models, even outperforming them in some
cases, even though it relies on less resources.

1 Introduction

Contextualized word representations generated
from pre-trained language models have outper-
formed previously standard static embeddings.
Static distributional word representations offer a
single representation for a word regardless of its
current context (Mikolov et al., 2013a; Bojanowski
et al., 2017). Contrarily, a word’s contextual repre-
sentation is influenced by the context in which it
is used. Contextualized embeddings have demon-
strated ground-breaking performance across sev-

eral NLP tasks and languages, and accommodate
many semantic and syntactic aspects of words (De-
vlin et al., 2019; Conneau et al., 2020; Brown
et al., 2020). From the introduction of ELMo
(Peters et al., 2018) and ULMFiT (Howard and
Ruder, 2018) to the present, different types of lan-
guage models have been proposed (Devlin et al.,
2019; Lan et al., 2020; Clark et al., 2020; Conneau
et al., 2020; Sanh et al., 2019; Radford et al., 2019;
Brown et al., 2020) of which the most influential
is BERT (Devlin et al., 2019) which initiated an
era of Transformer (Vaswani et al., 2017) based
language models.

Multilingual Language Models (MLMs) can per-
form various tasks across different languages. Pre-
vious works (Cao et al., 2020; Liu et al., 2019)
have showed that the MLM’s performance in dif-
ferent transfer learning tasks can further be im-
proved by alignment. The idea of aligning con-
textualized embeddings is to move the represen-
tations of words with similar meaning from dif-
ferent languages closer to each other. There are
several ways to perform alignment on contextu-
alized embeddings, such as anchor mapping (Liu
et al., 2019) and full model fine-tuning (Cao et al.,
2020). However, all of these methods have sev-
eral shortcomings. It is (1) time-consuming, taking
about 24 hours to perform mapping. In contrast to
static embeddings, in case of contextualized em-
beddings the generation of anchor embeddings is
required to be able to perform mapping which is
the majority of the required time (Liu et al., 2019).
Similarly, it takes about 8 hours to perform model
fine-tuning (Cao et al., 2020) on mBERT. It is also
(2) resource-intensive requiring a lot of GPU mem-
ory due to model size and (3) data-intensive re-
quiring a huge collection of monolingual sentences
for anchor generation, while fine-tuning requires
around 250K pairs of parallel sentences to produce
the best-reported alignment (Cao et al., 2020). As a
result of these limitations anchor embeddings map-
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ping and fine-tuning are often difficult or expensive
to perform, deploy and use in real-world scenarios.

To the best of our knowledge there is no study
available until now where different model architec-
tures and alignment techniques on various down-
stream tasks are systematically compared other
than on the most popular models such as mBERT
and XLM-RoBERTa (Kulshreshtha et al., 2020;
Cao et al., 2020; Libovický et al., 2020). In this
paper our main goal is to fill this gap. We have
compared five multilingual and seven monolingual
models with three current alignment techniques
(VecMap (Artetxe et al., 2016), RCSLS (Joulin
et al., 2018) and model fine-tuning (Cao et al.,
2020)) from different perspectives such as mul-
tilingual vs. monolingual, big vs. small mod-
els and the effect of vocabulary. To assess the
models and alignment techniques from different
perspectives we used three different tasks: bilin-
gual lexicon induction (BLI), word retrieval (Cao
et al., 2020) and zero-shot cross-lingual natural
language inference (XNLI) on two language pairs:
high-resource German-English and low-resource
Bengali-English.

Motivated by the shortcomings of current align-
ment methods discussed above, and inspired by the
fine-tuning based alignment technique of Cao et al.
(2020), in addition to the comparative analysis we
propose a parameter, data and time efficient align-
ment technique which requires 10% of the data,
runs within less than 10% of the time and uses the
amount of less than 5% of trainable parameters
compared to model fine-tuning (Cao et al., 2020).
An overview of our proposed approach is given in
Figure 1.

The findings of our experiments demonstrate
that 1) multilinguality always leads to better per-
formance in cross-lingual transfer tasks. 2) We
should choose bigger models over smaller models
when the resources (computational and data) are
available but 3) in case of unattainable resources
smaller but specialized multilingual models, such
as indic-bert (Kakwani et al., 2020), should be cho-
sen, since they are capable of outperforming or
performing similar to the big multilingual models,
such as XLM-RoBERTa (Conneau et al., 2020), on
a language the model is specialized for. 4) Having
a large vocabulary and language support is not an
advantage of itself, instead the number of tokens
allocated for a given language/script plays a more
important role. 5) Big language models are sensi-

Figure 1: Overview of the fine-tuning based alignment
technique (FAO) and our proposed technique (MAO).
Small colored square boxes in the upper right corner
indicate which modules are used in which method (FAO
or MAO).

tive to batch size and learning rate. 6) Model fine-
tuning based alignment (Cao et al., 2020) strength-
ens the quality of MLM’s contextualized embed-
dings and 7) our proposed method is competitive
with resource heavy models, even outperforming
them in some cases despite having a significantly
lower number of trainable parameters. Our work
shows that in specific cases (such as for Bengali
on XNLI task) less resource intensive but more
targeted solutions (e.g. indic-bert) can also be suc-
cessfully employed.

The paper is structured as the following: the
related work is discussed in Section 2. Then Sec-
tion 3 contains required background knowledge fol-
lowed by the explanation of our proposed approach
in Section 4. Following that, Section 5 contains all
the information regarding the tasks, data, different
pipelines of our experiments, training procedures
and hyperparameters. In Section 6 we discuss the
results of different tasks and experiments. Finally,
we conclude our work in Section 7.

2 Related Work

By pre-training language models on texts involv-
ing multiple languages their representation can be
leveraged for cross-lingual applications (Devlin
et al., 2019; Conneau et al., 2020). Cross-lingual
representation quality can be improved using sev-
eral alignment approaches. Aldarmaki and Diab
(2019) build an orthogonal mapping of contextual
ELMo (Peters et al., 2018) embeddings and used
these mapping for word and sentence translation
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retrieval. Schuster et al. (2019) also employed
a mapping approach to align ELMo embeddings,
first they acquired context-independent anchors by
factorizing the contextualized embedding space
into two parts (context-independent and context-
dependent) then they applied the mapping approach
to the independent part and tested their proposed
mapping approach on zero-shot dependency pars-
ing. Similarly, Wang et al. (2019) learned a linear
mapping directly using the contextual embeddings
generated from BERT and XLM (Conneau and
Lample, 2019), while Liu et al. (2019) aligned an-
chors of contextual mBERT embeddings. Cao et al.
(2020) proposed a model fine-tuning based align-
ment technique using parallel corpora and proposed
the word retrieval task to assess its performance. In
a similar work to ours, Kulshreshtha et al. (2020)
compared different rotation and fine-tuning based
alignments on various downstream tasks. However,
all previous work focused on improving state-of-
the-art cross-lingual performance and tested their
proposed approaches only on a few mainstream
MLMs, such as BERT or XLM. In contrast, our
main goal is to analyse which model and param-
eters fit certain data and computational resource
scenarios the best, thus we investigate applying dif-
ferent types of alignment approaches to different
types of multilingual and monolingual models in-
cluding various architectures and sizes, trained on
either monolingual or multilingual data.

Additionally, alignment approaches are resource
intensive. Performing anchor generation for map-
ping takes the majority of the required time (Liu
et al., 2019; Kulshreshtha et al., 2020). Likewise,
fine-tuning mBERT takes more than 8 hours (Cao
et al., 2020), and for XLM-RoBERTa it is even
longer. Due to model size, they require a lot of
GPU memory. Also, they are data-intensive re-
quiring a huge collection of monolingual sentences
(Liu et al., 2019) for anchor generation and dur-
ing fine-tuning, around 250K pairs of parallel sen-
tences are required to produce an alignment of good
quality. Focusing on these shortcomings we pro-
pose a parameter, data and time efficient alignment
approach to tackle these issues. Our proposed ap-
proach is lightweight compared to full model fine-
tuning based alignment, as well as more time and
data efficient than fine-tuning and anchor based
alignment.

3 Background

3.1 Mapping

In this section, we will discuss mapping techniques
using contextualized embeddings. The contextual-
ized embeddings mapping process follows a simi-
lar principle as static embeddings mapping. Given
a seed dictionary of source-target word pairs and
their embeddings, a linear projection of the source
embeddings to the target space is learned (Mikolov
et al., 2013b). Suppose xi and zi are source and tar-
get word embeddings respectively of the ith word
pair in the dictionary. The primary aim is to find
a transformation matrix W such that Wxi is sim-
ilar to zi. This can be expressed as the following
optimization problem:

arg_min
W

n∑

i=1

||Wxi − zi||2

Anchor Generation: Many approaches rely on
anchors as context independent word representa-
tions to generate mapping for contextualized em-
beddings (Liu et al., 2019; Kulshreshtha et al.,
2020). We generate anchors for each of the words
by following the procedures of (Liu et al., 2019).
For a selected word 1000 sentences where the word
is present are selected followed by the generation
of contextualized embeddings of each occurrence
which are average pooled resulting in the anchor
representation. For efficiency, we used 100 sen-
tences instead of 1000 in our systems. In case
a word is split into subwords we consider only
the embedding of the last subword following (Cao
et al., 2020). Additionally, we only considered
the output embeddings of the last layer, instead of
averaging all layers, since semantic features are
manifested in higher layers (de Vries et al., 2020).

3.2 Model Fine-Tuning

In order to improve the alignment of the language
model using a parallel corpus Cao et al. (2020)
proposed a fine-tuning based alignment method.
The intuition of this method is to tune the source
language embeddings to be closer to the target lan-
guage embeddings in the vector space. To bring
this intuition into practice a simple but effective
loss function was introduced:

L(f, C) = −
∑

(s,t)∈C

∑

(i,j)∈a(s,t)
sim(f(i, s), f(j, t))

(1)
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where (s, t) is a parallel sentence pair of the source
and target languages in the parallel corpus C,
a(s, t) indicates the word alignments for (s, t),
f(i, s) is the contextualized representation of the
word at index i in sentence s given by the used
MLM and sim(f(i, s), f(j, t)) indicates the sim-
ilarity of the indicated word embeddings defined
by:

sim(f(i, s), f(j, t)) = −||f(i, s)− f(j, t)||22
(2)

However, minimizing (1) could lead to a degen-
erative solution where all tokens are represented
in the same point mass. To avoid this case, the
authors proposed a regularizer preventing the tar-
get representations from deviating from the initial
value significantly. Let f0 indicate the initial pre-
trained model before the alignment, then:

R(f, C) =
∑

(s,t)∈C

∑

(i,j)∈a(s,t)
||f(i, t)− f0(i, t)||22

(3)
The regularizer is only applied to the target lan-
guage representations. The final loss function for
the model fine-tuning is the sum of (1) and (3).
Note however that due to f0, two copies of the
model have to be kept in memory. Additionally,
the model can be fine-tuned using multiple lan-
guage pairs, by training on the concatenation of
their parallel corpora.

In this work we refer to this technique as FAO
(fine-tuning based alignment objective) which we
also depict in Figure 1.

3.3 Cross-Lingual Evaluation

Word Retrieval For intrinsic evaluation of
MLMs Cao et al. (2020) proposed the word re-
trieval task. Given parallel data, the task is for each
source word to retrieve its translation, i.e., find the
parallel sentence pair of the source sentence con-
taining the input word and select the right word
in it. First, all the source and target language sen-
tences are passed through the language model to
build word representations for each word. Note that
since a given word type is contained in multiple
sentences, it has a contextualized representation for
each occurrence. For each of the source words, the
most similar word from the target set is taken as its
translation pair by calculating their CSLS similarity
(Lample et al., 2018). We report the accuracy score
for this task. Here the accuracy is defined as the

percentage of exact matches between source and
target words throughout the whole parallel corpus,
similar to Cao et al. (2020).

BLI Given a dictionary of source and target lan-
guage word pairs, bilingual lexicon induction is
the task of translating a source language word to a
target language word (Irvine and Callison-Burch,
2017; Shi et al., 2021). In this task, the target word
with the highest similarity score is chosen as the
translation of the source word by computing the co-
sine similarity between the anchored embeddings
of the source word and the target words. For this
task, we report P@1 and P@5. Here, P@1 indi-
cates the percentage of source words where the
target word with the highest similarity score is the
gold translation. P@5 is the percentage of source
words where the gold translation falls among the
five target words with the highest similarity scores.

XNLI Cross-lingual natural language inference
is a sentence pair classification task using the cor-
pus of (Conneau et al., 2018). It consists of three
classes (neutral, entailment and contradiction) and
is used to evaluate cross-lingual transfer learning
systems. It covers 15 languages, including two low-
resource languages (Swahili and Urdu) (Conneau
et al., 2018). We report the accuracy score for this
task.

4 Proposed Approach

FAO is data-intensive requiring 250K parallel sen-
tences, it is time-consuming and resource-intensive.
Similarly, applying simple but efficient alignment
techniques like Vecmap and RCSLS is too time-
consuming and resource intensive in the case of
contextualized embeddings. Inspired by these is-
sues we propose a small alignment architecture
which can be trained swiftly (less than 10% of
the time required for fine-tuning the whole model)
with a few thousand parallel sentences (10% of
the data required for fine-tuning the whole model)
and trainable parameters for all the proposed archi-
tectures are less than 3% of the language model’s
parameters. To achieve this we add small trainable
modules to MLMs and keep the rest of the network
frozen.

Linear or Transformer Layer on Top We add a
single linear or transformer layer on top of the used
MLM. An overview of our proposed method is pro-
vided in Figure 1. First, the sentences are fed into
the language model then we extract the embeddings
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of all the words (we only take the embedding of
the last subword following Cao et al. (2020) in case
a word is split). These embeddings are then fed
to the proposed linear or transformer layer, which
outputs embeddings of the same size as the MLM.
As mentioned, we train only the added layer and
keep the MLM frozen. This way the number of
parameters to be trained and the required time are
significantly reduced compared to FAO. Addition-
ally, unlike FAO we do not use the regularizer loss
which reduces computation and memory use since
the initial model (f0) is unnecessary. The rest of the
procedure is the same as described in Section 3. We
named our method modified alignment objective
(MAO).

Adapters Additionally, we leverage adapters
(Pfeiffer et al., 2020) in each of the MLM layers
together with a transformer layer on top of the
models. Similarly as above, we only trained the
transformer and the adapter parameters and kept
the language model parameters frozen.

5 Experimental Setup

5.1 Data

We have used three different downstream tasks and
for each of the tasks we have different data sources.
This section will provide an overview of the data
sources across the tasks.

Word Retrieval For the word retrieval task we
used German-English (Koehn et al., 2005) and
Bengali-English (Hasan et al., 2020) parallel data,
and we have followed all the procedures proposed
in (Cao et al., 2020). To generate 1-to-1 word align-
ments we used FastAlign (Dyer et al., 2013).

BLI For the bilingual lexicon induction task we
have used MUSE (Lample et al., 2018) train and
test dictionaries. As monolingual data for anchor
generation needed for VecMap and RCSLS we used
WikiDumps1 for all the three languages. To extract
sentences we have used WikiExtractor2. We gener-
ated anchors for the most frequent 50k words.

XNLI For the XNLI task, we have used English
train, validation and test sets, the German test set
from (Conneau et al., 2018) and the test data pro-
posed in (Bhattacharjee et al., 2021) for Bengali.

1https://dumps.wikimedia.org/
2https://github.com/attardi/

wikiextractor

5.2 Compared Language Models
We compared five multilingual and seven monolin-
gual language models of different types and sizes.
We used multilingual models for all three tasks,
however, we tested monolingual models only for
BLI. Since BLI is a word-level task not a trans-
fer learning task we wanted to know how much
difference different types of monolingual models
can make compared to the multilingual models.
We have tried monolingual models also for the
word retrieval task but their performance was not
satisfactory. For this reason, we have excluded
monolingual models for the other two tasks (word
retrieval and XNLI) to save resources, costs and
time. All the used language model names as can
be found on Huggingface Hub, their architectures,
vocabulary size and other information are pro-
vided in the appendix in Table 5. Our goal was
to select a diverse set of models in terms of ar-
chitecture (mBERT follows BERT (Devlin et al.,
2019), indic-bert (Kakwani et al., 2020) follows
ALBERT (Lan et al., 2020) architecture), train-
ing data (mBERT uses Wikipedia, XLM-RoBERTa
(Conneau et al., 2020) uses CommonCrawl), pre-
training tasks (mBERT uses the masked language
modeling (MLM) and next sentence prediction
tasks, indic-bert uses MLM and sentence order
prediction task), number of parameters (indic-bert
has only 33M parameters and XLM-RoBERTa has
270M parameters) and vocabulary sizes (mBERT
and dBERT has 119k tokens in vocabulary whereas
XLM-RoBERTa has 250k tokens). In this work, we
want to establish a clear and concise comparison
between these language models.

5.3 Pipelines
We have several pipelines and setups for the model
alignments and each of the three tasks. We briefly
describe these next. For all of our experiments we
have used NVIDIA TITAN X GPU with 12 GB
RAM.

Alignment Following Cao et al. (2020) we fine-
tuned a single multilingual model for both test lan-
guage pairs (de-en and bn-en) by simultaneously
using German-English and Bengali-English paral-
lel sentences in case of both FAO and MAO. Since
indic-bert does not support the German language,
it was fine-tuned only with Bengali-English sen-
tence pairs. In case of FAO we used 250K parallel
sentences pairs for each of the language pairs as
in (Cao et al., 2020), while for MAO we used only
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25K, except for indic-bert which resulted the best
performance with only 7K pairs. We selected these
parameters by training the models on different num-
bers of sentences and testing it on the validation
set. We fine-tuned the multilingual models for one
epoch following Cao et al. (2020). We report the
rest of the used hyperparameters in Table 6 of the
appendix. Additionally, we note that adapters could
only be used for three multilingual models because
at the time of implementation the used Adapter-
Hub toolkit (Pfeiffer et al., 2020) supported only
mBERT, dBERT and XLM-RoBERTa but not indic-
bert.

Pipelines for Word Retrieval In the word re-
trieval task as baseline we use language models
without any fine-tuning. In the second setup, we
fine-tune the multilingual language models using
FAO and use it for the word retrieval task. In the
third setup, we train our proposed linear and trans-
former layer with or without adapters.

Pipelines for BLI As baseline for BLI we use
language models without any fine-tuning to gener-
ate anchors for mapping. In the second and third
setups we fine-tune the multilingual language mod-
els using either FAO or MAO and use it to gen-
erate anchors and perform mapping. We map the
anchors using two alignment techniques VecMap
(Artetxe et al., 2016) or RCSLS (Liu et al., 2019).
We perform the mapping on two language pairs
Bengali-English and German-English. We use the
mapping for XNLI task as well as described below.

Pipelines for XNLI As baseline for XNLI task
we fine-tune the language model and a dedicated
classifier layer on the English XNLI data and test
them on German and Bengali data. In the second
setup we fine-tune the language models using FAO
first and then use this fine-tuned model in the same
way as the baseline, i.e., we add an additional XNLI
specific classification layer. In the third setup we
train our proposed models with MAO by adding
the trained alignment layers optionally together
with adapters between the language model and the
classifier layer. We only train the core LM and clas-
sifier on XNLI but keep the alignment layer and
the adapter frozen. In the last setup, we use map-
ping matrices built by either VecMap or RCSLS as
described above and initialize a linear layer added
between the language model and the classifier layer.
We do not train this linear layer when training on
XNLI. We trained our models for three epochs with

Models de-en bn-en Minutes
mBERT-cased 28.45 14.55 -
mBERT-cased + FAO 39.64 43.00 500.0
mBERT-cased + lin + MAO 45.84 26.93 29.0
mBERT-cased + trans + MAO 46.73 24.27 30.5
mBERT-cased + ada + transformer + MAO 48.02 24.55 32.5
dBERT 20.71 9.71 -
dBERT + FAO 35.28 39.72 293.0
dBERT + linear + MAO 29.50 14.41 17.5
dBERT + transformer + MAO 32.21 12.58 19.0
dBERT + adapter + transformer + MAO 31.48 12.60 19.5
XLM-RoBERTa 4.33 6.40 -
XLM-RoBERTa + FAO 7.58 6.40 1893.0
XLM-RoBERTa + transformer + MAO 22.54 14.41 31.0
indic-bert - 12.45 -
indic-bert + FAO - 29.22 221.0
indic-bert + linear + MAO - 15.36 4.0
indic-bert + transformer + MAO - 13.28 4.3

Table 1: Accuracy for word retrieval task for different
multilingual models for bn-en and de-en. Here bn =
Bengali, de = German, en = English, trans = transformer,
ada = adapter. Minutes column indicated the number
of minutes it takes to train the model

batch size 8 or 4 (when trained with mBERT or
XLM-RoBERTa) and used 1e−6 as learning rate.

6 Results & Discussion

We show results for our word retrieval task in Ta-
ble 1. Results for BLI task is shown in Table 2,
while Table 3 shows the results for the XNLI task.
The results shown in these tables are the outcome
of a single model per setup. We did not average the
results across runs or seeds in order to reduce the
required computational resources. Next we discuss
the comparison of various aspects of the selected
models.

Big vs. Small Models From all the results across
all the task and languages we observe that big mod-
els outperformed smaller models often by a sig-
nificant margin. In Table 3 for the XNLI task the
zero-shot accuracy score on de test set for mBERT
is 66.79, for XLM-RoBERTa it is 71.74 whereas
for dBERT is 61.74 (dBERT < mBERT < XLM-
RoBERTa). In Table 1 for Word Retrieval task
accuracy score in the de-en direction for mBERT
and dBERT is 28.45 and 20.71 respectively, even
after model fine-tuning the scores are 39.64 and
35.28 respectively. We see this pattern for the BLI
task as well, in Table 2. We should always choose
big models over smaller models when we have
available resources (computational, data and time).

Multilingual vs. Monolingual Models From
the results of the BLI task in Table 2 it is clear
that multilingual models showed far superior per-
formance than monolingual models. In Table 2 the
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Models de-en bn-en
p@1 p@5 p@1 p@5

mBERT-uncased + vec 56.84 71.50 12.33 26.54
mBERT-uncased + rcs 59.79 74.37 12.26 27.27
mBERT-cased + vec 50.95 62.29 7.43 19.43
mBERT-cased + rcs 51.54 67.47 8.71 20.50
mBERT-cased + FAO + vec 57.29 57.58 15.08 29.89
mBERT-cased + FAO + rcs 57.58 70.91 16.68 32.23
mBERT-cased + lin + MAO + vec 50.81 63.69 9.04 20.24
mBERT-cased + lin + MAO + rcs 51.47 64.43 9.45 21.47
mBERT-cased + trans + MAO + vec 51.47 62.15 7.57 19.30
mBERT-cased + trans + MAO + rcs 52.06 63.62 8.84 20.91
mBERT-cased + ada + trans + MAO + vec 50.88 62.51 7.90 18.29
mBERT-cased + ada + trans + MAO + rcs 51.25 63.62 8.51 19.97
dBERT + vec 42.70 49.70 4.15 9.98
dBERT + rcs 43.74 52.28 5.16 13.20
dBERT + FAO + vec 53.46 66.12 11.39 25.06
dBERT + FAO + rcs 53.60 66.86 13.13 27.88
dBERT + lin + MAO + vec 43.37 52.87 4.69 10.52
dBERT + lin + MAO + rcs 43.88 53.97 5.49 11.79
dBERT + trans + MAO + vec 43.00 50.44 4.15 10.18
dBERT + trans + MAO + RCSLS 44.10 52.79 5.42 12.60
dBERT + ada + trans + MAO + vec 43.22 50.14 4.75 10.53
dBERT + ada + trans + MAO + rcs 44.25 52.65 5.63 11.99
XLM-RoBERTa + vec 48.82 60.60 10.32 20.17
XLM-RoBERTa + rcs 58.54 73.49 13.67 28.21
XLM-RoBERTa + FAO + vec 50.88 61.63 6.09 12.13
XLM-RoBERTa + FAO + rcs 54.93 68.85 12.33 24.46
XLM-RoBERTa + trans + MAO + vec 50.88 61.63 14.00 29.42
XLM-RoBERTa + trans + MAO + rcs 59.35 75.03 16.28 32.90
indic-bert + vec - - 12.13 21.24
indic-bert + rcs - - 12.33 23.99
indic-bert + FAO + vec - - 13.73 23.72
indic-bert + FAO + rcs - - 15.41 26.27
indic-bert + lin + MAO + vec - - 13.60 23.65
indic-bert + lin + MAO + rcs - - 14.14 24.59
indic-bert + trans + MAO + vec - - 11.59 21.17
indic-bert + trans + MAO + rcs - - 12.53 23.72
De BERT + En BERT + vec 43.00 62.44 - -
De BERT + En BERT + rcs 44.77 63.91 - -
De dBERT + En dBERT + vec 25.47 43.96 - -
De dBERT + En dBERT + rcs 27.46 46.53 - -
De Electra + En Electra + vec 1.62 4.12 - -
De Electra + En Electra + rcs 3.24 9.71 - -
Bn BERT + En BERT + vec - - 5.16 11.86
Bn BERT + En BERT + rcs - - 5.29 12.66

Table 2: P@1 and P@5 scores in BLI task for different
models in de-en and bn-en direction. For de-en and bn-
en direction, the coverage for MUSE test set is 90.53%
and 99.73% respectively. Coverage is the percentage of
word pairs where both source and target word embed-
dings are present in our embeddings matrices. Here bn =
Bengali, de = german, en = english trans = transformer,
ada = adapter, vec = VecMap, rcs = RCSLS.

P@1 score for mBERT-cased using VecMap map-
ping approach in de-en direction is 50.95 but when
we used monolingual BERT for both the German
and English language the P@1 score decreased
to 43.00. We see this performance decrement is-
sue for monolingual models in the bn-en direction
and for other models (dBERT) as well in Table 2.
Fine-tuned mBERT-cased accompanied by RCSLS
outperformed all the models in the de-en and bn-en
direction. Monolingual models exhibited signifi-
cantly poor performance for this word level BLI
task, which we did not anticipate.

Models en de bn

mBERT 79.42 66.79 55.21
mBERT + align-matrix - 67.60 55.04
mBERT + FAO 78.48 68.76 60.92
mBERT + linear + MAO 79.52 67.72 55.51
mBERT + transformer + MAO 80.04 68.04 55.01
mBERT + adapter + transformer + MAO 80.14 69.30 54.69
dBERT 75.51 61.74 50.84
dBERT + align-matrix - 62.44 49.74
dBERT + FAO 75.11 62.51 53.77
dBERT + linear + MAO 75.77 62.81 53.37
dBERT + transformer + MAO 74.89 62.40 52.10
dBERT + adapter + transformer + MAO 76.43 65.01 50.90
XLM-RoBERTa 80.18 71.74 67.94
XLM-RoBERTa + FAO 78.88 70.28 66.47
XLM-RoBERTa + transformer + MAO 80.52 73.05 68.14
indic-bert 75.93 - 65.59
indic-bert + align-matrix - - 67.58
indic-bert + FAO 76.11 - 59.80
indic-bert + linear + MAO 75.57 - 65.97
indic-bert + transformer + MAO 75.81 - 66.85

Table 3: Accuracy scores for XNLI Task for different
multilingual models for three different languages en,
de and bn. Here bn = Bengali, de = German, en =
English, trans = transformer, ada = adapter, align-matrix
= mapping matrix generated in BLI task using RCSLS
for the corresponding language model and language.

Effect of Vocabulary Size and Language Sup-
port On the sentence level task of XNLI shown
in Table 3, indic-bert outperformed mBERT on bn
test set in terms of accuracy score by a large margin
(indic-bert achieved accuracy score 65.59 whereas
mBERT-cased achieved 55.21), it even performed
on par with XLM-RoBERTa on bn (accuracy score
for XLM-RoBERTa is 67.94). For low resource
languages, big multilingual models mostly split the
words into multiple subwords because of the small
number of tokens in the vocabulary for that lan-
guage. But due to parameter sharing and positive
interference of high resource languages on the low
resource languages (Wang et al., 2020) bigger mul-
tilingual models accomplish good performance in
different tasks. indic-bert which is trained on 12 In-
dian subcontinent languages and English has 200k
tokens in its vocabulary (though it is smaller than
XLM-RoBERTa which has 250K tokens from 100
languages and mBERT has 119K tokens from 104
languages) so it does not split most of the Bengali
words into subwords and can capture the context of
the Bengali sentence on par with XLM-RoBERTa.
Increasing the number of languages and vocabulary
does not always lead to better performance.

VecMap vs. RCSLS In Table 2 for all models we
observe that RCSLS mapping always outperformed
VecMap for BLI task. P@1 scores in de-en and bn-
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en direction for mBERT-cased using VecMap are
50.95 and 7.43 respectively while on the contrary
for RCSLS P@1 scores are 51.94 and 8.71 respec-
tively. We have also used the align-matrix gener-
ated for each of the language models and languages
during the zero-shot testing in XNLI task (please
refer to Table 3). We have seen that for mBERT,
dBERT and XLM-RoBERTa scores increased by a
small margin only for the de test set whereas for bn
the scores decreased. However, for indic-bert when
align-matrix was used the scores increased for bn.
VecMap solves a least-square regression problem
to learn a mapping. However, RCSLS proposes
a unified approach where they directly optimize a
retrieval criterion (Joulin et al., 2018). Therefore,
RCSLS performs better than VecMap.

