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Abstract
The generation of referring expressions (REs) is a non-deterministic task. However, the algorithms for the generation of REs
are standardly evaluated against corpora of written texts which include only one RE per each reference. Our goal in this work
is firstly to reproduce one of the few studies taking the distributional nature of the RE generation into account. We add to this
work, by introducing a method for exploring variation in human RE choice on the basis of longitudinal corpora - substantial
corpora with a single human judgement (in the process of composition) per RE. We focus on the prediction of RE types, proper
name, description and pronoun. We compare evaluations made against distributions over these types with evaluations made
against parallel human judgements. Our results show agreement in the evaluation of learning algorithms against distributions
constructed from parallel human evaluations and from longitudinal data.
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1. Introduction
Referring is a fundamental part of communication and
has been extensively investigated in theoretical, em-
pirical and computational linguistic studies. Refer-
ring Expression Generation (REG), as one of the main
components of a Natural Language Generation (NLG)
pipeline, tackles two different tasks: the first task, or
one-shot REG, is concerned with finding a set of at-
tributes to single out a particular referent from a set of
distractors. The second task, which is the focus of this
article, involves generating referring expressions (REs)
in a discourse context. This task is hereafter referred
to as REG-in-context. Belz and Varges (2007) defined
REG-in-context as follows: “given an intended refer-
ent and a discourse context, how do we generate ap-
propriate referential [referring] expressions to refer to
the referent at different points in the discourse?” (p. 9).
Classic REG-in-context studies often approach REG in
two steps. The first step is to decide which form to
use in a given context; for example, whether to use a
pronoun (e.g. he), a proper name (Barack Obama), or a
description (the former president of the United States).
The second step determines the content and linguistic
realisation of the expressions (Reiter and Dale, 2000;
Krahmer and van Deemter, 2012).1 The focus of this
paper is on the first step of the classic REG approach,
namely the choice of RE form.
Algorithms for the generation of REs in context are
standardly evaluated against corpora of written texts,
offering a single ‘correct’ response in the given con-
text. However, the generation of REs is a probabilistic

1With the rapid advancement of neural approaches, end-
to-end REG models are also gaining popularity where the de-
cision about form and content is made simultaneously (Cas-
tro Ferreira et al., 2018; Cao and Cheung, 2019; Cunha et al.,
2020).

task and not a deterministic one. Although a certain
form might be the dominant option at a certain position
and given a certain context, this does not always mean
that other forms are ungrammatical or inappropriate.
Our goal in this study is to explore the evaluation of
non-deterministic predictions of Referring Expression
Forms (henceforth REFs). It is worth noting that
non-deterministic approaches have been discussed
mainly in the context of one-shot REG (Gatt et al.,
2013; van Deemter, 2016; van Gompel et al., 2019),
and less so in the context of REG in-context.

Two exceptional REG-in-context studies do consider
the distributional nature of referring expression choice:
Castro Ferreira et al. (2016a) and Castro Ferreira
et al. (2016b) (henceforth VaREG studies). These
studies analyse individual differences in modelling
reference. In the first study, Castro Ferreira et al.
(2016a) developed a new corpus, VaREG, which is
composed of REs produced by a number of participants
in identical contexts. They measured the normalised
entropy of selections made by the different participants
in the study and demonstrated substantial variation.
In a follow-up study, they introduced the use of the
Jensen-Shannon Divergence metric to measure the
similarity between human-produced and predicted
distributions. The appeal of their non-deterministic
approach is offset by the human time required to
build a corpus of parallel human judgements. Their
corpus, VaREG, is composed of 36 different texts
in which only references to the main topic of the
texts are annotated. With more and larger texts, it is
rarely feasible to run an experiment in which many
human participants recreate the REs. The goal of the
present study is to infer variation in human behaviour
through the variation found within a corpus of texts,
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gaining the benefits of understanding human variation
without the substantial cost of human-intensive studies.

