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Abstract
Incorporating handwritten domain scripts into neural-based task-oriented dialogue systems may be an effective way to
reduce the need for large sets of annotated dialogues. In this paper, we investigate how the use of domain scripts written by
conversational designers affects the performance of neural-based dialogue systems. To support this investigation, we propose
the Conversational-Logic-Injection-in-Neural-Network system (CLINN) where domain scripts are coded in semi-logical
rules. By using CLINN, we evaluated semi-logical rules produced by a team of differently-skilled conversational designers.
We experimented with the Restaurant domain of the MultiWOZ dataset. Results show that external knowledge is extremely
important for reducing the need for annotated examples for conversational systems. In fact, rules from conversational designers
used in CLINN significantly outperform a state-of-the-art neural-based dialogue system when trained with smaller sets of
annotated dialogues.
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1. Introduction

Is it possible that trainable end-to-end task-oriented di-
alogue systems need thousands of annotated examples
to learn domain scripts, which conversational designers
can partially write? Domain scripts have been crucial
for customizing traditional dialogue systems (Bohus
and Rudnicky, 2009) and are pivotal in neural dialogue
systems. Indeed, these neural dialogue systems (Wen et
al., 2017; Liu and Lane, 2018) handle domain scripts
with two dedicated modules – the dialogue state tracker
(DST) and the dialogue policy manager (DPM). The
thousands of annotated examples are needed to approxi-
mate sufficiently the data distribution of the target do-
main (Evans and Grefenstette, 2018) when learning
these DSTs and DPMs.

Annotating dialogues is a long process and, thus, re-
ducing their need for training dialogue systems is a
flourishing research area. Along this line of thinking,
reinforcement learning is often used to gain explicit
knowledge from active users (Zhao and Eskenazi, 2016;
Williams et al., 2017; Jhunjhunwala et al., 2020). Even
virtual active users, implemented in sort of adversarial
networks (Liu and Lane, 2017), have been explored. Yet,
an effective strategy is exploiting the domain knowledge
of conversational designers by giving them a language
to write domain scripts (Altszyler et al., 2021). In this
way, even neural-based dialogue systems act as “hu-
mans that learn to perform the same tasks by reading a
description" (Weller et al., 2020), that is, domain scripts

written by conversational designers.
However, using high skilled conversational designers
to manually develop domain scripts is in contrast with
the mainstream in natural language processing (NLP),
set with the famous Fred Jelinek’s 1985 quote (Moore,
2005): “Every time I fire a linguist, the performance of
the speech recognizer goes up”. Actually, the winning
design pattern for NLP systems is combining low skilled
annotators with machine learning algorithms, which
extract implicit models from annotated corpora. High
skilled rule writers, as conversational designers, are
generally put aside.
In this paper, we aim to investigate whether handwritten
domain scripts can alleviate the need for large sets of
annotated dialogues in trainable end-to-end dialogue
systems. The underlying question is where the invest-
ment should go when adapting dialogue systems: (1)
annotating dialogues with low skilled annotators or (2)
manually compiling domain scripts with conversational
designers. As far as we know, this is the first study
on how the quality of handwritten domain scripts af-
fects the overall performance of end-to-end dialogue
systems. To support this investigation, we propose the
Conversational-Logic-Injection-in-Neural-Network sys-
tem (CLINN). CLINN builds upon the Domain Aware
Multi-Decoder (DAMD) network (Zhang et al., 2019),
which is a state-of-the-art trainable end-to-end task-
oriented dialogue system. CLINN includes a dedicated
symbolic semi-logic language, in line with Jhunjhun-
wala et al. (2020), to allow the manual writing of rules



138

for dialogue scripts for dialogue state tracker and dia-
logue policy manager of DAMD. We also use CLINN in
order to investigate the quality of handwritten dialogue
scripts produced by a team of differently-skilled conver-
sational designers. We experimented with the Restau-
rant domain of the MultiWOZ dataset (Budzianowski
et al., 2018). We used two different sets of dialogues
to allow conversational designers to generate domain
scripts. Results show that domain scripts injected are
effective in situations in which training data are scarce
and, moreover, experience in writing domain scripts is
extremely important. In fact, CLINN, combined with
DAMD, significantly outperforms DAMD when CLINN
uses domain scripts of expert conversational designers.