Model Fine-tuning Fine-tuning a multilingual
model with FAO strengthen its contextualized em-
beddings quality. Results shown in Table 1, Ta-
ble 2 and Table 3 indicate that model fine-tuning
significantly improved the performance across all
tasks and models. In Table 1 accuracy scores for
fine-tuned mBERT in word retrieval task for de-en
and bn-en direction are 39.64 and 43.00 respec-
tively over the vanilla mBERT’s accuracy scores
which are 28.45 and 14.55 respectively. In Table 3,
on XNLI de and bn test set fine-tuned mBERT
achieved accuracy scores 68.76 and 60.92 respec-
tively whereas vanilla mBERT achieved 66.79 and
55.21 respectively. There are some exceptions in
the case of XNLI task, where fine-tuned XLM-
RoBERTa and indic-bert’s performance decreased.
Due to constraints in computing resources, we had
to fine-tune XLM-RoBERTa with a small batch
size; for this reason the performance decreased for
XLM-RoBERTa. We have used the same learning
rate for all the models during fine-tuning the lan-
guage model and classifier training for the XNLI
task. That might affect fine-tuned indic-bert’s per-
formance. We believe rigorous hyperparameter
tuning for model fine-tuning and training would
improve the model’s performance significantly but
would lead to higher costs as well.

Proposed Alignment Approach From the accu-
racy scores reported in Table 1, our proposed align-
ment approach outperformed fine-tuned mBERT
in the de-en direction and XLM-RoBERTa in bn-
en direction for word retrieval task. Our align-
ment approach takes significantly less time than
model fine-tuning (see Minutes column of Table 1).

bn-en

Models trilingual bilingual

mBERT-cased + FAO 43.00 40.80
mBERT-cased + lin + MAO 26.93 27.22
mBERT-cased + trans + MAO 24.27 24.42
mBERT-cased + ada + trans + MAO 24.55 24.27

de-en

Models trilingual bilingual

mBERT-cased + FAO 39.64 40.35
mBERT-cased + lin + MA0 45.84 45.47
mBERT-cased + trans + MA0 47.73 46.80
mBERT-cased + ada + trans + MAO 48.02 48.04

Table 4: Accuracy scores for word retrieval task in bilin-
guality vs. trilinguality study using mBERT-cased. Here
bn = bengali, de = german, en = english trans = trans-
former, ada = adapter, lin = linear, bn-en and de-en
= following scores are reported for only bn-en and de-
en directions respectively, trilingual = the models are
trained with both bn-en and de-en parallel data, bilin-
gual = the models are trained with only bn-en parallel
data in case of bn-en direction and similarly for de-en
direction de-en parallel data is used for all model train-
ing.

This simple and smaller approach outperformed
fine-tuned mBERT, dBERT on the German test set
and indic-bert in the Bengali test set in the XNLI
task. For the BLI task our proposed approach with
XLM-RoBERTa and RCSLS outperformed all the
other models for both de-en and bn-en directions
by achieving P@5 scores 75.03 and 32.90 for de-en
and bn-en directions respectively.

Bilinguality vs. Trilinguality We wanted to
study the effect of training our proposed ap-
proaches using only a single language pair
(German-English or Bengali-English) using FAO
and MAO instead of using both of the language
pairs simultaneously. In Table 4, trilingual column
indicates the accuracy scores when the model is
trained on both the German-English and Bengali-
English language pairs simultaneously and the
bilingual column implies the scores when the
model is trained with only one of the language pairs.
From Table 4 we observe that for the bn-en direc-
tion when we fine-tuned the model using FAO only
with Bengali-English data the scores decreased by
a small margin, the score was 43.00 (reported in
the trilingual column) but it dropped to 40.80 (re-
ported in the bilingual column). Whereas for the
de-en direction when we fine-tuned the model with
only German-English data the opposite occurred,
the accuracy score slightly increased from 39.64 to
40.35. Hence, Bengali has minimal negative inter-
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ference on German and German has minimal posi-
tive interference on Bengali in the fine-tuning pro-
cess. However, in case of our proposed approach
(MAO) trained with only German-English data, per-
formance on the de-en direction of the linear and
transformer model decreased. Only the score of
the adapter method increased. Nevertheless, these
increments and decrements were by a tiny margin.
While on the contrary, when we trained the method
with Bengali-English data the performance for the
bn-en direction decreased for the adapter method
but increased for the other two methods. Therefore,
it is unclear whether bilinguality or trilinguality is
advantageous over each other in the case of our
proposed method.

7 Conclusion

In this paper we have compared currently popu-
lar alignment techniques using multilingual and
monolingual models of various architectures from
different aspects by utilizing two word level tasks
(BLI and word retrieval) and one sentence level task
XNLI with one low resource (Bengali-English) and
one high resource language pair (German-English).
We also have proposed a time, data and parame-
ter efficient alignment technique. Our experimen-
tal results demonstrate that multilinguality always
lead to better performance in cross-lingual trans-
fer tasks. When the resources (computational and
data) are available, bigger models are always pre-
ferred over smaller models, but when the resources
are not accessible, smaller but specialized multi-
lingual models should be chosen, since they are
capable of performing similarly to or better than
the large multilingual models on the languages the
model is specialized for. A large set of supported
languages and a large vocabulary does not always
assist in all types of tasks in contrast to models
specifically trained for a limited number of target
languages. Large language models are sensitive re-
garding batch size and learning rate. Finally, high
resource languages and large multilingual models
perform well with our proposed approach. In fu-
ture work we aim to develop alignment techniques
capable of performing well even on low resource
unseen languages.

Limitations

In case of monolingual language models, the per-
formance of our proposed approach is significantly
worse compared to multilingual models. The repre-

sentations produced by the language specific mono-
lingual models are independent from each other,
while in case multilingual models they are to some
extent aligned. Using the representations from
monolingual models and the simple objective func-
tion of our approach, it is more difficult to obtain
the same quality alignment as in case of multilin-
gual models which needs further development.
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A Appendix

For our three different tasks, we have utilized seven
monolingual models and five multilingual models.
Information on the language models, including the
number of parameters, model type, supported lan-
guages and vocabulary size is reported in Table 5.
Hyperparameters utilized for each experiment in
our word retrieval task are mentioned in Table 6.
Table 4 contains the results of our bilingual and
trilingual training setups.
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Model Param. Vocab. Type Languages
mBERT-uncased 168M 105K BERT 104 languages
mBERT-cased 179M 119K BERT 104 languages
dBERT 134M 119K Distil BERT 104 languages
XLM-RoBERTa 270M 250K BERT 100 languages
indic-bert 33M 200K ALBERT 13 languages
bert-base-cased - - BERT English
distilbert-base-cased - - Distil BERT English
google/electra-base-generator - - Electra English
dbmdz/bert-base-german-cased - - BERT German
distilbert-base-german-cased - - Distil BERT German
dbmdz/electra-base-german-europeana-cased-discriminator - - Electra German
sagorsarker/bangla-bert-base - - BERT Bengali

Table 5: Language models used for our experiments.

Models
Batch
Size

Learning
rate

Attention
Head

Reduction
Factor

mBERT+FAO 4 5e−5 - -
mBERT+lin+MAO 16 1e−5 - -
mBERT+transr+MAO 32 5e−8 8 -
mBERT+ada +trans +MAO 32 1e−7 8 8
dBERT+FAO 4 5e−5 - -
dBERT+lin +MAO 32 1e−5 - -
dBERT+trans +MAO 32 1e−7 8 -
dBERT+ ada + trans+MAO 32 1e−7 8 8
XLM-RoBERTa+FAO 1 5e−5 - -
XLM-RoBERTa+trans+MAO 32 5e−5 8 -
indic-bert+FAO 4 5e−5 - -
indic-bert+lin+MAO 32 5e−5 - -
indic-bert+trans+MAO 32 1e−8 8 -

Table 6: Hyperparameters used for different models for the word retrieval task. Here (-) indicates not applicable for
this model, trans = transformer, ada = adapter, lin = linear.
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Abstract

As emotion analysis in text has gained a lot
of attention in the field of natural language
processing, differences in emotion expression
across languages could have consequences for
how emotion detection models work. We eval-
uate the language-dependence of an mBERT-
based emotion detection model by comparing
language identification performance before and
after fine-tuning on emotion detection, and per-
forming (adjusted) zero-shot experiments to
assess whether emotion detection models rely
on language-specific information. When deal-
ing with typologically dissimilar languages, we
found evidence for the language-dependence
of emotion detection.

1 Introduction

As language finds itself at the crossroads of cogni-
tion and culture, it has been a thoroughly investi-
gated subject in the context of emotion research and
has given rise to questions as how emotion expres-
sion varies across languages and whether language
has an impact on emotion conceptualisation and
perception.

Indeed, many studies have reported on the cul-
tural relativity of emotion, often underscoring the
diversity in emotion lexicons across languages: not
only is there a big variability in which emotional
states are included in the lexicon of a language with
a designated emotion term (e.g., a word for sadness
seems to be missing in Tahiti (Levy, 1984)), but
there are also many differences in the connotations
and meanings of emotion terms across languages
(Mesquita et al., 1997; Wierzbicka, 1999).

Instead of focusing on emotion conceptualisa-
tion and experience, one could also ask whether
emotions are expressed differently across lan-
guages. Again, this can be reflected in differ-
ences in emotion vocabulary, but also in language-
specific phraseology. In Russian, for example, the

*These authors contributed equally to this work.

verbalisation of emotion is very much focused
on the human body, and the numerous diminu-
tive suffixes exhibit different emotional nuances
(Wierzbicka, 1999). Noteworthy is also the dis-
tinction between individualistic and collectivist cul-
tures, where the latter are associated with more
reticence to express emotions, while the former ex-
hibit more open emotion expression (Semin et al.,
2002).

As emotion analysis in text has gained a lot of
attention in artificial intelligence and the field of
natural language processing (NLP) as well (Calvo
and Mac Kim, 2013; Mohammad, 2016), language-
dependent conceptualisation and expression could
have consequences for how emotion detection mod-
els work. Analogously to humans who might need
knowledge about the linguistic code (e.g., to know
whether irony is often used in a specific language
or to understand language-specific phraseology) to
correctly judge the emotional value of someone’s
utterance, machine learning models might need this
knowledge as well in order to accurately predict
emotions from text. Therefore, we investigate the
language-dependence of the task of emotion detec-
tion. In other words, we want to know whether
knowledge about the language identity is needed
to make accurate emotion predictions.

For this analysis, we will look at languages from
different language families and branches (e.g., Ger-
manic, Italic and Indo-Iranian in the Indo-European
language family or Chinese from the Sino-Tibetan
language family) in order to include languages with
different structural features. Although language
families are not the same as the classes defined in
the field of linguistic typology (i.e., the analysis,
comparison, and classification of languages accord-
ing to their common structural features and forms),
languages within one language family are generally
more typologically similar than languages from dif-
ferent families.

As transformer models are currently state of the
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art in many NLP tasks, we investigate the language-
dependence of multilingual BERT (mBERT), the
transformer model introduced by Devlin et al.
(2019) which was trained on 104 languages. We
foresee two kinds of experiments. First, we inves-
tigate how much language-specific information is
preserved in the BERT representations by compar-
ing performance on the task of language identifi-
cation both before and after fine-tuning on emo-
tion detection. Second, zero-shot transfer learning
(training on a source language and testing directly
on the target language English) is compared with
training on machine-translated data, i.e., data that
was originally in English but automatically trans-
lated to the source language (‘semi-zero-shot trans-
fer learning’). These models thus learn from the
same source language, but in the semi-zero-shot
set-up language-specific information from the tar-
get language (like idioms, phraseology or cultural
codes) might still be preserved, thus aiding perfor-
mance during test time on the target language.

In Section 2, we describe the literature on cross-
lingual emotion research (Section 2.1) and discuss
related work dealing with language dependency in
NLP (Section 2.2). In Section 3 we explain our
method by describing the data and resources (Sec-
tion 3.1) and by zooming in on the experimental
set-up (Section 3.2). The results are reported in
Section 4 and further discussed in Section 5, fol-
lowed by a conclusion in Section 6.

2 Related work

2.1 Emotions across languages

While many psychological models assume that
emotions are distinct from linguistic processing,
growing psychological research suggests that lan-
guage plays an important role in both emotion expe-
rience and perception. Especially in psychological
constructionist theories of emotion, language is
considered as doing more than merely communi-
cating emotion. Instead, language contributes to
the conceptualisation of emotion itself (Lindquist
et al., 2015).

In the constructionist view, the experience of
emotion takes place when sensations inside and
outside the body are made meaningful in their con-
text by use of concept knowledge. This is referred
to as the theory of constructed emotion or – as it
was previously called – the conceptual act theory
(Barrett, 2006). Concept knowledge is the knowl-
edge we have about different categories, acquired

via semantic knowledge and personal experience
(Lindquist et al., 2015). Both language and culture
can thus play an important role here.

The role of language in emotion can be linked to
the linguistic relativity hypothesis (Whorf, 1956).
Linguistic relativity, often referred to as the Sapir-
Whorf hypothesis, suggests that the way people
think is influenced by the language they speak.
Speakers of Russian, for example, a language
which has separate words for naming light blue
(goluboy) and dark blue (siniy), discriminate be-
tween various shades of blue differently than En-
glish speakers, who only have one term to denote
blue (Winawer et al., 2007). Another example of
linguistic relativity is the observation that Inupiaq,
an Inuit language, has many words for snow, while
English has only one, which suggests that speak-
ers of these languages categorize their environment
differently. In this light, it is compelling to study
cross-lingual differences in emotion conceptualisa-
tion, experience and perception.

In the context of emotion conceptualisation,
Mesquita et al. (1997) highlighted that lexical
equivalents are mostly not expressing the same
meaning across languages. This is in line with
results from a colexification analysis of emotion
words in 2,474 languages, in which Jackson et al.
(2019) found that there is a wide variation in which
emotion concepts are lexicalized together by one
word form, and that colexifications vary system-
atically across language families. In Tai-Kadai
languages, for example, anxiety is closely related
to fear, while it is more related to grief and regret
in Austroasiatic languages.

Also emotion perception varies across languages,
which is reflected in differences in emotionality rat-
ings (affective norms) of words (Harris et al., 2006).
Of course, this could be linked to the differences
in meaning in lexical equivalents across languages,
but it might also be due to cultural differences in ap-
praisal of the same event. Mesquita and Ellsworth
(2001) give as example that solitude may be per-
ceived as positive in middle-class European culture
and lead to contentment, while in Inuit culture, be-
ing alone is typically associated with sorrow and
for Tahitians with fear.

Finally, there is also variation in how emotions
are expressed. Semin et al. (2002) found that in-
dividualistic cultures and collectivist cultures ex-
press emotions and emotional events using dif-
ferent linguistic markers and divergent levels of
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abstraction: in individualistic cultures, emotion
terms are more prominent as self-markers and are
represented by abstract language (e.g., adjectives
and nouns), while in collectivist cultures, emo-
tion terms are more prominent as relationship-
markers and are represented by concrete language
(e.g., interpersonal verbs). This is in line with stud-
ies on emotional reticence in East Asian cultures.
Caldwell-Harris et al. (2013) compared verbal dec-
larations of love in Chinese and American English,
where they placed the reticence of both verbal and
non-verbal emotional expression in Chinese oppo-
site to the frequent use of ‘I love you’ as displaying
American expressivity.

2.2 Language dependency in natural language
processing

Cross-lingual and multilingual perspectives on nat-
ural language processing have received a lot of
attention, especially regarding the transferability
of NLP models across languages. Since the rise
of deep learning, many efforts have been made to
achieve cross-lingual representations of words in a
joint embedding space (Ruder et al., 2019). Also
state-of-the-art transformer models have been de-
veloped in multilingual variants, like multilingual
BERT (mBERT) (Devlin et al., 2019), XLM (Con-
neau and Lample, 2019) and XLM-R (Conneau
et al., 2020).

These multilingual models have been the sub-
ject of probing studies to investigate how well they
perform in zero-shot cross-lingual model transfer
(i.e., fine-tuning the model on task-specific train-
ing data from a source language and testing that
resulting model on test data for that task in a dif-
ferent language). Pires et al. (2019) performed
such probing experiments with mBERT (named
entity recognition and part of speech tagging) and
found that it has a robust ability to generalize cross-
lingually, but that transfer works best between ty-
pologically similar languages. This could indicate
that mBERT learns representations which contain
both a cross-lingual and a language-specific compo-
nent. Using Canonical Correlation Analysis (CCA)
on the internal representations of mBERT, Singh
et al. (2019) found that mBERT is not embedding
different languages into one shared space, but that
it partitions representations for each language (es-
pecially at deeper layers) in a way that reflects
the linguistic and evolutionary relationships be-
tween languages as represented in phylogenetic

trees. When looking at the representations of the
last layer of mBERT, Gonen et al. (2020) could
identify a language-identity subspace, which sup-
ports the hypothesis that there are identifiable lan-
guage components in mBERT.

While there are many studies trying to gain in-
sight in how language-specific information is stored
in mBERT, the focus is mostly on the embeddings
themselves, and not on how different tasks ex-
ploit this information. An exception is the study
of Tanti et al. (2021), who investigated the effect
of fine-tuning on specific tasks on the language-
specific component of mBERT representations.
They found that mBERT’s representations become
less language-specific after fine-tuning and that
there is a greater loss of this information in POS-
tagging, which is a morphosyntactic task, com-
pared to natural language inference (NLI), which
is a semantically oriented task.

For the task of emotion detection, the exploita-
tion of language-specific information in word em-
beddings has not yet been investigated. However,
language-dependence of this task and the related
task of sentiment analysis has been studied in the
context of emotion/sentiment preservation after
translation. Mohammad et al. (2016) investigated
the use of Support Vector Machines in detecting
sentiment (positive/negative/neutral) in Arabic so-
cial media posts and compared performance of an
Arabic sentiment classification system with an En-
glish system where the Arabic texts were trans-
lated to English. They found that the translation-
based approach produced results on par with Ara-
bic sentiment analysis when the translation was
done manually, and led to a small drop in perfor-
mance when the translation was done automatically.
This suggests that, when using high-quality trans-
lations, sentiment analysis does not suffer from
losing language-specific information. However,
the authors did observe that translations often did
not preserve the original sentiment and investigated
this by means of an annotation task of the instances
where translation had resulted in sentiment change.
When the translation was done automatically, the
main reason for sentiment change was bad transla-
tion, but when the translation was done manually,
the annotators indicated cultural differences as the
main reason for this change. An example of the
latter is a sentence that referred to not seeing the
crescent moon and that was annotated in English
as neutral, but negative in Arabic, as the crescent
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moon in Islam is associated with the beginning of
a month or a holiday. Another example included
the phrase “I have no comment”, which was anno-
tated as neutral in English, but is used to express a
negative opinion in Arabic.

A similar study was performed by Kajava et
al. (2020), who investigated the preservation of
the emotion categories anger, anticipation, disgust,
fear, joy, sadness, surprise and trust when English
data was translated to Finnish, French and Italian.
They deemed the degree of preservation sufficient
for using translated data in cross-lingual emotion
detection systems and found that change of emo-
tion labels was due to incomplete or ambiguous
translation and to the difficulty of the emotion an-
notation task itself (which even causes confusion
between the annotations of annotators within one
language), rather than to linguistic differences in
the encoding of emotion.

3 Method

3.1 Resources & data

We assess the language dependency of emotion de-
tection using multilingual BERT (mBERT), which
was released together with the original English
BERT model (Devlin et al., 2019). Both the En-
glish and multilingual BERT are 12-layer trans-
formers, but while the original BERT is trained
on English data only, mBERT is trained on the
Wikipedia pages of 104 languages and thus has a
shared word piece vocabulary. There is no explicit
marker denoting the input language, nor does it use
an explicit mechanism to encourage translation-
equivalent pairs to have similar representations.

Emotion dataset For our emotion detection
dataset, we start from the Universal Joy dataset
(Lamprinidis et al., 2021). The original dataset
consists of 530k Facebook posts in 18 languages,
which were collected based on the ‘feelings tags’
that users added to their message. These self-
labeled tags were then mapped to one of the 5
emotion categories anger, anticipation, fear, joy
and sadness. For our experiments, we included all
languages from the ‘Small’ version of this dataset
(2,947 instances per language), namely Chinese,
English, Portuguese, Spanish and Tagalog, and
complemented this with the Dutch (as it is typo-
logically very similar to English) and Hindi (to
have an additional more typologically distinct lan-
guage) data from the ‘Low Resource’ subset (2,201

instances for Dutch and 1,823 for Hindi).
We made sure the sizes of the datasets and distri-

butions of the emotion labels were equal across all
seven languages, which will be important for the
zero-shot experiments (see Section 3.2). We there-
fore identified the language with the lowest number
of instances for each label, and randomly sampled
the same number of instances with that label for the
other languages. This resulted in 10,437 instances
in total or 1,491 instances per language, of which
150 for anger, 231 for anticipation, 8 for fear, 830
for joy and 272 for sadness. We call this set UJ
Equal. The original Universal Joy dataset con-
tains some special tokens like [URL], [PHOTO],
[LOCATION] or [PERSON]. We removed all of
these except [PERSON], as they are not part of
the grammatical sentence.

We also provide a dataset with machine trans-
lations, based on the English part of UJ Equal.
Using the Google Translate API with the Python
package googletrans1, we translated the En-
glish subset in UJ Equal to Chinese, Dutch,
Hindi, Portuguese, Spanish and Tagalog and call
this dataset UJ MT.

We further have a separate test set of English
instances consisting of 981 sentences, as provided
in the original Universal Joy dataset, which we call
UJ English Test.

Language Identification dataset 6,000 in-
stances for each of the seven languages (Chinese,
Dutch, English, Hindi, Portuguese, Spanish and
Tagalog) were taken from the OSCAR corpus (Or-
tiz Suárez et al., 2020), which is a multilingual
corpus obtained by language classification and fil-
tering of the Common Crawl corpus2. These in-
stances were randomized and the language code
was added as label.

3.2 Experimental setup

Preservation of language-specific information
First, we investigate to what degree language-
specific information is preserved after fine-tuning
mBERT on the task of emotion detection. We
use the pre-trained mBERT model with a single-
layer softmax classifier on top. In phase 1, the
pre-trained model is used without fine-tuning to ex-
ecute the language identification task (7-class clas-
sification on the Language Identification dataset).
In phase 2, mBERT is fine-tuned in 5 epochs on the

1https://pypi.org/project/googletrans/
2https://commoncrawl.org/
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emotion detection task (with the 10,437 instances
from UJ Equal) using categorical cross-entropy
loss. The resulting model is then used for the en-
coding and classification of the language identifica-
tion task. The language identification performance
of both phases is then compared. Moreover, we
visualize the outputs from different layers in the
BERT model, and at different stages in the fine-
tuning process using t-SNE to decipher the effect
of fine-tuning for emotion on the language-specific
representations.

Zero-shot and semi-zero-shot experiments The
next set of emotion detection experiments also con-
sists of two phases. In phase 1, more traditional
zero-shot experiments are performed, where we ei-
ther train on the source languages Chinese, Dutch,
Hindi, Portuguese, Spanish or Tagalog (1,491 in-
stances from UJ Equal), and test on the sepa-
rate English set of 981 sentences (UJ English
Test). In phase 2, we train on the same source lan-
guages, but instead of relying on authentic, original
data we rely on the UJ MT data. This data was thus
originally in English, but machine-translated to ei-
ther Chinese, Dutch, Hindi, Portuguese, Spanish or
Tagalog. We call this semi-zero-shot experiments.

The idea behind this is that the machine-
translated data could be closer to the target lan-
guage regarding language-specific information,
and that the version with machine-translated data
will thus perform better in tasks where language-
specific information is important. Note that it is
crucial that all train sets have the same label dis-
tribution, to avoid that the (dis)similarity with the
label distribution of the test set explains the perfor-
mance of the models.

Again, we use pre-trained mBERT with a single-
layer softmax classifier and cross-entropy loss as
loss function. We compare the (semi-)zero-shot
models against a within-language baseline, trained
on the English part of the UJ Equal dataset.

4 Results

4.1 Preservation of language-specific
information

Effect on language identification performance
The language identification performance before
and after fine-tuning on emotion detection is
shown in Table 1. When using the pre-trained
mBERT model without further fine-tuning, the
model achieves a macro-averaged F1-score of

Task Macro F1
before fine-tuning (frozen LM) 0.9992
after fine-tuning on emotion detection 0.9161

Table 1: Language identification performance before
and after fine-tuning on emotion detection.

99.92%. This means that mBERT reaches an
almost perfect performance in differentiating be-
tween languages, which is in line with previous
findings that mBERT partitions representations per
language (Singh et al., 2019) or that it at least ex-
hibits a language-identity subspace (Gonen et al.,
2020).

When fine-tuning mBERT on emotion detec-
tion and applying the resulting model to perform
language identification, the model’s performance
drops to 91.61%. As also observed by Tanti et al.
(2021), the mBERT representations become less
language-specific after fine-tuning on a specific
task. Intuitively, tasks that require less language-
specific knowledge, would lose more language-
specific information than tasks that heavily rely on
language-specific knowledge, resulting in a larger
drop of language identification performance. As
the drop in performance after fine-tuning on emo-
tion detection (7.47%) is relatively small (espe-
cially compared to the drops reported by Tanti et al.
(2021), which was 10.6% after fine-tuning on NLI
and even 78% for POS-tagging), one could deduce
that emotion detection does rely rather heavily on
language-specific knowledge.

T-SNE plots
To visualise the effect of fine-tuning for emotion
detection on the mBERT representations, the hid-
den states of the first (Layer 1), middle (Layer 6)
and last (Layer 12) layer of the model are plotted in
Figure 1 using t-SNE projections before fine-tuning
(Epoch 0), and after Epoch 2 and 4.

We see that, regardless of how far the fine-tuning
process has progressed, the languages are already
clearly distinct in the first layer of the model. In the
last layers, the language clusters begin to slowly
merge while the model is being fine-tuned.

After epoch 2, most languages have already
merged, but Chinese, Hindi and Tagalog (the non-
European languages) are still represented in sepa-
rate clusters. However, after epoch 4, Hindi and
Tagalog have entered the European cloud, while
Chinese stays more or less isolated.
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Figure 1: Visualisation of mBERT embeddings and effect on language separation when fine-tuning on emotion
detection. Language codes: nl = Dutch, hi = Hindi, zh = Chinese, tl = Tagalog, en = English, pt = Portuguese, es =
Spanish.

Figure 2: F1-scores for zero-shot (blue) and semi-zero shot (yellow) emotion classification on the English test set.
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Interestingly, instead of a complete mix-up of
languages, each language is still quite distinguish-
able after fine-tuning, even though they are being
placed much closer to each other than initially. Es-
pecially Chinese and Hindi, but also Portuguese
are easily distinguishable.

4.2 Zero-shot and semi-zero-shot experiments

In this section, we report zero-shot and semi-
zero-shot results for emotion detection on the UJ
English test set from Universal Joy. The
baseline macro-average F1-score (trained on the
English part of UJ Equal) is 43.1%.

As shown in Figure 2, all zero-shot experiments
achieve a lower performance than this baseline,
with Hindi as lowest performing source language
(21.8% F1), followed by Chinese (24.1% F1) and
Tagalog (27.6% F1). Unsurprisingly, Dutch is
the best-performing source language (38.4% F1),
followed by Portuguese (36.0% F1) and Spanish
(35.1% F1). The performance of these source lan-
guages more or less corresponds to their typolog-
ical similarity, with the European languages per-
forming best as source language when English is
the target language. Only Hindi, which also be-
longs to the family of Indo-European languages,
performs worse than expected (even worse than
Chinese and Tagalog, which belong to the Sino-
Tibetan and Austronesian language families, re-
spectively). This might be due to the difference in
script (Devanagari for Hindi versus Latin for the
other Indo-European languages).

Our idea was that using machine-translated in-
stances (English to source language) as training
data instead of real instances in the source lan-
guage, would give an indication of the system’s
reliance on language-specific information, as some
of this information might still be preserved in a
(machine) translation. Before the translation step,
all training instances in these so-called semi-zero-
shot experiments are the same, namely the English
part of UJ equal. We expected a drop in the
semi-zero-shot results compared to the baseline
results (because some information will be lost any-
way due to (imperfect) translation), but if the drop
from baseline to semi-zero-shot would be smaller
compared to the drop from baseline to normal zero-
shot, this might indicate that the model relies more
on language-specific information (note that the size
of the fine-tuning set is equal in the zero-shot ex-
periments and semi-zero-shot experiments). These

results are indicated by the yellow bars in Figure 2.
Interestingly, we see that for the European lan-

guages, normal zero-shot is better than semi-zero-
shot (with normal zero-shot outperforming semi-
zero-shot with around 4 to 6% F1), while for Chi-
nese and Hindi semi-zero-shot is better. The results
for Tagalog are less outspoken, as the F1-score for
zero-shot (27.6%) and semi-zero-shot (27.3%) are
on par.