We propose to achieve this using what we call lon-
gitudinal corpora - a standard corpus of collected
texts, with only one referring expression form choice
per referring expression (the actually used form) - to
characterise variation. We take this terminology from
the original meanings of the word - lengthwise - as
opposed to a parallel corpus which has a latitudinal
dimension of parallel judgements made by different
informants. We achieve this goal by identifying classes
of linguistic contexts. Forms that occur in the same
class of linguistic context are presumed to have arisen
from the same distribution over available options.
The correct distribution is part of speakers’ shared
linguistic competence. We hypothesise that these will
match the distributions of options seen when multiple
speakers are asked to choose REFs for the same
referring expression given the referent and the context.

The structure of this paper is as follows. In section 2,
we provide an overview of the studies tackling REG-
in-context, and highlight their differences. Then, sec-
tion 3 presents a detailed account of the VaREG studies,
since they form the launching pad for the current study.
In section 4, we detail the preparatory steps of the cur-
rent study, namely deciding which corpora, feature set,
and Machine Learning (ML) methods to use. Section 5
presents the findings of our study, focusing on the im-
plications of the longitudinal and parallel distributions.
Finally, section 6 gives a brief summary and review of
the findings.

2. Related work
The choice of referring expressions reflects the seman-
tic prominence of entities in the common ground (von
Heusinger and Schumacher, 2019), and so the factors
influencing semantic prominence have often featured
in theoretical and empirical works on the choice of
referring expressions. Less informative expressions
such as pronouns are often used to refer to prominent
entities, while those with more content are used to
refer to less prominent ones (Ariel, 2001; Gundel et al.,
1993). The factors influencing prominence have been
argued to include grammatical function (Brennan,
1995), animacy (Fukumura and van Gompel, 2011),
recency (Ariel, 1990; McCoy and Strube, 1999) and
the existence of competing referents (Arnold and
Griffin, 2007).

Computational models for generating referring expres-
sions can be classified into three groups: rule-based,
feature-based, and end-to-end.

Rule-based models, such as McCoy and Strube (1999),
Henschel et al. (2000) and Krahmer and Theune
(2002), employ centering or salience rules, and are

often proposed as explanations of pronominalization
patterns.

GREC, Generating Referring Expressions in Context,
was a series of Shared Task Evaluation problems that
triggered what can be regarded as one of the first
systematic studies on the generation of REs in context
(Belz et al., 2009). These shared tasks introduced
various data-driven feature-based models, such as
Greenbacker and McCoy (2009) and Hendrickx et
al. (2008). These models differ from each other in
the features they employ. For instance, Greenbacker
and McCoy (2009) proposed a psycholinguistically
motivated model incorporating various features encod-
ing the subjecthood. The model by Hendrickx et al.
(2008), on the other hand, made use of various textual
features such as N-gram patterns before and after
the target REs. Following the footsteps of the GREC
models, Kibrik et al. (2016) regarded referential choice
prediction as a multi-factorial process and included
a large number of factors in their study. Same and
van Deemter (2020) conducted several experiments on
linguistically-motivated features taken from previous
studies to arrive at a consensus set of features for the
referential choice prediction task.

The majority of rule- and feature-based models aim at
predicting the form of expressions. End-to-end models
such as Castro Ferreira et al. (2018), Cao and Cheung
(2019) and Cunha et al. (2020), in contrast, aim for the
simultaneous prediction of form and content.

All these models are trained on text corpora which
have only one ‘gold-standard’ form per reference. The
choice of referring expressions is a non-deterministic
task, meaning more than one form might be feasible
for each reference. Furthermore, the distribution over
form choice in this situation might well be part of the
speaker’s linguistic knowledge. In a rare study address-
ing referential choice variation, Castro Ferreira et al.
(2016a) show that there is substantial variation in the
choices made by human participants. In response to
this situation, they constructed a new corpus, VaREG,
which offers more than one form per reference 2. Ad-
ditionally, in a follow-up study, Castro Ferreira et al.
(2016b) used the human evaluations to assess their ML
models’ performance. We provide an account of these
2 works in section 3 as they are important background
to the current study.