2. Background and Related Work
Task-oriented dialogue systems are gaining impressive
attention in several real scenarios. However, when dia-
logue systems are evaluated in settings with real users
(Laranjo et al., 2018), their underlying models show all
their limitations.
A specific study has shown the limitations of traditional
rule-based dialogue systems in the health domain (Miner
et al., 2016) when evaluated by external research groups.
Devising strategies to generate more effective dialogue
systems is then a clear need.
Learning end-to-end dialogue systems seems to be the
path to go, but huge annotated training sets are needed.
Moreover, it is difficult to build up datasets in order
to cover the expected distribution of dialogues in the
target domain. It turns out that these datasets are quite
sparse (Budzianowski et al., 2018; Kim et al., 2017).
Alternative ways to help train neural-based dialogue
systems are then gaining attention.
Reinforcement learning is often used to reduce the
centrality of annotated datasets. A fairly interesting
approach is using an Agenda-Based User Simulator
(ABUS) (Liu and Lane, 2017; Schatzmann et al., 2007),
which avoids introducing real humans into the learn-
ing loop. The advantage of using a user simulator is
to get good performance without collecting data for
supervised dialogue policy – an expensive and time-
consuming process. The basic idea of an ABUS model
is to build hand-crafted rules according to an agenda
which is declared before the dialogue is started. ABUS
has been used in different domains such as the movie do-
main (Li et al., 2016). Nevertheless, there is no standard
automatic metric for evaluating these user simulators,
as it is unclear to define how closely the simulator re-
sembles real user behaviors. Indeed, although there
are standards metrics to evaluate a user simulator under
different aspects (Kobsa, 1994; Chin, 2001), there is
no metric that actually correlates with the performance
of a user simulator with human satisfaction (Shi et al.,
2019).
A more direct way to introduce knowledge into neural-
based dialogue systems is by injecting rules of domain
scripts into dialogue state trackers and dialogue policy

managers. This approach is the most general line of
research of merging symbolic knowledge and neural
networks. In the context of neural-based dialogue sys-
tems, this line is pursued by using constrained rules
(Jhunjhunwala et al., 2020), logical rules to be used
in inductive logic programming (Zhou et al., 2020) or
declarative languages (Altszyler et al., 2021). These
rules and models can be easily included in the exist-
ing dialogue state tracking models to guide the training
and prediction phases without additional learning pa-
rameters (Hu et al., 2016; van Krieken et al., 2022).
These models obtain the same advantage of the user
simulator and in addition overcome the problem of the
evaluation of the user-simulator itself. Indeed, the in-
jected knowledge is, in different ways, rules governed
by conversational designers.
However, there is not an extensive study on how con-
versational designers may affect the performance of
the overall system by writing these additional rules for
domain scripts.

3. Method and System
Our solution to inject knowledge of conversational
designers into end-to-end dialogue systems is the
Conversational-Logic-Injection-in-Neural-Network sys-
tem (CLINN). CLINN is a rule-based dialogue state
tracker which allows to use handwritten domain scripts.
It is used in combination with the Domain Aware Multi-
Decoder network (DAMD), which is a state-of-the-art
end-to-end dialogue system. This section describes,
firstly, DAMD and, then, CLINN.

