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Abstract
Despite remarkable advances in the development of language resources over the recent years, there is still a shortage of
annotated, publicly available corpora covering (German) medical language. With the initial release of the German Guideline
Program in Oncology NLP Corpus (GGPONC), we have demonstrated how such corpora can be built upon clinical guidelines,
a widely available resource in many natural languages with a reasonable coverage of medical terminology. In this work,
we describe a major new release for GGPONC. The corpus has been substantially extended in size and re-annotated with a
new annotation scheme based on SNOMED CT top level hierarchies, reaching high inter-annotator agreement (γ = .94).
Moreover, we annotated elliptical coordinated noun phrases and their resolutions, a common language phenomenon in (not
only German) scientific documents. We also trained BERT-based named entity recognition models on this new data set, which
achieve high performance on short, coarse-grained entity spans (F1 = .89), while the rate of boundary errors increases for
long entity spans. GGPONC is freely available through a data use agreement. The trained named entity recognition models, as
well as the detailed annotation guide, are also made publicly available.

Keywords: Clinical Guidelines, Clinical NLP, Annotation, Named Entity Recognition, SNOMED CT, German Medical Language

1. Introduction
In the clinical domain, the inability to share language
resources and models has been a major obstacle for re-
searchers and medical practitioners who want to gain
insights from clinical documents through natural lan-
guage processing (NLP). This bottleneck is due to pro-
tected health information (PHI) in these documents,
which allows to identify patients, clinical personnel,
or other individuals. Even thorough de-identification
efforts targeting PHI items (for a survey, cf. Meystre
(2015)) do not guarantee positive votes from ethical
boards for allowing strictly anonymized clinical data to
pass hospital walls. Likewise, machine learning mod-
els trained on these data are usually not shareable, be-
cause attackers might re-identify sensitive data from
their model parameters (Carlini et al., 2021).
Whereas the distribution of real, de-identified clinical
documents on a reasonable scale seems out of scope for
almost all European countries for the time being, scien-
tific research publications are not subject to such distri-
bution restrictions. Unfortunately, the vast majority of
scholarly medical articles are only written in English.
Clinical guidelines are a notable exception, as they are
typically issued in the national language of their tar-
get audience. In effect, freely distributable medical
language resources can be created from clinical guide-

lines in a variety of languages. The German Guideline
Program in Oncology NLP Corpus 1.0 (GGPONC) has
been the first of its kind for the German language and
already stands out as the largest, manually annotated,
publicly accessible German-language medical text cor-
pus (Borchert et al., 2020).
In this work, we describe our findings from the latest
GGPONC release 2.0, which has increased by around
40% in volume compared to its first version. The com-
plete corpus has been re-annotated with a new entity
annotation scheme, improved in terms of annotation
quality, and augmented by explicit indication of el-
liptical coordinated noun phrases (CNPs), a common
phenomenon in scientific text (Blake and Rindflesch,
2017). In addition to the pre-processed textual data, ex-
tensive guideline metadata, and human annotations, we
publish several named entity recognition (NER) mod-
els trained on GGPONC 2.0 as well as the detailed an-
notation guide (HPI-DHC, 2022).
This paper is organized as follows: in Section 2 we
share experiences since the release of GGPONC 1.0.
We review related work in Section 3 and outline our
methodology and the annotation process in Section 4.
In Section 5 we present results and performance of
baseline NER models. We conclude with a discussion
of the results in Section 6 and an outlook in Section 7.
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2. Lessons Learned from GGPONC 1.0
The current GGPONC release builds on our experience
from the previous annotation campaign as well as on-
going maintenance of the corpus since its creation.

2.1. Annotations
For the initial release, we created silver-standard en-
tity annotations for the complete corpus using a dic-
tionary based on the Unified Medical Language Sys-
tem (UMLS) semantic groups (Bodenreider, 2004). Hu-
man annotators manually reviewed these annotations
for around half of the corpus (664k tokens).
As the German UMLS subset contains only a fraction
of the English version (roughly 1.55 % German con-
cept names (257k) vs. 71.06 % English ones (11,756k)
from overall 16,544k concept names in the complete
UMLS in its 2021AB release),1 the silver-standard an-
notations missed a large portion of concept mentions,
resulting in low recall (54%). Moreover, the agree-
ment between human annotators was relatively low (F1

= .74) due to sloppy, underspecified annotation guide-
lines, but also the fuzzy meaning of many UMLS se-
mantic groups from a clinical perspective.
While integrating GGPONC into a software applica-
tion for finding clinical trial reports that disagree with
current guidelines, we identified further limitations of
our UMLS-based dictionary (Borchert et al., 2021).
For instance, we need to detect all pharmacological
interventions in the guidelines. However, many con-
cepts were assigned to the semantic type Pharmaco-
logic Substance in the UMLS, which in the context of a
clinical guideline are not used as such (e.g., water, air).
For these reasons, we adopted new definitions of en-
tity classes based on the SNOMED CT concept model
(Donnelly, 2006), as described in Section 4.2.