2It is worth-mentioning that in earlier work, Belz and
Varges (2007) created a somewhat similar corpus using 10%
of the MSR (Main Subject Reference) corpus. They stated
that in 50.1% of the cases, the participants of their study
chose the exact same referring expressions for each slot. We
do not discuss their study further because each of their texts
was re-created by only 3 participants offering little opportu-
nity to see variation, and they did not directly use their distri-
butions to evaluate ML model performance.
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3. The VaREG studies
Castro Ferreira et al. (2016a) (hereafter CF+) devel-
oped a corpus capturing variation in the use of REs.
Their corpus consists of 36 texts with 563 selected
REs in three different genres: news texts, reviews of
commercial products, and Wikipedia texts. All refer-
ences to the topic of a text were replaced by gaps, and
participants in their study filled the gaps with referring
expressions for the text topic. The texts were divided
into 4 lists of nine texts each. Approximately 20
participants were assigned to each list. Hence, for each
slot, there are about 20 human-produced REs. Table 1
shows the original version of an excerpt from the text
entitled “Google stock drops 12 percent”, along with
the embedded referring expressions produced by two
participants.

CF+ classified the human-generated referential forms
of the produced expressions into five categories, shown
here with examples in parentheses: name (Google),
pronoun (it), description (the giant tech), demonstra-
tive (this company), and empty (-).

They also annotated the following linguistic features
for each referent in the corpus: grammatical role, refer-
ential status, i.e., whether the RE is given/new, on the
levels of sentence, paragraph, and text, and recency -
the number of words between the current and the pre-
ceding mention. These linguistic annotations let them
assess variation relative to the linguistic factors. To as-
sess the variation in participants’ choice of REFs, they
measured the entropy of choices normalised according
to (1), where x corresponds to references in the current
gap, and n=5 is the number of different forms annotated
(pronoun, name, description, empty and demonstra-
tive). The probability of having a referring expression
form i express token x is given by p(xi). The entropy
measure takes values between 0 and 1, where 0 shows
complete agreement between participants’ choices and
1 shows no visible bias towards one class of represen-
tation or another. This quantity is the Kullback-Liebler
distance from the uniform distribution.

H(x) = −
n=5∑
i=1

p(xi) log(p(xi))

log(n)
(1)

CF+ found substantial variation between participants
in their choices of referring expressions. They explored
how three linguistic factors (recency, referential status,
and grammatical role) impacted relative entropy,
determining which factors have the most impact on
variation. They found, for instance, that participant
responses were more variable when the referring
expression occurred in object position. Likewise, more
variation was observed when referring expressions
were relatively far from their antecedents.

In a follow-up study, Castro Ferreira et al. (2016b)

used the same corpus to develop a REG model where
instead of choosing the form with the highest likeli-
hood, the model can predict the frequency with which
a particular model can assume different REFs. After
running various models, they evaluated to what extent
each model captures the variation in human referring
expression choice, comparing the distribution over
referring expression class predicted by the model
against the corresponding distribution made of human
choices. To compare the distributions, they used the
Jensen-Shannon Divergence (JSD) which is based on
the Kullback-Liebler Divergence (KLD).

The Kullback-Liebler Divergence (Kullback, 1997) is
an information-theoretic measure which expresses de-
grees of difference between distributions. It can be
thought of as the average amount of extra information
which must be supplied to represent an item x occur-
ring with relative frequency p(x), if it was expected
with frequency q(x). The divergence (measured in bits)
is shown in (2).

KL(p||q) =
∑
x

p(x) log2
p(x)

q(x)
(2)

Given two distributions p and q, the Jensen-Shannon
divergence metric (3) is the average of the KLD mea-
sures from a midpoint distribution r = p+q

2 to p and
to q. This measure has the desirable property of being
0 for identical distributions, and 1 for maximal diver-
gence (Lin, 1991).

JSD(p||q) = 1

2
(KL(p||r) +KL(q||r)) (3)

Castro Ferreira et al. (2016b) used this metric to
evaluate how well a variety of feature choices captured
human variation when combined with a Naive Bayes
learner, on the one hand, and a Recurrent Neural
Network on the other.

In this paper, we use the same corpus, and the same
evaluation measure, to see how important the collection
of human variation data is for evaluating competing al-
gorithms.

