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Abstract
As vision processing and natural language processing continue to advance, there is increasing interest in multimodal applica-
tions, such as image retrieval, caption generation, and human-robot interaction. These tasks require close alignment between
the information in the images or video and text. In this paper, we present a new semantic labeling method that combines
state-of-the-art semantic annotation for language with the bounding boxes of corresponding images. This richer multimodal
labeling supports cross-modal inference for applications in which such alignment is useful. Our semantic representations,
developed in the natural language processing community, abstract away from the surface structure of the sentence, focusing on
specific actions and the roles of their participants. This level of abstraction maps well to the objects, actions, and relationships
visible in images. We utilize these representations in the form of semantic role labels in the captions and the images and
demonstrate improvements in standard tasks such as image retrieval. The potential contributions of these additional labels is
evaluated using a role-aware retrieval system based on graph convolutional and recurrent neural networks. The addition of
semantic roles into this system provides a significant increase in capability and greater flexibility for these tasks, and could be
extended to state-of-the-art techniques relying on transformers with larger amounts of annotated data.

Keywords: cross-modal retrieval, semantic role labeling,

1. Introduction
Vision processing is making exciting advances and per-
formance is rapidly improving for tasks such as caption
generation, question answering and retrieval. In paral-
lel, NLP is making corresponding advances, fueled by
both vector representations and rich semantic represen-
tations (Wang et al., 2021). In this paper, we explore
the benefits of combining the rich semantic represen-
tations of NLP with image bounding boxes. A con-
gruent description of an image should be semantically
grounded by the objects presented in the image. There-
fore composing a concise image description requires
focusing on a few contextually salient entities, proper-
ties, or events, instead of being exhaustive. For exam-
ple, in Figure 1, the example captions focus on the man.
However, a description that focused on the rifle or on
the dog would be equally valid. Currently, image re-
trieval systems can retrieve relevant results for diverse
input, but they do not provide a way to intentionally
inject variety into the search results by specifying a de-
sired focus.
Semantic role labeling (SRL) (Palmer et al., 2005) is
a form of semantic parsing developed for natural lan-
guage processing that conveys knowledge about who is
doing what to whom when as predicate-argument struc-
tures. In other words, given an action in a sentence,
one needs to know who is performing the action (the
agent), who is affected by the action (the patient), what
instrument is being used, etc. to comprehend the mean-
ing of the sentence. In the different reference captions
of Figure 1, different actions are performed (aiming,
standing, shooting, and holding), and different objects
fulfill different roles in that action.

Agent

Temporal

Retrieved Description:
[The man] Agent is aiming to shoot
[something] Patient [while his dog
watches] Temporal

AgentPatient

Temporal

Retrieved Description:
[A man] Agent shoots [a ri-
fle] Patient [while a dog looks
on] Temporal

AgentPatient

Manner

Retrieved Description:
[A man] Agent aiming [a ri-
fle] Patient [with a dog standing
beside him] Manner

Figure 1: Semantic role aware text retrieval by RARE.
Each query image, on the right, has different associated
SRL annotations for each bounding box. Retrieved
captions match the SRL structure of the image annota-
tions and demonstrate the variety of descriptive choices
that can be made for the same image. This example
focuses on differences between the Patient, Temporal,
and Manner roles. Agent represents the instigator of
an action. Patient is the object affected by the action.
Temporal indicates a temporal relationship, i.e. when
is the action occurring, what is happening at the same
time. Manner is the manner in which the action is per-
formed. A full legend of SRLs is provided in Table 1
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Typical image-text retrieval systems use image features
and word-embedding features as input representations.
If only word features are considered, ignoring the or-
der of the words, the sentences ‘the dog chased the cat’
and ‘the cat chased the dog’ will retrieve similar results.
Semantic roles distinguish between who is the chaser
and what is being chased. Word order is not always
helpful in semantic decoding. For example ‘I gave the
book to John’ vs. ‘I gave John the book’ are semanti-
cally equivalent. SRL provides information about the
semantic roles regardless of word order.
In this paper, we enhance image-text retrieval using
SRL. We train a model to recognise pairs of SRL an-
notated text and image bounding boxes. At test time,
by encoding the SRL relationships in the query, the re-
sult becomes sensitive to the desired semantic struc-
ture. Refer to Figure 1, where SRL components are
explained, and a demonstration of how different SRL
inputs result in different retrieved captions is provided.
In the first query image, the rifle was unlabeled, and
hence ignored by the caption retrieval. However, in the
second query image, the rifle was marked with the se-
mantic role patient. The retrieved caption for the
second query not only mentioned the rifle, but also la-
beled it with the same semantic role. The semantic
annotations for the dog in the first two query images
were temporal. The corresponding retrieved cap-
tions possess a temporal connotation associated with
the presence of the dog. However, the final query im-
age had a semantic focus on the presence of the dog as
a manner, as did the retrieved caption. The retrieved
captions corroborated the image’s annotation.
The novelty of this work is demonstrating the poten-
tial for semantic roles to contribute to multi-modal re-
trieval. As automated image SRL labeling is still an ac-
tive field of research, we use Gold Standard image SRL
and automatic text SRL. We create SRL annotated data
using the Flickr30k Entity dataset (Young et al., 2014;
Plummer et al., 2017). This dataset maps entity men-
tions in the reference descriptions to image bounding
boxes. We obtain the SRL for the descriptions using an
automatic SRL system (Gung and Palmer, 2021). Us-
ing entity mention mapping, we transfer the text SRL
annotations to the corresponding bounding boxes.
We call our method role aware retrieval system
(RARE). We compare RARE retrieval to other image-
text retrieval models. In comparison to other non-
transformer-based models, RARE improves retrieval
results by 13.7% in an image-text retrieval task.
For text-image retrieval, RARE comes in second to
ACMM (Huang and Wang, 2019). Our qualitative re-
sults show that when mismatches among query and re-
trieved results occur our model still preserves shared
semantics. Transformer-based methods are the cur-
rent state-of-the-art and our performance is lower than
theirs. Nonetheless our method demonstrates the po-
tential of semantic roles, thereby providing encourag-
ing evidence for benefits to be accrued via their incor-

poration. To summarize, the main contributions of the
current work are:

• We use semantic parsing based on semantic roles to
enhance image and text representations in a shared
semantic space.