2.2. Community Feedback
We received a total of 31 data use requests for our ini-
tial release of GGPONC 1.0 from July 2020 to April
2022. Nine of these users responded to a question-
naire survey accompanying the access process. 56 %
of the respondents indicated that they made use of the
entity annotations in GGPONC and pointed out that ad-
ditional annotation formats would be desirable. There-
fore, in the new version, we not only provide all plain
text file formats that were included in the first release,
i.e., sentence-splitted and tokenized versions, but also
make available the raw WebAnno TSV files from the
INCEPTION annotation tool (Klie et al., 2018), IOB-
encoded named entity annotations in a simple CONLL
format, dataset files in a transformers-compatible JSON
format (Wolf et al., 2020), as well as serialized SPACY
documents for training a SPANCATEGORIZER model
(Montani et al., 2021).

1https://www.nlm.nih.gov/research/
umls/knowledge_sources/metathesaurus/
release/statistics.html

2.3. Data Access and Release Cycle
Data use requests are handled via e-mail to the Ger-
man Guideline Program in Oncology Office.2 Ac-
cess is granted to non-commercial, scientific users af-
ter providing a brief description of their research pur-
pose. Given the current rate of requests (about 2-3 per
month), we can ensure timely access for users, with
only minor manual overhead for reviewing requests
and sending out download links. Based on the feed-
back from our survey, we plan to provide more frequent
minor releases in the future, i.e., release upon update
of individual guidelines, but at most once per month.
Prior and future releases will be available via a dedi-
cated file server.

3. Related Work
A few text corpora based on clinical guidelines exist
for the English language (Hussain et al., 2009; Read et
al., 2016). Yet, none of them was annotated for entities.
For an overview of NLP applications in the domain of
clinical guidelines, we refer to Borchert et al. (2020).
To the best of our knowledge, GGPONC 2.0 is cur-
rently the largest publicly available, semantically an-
notated German medical text corpus.
In Table 1 we list a selection of corpora from differ-
ent medical domains with comparable entity annota-
tions. Two observations can be made. First, there is
an increasing tendency to release larger-sized corpora
(� 100K tokens). Second, there is, much to a surprise,
not really consensus about the named entity types to
be annotated—yet, SNOMED top level categories and
UMLS semantic groups might be the most reasonable
candidates for such a much-needed convergence (our
work here adheres to the SNOMED categorization).
While unlabeled German medical text datasets with or-
ders of magnitude more tokens have recently been used
for unsupervised pre-training, none of these is publicly
available (Bressem et al., 2020; Richter-Pechanski et
al., 2021). Although GGPONC is comprised of sci-
entific articles, rather than clinical narratives, we have
previously traced a substantial overlap in terminology
with clinical corpora, e.g., GGPONC 1.0 and the Jena
part of 3000PA share about 40% of unique UMLS con-
cepts (Borchert et al., 2020).
Coordination ellipses in medical documents have been
the subject of a number of prior studies (Buyko et al.,
2007; Chae et al., 2014; Wei et al., 2015; Blake and
Rindflesch, 2017). All of them point out the poten-
tial benefits of resolving ellipses for the performance of
downstream applications. Yet, none of these studies ex-
plicitly deal with German medical documents. Hence,
GGPONC 2.0, to the best of our knowledge, is the first
German medical text corpus with explicit annotation of
(resolved) elliptical CNPs.

2https://www.leitlinienprogramm-
onkologie.de/projekte/ggponc-english/

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
https://www.leitlinienprogramm-onkologie.de/projekte/ggponc-english/
https://www.leitlinienprogramm-onkologie.de/projekte/ggponc-english/
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Corpus Description Doc. Sent. Tokens Entities Agreement
(Mostly, English-language) Corpora

Wang (2009) Clinical notes 0.31K – 47K 11 SNOMED CT
top level concepts F1(exact) = .88

Roberts et al. (2009) CLEF
(Clinical text) 0.15K – – Condition, Intervention,

Locus, Result, etc. F1 ∈ [.74, .99]

van Mulligen et al.
(2012)

EU-ADR
(MEDLINE) 0.30K – – Drug, Disorder,

Gene, Protein F1 = .75

Doğan et al. (2014) NCBI disease
(MEDLINE) 0.79K 7K – Disease F1 ≈ .90

Patel et al. (2018) Clinical
documents 5.16K 398K 3,825K Various (based on

UMLS semantic types) κ ≈ .97

Nye et al. (2018) EBM-NLP
(MEDLINE) 5.00K – –

Participants
Intervention
Outcome

κ ∈ [.50, .71]
κ ∈ [.59, .69]
κ ∈ [.51, .62]