4. Preparatory steps for the new study
In this section, we detail the choice of corpora, fea-
ture sets, and the ML methods exploited in the current
study.

4.1. Corpora
We use two corpora. One is the VaREG corpus
described above (Castro Ferreira et al., 2016a). From
the VaREG corpus, we use both original referring
expressions in the corpus and the varied choices of
expressions made by human participants.

The other corpus is the Wall Street Journal [hence-
forth WSJ] section of OntoNotes (Hovy et al., 2006;
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Text version Sentence

Corpus text
After astounding Wall Street with its incredible growth, Google learned on
Tuesday the perils of high expectations.

Participant 60
After astounding Wall Street with Google’s incredible growth, they learned on
Tuesday the perils of high expectations.

Participant 63
After astounding Wall Street with its incredible growth, the giant tech learned on
Tuesday the perils of high expectations.

Table 1: Three different variations of one of the news texts from the VaREG corpus.

Weischedel et al., 2013).3 This corpus contains news
articles. The total number of referring expression
instances that we use is 30517. We randomly selected
50% of these REs as training data, the remainder as
test data. We chose the 50/50 split in order to balance
the needs of training size with having a large enough
test corpus to have reasonable sample sizes of the
distributions corresponding to particular combinations
of feature values.

Referring expression classes: 5 classes, namely:
pronoun, proper name, description, demonstrative NPs,
and null references (called empty), are annotated in the
VaREG corpus. In the WSJ corpus, empty cases are
not annotated, and demonstrative NPs are grouped with
other descriptions. Hence, referring expressions are
classified into three types of forms: pronoun, descrip-
tion and proper name. To compare the two corpora, we
reduced the number of VaREG labels to 3 excluding
the null references, and merging demonstratives with
the descriptions.

4.2. Feature set
We are interested in looking at the distribution of
RE classes within individual combinations of feature
values. We therefore only include categorical features
with a maximum of 4 values in order to limit the
number of distinct combinations.

The current paper makes use of the VaREG corpus but
we have decided not to use the feature set described
by its creators, as reported in Castro Ferreira et al.
(2016b). A preliminary analysis showed poor results
with these features when they were applied to the WSJ
corpus. We decided, instead, to use the feature set in-
troduced in Same and van Deemter (2020) as it yielded
significantly better performance. To limit combinato-
rial complexity, these features were revised to fit within
the above-mentioned constraints on numbers of distinct
values. We chose the following features and values as
input to the learning algorithms.

• Grammatical Role: subject, object, posses-
sive determiner

3OntoNotes Release 5.0 (Ralph Weischedel, et al., 2013)
is licensed under the Linguistic Data Consortium: https:
//catalog.ldc.upenn.edu/LDC2013T19.

• Form of the previous mention: pro-
noun, name, description, first mention

• Animacy: human, other

• Sentence recency (sentential distance to the
previous mention): same sentence, different sen-
tence, first mention4

• Paragraph recency (paragraph distance to
the previous mention): same paragraph, different
paragraph, first mention

We use X to denote the set of feature values that
describe the context in which a referring expression
occurs. An example of X is the following:

grammatical role: subject
previous mention form: pronoun
animacy: human
sentence recency: different
paragraph recency: same


There are 216 distinct possible combinations of feature
values. 93 of these occur in the WSJ, while only 49
combinations occur in the VaREG corpus.

4.3. ML methods
Referring expression class prediction systems combine
feature sets with ML algorithms. One goal of this
paper is to explore the evaluation of non-deterministic
prediction systems against evidence of human vari-
ation. We therefore only consider algorithms that
infer distributions over possible REFs, rather than
deterministically predict one.

We chose three algorithms popular in the current liter-
ature for handling tabular data. These are:

• Random Forests (Biau, 2012),

• XGBoost (Friedman, 2001; Chen et al., 2015),
and

• CatBoost (Prokhorenkova et al., 2018).

Each algorithm was trained on the WSJ and VaREG
corpora with the features described above. The model
parameters are presented in table 2.

4Since features such as recency are not defined for the first
mentions of a referent, we assign the value ‘first mention’ to
those expressions.