If it is the case that language-specific informa-
tion is really encoded in the machine-translated
instances, then these results could indicate that an
emotion detection model does rely on such infor-
mation. The language-specific information might
be similar for English and the other European lan-
guages used in this study, making that there is no
benefit in using a model that encodes this informa-
tion for English (i.e., the semi-zero-shot model).
However, for less similar languages, these results
do suggest that there is a benefit and that emotion
detection is language-dependent.

5 Discussion

Although we found some potential evidence for the
language-dependence of emotion detection, several
points need to be taken into account. First of all,
the datasets used in this study are small (especially
for the category fear), and the overall quality of the
data is low. It seems that some messages are in-
complete and that some (parts of) instances appear
multiple times in the dataset.3 Furthermore, some
instances contain code-switching between different
languages. Another drawback is that we only tested
on English. We made this choice because we could
not obtain test sets for all languages (for Hindi and
Dutch, all data was already used for training).

We claim that we found evidence for the
language-dependence of emotion detection, where
typologically dissimilar languages suffer more
from cross-lingual zero-shot learning. This evi-
dence is partly based on the observation that semi-
zero-shot experiments (in which language-specific

3Example from the Dutch subset of Universal
Joy:“valiumpilletje gekregen om rustig te worden, haar
lichaam moet de rest doen, maar de eerste uren heeft ze
zich er ernstig tegen verzet maar ligt nu gelukkig heerlijk
te slapen. Hopelijk voor ons allen een goede [PERSON]
.”; “tegen verzet maar ligt nu gelukkig heerlijk te slapen .
Hopelijk voor ons allen een goede nachtrust.”; “heerlijk te
slapen . Hopelijk voor ons allen een goede [PERSON] .”;

“slapen. Hopelijk voor ons allen een goede [PERSON] .”; “.
Hopelijk voor ons allen een goede [PERSON] .” are separate
instances in the dataset.
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information is assumed to be preserved to a certain
extent) outperforms zero-shot learning for Hindi
and Chinese, while it does not for the European lan-
guages (as language-specific information might be
similar for these languages and English, and there
therefore is no benefit in using a model that en-
codes this information). However, it could be that
this language-specific information is not related to
phraseology or differences in emotion-topic rela-
tions (see Section 1 and 2.1), but to differences in
topic distribution in general. It might be the case
that the topics in Chinese and Hindi are very dif-
ferent from the topics in the English dataset, while
the European languages contain similar topic dis-
tributions as English.

The semi-zero-shot experiments are based on
the idea that some language-specific information is
preserved after machine translation. Although we
cannot be absolutely certain of this, the fact that the
semi-zero-shot experiments outperformed normal
zero-shot for some languages, suggests that there is
some helpful information in these translations. One
could argue that the performance of the semi-zero-
shot models correlates negatively with the quality
of the translations: machine translation might be
bad for less similar languages, resulting in a bet-
ter emotion classification performance in the semi-
zero-shot case, because some words have not been
translated. However, we could not find evidence
for this. When applying a token-level language
identifier on the translated texts4, we found that the
percentage of tokens that was classified as English
instead of Chinese, Tagalog and Hindi is respec-
tively 6%, 3% and 0.3%. That there are almost no
untranslated words in the Hindi set while the semi-
zero-shot does perform better, thus contradicts that
the semi-zero-shot performance is explained by the
number of untranslated words.

In future work, we envisage to use a different ap-
proach for investigating the language-dependence
of emotion detection instead of relying on semi-
zero-shot experiments. As both this study and pre-
vious research has shown that mBERT partitions
its representations per language (Singh et al., 2019;
Gonen et al., 2020), it would be compelling to see
whether we can achieve language-neutral represen-
tations and which effect that has on the emotion de-
tection performance. We hypothesise that when the
representations no longer exhibit language-specific
information, it would hamper emotion detection.

4https://github.com/Abhijit-2592/spacy-langdetect

However, in such a set-up, we will need to compare
emotion detection to a reference task and discuss
the language dependency of those tasks in relation
to each other. This because the process of mak-
ing language-neutral representations will involve
reducing the transformer’s parameters and that will
probably lead to a performance drop anyway.

6 Conclusion

In this paper, we assessed the language-dependence
of an mBERT-based emotion detection model. We
first investigated the effect of fine-tuning on emo-
tion on the preservation of language-specific infor-
mation in mBERT, by comparing language iden-
tification performance of the languages Chinese,
Dutch, English, Hindi, Portuguese, Spanish and
Tagalog before and after fine-tuning on emotion
detection and visualising the model’s hidden states
in t-SNE plots. As expected, language-specific in-
formation is lost after fine-tuning, but only to a
small extent. Especially the representations of ty-
pologically dissimilar languages remain more or
less isolated, while similar languages get clustered
together.

In a next set of experiments, we compared zero-
shot learning with what we called ‘semi-zero-shot
learning’. In the zero-shot experiments, we trained
a model on either Chinese, Dutch, Hindi, Por-
tuguese, Spanish or Tagalog and tested it on En-
glish data. In semi-zero-shot, originally English
data was translated to those languages, assuming
that some language-specific information is pre-
served in these translations. We found that for
the European languages, normal zero-shot is better
than semi-zero shot. However, for less similar lan-
guages, semi-zero-shot was better, suggesting that
there is some language-specific information aiding
the performance. This could be evidence for the
language-dependence of emotion detection.

Future research, dealing with better datasets
and approaches to make the BERT representations
language-neutral, should be carried out to corrobo-
rate these findings.
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Ayçiçeǧi. 2006. When is a first language more emo-
tional? Psychophysiological evidence from bilingual
speakers. In Aneta Pavlenko, editor, Bilingual Minds:
Emotional Experience, Expression, and Representa-
tion, pages 257–283. Multilingual Matters.

Joshua Conrad Jackson, Joseph Watts, Teague R Henry,
Johann-Mattis List, Robert Forkel, Peter J Mucha,
Simon J Greenhill, Russell D Gray, and Kristen A
Lindquist. 2019. Emotion semantics show both
cultural variation and universal structure. Science,
366(6472):1517–1522.

Kaisla Kajava, Emily Öhman, Piao Hui, Jörg Tiede-
mann, et al. 2020. Emotion preservation in transla-
tion: Evaluating datasets for annotation projection.
Proceedings of Digital Humanities in Nordic Coun-
tries (DHN 2020), pages 38–50.

Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt,
and Dirk Hovy. 2021. Universal Joy: A data set and
results for classifying emotions across languages. In
Proceedings of the Eleventh Workshop on Compu-
tational Approaches to Subjectivity, Sentiment and
Social Media Analysis, pages 62–75, Online. Associ-
ation for Computational Linguistics.

Robert I Levy. 1984. The emotions in comparative
perspective. Approaches to emotion, pages 397–412.

Kristen A. Lindquist, Jennifer K. MacCormack, and
Holly Shablack. 2015. The role of language in emo-
tion: Predictions from psychological constructionism.
Frontiers in Psychology, 6.

Batja Mesquita and Phoebe C Ellsworth. 2001. The role
of culture in appraisal. In Klaus R Scherer, Angela
Schorr, and Tom Johnstone, editors, Appraisal pro-
cesses in emotion: Theory, methods, research, pages
233–248. Oxford University Press.

Batja Mesquita, Nico H Frijda, and Klaus R Scherer.
1997. Culture and emotion. Handbook of cross-
cultural psychology, 2:255–297.

Saif M Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Emotion measurement, pages 201–237.
Woodhead Publishing, Sawston, Cambridge.

Saif M Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016. How translation alters sentiment.
Journal of Artificial Intelligence Research, 55:95–
130.

Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît
Sagot. 2020. A monolingual approach to contextual-
ized word embeddings for mid-resource languages.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1703–
1714, Online. Association for Computational Linguis-
tics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
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Abstract

Transformer language models (TLMs) are crit-
ical for most NLP tasks, but they are difficult
to create for low-resource languages because
of how much pretraining data they require. In
this work, we investigate two techniques for
training monolingual TLMs in a low-resource
setting: greatly reducing TLM size, and com-
plementing the masked language modeling ob-
jective with two linguistically rich supervised
tasks (part-of-speech tagging and dependency
parsing). Results from 7 diverse languages in-
dicate that our model, MicroBERT, is able to
produce marked improvements in downstream
task evaluations relative to a typical monolin-
gual TLM pretraining approach. Specifically,
we find that monolingual MicroBERT models
achieve gains of up to 18% for parser LAS and
11% for NER F1 compared to a multilingual
baseline, mBERT, while having less than 1%
of its parameter count. We conclude reduc-
ing TLM parameter count and using labeled
data for pretraining low-resource TLMs can
yield large quality benefits and in some cases
produce models that outperform multilingual
approaches.

1 Introduction

Pretrained word embeddings are an essential in-
gredient for high performance on most NLP
tasks. Transformer language models (TLMs)1

such as BERT/mBERT (Devlin et al., 2019)
RoBERTa/XLM-R, (Liu et al., 2019; Conneau
et al., 2020), and ELECTRA (Clark et al., 2020)
provide state-of-the-art performance, but they ex-
pect at least tens of millions of tokens in training
data. High-resource languages like English, Arabic,
and Mandarin are able to meet this requirement, but
most of the world’s languages cannot. Two major
lines of work have arisen in order to address this

1Following popular usage, we will informally refer to
TLMs similar to the original BERT as “BERTs” throughout
this work.

gap: the first attempts to use multilingual transfer
to pool different languages’ data together to meet
TLMs’ data demands, and the second attempts to
lower TLMs’ data demands by changing their ar-
chitectures and training regimens.

In this study, we take up work in the latter direc-
tion, asking specifically whether (1) vast reduction
of model size and (2) incorporation of explicitly
supervised, rather than self-supervised, tasks into
model pretraining can produce better monolingual
TLMs. The former method is motivated by the
intuition that normal-sized TLMs are so large as
to be severely overparameterized for low-resource
settings, and the latter method is motivated by an
intuition that in the absence of large volumes of
unlabeled text, signal from a supervised task with
linguistic annotations is less likely be redundant to
the model. We find evidence that indicates both
methods are helpful: our MicroBERT models pro-
duce monolingual embeddings that can outperform
comparable multilingual approaches. We summa-
rize our contributions as follows:

1. We describe a method for training monolin-
gual BERTs for low-resource settings, Mi-
croBERT, characterized by a small parame-
ter count and multitask pretraining which in-
cludes masked language modeling (MLM),
part-of-speech (PoS) tagging and dependency
syntax parsing.

2. Using evaluations on named-entity recogni-
tion (NER) and Universal Dependencies (UD)
parsing across 7 diverse languages, we show
that this approach is competitive with multi-
lingual methods and often outperforms them
for languages unseen by mBERT, even when
the only pretraining task is MLM. Our eval-
uation reveals a 7% higher parser LAS and
6% higher NER F1 on average for unseen lan-
guages, with gains up to 18.87% and 11.81%
for parsing and NER.
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3. We release all MicroBERT models trained
for this work at https://github.com/
lgessler/microbert.

4. We publicly release our code at https://
github.com/lgessler/microbert
for reproducing our results and as a turnkey
facility for training new MicroBERTs.

2 Previous Work

At least since the development of pretrained static
word embeddings (Mikolov et al., 2013b,a; Pen-
nington et al., 2014; Bojanowski et al., 2017),
pretrained word representations have been indis-
pensable resources for NLP models, providing
dense numerical representations of tokens’ linguis-
tic properties. Pretrained contextualized embed-
dings (McCann et al., 2018; Peters et al., 2018;
Devlin et al., 2019) based on the Transformer archi-
tecture (Vaswani et al., 2017) have since overtaken
them in popularity. Throughout this period, high-
resource languages have received the majority of
attention, and although interest in low-resource set-
tings has increased in the past few years, there re-
mains a large gap (in terms of linguistic resources,
pretrained models, etc.) between low- and high-
resource languages (Joshi et al., 2020).

2.1 Multilingual Models
The publication of BERT (Devlin et al., 2019) also
included a multilingual model, mBERT, trained on
104 languages. mBERT and other massively mul-
tilingual models such as XLM-R (Conneau et al.,
2020) achieve impressive performance not just on
those 104 languages but also in some zero-shot set-
tings (cf., inter alia, Pires et al. 2019; Rogers et al.
2020), despite the fact that models like mBERT
do not have any explicit mechanism for inducing
shared representations across languages. However,
large language models like XLM-R suffer from the
fact that languages necessarily compete for parame-
ters, meaning that barring fortuitous synergies each
additional language should tendentially degrade
the overall performance of the model for a fixed
parameter count. Moreover, languages with less
training data tend to perform more poorly in LMs
like XLM-R (Wu and Dredze, 2020).

While the majority of multilingual models seek
to include many languages, with a large propor-
tion of them being high-resource, there are some
low-resource approaches to training multilingual
models from scratch where there may not even be

any high-resource languages. For example, Ogueji
et al. (2021) train an mBERT on data totaling less
than 1GB (≈100M tokens) from 11 African lan-
guages, and find that their model often outperforms
comparable massively multilingual models.

2.2 Adapting Multilingual Models
One response to the difficulties posed by massively
multilingual models has been to leave aside the goal
of fitting ever more languages into a single model,
and to investigate whether it would be more fruitful
to adapt pretrained massively multilingual models
for a given target language. Enriching the TLM’s
vocabulary with additional tokens (e.g. wordpieces
for BERT-style models) has been shown to be help-
ful because of how it improves tokenization and
reduces the rate of out-of-vocabulary tokens (Wang
et al., 2020; Artetxe et al., 2020; Chau et al., 2020;
Ebrahimi and Kann, 2021). Transliteration has
also been shown to be beneficial when there are
related languages that would not have been able to
benefit from transfer in the form of shared repre-
sentations otherwise, e.g. between Turkish (Latin
script) and related Uyghur (Arabic script) (Muller
et al., 2021; Chau and Smith, 2021). Using adapter
modules (Houlsby et al., 2019) has also proven ef-
fective (Pfeiffer et al., 2020a). All these approaches
are typically combined with continued pretraining,
where MLM and other pretraining tasks are used to
update model weights, and some formulations of
continued pretraining are multitask (Pfeiffer et al.,
2020b; Chau and Smith, 2021, inter alia).

2.3 Monolingual Models
Whereas multilingual approaches have tried to ad-
dress low-resource settings with transfer from high-
resource languages, other approaches have investi-
gated the question of how much data is needed for
a given level of quality in a BERT-like model, and
the question of what alternative training regimens
might help reduce this data requirement.

Several studies have examined notable thresh-
olds on dataset size. Martin et al. (2020) find in
a series of experiments that for French, at least
4GB of text is needed for near-SOTA performance,
and Micheli et al. (2020) show further that at least
100MB of text is needed (again for French) for
“well-performing” models on some tasks. (Micallef
et al., 2022) perform similar experiments for a
monolingual Maltese BERT, finding that even when
trained with only 46M tokens, the monolingual
BERT, BERTu, was able to achieve results competi-
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tive with an mBERT model adapted with the vocab-
ulary augmentation methods of Chau et al. (2020).
(Warstadt et al., 2020) train English RoBERTa mod-
els on datasets ranging from 1M to 1B tokens and
find that while models acquire linguistic features
readily on small datasets, they require more data
to fully exploit these features in generalization on
unseen data.

To our knowledge, there has been little work on
examining whether significantly reducing model
size could help in the low-resource monolingual
setting. As a baseline, Chau and Smith (2021) and
Muller et al. (2021) train monolingual BERTs with
6 instead of 12 layers for low-resource languages,
but this does not even halve the model’s param-
eter count. The only exception we were able to
find is work from Turc et al. (2019), where very
small models (as low as 4.4M parameters to BERT
base’s 110M) are pretrained directly prior to train-
ing via distillation, but the condition where the
small model is only pretrained and not trained via
distillation is not evaluated in their work.

2.4 Non-TLM Models

Finally, it is worth noting that while BERT-like
TLMs are the clear winner overall for high-resource
languages in most tasks, in low-resource settings,
other embedding models may be superior. Arora
et al. (2020) and Ortiz Suárez et al. (2020) show
that ELMo (Peters et al., 2018), static (Pennington
et al., 2014), and even random embeddings are
often not too far behind BERT-like TLMs on some
tasks even for high-resource languages. Riabi et al.
(2021) show that a character-based language model
is competitive with mBERT for one low-resource
language, NArabizi.

3 Motivation

As we have seen, monolingual BERTs trained with
standard methods tend to perform poorly when
less than 20-40M tokens are available during train-
ing, and there is evidence that they do not learn to
fully generalize some linguistic patterns without a
large (≈1B tokens, Warstadt et al. 2020) amount
of training data. However, most popular methods
for pretraining BERTs are self-supervised, using
only unlabeled text. This has turned out well for
high-resource languages, where unlabeled text is
available in far greater quantities than labeled text,
to the point where incorporating labeled text into
pretraining does not always provide large gains.

However, even in very low-resource settings, it is
common for sources of linguistic signal beyond un-
labeled text to be available, such as treebanks, inter-
linearized text, and dictionaries. It is natural to ask
whether using them as data for auxiliary supervised
tasks during model pretraining could help mono-
lingual models overcome a lack of unlabeled data,
and perhaps even interact synergistically with the
main pretraining task, such as MLM. It is known,
for example, that BERTs learn to represent words’
parts of speech (Rogers et al., 2020), and it seems
possible that providing direct supervision for pre-
dicting parts of speech may help a model acquire
good PoS representations with less data. This leads
us to our first hypothesis H1, that monolingual
models should benefit from multitask pretraining
with auxiliary tasks incorporating labeled data.

Previous results also lead us to our second hy-
pothesis H2, that in low-resource settings, mono-
lingual BERTs are typically severely overparam-
eterized. Most BERTs are overparameterized in
the sense that they can have modules removed,
disabled, or compressed while showing minimal
regressions (or sometimes even improvements)
(Rogers et al., 2020), but in H2 we mean further
that there are so many parameters that the model
cannot be effectively learned given the amount of
data. As noted in §2, there appears to be a gap
in the literature on whether pretraining a vastly
scaled down BERT model could help monolingual
BERTs perform better in low-resource settings, and
we take up the question in this work.

4 Approach

We propose an architecture and training regime for
monolingual BERTs which we call MicroBERT.
We keep the basic architecture of BERT, but we
reduce encoder layer count to 3, hidden represen-
tation size to 100, and number of attention heads
to 5. (Compare this to BERT base’s 12, 768, and
12, respectively.) Excluding prediction heads, this
reduces parameter count from 108M2 to 1.29M, or
just 1.19% of a normal BERT model’s size. After
the encoder stack, one dedicated head is used for
each task, where each head is provided with the
last encoder layer’s hidden states.

For training, assume a task set T = t1, . . . , t|T |,
corresponding datasets D = d1, . . . , d|T |, and a set

2Obtained from bert-base-cased using the
BertModel implementation in HuggingFace’s
transformers library.
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of weights for each task λ1, . . . , λ|T |, s.t.
∑

i λi =
1. To prepare the sequences of batches B =
b1, . . . , b|B| for a given epoch, construct each batch
bi using only instances from exactly one dataset
dt, and sample batches so that each dataset dt is
represented at least ⌊λt|B|⌋ times in B. Each batch
is sent not only to its dataset’s corresponding pre-
diction head, but also to any other prediction heads
which are compatible with it. For example, a batch
containing dependency syntax labels would be sent
to the parsing prediction head, and it would also be
sent to the MLM head, since the MLM head only
requires unlabeled text.3 If a dataset is exhausted in
the course of this procedure, new instances are sam-
pled anew from the beginning of the dataset. This
is a simple means for addressing the fact that some
datasets will be much larger than others, which
without intervention could have led to one task’s
parameter updates drowning out others.

We consider three tasks in this work. The first
is MLM implemented as whole-word, dynamic
masking, as in RoBERTa (Liu et al., 2019). The
second is PoS tagging, for which our prediction
head is a simple linear projection. The third is
dependency parsing, for which we use a modified
form of the biaffine dependency parser of Dozat
and Manning (2017) which has had the encoder
LSTM stack removed. Cross-entropy loss is used
for all tasks and summed together: each head pro-
duces an associated loss ℓi, which is summed into
a single loss ℓ which is used to begin backpropa-
gation. We note that it would be straightforward
to add other tasks, though we choose PoS tagging
and parsing for this work since PoS tagged and
dependency parsed datasets are relatively common
for low-resource languages. This multitask setup is
not novel—in fact, Chau and Smith (2021) use the
the same three tasks for a similar purpose, though
instead of pretraining a BERT from scratch, they
use the multitask setup to perform adaptive finetun-
ing on a pretrained multilingual model, and find a
negative result.

5 Experimental Methods

To evaluate our approach, we train MicroBERT
models on several languages and compare them to

3Actually, matters are a bit more complicated than this.
The MLM head requires representations that included a
[MASK] token from the start, whereas other heads require rep-
resentations from unmasked sequences. For multitask batches,
therefore, the batch must be fed through the encoder stack
twice: once with masking, and once without masking.

Language Unlabeled UD NER
Wolof 517,237 9,581 10,800
Coptic 970,642 48,632 –
Tamil 1,429,735 40,236 186,423
Indonesian 1,439,772 122,021 800,063
Maltese 2,113,223 44,162 15,850
Uyghur 2,401,445 44,258 17,095
Anc. Greek 9,058,227 213,999 –

Table 1: Token count for each dataset by language,
sorted in order of increasing unlabeled token count. Re-
call that unlabeled data for Indonesian and Tamil was
downsampled, and all other sources of unlabeled data
were used in full.

a variety of baselines. All our experiments are im-
plemented using AllenNLP (Gardner et al., 2018),
Transformers (Wolf et al., 2020), and PyTorch
(Paszke et al., 2019). All code and models are avail-
able at https://github.com/lgessler/
microbert.

5.1 Data

We prepare datasets for seven diverse languages:
Wolof, Uyghur, Ancient Greek, Maltese, Coptic,
Indonesian, and Tamil. These languages were se-
lected according to several criteria. First, two hard
requirements were that they needed to have a Uni-
versal Dependencies (Nivre et al., 2016) treebank
with a train, dev, and test split; and that they needed
to have a “large-enough” source of unlabeled text
totaling between 500,000 and 10,000,000 tokens.
Second, languages were prioritized based on phy-
logenetic diversity: six unrelated language fami-
lies are represented (Niger–Congo, Turkic, Indo-
European, Afro-Asiatic, Austronesian, Dravidian),
and languages vary widely in syntax (for exam-
ple, Uyghur is morphologically rich, while Coptic
is morphologically poor). Third, we sample lan-
guages along the spectrum of data quality—for
example, some have very high quality tokenization,
while others have noisier tokenization.

For each language, we obtain a UD treebank, a
larger unlabeled corpus, and for all languages ex-
cept Ancient Greek and Coptic, an NER dataset
from WikiAnn (Pan et al., 2017). Unlabeled data
for each language was taken from Wikipedia, ex-
cept for Ancient Greek and Coptic, whose unla-
beled corpora were taken from open access digital
humanities projects. Note that the unlabeled cor-
pora for Indonesian and Tamil were downsampled
by randomly choosing Wikipedia articles until a
quota of around 1.5M tokens was met. A sum-
mary of corpus statistics is given in Table 1, and
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a full description of the languages’ datasets and
their preparation is given in Appendix B. Note that
Uyghur is written in Arabic script; Wolof, Indone-
sian, and Maltese are written in Latin script; and
Tamil, Coptic, and Ancient Greek are written in
their own scripts.

5.2 Conditions

We compare four baselines, as well as six variants
of the MicroBERT approach.

• WORD2VEC: a 100-dimensional static word
embedding baseline, motivated by observa-
tions that static word embeddings can perform
well in low resource settings (cf. §2).

• MBERT: the bert-base-multilingual-cased
pretrained model. Note that only two of our
seven languages (Indonesian and Tamil) have
been seen by MBERT.

• MBERT-VA: the bert-base-multilingual-cased
pretrained model adapted in the vocabulary
augmentation method of Chau et al. (2020),
where 99 wordpieces are added to the vocabu-
lary and the model is pretrained further.

• µBERT-M, µBERT-MX, µBERT-MXP: our
MicroBERT models with MLM; MLM and
XPOS4 tagging; and MLM, XPOS tagging,
and UD parsing used in pretraining. µBERT-
MX performs tasks at an 8:1 ratio, and µBERT-
MXP performs tasks at an 8:1:1 ratio.

• µBERT4-M, µBERT4-MX, µBERT4-MXP:
like the corresponding MicroBERT models,
but approximately 4 times larger, having 200
instead of 100 hidden units; 8 instead of 5
attention heads; and 6 instead of 3 layers.

Our µBERT models are all trained for 200 epochs
with a batch size of 32 and 8,000 batches per epoch,
and we save the model that achieves best MLM per-
formance on the validation split of the unlabeled
dataset. This results in our models being trained
on only 20% of the batches that BERT was, though
we hypothesize that due to our smaller model and
dataset sizes, this may not be an issue. A full de-
scription of our methods is given in Appendix C.

4In Universal Dependencies parlance, an XPOS tag is a
part of speech tag from a language-specific tag inventory, as
opposed to a UPOS, which is drawn from a universal tag
inventory.

5.3 Evaluation

To evaluate our pretrained models, we perform
NER on the WikiAnn datasets and dependency
parsing on the UD datasets for each language–
model pair, following previous work (Chau et al.,
2020; Muller et al., 2021, inter alia). We choose
these tasks because they are common in the litera-
ture of TLM evaluation, because datasets are com-
mon even in low-resource languages for them, and
because they both assess somewhat complementary
linguistic information: informally, parsing requires
grammatical knowledge, and NER requires seman-
tic and world knowledge. Combined, they ought to
give a holistic view of a model’s abilities.

We use common hyperparameter settings to train
the evaluation models which allow for fine-tuning
of the BERT model at a reduced learning rate. A
standard Dozat and Manning (2017) parser is used
for the parsing evaluation, and a linear chain CRF
with stacked LSTM encoders is used for the NER
evaluation. Our metrics for these tasks are LAS
and span-based F1 score respectively. Gold tok-
enization is used in both evaluations. No auxiliary
input signals (e.g. PoS embeddings, morphological
feature embeddings, static embeddings) are used.
We forgo auxiliary inputs even though they would
likely improve our scores, and even though it means
no longer being able to compare our performance
directly to numbers reported in some other works,
since we believe providing the model’s representa-
tions as the sole input provides the clearest picture
of its quality.5 Full descriptions of the evaluation
models is available in Appendix D.

6 Results

Results for the parser evaluation are given in Ta-
ble 2, and results for the NER evaluation are given
in Table 3. For both tables, we also include addi-
tional rows comparing important model pairs.

It is possible to directly compare our parsing
evaluation results with those of Chau and Smith
(2021, Table 2), whose evaluation methodology we
closely follow for parsing. For our three overlap-
ping languages—Maltese, Uyghur, and Wolof—we

5This is motivated by our experience in preliminary exper-
iments of using a parser with these auxiliary inputs, with the
result that differences between our models were no larger than
3% since the auxiliary inputs were contributing so much to
the model’s performance, obscuring the content of the model
representations. We also notice a similarly small difference
between comparable models in other works where auxiliary
inputs were used in a parsing evaluation.
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Wolof Coptic Maltese Uyghur An. Gk. Tamil Indon. Avg.

WORD2VEC 72.35 85.69 73.41 54.27 73.30 50.91 74.10 69.15
MBERT 76.40 14.43 78.18 46.30 72.30 66.73 78.63 61.85
MBERT-VA 72.94 82.11 72.69 42.97 65.89 54.92 75.67 66.74
Chau and Smith (2021) 60.12 65.92 60.34
µBERT-M 75.69 86.45 74.33 61.26 78.95 59.75 74.66 73.01
µBERT-MX 77.83 88.25 78.90 65.17 80.55 61.00 74.69 75.20
µBERT-MXP 73.30 86.35 75.11 59.98 79.08 58.05 73.28 72.16
µBERT4-M 74.42 82.72 79.25 57.79 79.59 61.09 74.32 72.74
µBERT4-MX 73.99 82.52 78.61 57.14 79.09 60.82 74.21 72.34
µBERT4-MXP 74.30 82.73 78.99 57.01 79.56 60.92 74.34 72.55
µBERT-MX – MBERT-VA 4.89 6.14 6.21 22.20 14.66 6.08 -0.97 8.46

Table 2: Labeled attachment score (LAS) by language and model combination for UD parsing evaluation. The
final row shows the difference in score between µBERT-MX and MBERT-VA. Results from Chau and Smith (2021)’s
half-sized monolingual BERT are included for comparison.

Wolof Maltese Uyghur Tamil Indon. Avg.