Miñarro-Giménez
et al. (2019)

Clinical snippets
(multilingual) – – 41K SNOMED CT

concepts αloose ∈ [.40, .74]

Schulz et al. (2020) Case reports
(PUBMED Central) 0.05K 8K 168K Case, Condition,

Finding, Factor κ = .68

German-language Corpora
Hahn et al. (2018)
Lohr et al. (2020)

3000PA Jena part
(Discharge summ.) 1.11K 170K 1,421K Diagnosis, Symptoms,

Finding
F1(inst) = .65
F1(tok) = .84

Borchert et al. (2020) GGPONC 1.0 8.42K 60K 1,340K UMLS semantic groups,
TNM F1 = .74

Kittner et al. (2021) BRONCO
(Discharge summ.) 0.20K 11K 90K

Diagnosis
Treatment
Medication

F1 ∈ [.69, .88]
F1 ∈ [.66, .81]
F1 ∈ [.87, .94]

Our work GGPONC 2.0 10.19K 78K 1,877K Finding, Substance,
Procedure γ = .94

Table 1: Overview of medical text corpora with clinical annotations comparable to this work. GGPONC is among
the largest annotated medical text corpora, in particular for the German language. Many authors have not reported
numbers of sentences or tokens in the past, allowing only limited comparison by volume.

4. Materials and Methods
In the following, we elaborate on details of our method-
ology and available data.

4.1. Data Acquisition
The workflow to create GGPONC releases is outlined
in Fig. 1. First, we retrieve the semi-structured guide-
line data from the GGPO’s content management sys-
tem. From this raw data, we then create a single XML
file with the document structure and guidelines’ meta-
data, excluding literature references which are written
to a literature index file. Individual plain text docu-
ments, corresponding to text segments of the guide-
lines, can be linked back to their metadata (like time-
stamps, recommendation levels, etc.) through a meta-
data index file. We use a JCORE pipeline (Hahn et
al., 2016) configured with FRAMED models (Wermter
and Hahn, 2004) for sentence splitting and tokeniza-
tion. For the current release, we have extracted all 30
available oncology guidelines, summarized in Table 2.

4.2. Annotation
For our GGPONC 2.0 release, all documents were
manually annotated with named entities and elliptical
CNPs by seven annotators. This team was composed of
students of medicine from the Charité University Hos-
pital in Berlin, who had already passed their first medi-

cal exam (Physicum, in German), supported by a medi-
cal doctor who resolved annotation conflicts during the
refinement of the annotation guide (see Section 4.2.3).
Annotators spent 1,142 hours, in total, for annotating
individual documents with the INCEPTION platform
(Klie et al., 2018) over a time span of six months.
The mean annotation speed was 1.65K tokens per hour,
but with high variability between individual annota-
tors (σ = 473.3). No pre-annotations were pro-
vided to prevent biasing the annotation process. How-
ever, we enabled default string-based recommenders in
INCEPTION based on previous annotations made by
the same annotators.

4.2.1. Annotation of Clinical Entities
Our annotation scheme consists of three coarse entity
classes corresponding to top-level hierarchies in the
SNOMED CT concept model. Detailed definitions of
all entity classes can be found in the annotation guide.
Based on these top-level concepts, we have defined the
following sub classes relevant for GGPONC:

• Finding: Diagnosis or Pathology, Other Finding
• Substance: Clinical Drug, Nutrient or Body Sub-

stance, External Substance
• Procedure: Therapeutic, Diagnostic

Since the exact entity boundaries are often ambiguous,
we consider the problems of identifying mentions and
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Figure 1: Semi-automated curation process for GGPONC modeled using the Business Process Model and No-
tation. We regularly check for updates of the guidelines and automatically process the raw JSON files from the
content management system (CMS) of the Guideline Program in Oncology to create artifacts with different parts of
metadata. These updates are published as minor releases. This workflow has been completely automated through
Apache Airflow pipelines. Manual annotation of the resulting documents, as performed as part of this work, results
in a major release.

