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Introduction

The International Workshop on Health Text Mining and Information Analysis (LOUHI) provides an in-
terdisciplinary forum for researchers interested in automated processing of health documents. Health
documents encompass electronic health records, clinical guidelines, spontaneous reports for pharmaco-
vigilance, biomedical literature, health forums/blogs or any other type of health-related documents. The
LOUHI workshop series fosters interactions between the Computational Linguistics, Medical Informa-
tics and Artificial Intelligence communities. The 12 previous editions of the workshop were co-located
with SMBM 2008 in Turku, Finland, with NAACL 2010 in Los Angeles, California, with Artificial
Intelligence in Medicine (AIME 2011) in Bled, Slovenia, during NICTA Techfest 2013 in Sydney, Au-
stralia, co-located with EACL 2014 in Gothenburg, Sweden, with EMNLP 2015 in Lisbon, Portugal,
with EMNLP 2016 in Austin, Texas; in 2017 was held in Sydney, Australia; in 2018 was co-located
with EMNLP 2018 in Brussels, Belgium; in 2019 was co-located with EMNLP 2019 in Hong Kong; in
2020 was co-located with EMNLP 2020 and took place online due to the COVID-19 pandemics; and
in 2021 was co-located with EACL 2021 and took place online due to the persistence of the COVID-
19 pandemics. This year the workshop is co-located with EMNLP 2022 and takes place with a hybrid
modality.
The aim of the LOUHI 2022 workshop is to bring together research work on topics related to health
documents, particularly emphasizing multidisciplinary aspects of health documentation and the interplay
between nursing and medical sciences, information systems, computational linguistics and computer
science. The topics include, but are not limited to, the following Natural Language Processing techniques
and related areas:

• Techniques supporting information extraction, e.g. named entity recognition, negation and uncer-
tainty detection

• Classification and text mining applications (e.g. diagnostic classifications such as ICD-10 and
nursing intensity scores) and problems (e.g. handling of unbalanced data sets)

• Text representation, including dealing with data sparsity and dimensionality issues

• Domain adaptation, e.g. adaptation of standard NLP tools (incl. tokenizers, PoS-taggers, etc) to
the medical domain

• Information fusion, i.e. integrating data from various sources, e.g. structured and narrative docu-
mentation

• Unsupervised methods, including distributional semantics

• Evaluation, gold/reference standard construction and annotation

• Syntactic, semantic and pragmatic analysis of health documents

• Anonymization/de-identification of health records and ethics

• Supporting the development of medical terminologies and ontologies

• Individualization of content, consumer health vocabularies, summarization and simplification of
text

• NLP for supporting documentation and decision making practices

• Predictive modeling of adverse events, e.g. adverse drug events and hospital acquired infections

• Terminology and information model standards (SNOMED CT, FHIR) for health text mining
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• Bridging gaps between formal ontology and biomedical NLP

The call for papers encouraged authors to submit papers describing substantial and completed work
but also focus on a contribution, a negative result, a software package or work in progress. We also
encouraged to report work on low-resourced languages, addressing the challenges of data sparsity and
language characteristic diversity.
This year we received 56 submissions. Each submission went through a double-blind review process
which involved three program committee members. Based on comments and rankings supplied by the re-
viewers, we accepted 25 papers. The selection was entirely based on the scores provided by the reviewers.
The overall acceptance rate is 45%.
Our special thanks go to Tim Baldwin for accepting to give an invited talk.
Finally, we would like to thank the members of the program committee for providing balanced reviews
in a very short period of time, and the authors for their submissions and the quality of their work.
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Keynote Talk: Deep Phonology: Analysing Antimicrobial
Stewardship in Veterinary Clinics through NLP

Tim Baldwin
Mohamed bin Zayed University of Artificial Intelligence, UAE

Abstract: Antimicrobial stewarship refers to guidelines on the appropriate use of antimicrobials to opti-
mise patient health and minimise microbial resistance. In this talk, I will present work on the large-scale
analysis of veterinary clinical records to perform fine-grained analysis to aid in the implementation and
monitoring of antimicrobial stewardship programmes in Australia.

