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Abstract
This paper presents a new handwritten dataset, Cyrillic-MNIST, a Cyrillic version of the MNIST dataset, comprising of 121,234
samples of 42 Cyrillic letters. The performance of Cyrillic-MNIST is evaluated using standard deep learning approaches and
is compared to the Extended MNIST (EMNIST) dataset. The dataset is available at https://github.com/bolattleubayev/cmnist
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1. Introduction
Optical Character Recognition (OCR) is the use of
computer vision solutions to distinguish printed or
handwritten characters in digital images of either
scanned documents or photos. Once a text is recog-
nized and converted into American Standard Code for
Information Interchange (ASCII), it can be edited or
searched as if it was created in a word processor. OCR
is a language-specific problem, thus the state of the art
in one language does not imply that there exists any
working usable solution in another. Many languages
have their datasets for the use by the researchers in
computer vision to advance the field. For example, the
Modified National Institute of Standards and Technol-
ogy (MNIST) dataset (LeCun et al., 1998) has become
a standard benchmark for learning, classification and
computer vision systems. An extension of the MNIST,
the Extended MNIST (EMNIST) dataset contains dig-
its, uppercase and lowercase handwritten letters of En-
glish (Cohen et al., 2017). Other examples of handwrit-
ten datasets are CASIA (Liu et al., 2011) for Chinese,
CMATERdb (Das et al., 2014) for Bangla and Arabic,
and HODA (Khosravi and Kabir, 2007) for Farsi.
Unfortunately, there is no such data for the handwritten
Cyrillic script. According to Iliev (2013), there exist
112 languages that use or have used the Cyrillic alpha-
bet. Currently 0.3 billion people, which is 4% of the
world’s population use the Cyrillic alphabet on a daily
basis (WorldStandards, 2020). It is used exclusively
for several languages including Russian, Belorussian,
Ukrainian, Bulgarian, Kazakh, Kyrgyz, Macedonian,
Serbian, Tajik, Turkmen, Uzbek and others. Originally
Cyrillic alphabet comprised of 43 letters in addition to
modified and combined Greek and Hebrew letters (in
the case of the Cyrillic letters for ts, sh, and ch) (Britan-
nica, 2019). The modern Cyrillic alphabets have fewer
letters than the original Cyrillic: Russian language has
33 letters, Bulgarian - 30, Serbian - 30, Ukranian - 33.
Modern Russian Cyrillic has also been adapted to many
non-Slavic languages with an addition of special let-
ters.
OCR has numerous use cases ranging from postcard
address recognition (Palumbo et al., 1992) to automatic

license plate recognition in modern traffic control sys-
tems (Du et al., 2012; Draghici, 1997). OCR has al-
lowed to efficiently exploit the content of low qual-
ity historical documents by digitizing them across the
globe (Gatos et al., 2004; Kusetogullari et al., 2019).
Gordienko et al. (2018) used OCR for the recognition
of the historical writings carved in stone on the walls
of St. Sophia cathedral in Kyiv (Ukraine).
The work detailed in this paper aims to create the first
dataset for the Cyrillic-based languages. The closest
dataset is the Cyrillic Oriented MNIST (CoMNIST)
(Vial, 2019), which was the first and only attempt to
create a dataset for machine learning. However, let-
ters were drawn digitally by using either a computer
mouse or a finger on a touch screen by volunteers who
were crowd-sourced through social networks. There
are around 28,000 278x278 samples of these drawings
representing 59 letters (33 Russian of around 15000
samples in total and 26 English letters). Since CoM-
NIST was collected by drawing letters on a screen
rather than handwriting them on a paper, it is inappro-
priate to be included in our dataset. Being native to
Cyrillic script ourselves, we stress the importance of
the dataset being handwritten using cursive script in or-
der to address real-world OCR applications. In contrast
to CoMNIST, our dataset contains samples handwritten
in cursive by the native Cyrillic users that signed con-
sent forms for their data to be publicly available. In
addition, Cyrillic-MNIST has a version that shares the
same image structure and parameters as the original
MNIST dataset allowing for direct compatibility with
all existing classifiers and systems. The creation of the
first handwritten Cyrillic dataset will change the poor
situation with OCR in many Cyrillic-based languages.
MNIST (LeCun et al., 1998) and EMNIST (Cohen et
al., 2017) datasets became standard benchmarks for
tests of various machine learning algorithms. The
MNIST dataset, presented by LeCun et al. (1998), is
comprised of the digits first presented in the NIST Spe-
cial Database 19 (Grother, 1995). The dataset contains
60,000 training and 10,000 test images. The size of
images is 28x28 pixels. In total, there are 10 classes
for every number. Images are well formatted and orga-



