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Abstract
Humans constantly deal with multimodal information, that is, data from different modalities, such as texts and images. In
order for machines to process information similarly to humans, they must be able to process multimodal data and understand
the joint relationship between these modalities. This paper describes the work performed on the VTLM (Visual Translation
Language Modelling) framework from (Caglayan et al., 2021) to test its generalization ability for other language pairs and
corpora. We use the multimodal and multilingual corpus How2 (Sanabria et al., 2018) in three parallel streams with aligned
English-Portuguese-Visual information to investigate the effectiveness of the model for this new language pair and in more
complex scenarios, where the sentence associated with each image is not a simple description of it. Our experiments on
the Portuguese-English multimodal translation task using the How2 dataset demonstrate the efficacy of cross-lingual visual
pretraining. We achieved a BLEU score of 51.8 and a METEOR score of 78.0 on the test set, outperforming the MMT baseline
by about 14 BLEU and 14 METEOR. The good BLEU and METEOR values obtained for this new language pair, regarding
the original English-German VTLM, establish the suitability of the model to other languages.

Keywords: Multilingual Language Model, Multimodal Machine Translation, Brazilian Portuguese, Vision and Lan-
guage

1. Introduction
Understanding different modalities together is an im-
portant aspect of human comprehension. We often use
sight, hearing, smell and other senses to assimilate a
single concept. This multimodal aspect of learning
can be very useful for machines to process multimodal
information and understand the joint relationship be-
tween these modalities.
While multimodal models are trained to be able to in-
terpret and associate data from different modalities –
such as text, audio and image simultaneously – multi-
lingual models are meant to understand multiple lan-
guages by learning cross-lingual representations. In
this context, models that learn multimodal and mul-
tilingual representations have been shown to perform
better in many natural language tasks (Caglayan et al.,
2021).
Recently, the area of Natural Language Processing
(NLP) has been experiencing a significant paradigm
shift with the proposition of several neural models
(deep learning) for language processing (Devlin et al.,
2019; Conneau and Lample, 2019; Radford et al.,
2018). These advances are based on the use of artificial
neural networks and strategies such as transfer learn-
ing and attention (Calixto et al., 2016; Caglayan et al.,
2016; Libovický and Helcl, 2017).
There are several examples of NLP applications for
which these strategies have reached state of the art in
monolingual (Lan et al., 2020; Liu et al., 2019; Rothe
et al., 2020), multilingual (Devlin et al., 2019; Conneau

and Lample, 2019) and multimodal (Tan and Bansal,
2019; Lu et al., 2019; Li et al., 2019; Lin et al., 2021)
processing. However, for Portuguese these advances
are still very sparse (Souza et al., 2020).
Even though the initial interest was only in multimodal
(Tan and Bansal, 2019; Lu et al., 2019; Li et al., 2019)
or multilingual (Devlin et al., 2019; Conneau and Lam-
ple, 2019) models, recent developments have resulted
in frameworks able to do both and deliver multilingual
and multimodal models (Caglayan et al., 2021; Huang
et al., 2021; Ni et al., 2021).
In this context, visual modality can help machines have
a better understanding of textual information. This ap-
proach has been introduced in a novel multimodal Neu-
ral Machine Translation (MNMT) task (Specia et al.,
2016; Elliott et al., 2017; Barrault et al., 2018), which
mainly focuses on enhancing text-only translation with
visual features. Therefore, multimodal machine trans-
lation (MMT) improves translation quality by using
context from the additional visual modality. As a re-
sult, the translation is expected to be more accurate,
since the visual context helps to reduce ambiguity.
Considering the MMT task, the Visual Translation Lan-
guage Modelling (VTLM), proposed by Caglayan et al.
(2021), showed that multimodal and multilingual pre-
training leads to considerable improvements compared
to multimodal machine translation without pre-training
or only with multilingual pre-training. Thus highlight-
ing the efficiency of both multimodal and multilingual
pre-training.
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In this paper we report the work we performed with
VTLM focusing on the Portuguese language. We
used the multimodal and multilingual corpus How2
(Sanabria et al., 2018) and applied the necessary
pre-processing steps to verify its performance on the
VTLM model for the MMT task.
In this context, this paper is an important step towards
tackling the problem of multimodal and multilingual
learning involving the Portuguese language. The main
contributions of this work are: (i) the generation of
new linguistic-computational resources for Brazilian
Portuguese, including processing scripts and the pro-
cessed corpus/database generated for the experiments;
(ii) the adaptation of VTLM to a new language pair
and to more challenging circumstances in relation to
the image-text relationship, as well as (iii) the relevant
results of the experimentation.