3.1. Domain Aware Multi-Decoder Network
The Domain Aware Multi-Decoder network (DAMD)
(Zhang et al., 2019) offers a great opportunity to inject
external knowledge from handwritten domain scripts.
In fact, DAMD produces symbolic representations of
dialogue states at each turn of the dialogue. Dialogue
states St at the time t are triples (Rt, Bt, At) where Bt

is the belief state, At is the selected action, and Rt is the
answer of the system given the action At. The symbolic
representation of these states is based on belief spans
(Lei et al., 2018). These belief spans are sequences of
symbols expressing belief states, which are the inner
parts of dialogue states.
Moreover, DAMD is a module-based neural network
that, at a given time t, takes St−1 and Ut as inputs,
where Ut is the inserted user utterance, and produces St.
DAMD consists of four seq-to-seq modules plus access
to an external database (see Fig. 1). The four mod-
ules, which partially work as DST and DPM, behave
as follows. The context encoder encodes the context of
the turn (Ut, Rt−1) in a context vector ct. The belief
span decoder receives the previous belief span Bt−1

and, combined with the context vector ct, produces the
belief span Bt of the current turn. This Bt is used to
query the database DB and the answer DBt is concate-
nated with Bt and Ut to form the internal state St of the
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Figure 1: Injecting external handwritten domain scripts with the Conversational-Logic-Injection-in-Neural-Network
(CLINN) and the architecture of the Domain Aware Multi-Decoder (DAMD) network.

turn. Then, the action span decoder produces the cur-
rent action A

(i)
t by taking into consideration the current

internal state St and the previous action At−1 . Finally,
the response decoder emits the final response R

(i)
t tak-

ing into consideration the current internal state St and
the corresponding action A

(i)
t . In Zhang et al. (2019),

multiple actions and multiple responses are produced to
increase variability in dialogues and, for this reason, the
framework is called multi-action data augmentation.
In this work, we decided to use a simplified version
of the DAMD architecture, which receives in input the
user’s dialogue act Ut and the system action At−1 in-
stead of the system response Rt−1. Moreover, we re-
moved the response decoder, leaving a simple action
decoder that generates a single action At.

3.2. Developing Domain Scripts for Dialogue
State Trackers

Building on DAMD, we propose a knowledge-based
dialogue state tracker, that is, our Conversational-Logic-
Injection-in-Neural-Network (CLINN). CLINN allows
conversational designers to develop domain scripts by
using symbolic transition rules. It is a fully opera-
tional dialogue state tracker, which can evolve by it-
self (CLINN-base) or work in cooperation with DAMD
(CLINN+DAMD) by substituting dialogue states when
its transition rules fire (see Fig. 1).
In the following, we describe the representation of di-
alogue states and of transition rules in a semi-logical
language.

3.2.1. Dialogue States in a Semi-logical Language
As far as we aim to inject handwritten domain scripts
into the dialogue system, we need to clarify how dia-
logue states are represented and how rules for domain
scripts can be described. For these reasons, we express
both dialogue states and rules in a logical form (as in
Zhou et al. (2020)). By using this logical form, rules can
be expressed by using logical constraints and variables.

The shared representation of dialogue states (cf. Hen-
derson et al. (2019)) is then presented in the following
way:

St =

Ut Inform(food(thai))

Request(name(?))

Bt−1 area(west)

At−1 Request(food(?))

In belief states Bt−1, logical facts are represented
as feature(value), for example, area(west). Instead,
in the case of user utterances Ut and system ac-
tions At−1, feature-value pairs are inserted into pred-
icates representing dialogue acts and, then, are repre-
sented as dialogue_act(feature(value)), for example, In-
form(food(thai)). Requested values are indicated with
“?”. This representation is needed to indicate dialogue
acts hidden in user utterances and in system actions.
The catalogue of dialogue acts we are using is presented
in the Experimental section (Table 1).

