
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion, pages 296 - 300
May 27, 2022 ©2022 Association for Computational Linguistics

SSN_MLRG1@LT-EDI-ACL2022: Multi-Class Classification using BERT
models for Detecting Depression Signs from Social Media Text

Karun Anantharaman, S. Rajalakshmi, S. Angel Deborah,
M. Saritha, R. Sakaya Milton

Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai 603 110, Tamil Nadu, India
karun19049@cse.ssn.edu.in,

{rajalakshmis, angeldeborahs}@ssn.edu.in,
{sarithamadhesh, miltonrs}@ssn.edu.in

Abstract
DepSign-LT-EDI@ACL-2022 aims to ascer-
tain the signs of depression of a person from
their messages and posts on social media
wherein people share their feelings and emo-
tions. Given social media postings in English,
the system should classify the signs of depres-
sion into three labels namely “not depressed”,
“moderately depressed”, and “severely de-
pressed”. To achieve this objective, we have
adopted a fine-tuned BERT model. This solu-
tion from team SSN_MLRG1 achieves 58.5%
accuracy on the DepSign-LT-EDI@ACL-2022
test set.

1 Introduction

Depression is a frequently found mental illness
that involves sadness and lack of interest in
all day-to-day activities. It is vital to detect
and treat depression at an early stage to avoid
consequences. Treatment involves diagnosis of
patient who might have depression, but patient
would have have to initiate contact in order to
receive this opportunity.

It has been proven by multiple studies that
depression is preventable and early stage detec-
tion and the most severe effect of this disease
can be mitigated by quick treatment. However,
openly accessible tools to this end are very
few and very rare. The rise of social media
as one of humanity’s most important public
communication platforms presents a potential
prospect for early identification and manage-
ment of mental illness (Priyadharshini et al.,
2021; Kumaresan et al., 2021).

People’s daily lives are increasingly dom-
inated by social media (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021). On so-
cial media, a lot of multimedia content, mostly
brief words and photographs, is constantly ex-
changed (Chakravarthi et al., 2021, 2020). In-
formation put on the Internet, as opposed to
conventional human contact, may be swiftly
disseminated by acquaintances and accessed
by strangers (Sampath et al., 2022; Ravikiran
et al., 2022; Chakravarthi et al., 2022; Bharathi
et al., 2022; Priyadharshini et al., 2022). This
method allows users to avoid direct interaction
with individuals while also increasing their
urge to convey their emotions.

This task 4 in Second Workshop on Lan-
guage Technology for Equality, Diversity, In-
clusion (LT-EDI) aims to detect depression
from english text (Durairaj et al., 2022). This
research article evinces how a BERT Trans-
former Model can effectively classify social
media texts into 3 classes “not depressed”,
“moderately depressed”, and “severely de-
pressed”.

The model is trained on social media texts
from various sources, labelled as above. The
process involves 2 subtasks - PreProcessing
and Training. In Subtask-A, the text is cleaned
up, and converted to a format more suitable for
context and sentiment analysis for depression
detection. In Subtask-B a simple transformer
BERT classifcation model is trained on the
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task data, and the performance is evaluated.

2 Background

2.1 Definitions
The section contains descriptions of the models
made use of, and related terminology

Transformers - Every output element is
related to every input element, and the weight-
ings between them are dynamically deter-
mined depending on their relationship. (In
NLP, this is referred to as attention.)

BERT - BERT is based on Transformers
and stands for Bidirectional Encoder Repre-
sentations from Transformers. Earlier models
could only read input text linearly for a long
time, either from right to left or from left to
right; they couldn’t do both at the same time.
In this way, BERT differs from previous mod-
els in that it is designed to read in both direc-
tions at the same time. Bidirectionality is a
feature that was made possible with the intro-
duction of Transformers.

2.2 Related Work
Depression Detection

Models for detecting depression must be ex-
tremely precise and quick in order for early
intervention to be feasible. (Shen et al., 2017)
advocated the extraction of six feature groups,
which were then used to train a multi-modal
depression dictionary learning model to de-
tect depressed Twitter users. (Burdisso et al.,
2019) presented the SS3 text classification sys-
tem for early depression diagnosis in social
media streams that is easy and effective. (Lin
et al., 2020) proposed SenseMood, a system
that employs a BERT classifier and a CNN
to categorise depressed/not-depressed social
media messages and photographs. (?) asserts
that existing depression detection assessments
are ineffective at quantifying model delay, and
proposes a remedy to this problem.
BERT

In the field of natural language processing,
BERT models are widely used. To further un-
derstand how such models function, (van Aken
et al., 2019) gives A Layer-Wise Analysis of
Transformer Representations. (Devlin et al.,

2018) demonstrates how pre-trained models
may be utilised to interpret natural language.
A overview of BERT-based models for text-
based emotion recognition may be found in
(Acheampong et al., 2021). An early departing
modification of BERT for quicker inference is
shown in (Xin et al., 2020).