Guideline Year Files Rec. Sent. Tokens Types Refs.
1 · Pancreatic cancer 2013 292 158 854 18,901 3,602 1,154
2 • Penis cancer 2020 167 94 960 20,915 4,542 561
3 · Psycho-oncology 2014 121 47 778 21,909 4,113 835
4 ◦ Oral cavity cancer 2021 132 96 763 22,256 3,947 1,172
5 · Malignant ovarian tumors 2020 195 97 1,103 27,432 5,139 1,035
6 • Anal cancer 2020 216 93 1,248 34,429 5,246 724
7 · Chronic lymphocytic leukemia 2018 285 138 1,417 36,811 5,680 726
8 · Laryngeal cancer 2019 189 118 1,526 37,374 6,812 681
9 • Follicular lymphoma 2020 296 149 1,537 38,206 6,344 761

10 · Oesophageal cancer 2018 172 91 1,530 38,574 6,615 1,026
11 ◦ Hodgkin lymphoma 2020 253 168 1,710 38,899 5,886 976
12 ◦ Hepatocellular and biliary cancer 2021 263 146 1,599 41,125 6,552 990
13 · Testicular tumors 2020 315 163 1,923 47,024 6,746 1,412
14 · Prevention of cervix cancer 2020 302 103 2,058 52,351 7,928 1,388
15 ◦ Renal cell carcinoma 2020 293 131 2,284 52,576 8,255 1,507
16 · Endometrial cancer 2018 317 173 2,005 53,773 8,005 1,340
17 · Stomach cancer 2019 246 142 2,282 54,281 8,028 1,671
18 • Adult soft tissue sarcomas 2021 407 228 2,407 56,358 8,785 1,169
19 · Actinic keratosis 2020 193 74 2,599 57,375 6,853 1,278
20 ◦ Malignant melanoma 2020 297 167 2,746 65,207 9,241 1,718
21 ◦ Cervical cancer 2021 415 127 2,829 68,576 9,593 1,549
22 · Colorectal cancer 2019 546 278 3,021 73,389 9,507 2,446
23 ◦ Prostate cancer 2021 351 238 3,403 81,899 10,154 2,357
24 · Supportive therapy 2020 819 337 4,288 96,734 12,369 2,401
25 · Lung cancer 2018 665 312 4,302 100,930 12,591 2,345
26 ◦ Breast cancer 2021 685 362 4,232 101,254 12,592 2,831
27 ◦ Bladder cancer 2020 364 230 4,280 102,192 11,965 2,631
28 ◦ Prevention of skin cancer 2021 370 141 4,298 106,488 13,817 1,578
29 ◦ Palliative medicine 2020 700 442 6,029 145,657 15,806 3,117
30 • Complementary medicine 2021 327 149 8,079 184,205 15,622 3,286

Total 10,193 5,192 78,090 1,877,100 89,256 46,665

Table 2: Overview of guidelines in the current GGPONC release, sorted by the number of Tokens. The number
of Files corresponds to the number of text segments (recommendations and background text), in contrast to the
number of Recommendations alone. In addition, we report the number of Sentences, unique Types, and literature
References. GGPONC 2.0 includes five entirely new topics (•) compared to version 1.0. Moreover, 11 guidelines
have received a substantial update (◦) since the last major release, whereas 14 were not updated at all (·).
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Figure 2: Annotation example for entities and specifications. When we convert the entity annotations to a flat
file format with IOB tags, specifications can be handled according to individual requirements. For GGPONC 2.0,
we provide two different views on entity spans: the shortest possible spans, where specifications are completely
ignored, and the longest possible spans, where all specifications are merged into the class of the head noun. Com-
bined with two different levels of granularity (coarse or fine), this results in four different dataset configurations.

(a) Compound with fragment for forward ellipsis

(b) Compound with fragment for backward ellipsis

(c) Ellipses outside of compound without fragment

Figure 3: Annotation examples for ellipses in CNPs.
The omitted parts on the left / right side are annotated
as prefix / suffix attributes of the entity span. When
parts of a compound have been omitted, we link from
the incomplete conjunct to the corresponding complete
conjunct with a fragment relation.

their boundaries separately: in general, annotators were
instructed to identify the shortest possible span for each
entity mention. For each part of the enclosing noun
phrase specifying the entity in more detail, we anno-
tate Specification spans (similar to our previous work in
Hahn et al. (2012)) and connect them through a relation
with the head entity as outlined in Fig. 2. Therefore, the
purpose of specifications is very similar to the Modifier
entity class introduced by Patel et al. (2018). While
each token typically belongs to only one entity class,
specifications can be arbitrarily nested and chained.

4.2.2. Annotation of Elliptical CNPs
Due to the prevalence of elliptical CNPs in GGPONC,
we decided to explicitly annotate them for entity men-
tions by providing the omitted parts through prefix
or suffix attributes (see Fig. 3). We follow Chae
et al. (2014) who distinguish forward ellipses and
backward ellipses, as well as their combination in

complex ellipses. A special case of coordination el-
lipses that occurs frequently in German are elliptical
compounds (Aepli and Volk, 2013). These are of-
ten, but not always, indicated by a suspensive hyphen
(“Ergänzungsstrich”). Examples for different types of
ellipses and their resolution annotations are depicted in
Table 3. Since the annotated information is sufficient
to recover the incomplete conjuncts in CNPs, we have
a ground truth for evaluation of automated systems per-
forming this task. Note that we do not annotate ellipses
outside of entity mentions, so some elliptical CNPs still
fall out of the scope of these conventions.