• We demonstrate that semantic role labeling infor-
mation can be used effectively as a control signal to
retrieve specific text captions from amongst diverse
descriptions for the same image.

2. Related Work
Semantic roles, described in Section 3, provide a
predicate-argument structure representation of a sen-
tence that abstracts away from syntactic variations.
Early methods of automatic semantic role labeling re-
lied heavily on syntactic parsing (Pradhan et al. (2005;
Punyakanok et al. (2008; Hacioglu et al. (2004)).
The first end-to-end deep neural network SRL system
to report state of the art performance was authored
by (Zhou and Xu, 2015). Their approach did not in-
corporate structural constraints of SRLs. (He et al.,
2017) gained improvement over (Zhou and Xu, 2015)
by introducing several modifications including high-
way LSTMs and structural constraints. Current ap-
proaches for SRL use transformers (Tan et al., 2017;
Strubell et al., 2018).
The goal of cross-modal retrieval is to match natu-
ral language descriptions to images; this is frequently
achieved by learning a latent embedding space where
related images and text representations that are more
similar than those of dissimilar images and text are
closer to one another under some distance metric.
Early work (Socher and Fei-Fei, 2010; Hodosh et al.,
2013; Gong et al., 2014; Yan and Mikolajczyk, 2015;
Andrew et al., 2013) aligned the two representations
in latent space using Canonical Correlation Analysis
(CCA) (Hotelling, 1936). CCA learns linear projec-
tions that maximize the correlation between projected
vectors from the two modalities.
Driven by success in deep learning, neural network-
based approaches have been deployed to learn the rep-
resentations in the latent space. (Chen et al., 2020a)
provide an excellent review of recent deep learning
based methods. These neural network architectures
generally were two-branched, with each branch ded-
icated to learning a representation for one modality
(Faghri et al., 2018; Ma et al., 2015; Wang et al.,
2018). In Wang et al. (Wang et al. (2016; Wang
et al. (2018)), a bi-directional ranking loss (a hinge-
based triplet ranking) (Karpathy and Fei-Fei, 2017)
with neighborhood-preserving constraints was used to
train the model. A hinge-based triplet ranking loss
(Karpathy et al. (2014; Karpathy and Fei-Fei (2017)) is
designed to force relevant image-text pairs to be closer
in shared space than irrelevant pairs by a fixed mar-
gin. Phrase alignment was learned on corresponding
pairs of image regions and phrases, as a separate task.
The aforesaid methods calculated the loss by summing
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hinges over all negative samples. (Faghri et al., 2018)
showed that the maximum of hinges could outperform
the sum of hinges as a loss function, and many recent
techniques (Lee et al., 2018; Liu et al., 2019a; Li et al.,
2019) use this loss function.
Attention is a major development in deep learning, es-
pecially in language applications. Notably for image-
text matching, it has improved phrase-region align-
ment Nam et al. (2017; Fan and Zhou (2018; Lee et al.
(2018; Liu et al. (2019a). Correspondences between
image regions and text tokens are learned by attending
to regions with respect to text or attending to text with
respect to regions. However, attention models lack the
ability to discriminate irrelevant fragments from rele-
vant fragments. Thus they learn to distribute atten-
tion over all fragments, which can lead to misalign-
ment. Recent approaches addressed this issue by either
putting a relevance function (Liu et al., 2019a) or stack-
ing attention layers (Lee et al. (2018; Fan and Zhou
(2018)). However transformer(Vaswani et al., 2017)
based systems are current state of the art (Chen et al.,
2020b; Ren et al., 2021). The transformers’ success
in learning rich semantic and structural information
from large, unlabelled data sources in a self-supervised
manner and their ability to transfer learning from pre-
trained tasks to fine-tuned tasks make them a potential
DNN architecture for vision and language tasks. Like
their NLP counterparts these cross modal transformer
models are also pre-trained via masked language mod-
eling, masked region classification, and alignment.
However explicit semantic labels of images and text
have not been explored much in the context of image-
text matching. (Karpathy et al., 2014) used depen-
dency parsing to express sentence fragments. (Socher
et al., 2014) proposed a dependency-based RNN; in
that work, word representations were created from the
RNN following the latent hierarchy induced by the de-
pendency parser. However, dependency parses are syn-
tactic, not semantic parses. Some work (Li et al., 2019;
Wang et al., 2020b; Wu et al., 2018) explores encod-
ing images in a semantic graph. To the best of our
knowledge, only (Wang et al., 2020b) incorporates se-
mantics in both the images and text domains. More-
over representing images and text with similar seman-
tic labels has not been explored. In this work, we use
SRL (Palmer et al., 2005) as our semantic cues for both
images and text. Semantic roles enable richer repre-
sentation of an image and the corresponding text in the
shared space. As a result, our model achieves superior
performance on retrieval tasks.

3. Approach
Figure 2 depicts an overview of the RARE approach.
The input consists of an image-text pair, annotated with
semantic roles. We use a graph convolutional net-
work to encode semantic relations among image re-
gions. Following the idea of BFAN (Liu et al., 2019a),
we use focal attention to align the text and visual fea-

tures. Finally, two scores are computed to measure the
input similarity. In the following sections, we will de-
scribe modules of our network in detail.