WORD2VEC 86.89 82.67 86.37 82.71 94.28 86.58
MBERT 83.79 73.71 78.40 70.47 91.04 79.48
MBERT-VA 79.37 78.11 77.03 69.38 91.05 78.99
µBERT-M 83.92 75.89 81.36 82.28 92.25 83.14
µBERT-MX 81.12 84.80 85.45 81.61 92.43 85.08
µBERT-MXP 82.21 88.79 82.52 82.00 92.27 85.56
µBERT4-M 78.69 78.22 80.28 80.57 93.05 82.16
µBERT4-MX 80.95 80.00 79.36 80.12 92.55 82.60
µBERT4-MXP 79.02 79.31 81.59 80.11 93.01 82.61
µBERT-MX – MBERT -2.67 11.09 7.05 11.14 1.39 5.60

Table 3: Span-based F1 score by language and model combination for NER evaluation. The final row shows the
difference in score between µBERT-MX and MBERT. Boldface indicating top performance for a language does not
consider WORD2VEC.

find that LAS for mBERT is similar, which estab-
lishes that evaluation conditions are comparable.
We include their half-size BERT model’s numbers
in Table 2 for comparison, which were obtained by
training a bert-base-sized BERT from scratch
on the target language with 6 instead of 12 layers.

Non-DNN Baseline First, corroborating prior
work, we can see that static word embeddings are
competitive for many languages, often outperform-
ing the multilingual models in both tasks, and often
performing best overall for NER.

Multilingual Baselines Note the generally poor
performance of MBERT-VA, which we had hoped
would be a baseline stronger than MBERT, but often
underperforms relative to MBERT. An exception to
this is parsing for Coptic, where MBERT’s lack of
wordpieces for Coptic script causes a high out-of-
vocabulary rate, giving MBERT-VA an obvious ad-
vantage. After carefully ruling out implementation
errors, we reason that MBERT-VA underperformed
because fine-tuning a large BERT can produce un-
predictable results (Rogers et al., 2020) and our
hyperparameters for adaptive pretraining may have
been suboptimal (Chau et al. 2020 perform a hy-
perparameter search for vocabulary augmentation—
see Appendix D). In correspondence with the au-
thors of Chau et al. (2020), we discussed our results,
and they shared our assessment. In sum, MBERT-VA

appears to produce volatile results without careful

hyperparameter selection, which we take to be a
result of large model size and small dataset size.

Monolingual Model Size We can see that for
parsing and NER, the µBERT4 model performs
worse in almost all cases than the equivalent µBERT

model. The degradation is -0.27% on average for
-M variants, and -2.86% on average for -MX vari-
ants. The one language for which the µBERT4
model performs much better on parsing is Mal-
tese, where the µBERT4-M model performs 5%
better than the µBERT-M model, indicating that in
this experimental condition greater model size may
help, though note that the Chau and Smith’s half-
BERT does much worse than µBERT4-M showing
a 13% lower score compared to µBERT-M and re-
versing the trend. On our two other languages in
common with Chau and Smith, we see an 18%
(Wolof) and 5% (Uyghur) degradation relative to
µBERT-MX. For NER, we similarly observe that
the µBERT4 variants have worse average perfor-
mance than µBERT variants. We take this all to be
strong evidence for H2, that monolingual BERTs
trained at common sizes are severely overparame-
terized in low-resource settings, to the point that
large performance degradations are observed.

Parsing Considering the five languages unseen
by mBERT (all except Tamil and Indonesian), we
see in the parsing results that in every case the
best monolingual model, usually µBERT-MX, is
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able to outperform the best multilingual model. In
some cases the difference is very large, such as in
Uyghur parsing where there is an absolute gain in
18.87% LAS, and in others it is within the range
of chance, such as in Maltese parsing. For the
languages mBERT has seen, Tamil and Indone-
sian, MBERT outperforms the µBERT by several
points, though we find it remarkable that µBERT

is able to still provide a competitive score despite
being trained on very small subsets of Tamil and
Indonesian Wikipedia (150K and 600K articles,
respectively), which mBERT had full access to.
µBERT-MX performs best of all the models, achiev-
ing a score 8.5% higher than that of MBERT-VA on
average.

NER Turning now to NER results, we see that in
three cases, our µBERT models are able to clearly
outperform other models, including Tamil, which
MBERT has seen. In the other two cases, Indone-
sian and Wolof, µBERT models technically keep a
lead but with margins thin enough to be noise. For
all languages except Maltese however, WORD2VEC

is able to meet or beat top performance from TLMs.
Taken together with the parsing results, where
WORD2VEC underperforms, and with the strengths
and weaknesses of contextualized and static em-
beddings in mind, we hypothesize that NER on the
WikiAnn dataset may require rote capacities, such
as name memorization, instead of sophisticated lin-
guistic knowledge, especially on an automatically-
constructed dataset like WikiAnn.

Validation MLM Perplexity In order to better
understand the effects of our auxiliary tagging and
parsing tasks, we examine the validation MLM
perplexity of our models during pretraining. An ex-
ample of these curves is given in Figure 1. We first
observe that for all languages, validation MLM
perplexity is lower at all times for the multitask
models compared to the perplexity curve for the
MLM only model. Moreover, validation MLM per-
plexity converges more quickly on its asymptotic
value for multitask models. For µBERT-MX in par-
ticular, validation MLM perplexity usually comes
very close to its final value even within the first 10
epochs of pretraining. Validation MLM perplexity
is only one incomplete measure of model quality,
and indeed it is not entirely predictive of down-
stream performance since µBERT-M sometimes out-
performs µBERT-MX and µBERT-MXP. But we take
these results as evidence that our auxiliary tasks

Figure 1: MLM perplexity vs. epoch for the validation
split of the Uyghur dataset. The top line is µBERT-M,
the middle line is µBERT-MXP, and the lowest line is
µBERT-MX.

are helping our models learn more quickly. More-
over, while proving this would require additional
work, it seems possible from the shapes of the vali-
dation curves that for the smallest datasets, multi-
task learning (MTL) might be helping models learn
more than they could have through MLM alone.

Within validation MLM perplexity, we also see
that each language follows one of two patterns:
either the perplexity curves for µBERT-MX and
µBERT-MXP are nearly identical, or the perplexity
curve for µBERT-MXP remains a bit higher than for
µBERT-MX.6 With the intuition that more auxiliary
tasks ought to make MLM easier, we had hypoth-
esized that if anything the curve for µBERT-MX

would have been higher than for µBERT-MXP, but
instead the reverse sometimes turned out to be true.
We hypothesize that the difference in task propor-
tions between µBERT-MX and µBERT-MXP might
have been partially responsible for this: in the for-
mer, 1 in 9 batches are for auxiliary tasks, and in
the latter, 2 in 10 batches are for auxiliary tasks. If
this is true, then finding the right proportion of pri-
mary and auxiliary tasks during pretraining would
be critical for the multitask pretraining approach.

7 Discussion

Main Findings We take our most important re-
sult to be our demonstration that it is possible to
train a monolingual BERT from scratch that can
compete with and even outperform multilingual
models by up to 18% LAS and 11% NER F1 using

6The former pattern holds for Wolof, Maltese, Greek, In-
donesian, and Tamil, and the latter pattern holds for Uyghur
and Coptic.
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as little as 500,000 tokens and a UD treebank of
44,000 tokens and less than 1% of the parameters.

Multilingual Baselines We chose to use mBERT
as a baseline because it is widely used and well
studied. Moreover, given the the architectural ho-
mogeneity of mBERT and other leading multilin-
gual LLMs, we additionally believe mBERT is
strong enough to be representative of the state of
multilingual LLMs for this work. While MBERT-VA

appeared to severely underperform in some cases,
we observe that it was still a strong baseline for
both tasks (on average 5% better than MBERT for
parsing, and 0.5% worse). In sum, while slightly
stronger multilingual baselines may exist, we be-
lieve the ones in this work were still strong enough
to show the MicroBERT approach holds promise,
given that MicroBERTs were able to perform bet-
ter than multilingual LLMs by several percentage
points on average in both tasks.

Hypotheses We find strong support in these re-
sults for H1, that monolingual TLMs often, though
not always, benefit from multitask learning on la-
beled data in low-resource settings. We addition-
ally find strong support for H2, that when data is
severely limited, typical BERT configurations are
harmfully overparameterized.

Future Work There remain some unanswered
questions in this work. The addition of the third
parsing task proved harmful to performance in most
cases, and it is unclear why. Parsing and XPOS
tagging involve much of the same linguistic phe-
nomena, and it seems possible that replacing one
of them with a more semantic auxiliary task might
have led to better results. Another possibility is that
having loss computed for auxiliary tasks only on
some batches may lead to jerky or suboptimal paths
along the loss gradient, a problem which could be
mitigated by having batches where only some se-
quences are suitable for use in auxiliary tasks.

It is natural to ask whether any of the elements
of our approach here could find use in multilingual
settings. Reducing the size of multilingual models
may not be a promising direction due to the curse of
multilinguality (Conneau et al., 2020). Ogueji et al.
(2021) show further that even for low-resource mul-
tilingual models, size still seems to be important.
As for multitask learning, Chau and Smith (2021)
find a negative result for using MTL in multilingual
model adaptation, though given the complex nature
of MTL, many possible approaches remain untried.

Most languages in the world lack PoS tagged and
parsed datasets, and if the MicroBERT approach is
to be extended to very low-resource languages, it
is likely that other auxiliary tasks would be needed.
We leave this direction to future work, though we
speculate that there are plenty of alternatives that
may work. Parallel corpora, often in the form of
a Bible translation, are readily available for over a
thousand of the world’s languages. High-quality
rule-based morphological parsers are sometimes
available for very low-resource languages, and their
outputs could be used like PoS tags. Interlinearized
texts and dictionaries are also common products
of language documentation which are rich in lin-
guistic information. All of these resources could
be adapted for use in an auxiliary task.

8 Conclusion

We have shown that it is possible to train monolin-
gual TLMs that are competitive with multilingual
models using as little as 500K tokens and a 40K
token treebank with greatly reduced model size
and multitask learning on PoS tagging and depen-
dency syntax parsing. While multilingual models
did have some advantages over our approach, we
observe that our MicroBERT approach has unique
strengths for work on low-resource TLMs, includ-
ing its lack of reliance on successful cross-lingual
transfer and radically reduced computational de-
mands for pretraining and downstream use.

We take this result to call into question whether
multilingual representation learning can scale down
effectively to truly “low-resource” languages that
have less than a few million tokens in training data.
Sometimes languages like these can be well served
by transfer from related languages, even if all lan-
guages are low-resource (Ogueji et al., 2021), but
not all languages may be so lucky: language iso-
lates by definition lack related languages, and small
language families are likely less able to benefit
from transfer, since transfer tends to be enabled by
phylogenetic (Nguyen and Chiang, 2017) or areal
(Goyal et al., 2020) relatedness between languages.
While multilingual methods hold much promise,
it is important to examine other approaches to
low-resource representation learning which, if not
strictly better, may at least be complementary.
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B Datasets

Treebank Tokens
UD_Coptic-Scriptorium v2.9 48,632
UD_Ancient_Greek-PROEIL v2.9 213,999
UD_Indonesian-GSD v2.10 122,021
UD_Maltese-MUDT v2.9 44,162
UD_Uyghur-UDT v2.9 40,236
UD_Wolof-WDT v2.9 44,258
UD_Tamil-TTB v2.10 9,581

Table 4: Token count statistics for UD treebanks used
in this work. Note that for this count, we count the con-
stituent tokens of multiword tokens instead of counting
a multiword token as a single token.

Unlabeled For Coptic, we use v4.2.0 of the Cop-
tic SCRIPTORIUM corpora (Schroeder and Zeldes,
2016), obtained from https://github.com/
copticscriptorium/corpora. For An-
cient Greek, we use the initial release of the
Diorisis corpus (Vatri and McGillivray, 2018),
obtained from https://figshare.com/
articles/dataset/The_Diorisis_
Ancient_Greek_Corpus/6187256. Both
corpora are preprocessed (tokenized, etc.) using
language-specific tools to a quality higher than
would have been obtained with a generic prepro-
cessing pipeline. In Coptic’s case, the data is
further checked and with parts gold annotated by
humans.

All other corpora are derived from Wikipedia.
For Maltese, Uyghur, and Wolof, we use all avail-
able namespace 0 articles7 as of February 2022,
and for Indonesian and Tamil, we take a random
sampling of namespace 0 articles as of June 2022,
up to around 1.5M tokens.

All data is derived from Wikipedia’s public
dump files. While it is popular in NLP to use the
text in the dump files directly, this is suboptimal,
as the dump files’ text contains markup, which
makes the text noisy and means that document
structural information cannot be used in the tok-
enization and sentence splitting process. We there-

7Wikipedia articles belonging to namespace 0 are main
content articles instead of e.g. user pages or template pages.

fore take the additional step of rendering the dump
into HTML using https://github.com/
lgessler/wiki-thresher , which can then
be used to obtain useful information about guaran-
teed sentence splits, e.g. between HTML elements
like <p>. We perform rule-based sentence splitting
and tokenization on this HTML to obtain our final
tokenized texts.

For all 7 languages, we reserve around 10% of
documents for validation and use the rest for train-
ing. A test split is unnecessary because our models
are not being evaluated on unlabeled data.

UD Treebanks A summary of the treebanks we
use and their versions is given in Table 4. We use
the standard train/dev/test splits for all treebanks.

WikiAnn Datasets New train/dev/test splits
were created in an 8:1:1 ratio for the WikiAnn
dataset, which only divides sentences by language.
It was not possible to split at the document level
because no document metadata is available in the
WikiAnn dataset. Tags are converted from the na-
tive IOB1 scheme into the BIOUL scheme. Some
manual edits, logged in our version control history,
were made to sentence boundaries in order to keep
wordpiece sequence lengths below 512.

C Conditions

All experiments for both pretraining and evaluation
were performed on NVIDIA Tesla T4 GPUs with
16GB GDDR6 SDRAM.

Word2vec We use the Gensim (Rehurek and So-
jka, 2011) implementation of the Word2vec skip-
gram with negative sampling algorithm for pre-
trained static word embeddings. The embeddings
are trained just on the train split of the unlabeled
corpus for each language. The vectors are 100-
dimensional, window size is 5, and negative sam-
pling factor is 5.

mBERT-VA We implement the Vocabulary Aug-
mentation method exactly as prescribed by Chau
et al. (2020) by training a new wordpiece tokenizer
on the train split of the unlabeled data with a vo-
cabulary size of 5,000, yielding a new monolingual
vocabulary. The monolingual vocabulary is ranked
by frequency of wordpieces, and the 99 unused
tokens in mBERT’s vocabulary indexed between 1
and 99 are replaced by tokens from the monolin-
gual vocabulary which are not already present in
mBERT’s vocabulary. Since only preexisting token
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indices are used, it is not necessary to modify the
model’s pretrained weights.

To train the weights of the previously unused
token indices, adaptive pretraining with MLM is
performed, again following Chau et al. (2020).
Whereas Chau et al. perform a hyperparameter
search, due to resource constraints we are forced
to pick a single set of hyperparameters for adaptive
pretraining, which we choose within the bounds of
Chau et al.’s hyperparameter search. First, due to
memory constraints on our GPUs, we are forced to
set the batch size to 2. We pretrain for 20 epochs
with 16,000 batches per epoch. The PyTorch
AdamW optimizer is used with β1 = 0.9, β2 =
0.999, learning rate at 1e-4, and weight decay at
0.05. The model which achieved lowest validation
set perplexity is chosen.

MicroBERT Our tokenizer for MicroBERT is
a WordPiece tokenizer. We scale vocabulary size
from a minimum of 8,000 wordpieces up to 14,000
wordpieces, where the number of unique whites-
pace tokens for a given language determines how
large the vocabulary will be. All models are un-
cased and perform Unicode NFD normalization as
a preprocessing step during tokenization.

Since some tasks require wordpieces while oth-
ers require tokens (e.g. PoS tagging), our encoder
produces both wordpiece sequences and token se-
quences. The token sequence is constructed by
keeping track of which wordpieces correspond to
which original input tokens, and average pooling
wordpieces for each token so that the sequence
length reflects the number of original input tokens.

During data loading, sequences longer than 500
wordpieces are split into chunks of no more than
500 wordpieces each. Sequences this long only
occur in the unlabeled datasets, so this does not
pose a problem for producing valid losses on PoS
tagging or parsing.

We train with a batch size of 32 for 200 epochs
with 8,000 batches per epoch. We again use the
AdamW optimizer with a learning rate of 3e-3,
β1 = 0.9, β2 = 0.999, and weight decay at 0.05.
We allow early stopping if the validation metric,
MLM perplexity, shows no improvement for 40
epochs. The model with the best validation MLM
perplexity is selected.

While it is traditionally popular to train BERTs
with triangular learning rates (Howard and Ruder,
2018), we chose not to use them for training our
MicroBERTs. The reason is that, as noted by Raf-

fel et al. (2020), it is necessary to know in advance
approximately how many training steps are neces-
sary to train a model, but since our MicroBERT
architecture is much smaller, it is not obvious how
many steps would be required to train it, making
its use difficult. We do not expect this to lead to
much worse performance compared to a properly
configured triangular learning rate, as Raffel et al.
(2020) also note that the triangular schedule often
leads to only marginal gains compared to other
schedules. Instead, we use PyTorch’s ReduceL-
ROnPlateau scheduler, which reduces learning rate
when a certain number of validation steps have
shown no improvement in MLM perplexity. We
configure the scheduler so that if no improvement
occurs for 2 epochs, the learning rate is halved,
down to a minimum learning rate of 5e-5. Our
results have shown that this training regimen can
achieve good results, but we expect there is room
for improvement and leave the task of refining it to
future work.

D Evaluation

Parsing We use the AllenNLP implementation
of a biaffine attention parser (Dozat and Manning,
2017). In line with previous work, we set the di-
mensionality of the arc and tag representations to
100, and dropout and input dropout are set to 0.3.
An encoder stack of 3 bidirectional LSTMs is used,
with a recurrent dropout of 0.3, hidden size of 400,
and highway connections. A scalar mix of repre-
sentations from each layer of the BERT model is
learned (Peters et al., 2018) to allow the model to
fully exploit information present in earlier layers.
Gold tokenization is used, and no supplementary
representations (such as static word embeddings or
feature or PoS embeddings) are provided.

We train for 300 epochs with a batch size of
16 and patience of 50 with LAS as our validation
metric. To account for the very large size of some
treebanks (e.g. Greek), we train for 200 batches
per epoch. The AdamW optimizer is used with
β1 = 0.9, β2 = 0.999, learning rate at 1e-3, and
gradient clipping at 5.0. A reduced learning rate of
5e-5 is used for all parameters in the TLM.

NER We use AllenNLP’s linear chain CRF tag-
ger with BIOUL encoding. As with parsing, a
scalar mix of representations from each layer of the
BERT model is learned (Peters et al., 2018) to allow
the model to fully exploit information present in
earlier layers. An encoder stack of 2 bidirectional
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LSTMs is used, with a dropout of 0.5 and hidden
size of 200. The model’s dropout is set to 0.5.
Gold tokenization is used, and no supplementary
representations (such as static word embeddings or
feature or PoS embeddings) are provided.

We train for 300 epochs with a batch size of
16 and patience of 50 with span-based F1 as our
validation metric. The AdamW optimizer is used
with β1 = 0.9, β2 = 0.999, learning rate at 1e-3,
and gradient clipping at 5.0. A reduced learning
rate of 1e-5 is used for all parameters in the TLM.
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Abstract

This paper describes our winning systems in
MRL: The 1st Shared Task on Multilingual
Clause-level Morphology (EMNLP 2022 Work-
shop) designed by KUIS AI NLP team. We
present our work for all three parts of the
shared task: inflection, reinflection, and analy-
sis. We mainly explore transformers with two
approaches: (i) training models from scratch
in combination with data augmentation, and
(ii) transfer learning with prefix-tuning at mul-
tilingual morphological tasks. Data augmen-
tation significantly improves performance for
most languages in the inflection and reinflec-
tion tasks. On the other hand, Prefix-tuning on
a pre-trained mGPT model helps us to adapt
analysis tasks in low-data and multilingual set-
tings. While transformer architectures with
data augmentation achieved the most promis-
ing results for inflection and reinflection tasks,
prefix-tuning on mGPT received the highest re-
sults for the analysis task. Our systems received
1st place in all three tasks in MRL 2022.1

1 Introduction

The shared task on multilingual clause-level mor-
phology was designed to provide a benchmark for
morphological analysis and generation at the level
of clauses for various typologically diverse lan-
guages. The shared task is composed of three sub-
tasks: inflection, reinflection and analysis. For the
inflection task, participants are required to gener-
ate an output clause, given a verbal lemma and a
specific set of morphological tags (features) as an
input. In the reinflection task the input is an in-
flected clause, accompanied by its features (tags).
Participants need to predict the target word given a
new set of tags (features). Finally, the analysis task
requires predicting the underlying lemma and tags
(features) given the clauses.

1https://github.com/emrecanacikgoz/
mrl2022

Task1: Inflection

Source
Lemma give

Features
IND;FUT;NOM(1,SG);
ACC(3,SG,MASC);DAT(3,SG,FEM)

Target Clause I will give him to her
Task2: Reinflection

Source
Clause I will give him to her

Features
IND;FUT;NOM(1,SG);
ACC(3,SG,MASC);DAT(3,SG,FEM)

Desired Features
IND;PRS;NOM(1,PL);
ACC(2);DAT(3,PL);NEG

Target Desired Clause We don’t give you to them
Task3: Analysis

Source Clause I will give him to her

Target
Lemma give

Features
IND;FUT;NOM(1,SG);
ACC(3,SG,MASC);DAT(3,SG,FEM)

Table 1: Description of the each three task: inflec-
tion, reinflection, analysis. Task1 (Inflection). For
the given lemma and the features, target is the desired
clause.Task2 (Reinflection). Input is the clause, its
features, and the desired output features. Target is the
desired clause that represented by the desired features
in the source. Task3 (Analysis). For a given clause, out-
put is the corresponding lemma and the morphological
features.

Literature has examined morphology mainly at
the word level, but morphological processes are
not confined to words. Phonetic, syntactic, or se-
mantic relations can be studied at phrase-level to
explain these processes. Thus, this shared task
examines phrase-level morphology and questions
the generalization of the relations between the lay-
ers of language among languages with different
morphological features. The shared task includes
eight languages with different complexity and vary-
ing morphological characteristics: English, French,
German, Hebrew, Russian, Spanish, Swahili, and
Turkish.

In our work, we explored two main approaches:
(1) training character-based transformer architec-
tures from scratch with data augmentation, (2)
adapting a recent prefix-tuning method for lan-
guage models at multilingual morphological tasks.
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Figure 1: Task3 (Analysis) example by using prefix-
tuning method. We freeze all the parameters of the
pre-trained mGPT model and only optimize the prefix,
which are shown inside the red block. Each vertical
block denote transformer activations at one time step.

2 Methods

In this section, first we cover the model architec-
tures and training strategies that we have used
(Vaswani et al., 2017; Shliazhko et al., 2022; Li
and Liang, 2021), and then discuss our data aug-
mentation strategies in details (Anastasopoulos and
Neubig, 2019).

2.1 Vanilla Transformer

We used a modified version of vanilla Transformer
architecture in Vaswani et al. (2017) which con-
tains 4 layers of encoder and decoder with 4 multi-
head attentions. The embedding size and the feed-
forward dimension is set to 256 and 1024, respec-
tively. As suggested in Wu et al. (2021), we used
layer normalization before the self-attention and
feed-forward layers of the network that leads to
slightly better results. We used these in inflection
and reinflections tasks.

2.2 Prefix-Tuning

Using prefix-tuning reduces computational costs
by optimizing a small continuous task-specific vec-
tors, called prefixes, while keeping frozen all the
other parameters of the LLM. We added two pre-
fixes, called virtual tokens in Li and Liang (2021),
the gradient optimization made across these pre-
fixes that is described in the Figure 1. We used
Shliazhko et al. (2022) weights during prompting.
Prefix-tuning method outperforms other fine-tuning
approaches in low-data resources and better adapts
to unseen topics during prompting (Li and Liang,
2021).

2.3 Data Augmentation

Hallucinating the data for low-resource languages
results with a remarkable performance increase for
inflection Anastasopoulos and Neubig (2019). The
hallucinated data is generated by replacing the stem

Figure 2: In order to create the hallucinated samples,
we first align the characters of the lemma and the in-
flected forms. After that, we substitute the stem parts of
the input with random characters that comes from the
validation set and test set, as shown in the figure.

characters of the aligned word with random char-
acters by using the validation or test sets (see Fig.
2). This way, the amount increase in the training
data helps the model to learn and generalize rare
seen samples. On the other hand, the amount of
hallucinated data that will be added to the training
set, hyperparameter N , is also another parameter
that directly effects our accuracy. Therefore, hy-
perparameter N needs to be decided specifically
for each language according to corresponding lan-
guage’s complexity and topology.

3 Experimental Settings

3.1 Dataset
In the shared task, there are eight different lan-
guages with varying linguistic complexity which
comes from different language families: English,
French, German, Hebrew, Russian, Swahili, Span-
ish, Turkish. For Hebrew there are two versions as
Hebrew-vocalized and Hebrew-unvocalized. Train-
ing data contains 10,000 instances for each lan-
guage and there are 1,000 samples both in devel-
opment set and test set. Swahili and Spanish are
the surprise languages that announced two weeks
before the final submission day, together with the
unlabeled test data for each language.

3.2 Evaluation
Models are evaluated according to Exact Match
(EM), Edit Distance (ED), and F1 accuracy. For
task1 (inflection) and task2 (reinflection) ED is
the leaderboard metric. For task3 (analysis), F1
score is the objective. EM accuracy represents the
ratio of correctly predicted lemma and features, and
ED is calculated based on Levenshtein Distance
which indicates how different two strings are, (the
ground truth and prediction for our case) from each
other. F1 accuracy is the harmonic mean of the
precision and recall. F1 accuracy is upweighted for
the lemma score in our task. In the leaderboard, the
results are averaged across each language.
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Task1: Inflection Task2: Reinflection Task3: Analysis
Model Transformer + D.A. Transformer Prefix Tuning
Metrics F1↑ EM↑ ED↓ F1↑ EM↑ ED↓ F1↑ EM↑ ED↓
Deu 97.71 91.80 0.241 92.40 66.50 0.788 95.89 83.40 0.991
Eng 98.02 88.90 0.221 95.42 72.30 0.477 99.61 98.50 0.064
Fra 98.59 93.20 0.124 92.64 68.30 0.758 95.63 81.90 0.933
Heb 97.73 89.80 0.550 94.00 83.30 0.796 92.84 73.50 1.322
Heb-Unvoc 97.96 94.20 0.113 86.70 57.70 1.002 82.09 36.20 2.044
Rus 97.57 87.70 0.828 97.29 84.90 0.854 97.51 88.60 3.252
Swa 99.72 99.61 0.019 92.05 84.47 0.182 90.51 62.63 3.114
Spa 98.79 92.00 0.199 96.42 77.60 0.480 98.11 89.40 0.560
Tur 97.50 89.80 0.333 95.36 84.70 0.593 95.36 84.70 0.593
Average 91.89 98.18 0.292 93.14 74.72 0.705 94.17 77.65 1.430

Table 2: Results on the test sets for all tasks and languages with the corresponding models. Edit Distance is the
leaderboard ranking metric for Task1: Inflection and Task2: Reinflection, and F1 score is used for leaderboard
ranking in Task3: Analysis. D.A. indicates data augmentation.

3.3 Shared Task

Multilingual Clause-level Morphology (MRL
2022) contains three different tasks as Task1: In-
flection, Task2: Reinflection, and Task3: Analysis.
As KUIS AI team, we have attended each of them
separately.

3.3.1 Task1: Inflection
The goal of the task is to produce the output clause
and its features forgiven verbal lemma and a set of
morphological features, see Table 1. For inflection
task, we have trained a vanilla transformer model
from scratch by adding some hallucinated data for
the training set. The data hallucination method,
discussed in 2.3, improved our results significantly.
As suggested in Wu et al. (2021), we observed the
effect of the large batch sizes that results with an
increase in accuracy. Thus, we set the batch size to
400 and we trained our model for 20 epochs. We
used Adam optimizer by setting β1 to 0.9 and β2 to
0.98. We started with a learning rate of 0.001 with
4,000 warm-up steps. Then, we decrease it with the
inverse of the square-root for the remaining steps.
We have used label smoothing with a factor of 0.1
and applied the same dropout rate of 0.3.

3.3.2 Task2: Reinflection
In reinflection the task is to generate the desired
output format as in inflection; however, the input
is consist of an inflected clause, its corresponding
features, and a new set of features that represents
the desired output form. We again use the same
vanilla Transformer architecture, and exactly the

same training parameters that we have used in in-
flection task. We tried both (i) giving the all source
data as input, and (ii) using only the inflected clause
and its desired features. We have examined that,
both our EM and ED accuracy increased in a large
manner when we ignore source clause’s features in
input before feeding it to the model.

