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Abstract
Recent studies in cross-lingual learning using multilingual models have cast doubt on the previous hypothesis that shared
vocabulary and joint pre-training are the keys to cross-lingual generalization. We introduce a method for transferring monolingual
models to other languages through continuous pre-training and study the effects of such transfer from four different languages to
English. Our experimental results on GLUE show that the transferred models outperform an English model trained from scratch,
independently of the source language. After probing the model representations, we find that model knowledge from the source
language enhances the learning of syntactic and semantic knowledge in English.

1. Introduction
Training a language model from scratch requires consid-
erable resources, both with respect to data and computa-
tional resources. These requirements can be a limiting
factor for many actors, and for smaller languages, it is
not clear whether there even exists enough data to train
a language model. Consequently, there is an increasing
interest in using cross-lingual transfer to alleviate the
requirements of training a language model from scratch.
Most of the work in this direction (see the next section)
concerns multilingual models.
In this paper, we want to explore the effects of cross-
lingual transfer of a monolingual model into a target
language space. More specifically, we want to inves-
tigate if it is possible to adapt existing monolingual
models to the target language and study their down-
stream performance in comparison with a model trained
from scratch in the target language. Additionally, we
want to study the impact of language similarity between
source and target language on fine-tuning performance
after transfer. Based on recent work that shows that
transformer-based language models encode universal
properties (Lu et al., 2021), we hypothesize that model
knowledge learned in the source language enhances the
learning of the target language independently of lan-
guage proximity.
Our contributions in this work are the following: (i) we
introduce an adaptation method for cross-lingual trans-
fer (Section 3.), (ii) we show that the models that
have been transferred to English outperform an En-
glish model trained from scratch in the GLUE bench-
mark for all source languages studied here (Section
4.2.), (iii) through probing the model representations,
we demonstrate that abstractions learned in the source
language are transferred to English (Section 4.3.).

2. Related Work
The standard methodology of transferring knowledge
across languages is by training either cross-lingual
(Ruder et al., 2019) or multilingual models (Schwenk
and Douze, 2017; Devlin et al., 2019; Conneau et al.,

2020a; Xue et al., 2020; Chung et al., 2021). These latter
models are trained on massively multilingual data using
a shared vocabulary, which has proven to be successful
for zero-shot cross-lingual transfer (Pires et al., 2019),
where the multilingual model, in this case mBERT, is
fine-tuned on a downstream task in the source language
and evaluated on the same task in the target language.
Pires et al. (2019) hypothesize that zero-shot cross-
lingual generalization is facilitated by using a shared
vocabulary. Several recent studies contradict this as-
sumption. Karthikeyan et al. (2020) show that in a
joint-training setting, multilinguality can be achieved
even if the two languages do not share any vocabu-
lary. Conneau et al. (2020b) train jointly bilingual
masked language models that share only the top two
Transformer layers. A different perspective is provided
by Artetxe et al. (2020), who disregard even the joint
pre-training constraint and transfer monolingual BERT
to a new language by learning only a new embedding
matrix from scratch while freezing the rest of the model.
Their results indicate that neither shared vocabulary nor
joint pre-training are necessary for cross-lingual trans-
fer in the zero-shot setting. This method has also been
applied to GPT-2 (de Vries and Nissim, 2021).
The overarching conclusion mainly from Conneau et
al. (2020b) and Artetxe et al. (2020) is that zero-shot
cross-lingual transfer is facilitated by shared statistical
properties between language spaces, rather than multi-
lingual pre-training. We would like to explore if this
holds in a different transfer scenario, where a model is
transferred to a new language and fine-tuned on mono-
lingual tasks in that language. Our hypothesis is that
the statistics of language acquired by a model in the
source language will transfer and boost monolingual
task performance in the target language.