Image representation Following the method de-
scribed in (Anderson et al., 2018) an image repre-
sentation is created using Faster RCNN (Ren et al.,
2015) pre-trained on Visual Genome (Krishna et al.,
2017). An image can be represented by a set of re-
gion vectors R = {r1, r2, ..., rn} detected by Faster
RCNN. The representation, ri, for each region is de-
rived from the mean-pooled convolutional feature for
that region. In our experiments, the Faster RCNN fea-
ture is 2048 dimensional and n = 36; the top 36 re-
gions with the highest class detection confidence scores
are selected as the image features. To save computation
we pre-computed Faster RCNN features and used them
in RARE.

Semantic Role Labels The semantic role label of a
word is determined with respect to a specific verb or
predicate in the sentence. Table1 provides definitions
for the most commonly used SRLs in Flickr30k. If
there is more than one predicate in the sentence, there
will be more than one set of SRL annotations, one
for each predicate. For example, the sentence “a man
shoots a rifle while a dog looks on” has two predicates,
one focused on the verb “shoots” and one focused on
“looks on”. The agent SRL of “shoots” is “man”. The
agent SRL of “looks on” is “dog”. Each set of SRL
annotations for one predicate is called a proposition.
Different bounding boxes are salient with respect to
each SRL proposition. More formally consider an
image-text pair is given by (I, T ). Image I is rep-
resented by region set R. The caption sentence T
consists of tokens < t1, t2, .., tk >. With respect to
the j-th predicate, each token is labeled with a SRL
< sj1, s

j
2, ..., s

j
k >. The image regions are also assigned

SRLs with respect to the j-th predicate, lj1, l
j
2, ..., l

j
n. A

data-point is created as a quadruplet of regions, region-
labels, tokens, and token-labels, (R,Lj , T, Sj). Dur-
ing training each quadruplet is considered as a separate
training sample. At the time of inference, a similar-
ity score over all the quadruplets for an image-sentence
pair is summed.
An embedding layer is used to encode the SRL in the
visual input. We use a semantic role vocabulary estab-
lished by enumerating over all the SRLs in the train-
ing set. The most frequent labels are listed in Table
1. Every region extracted from Faster RCNN is anno-
tated with a semantic role. To accomplish this we used
the SRL annotation of ground truth bounding boxes
and transferred them to Faster RCNN bounding boxes
based on a intersection over union (IoU) threshold. To
create a joint region-SRL representation, region vectors
are passed through a fully connected layer and concate-
nated with the SRL embeddings. This combined repre-
sentation is projected in the hidden space via a fully
connected layer. We use a visual SRL embedding di-
mension of 512 and the fully connected layer has di-
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Figure 2: Overview of RARE. A preprocessing step annotates the text SRL automatically and transfers the gener-
ated SRL to entity bounding boxes. In the first step of the pipeline, the image and SRL annotated bounding boxes
are fed to a fully connected layer and an embedding layer. Tokens and SRL for text descriptions are also processed
with embedding layers. After embeddings are computed, the region relationship reasoning module takes the image
vectors and creates a graph. For text, a bi-directional GRU is used as text encoder. Finally, the encoded image
representation and text representation are input to focal attention.

mension of 512, resulting in a concatenated vector of
dimension 1024.
For joint text-SRL representations, token embeddings
are concatenated with SRL embeddings. This embed-
ding layer is separate from the image-SRL embedding
as the text annotation is over spans. We used BIO tag-
ging to annotate text spans with SRL (He et al., 2017).
In our experimental model, the text-SRL embedding is
150 dimensional.
A sequence of concatenated vectors for (T, Sj) is pro-
cessed by a gated recurrent unit (GRU) to produce a
proposition representation. In our experimental model,
initial word-embeddings are 300-dimensional and the
dimension of text representation from the bidirectional
GRU is 1024-dimensional.

Region Encoder To capture relationships among re-
gions we used a region relationship reasoning model.
Highlighted by the orange box in Figure 2, the design
of our region encoder is inspired by (Li et al., 2019).
A fully connected graph G = (R,E) is created where
R is a set of regions and E is an edge between regions.
The edge weights are described using an affinity matrix
D. Affinity matrix is computed by projecting region
vectors in a latent space and then computing the inner
product between two regions. A graph convolutional
network (GCN) is applied to this graph to encode the
relationships among the nodes. As suggested in Li et
al., we also have used residual connections to the orig-
inal GCN as

RGCN = (DRWg)Wr +R, (1)

where Wg ∈ Rd×d is a weight matrix for a GCN layer.
Wr ∈ Rd×d is the weight matrix for the residual layer
and D is the affinity matrix of shape n×n. The output,
RGCN , is the relationship enhanced representation for

image regions. RGCN is further processed with a GRU
layer. We take the output at each time-step as the image
representation. For our model dimensions of Wr, Wg

and GRU are 1024.

Focal Attention To curb the problem of semantic
misalignment described in the related works section,
we have used bi-directional focal attention (Liu et al.,
2019a) to align our visual and text representations. To
obtain shared semantics for images and text, the rep-
resentation of one modality is fixed and used to attend
the other modality. We use the term “fragment” to refer
to a single modality’s representation, either an image
region or a text token. Relevant fragments are found
using the attention weights in three stages:

i) Pre-assign Attention. First, the attention score for
each fragment with respect to a fixed representation
from the other modality is initialised by computing co-
sine similarities between fragments and normalizing
them using softmax activation.