3.2.2. Symbolic Transition Rules in a Semi-logical
Language

Domain scripts consist of symbolic transition rules for
controlling the dialogue state tracker. These transition
rules are then expressed in a logic programming for-
malism, that is, horn clauses with variables. For the
sake of simplicity, these rules are expressed as precon-
ditions and actions. Preconditions are matched on the
current dialogue states. If preconditions fire and vari-
ables are unified with current values, the result of the
rule is to add or replace the bounded action in the next
dialogue state. In the following, there are two examples
of transition rules in Table 2. Given the above state St,
transition rule R1 fires. In fact, all its preconditions
are satisfied and the variables X and Y are unified to
the values thai and west, as Inform(food(X)) in Ut is
matched to Inform(food(thai)) and area(Y) in Bt−1 is
matched to area(west). As result of the application of
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General-domain

bye, greet, reqmore, welcome

Restaurant-domain

inform, request, nooffer, recommend, select,
offerbook, offerbooked, nobook

Additional User Dialogue Acts

Act Description

getrecommend asking for a recommendation

acceptance accepting system’s proposals

rejection reject system’s proposals

alternatives asking for other restaurants

Table 1: General and Domain Specific Dialogue Acts
from MultiWOZ, along with our additional dialogue
acts.

Preconditions → Action

R1 =

Ut Inform(food(X))

Request(name(?))

Bt−1 area(Y)

At−1 Request(food(?))

→ Bt area(Y)

food(X)

R2 =

Ut Inform(food(X))

Request(name(?))

Bt area(Y), food(X)

At−1 Request(food(?))

DBt between(4,10)

→ At Inform(address(Z))

Request(price(?))

Table 2: Two sample rules of a handwritten domain
script.

this transition rule, area(west) and food(thai) are added
to the belief or override existing beliefs. The application
of the transition rule R2 is similar, but its effect is on
the next action of the system At.
During the writing of transition rules for domain scripts,
we asked conversational designers to build up two types
of rules: rules affecting only the belief Bt (Belief rules)
and rules affecting only the action At (Action rules).
Belief and action rules are then sorted in two separated
lists, and the selection algorithm takes the first rule for
each type whose constraints are satisfied.
Transition rules, as written by conversational designers,
may be over-constrained and this fact may hinder its ap-
plication in novel dialogues. For this reason, transition
rules are applied in two ways:

• Fully constrained (Full) - all constraints are con-
sidered.

• Partially constrained (Free) - constraints on pre-
vious actions At−1 are not considered for belief
rules, and constraints on current beliefs Bt are not
considered for action rules.

In the experimental section, we will analyze how this
may affect the final performance of the dialogue system.

4. Experiments
Through these experiments, our aim is to investigate:
(1) if conversational designers can reduce the need for
annotated dialogues in neural-based dialogue systems,
and (2) what is the relevance of the skill level of conver-
sational designers for the final performance of learned
neural-based dialogue systems.
The section is organized as follows. Section 4.1 shows
the setting of our experiments by describing the general
principles, the dialogue corpus, the production of transi-
tion rules, the evaluation of the coherence of transition
rules produced by different conversational designers,
and the metrics used to evaluate the dialogue systems.
Section 4.2 analyzes the results.

4.1. Experimental Set-Up
4.1.1. General Principles and Dialogue Corpus
The general principle in our experiments involving
neural networks is: performing repeated experiments
and evaluating statistical significance of the difference
among different configurations. Indeed, results of
neural-based dialogue systems, as well as results of all
experiments using neural networks, may vary a lot de-
pending on the initial conditions. Different seeds given
to random pseudo-generators can determine different
initial conditions for learning. Therefore, we repeated
each experiment involving DAMD for 6 times with 6
fixed seeds. Whenever relevant, we computed paired sta-
tistical significance analysis with other configurations.
Experiments are carried out on the restaurant domain
of the widely-used MultiWOZ dataset (Budzianowski
et al., 2018) extended by Lee et al. (2019), as in Zhang
et al. (2019). The full dataset has been designed as a
human-human task-oriented dialogue dataset collected
via the Wizard-of-Oz framework. One participant is the
system. The dataset contains conversations on several
domains for tourism services (hotel, train, restaurant,
taxi,...). Each domain has a set of dialogue acts in ad-
dition to general ones such as greeting or bye. These
dialogue acts are used to describe interactions between
users and the system. The restaurant domain of this
dataset consists of 1200 dialogues for the training set,
61 dialogues for the testing set, and 50 dialogues for
the validation set. To simulate data scarcity at different
levels, we derived three additional training sets by ran-
domly sampling the full training set. These additional
training sets contain 150, 300 and 450 dialogues. Hence,
results will be presented for a specific training set and
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Inter-designer agreement
Small set Medium set