2. Related Work
Multimodal machine translation, different from the tra-
ditional MT, considers other modalities in addition to
text information in order to better translate source sen-
tences into target ones.
Previous works propose various multimodal machine
translation models and methods. Huang et al. (2016)
concatenate global and regional visual features with
text in order to attend to the image and the text while
decoding. Calixto and Liu (2017) use global image fea-
tures to initialize the encoder/decoder hidden states of
RNN. Elliott and Kádár (2017) introduce a multi-task
learning framework to learn visually grounded repre-
sentations and learn to translate. Zhou et al. (2018)
enhance the learning of a shared visual language em-
bedding and a multimodal attention-based translator
through a visual attention mechanism. Calixto et al.
(2019) put forward a latent variable model to learn the
interactions between visual and textual features. Ive et
al. (2019) propose a translate-and-refine method based
on Transformer (Vaswani et al., 2017), where images
are only used by a second stage decoder. Yin et al.
(2020) utilize a unified multimodal graph to capture
different semantic relationships.
Unlike previous methods, Yao and Wan (2020) propose
multimodal self-attention in Transformer to solve the
problem of relative importance among different modal-
ities. They show a better approach to incorporate in-
formation from other modality based on a graph per-
spective of Transformer and they avoid encoding ir-
relevant information in images by learning the repre-
sentations of images based on the text. Their model is
evaluated on the Multi30k dataset (Elliott et al., 2016),
which contains 29,000 instances for training, 1,024
for validation and 1,000 for testing (Test2016). The
model achieves a METEOR score of 55.7 and a BLEU
score of 38.7 on English-German (En-De) Test2016,
demonstrating the benefit of the visual modality by out-
performing their text-only baseline by above 1 BLEU
points.

Along this line, Liu et al. (2021) introduce a select-
ing method in multimodal scenarios named Gumbel-
Attention. It selects the text-related parts of the image
features and removes the irrelevant information using
a differentiable method. They also use the Multi30k
dataset and present their results on the English-German
test set. The Gumbel-Attention MMT model obtains
a better performance compared to Multimodal Trans-
former (Yao and Wan, 2020), reaching 39.2 BLEU and
57.8 METEOR on the Multi30k Test2016.
In contrast with prior studies, Long et al. (2021) in-
troduce a machine translation method that only needs
the source sentence at the inference time. They create
a generative imagination-based model called ImagiT,
which learns to produce visual representation from the
source sentence, and then generates the target language
sentence using source sentence and the “imagined rep-
resentation”. Similar to previous work, the experi-
ments are conducted on the Multi30k dataset. Their
best results are on English-German (En-De) Test2017,
achieving a BLEU score of 32.4 and a METEOR score
of 52.5, and on English-French (En-Fr) Test2016, ob-
taining 59.9 BLEU and 74.3 METEOR. Their results
show improvements over text-only NMT baselines,
demonstrating the efficacy of their model.
Due to the scarcity of quality datasets available for
multimodal translation, most current works resort only
to the Multi30k dataset, which is a multilingual ex-
tension of Flickr30k (Young et al., 2014) with trans-
lations of the English image descriptions into Ger-
man and French. However, following another direc-
tion Gupta et al. (2021) use the Visual Genome dataset
(Krishna et al., 2016) with Hindi translations to inves-
tigate the effectiveness of their multimodal translation
system. They use a pretrained multilingual sequence-
to-sequence model and fine-tune it on a textual-only
dataset consisting of 1,609,682 parallel sentences in
English and Hindi (Kunchukuttan et al., 2018). And
they bring the visual information to the textual domain
by extracting object tags from the image, adding them
to the source text and then fine-tuning the model on the
training set with the object tags. Their model achieves
state-of-the-art performance on the dataset, reaching
44.6 BLEU on the test set and 51.6 BLEU on the chal-
lenge set, which consists of sentences where there are
ambiguous English words.
In this paper, we chose to work with VTLM from
Caglayan et al. (2021). VTLM extends the TLM
framework (Conneau and Lample, 2019) with regional
features and introduces a pre-training approach that
combines cross-lingual and visual pre-training. It per-
forms masked language modeling and masked region
classification on a three-way parallel language and vi-
sion dataset, which is an extension of the Conceptual
Captions corpus (Sharma et al., 2018) with German
machine translations. VTLM achieved a BLEU score
of 44.0 and a METEOR score of 61.3 on English-
German (En-De) 2016 test set of Multi30k for the
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MMT task, demonstrating the effectiveness of both
multimodal and multilingual pre-training.