Without loss of generality, assume ui denotes a frag-
ment representation for the fixed modality and vj is the
fragment representation for the other domain. Each
weight, wi,j , in the focal attention weight matrix,
WA ∈ Rn×m, is initialized as

wi,j = σ(α
uT
i vj

∥ui∥∥vj∥
), i ∈ [1, ..,m], j ∈ [1, .., n],

(2)
where σ is a softmax function and α is a scaling factor.

ii) Identify relevant fragments. The relevance of a frag-
ment is determined by comparing its attention score
with other fragments. The relevance score, H(wi,j),
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for vj with respect to ui is calculated as:

F (wi,j) =

n∑
t=1

|wi,j − wi,t| × g(wi,j)

H(wi,j) = I(F (wi,j) > 0),

(3)

where g(.) denotes confidence of the fragment being
compared and it is derived as √wi,j . I(.) is an indicator
function.
iii) Reassign attention. Attention scores are re-
calculated as:

w′
i,j =

wi,jH(wi,j)∑n
t=1 wi,tH(wi,t)

, (4)

The attended representation with respect to fixed do-
main fragment ui is obtained by v′i =

∑n
j=1 w

′
i,jvj .

The global relevance of u and v is measured as:

S(u, v) =
1

m

m∑
i=1

D(ui, v
′
i), (5)

where D(.) is Cosine similarity. This method is applied
for both image-to-text and text-to-image direction.

Objective Function Following previous work (Nam
et al., 2017; Lee et al., 2018; Liu et al., 2019a; Li et al.,
2019) we have used a structured ranking loss (Karpathy
et al., 2014; Karpathy and Fei-Fei, 2017) with max-
imum of hinges (Faghri et al., 2018) as the objective
function. Instead of considering all the negatives, this
triplet based loss function will focus on hard negatives.
For a matching pair of image-text (I, T ), loss, L, is
computed as

L = max(δ−SIT +SĪT , 0)+max(δ−SIT +SIT̄ , 0)
(6)

where Ī and T̄ are the hard negatives, and δ is the
margin. For computational efficiency hard negatives
are found within each mini-batch, instead of the entire
training set.

Cross-modal Retrieval At inference time, the query
is divided into its component propositions. Each propo-
sition is used for the retrieval task and generates a sim-
ilarity score for their retrieved candidates. The final
score for a candidate is calculated as the sum of scores
over all propositions.

4. Experiments
4.1. Experimental Set up
Data Preparation. We used the Flickr30k Entities
dataset (Plummer et al., 2017) for all our experiments.
This dataset is built upon the Flickr30k dataset (Young
et al., 2014) which contains 31, 000 images annotated
with five sentences each. In the Entities dataset, each
mention in each sentence is linked to one or more
bounding boxes in the image. We use the training-
validation-test splits provided. Flickr30k does not pro-
vide ground truth SRLs. We generate semantic roles

for Flickr30k entities using automatic SRL parsing on
the gold captions(Gung and Palmer, 2021). The corre-
sponding bounding boxes are marked with the detected
SRL of the text mentions. In our experiments, we auto-
matically associate each bounding box with the image
region with maximum IoU among those detected by the
faster RCNN. The distribution of the most frequent se-
mantic roles in Flickr30k is presented in Table 1. To
evaluate performance of text SRL (Gung and Palmer,
2021) we randomly sampled 500 sentences and divided
them into 5 sets. Each set was then assigned to hu-
man annotators (groups of 2) for manual checking and
correction. Assuming these human corrected SRLs as
gold-SRLs, the overall F1 score of the SRL annotator
was 90.9.
The other standard benchmarking dataset for image-
text matching is MSCOCO (Lin et al., 2014). To
the best of our knowledge, MSCOCO does not have
any mappings between the entity mentions and image
bounding boxes, obviating our use of this data for our
current experiments.
Evaluation. We evaluate our performance based on
Recall@K(K=1, 5, 10) for text-to-image and image-
to-text retrieval tasks. Recall@K is computed as the
proportion of correct images or text segments being re-
trieved among the top K results.
Setting. RARE is trained for 30 epochs with a
0.0002 learning rate for the first 15 epochs and then
the learning rate is decayed by 0.1. We used the Adam
optimizer (Kingma and Ba, 2014). We set the margin
hyper-parameter δ in Equation 6 as 0.2. The best model
over 30 epochs is selected based on the sum of the re-
calls on the validation set. Experiments are conducted
using Nvidia Titan Xp GPUs.1

4.2. Quantitative Results
Comparison with Non-transformer Based Methods
A quantitative comparison with recent approaches on
the Flickr30k Entities benchmark is presented in Ta-
ble 2. While there are many existing cross-modal re-
trieval results, we chose the subset in Table 2 based on
state-of-the-art performance (Huang and Wang, 2019;
Li et al., 2019) and their relatedness to our method (Liu
et al., 2019a; Wang et al., 2020b; Liu et al., 2020).
Transformer-based methods are discussed in the fol-
lowing section. For text-to-image retrieval (a.k.a image
retrieval), RARE has the best R@1 score with a rela-
tive improvement of 13.7% compared to the next best
VSRN model (Li et al., 2019).
For image-to-text retrieval (a.k.a text retrieval) RARE
outperformed all other methods except ACMM (Huang
and Wang, 2019). VSRN is one of the few architectures
that encodes semantics. However, (Li et al., 2019) only
computed global semantic reasoning in image-space,
and not text representation. Syntactic information is
explored in other approaches (Karpathy et al., 2014;

1code can be found at https://github.com/
abhidipbhattacharyya/SRL_aware_ret.

https://github.com/abhidipbhattacharyya/SRL_aware_ret
https://github.com/abhidipbhattacharyya/SRL_aware_ret
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Ground Truth/Retrieved: 
[A young lady wearing blue and
black]_Agent is running [past an orange
cone]_Direction.

Ground Truth/Retrieved: 
[The child in the green one piece
suit]_Agent is walking [past a store
window]_Direction.