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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ML Method Parameters
Random Forest num of trees: 500, num of variables to split at each node: 4
XGBoost learning rate: 0.1, maximum depth of a tree: 6, sub-sample ratio: 0.75
CatBoost learning rate: 0.03, L2 regularization: 3.0, Bootstrap type: Bayesian

Table 2: Parameter setting of the models

5. Distribution experiments
A key aim of the current paper is to propose a
longitudinal method for exploring variation in hu-
man REF choice, and to evaluate that proposal in
comparison with parallel human judgements. This
requires us to exploit the only corpus of parallel REF
judgements, the VaREG corpus introduced in section 3.

Parallel human judgements are those found in the
VaREG corpus, where multiple annotators made
independent choices about which referring expression
form to use in particular contexts. Sufficient annotators
allow the inference of the shared distribution over
REFs for any given RE. The parallel annotations
define a gold standard for evaluating distributional
predictions: an algorithm for REF choice will succeed
optimally when it reproduces the human range of
choices, and assigns the same probabilities to each.

The creation of such corpora of parallel human REF
choices is expensive, especially for large corpora.
The subset of the WSJ corpus that we use contains
30517 referring expressions. If annotators achieve the
optimistic goal of one REF choice per 10 seconds, the
total annotation time for 20 annotations of the corpus
would be 1700 hours.

We propose an approach that permits a picture of hu-
man variation, without the cost of parallel annotation.
Instead, this approach (hereafter longitudinal distribu-
tion) makes use of the length of the corpus itself to offer
the variation.

5.1. Longitudinal Distribution
As mentioned earlier, we use the distributions over
possible REFs for constructing longitudinal distribu-
tions. Following is a sentence from the WSJ corpus
(document WSJ0020).

• [Ex. 1] Saudi Arabia, for its part, has vowed to en-
act a copyright law compatible with international
standards and to apply the law to computer soft-
ware as well as to literary works, Mrs. Hills said.

Table 3 shows the linguistic context, i.e. the feature–
value combinations for the underlined RE, the law.
Table 4 shows the probability distribution of each REF
in the case of the underlined RE of example 1 inferred
by each model.
We construct the longitudinal distribution over REFs
by aggregating all the RE instances in the corpus which


grammatical role: object
previous mention form: description
animacy: other
sentence recency: same sentence
paragraph recency: same paragraph


Table 3: Feature-value pairs of example 1.

DESCRIPTION NAME PRONOUN

RF 0.424 0.139 0.436
XGBoost 0.432 0.114 0.452
CatBoost 0.446 0.109 0.443

Table 4: Probabilities of REFs inferred by each model.

share the same feature value combinations. If y(i) is
the form of RE i, and X(i) is its combination of fea-
ture values, then we can express the longitudinal distri-
butions over feature values as in (4).

P (y|X) =
|{i|y = y(i), X = X(i)}|

|{i|X = X(i)}|
(4)

In order to avoid problems of division by zero, or log-
arithms of zero, all probability values are incremented
by ε = 0.000001 and the distributions renormalized.

Figure 1 shows a bimodal pattern of relationships
between the rank number of instances of a feature
combination in the corpus and the count of instances.
For low-frequency feature combinations, it seems that
frequency drops off sharply. Exploring the reasons for
this sudden fall off in the frequency of combinations is
left for future work.

Figure 2 shows the distribution of entropy in con-
structed longitudinal distributions as well as the human
parallel annotations, by plotting entropy against rank
entropy. There is a discontinuity in the gradient of the
graph, just as we saw in figure 1. Particularly interest-
ing however is that the growth in entropy in the dis-
tributions constructed from human annotations on the
VaREG corpus parallels the entropy pattern of the lon-
gitudinal distributions in the WSJ.