4.2.3. Annotation Guide and Agreement
We follow the protocol suggested by Roberts et al.
(2009) for annotation guide development, where multi-
ple annotators work on the same sets of documents un-
til an acceptable level of stability of the inter-annotator
agreement (IAA) is reached. We sampled these doc-
uments from GGPONC 2.0 aiming at a representa-
tive distribution of entity mentions identified by the
dictionary-based approach, which we had successfully
implemented for GGPONC 1.0. Afterwards, annota-
tors worked on the full guidelines independently, whilst
potential questions were discussed in a group chat.
The first iteration (1a) was performed by 3 annotators
with coarse entity classes only. As a follow-up, the first
version of our annotation guide was created and finer-
grained entity classes were incorporated. The same
documents where annotated in the next iteration (1b),
followed by a workshop to resolve disagreements and
further refine the annotation guide. This process was
repeated for two more iterations. For GGPONC, the
IAA reached satisfactory levels already after iteration
two, a third one was performed to assure the stability
of agreement (backed up by the data in Table 4).
For measuring the IAA metric, we used the γ-method
(Mathet et al., 2015), implemented in the pygamma-
agreement package (Titeux and Riad, 2021) which is
included in the INCEPTALYTICS toolkit (Hamacher
and Zesch, 2021). Computation of γ took 156h for the
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Example Resolution English Translation
(1) Forward ellipsis

a) Krebs-Vorsorge /
-Früherkennung

Krebs-Vorsorge /
Krebs-Früherkennung

cancer prevention / screening

b) HPV31, 33, 45 und 51 HPV31, HPV33, HPV45 und HPV51 HPV31, 33, 45 and 51
c) Vitamin C, E und A1 Vitamin C, Vitamin E und Vitamin A1 vitamin C, E and A1

(2) Backward ellipsis
a) Chemo- und Strahlentherapie Chemotherapie und Strahlentherapie chemotherapy and radiotherapy
b) BRAF- und MEK-Inhibitor BRAF-Inhibitor und MEK-Inhibitor BRAF and MEK inhibitor
c) zielgerichtete und

Immuntherapien
zielgerichtete Therapien
und Immuntherapien

targeted and immunotherapy

(3) Complex ellipsis
a) HPV-16- und/oder

-18-Positivität
HPV-16-Positivität und/oder
HPV-18-Positivität

HPV-16 and/or -18 positivity

b) BRCA1/2-Mutation BRCA1-Mutation / BRCA2-Mutation BRCA1/2 mutation
c) Zweitlinien- oder

Drittliniensystem-
bzw. -chemotherapie

Zweitliniensystemtherapie oder
Drittliniensystemtherapie bzw.
Zweitlinienchemotherapie oder
Drittlinienchemotherapie

second line or third line
systemic or chemotherapy

Table 3: Examples of different types of ellipses in coordinated compound noun phrases found in GGPONC

small set of files of the agreement sets, since it is based
on a complex alignment algorithm and scales poorly
with the number of annotators.
Overall IAA reached a value of γ = .94 and exceeds
this value for most fine-grained entity classes. Major
sources of disagreement were Specification boundaries
(γ = .89) and the distinction between Other Find-
ings (γ = .91) and Diagnostic Procedures (γ = .93).
The latter distinction is ambiguous in many cases since
terms often refer to either diagnostic procedures or
the properties they measure, e.g., “Blutbild” (complete
blood count). We resolved such cases by defining
precedence rules in the annotation guide.

Iteration
1a 1b 2 3

Number of annotators 3 7 7 7
Number of documents 5 5 6 3
Number of sentences 149 149 158 67
Number of tokens 4206 4206 3725 1814
IAA (γ) .75 .89 .93 .94

Specification .71 .87 .91 .89
Finding .82 .93 .95 .97

Diagnosis/Pathology - .91 .94 .96
Other Finding - .85 .87 .91

Substance .92 .99 .98 .99
Clinical Drug - .97 .98 1.00
Nutrient/Body Subs. - .99 .99 .98
External Substance - .96 - 1.00

Procedure .82 .93 .96 .96
Therapeutic - .95 .96 .96
Diagnostic - .89 .98 .93

IAA (uα) .56 .71 .79 .85

Table 4: IAA across multiple iterations calculated us-
ing the γ-measure. We report Krippendorff’s α (uni-
tizing, character-based) for comparison, yet the results
are less meaningful due to the prevalence of overlap-
ping spans. Note that the same documents were used
during iterations 1a and 1b, as fine-grained entity sub-
classes were consented during the first review round.