Ground Truth/Retrieved: 
[A man]_Agent skis past another man
displaying [paintings]_Patient [in the
snow]_Location.

Ground Truth: 
[A fashionable young woman seated on a
bench]_Agent gazes [into a makeup
mirror]_Direction. 
Retrieved: 
[An elderly man]_Agent sitting on [a
bench]_Instrument [ while reading a
book]_Temporal. 

Ground Truth: 
[A red car]_Agent driving [over a
bridge]_Location. 
Retrieved: 
[A red car]_Agent travels [down the street
]_Direction. 

Ground Truth: 
[A little boy ]_Agent playing
[GameCube]__Patient [at a McDonald
's]_Location. 

Retrieved: 
[The child]_Agent is playing [croquet] _Patient [by
the truck]_Location. 

(a) Correct Image-to-Text Retrievals (b) Incorrect Image-to-Text Retrievals

Figure 3: Image-to-Text retrieval by RARE. For the incorrect retrievals in Fig 3b, either the SRL does not match
the query, or in the case of the bottom right image, the SRL matches but there are incorrectly identified objects.

Role Description of Role Dataset Image to Text Text To Image

N N R@1 N R@1

Agent object which instigates the verb 158969 4690 0.96 4985 0.94
Patient object which is affected by the verb 161841 4187 0.96 5025 0.82
Instrument object which affects the verb 63853 1468 0.89 1967 0.72
Location location of object or action 47866 910 0.85 1482 0.60
Temporal describes time 17458 406 0.93 574 0.67
Direction direction of motion 18933 316 0.84 600 0.50
Manner manner of performing an action 15503 306 0.73 457 0.56
Predication adjunct of an action 3698 74 0.81 101 0.64
Purpose purpose of an action 2999 58 0.85 108 0.48
Companion who an action was done with 1618 47 0.85 55 0.69
Start starting position of action 1705 32 0.81 47 0.53

Table 1: Table summarizes SRL distribution over Flickr30k dataset and performance of RARE for specific SRLs.
N denotes number of occurrences of an SRL in query.

Liu et al., 2020). Text graphs in GSMN (Liu et al.,
2020) use syntactic rather than semantic labels, which
may explain the better performance of RARE on im-
age retrieval. ACMM, the current best performing non-
transformer-based method, uses a more advanced net-
work and memory unit to address less frequent frag-
ments. However, even with a simpler architecture,
RARE outperforms ACMM on image retrieval.

Comparison with Transformer Based Methods
Table 3 represents comparison with recent transformer
based methods. Success of transformers (Devlin et
al., 2019; Liu et al., 2019b) in learning rich seman-
tic and structural information from large, unlabelled
data sources in a self-supervised manner and their abil-

ity to transfer learning from pre-trained tasks to fine-
tuned tasks make them a potential architecture for the
cross modal retrieval task (Ren et al., 2021; Chen et
al., 2020b; Wen et al., 2021; Li et al., 2021). While
these methods have superior performance to RARE on
the standard retrieval task, there are no explicit ways
to control the retrieved results. Moreover transformer
based systems require larger amounts of training data
and more significant computing resources. For exam-
ple, many of these techniques require tens of thousands
of hours of training using clusters of GPUs (Ren et al.,
2021; Wen et al., 2021; Li et al., 2021). We believe
that the current work demonstrates the potential of SRL
in cross-modal retrieval tasks and could easily be ex-
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Model Text to Image Image To Text
R1 R5 R10 R1 R5 R10

PFAN (Wang et al., 2019) 50.4 78.7 86.1 70 91.8 95.1
GVSE (Ren et al., 2016) 50.6 79.8 87.6 68.5 90.9 95.5
BFAN (Liu et al., 2019a) 50.8 78.4 - 68.1 91.4 -
SGM (Wang et al., 2020b) 53.5 79.6 86.8 71.8 91.7 95.5
ACMM (Huang and Wang, 2019) 53.8 79.8 - 85.2 96.7 -
VSRN (Li et al., 2019) 54.7 81.8 88.2 71.3 90.6 96
CVSE (Wang et al., 2020a) 52.9 80.4 87.8 73.5 92.1 95.8
GSMN (Liu et al., 2020) 57.4 82.3 89.0 76.4 94.3 97.3

RARE (ours) 67.8 83.0 88.4 76.3 93.4 96.6

Table 2: Comparison with other approaches on Flickr30k. Results sorted from worst to best R@1 on the Text-to-
Image task. RARE also has second best R@1 performance on the Image-to-Text task.

Model Text to Image Image To Text
R1 R5 R10 R1 R5 R10

RARE (ours) 67.8 83.0 88.4 76.3 93.4 96.6
(Chen et al., 2020b) 76.0 93.4 96.7 85.8 97.8 98.8
(Ren et al., 2021) 76.3 93.3 95.6 88.3 98.6 99.3

Table 3: Comparison with transformer based ap-
proaches on Flickr30k.

tended to use transformer-based features.

Contribution of SRLs Table 1 breaks down the re-
trieval results by SRL. The adherence of SRLs from the
query to those in the retrieved results is better in image-
to-text than text-to-image. We hypothesize that this im-
proved adherence enables the better performance for
image-to-text, as evidenced by the ablation study be-
low. One possible factor accounting for the differ-
ence could be the graph convolutional network we use
for image encoding. Our text encoder, in contrast, is
a bi-directional GRU which may retain less informa-
tion about important global relationships. In addition,
the poorest text-to-image retrievals often involve infre-
quent peripheral event modifiers, like Manner or Pur-
pose. In text these are often quite vague, indicating
fairly implicit, non-concrete referents in the image that
fail to generalize.