Group of conversational
designers Belief rules Action rules Belief rules Action rules

exps 0.52 0.36 0.49 0.43
exps vs. jrs 0.53 0.27 0.56 0.30

jrs 0.58 0.44 0.89 0.56

Table 3: Inter-designer agreement score within subgroups of conversational designers and between different
subgroups computed on the different rule sets.

by using a learning curve with respect to the increasing
number of dialogues.
Finally, we improved the restaurant dataset of Multi-
WOZ by annotating the 500 missing user’s dialogue
acts1. For some of these cases, we have also introduced
some additional dialogue acts, which are, in our opinion,
more suitable. Additional dialogue acts are listed and
described in Table 1.

4.1.2. Designing and Evaluating Transition Rules
for Domain Scripts

To investigate our two research questions, we built up a
team of five conversational designers divided in two sub-
groups with different level of expertise: (1) a subgroup
of two experts (exps), which have more than 15 years
of experience in natural language processing and more
than 5 years of experience in experimental and produc-
tion of dialogue systems; (2) a subgroup of three juniors
(jrs), which have less than 1 year of experience in NLP
and no experience in dialogue systems production. The
three junior conversational designers have been trained
for a week. Clearly, it is extremely difficult to build
larger groups of conversational designers. Indeed, con-
versational designers are experienced professionals, at
least as opposed to low skilled dialogue annotators.
The procedure to write domain scripts is the following.
Given a fixed set of annotated training dialogues, each
conversational designer generates the set of transition
rules for domain scripts in two steps: 1) s/he observes
the set of annotated dialogues; 2) s/he generates a set of
transition rules. We asked conversational designers to
produce two separate sets of transition rules: the Belief
rules and the Action rules. The two sets, respectively,
act on belief state Bt and on system action At.
Conversational designers are exposed to two sets of an-
notated training dialogues: the small set and the medium
set. The small set contains 5 dialogues. The medium
set contains the small set plus 10 additional dialogues.
Firstly, designers see the small set and produce the
first set of transition rules and, only then, they see the
medium set to produce the second set of transition rules.
To evaluate the difficulty of writing rules for domain
scripts, we measured inter-designer agreement within
subgroups and between subgroups. We defined the inter-
designer agreement measure for each pair of designers

1The dataset will be available upon request.

as:
AGR =

|R1 ∩R2|
|R1 ∪R2|

(1)

where R1 and R2 are the sets of rules produced by the
first and second annotators, respectively. Inter-designer
agreement for subgroups is averaged with respect to
the pairs of designers as in the Fleiss’ kappa for inter-
annotator agreement.

4.1.3. Evaluation Metrics for Dialogue systems
The automatic evaluation of dialogue systems is, in gen-
eral, a very difficult problem (Deriu et al., 2021). Yet,
since a human evaluation is extremely expensive, we
used metrics widely adopted to evaluate both actions
and belief states of dialogue systems. These metrics,
hereafter described, are: Action-F1, Joint Goal, Slot
Accuracy and Slot F1. Action-F1 is the micro-averaged
F1-score of the predicted dialogue action at compared
to the correct one ât. Joint Goal is defined as the frac-
tion of dialogue turns for which the values vi for all
slots si of the belief state are predicted correctly. Slot
Accuracy is defined as the fraction of slots values cor-
rectly predicted by the model over all slot values. Slot
F1 is defined as the micro-averaged F1-score of slot
prediction.