3.3.3 Task3: Analysis

Analysis task can be seen as the opposite of the
inflection task. For given clauses and its features,
we try to generate the lemma and the correspond-
ing morphological features. We used the prefix-
tuning method for the analysis task. The prefix tem-
plate was given as the source and the features were
masked. During prompting, we gave the clause-
level in input and the target lemma together with
its features were expected from the output, like a
machine translation task. The source and target
are given together with the trainable prefixes, i.e.
continuous prompt vectors, and the gradient opti-
mization made across these prefixes. For the mGPT-
based Prefix-Tuning model, we have used the Hug-
gingface, Wolf et al. (2019) and the corresponding
model weights sberbank-ai/mGPT. The prefixes
were trained for 10 epochs with a batch size of 5
due computational resource constraints. We used
Adam optimizer with weight decay fix which is
introduced in Loshchilov and Hutter (2017) with
β1=0.9 and β2=0.999. The learning rate is initial-
ized to 5 × 10−5 and a linear scheduler is used
without any warm-up steps.
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System Inflection Reinflection Analysis
Transformer Baseline 3.278 4.642 80.00
mT5 Baseline 2.577 2.826 84.50
KUIS AI 0.292 0.705 94.17

Table 3: Submitted results for MRL shared task that
is averaged across 9 languages. Metrics for the inflec-
tion and reinflection tasks is the edit distance, and for
analysis the metric is averaged F1 score with the lemma
being treated as an up-weighted feature.

3.4 Results

Our submitted results are provided in Table 2. The
announced results by the shared task are in the
Table 3 which are evaluated among the provided
unlabeled test set.

For the inflection task, with the help of data aug-
mentation, we have achieved best average edit dis-
tance for languages. Specially, for Swahili the edit
distance is nearly perfect as well as the exact match.
It is followed by Hebrew-Unvoc and French. We
observed the highest edit distance and the lowest
exact match scores for Russian. At the end, we ob-
served that, reducing edit distance does not always
bring better exact match.

For the reinflection task, using trained trans-
former models from scratch, we again see the best
results for Swahili with the lowest edit distance.
This time, the highest edit distance belongs to
Hebrew-Unvoc as well as the lowest exact match.
The number of words and characters in the exam-
ples of task datasets may be the factors and should
also be considered.

Finally for the analysis, with the help of prefix-
tuning, we achieved the best results for English
with highest F1 score. The ease of finding En-
glish pre-trained models led us to experiment with
English-only GPT models, and we subsequently
discovered that multilingual GPT gives better re-
sults when using prefix-tuning. Tuning on mGPT
has the lowest performance with Hebrew-Unvoc,
due the low ratio of training samples in Hebrew
during pre-training compared to other languages.

4 Related Work

Word-level morphological tasks have been stud-
ied to a great extent, with LSTM (Wu and Cot-
terell, 2019; Cotterell et al., 2016; Malaviya et al.,
2019; Sahin and Steedman, 2018), GRU (Conforti
et al., 2018), variants of Transformer Vaswani et al.
(2017); Wu et al. (2021) and other neural mod-

els (e.g., invertible neural networks (Sahin and
Gurevych, 2020)). Unlike word-level, there is lim-
ited work on clause-level morpho-syntactic mod-
eling. Goldman and Tsarfaty (2022) presents a
new dataset for clause-level morphology covering
4 typologically-different languages (English, Ger-
man, Turkish, and Hebrew); motivates redefining
the problem at the clause-level to enable the cross-
linguistical study of neural morphological model-
ing; and derives clause-level inflection, reinflection,
and analysis tasks together with baseline model re-
sults.

Pre-trained LLMs have been successfully ap-
plied to downstream tasks like sentiment analysis,
question answering, named entity recognition, and
part-of-speech (POS) tagging (Devlin et al., 2019;
Yang et al., 2019; Raffel et al., 2020). Even though,
there is limited work on applications of LLMs to
morphological tasks, it has been demonstrated that
using pre-trained contextualized word embeddings
can significantly improve the performance of mod-
els for downstream morphological tasks. Inoue
et al. (2022) explored BERT-based classifiers for
training morphosyntactic tagging models for Ara-
bic and its dialect. Anastasyev (2020) explored the
usage of ELMo and BERT embeddings to improve
the performance of joint morpho-syntactic parser
for Russian. Hofmann et al. (2020) used a fine-
tuning approach to BERT for the derivational mor-
phology generation task. Finally, Seker et al. (2022)
presented a large pre-trained language model for
Modern Hebrew that shows promising results at
several tasks.

On the other hand, since fine-tuning LLMs
requires to modify and store all the parameters
in a LM that results with a huge computational
cost. Rebuffi et al. (2017); Houlsby et al. (2019)
used adapter-tuning which adds task-specific layers
(adapters) between the each layer of a pre-trained
language model and tunes only the 2%-4% param-
eters of a LM. Similarly, Li and Liang (2021) pro-
posed prefix-tuning which is a light-weight alterna-
tive method for adapter-tuning that is inspired by
prompting.

5 Conclusion

In this paper, we described our winning methods
multilingual clause-level morphology shared task
for inflection, reinflection, and analysis. Due to the
different complexity between tasks and the varying
morphological characteristics of languages, there is
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no single best model that achieves the best results
for each task in each language. Thus, we try to
implement different types of systems with different
objectives. For inflection we used a vanilla Trans-
former adapted from Vaswani et al. (2017) and
applying data hallucination substantially improves
accuracy (Anastasopoulos and Neubig, 2019). The
reinflection task is more challenging compared to
the other tasks due to its complex input form. To
overcome this issue, we have removed the original
feature tags from the input. We only used the in-
flected clause and target features in the input. We
again used a vanilla Transformer as a model choice.
Finally, for the analysis task, we used the prefix-
tuning method based on mGPT. On average, we
have achieved the best results for every three tasks
among all participants.
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Abstract

We present the University of British
Columbia’s submission to the MRL shared
task on multilingual clause-level morphology.
Our submission extends word-level inflectional
models to the clause-level in two ways: first,
by evaluating the role that BPE has on the
learning of inflectional morphology, and
second, by evaluating the importance of a
copy bias obtained through data hallucination.
Experiments demonstrate a strong preference
for language-tuned BPE and a copy bias
over a vanilla transformer. The methods are
complementary for inflection and analysis
tasks – combined models see error reductions
of 38% for inflection and 15.6% for analysis;
However, this synergy does not hold for
reinflection, which performs best under a
BPE-only setting. A deeper analysis of the
errors generated by our models illustrates that
the copy bias may be too strong - the combined
model produces predictions more similar to the
copy-influenced system, despite the success of
the BPE-model.

1 Introduction

Morphology is often described as the “study of the
shape of words”, but such a description is not en-
tirely accurate. Without considering the somewhat
nebulous definition of a “word”, there are clearly
inflectional processes that operate on a periphrastic
level. For example, in English, the future tense is
regularly inflected through the use of an auxiliary:
will and an infinitive, such as in the case “I will
go”.

Previous tasks in inflectional morphology (Cot-
terell et al., 2017, 2018; McCarthy et al., 2019; Vy-
lomova et al., 2020; Pimentel et al., 2021; Kodner
et al., 2022) have largely been restricted to generat-
ing isolated inflected word forms, which could be
viewed as a rather artificial task. While some have
included periphrastic constructions (Cotterell et al.,

∗*The first three authors contributed equally.

2016), they have largely been constrained to a sin-
gle part-of-speech. 1 This MRL Shared Task in
Multilingual Clause-Level Morphology (Goldman
et al., 2022) represents the first attempt to extend in-
flection generation beyond a single semantic unit to
clause-level structures and presents a great oppor-
tunity to investigate common inflectional methods
in a more realistic morphosyntactic setting.

We augment traditional transformer-based char-
acter models with two simple data modifications:
we first apply a small BPE-vocabulary to learn com-
mon repeated sequences like function words and
affixes, hoping to increase performance by reduc-
ing the known bias of long character sequences
(Neishi and Yoshinaga, 2019). Secondly, we adopt
a common data augmentation technique from word-
level inflection: adding data that has an identical
source and target to bias the model towards the
copying of characters (Liu and Hulden, 2022). We
find that a combination of these simple techniques
improves upon a vanilla transformer for inflection
and analysis, while a BPE-only model has the best
results for reinflection.

We also contribute a significant error analysis.
We investigate the types of errors that inflectional
systems are prone to, and how our contributions
alleviate them at the clause level; Furthermore, we
provide a thorough ablation study that compares
errors across inflectional tasks, and how these er-
rors are influenced by sequence length and copy
biasing2.

2 Methods

Studies in neural machine translation have reg-
ularly shown character- and subword-level rep-
resentations outperform word-level ones for
morphologically-rich languages (Shapiro and Duh,

1Excepting, of course, those languages where even this
distinction is not perfectly clear.

2Our data hallucination code is available at https://
github.com/mpsilfve/UBCMRL
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2018), and that optimizing the number of BPE oper-
ations can lead to substantial gains in model quality
(Araabi and Monz, 2020). Although the sequences
in inflectional models are typically shorter, there is
evidence that inflection models, like machine trans-
lation models, can benefit from grouping common
sequences (Peters and Martins, 2022). Similarly,
inflectional research has demonstrated that mod-
els can be significantly improved by establishing a
heavy bias towards copying data directly from input
to output (Liu and Hulden, 2022). Many variations
of this theme exist, but some of the most success-
ful have included establishing a hard attentional
model (Aharoni and Goldberg, 2017), learning an
explicit copy bias (Makarov and Clematide, 2018),
and augmenting the model with hallucinated data
(Anastasopoulos and Neubig, 2019).

For our submission to the shared task, we inves-
tigate to what extent these methods are extensible
to clausal morphology. Previous work has largely
occurred at the word-level, and while it is intu-
itive that word-level inflection should extend to the
clause-level, it is unclear to what extent. As one
of the first investigations into clause-level morphol-
ogy, we investigate the influence of byte pair en-
coding and copy bias on the production of accurate
morphological structures.

2.1 Vanilla system

We build a baseline system using the Fairseq (Ott
et al., 2019) implementation of transformers. To
distinguish it from the official task baseline, we
refer to it as the vanilla system. All characters
in the input and output are represented as atomic
units, and Morphosyntactic descriptors (MSD) are
split along semi-colons into inflectional features.
Spaces between words in clauses are represented
by an underscore (_). An example is provided in
Figure 1.

Figure 1: Data representation in the vanilla transformer.
The example is from the Spanish data set.

2.2 BPE

Neural models still struggle with long input and
output sequences; although great strides have been
made in retaining long-distance information, there
is still evidence that shorter sequences are easier to
represent accurately.

Byte pair encoding (BPE) (Sennrich et al., 2016)
reduces the length of both input and output se-
quences by memorizing frequent symbol sequences
and treating them as individual symbols. This typi-
cally has a marked positive impact on model perfor-
mance. In lower-resource settings, however, mod-
els can easily overfit if the vocabulary is too large.

We apply BPE to inflection but, in order to avoid
over-fitting, we experiment with a very small num-
ber of BPE vocabulary merges - 10 to 200. For
clause level morphology, we anticipate that these
merges will capture only the most common of seg-
ments, such as inflectional affixes, pronouns, and
function morphemes.

2.3 Copying

When inflecting from a lemma to a surface form,
many of the characters in the lemma are often pre-
served.3 However, neural models often require a
not-insignificant amount of training data to learn
this phenomenon. In low-resource inflectional ex-
periments, one process that has repeatedly been
shown to improve model stability is the simple ex-
pedient of copying the source to the target, without
any further modification (Liu and Hulden, 2022).
While this copying bias is likely less prevalent at
the phrasal level, we believe it still has the oppor-
tunity to improve the quality of the inflectional
models. Along with strengthening a preference for
copying in the model, copying the target data also
strengthens the target-side language model. An
example of this augmentation for inflection and
analysis is shown in Figure 2. For all three tasks,
the hallucinated data contains a single COPY tag on
the source side as MSD.

3 Data / Experiments

The shared task consists of three sub-tasks: (1)
inflection, where a lemma and MSD input are con-
verted to an inflected output; (2) reinflection, where
an initial clause, input-MSD, and target-MSD are
used to generate a target clause, and (3) analysis,

3The percentage of characters preserved varies greatly by
language.
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(a) Copying target-to-target for inflection. (b) Copying target-to-target for morphological analysis.

Figure 2: Data augmentation via COPY

where an input clause generates a target lemma and
MSD. Each task is evaluated across 9 languages.

Each language has a train/dev/test split of 10,000,
1000, and 1000 instances, respectively. 4 Although
extra data was allowed for the task, we instead
concentrated on optimizing the models without ad-
ditional data. Each model is evaluated on a single
training run; the seed is stabilized to lessen the
effect of noise across experiments.

We focus our experiments on an ablation of
our proposed data augmentation techniques. The
Vanilla experiments train models using the vanilla
transformer described above. +BPE tunes a byte
pair encoding vocabulary on each respective lan-
guage and task; we investigate BPE merges from
10-200, and choose the model that maximizes the
results on the development set+Copy augments the
data with copied target-side data; the size of the
BPE vocabulary is tuned individually for each lan-
guage and amount of additional data.

The transformer was trained with 4 attentional
heads over 4 encoder and decoder layers. The
Adam{0.9, 0.98} optimizer was used, with an ini-
tial learning rate of 0.0001, and an inverse square-
root learning schedule and a label-smoothed cross
entropy criterion. Dropout and attentional dropout
of 0.3 were applied to limit over-fitting, and a batch
size of 400 was also used. Models were trained for
20,000 updates, with the best model chosen via
loss on the development set.

4 Results

We break the discussion of our results down based
on the three sub-tasks of the competition: inflec-
tion, reinflection, and analysis. All reported results

4Some languages do not have 10,000 instances exactly, but
are of the same magnitude.

and analysis are on the development set, and are
cumulative: “+BPE” applies BPE to the vanilla
transformer, and “+Copy” further supplements the
model with data hallucination. For official results
on the test set, please see the task description paper
(Goldman et al., 2022). All systems submitted to
the official task were the systems with both BPE
and data hallucination. The results report the exact
match accuracy of the systems.

4.1 Inflection

Language Vanilla +BPE +Copy
deu 69.0 72.1 75.6
eng 85.4 86.2 89.7
fra 71.6 85.7 89.4
heb 86.9 86.9 86.4
heb_unvoc 63.5 80.6 83.1
rus 80.0 83.4 87.5
spa 87.0 88.6 87.7
swa 82.2 87.0 90.1
tur 81.9 87.0 91.5
Ave. 78.6 84.2 86.8

Table 1: Development results for the inflection task
(measured in full-form accuracy)

We first report the results for the inflection sub-
task in Table 1. We observe that both BPE and
data hallucination contribute to the quality of the
model; on average, adding a small amount of BPE-
joined vocabulary reduces the error by more than a
quarter. Additionally, providing additional copied
data leads to a further 11% error reduction.The
BPE vocabulary has the largest impact on French,
Swahili, Turkish, and unvocalized Hebrew, while
providing smaller gains to the rest of the language
set. The only language not to benefit from extra
data in training was Spanish. Since Spanish shares
a similar morphological makeup to French, which
benefits substantially from data hallucination, we
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do not attribute this finding to the morphological
structure of Spanish, but rather to peculiarities of
the dataset itself.

4.2 Reinflection

Language Vanilla +BPE +Copy
deu 37.7 49.8 46.6
eng 59.4 73.0 71.4
fra 63.9 68.8 71.1
heb 72.5 80.4 78.6
heb_unvoc 60.6 67.7 63.8
rus 76.8 79.5 78.7
spa 56.1 61.0 72.8
swa 54.9 73.4 65.5
tur 54.6 65.6 63.1
Ave. 59.6 68.8 68.0

Table 2: Development results for the reinflection task
(measured in full-form accuracy)

In Table 2, it is immediately obvious that rein-
flection behaves very differently from inflection,
despite many conceptual similarities. Although
BPE reduces the error of the vanilla transformer
to a similar degree as for inflection, adding hal-
lucinated copy data on top of the BPE does not
lead to further gains. Again, there seems to be no
morphological bias to this trend, with fusional, ag-
glutinative, and templatic languages all behaving
similarly.

There is one significant difference between in-
flection and reinflection that may lead to less suc-
cess via copy-biasing, however. Although both
processes involve the modification of a root, the
root is less stable in reinflection. In the inflection
task, the input is always the lemma, and identify-
ing the root can largely be generalized over all of
the training examples. In reinflection, the input
form is inconsistent, and root identification must
identify several operations. The problem is exacer-
bated with larger morphological paradigms, such
as clause-level paradigms. While much of the root
can be copied, there are also a significant number
of substitutions, which may lessen the need for a
strong copy bias. For example, in the German data,
one example should reinflect ich wü̈rde ihn nicht er-
schließen into es erschlösse sich. Our copy model
instead produces *es erschließe sich, demonstrat-
ing that the copy bias may be too strong.

4.3 Analysis

Table 3 demonstrates the results of our morpholog-
ical analysis experiments. Conceptually, analysis
is the inverse operation of inflection from a lemma

(ie, generating a lemma and MSD from an inflected
clause), and we observe similar results to those
from Section 4.1. Both BPE and data hallucination
result in error reductions across most languages,
and the effect appears to be cumulative: BPE on
its own reduced error by 9.2%, and the extra data
leads to a further reduction of 7.1%.

We observe that a significant part of the increase
in quality comes from an improved ability to iden-
tify the lemma – BPE correctly identifies 2.9%
more lemmas than the vanilla system, and the addi-
tion of hallucinated data further improves the qual-
ity of lemma identification by an absolute 3.1%.
This is not surprising, given that once the root has
been identified, the generation of the lemma can
largely be generalized to a small set of operations,
many of which are simple copies.

Somewhat surprisingly, the generation of the
MSD also improves from the addition of BPE, de-
spite no modifications to the MSDs in training. We
attribute this to the increased quality of lemma gen-
eration – in a joint model, the correct identification
of part of the output helps with disambiguation of
the secondary task. Even with that consideration,
it appears that BPE has a larger influence on the
production of MSDs than copy biasing.

Language Vanilla +BPE +Copy
deu 83.1 86.1 87.5
eng 89.2 91.0 91.2
fra 93.2 93.2 93.2
heb 92.9 92.9 94.3
heb_unvoc 84.8 87.1 87.7
rus 94.4 94.4 94.1
spa 89.7 89.7 90.6
swa 85.0 87.6 87.9
tur 89.2 89.3 90.8
Average F1 89.1 90.1 90.8
Lemma Acc. 67.4 70.3 73.4
MSD Acc. 81.7 82.5 82.4

Table 3: Development results for the analysis task (mea-
sured in F1 Score); the Lemma and MSD Accuracy are
averaged over all languages.

5 Analysis / Discussion

In order to better understand the differences in
model quality, we perform error analysis along
several axes. We first consider the types of in-
flection errors produced by the BPE, Copy, and
BPE+Copy models in Figure 3, while Figure 4
shows error reduction compared to the vanilla trans-
former when using BPE, Copy, and their combina-
tion BPE+Copy.
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Figure 3: Mean frequencies of various errors across the
test languages. Explanation of error types: Doubling a
character is erroneously doubled (abc → abbc). Drop
the second copy of a doubled character is errnouneously
dropped (abbc → abc). Insertion a character is erro-
neously inserted (abc → axbc). Deletion a character is
mistakenly deleted (abc → ac). Punct Punctuation is
dropped or replaced at the end of a word (abc. → abc
and abc. → abc?). Spell Total spelling errors affecting
the inflected form of the input lemma.

First, we notice that both BPE and Copy indi-
vidually reduce overall errors (the error type Total
in Figure 4). The impact of the methods seems
roughly equal, although Copy is slightly more ef-
fective on its own. Nevertheless, the combination
BPE+Copy clearly outperforms both individual
methods. Second, we observe somewhat different
influence from the BPE and Copy methods when
they are used in isolation - the former significantly
improves upon punctuation errors, while the lat-
ter removes a number of insertion errors from the
vanilla model. Moreover, the most prevalent er-
ror type in the vanilla model – deletion – is only
moderately reduced by the BPE model, while a far
greater error reduction can be seen when Copy is
employed. Furthermore, we observe a largely com-
plementary effect - the combined model improves
over either individual model for all error categories.

We next run an ablation to investigate the role
that each of our contributions has on the quality of
the models for each task. The results are plotted
in Figure 5. In this graph, we investigate which
errors are corrected or introduced by a particular
method. BPE and Copy “correct” an error if it
was produced by the vanilla model, and “break” an
example if it was correctly predicted by the vanilla
model, but not the enhanced model. For the model
with both BPE and copying, an instance is only
considered “corrected” if both the BPE and Copy

models produced an incorrect solution. Likewise,
it “breaks” a prediction only if both the BPE and
Copy models produce the correct solution.

We observe that both BPE and copying lead to
large improvements in the model, regardless of the
task - far more errors corrected than introduced.
For inflection and analysis, both methods appear
to contribute roughly equally to the quality of the
model. Furthermore, we observe a complementary
effect, where the combination of both methods cor-
rects notably more examples than either method
on its own. Contrarily, the combined model intro-
duces fewer inflectional errors than either BPE or
copying alone.

Interestingly, the trends observed in inflection
and analysis do not hold for reinflection. Although
BPE and copying alone improve the model, their
combination introduces a large number of errors -
such that they overwhelm the corrected instances
obtained through the combination of methods. A
closer inspection reveals that this outlier is largely
attributable to a single language - Swahili. When
Swahili is excluded, the results trend similar to
the other tasks, although BPE still has a stronger
influence. There are several areas where Swahili
could be contributing to this interesting finding, but
lacking experts in the language on our team, we
hesitate to make concrete hypotheses.

Figure 5 suggests that the biggest benefit of the
combined model is its ability to correctly discern
when one of the separate data augmentations cor-
rectly produces an inflection, but it isn’t quite that
clear. Looking at examples where the BPE and
Copy models disagree, we observe that the com-
bined inflection model correctly chooses the right
solution 72.8% of the time.5 However, for rein-
flection and analysis, the correct solution is only
chosen slightly more than 50% of the time.

Considering only those instances where the orig-
inal BPE and Copy models disagree, we investigate
the influence of the individual contributions. For
inflection, we observe that the combined model
produces output identical to the BPE model in 61%
of cases, as opposed to only 40% for reinflection
and 43% for analysis. It appears that the copied
data has an unduly large influence on the combined
model for the latter two tasks.

Given that the motivation behind BPE was re-
5Note that there is actually no “choosing” occuring, such

as might happen in an ensemble. Instead this can be viewed
as the influence of a particular addition biasing the model
towards a particular prediction.
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Figure 4: Mean error reduction across the five test languages for the BPE, Copy and BPE+Copy systems when
compared to the baseline system. See caption of Figure 3 for an explanation of the error types.

Figure 5: Analysis of errors corrected and introduced by
our augmentations over the vanilla model. The y-axis is
an absolute scale of the average number of errors cor-
rected and introduced by each model, compared with
the vanilla transformer. Inf - Inflection; Reinf - Rein-
flection.

ducing the size of input and output segments, we
investigate the role that the length of a sequence
plays on the quality of a model. Since reinflec-
tion and analysis lengths vary based not only on
the length of the verb being inflected, but on other
factors such as the number of words in the input,
etc, we limit this investigation to the inflection task.
Figure 6 demonstrates the number of errors pro-
duced by our best system, given the length of the
input sequence (ie, the lemma). German, Russian,
and Turkish show a strong preference for shorter
input sequences. Hebrew (both unvocalized and
standard) and Spanish instead demonstrate a some-
what surprising preference in the other direction -
producing more errors for short sequences.

In an attempt to further explain these conflict-
ing results, we next investigate the relationship be-
tween lemmas in the training and development sets.
Figure 7 reports the number of errors made by our
best system with respect to the distance between
the development lemma and the closest analogue
in the training data. Now, unsurprisingly, we see

Figure 6: Analysis of errors made by our best model for
each language in the inflection task depending on char-
acter length of the lemmas. The y-axis is the average
number of errors made in the development set and the
x-axis is the character length.

that most languages perform better when there is a
closely-related lemma in the training data.

Finally, we investigate the efficiency of our copy-
ing method by comparing it with two alternatives.
Rather than simply taking the training output data
and copying it as extra data, RANDOM generates ran-
dom sequences of characters to copy from source
to target. Similarly, LM creates new copy sequences,
but first learns a neural language model from the
training data, before generating the sequences. The
results for inflection are shown in Figure 8.

We observe that changing the hallucination
method from copied training data to randomly-
generated sequences greatly improves the quality
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Figure 7: Analysis of errors made by our best model
for each language in the inflection task depending on
the closest Levenshtein score of any lemma present in
the training set. The y-axis is the average number of
errors made in the development set and the x-axis is the
Levenshtein distance.

of the inflector, with an error reduction of more
than 35%, on average. We hypothesize that while
the COPY method simply reinforces an existing sig-
nal, the RANDOM method introduces new contexts
for copying, which allows the model to better gen-
eralize the copy operation overall.

6 Conclusion

We have described the submission of the UBC team
to the MRL shared task on multilingual clause-
level morphology. Experiments on a series of
morphologically-diverse languages have demon-
strated that BPE and copy-biasing, two methods
that have proven successful at the word-level, are
largely extensible to clause-level morphology.

We observe that the methods are largely com-
plementary, with one exception - the task of rein-
flection. Although we observe notable gains over
a vanilla transformer when either performing BPE
or copy hallucination, combining the two methods
leads to a degradation in reinflection quality.
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Figure 8: A comparsison of our data hallucination meth-
ods using copied training data and randomly generated
sequences.

Limitations

The work described in this paper focuses on multi-
lingual representation, but the authors are not famil-
iar with all of the analyzed languages. Hypotheses
are based on general linguistic experience, and not
necessarily a familiarity with the languages in ques-
tion.

Deep learning models are stochastic in nature,
which may lead to replication difficulties. We have
tried to specify relevant hyper-parameters and set-
tings, but random fluctuations in seed values may
result in variations in replication studies.

Ethics Statement

We trust that the data used in this paper was
ethically-sourced. The models were trained by fac-
ulty and students of the Department of Linguistics
at the University of British Columbia, and none of
the data or models were shared with anyone out-
side that purview. All contributors to the project
are in the author list, or thanked in the acknowledg-
ments. No members of the team received monetary
compensation for participating in this task. All
participation was voluntary.
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Abstract

Recent low-resource named-entity recognition
(NER) work has shown impressive gains by
leveraging a single multilingual model trained
using distantly supervised data derived from
cross-lingual knowledge bases. In this work,
we investigate such approaches by leveraging
Wikidata to build large-scale NER datasets of
Tweets and propose two orthogonal improve-
ments for low-resource NER in the Twitter
social media domain: (1) leveraging domain-
specific pre-training on Tweets; and (2) build-
ing a model for each language family rather
than an all-in-one single multilingual model.
For (1), we show that mBERT with Tweet pre-
training outperforms the state-of-the-art mul-
tilingual transformer-based language model,
LaBSE, by a relative increase of 34.6% in F1
when evaluated on Twitter data in a language-
agnostic multilingual setting. For (2), we show
that learning NER models for language families
outperforms a single multilingual model by rel-
ative increases of 14.1%, 15.8% and 45.3% in
F1 when utilizing mBERT, mBERT with Tweet
pre-training and LaBSE, respectively. We con-
duct analyses and present examples for these
observed improvements.

1 Introduction

Named-entity recognition (NER) is the process of
detecting named mentions in text, and it is an es-
sential subtask in several NLP applications such as
information extraction (Weston et al., 2019), sum-
marization (Aramaki et al., 2009) and question an-
swering (Chen et al., 2019).

While resource-rich languages have received
enormous focus over the last two decades, NER for
low-resource languages is still under-explored due
to the lack of resources — native speakers might
not be even accessible — and the cost of labeling
data needed to train supervised models for different
languages. As a result, there has been emerging
interest in multilingual NER, especially to process

low-resource languages, in unsupervised and mini-
mally supervised fashions.

One aspect of Multilingual NER is the need to
build models that can generalize well across the un-
derlying languages. However, when operating on
social media text, multilingual NER becomes even
harder (Mishra and Diesner, 2016; Mishra, 2019;
Mishra and Haghighi, 2021) because of linguistic
diversity, short context and orthographic variation.

Recent research has shown success by leveraging
a single multilingual model based on distantly su-
pervised datasets derived from cross-lingual knowl-
edge bases (Nothman et al., 2013; Rahimi et al.,
2019). We follow the work on building dis-
tantly supervised NER datasets by leveraging Wiki-
data (Vrandečić and Krötzsch, 2014) for Tweets,
where we do not assume access to long contexts
nor manually labeled named entities in context.
We then propose modeling techniques towards im-
proved multilingual NER models for Tweets, where
we investigate how much pre-training language
models on domain-specific data (Tweets) and train-
ing NER models on the basis of language families
improve NER performance. Our contribution is
threefold.

1. We build distantly supervised large-scale
monolingual and multilingual NER datasets
of Tweets 1.

2. We propose a domain-specific pre-trained
Tweet language model.

3. We learn different NER models for language
families versus a single all-in-one multilingual
model.

It is worth noting that while exiting distantly su-
pervised NER datasets have proven efficient, e.g.,
WikiAnn (Pan et al., 2017), they are either 1) mono-
lingual; 2) based on resources of rich context such
as Wikipedia, as opposed to Wikidata, where the
named entities are out of context; 3) outside of

1The datasets are accessible upon contacting the first au-
thor.
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the Twitter domain; or 4) of limited size such as
the Tweet datasets by Peng et al. (2019) and Liang
et al. (2020). This necessitates the development of
our Tweet datasets in order to answer our research
questions in a low-resource setting.