Bio: Tim Baldwin is Associate Provost (Academic and Student Affairs) and Head of the Department
of Natural Language Processing, Mohamed bin Zayed University of Artificial Intelligence in addition
to being a Melbourne Laureate Professor in the School of Computing and Information Systems, The
University of Melbourne. His primary research focus is on natural language processing (NLP), including
social media analytics, deep learning, and computational social science.
Tim completed a BSc(CS/Maths) and BA(Linguistics/Japanese) at The University of Melbourne in 1995,
and an MEng(CS) and PhD(CS) at the Tokyo Institute of Technology in 1998 and 2001, respectively.
Prior to joining The University of Melbourne in 2004, he was a Senior Research Engineer at the Center
for the Study of Language and Information, Stanford University (2001-2004). His research has been fun-
ded by organisations including the Australia Research Council, Google, Microsoft, Xerox, ByteDance,
SEEK, NTT, and Fujitsu, and has been featured in MIT Tech Review, IEEE Spectrum, The Times, ABC
News, The Age/Sydney Morning Herald, Australian Financial Review, and The Australian. He is the
author of well over 400 peer-reviewed publications across diverse topics in natural language processing
and AI, with around 20,000 citations and an h-index of 66 (Google Scholar), in addition to being an ARC
Future Fellow, and the recipient of a number of awards at top conferences.
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Abstract

In the medical field, we have seen the emer-
gence of health-bots that interact with patients
to gather data and track their state. One of the
downstream application is automatic question-
naire filling, where the content of the dialog is
used to automatically fill a pre-defined medical
questionnaire. Previous work has shown that
answering questions from the dialog context
can successfully be cast as a Natural Language
Inference (NLI) task and therefore benefit from
current pre-trained NLI models. However, NLI
models have mostly been trained on text rather
than dialogs, which may have an influence on
their performance. In this paper, we study the
influence of content transformation and content
selection on the questionnaire filling task. Our
results demonstrate that dialog pre-processing
can significantly improve the performance of
zero-shot questionnaire filling models which
take health-bots dialogs as input.

1 Introduction

Work on Question Answering (QA) and Machine
Reading Comprehension (MRC) mostly focuses on
wh-questions of arbitrary types (who, what, where
etc.) whose answer can be found in text. The
answer can be extractive where a short span of the
text is identified as the answer (Pearce et al., 2021)
or it can be abstractive where a free-form answer
is generated from the question and some support
document (Bauer et al., 2018).

Here, we focus instead on a QA setting where
questions are restricted to polar (yes/no) and Agree-
ment Likert Scale (ALS) questions and where an-
swers are contained in a dialog rather than a para-
graph text. As illustrated in Figure 1, this setting is
useful for automatic questionnaire filling (AQF) in
the medical field. Given a dialog between a patient
and a health bot, the goal of automatic question-
naire filling is to answer a set of predefined ques-
tions from a medical questionnaire (here the Pain

Dialog

bot: What is the most difficult for you about your sleep ?
patient: I have back pain that prevents me from sleeping.
bot: I’m sorry to hear that. How long have you had back
pain?
patient: Since I’ve been working out, I’ve had constant
back pain at night.
bot: Do you think pain can last for long?
patient: I think it will stop once I stop playing sports.
bot: Should we let time fix the pain?
patient: My doctor thinks that I need to get used to doing
sports and that the pain will disappear after a while.

Questionnaire

(1) My pain is a temporary problem in my life.
CQ: �No �Yes �NA
ALS: �Totally disagree �Rather disagree �Agree

�Totally agree �NA

Figure 1: An example of a dialog and a question from
the PBPI Questionnaire, answered in CQ and ALS for-
mat

Beliefs and Perceptions Inventory (PBPI) question-
naire (Williams and Thorn, 1989)) based on the
dialog content.

In previous work, Toudeshki et al. (2021) com-
pared three ways of deriving answers to questions
from dialogs: Natural Language Inference, Ques-
tion Answering and Text Classification. For polar
and ALS questions, they found that Natural Lan-
guage Inference (NLI) performs best. One possible
limitation of their approach however is that they
apply NLI models to dialogs while NLI models are
trained on non-dialogic text.