nized, which makes the exploration of various classi-
fiers easier (Deng, 2012).

The Extension of MNIST dataset presents a more com-
plex objective of letters and digits classification. In
contrast to MNIST, it contains lowercase and uppercase
letters, as well as digits. The division of the EMNIST
dataset is done in several ways (Cohen et al., 2017):
1) By Page (unprocessed binary scans of handwriting
forms), 2) By Author (separate handwritten characters
separated by their author), 3) By Field (characters sep-
arated and organized according to the field in the form),
4) By Class (symbols are separated by 62 classes [0-9],
[A-Z], [a-z]), and 5) By Merge (some lowercase and
uppercase classes of letters were merged together due
to their similarity comprising a 47-class dataset).

The proposed Cyrillic-MNIST dataset contains
121,234 samples of 42 Cyrillic letters of grayscale
(28x28), binary (28x28) and original RGB images of
various sizes (Mean = 45x42, Min = 24x20, Max =
141x123, Mode = 41x37, SD = 12x10), with 2000
balanced images per letter. In organizing the dataset,
we decided to follow a similar division strategy as
in EMNIST (Cohen et al., 2017) and organized the
dataset in five different forms to fit different possible
purposes of the end users:

1) Russian Balanced: the first type of organization
is a balanced dataset of 33 classes of Russian alpha-
bet. This version contains 2,000 samples in each class
which adds up to 66,000 samples. The distribution of
samples is presented in Figure 1a.

2) Cyrillic Letters Unbalanced: the second type of
organization presents unbalanced version of 42 classes
of extended Cyrillic alphabet. This version contains
all 121, 234 samples. The distribution of samples is
presented in Figure 1b.

3) Cyrillic Letters Balanced: the third type of or-
ganization is a balanced dataset of 42 classes of ex-
tended Cyrillic alphabet. Kazakh alphabet consists of
33 letters of Russian alphabet with additional 9 letters.
The dataset contains 2,000 samples in each class which
adds up to 84,000 samples in the dataset. The distribu-
tion of samples is presented in Figure 1c.

4) Cyrillic Lowercase and Uppercase Unbalanced:
another way to organize the dataset was to split every
class to lowercase and uppercase letters. An interesting
point to note here is that some letters such as һ, ь, and ъ
do not have an uppercase letter, therefore they are only
present in lowercase set. The distribution of samples is
presented in Figure 1d.

5) Cyrillic Merged Unbalanced: due to the fact that
most of the classes have similar lowercase and upper-
case letters, we decided to merge them in one class. Ex-
ceptions were 11 letters: А- , Б- , В- , Г- , Ғ- ,
Д- , Е- , Ё- , З- , Р- , Т- . The distribution
of samples is presented in Figure 1e.