3. Method
We work with Visual Translation Language Modelling
(Caglayan et al., 2021) adapted to another language
pair (Brazilian Portuguese-English) and corpus (How2
(Sanabria et al., 2018)). Therefore, we first describe the
VTLM objective and then present the How2 corpus.

3.1. Visual Translation Language Modelling
The VTLM objective combines multimodal and mul-
tilingual learning to generate cross-lingual and multi-
modal representations in order to analyze its effective-
ness on the multimodal machine translation task. To
accomplish this, the model joins the TLM (Translation
Language Modelling), proposed by Conneau and Lam-
ple (2019), with masked region classification (MRC)
(Chen et al., 2020; Su et al., 2020). VTLM defines
the input x as the concatenation of m-length source lan-
guage sentence s(1)1:m, n-length target language sentence
s
(2)
1:n, and {v1, · · · , vo} corresponding image features:

x = [s
(1)
1 , · · · , s(1)m , s

(2)
1 , · · · , s(2)n , v1, · · · , vo] (1)

The final model combines the TLM loss with the MRC
loss according to the following equation:

L =
1

|X|
∑
x∈X

logPr({ŷ, v̂}|x̃; θ) (2)

where x̃ is the masked input sequence, ŷ are the
ground-truth targets for masked positions, v̂ are the de-
tection labels and θ are the model parameters.
The VTLM architecture (Figure 1) extends the TLM
by adding a visual modality alongside the translation
pairs, and the final model processes translation pairs
and projected region features in a single-stream.
In this approach, masking is random and applies to tex-
tual and visual tokens. Its proportion is 15% and it is
applied separately to visual and language flows. VTLM
replaces its vector of projected features by the [MASK]
token, with 10% of the masking being equivalent to us-
ing region features randomly selected from all images
in the batch, and the remaining 10% of the regions are
left intact.
VTLM pre-training has visual and cross-lingual re-
sources and performs masked language modeling and
masked region classification on a three-way parallel
language and vision dataset, which is an extension of
the Conceptual Captions corpus (CC) (Sharma et al.,
2018) with German machine translations.
After pre-training, the VTLM encoder is transferred to
a Transformer-based (Vaswani et al., 2017) multimodal
machine translation model and adjusted for the MMT
task.

3.2. Corpus How2
How2 (Sanabria et al., 2018) is a multimodal and mul-
tilingual collection of approximately 80,000 instruc-
tional videos (approximately 2,000 hours) accompa-
nied by English subtitles and around 300 hours of col-
lected crowdsourced Portuguese translations, plus sum-
maries of each video in English.
According to the authors, the multimodal nature of
How2 improves comprehension as it helps to resolve
possible ambiguities that could be found in a text-only
setting. For instance, consider the example in Figure
2. The bold text shows the English subtitle for the
speech, the italic text corresponds to the aligned Por-
tuguese translation, and the text inside the rectangle is
the video summary. In this example, the man is ex-
plaining how to play a golf shot and the visual context
(green grass with a flagpole) or the audio context (out-
side with the sound of chipping a golf ball) leads to a
correct interpretation of the speech, as only with the
text it is not clear whether the “green” in the caption
refers to the color green (“verde” in Portuguese), or to
the type of surface (“green” in Portuguese).
Therefore, How2 is an important resource for multi-
modal tasks such as multimodal machine translation.

