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Abstract

We present the University of British
Columbia’s submission to the MRL shared
task on multilingual clause-level morphology.
Our submission extends word-level inflectional
models to the clause-level in two ways: first,
by evaluating the role that BPE has on the
learning of inflectional morphology, and
second, by evaluating the importance of a
copy bias obtained through data hallucination.
Experiments demonstrate a strong preference
for language-tuned BPE and a copy bias
over a vanilla transformer. The methods are
complementary for inflection and analysis
tasks – combined models see error reductions
of 38% for inflection and 15.6% for analysis;
However, this synergy does not hold for
reinflection, which performs best under a
BPE-only setting. A deeper analysis of the
errors generated by our models illustrates that
the copy bias may be too strong - the combined
model produces predictions more similar to the
copy-influenced system, despite the success of
the BPE-model.

1 Introduction

Morphology is often described as the “study of the
shape of words”, but such a description is not en-
tirely accurate. Without considering the somewhat
nebulous definition of a “word”, there are clearly
inflectional processes that operate on a periphrastic
level. For example, in English, the future tense is
regularly inflected through the use of an auxiliary:
will and an infinitive, such as in the case “I will
go”.

Previous tasks in inflectional morphology (Cot-
terell et al., 2017, 2018; McCarthy et al., 2019; Vy-
lomova et al., 2020; Pimentel et al., 2021; Kodner
et al., 2022) have largely been restricted to generat-
ing isolated inflected word forms, which could be
viewed as a rather artificial task. While some have
included periphrastic constructions (Cotterell et al.,

∗*The first three authors contributed equally.

2016), they have largely been constrained to a sin-
gle part-of-speech. 1 This MRL Shared Task in
Multilingual Clause-Level Morphology (Goldman
et al., 2022) represents the first attempt to extend in-
flection generation beyond a single semantic unit to
clause-level structures and presents a great oppor-
tunity to investigate common inflectional methods
in a more realistic morphosyntactic setting.

We augment traditional transformer-based char-
acter models with two simple data modifications:
we first apply a small BPE-vocabulary to learn com-
mon repeated sequences like function words and
affixes, hoping to increase performance by reduc-
ing the known bias of long character sequences
(Neishi and Yoshinaga, 2019). Secondly, we adopt
a common data augmentation technique from word-
level inflection: adding data that has an identical
source and target to bias the model towards the
copying of characters (Liu and Hulden, 2022). We
find that a combination of these simple techniques
improves upon a vanilla transformer for inflection
and analysis, while a BPE-only model has the best
results for reinflection.

We also contribute a significant error analysis.
We investigate the types of errors that inflectional
systems are prone to, and how our contributions
alleviate them at the clause level; Furthermore, we
provide a thorough ablation study that compares
errors across inflectional tasks, and how these er-
rors are influenced by sequence length and copy
biasing2.

2 Methods

Studies in neural machine translation have reg-
ularly shown character- and subword-level rep-
resentations outperform word-level ones for
morphologically-rich languages (Shapiro and Duh,

1Excepting, of course, those languages where even this
distinction is not perfectly clear.

2Our data hallucination code is available at https://
github.com/mpsilfve/UBCMRL
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2018), and that optimizing the number of BPE oper-
ations can lead to substantial gains in model quality
(Araabi and Monz, 2020). Although the sequences
in inflectional models are typically shorter, there is
evidence that inflection models, like machine trans-
lation models, can benefit from grouping common
sequences (Peters and Martins, 2022). Similarly,
inflectional research has demonstrated that mod-
els can be significantly improved by establishing a
heavy bias towards copying data directly from input
to output (Liu and Hulden, 2022). Many variations
of this theme exist, but some of the most success-
ful have included establishing a hard attentional
model (Aharoni and Goldberg, 2017), learning an
explicit copy bias (Makarov and Clematide, 2018),
and augmenting the model with hallucinated data
(Anastasopoulos and Neubig, 2019).

For our submission to the shared task, we inves-
tigate to what extent these methods are extensible
to clausal morphology. Previous work has largely
occurred at the word-level, and while it is intu-
itive that word-level inflection should extend to the
clause-level, it is unclear to what extent. As one
of the first investigations into clause-level morphol-
ogy, we investigate the influence of byte pair en-
coding and copy bias on the production of accurate
morphological structures.