2. Methodology
This section describes our process of data collection
and raw data handling.

2.1. Data collection
The data collection was approved by Nazarbayev Uni-
versity Research Ethics committee. All participants
signed consent forms to agree for the data to be pro-
cessed and published in an open access format. Partic-
ipants were mostly students and staff of the university.
People were recruited via a social media campaign.
Some people sent their handwritten samples by scan-
ning or taking photos of their physically written sheets,
whereas others gave their papers for us to digitise them.
The dataset was collected from more that 100 adult
contributors of different age groups. The resulting
dataset contains over 121,234 samples. Contributors
were asked to write on blank A4 paper as many let-
ters as they want, in return for a chocolate, tea or cof-
fee. Each contributor spent around 20 minutes writ-
ing on empty A4 sheets with a standard pen or pencil.
Therefore, contributions by authors are unbalanced, as
some participants were willing to write more than oth-
ers. Participation was completely voluntary.

2.2. Conversion Process
In order to organize raw data into a dataset, we devel-
oped an automated data handling pipeline. The pro-
cess of data conversion involved classical image pro-
cessing techniques for noise removal and processing of
the data.
To convert raw data to be comparable with the state-
of-the-art OCR results achieved on MNIST dataset of
28x28 pixel binary images, we had to develop a conver-
sion tool. The tool was developed with the preprocess-
ing done for MNIST and EMNIST in mind (Baldomi-
nos et al., 2019). The conversion was done in several
steps. Since original images come in different sizes and
aspect ratios the Region of Interest is converted to bi-
nary image according to a predefined threshold. After-
wards, the image is padded according to its aspect ratio.
Finally, it is being resized to 28x28 binary image.

2.2.1. Raw image preprocessing
Firstly, in order to convert the handwritten form to
binary images, we used Otsu threshold (Otsu, 1979).
Otsu threshold allowed us to better segment letters as
it minimized effects of variable lighting conditions and
paper quality. Then, in order to remove noise, we ap-
plied morphological operations on the resulting binary
images. Those operations were done using OpenCV1

Python library. Finally, in order for the algorithm to
consider letters that contain acutes or separate parts
(e.g. Ё, Й, Ы, i), we expanded the contours of let-
ters using Sobel operator.

1opencv.org/

https://opencv.org/


Figure 1: Distribution of samples in the Cyrillic-MNIST dataset: (a) Russian Balanced Dataset, (b) Unbalanced
Letters Dataset, (c) Balanced Letters Dataset, (d) Unbalanced Cases Dataset, (e) Merged Unbalanced Cases Dataset

2.2.2. Contour finding

We chose to locate letters according to their con-
tours for several reasons. Firstly, this method did not

need training like any machine learning method. Sec-
ondly, letters were of different forms due to individual
handwriting styles of contributors, therefore template



matching would not meet our needs either. Thus, con-
tour finding was the best option at the initial stages of
data handling.
After converting to binary images, contour finding was
performed. This was done using OpenCV function,
findContours(), based on the work of Suzuki and Abe
“Topological structural analysis of digitized binary im-
ages by border following” (Suzuki and others, 1985).
Afterwards, contours were analyzed for their length
and aspect ratio. Contours shorter than certain value
were considered to be noise and discarded. Then, the
coordinates of the found contours were stored for fur-
ther processing.

2.2.3. Cropping
Located letters were then cropped and padded accord-
ing to their aspect ratio so that the resulting image had
a square shape. Then, the square image was resized to
28x28 pixel binary image. This interpolation caused
some of the black pixels turning gray. And, finally, the
images were binarized again using fixed threshold to
eliminate the effect of the interpolation.

3. Experiments
We conducted a series of experiments on three versions
of the images (RBG, grayscale, and binary). Table 1
summarizes the results that are grouped by image color
space.

3.1. Experiments on RGB data
The results from Table 1 clearly demonstrate that
LeNet-like CNN outperforms all the other algorithms.
The best accuracy was demonstrated on 53-class data
suggesting that visual similarities of the letters are im-
portant. Generally, CNN performs better on RGB im-
ages suggesting that converting to grayscale or binary
versions results in losing some information. In con-
trast, classical algorithms perform better on binary im-
ages rather than grayscale with Random Forest that is
competitive with NNs. Thus, we suggest that binary
images might be more suitable in case of computational
restrictions.