5.2. VaREG distributional results
Table 5 compares how well the three learning algo-
rithms approximate the distribution of variation in
the parallel and longitudinal human distributions of
the VaREG corpus. The ranking of divergence values
is the same for both the distribution of REFs in the
parallel annotation - the gold standard for variation -



2994

Figure 1: Plot of feature combinations. For any feature
combination z, the vertical axis gives the log (base 2)
absolute frequency of z - e.g. log2 142 if there are 142
instances with this feature combination in the labelled
corpus. The horizontal axis shows the log of z’s rank
on a list of combinations by decreasing frequency. This
value could be log2 7 if z is the 7th most frequent com-
bination of features in terms of instances. Note the par-
allel structures in the graphs from the two corpora. The
graph shows a combination of two stretches of Zipf-
like power law.

and in the longitudinal aggregation based on feature
combinations. The parallel ranking supplies suggestive
(though not statistically profound) evidence that the
longitudinal aggregation of REFs in distributions
conditioned by the feature values (based on their
relative frequencies in the test data) offers a potential
alternative to parallel human annotation.

VaREG Parallel Longitudinal
RF 0.094 0.065
XGBoost 0.086 0.061
CatBoost 0.076 0.059

Table 5: JSD divergences between the trained algo-
rithms and human parallel and longitudinal REF distri-
butions. Lower divergence values correspond to more-
similar distributions.

The average JSD of the human parallel and longitudinal
distributions at each referring expression in the VaREG
corpus is 0.096. That both CatBoost and XGBoost have
smaller distances than these to both the parallel and
the longitudinal distributions suggests that these have
homed in on distributions that fall between these two.

5.3. WSJ distributional results
Table 6 shows the results of constructing longitudinal
human variation distributions on the much larger WSJ
corpus.

Figure 2: Plot of entropies associated with different
feature–value combinations across 3 corpora. For a
given feature combination z, the y-axis shows the av-
erage entropy over REFs found in RE instances hav-
ing this combination of feature values. If all forms are
equally likely, then the average entropy will be 1.58.
The x-axis shows the log of the rank entropy - e.g.
log2 7 for the feature combination with the 7th highest
mean entropy. These values are shown for the longitu-
dinal distributions (vareg and wsj), and for the human
parallel annotations of the VaREG corpus (vareg par).

WSJ Longitudinal
RF 0.00304
XGBoost 0.00317
CatBoost 0.00296

Table 6: JSD divergences between the trained algo-
rithms and longitudinal REF distributions. Lower di-
vergence values correspond to more-similar distribu-
tions.

Where we see approximately 8-10% differences be-
tween algorithms in the VaREG longitudinal compar-
ison, this number drops to around 3-4% in the WSJ
data. At the same time, the divergences have become
an order of magnitude smaller. This is paralleled by
the divergences between the predictions made by the
different algorithms. In application to the VaREG cor-
pus, the difference in the predicted distributions of RF
and CatBoost (the most different) was 0.022, while for
WSJ the corresponding difference was 0.00082. This
was the largest difference between predicted distribu-
tions. As the corpus size increases, the added train-
ing data results in greater similarity of the predictions
made by the three algorithms. At the same time, they
all converge more closely on the longitudinal distribu-
tions, which, we suggest, reflect real human variation.

6. Discussion
This study has made use of distributional information
in longer corpora to infer variation in human REF
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choices. Such an option obviates the need for expen-
sive parallel human annotation of corpora, such as was
undertaken for a small corpus by Castro Ferreira et al.
(2016a).

There is an important reason for wanting human
distributional information in the evaluation of REF
prediction systems: Language is inherently non-
deterministic. Speakers do not produce the same REF
for the same contexts. While we have no direct ev-
idence for this, we would speculate that the same
speaker would not necessarily give the same RE the
same form if asked to annotate it twice. Viethen and
Dale (2006) express it this way, although we would also
add the qualification in the same context:

Not only do different people use different re-
ferring expressions for the same object, but
the same person may use different expres-
sions for the same object on different occa-
sions. (Viethen and Dale, 2006, p. 119)

To the extent that this is true, it suggests a failure in
how we perform evaluation of REF prediction systems.
Feature-based models such as the ones considered in
this paper produce non-deterministic predictions. It
is appropriate, therefore, that they be evaluated by
comparison with a distribution, rather than by accuracy
as if they were deterministic predictors.