2.1 Vanilla system

We build a baseline system using the Fairseq (Ott
et al., 2019) implementation of transformers. To
distinguish it from the official task baseline, we
refer to it as the vanilla system. All characters
in the input and output are represented as atomic
units, and Morphosyntactic descriptors (MSD) are
split along semi-colons into inflectional features.
Spaces between words in clauses are represented
by an underscore (_). An example is provided in
Figure 1.

Figure 1: Data representation in the vanilla transformer.
The example is from the Spanish data set.

2.2 BPE

Neural models still struggle with long input and
output sequences; although great strides have been
made in retaining long-distance information, there
is still evidence that shorter sequences are easier to
represent accurately.

Byte pair encoding (BPE) (Sennrich et al., 2016)
reduces the length of both input and output se-
quences by memorizing frequent symbol sequences
and treating them as individual symbols. This typi-
cally has a marked positive impact on model perfor-
mance. In lower-resource settings, however, mod-
els can easily overfit if the vocabulary is too large.

We apply BPE to inflection but, in order to avoid
over-fitting, we experiment with a very small num-
ber of BPE vocabulary merges - 10 to 200. For
clause level morphology, we anticipate that these
merges will capture only the most common of seg-
ments, such as inflectional affixes, pronouns, and
function morphemes.

2.3 Copying

When inflecting from a lemma to a surface form,
many of the characters in the lemma are often pre-
served.3 However, neural models often require a
not-insignificant amount of training data to learn
this phenomenon. In low-resource inflectional ex-
periments, one process that has repeatedly been
shown to improve model stability is the simple ex-
pedient of copying the source to the target, without
any further modification (Liu and Hulden, 2022).
While this copying bias is likely less prevalent at
the phrasal level, we believe it still has the oppor-
tunity to improve the quality of the inflectional
models. Along with strengthening a preference for
copying in the model, copying the target data also
strengthens the target-side language model. An
example of this augmentation for inflection and
analysis is shown in Figure 2. For all three tasks,
the hallucinated data contains a single COPY tag on
the source side as MSD.

3 Data / Experiments

The shared task consists of three sub-tasks: (1)
inflection, where a lemma and MSD input are con-
verted to an inflected output; (2) reinflection, where
an initial clause, input-MSD, and target-MSD are
used to generate a target clause, and (3) analysis,

3The percentage of characters preserved varies greatly by
language.
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(a) Copying target-to-target for inflection. (b) Copying target-to-target for morphological analysis.

Figure 2: Data augmentation via COPY

where an input clause generates a target lemma and
MSD. Each task is evaluated across 9 languages.

Each language has a train/dev/test split of 10,000,
1000, and 1000 instances, respectively. 4 Although
extra data was allowed for the task, we instead
concentrated on optimizing the models without ad-
ditional data. Each model is evaluated on a single
training run; the seed is stabilized to lessen the
effect of noise across experiments.

We focus our experiments on an ablation of
our proposed data augmentation techniques. The
Vanilla experiments train models using the vanilla
transformer described above. +BPE tunes a byte
pair encoding vocabulary on each respective lan-
guage and task; we investigate BPE merges from
10-200, and choose the model that maximizes the
results on the development set+Copy augments the
data with copied target-side data; the size of the
BPE vocabulary is tuned individually for each lan-
guage and amount of additional data.

The transformer was trained with 4 attentional
heads over 4 encoder and decoder layers. The
Adam{0.9, 0.98} optimizer was used, with an ini-
tial learning rate of 0.0001, and an inverse square-
root learning schedule and a label-smoothed cross
entropy criterion. Dropout and attentional dropout
of 0.3 were applied to limit over-fitting, and a batch
size of 400 was also used. Models were trained for
20,000 updates, with the best model chosen via
loss on the development set.

4 Results

We break the discussion of our results down based
on the three sub-tasks of the competition: inflec-
tion, reinflection, and analysis. All reported results

4Some languages do not have 10,000 instances exactly, but
are of the same magnitude.

and analysis are on the development set, and are
cumulative: “+BPE” applies BPE to the vanilla
transformer, and “+Copy” further supplements the
model with data hallucination. For official results
on the test set, please see the task description paper
(Goldman et al., 2022). All systems submitted to
the official task were the systems with both BPE
and data hallucination. The results report the exact
match accuracy of the systems.