Ablation Study To validate each component of
RARE, we present an ablation study in Table 4. We
started with re-implementation of a BFAN-prob based
system (Liu et al., 2019a). In the next model, we add
semantic role encoding to the base system. Introduc-
tion of SRL boosts the performance on R@1 by 1.6%
for text retrieval and 11.7% in image retrieval. Our
final system incorporates the graph-CNN region en-
coder. This brings an additional 2% performance gain
in R@1. In our input ablation study we provide SRL for
the text or image component of the input only. The re-
sults shown in Table 4 confirm that SRL are needed for
both input modalities to improve the alignment. When
presented with SRL information for only one modal-
ity, the system was unable to match the performance of
BFAN-prob based system. In the absence of corrob-

Model Text to Image Image To Text
R1 R5 R10 R1 R5 R10

Model Ablation

BFAN base model 53.5 79.6 73.4 72.6 93 96
+ SRL encodings 65.1 79.8 86.9 74.2 93.1 96.5
+ GCN 67.8 83 88.4 76.3 93.4 96.6

Input Ablation

Image SRL only 40.9 45 58 43.8 76.5 86.3
Text SRL only 36.9 36.9 49 40.8 69.6 80.8
Both 67.8 83 88.4 76.3 93.4 96.6

Table 4: Ablation Studies on Flickr30k showing the ef-
fect of alterations to the network architecture and par-
tial input information on retrieval recall

orating SRL information from the other modality, we
believe the SRLs introduce noise.

4.3. Qualitative Results
The main attraction of RARE is control over the re-
trieved results, which can differ depending on the SRL
provided in the query. A unique feature of RARE is its
ability to inject SRLs in the query and control the re-
trieval result at a fine-granularity for both text-to-image
and image-to-text retrieval. Returning to Figure 1, we
see a simple example of fine-grained text retrieval. In
all three retrievals, the query image is the same, but
the SRLs are different. All retrieved descriptions be-
long to the list of five ground truth descriptions for that
image in Flickr30k, but each of the queries retrieves a
different ground truth description which also matches
the provided SRL.
A text description can contain multiple propositions
and therefore multiple SRL label sets. RARE can also
use multiple sets as part of the query. In Figure 5, the
bounding boxes of the first three images correspond to
three distinct propositions, and all three are used to-
gether to retrieve a description. This 3-part query cor-
rectly retrieves the ground truth caption. When pre-
sented with less annotated information, in Query 2,
the system retrieved a shorter caption accordingly, as
shown in the last image of Figure 5. Similar control
can be exerted in the text-to-image retrieval direction.
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(a) People standing on a rock near a river
  - [People]_Agent standing [on a rock near a river]_Location

Top Retrieved Image

Queries

(b) A woman and her son sitting atop a big rock looking tired
  - [A woman and her son]_Agent sitting [atop a big 
     rock]_Location looking tired
  - [A woman and her son]_Agent sitting atop a big rock looking 
    [tired]_Manner

(c) A boy ties his shoe while a woman carrying straw hats looks 
on atop a rock in front of a body of water
   - [A boy]_Agent ties [his shoe]_Patient [while a woman 
     carrying straw hats looks on atop a rock in front of a body of 
     water]_Temporal
   - ... [a woman]_Agent carrying [straw hats]_Patient ...
   - ... [a woman]_Agent carrying straw hats looks on [atop a
     rock in front of a body of water]_Location

(b)(a) (c)

Figure 4: Fine grained text-to-image retrieval by
RARE. From top to bottom, the descriptions are more
informative, with an increasing number of proposi-
tions. Verbs for each proposition are shown in bold. All
three captions correspond to image (c) in the ground
truth, but the other retrieved images also reflect the
queries.

An example is shown in Figure 4. The query sentences
(a,b,c) have increasingly complex structure. The third,
most precise query, correctly retrieves the ground truth
image, while the other queries retrieve other relevant
top results.
Errors made by RARE are reasonable. Figure 3 de-
picts some examples for text retrieval. Figure 3a shows
examples where the system retrieved the ground truth
caption. Figure 3b depicts the quality of retrieved
captions in unsuccessful retrievals. Despite the mis-
matches, retrieval results for these images are coher-
ent with the query images. Specifically for the bottom
right example, RARE is able to match the semantics
of play and location although it misidentifies the
game.

5. Future Work
A crucial next step is implementation of a fully auto-
matic visual SRL detector for previously unseen im-
ages, to enable multimodal retrieval without human an-
notation. For example, using a visual SRL detector to-
gether with the text SRL parser used in this work, one
could use a dataset which lacks any SRL annotations,
e.g. the MSCOCO dataset, as an additional benchmark
for RARE. To address infrequent SRLs, we will fur-
ther investigate the applicability of a memory network
in RARE. We would also like to explore application of
SRL in more advanced architectures (Liu et al., 2020;
Wehrmann et al., 2020) for richer representations.

6. Conclusion
In this paper, we propose role aware retrieval (RARE)
for cross-modal retrieval. This work demonstrates that

Agent
Patient

Retrieved caption:
A man with glasses is sitting in a chair playing the oboe while a 
man in a purple shirt plays percussion and spectators look on.

Parsed SRLs for retrieved caption:
1. [A  man  with  glasses]_Agent   is  sitting in  [a 
chair]_Instrument  [playing the oboe]_Adverb  [while a man in 
a purple shirt plays percussion and spectators look on]_Temporal

2. [A  man  with  glasses]_Agent   is  sitting in a chair playing 
[the oboe]_Instrument  [while a man in a purple shirt plays 
percussion and spectators look on]_Temporal

3. ... [a man in a purple shirt]_Agent plays 
[percussion]_Patient ...