Although the use of a simpler and less resource-eager
IAA measure, e.g., F1-score or Krippendorff’s α,
would have been desirable, these alternatives are un-
able to properly account for arbitrarily nested and over-
lapping specifications and entity mentions. Just for
comparison reasons, we report Krippendorff’s α in Ta-
ble 4 reaching α = .85 in the last iteration.

4.3. Baseline NER Models
We created four datasets from the annotated docu-
ments, one for each of the combinations of granularity
and span length shown in Fig. 2. Each file, i.e., text
segment of a guideline, is randomly assigned to either
the training (70 %), development (15 %), or test (15 %)
set. Annotations are converted to JSON files with IOB-
encoded NER labels compatible with the HUGGING-
FACE TRANSFOMER library (Wolf et al., 2020).
For each of the four datasets, we train a standard HUG-
GINGFACE NER model that consists of a pre-trained
BERT encoder and a token classification head (De-
vlin et al., 2019). We initialize the encoder from the
publicly available BERT checkpoint deepset/gbert-base
(Chan et al., 2020), pre-trained on German texts taken
from general and legal domains. Each NER model is
trained for 100 epochs, and we keep the final model
checkpoint that maximizes the F1 score on the develop-
ment set. On a single NVIDIA A40 GPU, one training
run takes around 6 h. We manage experimental con-
figurations with the HYDRA framework (Yadan, 2019)
and performed a parallel grid search on a cluster with
6 GPUs over the following hyperparameters: learning
rate, learning rate schedule, weight decay, and label
smoothing. For the final models, we choose the set
of hyperparameters that maximize the micro-averaged
F1-score on the development set for each dataset con-
figuration. All HYDRA configurations and optimal hy-
perparameters for each dataset are published in our
GitHub repository (HPI-DHC, 2022).
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Avg. Number of entities Test set NER results
tok./ Total Train Dev Test Coarse Fine
ment. P R F1 P R F1

Short Spans 1.1 246,490 171,358 36,823 38,309 .88 .90 .89 .86 .87 .86
Finding 1.1 132,756 92,053 19,743 20,960 .88 .90 .89

Diagnosis or Pathology 1.1 81,380 56,216 12,200 12,964 .90 .91 .91
Other Finding 1.1 51,376 35,837 7,543 7,996 .76 .75 .75

Substance 1.2 24,871 17,288 4,017 3,566 .87 .91 .89
Clinical Drug 1.2 19,478 13,647 3,105 2,726 .90 .92 .91
Nutrient or Body Subst. 1.3 4,348 2,995 694 659 .69 .73 .71
External Substance 1.2 1045 646 218 181 .66 .54 .59

Procedure 1.1 88,863 62,017 13,063 13,783 .89 .91 .90
Therapeutic 1.0 61,034 42,675 8,557 9,802 .90 .91 .90
Diagnostic 1.1 27,829 19,342 4,506 3,981 .82 .87 .85

Long Spans 2.4 201,838 140,228 30,024 31,586 .75 .76 .75 .72 .73 .72
Finding 2.5 105,035 72,860 15,470 16,705 .75 .75 .75

Diagnosis or Pathology 2.3 60,898 42,098 9,042 9,758 .76 .78 .77
Other Finding 2.7 44,521 31,036 6,469 7,016 .64 .61 .63

Substance 1.9 18,169 12,566 2,976 2,627 .72 .76 .74
Clinical Drug 2.0 14,092 9,851 2,257 1,984 .71 .76 .73
Nutrient or Body Subst. 1.7 3,277 2,219 547 511 .61 .64 .62
External Substance 1.8 809 500 172 137 .45 .34 .38

Procedure 2.5 77,686 54,121 11,455 12,110 .75 .77 .76
Therapeutic 2.4 52,887 36,906 7,415 8,566 .76 .76 .76
Diagnostic 2.5 25,354 17,618 4,122 3,614 .68 .74 .71

Table 5: Counts of manually annotated entities (columns 3 to 6) and automatic NER results of four different BERT-
based token classification models (columns 7 to 12), evaluated on fine-grained vs. course-grained entity classes, as
well as long vs. short spans. Short spans cover mostly single-token entities (1.1 tokens per mention on average),
while long spans can be considerably longer.

5. Results

In the following, we share results and findings from our
work on the latest release GGPONC 2.0.