3. Method and Models
Due to the lack of standardized monolingual down-
stream tasks in non-English languages, we have chosen
to transfer from other languages into English. However,
our method is likely to be most useful in a low-resource
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Figure 1: Our cross-lingual transfer method, applied to
the transfer from Swedish to English: we continue pre-
training Swedish BERT on our English Corpus, using
the English vocabulary. Then, we fine-tune the trans-
ferred model on an English task.

scenario. The proposed method is illustrated in Figure 1.
For each language pair, we take a pre-trained language
model in a source language and replace the source
language vocabulary with the English vocabulary and
continue pre-training the model on English data. We
denote a model transferred with our method from the
source language lang to English by [lang→ en]. Given
that the vocabulary tokens learned by a Wordpiece tok-
enizer are ordered by descending frequency, our method
maps the vocabulary of the target language to the trained
weights of the source embeddings with similar frequen-
cies. In other words, the fifth most frequent token of
the English vocabulary is initialised with the source em-
bedding of the fifth most frequent token of the source
vocabulary.
Our method is closely related to the MonoTrans method
proposed by Artetxe et al. (2020). In both cases, cross-
lingual transfer is primarily performed by adapting the
embedding layer of a monolingual model. In (Artetxe et
al., 2020), the embedding layer is learned from scratch
in the target language, while the rest of the model param-
eters are frozen. In our case, we continue pre-training all
model parameters in the target language, including the
embedding layer. An additional difference is the method
used for evaluating the model after transfer: we fine-
tune the model on tasks in the target language, while
Artetxe et al. (2020) perform zero-shot evaluation.
The main criteria for including a monolingual language
model in our experiments is that its architecture and
training procedure should follow BERT-base (Devlin
et al., 2019) and its pre-training corpus should include
Wikipedia. The complete list of monolingual BERT
models employed is presented in Table 1, while the
details of model selection can be found in Appendix

section A. Note that we have selected languages with
varying degrees of linguistic similarity to English, and
also one language with two different models with differ-
ent amounts of training data.

4. Experiments
4.1. Experimental Setup
Our pre-training corpus is English Wikipedia,1 which
amounts to 13G English text. We train a Wordpiece
tokenizer on the downloaded English Wikipedia, similar
to Devlin et al. (2019). The vocabulary size is fixed to
32K. For [lang] models with a larger vocabulary size,
the vocabulary is resized to 32K by keeping only the
first 32K vocabulary tokens.
Each [lang→ en] model is trained for one epoch on En-
glish Wikipedia using the masked language modeling
training objective. The complete list of training hyper-
parameters is shared between all trained models and can
be found in Appendix section B.
All models are fine-tuned on the tasks included in the
GLUE benchmark (Wang et al., 2018), excluding WNLI
given the known issues with the dataset construction.2

The standard fine-tuning procedure is followed (De-
vlin et al., 2019) and the hyperparameters can be found
in Appendix section B. We refrain from reporting the
GLUE test results, since the comparison with models
achieving SOTA performance in GLUE is not relevant
for this work.
For each language pair (lang, en), the fine-tuning per-
formance of model [lang→ en] is compared with the
performance of a BERT-base model, namely [en], that
is trained from scratch on our English corpus using the
exact same setup with the transferred models. This base-
line allows us to compare the effect of choosing different
initializations, namely random or trained monolingual
models, when training a model in a new language.

4.2. GLUE Fine-Tuning
The GLUE validation results of our models are reported
in Table 2. The standard deviation of the metric score
in each task is presented in Appendix section C. The
results confirm that transferring a non-English model to
English, namely [lang→ en], leads to significantly better

1Downloaded in November 2019, using this script:
https://github.com/facebookresearch/XLM/
blob/master/get-data-wiki.sh

2https://gluebenchmark.com/faq(Number 12)

Language Model name Alias Vocab size Data (GB)
English BERT-base (ours) en 32,000 13
Swedish KB-BERT (Malmsten et al., 2020) sv 50,325 18
Dutch BERTje (de Vries et al., 2019) nl 30,000 12
Finnish FinBERT (Virtanen et al., 2019) fi 50,105 ≈ 48

Arabic AraBERTv01 (Antoun et al., 2020) ar1 64,000 23
AraBERTv02 (Antoun et al., 2020) ar2 64,000 77

Table 1: List of the monolingual BERT models considered. Data size refers to the size of data used for pre-training.

https://github.com/facebookresearch/XLM/blob/master/get-data-wiki.sh
https://github.com/facebookresearch/XLM/blob/master/get-data-wiki.sh
https://gluebenchmark.com/faq
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Lang CoLA MNLI (m/mm) MRPC QNLI QQP RTE SST-2 STS-B AVG
en 25.68 76.21/76.13 82.69 85.86 85.21 54.21 88.04 82.71 72.97
sv→ en 43.65 80.72/81.77 88.93 89.11 86.32 55.08 90.22 84.91 77.85
nl→ en 39.87 78.96/79.79 85.65 87.34 85.82 55.01 89.10 83.65 76.13
fi→ en 40.01 79.90/80.52 87.82 88.30 86.37 52.12 88.18 83.82 76.34
ar1→ en 33.29 78.90/79.38 87.16 87.46 86.09 54.21 88.87 84.46 75.54
ar2→ en 39.82 79.52/80.28 88.46 88.35 85.72 57.18 90.10 83.77 77.02