4.1 Inflection

Language Vanilla +BPE +Copy
deu 69.0 72.1 75.6
eng 85.4 86.2 89.7
fra 71.6 85.7 89.4
heb 86.9 86.9 86.4
heb_unvoc 63.5 80.6 83.1
rus 80.0 83.4 87.5
spa 87.0 88.6 87.7
swa 82.2 87.0 90.1
tur 81.9 87.0 91.5
Ave. 78.6 84.2 86.8

Table 1: Development results for the inflection task
(measured in full-form accuracy)

We first report the results for the inflection sub-
task in Table 1. We observe that both BPE and
data hallucination contribute to the quality of the
model; on average, adding a small amount of BPE-
joined vocabulary reduces the error by more than a
quarter. Additionally, providing additional copied
data leads to a further 11% error reduction.The
BPE vocabulary has the largest impact on French,
Swahili, Turkish, and unvocalized Hebrew, while
providing smaller gains to the rest of the language
set. The only language not to benefit from extra
data in training was Spanish. Since Spanish shares
a similar morphological makeup to French, which
benefits substantially from data hallucination, we
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do not attribute this finding to the morphological
structure of Spanish, but rather to peculiarities of
the dataset itself.

4.2 Reinflection

Language Vanilla +BPE +Copy
deu 37.7 49.8 46.6
eng 59.4 73.0 71.4
fra 63.9 68.8 71.1
heb 72.5 80.4 78.6
heb_unvoc 60.6 67.7 63.8
rus 76.8 79.5 78.7
spa 56.1 61.0 72.8
swa 54.9 73.4 65.5
tur 54.6 65.6 63.1
Ave. 59.6 68.8 68.0

Table 2: Development results for the reinflection task
(measured in full-form accuracy)

In Table 2, it is immediately obvious that rein-
flection behaves very differently from inflection,
despite many conceptual similarities. Although
BPE reduces the error of the vanilla transformer
to a similar degree as for inflection, adding hal-
lucinated copy data on top of the BPE does not
lead to further gains. Again, there seems to be no
morphological bias to this trend, with fusional, ag-
glutinative, and templatic languages all behaving
similarly.

There is one significant difference between in-
flection and reinflection that may lead to less suc-
cess via copy-biasing, however. Although both
processes involve the modification of a root, the
root is less stable in reinflection. In the inflection
task, the input is always the lemma, and identify-
ing the root can largely be generalized over all of
the training examples. In reinflection, the input
form is inconsistent, and root identification must
identify several operations. The problem is exacer-
bated with larger morphological paradigms, such
as clause-level paradigms. While much of the root
can be copied, there are also a significant number
of substitutions, which may lessen the need for a
strong copy bias. For example, in the German data,
one example should reinflect ich wü̈rde ihn nicht er-
schließen into es erschlösse sich. Our copy model
instead produces *es erschließe sich, demonstrat-
ing that the copy bias may be too strong.

4.3 Analysis

Table 3 demonstrates the results of our morpholog-
ical analysis experiments. Conceptually, analysis
is the inverse operation of inflection from a lemma

(ie, generating a lemma and MSD from an inflected
clause), and we observe similar results to those
from Section 4.1. Both BPE and data hallucination
result in error reductions across most languages,
and the effect appears to be cumulative: BPE on
its own reduced error by 9.2%, and the extra data
leads to a further reduction of 7.1%.

We observe that a significant part of the increase
in quality comes from an improved ability to iden-
tify the lemma – BPE correctly identifies 2.9%
more lemmas than the vanilla system, and the addi-
tion of hallucinated data further improves the qual-
ity of lemma identification by an absolute 3.1%.
This is not surprising, given that once the root has
been identified, the generation of the lemma can
largely be generalized to a small set of operations,
many of which are simple copies.

Somewhat surprisingly, the generation of the
MSD also improves from the addition of BPE, de-
spite no modifications to the MSDs in training. We
attribute this to the increased quality of lemma gen-
eration – in a joint model, the correct identification
of part of the output helps with disambiguation of
the secondary task. Even with that consideration,
it appears that BPE has a larger influence on the
production of MSDs than copy biasing.