We show that mBERT with Tweet pre-training
outperforms LaBSE (Feng et al., 2020), a state-of-
the-art multilingual language model, when evalu-
ated in a language-agnostic multilingual setting on
Twitter data. In addition, we show that learning
NER models for language families outperforms a
single all-in-one multilingual model. Our interpre-
tation is that languages that belong to one family
possess common linguistic features useful to learn
an NER model. In contrast, joint learning of too
many languages, most of which are unrelated, hin-
ders the ability of the model to well fit any of the
underlying languages. Finally, we conduct analy-
ses and present examples in German and Arabic
for the observed improvements.

2 Distantly Supervised Multilingual NER

In order to answer our research questions, we con-
struct distantly supervised monolingual and multi-
lingual NER datasets of Tweets (Section 2.1) and
train NER models of different characteristics (Sec-
tion 2.2).

2.1 Building NER datasets of Tweets

We describe below the process for building dis-
tantly supervised NER datasets of Tweets using
Wikidata.

2.1.1 Initial selection of Tweets
First, we construct an initial corpus of Tweets that
lay within a time window of 14 days 2, up to 5,000
Tweets per language on any single day. This results
in Tweets in the 65 languages depicted in Figure 1.
We then apply white-space tokenization on the se-
lected Tweets.

2.1.2 Constructing a Wikidata Lookup
Utilizing cross-lingual knowledge bases to build
multilingual NER datasets and gazetteers has
proven successful (Pan et al., 2017; Al-Rfou et al.,
2015). We next build a gazetteer of named entities
by leveraging Wikidata (Vrandečić and Krötzsch,
2014), a large-scale cross-lingual knowledge base

2In order to avoid Tweets of insufficient context, we filter
our Tweets that are replies, containing more than five hashtags,
five mentions or three URLs, or containing less than five
tokens.

of nearly 100M entities, where each entity has a
unique identifier and a list of categories and is de-
fined as labels and alternate aliases in multiple lan-
guages.

For each language in our initial corpus of Tweets,
we construct a Wikidata lookup trie (suffix tree)
that stores all the labels and aliases of each entity
in the underlying language. We apply white-space
tokenization on the labels and aliases and store the
resulting tokens in the tries, one token per level.
We also store entity information, such as the iden-
tifier and the list of feasible categories, within the
corresponding leaf nodes.

2.1.3 Tagging of Tweets
We apply the maximum matching algorithm used
by Peng et al. (2019), with a context size k = 5, to
tag our corpus of Tweets for NER. In order to speed
up the search process, we scan the Wikidata lookup
tries in a top-down fashion with early termination.

Marking all the matching Wikidata labels and
aliases as named-entity mentions in the Tweets re-
sults in over-tagging. For instance, the common
English word be is an alias for Belgium (LOCA-
TION). Accordingly, we ignore unigram mentions,
mentions exclusively composed of the most fre-
quent 1,000 tokens in the underlying language3

and mentions starting with a lower-cased letter (if
different from its upper-cased form), which results
in empirical improvements in precision.

2.1.4 Curation of Tags
Next, we map the Wikidata categories into NER
labels and filter out the Tweets that do not con-
tain mentions belonging to the main NER labels,
namely PERSON, LOCATION and ORGANIZATION.
Moreover, since the PERSON label is common in
Tweets, we only select the Tweets that contain a
single PERSON mention with a 20% probability. In
addition, since a mention might belong to two or
more categories, a Tweet is replicated to reflect all
the possible combinations of the underlying labels.
For instance, a Tweet that has the mention Michael
Kors is replicated twice in order to indicate both
the PERSON and ORGANIZATION interpretations 4.

2.1.5 Defining the Datasets
We build monolingual NER datasets for each lan-
guage. In addition, we build multilingual datasets

3We derive the lists based on the initial corpus of Tweets.
4The replication results in better empirical performance,

where the models learn to detect and overlook unlikely label
assignments
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Indo-European Balto-Slavic: bg cs lt lv pl ru sl sr uk

Germanic: da de en is nl no sv

Italic: ca es fr it pt ro

Indo-Iranian: bn ckb dv fa gu hi mr ne or pa ps sd si ur

Armenian: hy

Celtic: cy

Dravidian

South-Central: te
Hellenic: el

Southern: kn ml ta

Sino-Tibetan

Tibeto-Kanauri: bo

Lolo-Burmese: my

zh

Kra-Dai Tai: lo th 

Turkic Common Turkic: tu ug

Austronesian Malayo-Polynesian: id tl French-Creole Circum-Caribbean French: ht

Uralic Finno-Ugric: et fi hu Afro-Asiatic Semitic: am ar he

Kartvelian Karto-Zan: ka

Isolates eu koJaponic ja

Austro-Asiatic khm Vietic: vi

Figure 1: Our training languages, grouped into their families and sub-families

for language families, defined as the first and sec-
ond language-family levels according to Wikipedia
(See Figure 1). We do so for all the language
families that include three or more languages and
at least one experimental language (the first col-
umn in Table 1). This results in four family-based
multilingual NER datasets, namely ASS (Afro-
Asiatic, Semitic), IEG (Indo-European, Germanic),
IEI (Indo-European, Italic) and IEII (Indo European,
Indo-Iranian). Finally, we build a single all-in-one
multilingual dataset that contains all the training
languages.

In addition, we construct additional datasets that
are the merge between our datasets and the train-
ing sets of WikiAnn (Pan et al., 2017), distantly
supervised cross-lingual NER and entity-linking
datasets of Wikipedia articles, towards higher cov-
erage. The sizes of the datasets are reported in
Table 1.

Family-Based Multilingual NER We hypothe-
size that a restricted multilingual model that is fo-
cused on languages within one family outperforms
a multilingual model that spans two or more lan-
guage families. This is because languages within
one family tend to share morphosyntactic and syn-
tactic features useful to learn an NER model, while
learning a model across unrelated families limits
the ability of the model to learn the latent patterns
per language. Previous research highlights the
role of family relatedness in different NLP tasks.
Pires et al. (2019) show that fine-tuning mBERT on
some language and applying zero-shot model trans-
fer onto another only performs well across related
languages in the tasks of NER and POS tagging.
Cross-lingual POS tagging has also proven most
successful across languages that belong to the same
family (Eskander et al., 2020; Eskander, 2021). In

Lang/Family Without WikiAnn With WikiAnn

en 35K 55K
de 24K 44K
nl 30K 50K
es 22K 42K
pt 7K 27K
fr 19K 39K
it 24K 44K
hi 30K 35K
ur 77K 97K
bn 6K 16K
ja 25K 45K
ar 15K 35K
tr 12K 33K
te 6K 7K

AAS 36K 76K
IEG 112K 234K
IEI 106K 226K
IEII 149K 210K
All 609K 1425K

Table 1: The sizes of the monolingual and multilingual
NER datasets. AAS = Afro-Asiatic, Semitic. IEG = Indo-
European, Germanic. IEI = Indo-European, Italic. IEII
= Indo-European, Indo-Iranian.

addition, Fan et al. (2021a) show that selecting a
pivot language within the same language family of
the language of interest helps improve translation
performance.

2.2 Modeling

We build our multilingual NER models by
fine-tuning multilingual transformer-based lan-
guage models, namely (basic) mBERT 5 (De-
vlin et al., 2019), mBERT pre-trained on Tweets
(mBERT+Tweets) and LaBSE (Feng et al., 2020),

5While XLM-Roberta (Conneau et al., 2019) is superior to
mBERT in the task of multilingual NER (Adelani et al., 2021),
the use of mBERT is sufficient to draw conclusions on the use
of the different multilingual settings, where our purpose is not
to produce an NER system with the state-of-the-art results.
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Language-Agnostic BERT Sentence Embedding 6.
We use the same setup proposed by Devlin et al.
(2019), where we predict the NER tags only for the
first subword of each token in a sequence.

Our choice of mBERT is used as a baseline,
while the use of LaBSE is motivated by the fact
that mBERT’s transfer across languages can be
improved by aligning embeddings of translations
(Mishra and Haghighi, 2021), which is in line with
the pre-training objective of LaBSE. Moreover,
both mBERT and LaBSE have achieved success in
the task of NER as demonstrated in the work by
Pires et al. (2019) and Hakala and Pyysalo (2019),
respectively.

The mBERT+Tweets model is basically the ba-
sic mBERT model pre-trained on Tweets (plain
Tweet texts) for the masked language-modeling
(MLM) objective. For pre-training, we use a
dataset of 700M Tweets in 65 languages, ran-
domly sampled using mBERT’s methodology7 that
is based on exponentially smoothed language prob-
abilities (S=0.7) to slightly increase the represen-
tation of low-resource languages. We initialize
our model with mBERT weights and further train
on the MLM objective. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 5e−5 and a weight decay of 0.01, along
with a batch size of 2K and 800K training steps.

3 Evaluation and Analysis

3.1 Experimental Setup
Languages We perform our experiments on 14
simulated low-resource languages 8 of diverse ty-
pologies where we do not assume access to labeled
data in the form of texts tagged for named enti-
ties. This consists of 10 Indo-European languages,
namely English, German and Dutch (Germanic);
Spanish, Portuguese, French and Italian (Italic);
and Hindi, Bengali and Urdu (Indo-Iranian), in ad-
dition to Arabic (Afro-Asiatic, Semitic), Japanese
(Japonic), Turkish (Turkic, Common-Turkic) and
Telugu (Dravidian, South-Central).

Training We follow Devlin et al. (2019) for the
training of our NER models by fine-tuning the

6We cannot pre-train LaBSE on Tweets since LaBSE is
pre-trained for the translation-pair prediction (TPP) objec-
tive, which requires translation pairs that are not available for
Tweets.

7https://github.com/google-research/bert/blob/
master/multilingual.md

8While most of our experimental languages are not low-
resource, we use them in a low-resource setting.

multilingual transformer-based language models,
namely mBERT, mBERT+Tweets and LaBSE, on
our distantly-supervised NER datasets presented in
Section 2.1.

We train monolingual NER models for each ex-
perimental language; we denote this setting by
MONO. In addition, we train multilingual NER
models for the language families defined in Sec-
tion 2.1.5; we denote this family-based learning
setting by FB-MULTI. Finally, we train a single
multilingual model for the 65 languages in Fig-
ure 1; we denote this setting by ALL-MULTI.

We use the AdamW optimizer with a learning
rate of 1e−5 and a weight decay of 1e−5, along with
a batch size of 16 and up to 10 epochs with early
stopping. We use 12 NVIDIA A100 GPUs, averag-
ing nearly an hour of training per NER model.

Testing We utilize in-house gold standard test
sets for English, Spanish, Portuguese, Arabic
and Japanese, containing 3K, 2K, 10K, 10K and
2.3K Tweets, respectively 9. In addition, we
use seven public benchmarks, namely CoNLL’03
(Tjong Kim Sang and De Meulder, 2003) (for En-
glish and German), CoNLL’02 (Tjong Kim Sang
and De Meulder, 2003) (for Dutch and Spanish),
Europeana Newspapers (Neudecker, 2016) (for
French), xLiMe 10 (for Italian), SSEA (Singh,
2008) (for Hindi, Urdu, Bengali and Telugu), Code-
Switch’18-(validation) (Aguilar et al., 2018) (for
Arabic) and JRC (Küçük et al., 2014) (for Turkish).

3.2 Evaluation

We refer to a combination of a test set and a
learning setting as an experimental pair. For in-
stance, {es: CONLL’03, FB-MULTI} means that
we apply the family-based multilingual NER model
that is trained on the Italic dataset on the Spanish
CONLL’03 test set, while {tr: JRC, ALL-MULTI}
means that we apply the multilingual NER model
that is trained on our 65 languages on the Turkish
JRC test set. We report all the results in entity-level
micro-averaged F1.

It is worth mentioning that our target is to com-
pare the different multilingual settings towards im-
proved NER for Tweets. However, we do not assess
the quality of our Tweet datasets with respect to ex-
isting distantly supervised ones. This is because, to

9We plan to make our in-house test sets publicly available
upon publication.

10https://clarin.si/repository/xmlui/handle/
11356/1078
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Lang. Dataset Monolingual Mulilingual (Family-Based) Multilingual (All-in-One)
mBERT mBERT+Tweets LaBSE mBERT mBERT+Tweets LaBSE mBERT mBERT+Tweets LaBSE

en CONLL’03 41.8 40.7 43.1 40.1 38.9 42.9 37.9 36.0 33.3
en INH* 38.0 43.2 42.3 34.1 42.5 36.8 32.8 38.6 27.5
de CONLL’03 44.9 42.0 46.4 42.3 40.9 44.2 38.1 38.8 29.0
nl CONLL’02 44.5 43.3 50.7 46.8 43.6 42.2 41.2 35.8 25.2
es CONLL’02 31.2 30.5 27.6 31.5 27.5 29.0 29.0 27.4 24.8
es INH* 40.3 41.8 39.7 35.9 39.0 33.1 32.4 37.2 24.8
pt INH* 33.0 41.2 38.1 29.1 36.2 26.3 27.6 33.9 18.5
fr EuropeanaNP 36.4 35.4 34.4 33.6 31.3 29.7 28.1 26.8 22.0
it xLiMe* 14.4 17.7 16.3 14.4 18.9 16.6 16.3 19.3 16.3
hi SSEA 26.4 30.6 33.7 19.0 20.1 29.4 19.1 17.1 9.1
ur SSEA 17.9 16.5 20.5 14.7 16.6 19.6 15.6 12.3 15.8
bn SSEA 25.1 21.2 45.3 19.1 18.9 36.8 16.5 18.9 19.3
ar Code-Switch’18* 26.8 28.0 27.6 23.4 25.5 28.9 21.9 23.0 23.0
ar INH* 16.0 20.4 16.4 14.1 20.7 15.7 11.4 16.2 10.8
ja INH 17.3 23.9 18.5 NA NA NA 17.2 20.3 15.1
tr JRC* 31.5 37.6 31.2 NA NA NA 26.9 32.1 28.0
te SSEA 13.0 10.8 17.6 NA NA NA 12.0 6.6 18.0
Average (Tweets) 27.2 31.7 28.7 25.2 30.5 26.2 23.3 27.6 20.5

Average (IEG) 42.3 42.3 45.6 40.8 41.5 41.5 37.5 37.3 28.8
Average (IEI) 31.1 33.3 31.2 28.9 30.6 26.9 26.7 28.9 21.3
Average (IEII) 23.1 22.8 33.2 17.6 18.5 28.6 17.1 16.1 14.7
Average (All) 29.3 30.9 32.3 28.4 30.0 30.8 24.9 25.9 21.2

Table 2: NER Results (entity-level micro-averaged F1) without the addition of the WikiAnn training sets. The best
result per experimental pair ({test set, learning setting}) is in bold. The best result per test set is underlined. Tweet
datasets are denoted by *. IEG = Indo-European, Germanic. IEI = Indo-European, Italic. IEII = Indo-European,
Indo-Iranian.

our knowledge, our datasets are the only available
large-scale NER Tweet datasets that are based on a
non-contextual knowledge base, Wikidata, where
we simulate learning in truly low-resource scenar-
ios.

Table 2 reports the NER performance (entity-
level micro-averaged F1) for all the experimental
pairs without the addition of the WikiAnn train-
ing sets. Overall, there is a noticeable variance
in the performance of the different models across
the learning settings, and even within the same lan-
guage when evaluated on different test sets. How-
ever, the Germanic languages witness the best NER
performance, which we attribute due to the bias in
the training data of the utilized language models.

LaBSE The use of LaBSE in the MONO setting
yields the best performance for seven experimen-
tal pairs: three Germanic ones, three Indo-Iranian
ones and the telugu one. It also results in the best
on-average F1 of 32.3% across all the experimen-
tal pairs in the MONO setting, which is relative
increases of 10.2% and 4.5% over the correspond-
ing performance of mBERT and mBERT+Tweets,
respectively. However, the performance of LaBSE
dramatically drops in the ALL-MULTI setting with
average relative decreases of 34.4% and 31.2%
compared to the performance in the MONO and
FB-MULTI settings, respectively.

mBERT+Tweets The use of mBERT+Tweets in
the MONO setting results in the best performance
for eight experimental pairs, mostly with the use
of our gold standards of Tweets (INH). In addi-
tion, when averaging across the Tweet datasets,
mBERT+Tweets outperforms both mBERT and
LaBSE, where it achieves relative increases of
10.5%, 16.4% and 34.6% compared to LaBSE in
the MONO, FB-MULTI and ALL-MULTI settings, re-
spectively. Moreover, mBERT+Tweets yields the
best on-average performance in the ALL-MULTI

setting, outperforming mBERT and LaBSE by av-
erage relative increases of 4.0% and 22.2%, respec-
tively.

mBERT The results illustrate the effectiveness
of pre-training the basic mBERT model, where
mBERT+Tweets outperforms mBERT by average
relative increases of 5.5%, 5.6% and 4.0% in the
MONO, FB-MULTI and ALL-MULTI settings, respec-
tively, while LaBSE outperforms mBERT by rel-
ative increases of 10.2% and 8.5% in the MONO

and FB-MULTI settings, respectively. However, pre-
training does not yield improvements in the cases
of{fr, EuropeanaNP} and {es, CoNLL02}.

Monolingual vs. Multilingual NER Models
The MONO setting yields the best performance
for all the experimental pairs except five, two of
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Lang. Dataset Monolingual Mulilingual (Family-Based) Multilingual (All-in-One)
mBERT mBERT+Tweets LaBSE mBERT mBERT+Tweets LaBSE mBERT mBERT+Tweets LaBSE

en CoNLL’03 60.1 61.3 62.9 56.4 60.4 62.6 55.8 56.8 57.6
en INH* 40.8 48.2 45.5 27.5 43.3 40.8 31.8 37.3 34.6
de CoNLL’03 49.9 54.8 53.4 54.9 53.0 55.2 49.8 54.9 52.2
nl CoNLL’02 57.8 51.8 53.3 47.9 46.2 49.5 45.3 46.2 45.0
es CoNLL’02 51.9 46.1 48.5 53.8 53.0 46.3 50.4 49.9 45.3
es INH* 40.2 40.9 42.0 32.7 39.0 31.4 29.5 30.8 32.6
pt INH* 33.8 41.4 39.7 26.5 35.4 24.0 21.4 27.2 26.1
fr EuropeanaNP 45.1 38.7 38.4 35.1 35.2 32.5 32.2 35.9 34.2
it xLiMe* 13.7 17.3 19.1 16.2 17.5 15.5 14.5 15.9 15.2
hi SSEA 22.9 23.8 36.4 19.5 28.5 28.0 22.3 24.2 27.3
bn SSEA 25.6 20.2 38.3 20.4 18.4 39.3 21.1 20.3 35.3
ur SSEA 22.9 20.7 28.7 28.3 27.2 40.2 30.7 29.1 41.8
ar Code-Switch’18* 29.8 31.1 33.1 24.9 27.6 29.3 25.7 28.1 29.8
ar INH* 16.0 22.3 21.9 12.1 20.8 16.9 12.8 14.4 14.7
ja INH* 22.1 24.9 22.4 NA NA NA 18.8 22.2 22.0
tr JRC* 38.5 52.5 46.2 NA NA NA 30.3 42.9 40.6
te SSEA 17.8 6.4 16.8 NA NA NA 10.6 8.8 16.3
Average (Tweets) 29.4 34.8 33.8 23.3 30.6 26.3 23.1 27.3 26.9

Average (IEG) 52.1 54.0 53.8 46.7 50.7 52.1 45.7 48.8 47.4
Average (IEI) 37.0 36.9 37.6 32.8 36.0 29.9 29.6 31.9 30.7
Average (IEII) 23.8 21.5 34.5 22.7 24.7 35.9 24.7 24.5 34.8
Average (All) 34.7 35.4 38.0 32.6 36.1 36.6 29.6 32.1 33.6

Table 3: NER Results (entity-level micro-averaged F1) with the addition of the WikiAnn training sets. The best
result per experimental pair ({test set, learning setting}) is in bold. The best result per test set is underlined. Tweet
datasets are denoted by *. IEG = Indo-European, Germanic. IEI = Indo-European, Italic. IEII = Indo-European,
Indo-Iranian.

which belong to Arabic and one of which belong
to Telugu, the language with the least number of
instances in our training sets. We hypothesize that
for low-resource languages, adding training exam-
ples from other languages compensates for the lack
of data in the language of interest.

Family-Based vs. All-in-One Multilingual Mod-
els Learning NER models for language families
(FB-MULTI) outperforms the use of a single all-in-
one multilingual model (ALL-MULTI) except on
four occasions (7.8% of the time). FB-MULTI also
outperforms ALL-MULTI when averaging across
all the experimental pairs, yielding relative in-
creases of 14.1%, 15.8% and 45.3% with the use
of mBERT, mBERT+Tweets and LaBSE, respec-
tively. FB-MULTI is also superior when averaging
across the individual language families. The re-
sults suggest that combining too many languages
in the training data makes it difficult for the NER
model to learn the morphosyntactic and syntactic
properties of the individual languages; empirically,
the ALL-MULTI setting only yields the best per-
formance for two experimental pairs by a small
margin of 0.4% compared to the performance in
the other learning settings. In contrast, languages
within a language family tend to share linguistic
properties, which helps the NER model better fit to
the individual languages within the family.

WikiAnn Table 3 reports the NER performance
(entity-level micro-averaged F1) for all the exper-
imental pairs with the addition of the WikiAnn
training sets. Comparing the results in Table 3 to
those in Table 2 shows that the addition of WikiAnn
helps derive more efficient NER models.

Grouping by individual languages, WikiAnn im-
proves the performance for all languages excpet
German, Portuguese and Italian, where Urdu bene-
fits the most from the addition of WikiAnn, an av-
erage relative increase of 83.6%, while the biggest
drop in performance occurs in the case of Italian,
an average relative decrease of only 3.0%.

WikiAnn also improves the performance on av-
erage across the Germanic and Italic languages and
when averaging across all the experimental lan-
guages. However, the addition of WikiAnn results
in noticeable performance drop when considering
the Tweet datasets in the case of fine-tuing mBERT
in the FB-MULTI setting, where neither mBERT nor
WikiAnn leverages Twitter data.

3.3 Analysis
Table 4 lists NER-tagging examples that show
cases in which 1) mBERT with Tweet pre-training
outperforms LaBSE; and 2) training for distinct
language families outperforms the single all-in-one
multilingual model. In addition, we show common
errors in our best setting. We conduct our manual
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German Examples
Tokens

01

Andersens starrer Blick sagt viele Worte | Das ist modernes Marketing für den Messia

02
Glosses Andersens staring look says many words | this is modern marketing for the Messiah

True Labels B-PER O O O O O | O O O O O O B-PER
mBERT+Tweets (ALL) B-PER O O O O O | O O O O O O B-PER

LaBSE (ALL) B-PER O B-PER O O O | O B-ORG I-ORG O O O B-PER

Tokens

03

Stepanovic prophezeit Wolf eine große Zukunft | Der Stadt Königstein geht es finanziell glänzend

04
Glosses Stepanovic prophesized Wolf a great future | the city Konigstein goes it financial brilliantly

True Labels B-PER O B-PER O O O | O B-LOC I-LOC O O O O
mBERT+Tweets (FB) B-PER O B-PER O O O | O B-LOC I-LOC O O O O

mBERT+Tweets (ALL) O O B-PER O O O | O O B-ORG O O O O

Tokens
05

Eine lange Schlange steht vor der Bühne | Eröffnung ist um 11 Uhr
06Glosses a long queue stands in front of the stage | opening is at 11 O’clock

True Labels O O O O O O O | O O O O O
mBERT+Tweets (FB) B-PER O O O O O O | B-ORG I-ORG O O O

Arabic Examples (Arabic reads from right to left)
Tokens

07

XFw�� X� ¨�  CAhn�� ¤z§E z§z`�� db�  wm�� | ¢§wyF¯� ¢�¯�¤ A§Cw� r��
08

Glosses the middle line in today Zizo Al-Aziz Abd Mahmoud | the Asian and the nation Korea pride
True Labels O O O O I-PER I-PER I-PER B-PER | O O B-LOC O

mBERT+Tweets (ALL) O O O O I-PER I-PER I-PER B-PER | O O B-LOC O
LaBSE(ALL) O O O O O I-PER I-PER B-PER | O O B-PER O

Tokens

09

�wy�� ��±� Hl�� �A�� ¨�� ws�� �lm�� | CAn§ 110 
 �rbt§ ©rmK�� ��w`�� dm�
10

Glosses today the Security Council before the Sudanese the case | Dinar 110 for donates Al-Shamry Al-Awam Hamad
True Labels O B-ORG I-ORG O O O | O O O O I-PER I-PER B-PER

mBERT+Tweets (FB) O B-ORG I-ORG O O O | O O O O I-PER I-PER B-PER
mBERT+Tweets (ALL) O O O O O O | O O O O O I-PER B-PER

Tokens
11

|A§r�� Yl� ¢fyf� CAW�� | d§d� Cwn��db� �§ryF �yfKtk� �hlkJ 
AbK��
12Glosses Riyadh on light rains | recently Abd-Al-Nour Cyrine discovering seem the youth

True Labels B-LOC O O O | O I-PER B-PER O O O
mBERT+Tweets (FB) O I-PER O O | O B-PER O O O O

Table 4: NER Examples in German and Arabic. Errors are circled.

analysis on both German and Arabic 11 using the
CONLL’03 and INH test sets, respectively.

German The use of mBERT+Tweets in the ALL-
MULTI setting results in 1,335 (out of 3K) correctly
tagged Tweets, as opposed to 495 when leveraging
LaBSE, where the use of LaBSE results in over-
tagging PERSON (ex. 01) and ORGANIZATION (ex.
02). On the other hand, the number of correctly
tagged Tweets increases to 1,418 when fine-tuning
mBERT+Tweets for the IEG family, where the sys-
tem improves at detecting PERSON (ex. 03) and
LOCATION (ex. 04). However, one common error
is the false tagging of PERSON (ex. 05) and ORGA-
NIZATION (ex. 06) at the beginning of Tweets.

Arabic The use of mBERT+Tweets in the ALL-
MULTI setting results in 4,805 (out of 10K) cor-
rectly tagged Tweets, as opposed to 1,216 when
leveraging LaBSE, where the use of LaBSE weak-
ens the detection of non-PERSON mentions (ex. 07)
and long mentions of three or more tokens (ex.
08). On the other hand, the number of correctly
tagged Tweets increases to 6,229 when fine-tuning
mBERT+Tweets for the AAS family as the system
further improves at tagging non-PERSON mentions
(ex. 09) and long mentions (ex. 10). However, two
common issues are the low recall of LOCATION (ex.
11) and the inability to recognize non-Arabic and

11We have access to linguists who understand German and
Arabic. Moreover, the two languages represent two different
families and scripts.

infrequent Arabic names (ex. 12).

4 Related Work

Leveraging cross-lingual knowledge bases for the
construction of multilingual NER datasets and
gazetteers has proved successful. Two large-
scale efforts are WikiAnn (Pan et al., 2017),
Wikipedia-based cross-lingual NER and entity-
linking datasets in 282 languages, and Polyglot-
NER (Al-Rfou et al., 2015), NER datasets in 40 lan-
guages derived from Wikipedia and Freebase (Bol-
lacker et al., 2008). On another hand, there have
been a few efforts to construct distantly supervised
NER datasets of Tweets such as the work by Peng
et al. (2019) and Liang et al. (2020), which pre-
sented datasets of only 7,257 and 2,400 Tweets, re-
spectively. We follow similar approaches by lever-
aging Wikidata (Vrandečić and Krötzsch, 2014) to
construct large-scale monolingual and multilingual
NER datasets of Tweets.

Fine-tuning transformer-based language mod-
els for NER has shown success. Several works
have utilized mBERT (Devlin et al., 2019) to
construct generic and domain-specific multilin-
gual NER models (Pires et al., 2019; Arkhipov
et al., 2019; Baumann, 2019). Another example is
LaBSE (Feng et al., 2020). While mostly utilized
for sentence-level NLP tasks such as hate-speech
identification (Mandl et al., 2021) and claim match-
ing (Kazemi et al., 2021), LaBSE has also proven
efficient for NER (Hakala and Pyysalo, 2019). In
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this work, we fine-tune both mBERT and LaBSE
for NER in the Twitter domain, where we learn and
compare monolingual and multilingual models of
different characteristics.

Gururangan et al. (2020) shows that pre-training
transformers towards a specific task or domains
can provide significant benefits. Mishra and
Haghighi (2021) show that pre-training mBERT
for the translation-pair prediction (TPP) objective
improves NER. Pre-training mBERT on Tweets has
also been successful for a number of individual lan-
guages, such as English (Nguyen et al., 2020) and
Arabic (Ahmed Abdelali et al., 2021). In this work,
we pre-train mBERT on Tweets in 65 languages.

Several recent works utilize language classifica-
tion towards improved multilingual models. The
clustering can be based on either 1) language em-
beddings (Kudugunta et al., 2019; Tan et al., 2019;
Yu et al., 2021; Fan et al., 2021b); 2) language
family with/without the use of hand-crafted rules
such as geographical proximity (Tan et al., 2019;
Fan et al., 2021a); and 3) token overlap (Chung
et al., 2020). We perform family-based clustering
for NER, similar to the first approach proposed by
Tan et al. (2019) in the task of machine translation.
However, we do not assume access to rich embed-
dings or linguistic knowledge for the language(s)
of interest.