4.1.4. Configurations and Meta-parameters
We experimented with four configurations:
DAMD, Fully-informed DAMD, CLINN-base, and
CLINN+DAMD. DAMD is the basic DAMD system
tested in the configuration where inputs Bt−1 and At−1

at the step t are the actual B and A produced by the
previous application of DAMD. Fully-informed DAMD
is the basic DAMD system tested in the configuration
where inputs Bt−1 and At−1 at the step t are taken from
the ground truth. DAMD and Fully-informed DAMD
represent the lower and upper bounds of our study,
respectively. CLINN-base is a system that evolves
only utilizing transition rules written by conversational
designers. Finally, CLINN+DAMD is a combination
of DAMD and the module that applies rules written by
designers.
DAMD is mainly trained with almost the same hyper-
parameters used in Zhang et al. (2019). Our version of
DAMD has 3 encoders and 2 decoders based on single-
layer bidirectional GRUs with hidden size of 100. Since
our focus is only on the restaurant domain, DAMD relies
on a vocabulary restricted to words of that domain.
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Model Designed Domain Script Metrics
Size Type Designer Group Action F1 Joint Goal Slot Acc Slot F1

CLINN-base

Small
Full exps 14.1 29.5 92.65 56.7

jrs 8.9 22.8 92 49.7

Free exps 14.6 38.8 93.8 66.9
jrs 8.9 25.2 92.4 56.2

Medium
Full exps 18.8 28.6 92.8 58.8

jrs 8.9 25.2 92.4 56.2

Free exps 19.6 44.9 94.8 72.6
jrs 19.7 45.7 95.2 75.1

Fully-informed-DAMD 44.8 72.2 98.4 92.9
DAMD 43.7 56.7 97.1 87.6

CLINN+DAMD

Small
Full exps 43.3 57.8†⋄ 97.2⋄⋄ 87.9†⋄

jrs 43.7 57.2††† 97.2⋄⋄⋄ 87.9⋆⋆⋆

Free exps 43.3 61.5⋆⋆ 97.5⋆⋆ 88.9⋆⋆

jrs 43.5 61.3⋆⋆⋆ 97.4⋆⋄⋄ 88.8⋆⋆⋆

Medium
Full exps 44.9⋆⋆ 59.6⋆⋄ 97.3⋆⋄ 88.3⋆⋆

jrs 43.5 57.1 97.2 87.8

Free exps 44.8†† 63.3⋆† 97.6⋆⋆ 89.7⋆⋆

jrs 44.6†⋆† 61.6⋄⋄⋄ 97.5††† 89.3†††

Table 4: Results over the test set for CLINN and DAMD systems. Results of CLINN-base and CLINN+DAMD are
averaged on the target group of conversational designers (exps or jrs). DAMD results are the average of 6 runs over
a training set of 300 examples. CLINN+DAMD is trained as DAMD for each member of the target group. Symbols
†,⋄ and ⋆ indicate that the difference between the result of one member of the Designer group and the result of
DAMD is statistically significant with a confidence level of, respectively, 90%, 95%, and 99% with the sign test.