5.1. Corpus and Annotations

GGPONC 2.0 consists of 78,090 sentences with
1,877,100 tokens (see Table 2), an increase of around
40% in tokens compared to GGPONC 1.0. How-
ever, the most noticeable increment occurred at the
level of medical contents—the number of manually
created medical NE annotations increased by a fac-
tor of more than three (GGPONC version 1.0 con-
tained 73,799 manually supplied annotations). In to-
tal, version 2.0 now contains 246,490 (short span) en-
tity mentions manually annotated in the gold standard.
When considering long spans, the number is reduced to
201,838, as entities can be subsumed as parts of spec-
ifications of other entities (see Fig. 2). Entity counts
for the splits used for training and evaluating the NER
models are also shown in Table 5 (columns 4 to 6).
As clinical guidelines are developed around the PICO
framework (population, intervention, comparison, out-
come) (Boudin et al., 2010), the most common en-
tity mentions are related to populations (Diagnosis or
Pathology, Other Finding), and interventions (Clinical
Drugs, Therapeutic Procedures). Other classes occur
only rarely in the data (e.g., only 1,045 mentions of
External Substances).

5.2. NER Results
As shown in Table 5, the best NER results on the
test set are achieved on the dataset configuration with
coarse-grained entity classes and short spans (F1 =
.89), which only slightly drops when fine-grained en-
tity classes are considered (F1 = .86). Performance
is much lower for rare entity classes (e.g., F1 = .58
for External Substances) than for frequent ones. The
same is true for long entity spans, although the over-
all discrimination performance is substantially lower
(F1 = .75/.72).
To shed light on the performance differences between
short and long spans, we depict the error types in Fig. 4.
The vast majority of errors introduced by extending
span length are (label) boundary errors, whereas the
rate of actual false negatives, false positives, and la-
beling errors is similar or even slightly lower.

5.3. Elliptical CNPs and Impact on NER
Annotators identified 5,264 elliptical CNPs in the
whole corpus related to entity mentions in 4,666 sen-
tences, i.e., around 6% of all sentences include entities
with ellipses. Out of these, 1,964 are forward ellipses,
from which 844 (42.9%) were annotated with a frag-
ment attribute, e.g., are part of an elliptical compound.
In contrast, nearly all of the 2,979 backward ellipses are
part of a compound (2,739 or 91.9% have a fragment
attribute). In addition, there are 282 complex ellipses,
from which 199 (70.6%) were part of a compound.
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Figure 4: Number of errors per entity mention for short vs. long spans and different kinds of elliptical CNPs in the
test set, using the NER models trained on fine-grained entity classes. When considering sequences of tokens, the
following errors can occur in addition to false negatives and false positives: labeling errors (the span is predicted
correctly, but a wrong label is assigned), boundary errors (the correct label is assigned, but boundaries of the
predicted span do not match), and label boundary errors (both boundaries and label are incorrect).

We also assessed the impact on NER performance in
the presence of elliptical CNPs by comparing the error
rate on the complete test set with only test set sentences
that contain an elliptical CNP with or without a com-
pound fragment. As shown in Fig. 4, there is hardly any
difference in the error rate, with only a slight increase
of the rate of boundary errors for short spans and even
a decrease in the false positive rate. In fact, from all ex-
amples in Table 3, the best long-span fine-grained NER
model only fails to detect separate entities in example
1b), where a single long entity is predicted instead of
two distinct ones, i.e., a boundary error occurs.

6. Evaluation and Discussion
6.1. NER Performance Improvements
While our short-span NER models achieve perfor-
mance on a par with results reported for clinical NER in
the literature (Kittner et al., 2021), performance drops
considerably when considering long spans. Part of this
discrepancy is explainable by label noise, since IAA
has been lowest on Specification spans. We also note
that a substantial portion of errors are boundary errors
(Fig. 4), which may or may not be problematic for dif-
ferent downstream applications, but can disproportion-
ately affect token-based metrics like the F1-score.
Although the problem of predicting longer spans is in-
herently harder, methodological improvements seem
possible. We have used, e.g., a BERT encoder pre-
trained on general domain texts. Language models
pre-trained on in-domain texts have shown to be appli-
cable for various downstream tasks (Lee et al., 2020;
Bressem et al., 2020; Gu et al., 2022). Yet, a German
medical text corpus of the required size was not avail-
able for public use up until now. Our work using clin-
ical guidelines may complement such large, unlabeled
datasets for unsupervised pre-training in the future.

6.2. Assessment of the γ-measure
We used γ as a measure of IAA for categorical, unitiz-
ing and potentially overlapping labels. While, in the-
ory, γ is thus the most appropriate metric, its results are
hard to compare with previous studies due to the lack
of comparable measurements in other (medical) entity
annotation projects. In the few cases where γ was al-

ready used with unitizing semantic annotations, val-
ues between .24 and .76 were observed (Da San Mar-
tino et al., 2019; O’Gorman et al., 2021; Zehe et al.,
2021). Our manual curation of annotated documents
indeed suggests a much higher agreement, consistent
with higher γ values, with slight disagreement for the
entity classes where γ is also lowest.