Language Vanilla +BPE +Copy
deu 83.1 86.1 87.5
eng 89.2 91.0 91.2
fra 93.2 93.2 93.2
heb 92.9 92.9 94.3
heb_unvoc 84.8 87.1 87.7
rus 94.4 94.4 94.1
spa 89.7 89.7 90.6
swa 85.0 87.6 87.9
tur 89.2 89.3 90.8
Average F1 89.1 90.1 90.8
Lemma Acc. 67.4 70.3 73.4
MSD Acc. 81.7 82.5 82.4

Table 3: Development results for the analysis task (mea-
sured in F1 Score); the Lemma and MSD Accuracy are
averaged over all languages.

5 Analysis / Discussion

In order to better understand the differences in
model quality, we perform error analysis along
several axes. We first consider the types of in-
flection errors produced by the BPE, Copy, and
BPE+Copy models in Figure 3, while Figure 4
shows error reduction compared to the vanilla trans-
former when using BPE, Copy, and their combina-
tion BPE+Copy.
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Figure 3: Mean frequencies of various errors across the
test languages. Explanation of error types: Doubling a
character is erroneously doubled (abc → abbc). Drop
the second copy of a doubled character is errnouneously
dropped (abbc → abc). Insertion a character is erro-
neously inserted (abc → axbc). Deletion a character is
mistakenly deleted (abc → ac). Punct Punctuation is
dropped or replaced at the end of a word (abc. → abc
and abc. → abc?). Spell Total spelling errors affecting
the inflected form of the input lemma.

First, we notice that both BPE and Copy indi-
vidually reduce overall errors (the error type Total
in Figure 4). The impact of the methods seems
roughly equal, although Copy is slightly more ef-
fective on its own. Nevertheless, the combination
BPE+Copy clearly outperforms both individual
methods. Second, we observe somewhat different
influence from the BPE and Copy methods when
they are used in isolation - the former significantly
improves upon punctuation errors, while the lat-
ter removes a number of insertion errors from the
vanilla model. Moreover, the most prevalent er-
ror type in the vanilla model – deletion – is only
moderately reduced by the BPE model, while a far
greater error reduction can be seen when Copy is
employed. Furthermore, we observe a largely com-
plementary effect - the combined model improves
over either individual model for all error categories.

We next run an ablation to investigate the role
that each of our contributions has on the quality of
the models for each task. The results are plotted
in Figure 5. In this graph, we investigate which
errors are corrected or introduced by a particular
method. BPE and Copy “correct” an error if it
was produced by the vanilla model, and “break” an
example if it was correctly predicted by the vanilla
model, but not the enhanced model. For the model
with both BPE and copying, an instance is only
considered “corrected” if both the BPE and Copy

models produced an incorrect solution. Likewise,
it “breaks” a prediction only if both the BPE and
Copy models produce the correct solution.

We observe that both BPE and copying lead to
large improvements in the model, regardless of the
task - far more errors corrected than introduced.
For inflection and analysis, both methods appear
to contribute roughly equally to the quality of the
model. Furthermore, we observe a complementary
effect, where the combination of both methods cor-
rects notably more examples than either method
on its own. Contrarily, the combined model intro-
duces fewer inflectional errors than either BPE or
copying alone.

Interestingly, the trends observed in inflection
and analysis do not hold for reinflection. Although
BPE and copying alone improve the model, their
combination introduces a large number of errors -
such that they overwhelm the corrected instances
obtained through the combination of methods. A
closer inspection reveals that this outlier is largely
attributable to a single language - Swahili. When
Swahili is excluded, the results trend similar to
the other tasks, although BPE still has a stronger
influence. There are several areas where Swahili
could be contributing to this interesting finding, but
lacking experts in the language on our team, we
hesitate to make concrete hypotheses.

Figure 5 suggests that the biggest benefit of the
combined model is its ability to correctly discern
when one of the separate data augmentations cor-
rectly produces an inflection, but it isn’t quite that
clear. Looking at examples where the BPE and
Copy models disagree, we observe that the com-
bined inflection model correctly chooses the right
solution 72.8% of the time.5 However, for rein-
flection and analysis, the correct solution is only
chosen slightly more than 50% of the time.

Considering only those instances where the orig-
inal BPE and Copy models disagree, we investigate
the influence of the individual contributions. For
inflection, we observe that the combined model
produces output identical to the BPE model in 61%
of cases, as opposed to only 40% for reinflection
and 43% for analysis. It appears that the copied
data has an unduly large influence on the combined
model for the latter two tasks.