Query 1

Agent

Instrument

Adverb

Temporal

Instrument

Temporal

Agent

Agent Instrument

Retrieved caption:
A man playing a musical instrument

Parsed SRLs for retrieved caption:
[A  man]_Agent playing [a musical  
instrument]_Instrument

Query 2

Figure 5: Semantic role aware text retrieval by RARE.
In Query 1, RARE uses three sets of SRL annota-
tions on the image as the query. A caption is retrieved
that contains three propositions. In Query 2, a simpler
query on the same image uses a single set of SRL an-
notations. The retrieved caption is likewise simpler and
contains a single proposition.

incorporating semantic role labeling can improve the
performance of cross-modal retrieval. When we eval-
uate RARE on Flickr30k, RARE achieves competi-
tive performance for the image retrieval task against the
best non-transformer based system. Although trans-
former based methods are the current state-of-the-art
for the retrieval task, they do not allow explicit con-
trol signals to diversify their recommendations. The
incorporation of semantic roles into those architectures
could provide that benefit, but will require automatic
annotation of large amounts of silver standard train-
ing data which is one of our goals. Our qualitative re-
sults presented here have shown the potential of RARE
for fine-grained retrieval achieved by injecting seman-
tic role labels into the retrieval query, to guide the re-
trieved caption or image to the desired focus. The se-
mantic roles allow the system to choose more concise
salient descriptions, or alternatively, to retrieve long
complex multi-predicate descriptions. Humans can ef-
fortlessly generate a large variety of descriptions for
images. Now, RARE provides an automated solution
for retrieving more varied and fine-grained retrieval re-
sults.



4952

7. Bibliographical References
Anderson, P., He, X., Buehler, C., Teney, D., Johnson,

M., Gould, S., and Zhang, L. (2018). Bottom-up
and top-down attention for image captioning and vi-
sual question answering.

Andrew, G., Arora, R., Bilmes, J., and Livescu, K.
(2013). Deep canonical correlation analysis. pages
III–1247–III–1255.

Chen, J., Zhang, L., Bai, C., and Kpalma, K. (2020a).
Review of recent deep learning based methods for
image-text retrieval. pages 167–172.

Chen, Y.-C., Li, L., Yu, L., Kholy, A. E., Ahmed, F.,
Gan, Z., Cheng, Y., and Liu, J. (2020b). Uniter:
Universal image-text representation learning. In
ECCV.

Devlin, J., Chang, M., Lee, K., and Toutanova, K.
(2019). BERT: pre-training of deep bidirectional
transformers for language understanding. In Jill
Burstein, et al., editors, Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Min-
neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), pages 4171–4186. Association
for Computational Linguistics.

Faghri, F., Fleet, J. D., Kiros, R. J., and Fidler, S.
(2018). VSE++: Improving visual-semantic embed-
dings with hard negatives.

Fan, H. and Zhou, J. (2018). Stacked latent attention
for multimodal reasoning. pages 1072–1080.

Gong, Y., Ke, Q., Isard, M., and Lazebnik, S. (2014).
A multi-view embedding space for modeling internet
images, tags, and their semantics. 106(2):210–233,
January.

Hacioglu, K., Pradhan, S., Ward, W., Martin, J. H.,
and Jurafsky, D. (2004). Semantic role labeling
by tagging syntactic chunks. In Proceedings of
the Eighth Conference on Computational Natural
Language Learning (CoNLL-2004) at HLT-NAACL
2004, pages 110–113, Boston, Massachusetts, USA,
May 6 - May 7. Association for Computational Lin-
guistics.

He, L., Lee, K., Lewis, M., and Zettlemoyer, L. (2017).
Deep semantic role labeling: What works and what’s
next. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 473–483. Association
for Computational Linguistics.

Hodosh, M., Young, P., and Hockenmaier, J. (2013).
Framing image description as a ranking task: Data,
models and evaluation metrics. 47(1):853–899,
May.

Hotelling, H. (1936). Relations Between Two Sets of
Variates. Biometrika, 28(3-4):321–377, 12.

Huang, Y. and Wang, L. (2019). Acmm: Aligned
cross-modal memory for few-shot image and sen-
tence matching. October.

Karpathy, A. and Fei-Fei, L. (2017). Deep visual-
semantic alignments for generating image descrip-
tions. 39(4):664–676, April.

Karpathy, A., Joulin, A., and Fei-Fei, L. (2014). Deep
fragment embeddings for bidirectional image sen-
tence mapping. pages 1889–1897.

Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. 12.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata,
K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J.,
Shamma, D. A., Bernstein, M. S., and Fei-Fei, L.
(2017). Visual genome: Connecting language and
vision using crowdsourced dense image annotations.
123(1):32–73, May.

Lee, K.-H., Chen, X., Hua, G., Hu, H., and He,
X. (2018). Stacked cross attention for image-text
matching. September.

Li, K., Zhang, Y., Li, K., Li, Y., and Fu, Y. (2019).
Visual semantic reasoning for image-text matching.

Li, W., Gao, C., Niu, G., Xiao, X., Liu, H., Liu,
J., Wu, H., and Wang, H. (2021). UNIMO: To-
wards unified-modal understanding and generation
via cross-modal contrastive learning. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2592–2607,
Online, August. Association for Computational Lin-
guistics.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft COCO: Common objects in context.

Liu, C., Mao, Z., Liu, A.-A., Zhang, T., Wang, B., and
Zhang, Y. (2019a). Focus your attention: A bidirec-
tional focal attention network for image-text match-
ing. page 3–11.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019b). Roberta: A robustly optimized bert pre-
training approach. ArXiv, abs/1907.11692.

Liu, C., Mao, Z., Zhang, T., Xie, H., Wang, B., and
Zhang, Y. (2020). Graph structured network for
image-text matching. pages 10921–10930.