5 Conclusion and Future Work

We proposed improvements to distantly supervised
multilingual NER for Tweets, where we leveraged
Wikidata to build large-scale monolingual and mul-
tilingual NER datasets of Tweets. We showed
that pre-training mBERT on Tweets outperforms
LaBSE by a relative F1 increase of 34.6% when
evaluated on Twitter data in a language-agnostic
multilingual setting. We also showed that learning
NER models for language families outperforms a
single all-in-one multilingual model by relative F1
increases of at least 14.1%. In the future, we plan
to produce larger Tweet pre-trained language mod-
els, study more language families and leverage the
work for multilingual entity linking for Tweets in
low-resource languages.

6 Limitations

The limitations of the work lay within the Twit-
ter social media domain for the listed training lan-
guages and given the reported performance. Also,
the datasets are not labeled for named entities that

are not included in Wikidata. The models how-
ever can generalize well to discover unseen named
entities. Another limitation is the lack of a gold
standard to intrinsically assess the quality of the
labels in our NER datasets. There should be no
other potential risks given the stated limitations.

7 Ethical Considerations

We exploit Twitter API 12 for the extraction of
Tweets, along with language detection. The
datasets are accessible upon contacting the first
author. We however replace the text of the Tweets
by Tweet IDs in order to prevent sensitive infor-
mation and negative content, in accordance with
Twitter’s policy for sharing data. In addition, we
are committed to keep the datasets current, mak-
ing sure that deleted Tweets are removed from the
datasets when they become publicly available.
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Abstract

This position paper discusses the problem of
multilingual evaluation. Using simple statis-
tics, such as average language performance,
might inject linguistic biases in favor of domi-
nant language families into evaluation method-
ology. We argue that a qualitative analysis in-
formed by comparative linguistics is needed for
multilingual results to detect this kind of bias.
We show in our case study that results in pub-
lished works can indeed be linguistically biased
and we demonstrate that visualization based on
URIEL typological database can detect it.

1 Introduction

The linguistic diversity of NLP research is grow-
ing (Joshi et al., 2020; Pikuliak et al., 2021) thanks
to improvements of various multilingual technolo-
gies, such as machine translation (Arivazhagan
et al., 2019), multilingual language models (Devlin
et al., 2019; Conneau and Lample, 2019), cross-
lingual transfer learning (Pikuliak et al., 2021) or
language independent representations (Ruder et al.,
2019). It is now possible to create well-performing
multilingual methods for many tasks. When deal-
ing with multilingual methods, we need to be able
to evaluate how good they really are, i.e. how effec-
tive they are on a wide variety of typologically di-
verse languages. Consider the two methods shown
in Figure 1 (a). Without looking at the particular
languages, Method A seems better. It has better re-
sults for the majority of languages and its average
performance is better as well. However, the trio
of languages, where Method A is better, are in fact
all very similar Iberian languages, while the fourth
language is Indo-Iranian. Is the Method A actually
better, or is it better only for Iberian? Simple av-
erage is often used in practice without considering
the linguistic diversity of the underlying selection
of languages, despite the fact that many corpora
and datasets are biased in favor of historically dom-
inant languages and language families.

Additionally, as the number of languages in-
creases, it is harder and harder to notice phenomena
such as this. Consider the comparison of two sets
of results in Table 1. With 41 languages it is cog-
nitively hard to discover various relations between
the languages and their results, even if one has the
necessary linguistic knowledge.

In this position paper, we argue that it is not
the best practice to compare multilingual methods
only with simple statistics, such as average. Com-
monly used simple evaluation protocols might bias
research in favor of dominant languages and in turn
hurt historically marginalized languages. Instead,
we propose to consider using qualitative results
analysis that takes linguistic typology (Ponti et al.,
2019) and comparative linguistics into account as
an additional sanity check. We believe that this
is an often overlooked tool in our research toolkit
that should be used more to ensure that we are
able to properly interpret results from multilingual
evaluation and detect various linguistic biases and
problems. In addition to this discussion, which
we consider a contribution in itself, we also pro-
pose a visualization based on URIEL typological
database (Littell et al., 2017) as an example of such
qualitative analysis, and we show that it is able to
discover linguistic biases in published results.

2 Related Work

Linguistic biases in NLP. Bender (2009) pos-
tulated that research driven mainly by evaluation
in English will become biased in favor of this lan-
guage and it might not be particularly language
independent. Even in recent years, popular tech-
niques such as word2vec or Byte Pair Encoding
were shown to have worse performance on morpho-
logically rich languages (Bojanowski et al., 2017;
Park et al., 2020). Similarly, cross-lingual word
embeddings are usually constructed with English
as a default hub language, even though this might
hurt many languages (Anastasopoulos and Neubig,
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Figure 1: (a) Comparison of two methods on unbalanced set of languages. (b) Visualization of URIEL languages
with certain language families color-coded. (c) Comparison of two methods from Rahimi et al. This uses the same
map of languages as b, but the view is zoomed.

Language afr arb bul ben bos cat ces dan deu ell eng spa est pes fin fra heb hin hrv hun ind
Method A 74 54 54 60 77 79 72 79 64 34 57 76 71 52 69 73 46 58 77 69 61
Method B 59 64 61 70 63 62 62 62 58 61 47 63 64 74 67 57 53 68 61 59 67

Language ita lit lav mkd zlm nld nor pol por ron rus slk slv alb swe tam tgl tur ukr vie AVG
Method A 76 75 67 48 63 78 77 77 74 74 36 76 76 76 69 25 57 67 49 48 64.5
Method B 60 62 68 67 66 59 65 61 59 66 53 62 64 69 69 54 66 61 60 55 62.1

Table 1: Comparison of two methods from Rahimi et al. (2019).

2020). Perhaps if the practice of research was less
Anglocentric, different methods and techniques
would have become popular instead. Our work
is deeply related to issues like these. We show that
multilingual evaluation with an unbalanced selec-
tion of languages might cause similar symptoms.

Benchmarking. Using benchmarks is a practice
that came under a lot of scrutiny in the NLP com-
munity recently. Benchmark evaluation was said
to encourage spurious data overfitting (Kavumba
et al., 2019), encourage metric gaming (Thomas
and Uminsky, 2020) or lead the research away from
general human-like linguistic intelligence (Linzen,
2020). Similarly, benchmarks are criticized for be-
ing predominantly focused on performance, while
neglecting several other important properties, e.g.
prediction cost or model robustness (Ethayarajh
and Jurafsky, 2020). Average in particular was
shown to have several issues with robustness that
can be addressed by using pair-wise instance evalu-
ation (Peyrard et al., 2021). To address these issues,
some benchmarks refuse to use aggregating scores
and instead report multiple metrics at the same time
leaving interpretation of the results to the reader.
Gehrmann et al. (2021) is one such benchmark,
which proposes to use visualizations to help the in-
tepretation. In this work, we also use visualizations
to similar effect.

3 Multilingual Evaluation Strategies

When comparing multilingual methods with non-
trivial number of languages, it is cognitively hard
to keep track of various linguistic aspects, such
as language families, writing systems, typologi-
cal properties, etc. Researchers often use various
simplifying strategies instead:

Aggregating metrics. Aggregating metrics, such
as average performance or a number of languages
where a certain method achieves the best results
provide some information, but as we illustrated in
Figure 1 (a), they might not tell the whole story. By
aggregating results we lose important information
about individual languages and language families.
Commonly used statistics usually do not take under-
lying linguistic diversity into account. This might
lead to unwanted phenomena, such as bias in fa-
vor of dominant language families. The encoded
values of the aggregating metrics might not align
with the values we want to express. Average is an
example of utilitarianist world view, while using
minimal performance might be considered to be
a prioritarianist approach (Choudhury and Desh-
pande, 2021). Even though analyzing the values
encoded in metrics is a step towards a fairer evalu-
ation, they still miss a more fine-grained details of
the results.
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Aggregated metrics for different groups. An-
other option is to calculate statistics for certain
linguistic families or groups. These are steps in
the right direction, as they provide a more fine-
grained picture, but there are still issues left. It is
not clear which families should be selected, e.g.
should we average all Indo-European languages
or should we average across subfamilies, such as
Slavic or Germanic. This selection is ultimately
opinionated and different selections might show us
different views of the results. In addition, aggregat-
ing across families might still hide variance within
these families. Grouping languages by the size of
available datasets (e.g. low resource vs. high re-
source) shows us how the models deal with data
scarcity, but the groups might still be linguistically
unbalanced.

Balanced language sampling. Another option
is to construct a multilingual dataset so that it is
linguistically balanced. This process is called lan-
guage sampling (Rijkhoff et al., 1993; Miestamo
et al., 2016). In practice, this means that a small
number of representative languages is selected for
each family. The problem with dominant fami-
lies is solved because we control the number of
languages per family. However, selecting which
families should be represented and then selecting
languages within these families is again an opin-
ionated process. Different families and their sub-
families might have different degrees of diversity.
Different selections might favor different linguistic
properties and results might vary between them. It
is also not clear, how exhaustive given selection is,
i.e. how much of the linguistic variety has been
covered. Some of the existing works mention their
selection criteria: Longpre et al. (2020) count how
many speakers the selection covers, Clark et al.
(2020) use a set of selected typological proper-
ties, Ponti et al. (2020) use the so called variety
language sampling. Publishing the criteria allows
us to do a post-hoc analysis in the future to evaluate,
how well did these criteria work.

Qualitative analysis In this paper, we argue that
qualitative analysis is an often overlooked, yet ir-
replaceable evaluation technique. In the following
section, we will present our case study of how to
perform qualitative analysis.

4 Case Study: Qualitative Analysis
through Visualization

In this section we show how to perform a quali-
tative analysis of multilingual results with a visu-
alization technique based on URIEL typographic
database. We show that using this we can (1)
uncover linguistic biases in the results, and (2)
make sense of results from non-trivial number of
languages. As case study, we study results from
Rahimi et al. (2019). Our goal is not to evaluate
particular methods from this paper, but to demon-
strate how linguistically-informed analysis might
help researchers gain insights into their results. We
analyze the results from this paper not because we
want to criticize it, but because it is a well-written
paper that actually attempts to do multilingual eval-
uation for non-trivial number of languages with
significantly different methods. The linguistic bi-
ases we uncover are already partially discussed in
the paper. Here, we only show how to effectively
perform qualitative analysis and uncover these bi-
ases with appropriate visualization. Appendix A
shows similar analysis for another paper (Heinzer-
ling and Strube, 2019) where linguistic biases are
visible.

We use URIEL, a typological language database
that consists of 289 syntactic and phonological bi-
nary features for 3718 languages. We use UMAP
feature reduction algorithm (McInnes and Healy,
2018) to create a 2D typological language space.
This map is shown in Figure 1 (b). The map is inter-
active and allows for dynamic filtering of languages
and families, as well as inspection of individual
languages and their properties.1 Each point is one
language and selected language families are color-
coded in the figure. Even though URIEL features
used for dimensionality reduction do not contain in-
formation about language families, genealogically
close languages naturally form clusters in our vi-
sualization. Certain geographical relations are cap-
tured as well, e.g. Sudanic and Chadic languages
are neighboring clusters, despite being from differ-
ent language families. This evokes the linguistic
tradition of grouping languages according to the
regions and macroregions. This shows that our vi-
sualization is able to capture both intrafamiliar and
interfamiliar similarities of languages and is thus
appropriate for our use-case.

We visualize results from Rahimi et al. (2019)
on this linguistic map. Rahimi et al. use Wikipedia-

1Code available at GitHub
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based corpus for NER, and they compare various
cross-lingual transfer learning algorithms for 41
languages. They use an unbalanced set of lan-
guages, where the three most dominant language
families – Germanic, Italic and Slavic – make up
55% of all languages. See Appendix A for more
details about the paper. We use our URIEL map to
visualize a comparison between a pair of methods
on all 41 languages from Table 1. In Figure 1 (c) we
compare two methods – Method A – cross-lingual
transfer learning methods using multiple source lan-
guages (average performance 64.5), and seemingly
worse Method B – a low-resource training with-
out any form of cross-lingual supervision (average
performance 62.1). We use the same URIEL map,
but we superimpose the relative performance of the
two methods as colored columns. Orange columns
on this map show languages where Method A per-
forms better, while blue columns show the same for
Method B. Height of each column shows how big
the relative difference in performance is between
the two methods. I.e. taller orange columns mean
dominant A, taller blue columns mean dominant B.

We can now clearly see that there is a pattern in
the location of the colored columns. Using aver-
age as evaluation measure, Method A seems better
overall. Here we can see that it is only better in
one particular cluster of languages – the cluster of
orange columns. All these are related European
languages. Most of them are Germanic, Italic or
Slavic, with some exceptions being languages that
are not Indo-European, but are nevertheless geo-
graphical neighbors, such as Hungarian. On the
other hand, all the non-European languages actu-
ally prefer Method B. These are the blue columns
scattered in the rest of the space that consists of
languages such as Arabic (Semitic), Chinese (Sino-
Tibetan) or Tamil (Dravidian).

This shows important fact about the two methods
that was hidden by using average. Cross-lingual su-
pervision seemed to have better performance, but it
has better performance only in the dominant cluster
of similar languages where the cross-lingual super-
vision is more viable. Other languages, would actu-
ally prefer using monolingual low-resource learn-
ing, as they are not able to learn from other lan-
guages that easily. In this case, average is overesti-
mating the value of cross-lingual learning for non-
European languages. This overestimation might
cause harm to these languages.

We can also see that there are some exceptions –

the blue columns in the orange cluster. These ex-
ceptions are Greek, Russian, Macedonian, Bulgar-
ian and Ukrainian – all Indo-European languages
that use non-Latin scripts. In this case, different
writing systems are probably cause of additional
linguistic bias. It might be hard to notice this pat-
tern by simply looking at the table of results, but
here we can quickly identify the languages as out-
liers and then it is easy to realize what they have in
common.

Note that we do not expect to see this level of
linguistic bias in most papers and we have cherry-
picked this particular methods from this particu-
lar paper because they demonstrate the case when
the linguistic bias in the results is the most obvi-
ous. This is caused mainly by unbalanced selection
of languages on Wikipedia and in a sense unfair
comparison of cross-lingual supervision with low
resource learning.

5 Conclusions

Multilinguality in NLP is becoming more common
and methodological practice is sometimes lagging
behind (Artetxe et al., 2020; Keung et al., 2020;
Bender, 2011). Making progress will be inherently
hard without proper evaluation methodology. In
this work, we argue for necessity for qualitative
results analysis and we showed how to use such
analysis to improve the evaluation with interactive
visualizations. In our case study, we were able to
uncover linguistic biases in published results.

Considering the practice in machine learning and
NLP, it might be tempting to reduce a multilingual
method performance to a single number. However,
we believe that intricacies of multilingual evalua-
tion can not be reduced so easily. There are too
many different dimensions that need to be taken
into consideration and NLP researchers should un-
derstand these dimensions. We believe that appro-
priate level of training in various linguistic fields,
such as typology or comparative linguistics, is nec-
essary for proper understanding of multilingual
results and for proper qualitative analysis. We ar-
gue that qualitative analysis is an oft overlooked
approach to results analysis that should be utilized
more to prevent various distortions in how we un-
derstand linguistic implications of our results.

6 Ethical Considerations

Much of current NLP research is focused on only a
small handful of languages. Communities of some
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language users are left behind, as a result of data
scarcity. We believe that our paper might have
positive societal impact. It focuses on the issues
of these marginalized languages and communities.
Following our recommendations might lead to a
more diverse and fair multilingual evaluation both
in research and in industry. This might in turn led to
better models, applications and ultimately quality
of life changes for some.
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A Details of Analysed Papers

In this appendix, we provide additional information
about papers we analysed.

A.1 Rahimi et al.

This is the paper we used for demonstration in the
main paper in Section 4. We use results reported in
Table 4 in their paper. The languages they use are
listed here in Table 2. We can see the apparent dom-
inance of Indo-European languages. There are 14
different methods listed in their paper. We compare
the results for these methods in Figure 2. There we
can see how the average results for individual meth-
ods compare with the average results for non-GIS
(Germanic-Italic-Slavic) languages. The numbers
correspond to the order of methods listed in the
original paper. The two methods compared in Fig-
ure 1 (c) are shown as blue and orange, respectively.
The orange Method A is BEAtok in the original pa-
per. The blue Method B is called LSup. We can see
the linguistic bias with this simplistic view as well.
All the cross-lingual learning based methods have
worse non-GIS results than methods that do not use
cross-lingual learning (methods 1 and 2). However,
this analysis can not replace the visualization we
propose in Section 4. It provides a GIS-centered
view, but it can not capture other sources of bias.
For example, it does not show various outliers that
were seen in the visualization, such as Uralic lan-
guages that behave similarly to GIS languages, or
Slavic languages with Cyrilic alphabet that behave
differently than other Slavic languages.

A.2 Heinzerling and Strube

Similar linguistic biases can be seen in Heinzer-
ling and Strube as well. They evaluate various
representations performance on POS tagging and
NER. In Figure 3 we compare POS accuracy of a
multilingual model with a shared embedding vocab-
ulary (average performance 96.6, MultiBPEmb
+char +finetune in the original paper) and a
simple BiLSTM baseline with no transfer super-
vision (average performance 96.4, BiLSTM in the
original paper). Orange columns are for languages
that prefer the multilingual model, blue columns
prefer the baseline. In this case, almost all orange
columns are in fact GIS languages. Other lan-
guages are having significantly worse results with
this method and most of them actually prefer the
simple baseline with no cross-lingual supervision.
This shows the limitations of proposed multilingual

ISO Language Subfamily Family
bul Bulgarian

Slavic

Indo-European

bos Bosnian
ces Czech
hrv Croatian
mkd Macedonian
pol Polish
rus Russian
slk Slovak
slv Slovenian
ukr Ukrainian
afr Afrikkans

Germanic

dan Danish
deu German
nld Dutch
nor Norwegian
swe Swedish
cat Catalan

Italic

fra French
ita Italian
por Portugese
rom Romanina
spa Spanish
ben Bengali

Indo-Iranianhin Hindi
pes Iranian Persian
lit Lithuanian Balticlav Latvian
ell Greek
alb Albanian
est Estonian

Uralicfin Finnish
hun Hungarian
ind Indonesian

Austronesiantgl Tagalog
zlm Malay
arb Standard Arabic Afro-Asiaticheb Hebrew
vie Vietnamese Austroasiatic
tam Tamil Davidian
tur Turkish Turkic

Table 2: Languages used in Rahimi et al..

ISO Language Subfamily Family
dan Danish

Germanic

Indo-European

deu German
eng English
nld Dutch
nor Norwegian
swe Swedish
bul Bulgarian

Slavic
ces Czech
hrv Croatian
pol Polish
slv Slovenian
fra Frech

Italicita Italian
por Portugese
spa Spanish
hin Hindi Indo-Iranianpes Iranian Persian
eus Basque Isolate
fin Finnish Uralic
heb Hebrew Afro-Asiatic
ind Indonesian Austronesian

Table 3: Languages used in Heinzerling and Strube.
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Figure 2: Comparison of method performance. The
relation between global average and average on non-
GIS languages is shown. Each point represents one
method from the papers.

supervision for outlier languages.
We use results reported in Table 5 in their paper.

The languages they use are listed here in Table 3.
Again, we can see an apparent dominance of GIS
languages. There are 11 different methods listed in
their paper. We omitted results for additional 6 low
resource languages reported in Table 7, because
only 4 out of 11 methods were used there. We
compare the results for these methods in Figure 2,
similarly as in the previous paper. The orange point
is the multilingual model, the blue point is the base-
line. Now we can see that the BiLSTM baseline is
actually the best performing method for non-GIS
languages.

B Hyperparameters

We use UMAP python library2 with the following
hyperparameters:

2umap-learn.readthedocs.io

Figure 3: Comparison of two methods from Heinzerling
and Strube.

• Number of neighbours (n_neighbors): 15

• Distance metric (metric): cosine

• Minimal distance (min_dist): 0.5

• Random see (random_state): 1

C Additional Visualizations

In this Section we show several additional possibil-
ities of using URIEL map of languages to visualize
results from multilingual evaluation. Our goal here
is to propose additional techniques that can be used
for qualitative analysis apart from the comparison
of two methods used in Figure 1 in the main body
of this paper. This is not an exhaustive list of vi-
sualizations. We believe that many other types of
visualization can be done using this type of qualita-
tive analysis, based on the needs and requirements
of the user.

In Figure 4 we show how to compare more than
two methods by visualizing the performance for
each method separately. We have created a sepa-
rate plot for three methods and we can compare
their performance visually. We can see that HSup
method has overall stable high performance. LSup
has worse performance, but its still quite balanced.
Finally, BWET has similar performance as LSup,
but we can see that there are regions where it fails,
e.g. the languages in the rightmost part of the figure
have visibly worse performance.

In Figure 5 we show yet another type of visu-
alization. In this case, we simply visualize what
method is the best performing for each language.
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Figure 4: Comparison of multiple methods using size to mark method performance for individual languages. HSup,
LSup and BWET are methods reported in (Rahimi et al., 2019).

LSup
RaReuns

BEAent
unsx2

BEAent
uns

Figure 5: The best performing methods for various
languages.

We compare methods using crosslingual super-
vision and low-resource training (LSup). From
seven methods, only four achieved the best per-
formance for at least one language and those are
shown in the Figure. Again, we can see similar
picture as before. One method (BEAent

uns×2) is
the best performing method taking average into
account. However, in this visualization we can
see that it is actually the best performing method
only in the dominant cluster of European languages.
Elsewhere, other methods perform better.
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Abstract
The 2022 Multilingual Representation Learn-
ing (MRL) Shared Task was dedicated to
clause-level morphology. As the first ever
benchmark that defines and evaluates morphol-
ogy outside its traditional lexical boundaries,
the shared task on multilingual clause-level
morphology sets the scene for competition
across different approaches to morphological
modeling, with 3 clause-level sub-tasks: mor-
phological inflection, reinflection and analysis,
where systems are required to generate, ma-
nipulate or analyze simple sentences centered
around a single content lexeme and a set of mor-
phological features characterizing its syntactic
clause. This year’s tasks covered eight typo-
logically distinct languages: English, French,
German, Hebrew, Russian, Spanish, Swahili
and Turkish. The tasks has received submis-
sions of four systems from three teams which
were compared to two baselines implementing
prominent multilingual learning methods. The
results show that modern NLP models are ef-
fective in solving morphological tasks even at
the clause level. However, there is still room
for improvement, especially in the task of mor-
phological analysis.

1 Introduction

Universality is an important premise of many mor-
phological datasets and shared tasks. Recent shared
tasks of SIGMORPHON have introduced the no-
tion of comparative analysis in morphological stud-
ies by incorporating up to 100 languages (Mc-
Carthy et al., 2019; Vylomova et al., 2020) in their
evaluation benchmark, by providing all of them
with data that is annotated according to a single uni-
versal schema (Sylak-Glassman, 2016). Systems
that succeed in these tasks ideally should boast in
their ability to handle various morphological phe-
nomena observed in almost any language family
on earth (Peters and Martins, 2020, inter alia).

However, as pointed out recently by Goldman
and Tsarfaty (2022), the perceived universality of

morphological tasks is impaired by the lack of
a working definition of a morphosyntactic word
(Haspelmath, 2011). Without such definition,
the boundary between morphology and syntax is
blurred and the assignment of linguistic phenom-
ena to either morphological or syntactic data results
in inconsistency across languages. Thus, limiting
the scope of morphological tasks to white-spaced
words creates an undue advantage to some lan-
guages based on their grammarian traditions, ty-
pological characteristics, and some other arbitrary
factors.

For example, some languages, like English, are
considered isolating and have word-level inflection
tables of tiny size, while other languages, like Turk-
ish, are considered agglutinative and have huge
inflection tables. However, isolating and agglutina-
tive languages largely differ orthographically rather
than linguistically, as both types concatenate pieces
of text. The universal benchmark presented here
allows testing of both models and theories while
ignoring orthographic characteristics like white-
spaces and treats equally languages with varying
typological characteristics.

In this shared task, we operationalize a more uni-
versally applicable and comprehensive approach to
morphology by liberating the evaluated tasks from
the ill-defined formal restrictions dictated by white-
spaces. We start with a fix universal set of inflec-
tional features1 and inflect lemmas in all languages
to all possible combinations of features, disregard-
ing the number of white-spaced words required to
express them orthographically. The features define
fully-saturated clauses and the result is a data set of
clauses organized in inflection tables and tasks that
go beyond the word-level and include phenomena
considered syntactic, such as word order manipu-
lation and the like. We can thus test the submitted
systems’ ability to cope with these phenomena.

1The set of features used in constructing our data is detailed
in Appendix A.
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The shared task includes 3 sub-tasks: inflection,
where systems are to generate simple clauses from
a lemma and a set of morphological features; rein-
flection, where systems should manipulate a source
clause to a target clause; and analysis, where the
task is to output a lemma and a set of features
given a clause. See Table 1 for example annota-
tions. Together, these tasks examine every aspect
of the ability of systems to deal with clause-level
morphological constructions, moving from abstract
representation to concrete text and back.

All three sub-tasks include evaluation data an-
notated in the following eight languages: En-
glish, French, German, Hebrew, Russian, Span-
ish, Swahili and Turkish, from four different lan-
guage families. The variety of languages induces
a plethora of alternations to be modeled by the
submitted systems, from pronoun incorporation
in Swahili to verb-splitting German, from ablaut-
extensive Semitic morphology to highly aggluti-
native Turkish. However, in terms of dimensions
of meaning, the data is extremely uniform across
languages as all morphological features are imple-
mented in our data if they are implemented in the
language.

The results included in this shared task compare
4 submitted systems and 2 baseline systems with
various characteristics, from rule-based systems
to systems based on a large pretrained language
models. The best performing system outperforms
the best baseline and reduces the error rates by
3 to 8 fold, depending on the sub-task. Future
editions of the task are intended to further expand
the number of languages and the scope of the data
for better alignment with real-world phenomena
and distributions.

2 The Tasks

This shared task consists of three sub-tasks which
test the ability of systems to deal with clause-level
morphological data in multiple languages. In this
Section we define and formalize the tasks, and in
Table 1 we illustrate all three sub-tasks with con-
crete examples.

2.1 Tasks Description and formulation

Let l be a lemma, b be a feature bundle, and f an
inflected form. Crucially, f may include zero or
more white-space word delimiters. The inflection
sub-task accepts a set of clause-level features and
a verbal lemma as input ⟨l, b⟩, and requires the

system to generate the desired output clause ⟨f⟩
that manifests these this lemma and inflectional
features.

In the reinflection sub-task, each input item con-
tains an example inflected form in a language
accompanied by a set of morphological features
that it realizes as well as a second set of features
⟨f1, b1, b2⟩. The system is required to generate
the the respective form ⟨f2⟩ realizing this new set
of features for the same lemma. It should do so
without direct evidence of the lemma behind both
forms.

Finally, the analysis sub-task evaluates the sys-
tem performance in the opposite transformation of
the inflection sub-task. That is, given a clause form
⟨f⟩ as input, the system needs to output its lemma
and set of features being realized in this form ⟨l, b⟩.

The collection of the three sub-tasks aims to
extensively assess the ability of a system to analyze
and generate clause-level morphological data.

2.2 Evaluation

For all the tasks we provide the exact match accu-
racy between the predictions and the desired out-
puts.

However, systems’ performance was ranked by
another metric, varied by sub-task, that is more
permissive and quantifies partial success. For the
inflection and reinflection tasks we use an averaged
edit distance between predictions and gold answers,
a measure well-used in morphology to assess how
close the predictions are to the ground truth on
average (Cotterell et al., 2017, 2018, inter alia).

For the analysis task we used an F1 measure
that takes into account the unordered nature of the
outputs in this task. For each example we calculate
the precision and recall of features in the prediction
compared to the desired output, we then average
the per-example F1 score over an entire set of ex-
amples.2

3 The Languages

Our selection of languages is diverse both typologi-
cally and genealogically. Most of the languages are
Indo-European (English, French, German, Span-
ish and Russian), but we include languages from
the Afro-Asiatic (Hebrew), Turkic (Turkish) and
Atlantic-Congo (Swahili) families as well.

2For calculating this metric the lemma was treated as an-
other feature but up-weighted and given an importance equal
to 3 features.
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Task Model input Reference output
Inflection take IND;FUT;NOM(1,SG);ACC(3,SG,MASC) I’ll take him

Reinflection
I’ll take him IND;FUT;NOM(1,SG);ACC(3,SG,MASC)

IND;PRS;NOM(1,PL);ACC(2);NEG we don’t take you
Analysis I’ll take him take IND;FUT;NOM(1,SG);ACC(3,SG,MASC)

Table 1: Examples for the data format used for the evaluation of three sub-tasks. The inflection sub-task takes a
lexeme and a set of tags in the given language and the model is required to produce the corresponding form. In
the reinflection sub-task an inflected form accompanied by the sets of new features are input to the model, and
a new form corresponding to the desired reinflection is produced. The analysis sub-task requires the model to
discover the root and morphological features in a given sentence. In our annotations we use the Unimorph schema
(Sylak-Glassman, 2016).