3.2. Comparison with the state-of-the-art
OCR results

We selected two standard models (Logistic Regression
and Random Forest) and two neural network archi-
tectures from the cross-comparison table provided by
the MNIST’s authors2. In particular, we compared
784-500-500-2000 network described in Hinton and
Salakhutdinov (2006) and custom CNN similar to
LeNet-5 (LeCun et al., 1998). Table 1 provides the
obtained results.

2yann.lecun.com/exdb/mnist/

3.3. Comparison with EMNIST
In addition, we performed a series of experiments in
order to compare the performance of different types of
dataset organizations. We evaluated the performance
of two machine learning approaches on EMNIST and
Cyrillic-MNIST. The first was, Keras3-based Neural
Network of variable Hidden Layer size and Logistic
Regression from Scikit-learn4 Python libraries. For all
dataset organizations we divided samples randomly to
80% training and 20% test sets. Models used for com-
parison are relatively simple and therefore, do not de-
pict the best performance. Application of more com-
plex, modern classification techniques might increase
accuracy.

3.3.1. Neural Network
In this part we have utilized a single hidden layer with
variable neuron number, between 1,000 and 10,000.
This architecture allowed us to assess the performance
of classifier trained on low level features. We have cho-
sen Keras-based Neural Networks due to its simplicity
of model creation and computational efficiency.
This evaluation was to compare the performance of
NN-based classification on Cyrillic-MNIST Balanced
Letters dataset, which contains 42 classes and 84,000
samples, and EMNIST Letters dataset with 26 classes
and 145,600 samples.
A single layer NN classifier with variable number of
neurons was used to test the performance of CMNIST
against EMNIST. NN performed slightly better on
Cyrillic-MNIST dataset rather than on EMNIST, with
mean accuracy of 92.5% and 91.3% respectively, for
several reasons. The first reason may be that Cyrillic-
MNIST dataset consists of binary images, whereas
EMNIST dataset is comprised of grayscale images. It
is easier for the network to work with binary than with
grayscale images, as a variance of possible feature val-
ues decreases drastically in binary images. Secondly,
we had nearly five times less contributors to the dataset
than there were in EMNIST (Cohen et al., 2017). This
may be the reason of a higher test accuracy of Cyrillic-
MNIST, as variability of handwriting styles is much
lower than that in EMNIST. This limitation will be ad-
dressed by collecting more data reaching the size of the
EMNIST dataset.

3.3.2. Linear Classifier
In order to test dataset organizations further we again
decided to classify Cyrillic-MNIST Balanced Letters
dataset, and EMNIST Letters dataset using linear clas-
sifier, namely Logistic Regression. The performance of
EMNIST is lower than that of Cyrillic-MNIST dataset,
70.88% and 73.02% respectively, this may be due to
higher variance of handwriting styles (i.e. number of
authors) and the binary nature of samples of Cyrillic-
MNIST.

3keras.io
4scikit-learn.org/0.20/

http://yann.lecun.com/exdb/mnist/
https://keras.io/
https://scikit-learn.org/0.20/


Table 1: Experimental Results
2*Image color space 2*Models 42 unbalanced 42 balanced 53 merged 81 upper lower

val test val test val test val test

RGB LeNet 97.49 97.53 96.73 96.79 97.62 97.67 92.61 92.13
4*Gray scale LeNet 97.19 96.81 97.06 96.69 97.51 97.24 92.42 91.84

784-500-500-2000-num cl 96.39 96.16 95.24 95.01 96.55 96.54 91.58 91.19

Logistic Regression 71.76 71.69 72.27 72.25 73.55 74.12 71.55 71.03

Random Forest 91.55 91.55 90.19 90.65 91.74 91.48 85.63 85.86

4*Binary LeNet 96.25 96.19 96.75 95.76 96.71 96.7 89.07 88.57
784-500-500-2000-num cl 96.13 95.97 95.68 95.06 96.2 96.3 88.97 87.83