3.3. VTLM for Video Subtitles
The multimodal and multilingual How2 corpus is used
in all stages of experimentation. In addition to language
differences, using this corpus for the MMT task brings
additional challenges compared to using the Multi30k
corpus, as in most previous works (Yao and Wan, 2020;
Liu et al., 2021; Long et al., 2021; Caglayan et al.,
2021). The fundamental reason is that How2 is a col-
lection of videos – which means that the text associated
with each image (video frame) is not a simple descrip-
tion of it, but a subtitle that may not be related to its
corresponding frame due to the constant motion of a
video – while Multi30k is a collection of static images,
that is, each sentence has a single image that is seman-
tically aligned with the sentence (the sentence is a de-
scription of the image). As a consequence, multimodal
machine translation using How2 is considerably more
difficult compared to multimodal machine translation
using Multi30k.
Further, another pertinent challenge is to make the
VTLM model work under these circumstances. As
VTLM has as input the translation pairs and projected
region features, it requires a three-way parallel multi-
modal corpus. Therefore, we use the How2 corpus with
aligned English-Portuguese-Visual information.
In this context, it was necessary to have object features
and English and Portuguese texts. The video frames
from How2 and their corresponding bilingual subtitles
were made available by Sanabria et al. (2018), so the
next step was the feature extraction. This process is
illustrated in Figure 3.
As there were between two to fifteen frames corre-
sponding to a single caption, we had to select only one
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Figure 1: VTLM architecture from (Caglayan et al., 2021).

Figure 2: How2 example from (Sanabria et al., 2018).

Figure 3: Pre-processing steps

of them – a single image – to perform the feature ex-
traction. Therefore, for each video segment, the mid-
dle frame was selected and convolutional feature maps
were extracted from the 36 most reliable regions using
the Faster R-CNN model (Ren et al., 2015) pre-trained
on the Open Images dataset (Kuznetsova et al., 2020).

Finally, each feature map was average pooled to obtain
a region-specific feature vector (Caglayan et al., 2021).
To perform feature extraction, we split the images so
that it would be possible to carry out this process on
different machines, in order to speed it up.1

1We used the Google Cloud Platform c2-standard-8 vir-
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The next step was the bilingual and multimodal align-
ment, that is, the features obtained in the feature extrac-
tion process were associated with their corresponding
English and Portuguese texts. Furthermore, we devel-
oped a script to disregard features that could be cor-
rupted as VTLM does not support non-existent or non-
loadable features. Thus, after identifying all valid fea-
tures, the training, testing and validation sets of How2
were modified in order to eliminate the segments that
had corrupted features.
We also used the MOSES scripts2 to preprocess the
dataset and then we applied byte pair encoding (BPE)
(Sennrich et al., 2016) to convert tokens into subwords.
After pre-processing, we changed the VTLM pre-
training, fine-tuning and decoding scripts in order
to adapt VTLM to the Portuguese language, making
Portuguese-English the default language pair. As a re-
sult, it was possible for the projected region features
and the English-Portuguese translation pairs to be pro-
cessed in a single stream by the VTLM model.

4. Experiments
The experimentation was performed following the
same steps of (Caglayan et al., 2021).

4.1. Pre-training
For pre-training, we used a set from the How2 corpus
that contains 155k features and their corresponding text
in English and Portuguese. The pre-training was con-
ducted for 690 epochs, using a single NVIDIA GeForce
GTX 1070 GPU, and best checkpoints were selected
with respect to validation set accuracy. It took about
four days and four hours to finish pre-training.
Similar to the original VTLM settings (Caglayan et al.,
2021), we set the model dimension to 512, the feed-
forward layer dimension to 2048, the number of layers
to 6 and the number of attention heads to 8. Moreover,
the model parameters are also randomly initialised and
we used Adam (Kingma and Ba, 2014) with the mini-
batch size set to 32 and the learning rate set to 0.0001.
The dropout (Srivastava et al., 2014) rate was set to 0.1
in all layers.