Language Family ISO 639-2 Annotators
English Indo-European eng Omer Goldman
French Indo-European fra Benjamin Muller, Djame Seddah & Benoît Sagot
German Indo-European deu Omer Goldman
Hebrew Afro-Asiatic heb Omer Goldman
Russian Indo-European rus Victoria Basmov
Spanish Indo-European spa Victoria Basmov
Swahili Atlantic–Congo swa Omer Goldman, Shadrak Kirimi & Lydia Nishimwe
Turkish Turkic tur Omer Goldman & Duygu Ataman

Table 2: The languages included in the benchmark.

The languages in our data exemplify almost any
morpho-syntactic process that systems have to deal
with in order to excel in clause-level morphological
data. We have the pronoun incorporating Swahili,
in which many clauses are expressed by a single
word, and we have the isolating English, that makes
an extensive use of multiple auxiliaries. Many of
our languages concatenate words or morphemes
in order to construct forms, but non-concatenative
processes are also widely represented. For exam-
ple, word/morpheme order is extensively used in
German, especially with its infamous separable
verb prefixes, and ablauts are used in inflecting al-
most any form in Hebrew due to its Semitic inflec-
tional system. We have fusional languages, such
as French, Russian and Spanish, in which a single
morpheme corresponds to multiple features, and
agglutinative languages like Turkish, in which the
mapping is more one-to-one. The languages also
vary in the prominence of phonological processes
in them. Turkish provides an example for a lan-
guage with high degree of morpho-phonological
stem-affix interaction, expressed in vowel harmony,
while French exemplifies post-lexical phonological
processes that have effects beyond word bound-
aries, and in Swahili phonological interaction be-
tween inflectional morphemes is extremely rear.

Appendix B contains some additional linguistic
characterization of the languages.

The diversity in the languages included in our

data forces models to be flexible and powerful
enough to be able to deal with all the different
strategies chosen by speakers to construct inflected
forms. Thus, a model that is successful on our se-
lection is likely to succeed if supplied with data in
other languages as well.

4 The Data

The data included in this task is based on the
MIGHTYMORPH data set presented by Goldman
and Tsarfaty (2022). The data for four of the lan-
guages was prepared in prior work, and in this
shared task we have doubled the number of lan-
guages to include eight languages in total from
four language families.

For most languages the data was created by ex-
panding the UniMorph (Batsuren et al., 2022) word-
level inflection tables into respective clauses that
saturate all the required arguments of the verbal
lemma.

This was done in two phases. Initially, we used
a language-specific rule-based grammar that in-
cluded the inflection tables of any relevant auxil-
iaries in order to construct all possible periphrastic
constructions of the inflected verb. For example,
when constructing the future perfect form for the
English verb receive, equivalent to the features
IND;FUT;PRF, we used the past participle from the
UniMorph inflection table received and the auxil-
iaries will and have to construct will have received.
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lexeme=LOVE
PRS;DECL;NOM(2,SG)

IND IND;PERF COND
POS NEG POS NEG POS NEG

ACC(1,SG) you love me
you don’t
love me

you have
loved me

you haven’t
loved me

you would
love me

you wouldn’t
love me

ACC(1,PL) you love us
you don’t

love us
you have
loved us

you haven’t
loved us

you would
love us

you wouldn’t
love us

ACC(2,SG,RFLX)
you love
yourself

you don’t
love yourself

you have
loved yourself

you haven’t
loved yourself

you would
love yourself

you wouldn’t
love yourself

ACC(3,SG) you love him
you don’t
love him

you have
loved him

you haven’t
loved him

you would
love him

you wouldn’t
love him

ACC(3,PL) you love them
you don’t
love them

you have
loved them

you haven’t
loved them

you would
love them

you wouldn’t
love them

Table 3: A fraction of a clause-level inflection table in English.

We then manually determined which arguments
each verb can take in order to generate a fully-
saturated clause. To retain the tasks with a single
lemma, all arguments are realized as pronominal
features. For example, the English verb receive has
2 possible argument combinations: {NOM, ACC}
and {NOM, ACC, ABL}, equivalent to sentences
like "I received it" and "I received it from you",
respectively. For each argument combination we
exhaustively generated all suitably cased pronouns
without regarding the semantic plausibility of the
resulted clause.

Turkish and Swahili are somewhat exceptional
to the process described above in the sense that
the clause-level tables were constructed solely by
grammars of morphemes without relying on the
UniMorph word-level tables.

In addition to using UniMorph we generated
the French data based on the Lefff (Sagot, 2010),
which is a large-coverage and freely available mor-
phological and syntactic lexicon for French. In
contrast with the other languages, the types of ar-
guments and their combinations for each verb was
not determined manually but automatically with
the Lefff. The auxiliary allowed for each verb was
also decided using the Lefff.

The result is a fully-populated clause-level in-
flection table, where each entry in the table is struc-
tured as (lemma, features, form). See Table 3
for a fraction of an English inflection table, and
Appendix A for a glossary of all features used in
our data. In this shared task we limited generation
of example sentences to ones composed of a single
main clause with a verbal head.

4.1 Sampling and Splitting

To prepare splits for the tasks we sampled 500 in-
flection tables per language. From the tables we
sample 12,000 examples per task. For inflection

and analysis, every example is one entry in the in-
flection table with the input being the lemma and
the features and the form constituting the output,
or the other way around. The examples for the rein-
flection task are composed of two entries in the in-
flection table without use of the shared lemma, such
that the input is features1, form1, features2
and the output is from2.

The data is split such that lemmas do not overlap
between splits, thus the train set contains 10,000 ex-
amples from 400 lemmas and the test and dev sets
each include 1,000 examples from 100 lemmas.3

5 Systems

5.1 Baseline Systems

We provide two baselines for the share task: (a) A
text-to-text transformer (Raffel et al., 2020) that is
trained using our training data; (b) A model based
on the already pretrained mT5 model (Xue et al.,
2021), fine-tuned using our training data. In both
cases we train a separate monolingual model for
each language. More details for each baseline are
listed below.

We use the same format as provided in the train-
ing data. The morphological features are added to
the vocabulary as special tokens, randomly initial-
ized, and trained with the rest of the parameters
of the models. When the input or output are sepa-
rated into two parts (e.g. lemma/features), we use
a separator token. Finally, we use 50 epochs across
models with a learning rate of 5e− 5, and take the
final checkpoint as the final trained model.4

The dimensions of the models were selected via
hyper-parameter tuning.

3All data is available at https://github.com/
omagolda/MRL_shared-task_2022.

4The scripts used to build and train the baseline mod-
els are available at https://github.com/omagolda/MRL_
shared-task_2022.
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Transformer Baseline We experiment with 6
configurations of different sizes, tuning on the de-
velopment sets of English and Hebrew. According
to the tuning process, we choose a transformer with
a single-layer encoder and a single-layer decoder,
with 3 self-attention heads, and with 128 as the
dimension of the self-attention layers, and 256 as
the dimension of the feed-forward layers.

mT5 Baseline We experiment with the base and
large architectures, tune them on the development
sets of English and Hebrew, and choose to use the
large model. As mentioned above, we use the pre-
trained model and only fine-tune it with our data.

5.2 Submitted Systems
UBC Jaidi et al. (2022) submitted a transformer-
based system with four attention heads over four
encoder and decoder layers. The innovation of
their system is the introduction of byte-pair encod-
ing (BPE) (Sennrich et al., 2016) to morphological
tasks in order to shorten the lengths of sequences.
In addition they augmented the data to bias the
model more strongly towards copying and found
that it helps to improve results only for the inflec-
tion and analysis tasks.

KUIS-AI Acikgoz et al. (2022) sent multiple sys-
tems:

• KUIS-AI-1 is a transformer with four encoder
and four decoder layers. Data perturbation
using hallucinated data (Anastasopoulos and
Neubig, 2019) was optionally added to the
training set to support system capacity, with
varied amount depending on the development
set performance. This system participated
only in the inflection and reinflection tasks.

• KUIS-AI-2 is based on the pre-trained mGPT
by Wolf et al. (2019) with additional prefix of
fine-tuned vectors. This system participated
only in the analysis task.

Göttingen Dönicke (2022)’s system is a rule
based system that participated only in the analy-
sis task. The system uses rules to map word-level
features that are themselves either from UniMorph
or from SpaCy5 model trained over the Universal
Dependencies data set (De Marneffe et al., 2021).

6 Results

Tables 4, 5 and 6 summarize the results per system
for the inflection, reinflection and analysis tasks,

5https://spacy.io/

Team ED EM
KUIS-AI-1 0.292 0.919
UBC 0.496 0.855
Base-mT5 2.577 0.530
Base-transformer 3.278 0.392

Table 4: Results for task 1: inflection, for all submitted
and baseline systems, averaged across languages. Edit
distance (ED) is the main evaluation metric, and Exact
match accuracy (EM) is given for reference.

Team ED EM
KUIS-AI-1 0.705 0.747
UBC 0.983 0.670
Base-mT5 2.826 0.481
Base-transformer 4.642 0.156

Table 5: Results for task 2: reinflection, for all submitted
and baseline systems, averaged across languages. Edit
distance (ED) is the main evaluation metric, and Exact
match accuracy (EM) is given for reference.

respectively, while averaging over all languages in
our selection. Results broken down by language
can be found in Appendix C.

All systems significantly outperformed the fine-
tuned mT5 which is the strongest baseline. The
systems submitted by the KUIS-AI team rank first
in all tasks, both in terms of the main evaluation
metric used in each task(edit distance or F1) and in
terms of the exact match accuracy.

Comparing the performance of all systems over
all tasks in terms of exact match accuracy, it is
clearly shown that inflection is the easier task of
the three. Since reinflection can be conceptually
and practically decomposed to an analysis followed
by an inflection operation, one can hypothesize that
the under-performance in this task stems from the
difficulty of the analysis operation.

Figures 1 and 2 average the performance over
all systems to gain some insights into the relative
difficulty of the tasks in the various languages. The
trends in the different tasks point to different lan-
guages as being more or less difficult. For example,
Swahili was one the toughest languages in the anal-
ysis task but one of the easiest in inflection and
reinflection, while the opposite is true for Russian.

Systems also tended to under-perform in vocal-
ized Hebrew in both inflection and reinflection,
pointing to the complexity of the Semitic inflec-
tional system. However, in the analysis task, perfor-
mance over vocalized Hebrew was actually better
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Team F1 EM
KUIS-AI-2 0.950 0.778
Göttingen 0.940 0.658
UBC 0.914 0.680
Base-mT5 0.845 0.368
Base-transformer 0.800 0.278

Table 6: Results for task 3: analysis, for all submit-
ted and baseline systems, averaged across languages.
Weighted F1 is the main evaluation metric, and Exact
match accuracy (EM) is given for reference.

Figure 1: Average Levensthein edit distance for tasks
inflection and reinflection by languages. Error bars are
one standard deviation, n=4 for inflection, n=4 for rein-
flection

than that over the unvocalized version, probably
due to the ease of disambiguation when vowels are
written.

Interestingly, the inclusion of the Swahili lan-
guage drove down the overall result of the Göttin-
gen system in the analysis task, potentially depriv-
ing it from leading the table. This points both to
the importance of inclusion of low-resourced lan-
guages in multilingual tasks, and also to the limits
of rule-based systems that may be dependent on
the knowledge of their designers of the languages
at hand.

7 Conclusion and Future Directions

The first shared task on Multi-lingual Clause-level
Morphology proposed novel means for modeling
the evaluation of morphosyntactic representations
in a more universally inclusive setting. The multi-
lingual and typologically diverse nature of the data
used in the construction of the benchmark allows its
usage in comparative studies from different fields
and schools. Apart from including more languages,
future shared tasks should take into account the
overall good, even if not perfect, performance of

Figure 2: Average F1 and exact match accuracy for
task analysis by languages. Error bars are one standard
deviation, n=5

the systems and try to tease apart the characteristics
that make morphological tasks easier in order to
figure out whether they are justified.

An example for that may be the invariability in
morphological data, compared to other NLP tasks
such as translation. Forster et al. (2021) pointed to
the remarkably different behavior of models in de-
coding language from morphological data, specif-
ically to the sufficiency of greedy decoding. This
is not surprising due to the conceptualization of
morphological data as containing a single inflected
form for every bundle of inflectional features. How-
ever, on the clause-level such one-to-one mapping
is less justified, as speakers can vary the word or-
der of a sentence or the grammatical construction
chosen to pronounce the same meaning. Hence,
future shared tasks could allow multiple realiza-
tions of feature bundles, making the decoding more
complicated.

Semantic plausibility is another factor that was
largely ignored in creating the data for this shared
task. This path was chosen in order to test the
systems’ ability to recreate the human grammar
that is well able to produce implausible sentences.
However, different settings can take this factor into
account so systems will not be punished for failures
to predict sentences are not used in practice.

Finally, while this task included only clauses
with verbal head, future tasks may include nominal
and adjectival clauses as well. However, different
languages use different means to express tenses
in this kind of clauses, so this requires a careful
linguistic treatment of copulas in comparison to
(partially) zero-copula languages like Turkish and
Hebrew.

To conclude, the shared task showed that modern
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NLP models, whether relying on pretrained models
or not, are capable of solving clause-level morpho-
logical tasks to a large extent. Still, there is room
for improvement, both in the systems’ ability to
analyze data and in terms of the data included in
these tasks.
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A Features Glossary

Table 7 enumerates all features used in our data
together with their meaning. Most features are
taken from UniMorph annotation guidelines (Sylak-
Glassman, 2016), with accidental gaps filled with
new features. Some language specific features
(LGSPEC1, LGSPEC2, etc.) were used to distin-
guish different constructions with the same mean-
ing.

B The Languages’ Linguistic
Characteristics

English is the most widely spoken language, if
counting L2 speakers, according to Ethnologue,6

and by far the language that enjoys the most at-
tention in the NLP literature. Morphologically, it
is considered mostly an isolating language, with
tense, aspect and mood being regularly expressed
using white-space-separated auxiliaries. As a Ger-
manic language, its verbs are classified into weak
verbs that use a morpheme to form the past tense
form and the past participle, and strong verbs that
form the same forms with an ablaut in the stem.

English’s word order is usually SVO, although
some remnants of the Germanic V2 order do exist.
Word order is used to form yes-no questions, with
the auxiliary or a supporting do appearing in the
beginning of the sentence. A supporting do is also
added to negated sentences with no auxiliary. An
array of phonological post-lexical contractions are
also optionally used and affect almost all auxiliaries
and the negation clitic n’t.

French is a Romance language in the Indo-
European language family. Influenced by Ger-
manic and Celtic languages, it has evolved more
drastically from Latin than other romance lan-
guages like Spanish and Portuguese. For instance,
French requires the use of the subject pronouns,
hence it is classified as a non-pro-drop language. It
has four main moods, and about 21 distinct tenses
which can be simple or compounded with one of
the auxiliaries, être and avoir. French has 3 persons
and 2 numbers. French’s basic word order is SVO
language, but it can be altered for grammatical rea-
sons. For instance, interrogative form are typically
constructed by inverting the subject and the verb.
Additionally, when taking a pronominal form, the
object is inverted with the verb leading to a SOV
order (e.g. je te dis, literally I you tell).

6https://www.ethnologue.com/language/eng

French contains multiple phonetic contractions.
For instance, the negative particle ne becomes n’
when followed by a vowel. Similar phenomenon is
also applied to the 1st person subject pronoun and
to many object pronouns. French also contains a
few phonetic-based insertions. For instance, the -t-
in a-t-il dit — did he say — is added for phonetic
purposes.

German Another representative of the Germanic
branch of the Indo-European language family is
German. It shares many characteristics with its
close relative English, most prominently the con-
catenation of auxiliaries to express complex inflec-
tions and the division of verbs into strong and weak
classes. However, it has some characteristics that
are unique in our selection of languages, mostly in
the realm of syntax. The German word order is V2
with the first auxiliary or verb-part appearing as the
second constituent while the rest are at the end of
the sentence. Some verbs also consists of a sepa-
rable prefix that appear at the end of the sentence
but only in some inflections, thus making German
a hard language to learn for humans and machines
alike. Nouns and pronouns take one of 4 possible
cases, but verbs’ arguments can be also introduced
with a wide array of prepositions that interact with
the cases to specify some fine-grained dimensions
of meaning.

Hebrew As a member of the Semitic branch of
the Afro-Asiatic language family, Hebrew exhibits
the typical ablaut-extensive Semitic inflectional sys-
tem, where lexemes are expressed via roots that are
mostly tri-consonantal and an array of interwoven
vowels as well as suffixes are used to inflect the
verbs. Hebrew verbs belong to 7 major classes
(Binyanim) with many subclasses depending on
the phonological features of the root’s consonants.
Verbs inflect for number, gender, and tense-mood.

In terms of syntax, Hebrew’s word order is SVO
and yes-no questions are typically expressed us-
ing intonation only, although an introduction word,
!Mהא, is optionally available. Hebrew displays a
partial pro-drop where non-third-person subjects
are dropped in non-present tenses. Some of the
prepositions used to express nominal arguments
are fused prepositions, i.e., written without a white-
space before the noun. But all prepositions are
fused when introducing a pronoun that appears in
a clitic form.

As a typical Semitic languages, Hebrew is writ-
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Attribute Value
Tense PST(past),PRS(present),FUT(future) IMMED(immediate)

Mood
IND(indicative) IMP(imperative) SBJV(subjunctive) INFR†(inferential)

NEC†(necessitative) COND(conditional) QUOT(quotative)
Aspect HAB(habitual) PROG(progressive) PRF(perfect) PRSP(prospective) PRV(perfective) IPRV(imperfective)

Non-locative Cases
NOM(nominative) ACC(accusative) DAT(dative) GEN(genitive) INS(instrumental)

COM(comitative) BEN(benefactive) PRIM(primary)† SEC(secondary)†

Locative Cases

LOC†(general locative) ABL(ablative) ALL(allative) ESS(essive) APUD(apudessive) PERL†(perlative)
CIRC(near) ANTE(in front) CONTR†(against) AT(at, general vicinity) ON(on) IN(in) VON†(about)

ONVR(vertical on) SUB(under) PROL(prolative) VERS(versative) TERM(terminative) INTER(among)
POST(behind) REM(distal) PROXM(proximal)

Sentence Features NEG(negative) Q(interrogative)

Argument
Features

Person 1(1st person) 2(2nd person) 3(3rd person)
Number SG(singular) PL(plural)
Gender MASC(masculine) FEM(feminine) NEUT(neuter)

Swa classes M-WA† M-MI† JI-MA† KI-VI† N† U† KU†

Misc. FORM(formal) INFM(informal) RFLX†(reflexive)

Table 7: A list of all features used in constructing the data for all 8 languages. Features not taken from Sylak-
Glassman (2016) are marked with †.

ten using an abjad where the vowels are sparsely
marked in unvocalized text. This style of writ-
ing somewhat waters down the complexity of the
Semitic morphology as the alternating vowels are
largely not written. For this reason we include data
in vocalized Hebrew in addition to the commonly-
used unvocalized data.

Russian is an East Slavic Language. It belongs to
the Balto-Slavic branch of the Indo-European lan-
guage family. Russian has a rich, fusional, highly
synthetic morphology, typical of most Slavic lan-
guages.

One peculiarity of the Russian verbal system is
that its 2 aspects: perfective and imperfective. are
assigned in the lexemic level, so each verb is either
perfective or imperfective. Most verbs come in
pairs (e.g. делать/сделать - to do/to have done).
This system of aspects is characteristic of Slavic
languages in general. In addition, verbs can be
reflexive (using the reflexive suffix -ся/-сь).

In terms of inflectional morphology, Russian
verbs have 3 tenses and 3 moods. Verbs agree with
the subject in person and number in non-past tenses,
and in gender and number in past forms. The vast
majority of verb forms are synthetic, while future
tense of imperfective verbs and the subjunctive are
analytic and formed with auxiliaries.

Nouns and pronouns take one of the 6 possible
cases, but, similarly to German, verbs’ arguments
can be also introduced with a wide variety of prepo-
sitions that interact with the cases to specify fine-
grained relationships.

The basic word order in Russian is SVO, but

since grammatical relationships are marked by in-
flection, a considerable freedom of word order is
allowed. Changes in word order are mainly used to
express logical stress. Similarly to Hebrew, yes-no
questions are typically expressed using intonation
only, but optionally the interrogative particle ли
can be used.

Spanish is a Romance language of the Indo-
European language family. It belongs to the Ibero-
Romance group of languages. Most grammatical
characteristics of Spanish are typical of Romance
languages in general.

Spanish is a fusional language with a rich mor-
phology. It has a very rich verb conjugation with
about 50 forms per verb (not counting periphrastic
forms). The Spanish verb paradigm has 16 distinct
tense, aspect and mood combinations, 8 simple and
8 compound. Other verb forms include infinitive,
imperative, gerund, and past participle. Each of
the 16 tenses has 3 persons and 2 numbers. In both
singular and plural, different persons are used for
formal and informal addressees. Also, the sets of
second-person verb forms can differ by dialect (i.e.,
voseo vs. tuteo).

Spanish nouns belong to either the masculine or
the feminine gender and have 2 numbers. Nouns
don’t inflect by case. Instead, grammatical rela-
tions are expressed with prepositions. Personal
pronouns are inflected by person, number, gender
and (in a very reduced manner) by case.

The basic word order is SVO, but considerable
variations are possible, so that VSO, VOS and OVS
are also relatively common. Interestingly, in the
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OVS order, the direct object noun is supplemented
with the corresponding direct object pronoun, e.g.
La cena la preparo yo (literally, "The dinner it will
make I").

A very characteristic feature of Spanish are cl-
itics, or weak personal pronouns. They are used
enclitically (after the verb) or proclitically (before
the verb) depending on the verb form. Enclitic
pronouns are written as part of the verb (e.g. com-
prármelo - to buy it for me). Clitics can be also
attached to one another forming arrays, but these
arrays obey strict ordering rules (e.g. comprármelo
is grammatical while *comprárlome is not).

Swahili is the only representative of the Atlantic-
Congo language family in our selection and the
most low-resourced language, lacking even a Uni-
versal Dependencies dataset. Being the most agglu-
tinative in our data, Swahili inflects verbs mostly
by concatenating non-interacting morphemes, al-
though some may express several dimensions of
meaning like the combined morphemes for nom-
inative agreement and polarity. In addition, an
auxiliary verb kuwa is also used to express some
compound tense-aspect-mood combinations.

Swahili uses a secundative alignment of verbs’
arguments, meaning that the direct object of mono-
transitive verbs is treat similarly to the indirect
object of di-transitive verbs and this category is
referred to as the primary object, while the direct
object of di-transitive verbs is a separate secondary
category. In main clauses, verbs agree with the
nominative and the primary arguments, while sec-
ondary objects appear only as a separate word. In
addition, prepositions and coverbs are used sparsely
to introduce arguments of some verbs. Swahili is a
pro-drop language, omitting pronouns to any argu-
ment that is expressed on the verb. The word order
is SVO.

Turkish The other agglutinative language in our
selection is Turkish, of the Oghuz branch of the
Turkic languages. Characterized by Turkic vowel
harmony, most morphemes have either 2 or 4 allo-
morphs, and they are used to express tense, mood
and agreement with the nominative argument as
well compoundable aspects and dimensions of
meaning that are usually considered syntactic in
other languages, like morphemes for subordination
and conjunction. Some tense-aspect-mood combi-
nations require the usage of the auxiliary olmak.
Yes-no questions are formed using the mi particle

that takes the nominative agreement instead of the
verbs in many inflections.

Turkish typical word order is SOV and nouns
take one of 6-7 cases. They can also be introduced
by postpositions, mostly the beneficiary için.

C Detailed Results

Tables 8, 9 and 10 provide the full results for all sys-
tems and languages for the inflection, reinflection
and analysis tasks, respectively.

Tables 11, 12 and 13 show the results per lan-
guage, averaged over the systems.
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Team Metric fra spa hebvoc heb swa deu tur eng rus

KUIS-AI-1
ED 0.124 0.199 0.550 0.113 0.019 0.241 0.333 0.221 0.828
EM 0.932 0.920 0.898 0.942 0.996 0.918 0.898 0.889 0.877

UBC
ED 0.276 0.210 0.724 0.347 0.103 0.630 0.281 0.339 1.558
EM 0.864 0.883 0.846 0.852 0.918 0.771 0.914 0.803 0.847

Base-transformer
ED 2.839 1.803 5.671 2.390 2.202 3.705 3.187 1.874 5.834
EM 0.485 0.516 0.252 0.496 0.262 0.191 0.429 0.508 0.389

Base-mT5
ED 2.032 1.467 10.240 1.472 1.093 1.303 2.074 0.619 2.889
EM 0.449 0.587 0.258 0.395 0.524 0.673 0.517 0.794 0.574

Table 8: Detailed results for task 1: inflection, for all submitted and baseline systems, both in terms of edit distance
and exact match accuracy.

Team Metric fra spa hebvoc heb swa deu tur eng rus

KUIS-AI-1
ED 0.758 0.480 0.796 1.002 0.182 0.788 1.011 0.477 0.854
EM 0.683 0.776 0.833 0.577 0.845 0.665 0.774 0.723 0.849

UBC
ED 0.641 0.593 1.072 1.093 0.471 1.430 0.781 0.648 2.114
EM 0.693 0.757 0.792 0.536 0.701 0.476 0.762 0.611 0.704

Base-transformer
ED 4.584 3.628 8.531 3.347 2.004 5.360 4.653 2.170 7.502
EM 0.197 0.163 0.043 0.050 0.211 0.044 0.197 0.288 0.213

Base-mT5
ED 1.595 1.531 10.686 1.993 1.343 1.198 3.005 0.614 3.468
EM 0.539 0.566 0.243 0.239 0.465 0.675 0.320 0.788 0.497

Table 9: Detailed results for task 2: reinflection, for all submitted and baseline systems, both in terms of edit distance
and exact match accuracy.

Team Metric fra spa hebvoc heb swa deu tur eng rus

KUIS-AI-2
F1 0.956 0.981 0.928 0.821 0.905 0.959 0.954 0.996 0.975

EM 0.819 0.894 0.735 0.362 0.626 0.834 0.847 0.985 0.886

UBC
F1 0.892 0.940 0.949 0.863 0.936 0.891 0.925 0.878 0.955

EM 0.597 0.727 0.820 0.513 0.743 0.594 0.768 0.552 0.810

Göttingen
F1 0.977 0.943 0.955 0.965 0.789 0.974 0.929 0.993 0.931

EM 0.693 0.637 0.748 0.827 0.067 0.550 0.816 0.974 0.609
Base-transformer F1 0.799 0.874 0.735 0.744 0.808 0.779 0.796 0.804 0.866

EM 0.291 0.407 0.050 0.098 0.300 0.238 0.365 0.282 0.474

Base-mT5
F1 0.855 0.868 0.814 0.754 0.789 0.872 0.822 0.923 0.908

EM 0.363 0.229 0.183 0.130 0.258 0.458 0.400 0.683 0.604

Table 10: Detailed results for task 3: analysis, for all submitted and baseline systems, both in terms of weighted F1
and exact match accuracy.
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Language Exact Match Edit Dist. F1
fra 0.683 1.318 0.926
spa 0.727 0.920 0.958
heb 0.564 4.296 0.879
hebvoc 0.671 1.081 0.900
swa 0.675 0.855 0.812
deu 0.638 1.470 0.917
tur 0.690 1.469 0.884
eng 0.749 0.763 0.955
rus 0.672 2.777 0.931
all lang. 0.674 1.661 0.907

Table 11: Results per language for the inflection sub-
task. Edit distance is the most important metric, as it
quantifies the difference between the correct and pre-
dicted clause. n=4

Language Exact Match Edit Dist. F1
fra 0.528 1.895 0.889
spa 0.566 1.558 0.931
heb 0.351 1.859 0.791
hebvoc 0.478 5.271 0.838
swa 0.555 1.000 0.757
deu 0.465 2.194 0.874
tur 0.513 2.363 0.808
eng 0.603 0.977 0.934
rus 0.566 3.485 0.910
all lang. 0.514 2.289 0.859

Table 12: Results per language for the reinflection sub-
task. Edit distance is the most important metric for this
task, as it quantifies the difference between the correct
and predicted clause. n=4

Language Exact Match Edit Dist. F1
fra 0.553 2.111 0.896
spa 0.579 3.112 0.921
heb 0.507 3.802 0.876
hebvoc 0.386 2.088 0.829
swa 0.399 5.799 0.845
deu 0.535 2.311 0.895
tur 0.639 2.069 0.885
eng 0.695 0.699 0.919
rus 0.677 2.568 0.927
all lang. 0.552 2.729 0.888

Table 13: Results per language for the analysis sub-task.
Accuracy quantifies the amount of perfectly predicted
features (lemma and morphological structure). F1-score
considers each morphological feature and sub-feature
equally, but assigns the lemma more importance (by
assigning the lemma feature weight three). n=5
.
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