4.2. Results and Discussion
Results from the experiments are relevant both for in-
dustrial practice and for research. In this section, firstly,
we analyze the relative quality and agreement level of
the conversational designers. Secondly, we investigate
the quality of the produced rule sets for domain scripts
used in CLINN. Finally, we describe the limitations of
our study.
Our first observation is that writing rules for domain
scripts is not easy. Agreement is low in writing these
rules and seems to decrease with expertise level (see Ta-
ble 3). Indeed, nearly all inter-designer agreements are
lower than 0.60. The only outlier is 0.89 of the Belief
rules for the Medium set of annotated dialogues. Action
rules are more difficult to define than Belief rules, as the
agreement on Action rules is generally lower than the
one on Belief rules. Moreover, agreement in subgroups
with the same level of expertise is higher than agree-
ment between subgroups (0.27 for the Small set and
0.30 for the Medium set). Experience of conversational
designers generally increases the level of disagreement:
the jrs subgroup has a higher agreement with respect
to exps subgroup. Reading more annotated dialogues
helps jrs to be more convinced on the same set of rules.
The agreement on Belief rules surges from 0.58 of the
Small set to 0.89 of the Medium set. The agreement on
Action rules increases from 0.44 to 0.56. This is not
true for the exps subgroup. Then, experts seem to use
their knowledge combined with the one derived from
observed dialogues whereas juniors seem to be more
influenced by annotated dialogues they see.
To understand the performance improvement obtained
with handwritten domain scripts, we report results of
two configurations of the fully neural-based dialogue
system: DAMD, which is our baseline, and Fully-

informed-DAMD, which gives the upper-bound that
can be obtained by using only annotated dialogues (see
Table 4). These two configurations are useful to under-
stand if transition rules are effective or not. For example,
there is a very small space of improvement in metrics
like Action F1 – 1.05 difference in mean – and Slot
Accuracy – 1.20 difference in mean. Moreover, Fully-
informed DAMD outperforms DAMD with statistical
significance for all the metrics.
It seems to be clear that only handwritten domain scripts
are not sufficient to build up a dialogue system that
can efficiently handle testing dialogues. Results from
CLINN-base are not satisfactory. There is no CLINN-
base configuration whose result is in between the base-
line and the upper bound of neural dialogue systems,
that is, DAMD and Fully-informed-DAMD. An inte-
gration between handwritten domain scripts and neural-
based dialogue systems is desired.
The injection of handwritten domain scripts into neu-
ral dialogue systems is effective and useful. In fact,
all the CLINN+DAMD configurations outperform the
DAMD system in Joint Goal, Slot Accuracy, and Slot F1
metrics. The difference, except for some cases, is statis-
tically significant (see Table 4). In the case of Action F1,
CLINN+DAMD significantly outperforms DAMD for
the majority of Medium rule set configurations, while
the Small rule set seems not very effective for this met-
ric according to the lack of significant improvements
in performance. Moreover, rules designed by experts
achieve overall better scores than other configurations
(44.9 and 44.8), while juniors’ ones have statistically
significant better scores only for Free rule type (44.6).
Using handwritten domain scripts with less constraints
seems to be the way to go when used in combination
with DAMD. The configuration Free is better than the
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Figure 2: Trend of models’ performances when increasing the number of dialogue examples used to train DAMD.
The plots show average results of the configurations where CLINN uses the Medium set of the Free Rule type.

configuration Full for quite all the metrics in both Small
and Medium settings (see Table 4). Indeed, using less
constraints causes an overall improvement in perfor-
mance. For example, an improvement of 3.7 in Joint
Goal is obtained in the case of Medium rule set of exps
(63.3), and additional 4.5 average improvement is ob-
tained for the same rule set written by jrs (61.6). Sim-
ilar performance gains in Joint Goal are also obtained
with Small rule sets of both groups of conversational
designers, where rules of exps and jrs obtain respec-
tively 3.7 and 4.1 average improvement. In addition,
most metrics show better performances using rules with
less constraints. Similar effects are also observed in
CLINN-base configurations, suggesting that using over-
constrained rules with DAMD seems to be less effective.
Experience in writing transition rules is important.
CLINN+DAMD using domain scripts of experts sig-
nificantly outperforms DAMD in most configurations,
except for Action F1 metric where results with Small
rule sets are slightly worse than DAMD evolving alone.
Moreover, experts are able to gain more effective rules
by reading additional dialogues. The difference in Joint
Goal between Small-Free and Medium-Free is higher
for experts (61.5 to 63.3) than for juniors (61.3 to 61.6).
Finally, using conversational designers to build up
transition rules seems to be better than using effort
in annotating additional dialogues. In fact, adding
training examples to DAMD does not clearly out-
perform CLINN+DAMD (Figure 2) in most metrics.
DAMD with 1,200 examples behaves similarly to
CLINN+DAMD with rules of experts that uses 450
training examples. This version of DAMD is even close
to CLINN+DAMD with rules of experts using only 300
training examples. This is a very important observation,
as it suggests a clear view for where to invest time and
efforts.
There are, of course, some limitations in this study to
acknowledge. Firstly, actions produced by DAMD and
CLINN do not contain values of informed slots, pre-
venting belief state trackers from accessing possible
additional information that should be tracked in the next