Ma, L., Lu, Z., Shang, L., and Li, H. (2015). Mul-
timodal convolutional neural networks for matching
image and sentence. pages 2623–2631.

Nam, H., Ha, J.-W., and Kim, J. (2017). Dual atten-
tion networks for multimodal reasoning and match-
ing. July.

Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo,
J. C., Hockenmaier, J., and Lazebnik, S. (2017).
Flickr30k entities: Collecting region-to-phrase cor-
respondences for richer image-to-sentence models.
123(1):74–93.

Pradhan, S., Hacioglu, K., Ward, W., Martin, J. H.,
and Jurafsky, D. (2005). Semantic role chunking
combining complementary syntactic views. In Pro-
ceedings of the Ninth Conference on Computational



4953

Natural Language Learning (CoNLL-2005), pages
217–220, Ann Arbor, Michigan, June. Association
for Computational Linguistics.

Punyakanok, V., Roth, D., and Yih, W.-t. (2008).
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Ren, S., He, K., Girshick, R., and Sun, J. (2015).
Faster R-CNN: Towards real-time object detection
with region proposal networks. volume 28, pages
91–99.

Ren, Z., Jin, H., Lin, Z., Fang, C., and Yuille, A.
(2016). Joint image-text representation by gaussian
visual-semantic embedding. page 207–211.

Ren, S., Lin, J., Zhao, G., Men, R., Yang, A., Zhou,
J., Sun, X., and Yang, H. (2021). Learning rela-
tion alignment for calibrated cross-modal retrieval.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
514–524, Online, August. Association for Computa-
tional Linguistics.

Socher, R. and Fei-Fei, L. (2010). Connecting modal-
ities: Semi-supervised segmentation and annotation
of images using unaligned text corpora. pages 966–
973.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D.,
and Ng, A. Y. (2014). Grounded compositional se-
mantics for finding and describing images with sen-
tences. 2:207–218.

Strubell, E., Verga, P., Andor, D., Weiss, D., and
McCallum, A. (2018). Linguistically-informed
self-attention for semantic role labeling. CoRR,
abs/1804.08199.

Tan, Z., Wang, M., Xie, J., Chen, Y., and Shi,
X. (2017). Deep semantic role labeling with self-
attention. CoRR, abs/1712.01586.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polo-
sukhin, I. (2017). Attention is all you need. In
I. Guyon, et al., editors, Advances in Neural Infor-
mation Processing Systems 30, pages 5998–6008.
Curran Associates, Inc.

Wang, L., Li, Y., and Lazebnik, S. (2016). Learning
deep structure-preserving image-text embeddings.
pages 5005–5013.

Wang, L., Li, Y., and Lazebnik, S. (2018). Learning
two-branch neural networks for image-text matching
tasks. 41:394–407.

Wang, Y., Yang, H., Qian, X., Ma, L., Lu, J., Li, B., and
Fan, X. (2019). Position focused attention network
for image-text matching. pages 3792–3798, 7.

Wang, H., Zhang, Y., Ji, Z., Pang, Y., and Ma,
L. (2020a). Consensus-aware visual-semantic em-
bedding for image-text matching. pages 18–34.
Springer.

Wang, S., Wang, R., Yao, Z., Shan, S., and Chen,

X. (2020b). Cross-modal scene graph matching for
relationship-aware image-text retrieval. March.

Wang, Q., Li, M., Wang, X., Parulian, N., Han, G., Ma,
J., Tu, J., Lin, Y., Zhang, R. H., Liu, W., Chauhan,
A., Guan, Y., Li, B., Li, R., Song, X., Fung, Y., Ji, H.,
Han, J., Chang, S.-F., Pustejovsky, J., Rah, J., Liem,
D., ELsayed, A., Palmer, M., Voss, C., Schneider, C.,
and Onyshkevych, B. (2021). COVID-19 literature
knowledge graph construction and drug repurposing
report generation. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 66–77,
Online, June. Association for Computational Lin-
guistics.

Wehrmann, J., Kolling, C., and Barros, R. C. (2020).
Adaptive cross-modal embeddings for image-text
alignment. pages 12313–12320. AAAI Press.

Wen, K., Xia, J., Huang, Y., Li, L., Xu, J., and Shao,
J. (2021). Cookie: Contrastive cross-modal knowl-
edge sharing pre-training for vision-language repre-
sentation. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 2188–2197.

Wu, Y., Wang, S., and Huang, Q. (2018). Learning
semantic structure-preserved embeddings for cross-
modal retrieval. page 825–833.

Yan, F. and Mikolajczyk, K. (2015). Deep correlation
for matching images and text. pages 3441–3450,
June.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J.
(2014). From image descriptions to visual denota-
tions: New similarity metrics for semantic inference
over event descriptions. 2:67–78.

Zhou, J. and Xu, W. (2015). End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1127–
1137, Beijing, China, July. Association for Compu-
tational Linguistics.

8. Language Resource References
Gung, J. and Palmer, M. (2021). Predicate represen-

tations and polysemy in verbnet semantic parsing.
In Proceedings of the 14th International Conference
on Computational Semantics (IWCS), pages 51–62,
Groningen, The Netherlands (online), June. Associ-
ation for Computational Linguistics.

He, L., Lee, K., Lewis, M., and Zettlemoyer, L. (2017).
Deep semantic role labeling: What works and what’s
next. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 473–483, Vancouver,
Canada, July. Association for Computational Lin-
guistics.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The



4954

proposition bank: An annotated corpus of semantic
roles. 31(1):71–106, March.


	Introduction
	Related Work
	Approach
	Experiments
	Experimental Set up
	Quantitative Results
	Qualitative Results

	Future Work
	Conclusion
	Bibliographical References
	Language Resource References