Given that the motivation behind BPE was re-
5Note that there is actually no “choosing” occuring, such

as might happen in an ensemble. Instead this can be viewed
as the influence of a particular addition biasing the model
towards a particular prediction.
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Figure 4: Mean error reduction across the five test languages for the BPE, Copy and BPE+Copy systems when
compared to the baseline system. See caption of Figure 3 for an explanation of the error types.

Figure 5: Analysis of errors corrected and introduced by
our augmentations over the vanilla model. The y-axis is
an absolute scale of the average number of errors cor-
rected and introduced by each model, compared with
the vanilla transformer. Inf - Inflection; Reinf - Rein-
flection.

ducing the size of input and output segments, we
investigate the role that the length of a sequence
plays on the quality of a model. Since reinflec-
tion and analysis lengths vary based not only on
the length of the verb being inflected, but on other
factors such as the number of words in the input,
etc, we limit this investigation to the inflection task.
Figure 6 demonstrates the number of errors pro-
duced by our best system, given the length of the
input sequence (ie, the lemma). German, Russian,
and Turkish show a strong preference for shorter
input sequences. Hebrew (both unvocalized and
standard) and Spanish instead demonstrate a some-
what surprising preference in the other direction -
producing more errors for short sequences.

In an attempt to further explain these conflict-
ing results, we next investigate the relationship be-
tween lemmas in the training and development sets.
Figure 7 reports the number of errors made by our
best system with respect to the distance between
the development lemma and the closest analogue
in the training data. Now, unsurprisingly, we see

Figure 6: Analysis of errors made by our best model for
each language in the inflection task depending on char-
acter length of the lemmas. The y-axis is the average
number of errors made in the development set and the
x-axis is the character length.

that most languages perform better when there is a
closely-related lemma in the training data.

Finally, we investigate the efficiency of our copy-
ing method by comparing it with two alternatives.
Rather than simply taking the training output data
and copying it as extra data, RANDOM generates ran-
dom sequences of characters to copy from source
to target. Similarly, LM creates new copy sequences,
but first learns a neural language model from the
training data, before generating the sequences. The
results for inflection are shown in Figure 8.

We observe that changing the hallucination
method from copied training data to randomly-
generated sequences greatly improves the quality
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Figure 7: Analysis of errors made by our best model
for each language in the inflection task depending on
the closest Levenshtein score of any lemma present in
the training set. The y-axis is the average number of
errors made in the development set and the x-axis is the
Levenshtein distance.

of the inflector, with an error reduction of more
than 35%, on average. We hypothesize that while
the COPY method simply reinforces an existing sig-
nal, the RANDOM method introduces new contexts
for copying, which allows the model to better gen-
eralize the copy operation overall.

6 Conclusion

We have described the submission of the UBC team
to the MRL shared task on multilingual clause-
level morphology. Experiments on a series of
morphologically-diverse languages have demon-
strated that BPE and copy-biasing, two methods
that have proven successful at the word-level, are
largely extensible to clause-level morphology.

We observe that the methods are largely com-
plementary, with one exception - the task of rein-
flection. Although we observe notable gains over
a vanilla transformer when either performing BPE
or copy hallucination, combining the two methods
leads to a degradation in reinflection quality.

0
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100

deu eng fra heb heb_unvoc rus spa swa tur average

Copy Random

Figure 8: A comparsison of our data hallucination meth-
ods using copied training data and randomly generated
sequences.

Limitations

The work described in this paper focuses on multi-
lingual representation, but the authors are not famil-
iar with all of the analyzed languages. Hypotheses
are based on general linguistic experience, and not
necessarily a familiarity with the languages in ques-
tion.

Deep learning models are stochastic in nature,
which may lead to replication difficulties. We have
tried to specify relevant hyper-parameters and set-
tings, but random fluctuations in seed values may
result in variations in replication studies.

Ethics Statement

We trust that the data used in this paper was
ethically-sourced. The models were trained by fac-
ulty and students of the Department of Linguistics
at the University of British Columbia, and none of
the data or models were shared with anyone out-
side that purview. All contributors to the project
are in the author list, or thanked in the acknowledg-
ments. No members of the team received monetary
compensation for participating in this task. All
participation was voluntary.
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