6.3. Resolution of Coordination Ellipses
Error analysis has shown that the impact of elliptical
CNPs on NER performance is surprisingly small—an
effect which we explain by the adequate representation
of this phenomenon in the training data, combined with
the flexible encoding of subwords in BERT’s Word-
Piece vocabulary. For downstream tasks, such as en-
tity linking, reliable resolution of ellipses might still be
necessary. With the detailed annotations of elliptical
CNPs in this work, we may be able to train language
models that can perform this task automatically.

7. Conclusion and Future Work
Our work on the new major release of GGPONC 2.0
features high-quality entity annotations, strong base-
line NER models, and an analysis of the (surpris-
ingly small) impact of elliptical CNPs on these models.
Freely available corpora based on clinical guidelines al-
low us to study medical language use on a large scale in
many different language communities. In the English-
speaking world, it has been become common practice
to evaluate biomedical NLP approaches on a range of
benchmark datasets and tasks (Gu et al., 2022). We en-
vision GGPONC to become part of such a benchmark
for German-language biomedical NLP tasks, as well.
We plan to extend our guideline corpus to other med-
ical specialties (besides oncology) to cover an even
wider spectrum of the medical domain. Moreover, we
will add additional layers of annotation, e.g., ground-
ing entities in SNOMED CT or devising (temporal)
relations to derive machine-readable process models
from guidelines (Peleg, 2013; Schlegel et al., 2019).
GGPONC 2.0 and previous releases are available on
demand from the German Guideline Program in Oncol-
ogy. Our annotation guide and source code are avail-
able online to foster the reproducibility of our experi-
mental results (HPI-DHC, 2022).
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man’s next language model. In COLING 2020 —
Proceedings of the 28th International Conference on
Computational Linguistics, pages 6788–6796.

Da San Martino, G., Yu, S., Barrón-Cedeño, A., Petrov,
R., and Nakov, P. I. (2019). Fine-grained analysis
of propaganda in news article. In EMNLP-IJCNLP
2019 — Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing &
9th International Joint Conference on Natural Lan-
guage Processing, pages 5636–5646. Association
for Computational Linguistics (ACL).

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. N. (2019). BERT: pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT 2019 — Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, volume 1: Long and Short Pa-
pers, pages 4171–4186. Association for Computa-
tional Linguistics (ACL).

Donnelly, K. (2006). SNOMED-CT: the advanced ter-
minology and coding system for eHealth. In Medi-
cal and Care Compunetics 3, number 121 in Studies
in Health Technology and Informatics, pages 279–
290, Amsterdam etc. IOS Press.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama,
N., Liu, X., Naumann, T., Gao, J., and Poon,
H. (2022). Domain-specific language model pre-
training for biomedical natural language processing.
ACM Transactions on Computing for Healthcare,
3(1):#2 (2:1–2:23).

Hahn, U., Beisswanger, E., Buyko, E., and Faessler,
E. (2012). Active learning-based corpus annota-
tion: the PATHOJEN experience. In AMIA 2012
— Proceedings of the 2012 Annual Symposium of
the American Medical Informatics Association. In-
formatics: Transforming Health and Health Care,
pages 301–310, Philadelphia/PA. Hanley & Belfus.

Hahn, U., Matthies, F., Faessler, E., and Hell-
rich, J. (2016). UIMA-based JCORE 2.0 goes
GITHUB and MAVEN CENTRAL: state-of-the-art
software resource engineering and distribution of
NLP pipelines. In LREC 2016 — Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation, pages 2502–2509.

Hamacher, M. and Zesch, T. (2021). INCEp-
TALYTICS 0.1.0. https://github.com/ltl-

https://github.com/ltl-ude/inceptalytics/


3659

ude/inceptalytics/. (Last accessed: April 26th,
2022) DOI: 10.5281/zenodo.5654690.

HPI-DHC. (2022). GGPONC annotation reposi-
tory. https://github.com/hpi-dhc/ggponc_

annotation. (Last accessed: April 27th, 2022)
DOI: 10.5281/zenodo.6473122.

Klie, J.-C., Bugert, M., Boullosa, B., Eckart de
Castilho, R., and Gurevych, I. (2018). The
INCEPTION platform: machine-assisted and
knowledge-oriented interactive annotation. In COL-
ING 2018 — Proceedings of the 27th International
Conference on Computational Linguistics: System
Demonstrations, pages 5–9. International Commit-
tee on Computational Linguistics (ICCL).

Lee, J., Yoon, W., Kim, S., Kim, D., Kim,
S., So, C., and Kang, J. (2020). BIOBERT:
a pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics,
36(4):1234–1240.
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