Table 2: GLUE validation metric score for all models and tasks. Accuracy is the reported metric for all tasks, except
from CoLA (Mathew correlation coefficient), QQP and MRPC (F1 score) and STS-B (Spearman correlation (x100)).
The “AVG” column corresponds to the average score computed across all evaluated GLUE tasks. The bold font
underlines the overall best performing model per source language, comparing to the [en] model.

fine-tuning performance than an English model trained
from scratch, namely [en]. The best performing model,
in terms of average score, is [sv→ en], outperforming
[en] by 4.88 absolute difference. Additionally, we make
the following observations:

• All transferred models improve over the [en]
model independently of source language: In-
terestingly, the linguistic similarity between the
source language and English does not significantly
impact the effectiveness of our cross-lingual trans-
fer method.

• The data size of the pre-training corpus in the
source language matters: The English model
transferred from [ar2], namely [ar2→ en], per-
forms better than [ar1→ en], which originates from
[ar1]. Given that [ar2] is trained on ≈ 3 times more
data than [ar1], this possibly indicates the impor-
tant role of pre-training data size in cross-lingual
performance.

We also investigate the case where we apply English pre-
training on the source monolingual models but keep the
source vocabulary. The fine-tuning results on GLUE,
presented in Table 3, demonstrate the importance of
matching the tokenizer to the vocabulary of the target
language. However, it is noteworthy that the models
perform similarly (or even better) to the English model
trained from scratch.

4.3. English Linguistic Probing
We also study the linguistic effects of the proposed
cross-lingual transfer method. This is done by evaluat-
ing the syntactic and semantic knowledge of the [en]
compared to the [lang→ en] models through probing
their representations.
More specifically, we evaluate the word representations
yielded by [lang→ en] using the structural probe model,
proposed by Hewitt and Manning (2019), which detects
whether syntactic trees are encoded in a linear trans-
formation of the model embedding space. In this way,
we evaluate if the word embeddings of the transferred
English models encode syntactic parsing information.
Following Hewitt and Manning (2019), we define the

Lang Vocab AVG
en en 72.97
sv→ en sv 73.25
sv→ en en 77.85
nl→ en nl 72.99
nl→ en en 76.13
fi→ en fi 68.54
fi→ en en 76.34
ar1→ en ar1 73.99
ar1→ en en 75.54
ar2→ en ar2 74.27
ar2→ en en 77.02

Table 3: Average GLUE validation score for all models,
using the original or the English vocabulary. The bold
font underlines the overall best performing model per
source language.

structural probe model as a linear transformation that
learns the tree distances between all pairs of words in
training sentences from the English part of Universal
Dependencies v2.7 (English-EWT).3 The trained prob-
ing model is then evaluated on the English-EWT test set
using the following evaluation metrics (Hewitt and Man-
ning, 2019): Spearman correlation between predicted
and true word pair distances (DSpr), averaged across
the input sentences with length 5-50, and the percent-
age of undirected edges placed correctly in comparison
with the gold parse tree, namely undirected unlabelled
attachments score (UUAS).
For the semantic probing of the transferred models,
we use the Words In Context task (WiC Pilehvar and
Camacho-Collados (2019)). This is a binary classifi-
cation task, where the model needs to determine if a
given word is used with the same meaning or not in two
different contexts. For this purpose, we train a linear
classifier on top of each sentence representation. The
details of our probing setup can be found in Appendix
section D.
The probing results are presented in Table 4. The im-
provement of the [lang→ en] models over the [en]

3https://github.com/
UniversalDependencies/UD_English-EWT

https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
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Syntax Semantics
Language UUAS DSpr WiC (acc)
en 66.21 70.41 56.73
sv→ en 67.22 72.15 61.09
nl→ en 66.59 71.73 59.46
fi→ en 67.02 71.56 61.06
ar1→ en 67.53 71.67 59.99
ar2→ en 64.98 70.48 59.90