Our earlier research work in contextual emo-
tion and sentiment analysis uses ensemble
techniques and Gaussian process models in
(Angel Deborah et al., 2019), (Angel Debo-
rah et al., 2021), (Rajalakshmi et al., 2018),
(Rajendram et al., 2017b), (Rajendram et al.,
2022) and (Rajendram et al., 2017a) forms the
base for depression detection. We have used
transformer models and its variants to detect
offense and humor in text (Sivanaiah et al.,
2020), (Sivanaiah et al., 2021) and (Nanda
et al., 2021).

2.3 Data

The task data set contains social media texts
in English. The data set contains 3 columns,
the pid, the social media text in English, and
the label as "not depressed", "moderately de-
pressed", and "severely depressed". The test,
development and train data sets all have data
pertaining to these 3 classes.

The training set has a total of 8891 entries,
of which 1971 are labelled "not depressed",
6019 are labelled "moderately depressed", and
the remaining 901 are "severely depressed".

The development set has a total of 4496
entries which are split as 1830 "not de-
pressed", 2306 "moderately depressed" and
360 "severely depressed". The test set has
3245 data points.

3 System Overview

The first step in the system flow is preprocess-
ing the data. The aim is to remove any unnec-
essary elements from the text, and transform
the data given into a more uniform form. This
involves the following steps:
(i) Extend Contractions - A contraction is an
abbreviated version of a word, such as don’t,
which stands for do not, and aren’t, which
stands for are not. In order for the model to
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perform better, we need to broaden this con-
traction in the text data.

(ii) Lower Case - Because lower case and
upper case are interpreted differently by the
machine, it is easier for a machine to read the
words if the text is in the same case.
(iii) Remove Punctuations - Another text
processing approach is punctuation removal.
There are 32 punctuation marks that need to
be eliminated in total. We may use a regular
expression and the string module to replace
any punctuation in text with an empty string.
(iv) Remove words and numbers that contain
digits - Sometimes words and digits are written
together in the text, which is difficult for ma-
chines to grasp. As a result, we must exclude
terms that are a mix of words and numerals,
such as game57 or game5ts7. Because this
sort of term is difficult to handle, it’s best to
remove it or replace it with a NULL string.
(v) Remove Stopwords - Stopwords are the
most frequently occurring words in a text that
offer no useful information. Stopwords include
words like them, they, who, this, and there.
(vi) Stemming and Lemmatization - Stemming
is the process of reducing a word to its root
stem, such as run, running, runs, and runed,
which are all derived from the same word.
Words like ing, s, and es, for example, are
stemmed to eliminate prefixes and suffixes.
The words are stemmed using the NLTK pack-
age.
(vii) Remove White Spaces - We need to con-
trol this problem since most text data has ad-
ditional spaces or more than one space is left
between the text while completing the preced-
ing preparation processes.
(viii) Data Augmentation - This technique is
used to create synthetic data to take care of the
imbalance in the dataset.

The next part of the system is the BERT clas-
sification model. The pre-trained BERT model
from simpletransformer API has been used in
this model. The BERT model is fine tuned on
the processed data, to give a 3-class classifica-
tion model capable of effectively classifying
new data encountered into various classes. The
working of BERT model is shown in Figure

1. It has two phases as pre-training and fine-
tuning.

4 Experimental Setup

The data is imported as a pandas dataframe.
This dataframe is first passed to a function to
expand all contractions, this is done with a pre-
collected dictionary of contractions. Next, the
sentence is converted to lower case, and punc-
tuation’s are removed using a regex compiled
expression. The data at this point is parsed for
english stopwords, a list of which are obtained
from the Natural Language Tool Kit (NLTK) in
python. These stopwords are removed. Stem-
ming and Lemmatization are also done using
the python NTLK. White spaces are removed
using a regex expression. NLPAUG library
is used for data augmentation to balance the
data between the 3 classes since the data is
imbalanced across the labels.

A BERT model is trained on the above pro-
cessed data, multiple parameters have been
tested using WANDB Sweeps, and the highest
scoring configuration has been used. A learn-
ing rate of 1e-4 and a batch size of 16 were
used.

5 Results

The efficacy of this model has been proven by
the results given below:

Metric Score

Accuracy 0.585
Macro F1-Score 0.412

Macro Recall 0.403
Macro Precision 0.436

Weighted F1-Score 0.576
Weighted Recall 0.585

Weighted Precision 0.572

Table 1: Results

We have obtained an accuracy of 59% and
the top rank team has achieved 66% accuracy.
Further improvement in the system can be
achieved by tweaking the hyper parameters.
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6 Conclusion

In summation, our research work presents a
BERT model for classification of social me-
dia texts into the 3 target classes. The current
model does not perform very well on the given
data. One reason that can be attributed to this
is the complexity of different texts, with vari-
ous parts involving various sentiments. Future
models, will aim to remedy this through split-
ting the sentences based on their complexity,
and using different models for different lev-
els of complexity. The other reason for the
low results may be the different manifestations
of depression symptoms in different people,
this will be remedied by using various other
features along with social media texts. In the
future, a classifier to segregate texts based on
complexity and the number of sentiment ex-
pressions may be supplied to further improve
the efficiency of the classifier.
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