Logistic Regression 73.76 73.7 73.21 73.02 75.41 75.35 72.15 72.07

Random Forest 94.09 94.22 92.88 93.5 94.04 94.18 87.02 87.06

3.4. Comparison of dataset organizations
To compare and evaluate the difference in perfor-
mance of various organization types of Cyrillic-
MNIST dataset, we firstly utilized Logistic Regression
and several types of neural networks.
Both Cyrillic-MNIST Unbalanced Letters and Cyrillic-
MNIST Balanced Letters datasets perform similarly
on linear classifier. Due to the analogous distribution
of samples by classes and insignificant difference in
number of samples. Whereas, Cyrillic-MNIST Unbal-
anced Cases and Cyrillic-MNIST Unbalanced Merged
Cases have more noticeable difference in performance.
This can be explained by the fact that similar in shape
classes were merged together, and therefore the clas-
sification task became simper. Table 1 displays these
results.
Then, we compared Cyrillic-MNIST Unbalanced Let-
ters and Cyrillic-MNIST Balanced Letters datasets.
Both datasets are comprised of 42 classes, but Cyrillic-
MNIST Unbalanced Letters has 121,234 samples,
whereas Cyrillic-MNIST Balanced Letters has 84,000
samples. As it could be seen from Table 1, Cyrillic-
MNIST Unbalanced Letters and Cyrillic-MNIST Bal-
anced Letters perform similarly well. The change is
relatively small and may be due to the fact that most
of the classes in Cyrillic-MNIST Unbalanced Letters
have about 2,000 samples, and only several classes
have more samples, whereas Cyrillic-MNIST Balanced
Letters has 2,000 samples per every class (see Figure
1).
Another two types of dataset organizations that were
tested on the classifier are Cyrillic-MNIST Unbal-
anced Cases and Cyrillic-MNIST Unbalanced Merged
Cases. Cyrillic-MNIST Unbalanced Cases consists of
81 classes and 121,234 samples, Cyrillic-MNIST Un-
balanced Merged Cases contains the same number of
samples, but divided into 53 classes according to simi-
larity in letter appearance. From the Table 1 we can see
that Cyrillic-MNIST Unbalanced Merged Cases gen-
erally outperforms Cyrillic-MNIST Unbalanced Cases.
The reason for that might be that in Cyrillic-MNIST
Unbalanced Cases some lowercase and uppercase let-

ters are being confused with each other due to simi-
larity in shape, therefore, test accuracy decreases for
Cyrillic-MNIST Unbalanced Cases dataset.

4. Conclusion
This paper presents the first Cyrillic handwritten
dataset organized in 5 ways to fit different purposes of
the end users. As the aim was to follow the format and
structure of the MNIST and EMNIST, Cyrillic-MNIST
dataset can easily be merged and utilized for compar-
ison on various machine learning tasks. The dataset
was collected from adults, and the way the dataset was
collected and handled could be used to other dataset
creation efforts. Apart from the obvious benefit of this
dataset to 112 languages that have used or use Cyrillic-
based alphabets due to off-the-shelf deployment with
no or minor data collection needed (e.g. no letters
for Bulgarian, +1 letters for Belorussian support, +3
for Ukrainian). In addition, there is a high possibility
that our dataset could be used for benchmarking ML
algorithms, for example to evaluate how preprocess-
ing steps affect the performance. Since we provide the
original RGB images of various sizes, it contains noise
due to cropping and real-world computer vision chal-
lenges such as different backgrounds, ink types (black
pen, blue pen, pencil), image quality and resolutions.
This paper also provides the benchmark performance
of different classification techniques on the dataset in
order to compare different types of organization be-
tween each other as well as to compare the Cyrillic-
MNIST dataset with EMNIST Letters. With that being
said, Cyrillic-MNIST can serve as a standalone dataset
as well as an extension of the existing and widely used
datasets, which can broaden the variety of applications
of MNIST and EMNIST datasets.
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