Table 4: Probing results of the [en] and English transferred models on the English-EWT test set using the structural
probe model (Hewitt and Manning, 2019) and on the WiC (Pilehvar and Camacho-Collados, 2019) dev set.

model on the WiC test for all source languages demon-
strates that semantic abstractions learned in the source
language are transferred to English and enhance probing
performance. Interestingly, the results of syntactic prob-
ing on the transferred models are in the best case similar
to the probing results on the [en] model. It is worth ob-
serving that unlike the results on the GLUE benchmark,
[ar2→ en] performs clearly worse than [ar1→ en] on
syntactic probing. This indicates that larger pre-training
data size hinders the learning of syntactic information
in the target language through language pre-training.
Overall, the results on English probing indicate that our
cross-lingual transfer method boosts the learning of se-
mantic information in the target language, but does not
enhance the learning of syntactic information.

5. Discussion
The monolingual experimental setup employed here al-
lows us to control for the source language and study the
effect of this choice on cross-lingual performance. The
presented results on GLUE as well as English probing
tasks show that the linguistic similarity between source
and target language is not important for cross-lingual
transfer in our setup. This result contradicts previous
work by Lauscher et al. (2020) that studies the effect of
language similarity in zero-shot cross-lingual transfer
and finds that multilingual language models have poor
zero-shot performance in distant target languages.
Our setup differs significantly from zero-shot cross-
lingual transfer, where the source model is transferred
to the target language at test time, after being fine-
tuned on a task in the source language. By contrast, we
adapt trained monolingual models to the target language
through additional pre-training. This is inspired by a do-
main adaptation approach proposed by Gururangan et al.
(2020). They show that adapting the original language
model to the target domain through extra pre-training
improves model performance on the target task. Our
results suggest that this approach is also beneficial for
model transfer between two different language spaces.
Future work will study the adaptation of multilingual
models with our method and perform a comparison with
zero-shot cross-lingual transfer.
As part of the proposed cross-lingual transfer method,
each token embedding in the target embedding matrix
is initialised with the trained source embedding at the

same position in the source embedding matrix. The
investigation of the effect of this frequency-based em-
bedding initialisation scheme on model performance in
the target language, in comparison with other types of
initialisations such as random, is left for future work.
Due to the lack of established evaluation benchmarks
in other languages, we perform cross-lingual transfer
experiments only from other languages to English. How-
ever, we believe that our method can provide a smart
initialization for training models in minority languages,
where neither large amounts of data nor computational
resources are available. In this direction, de Vries et
al. (2021) transfer monolingual BERT models to two
Dutch dialects using zero-shot learning.

6. Conclusion
In this paper, we show that using a pre-trained language
model as initialization for pre-training in new language
spaces is beneficial with regard to model performance
on downstream tasks and linguistic knowledge in the tar-
get language. Our experimental results demonstrate that
language similarity has no impact on cross-lingual per-
formance, while larger pre-training data size appears to
have a positive effect on monolingual task performance
in the target language.
We hope that our work will inspire practitioners and
researchers to initialize new monolingual models with
parameters from existing models if possible, in order to
reach competitive models in low resource settings and
reach better performance on downstream tasks.
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Lang CoLA (stdev) MNLI (stdev) (m/mm) MRPC (stdev) QNLI (stdev) QQP (stdev) RTE (stdev) SST-2 (stdev) STS-B (stdev)
en 2.62 0.23/0.28 0.42 0.30 0.05 1.89 0.85 0.19
sv→ en 1.21 0.17/0.09 0.19 0.19 0.07 1.95 0.32 0.28
nl→ en 1.22 0.24/0.27 0.75 0.44 0.09 0.82 0.36 0.40
fi→ en 2.71 0.12/0.14 0.65 0.28 0.09 1.54 0.51 0.48
ar1→ en 2.63 0.16/0.18 0.71 0.54 0.10 2.87 0.68 0.15
ar2→ en 0.74 0.19/0.21 1.06 0.37 0.05 2.12 0.43 0.44

Table 5: Standard deviation in GLUE validation results. Each value corresponds to the square root of the sample
variance from the mean, computed across 5 runs per combination of model and task.

