@inproceedings{roccabruna-etal-2022-multi,
title = "Multi-source Multi-domain Sentiment Analysis with {BERT}-based Models",
author = "Roccabruna, Gabriel and
Azzolin, Steve and
Riccardi, Giuseppe",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.lrec-1.62/",
pages = "581--589",
abstract = "Sentiment analysis is one of the most widely studied tasks in natural language processing. While BERT-based models have achieved state-of-the-art results in this task, little attention has been given to its performance variability across class labels, multi-source and multi-domain corpora. In this paper, we present an improved state-of-the-art and comparatively evaluate BERT-based models for sentiment analysis on Italian corpora. The proposed model is evaluated over eight sentiment analysis corpora from different domains (social media, finance, e-commerce, health, travel) and sources (Twitter, YouTube, Facebook, Amazon, Tripadvisor, Opera and Personal Healthcare Agent) on the prediction of positive, negative and neutral classes. Our findings suggest that BERT-based models are confident in predicting positive and negative examples but not as much with neutral examples. We release the sentiment analysis model as well as a newly financial domain sentiment corpus."
}
Markdown (Informal)
[Multi-source Multi-domain Sentiment Analysis with BERT-based Models](https://preview.aclanthology.org/fix-sig-urls/2022.lrec-1.62/) (Roccabruna et al., LREC 2022)
ACL