4.2. Fine-tuning
The encoder and the decoder of Transformer-based
MMT and NMT models are initialized with weights
from VTLM, and fine-tuned with a smaller learning
rate. The fine-tuning was conducted for 54 epochs for
the MMT model and 84 epochs for the NMT model.
The same hyperparameters as the pre-training phase
were used, except for the batch size and the learning
rate, which were decreased to 16 and 1e-5, respectively.

tual machine, with 8 CPUs and 32 GB RAM, and a local ma-
chine equipped with an NVIDIA GeForce GTX 1070 GPU, 8
CPUs and 16 GB RAM. Even so, the feature extraction pro-
cess took approximately 600 hours.

2https://github.com/moses-smt/mosesdecoder

For evaluation, we used the models with the lowest val-
idation set perplexity to decode translations with beam
size equal to 8.

4.3. Baselines
An equivalent process was performed with a TLM
model. The TLM architecture corresponds to the
VTLM architecture (3.1) without regional image fea-
tures. Pre-training was conducted for 553 epochs us-
ing the same settings as VTLM, apart from the batch
size that was decreased to 16, and fine-tuning was con-
ducted for 61 epochs for the MMT model and 103
epochs for the NMT model.
For comparison, we also trained from scratch models
without transferring weights from the pre-trained TLM
or VTLM models. These models were trained only on
the MT dataset and the training was conducted for 190
epochs for the MMT model and 225 epochs for the
NMT model.

5. Results
The trained models were evaluated for the multimodal
machine translation (MMT) and neural machine trans-
lation (NMT) tasks. Table 1 shows BLEU and ME-
TEOR scores across valid and test sets of How2. It
is important to highlight that METEOR is the offi-
cial metric for MMT; it was the metric used in the
WMT competition (2016-2018) for multimodal ma-
chine translation task.
Similar to the original proposal (Caglayan et al., 2021),
the results show the impact of cross-lingual visual pre-
training on the final performance. The MMT model
outperforms the MMT baseline by approximately 14
BLEU and 14 METEOR points when fine-tuned for
multimodal machine translation.
Moreover, for the models trained from scratch (Base-
line Transformers), MMT is inferior to NMT by about
5 BLEU and 7 METEOR points, but when pre-trained
TLM/VTLM checkpoints are fine-tuned for MT, the
difference between the MMT and NMT models scores
diminishes or becomes non-existent.
Compared to the best results obtained by Caglayan et
al. (2021) with German-English VTLM – 44.0 BLEU
and 61.3 METEOR on the Multi30k test set for the
MMT task – we achieved higher scores for Portuguese-
English VTLM – 51.8 BLEU and 78.04 METEOR on
the How2 test set for the MMT task. However, it is
important to point out that a direct comparison is not
possible here due to language and corpus differences.

5.1. Qualitative Analysis
Some examples of texts translated by each model are
presented in Table 2.
In the first case, the MMT baseline misses the trans-
lation of the source words “consulting” and “Coral
Gables”, while both VTLM and TLM translate them
correctly, obtaining a better performance (about 80
BLEU points above the baseline). This indicates the



924

Test Valid
BLEU METEOR BLEU METEOR

Baseline Transformers MMT 37.57 63.51 38.34 63.60
NMT 43.58 70.62 43.28 70.18

TLM: Pre-train and fine-tune on How2 MMT 51.99 77.52 52.19 77.87
NMT 50.61 77.67 50.72 78.01

VTLM: Pre-train and fine-tune on How2 MMT 51.80 78.04 52.44 78.25
NMT 52.20 78.20 52.81 78.70

Table 1: BLEU and METEOR values for baseline transformers (text only), TLM (text only) and VTLM (text and
image) for NMT and MMT tasks.

efficacy of pre-training on the performance of the mod-
els.
In the second example, the difference between VTLM
and TLM scores is greater. VTLM reaches a BLEU
score of 100.0 and TLM obtains a BLEU score of 37.8,
mostly due to the incorrect translation of the words
“brown” and “whole”. Therefore, we observe that the
regional visual features can help the model understand
the context, resulting in a more accurate translation.
In the third case, the image has extra objects disassoci-
ated with the sentence, such as the hand and other com-
ponents in the screen. As a result, the image can bring
irrelevant information to the text, which may introduce
noise and affect the translation quality. The translation
of the VTLM model illustrates this possible disadvan-
tage, as the model performs worse than the TLM model
by about 19 BLEU points.
Furthermore, in the fourth example, none of the mod-
els accurately translated the source text. The underly-
ing reason is that the word “grooming” in the reference
sentence only appears a few times in the training set (25
times in a set of 3,304,534 tokens). Nevertheless, there
is a gap between the translations of the three models.
For example, the translation of the TLM model shows
a greater degree of inaccuracy compared to the transla-
tion of the VTLM model, and the result of the baseline
is “What kind of treatment our horse likes this horse.”,
which is farther away from the correct result.