A Selection of monolingual language
models

All monolingual models used were downloaded from
the HuggingFace model hub,4 which is an open library.
All selected models are cased, with the exception of
AraBERTs. The mapping between alias name in the
paper and model name in the Hugging Face model hub
is presented in Table 6.
In Table 1, the pre-training data sizes of KB-BERT,
BERTje and AraBERTs were taken directly from the
corresponding papers (Malmsten et al., 2020; de Vries
et al., 2019; Antoun et al., 2020). For BERT-base, our
estimation of the pre-training data size is based on the
total number of words (3.3B) in the pre-training corpus,
provided by (Devlin et al., 2019). Our estimation for
FinnBERT is based on the total number of characters
(24B), stated in the original paper Virtanen et al. (2019).

Alias Hugging Face name
BERT-base (original) bert-base-cased
sv KB/bert-base-swedish-cased
nl GroNLP/bert-base-dutch-cased
fi TurkuNLP/bert-base-finnish-cased-v1
ar1 aubmindlab/bert-base-arabertv01
ar2 aubmindlab/bert-base-arabertv02

Table 6: Mapping between model alias name in the
paper and model name in the Hugging Face model hub.

B Training details
The implementation of English pre-training and GLUE
fine-tuning is heavily based on the example scripts5

provided by the HuggingFace transformers library.
The hyperparameters used are presented in Table 7. The
parameters which are not presented here have been set to
their default value.6 For training the English Wordpiece
tokenizer, we used the example code which is part of
the HuggingFace tokenizers library.7 All models

4https://huggingface.co/
5https://github.com/huggingface/

transformers/blob/master/examples/
pytorch/language-modeling/run_mlm.py,
https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/text-classification/run_glue.py

6https://huggingface.co/transformers/
_modules/transformers/training_args.html

7https://huggingface.co/docs/
tokenizers/python/latest/pipeline.html#
all-together-a-bert-tokenizer-from-scratch

were trained on a single GPU machine (Nvidia Tesla
v100 sxm2 32GB), with the average training time per
model being 4 days.

Hyperparameter Training value Fine-tuning value
batch size 128 32
learning rate 5e-5 2e-5
maximum sequence length 128 128
train_epochs 1.0 3.0
optimizer AdamW AdamW

Table 7: Hyperparameters used for English pre-training
(second column) and GLUE fine-tuning (third column).

C GLUE results
For each model and task, we perform 5 runs with vary-
ing random seeds. The standard deviation from the
average performance across these 5 runs is presented in
Table 5. Overall, we observe that the standard deviation
is notably higher in CoLA and RTE comparing to the
rest of the GLUE tasks.

D English linguistic probing experiments
D1. Syntactic probing
Our implementation of the structural probing method
(Hewitt and Manning, 2019) is heavily based on the
coding repositories8 of (Hewitt and Manning, 2019; Chi
et al., 2020).

D2. Semantic probing
The jiant library9 was used for training and eval-
uation of our models on the WiC task (Pilehvar and
Camacho-Collados, 2019). The reported accuracy corre-
sponds to the average accuracy across 5 runs, each one
with a different random seed. The standard deviation
across runs is presented in Table D2..

8https://github.com/ethanachi/
multilingual-probing-visualization
https://github.com/john-hewitt/
structural-probes/

9https://github.com/nyu-mll/jiant

https://huggingface.co/
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
https://huggingface.co/transformers/_modules/transformers/training_args.html
https://huggingface.co/transformers/_modules/transformers/training_args.html
https://huggingface.co/docs/tokenizers/python/latest/pipeline.html#all-together-a-bert-tokenizer-from-scratch
https://huggingface.co/docs/tokenizers/python/latest/pipeline.html#all-together-a-bert-tokenizer-from-scratch
https://huggingface.co/docs/tokenizers/python/latest/pipeline.html#all-together-a-bert-tokenizer-from-scratch
https://github.com/ethanachi/multilingual-probing-visualization
https://github.com/ethanachi/multilingual-probing-visualization
https://github.com/john-hewitt/structural-probes/
https://github.com/john-hewitt/structural-probes/
https://github.com/nyu-mll/jiant
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Lang WiC (stdev)
en 1.19
sv→ en 1.27
nl→ en 0.76
fi→ en 1.76
ar1→ en 1.10
ar2→ en 1.22

Table 8: Standard deviation (stdev) of the average ac-
curacy on WiC validation set over 5 runs with different
random seeds. Standard deviation is computed as the
square root of the sample variance from the mean accu-
racy.
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