If we continue to use an evaluation measure in which
the maximum a posteriori probability is used as a
single deterministic prediction from an algorithm,
then certain problems with evaluation will persist.
Inherent natural variation means that there is a ceiling
of accuracy which no predictive system can transcend.
In contrast, if we evaluate by comparing distributions,
this problem does not arise.

We have taken up the choice of the JSD as a metric
for comparing distributions as used by Castro Ferreira
et al. (2016b). This metric has firm foundations
with information theory, being a symmetrisation of
the Kullback-Liebler distance, which is tied to both
Shannon Information on the one hand and Fisher
Information (Ly et al., 2017) on the other.

Ideally, we would evaluate the longitudinal distribu-
tional corpus against a VaREG-style parallel corpus.
However, this only makes sense if the corpora are of
comparable genres. VaREG contains a combination
of non-technical news articles, product and media
reviews, and wikipedia articles. In contrast the WSJ
contains solely financial news reports. In future work,
we propose to construct a VaREG like corpus of
parallel human judgements over a subset of the WSJ,
to enable a more coherent comparison with other
analyses using the WSJ.

If it is important to evaluate algorithms against distri-
butions of human choices, then we need appropriate
corpora in which such choices can be found. These
will be corpora ideally like the VaREG corpus, with
multiple choices made by informants of the same
reference in the same context. There are, unfortu-
nately, a few problems with VaREG which make it
less than ideal in diverse contexts. The size of the
corpus is relatively small. The corpus itself has only
563 instances of annotated referring expressions. The
second issue with VaREG is that only references to the
main topic of the text are annotated in this corpus. One
might wonder, whether the referential form choices of
the participants would have been different if they were
selecting types for all the referring expressions in the
text, much as authors need to do. However, substantial
corpora making up for the shortcomings of VaREG are
unlikely to be available anytime in the near future.

The goal of the current paper, and future work in this
area, is to create ersatz parallel annotations by aggre-
gating referring expressions in similar contexts within
a large corpus. We have dubbed the distributions re-
sulting from such an analysis as longitudinal.
One indicator of the importance of larger corpora for
evaluation can be seen in the fact that the algorithms
trained on half of the WSJ did well in predicting the
longitudinal distributions in the other half. As we saw
in section 5.3 the divergence from the longitudinal
distribution was approximately 30 times larger in the
small VaREG corpus than in the much larger WSJ.

We have seen a growing interest and attention to the
human evaluation of the output of the NLG systems
(Howcroft et al., 2020; van der Lee et al., 2019). These
studies have human participants judge various quality
criteria (e.g. fluency, clarity, and naturalness) of the
system outputs. There is a difference between these
human judgements and the ones addressed in this
study (to which less attention has been paid). While
the former evaluate the output of the ML systems, the
latter offer alternative outputs to the original corpus’
data, against which the non-deterministic predictions
of the ML models are evaluated.

One concern that may be raised is that the use of
longitudinal distributions for evaluation may appear
circular. The longitudinal distributions we construct
for comparison with algorithm predictions are defined
in terms of the combinations of feature values. These
feature values themselves condition the distributions
over REF predicted by the learning algorithms.
However, there is no circularity for two reasons. The
first reason is that we only use this approach for the
evaluation of machine learning algorithms, and not
for the evaluation of feature sets. The second reason
is that while the learning algorithms are trained on
the training set, the longitudinal distributions for
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evaluation are constructed from the test set.

7. Conclusion
In this paper, we have approximated parallel REF
selection by longitudinal construction of distributions.
It is, of course, still necessary to validate this approach
in an experiment where human participants reproduce
a small section of a corpus, such as the WSJ. Our
hypothesis is that the evaluations of algorithms based
on such parallel annotations will match those obtained
by comparison with longitudinal distributions.

While we see a lot of advantages in using longitudinal
corpora as proxies for parallel human corpora, some
caveats must be born in mind. If there are feature–
value combinations present in only a few examples in
the long corpus, giving only an approximate picture of
the distribution reflected by those combinations, then it
may not be possible to make good predictions about the
referring expressions with those feature–value combi-
nations. Usually, however, the longer the corpus, the
more likely we are to obtain an adequate sample of re-
ferring expression form for each feature–value combi-
nation.
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