6. Conclusion
We present the work performed with VTLM (Visual
Translation Language Modelling) to test its general-
ization ability for other languages and corpora. Un-
like previous studies, we did not apply the widely used
Multi30k dataset. Instead, we used the multimodal
and multilingual corpus How2 in order to focus on
the Brazilian Portuguese language – which is a low-
resource language that has little attention in the current
landscape of multimodal translation – and introduce a
more challenging scenario, where the text associated
with each image/video frame is not a simple descrip-
tion of it, but a subtitle that may not be related to its
corresponding frame.
We applied the necessary pre-processing steps on the
corpus so that it could be used to investigate the ef-

fectiveness of the model for a new language pair. We
also compared the performance of the trained models
to some baselines and showed the impact of adding the
visual modality alongside the translation pairs by an-
alyzing a few differences between the translations ob-
tained by each model.
On multimodal machine translation, we reassert the ef-
ficacy of cross-lingual visual pretraining. Our trained
model reached a BLEU score of 51.8 and a METEOR
score of 78.0 on the Portuguese-English How2 test set,
outperforming the MMT baseline by about 14 BLEU
and 14 METEOR. We also reported higher scores in
comparison to the original English-German VTLM, es-
tablishing suitability of the model to this new language
pair and indicating a generalization ability for other
languages. In addition, the good performance of the
model showed that it can overcome the additional chal-
lenges that come with using a corpus that is a collection
of videos (not images).
The main contributions of this work are: (i) the gen-
eration of new linguistic-computational resources for
Brazilian Portuguese, processing scripts and the pro-
cessed corpus/database generated for the experiments;
(ii) the adaptation of VTLM to a new language pair
and to more challenging circumstances in relation to
the image-text relationship, as well as (iii) the relevant
results of the experimentation. The source code is pub-
licly available3. We expect this work can encourage
the development of multimodal cross-lingual language
models for low-resource languages.
In future work, we plan to incorporate a selecting
method to remove irrelevant parts of the image fea-
tures, as well as explore the impact of variability across
languages to achieve a better comprehension of multi-
modality in language processing.
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Source: Consultoria de imagem e etiqueta em Coral Gables, Flórida.
Reference: Image and Etiquette Consulting in Coral Gables, Florida.

Baseline: Image and Etiquette Etiquette ette: Florida,
Florida. 17.57 BLEU

TLM: Image and Etiquette Consulting in Coral Gables,
Florida. 100.0 BLEU

VTLM: Image and Etiquette Consulting in Coral Gables,
Florida. 100.0 BLEU

Source: E então algo como arroz integral ou pão de trigo integral.
Reference: And then something like brown rice or whole wheat bread.

Baseline: And then something like full rice or full trigger. 29.38 BLEU
TLM: And then something like full rice or full wheat
bread. 37.82 BLEU

VTLM: And then something like brown rice or whole
wheat bread. 100.0 BLEU

Source: E você pode usar quantas dessas faixas de bateria dentro da
sua janela de arranjos lógicos.
Reference: And you can use as many of these drum tracks within your
logic arrange window.

Baseline: And you can use how many of these drum
tracks inside your clock window. 42.83 BLEU

TLM: And you can use as many of these drum tracks
within your logic arrange window. 100.0 BLEU

VTLM: And you can use as many of these drum tracks
within your logic plugs. 81.07 BLEU

Source: Que tipo de tratamento o vosso cavalo gosta.
Reference: The kind of grooming that your horse likes.

Baseline: What kind of treatment our horse likes this
horse. 6.67 BLEU

TLM: What kind of treatment our horse likes. 15.25 BLEU
VTLM: What kind of treatment your horse likes. 36.28 BLEU

Table 2: Translation examples of different MMT models: MMT Baseline Transformer, TLM and VTLM.
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