turn. Secondly, when CLINN produces only the be-
lief state Bt, the action At, generated by DAMD and
which will be forwarded to the next turn, is generated
according to DAMD’s Bt; this is due to the architecture
of DAMD that prevents the replacement of the hidden
representation of DAMD’s Bt with the CLINN’s sym-
bolic Bt. However, these limitations do not falsify our
previous conclusions.

5. Conclusion
Merging pre-existing explicit knowledge and learning
from examples is one of the most important research
lines in studies in learning neural networks and, in gen-
eral, in machine learning. Yet, there is not a clear un-
derstanding on how the quality of teachers affects the
results of final systems.
In this paper, we carried out a study on how rules
provided by conversational designers affect the perfor-
mance of neural-based dialogue systems. We firstly col-
lected different sets of rules derived from task-oriented
dialogue systems implemented by differently-skilled
conversational designers; then we combined them with
a neural-based dialogue system by applying these rules
to situations in dialogue for which they are appropriate.
Our results are an important indication as we showed
that designers can significantly reduce the sets of anno-
tated dialogue examples, especially in the case of more
experienced designers. Moreover, we gained some in-
sights about how different skills of designers affect dia-
logue systems designing and, hence, their performances.
Therefore, as a general contribution, our study showed
that, in contrast with the main stream in natural lan-
guage processing, companies developing dialogue sys-
tems should invest more in experienced conversational
designers and less in extensive dialogue collection and
annotation.
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Barahona, L. M., Su, P.-H., Ultes, S., and Young, S.
(2017). A network-based end-to-end trainable task-
oriented dialogue system. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 438–449, Valencia, Spain, April. Asso-
ciation for Computational Linguistics.

Williams, J. D., Asadi, K., and Zweig, G. (2017). Hy-
brid code networks: Practical and efficient end-to-
end dialog control with supervised and reinforcement
learning. In ACL 2017 - 55th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference (Long Papers), volume 1,
pages 665–677.

Zhang, Y., Ou, Z., and Yu, Z. (2019). Task-Oriented
Dialog Systems that Consider Multiple Appropriate
Responses under the Same Context. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):9604–9611, 4.

Zhao, T. and Eskenazi, M. (2016). Towards End-to-
End Learning for Dialog State Tracking and Manage-
ment using Deep Reinforcement Learning. In Pro-
ceedings of the 17th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
1–10, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Zhou, Z., Beirami, A., Crook, P., Shah, P., Subba, R.,
and Geramifard, A. (2020). Resource Constrained
Dialog Policy Learning via Differentiable Inductive
Logic Programming. In Proceedigns of CoLing.


	Introduction
	Background and Related Work
	Method and System
	Domain Aware Multi-Decoder Network
	Developing Domain Scripts for Dialogue State Trackers
	Dialogue States in a Semi-logical Language
	Symbolic Transition Rules in a Semi-logical Language


	Experiments
	Experimental Set-Up
	General Principles and Dialogue Corpus
	Designing and Evaluating Transition Rules for Domain Scripts
	Evaluation Metrics for Dialogue systems
	Configurations and Meta-parameters

	Results and Discussion

	Conclusion
	Bibliographical References