In this paper, we propose different ways of trans-
forming and selecting dialog content before apply-
ing NLI to answer questions, and we analyse the
impact of these operations on NLI-based question-
naire filling. Our hypothesis is that transforming
the input dialog into a format closer to the text
format on which NLI models are trained, should
help these models perform better. Our experimen-
tal results confirm this hypothesis: it demonstrates
that, in a zero-shot setting, transforming and select-

1



ing dialog content yields significant improvements
over a baseline which takes the full dialog content
as input.

2 Related work

We briefly situate our work with respect to three
tasks which have similarities with Automatic
Questionnaire Filling namely, Machine Reading
Comprehension, Question Answering and Aspect-
Based Sentiment Analysis (ABSA).

MRC/QA. Given a text and a question, MRC
and QA models aim to derive the answer to that
question from some input document (Zeng et al.,
2020).

Similar to our approach, Ren et al. (2020) focus
on filling in medical questionnaires consisting of
polar questions about medical terms. However, in
their case, the input to the model is a text (patient
records) rather than a dialog. Furthermore, QA is
modeled as a classification task which restricts the
approach to a limited set of possible questions and
answers. Finally, the questions are restricted to
polar questions about terms whereas we consider
polar and ALS questions about full sentences.

Recently, some work has focused on answering
questions from dialogs rather than text. A simple
approach for modeling a multi-turn dialog is to con-
catenate all turns (Zhang et al., 2019; Adiwardana
et al., 2020). However, for retrieval-based response
selection, Zhang et al. (2018); Yuan et al. (2019)
showed that turns-aware aggregation methods can
achieve a better understanding of dialogs compared
to considering all turns equally . Similarly for
MRC on dialogs, turns-aware approach have been
proposed which select turns in the conversation
that are related to the input question: Zhang et al.
(2021) uses embedding-based similarity to select
such turns while Li et al. (2020) uses a pre-trained
language model fine-tuned on NLI tasks. Their
results showed that eliminating irrelevant turns ef-
fectively improves results. Our work extends on
this work showing that both content selection and
content transformation help improve MRC on di-
alogs.

Aspect-Based Sentiment Analysis. Aspect
based sentiment analysis (ABSA) is the process
of determining sentiment polarity for a specific
aspect in a given context. An aspect term is
generally a word or a phrase which describes
an aspect of an entity (Jiang et al., 2019). For

instance, (Jang et al., 2021; Sun, 2022) investigate
aspect-based sentiment analysis on user tweets
related to COVID-19. While AQF could be viewed
as an ABSA task where each item should be
labelled with one of three (polar question) or five
(ALS question) sentiment value (agree, disagree,
etc.), two key differences between ABSA and
AQF is that (i) labels apply to sentences rather
than aspect terms and (ii) contrary to these terms,
the questions used in medical questionnaire can
be very similar semantically (e.g., “Is your pain
constant?” “Is your pain a temporary problem?”)
making it harder to extract the correct answer from
the input dialog.

Closest to our work, Toudeshki et al. (2021)
showed that pre-trained NLI models can be used to
fill in questionnaires from dialogs in a zero-shot set-
ting. We depart from their work in that we propose
different ways of transforming and selecting dialog
content and investigate how this impact zero-shot,
dialog-based, automatic questionnaire filling.

3 Automatic Questionnaire Filling (AQF)

Task. Given a dialog D and a questionnaire Q,
the Automatic Questionnaire Filling task consists
in providing an answer ai for each question qi ∈ Q.

We address the task in a zero-shot setting (no
training data). For evaluation, we provide a test
set consisting of 100 dialogs and their associated
questions and answers.

Questionnaire. We consider two types of ques-
tions: Closed Questions (CQ) and Agreement Lik-
ert Scale (ALS) questions. CQ have three possible
answers (yes, no or Not Applicable, i.e. the dialog
does not address the question) and ALS has five (to-
tally disagree, rather disagree, agree, totally agree,
NA). As illustrated in Figure 1, questions are re-
formulated as declarative statements with multiple
choice answers. With the emergence of health-bots,
AQF can help transform human-bot dialogs into
structured data which can be used by physicians
to track patients condition. In particular, it can be
used to fill in questionnaires such as the Pain Be-
liefs and Perceptions Inventory (PBPI, (Williams
and Thorn, 1989)) questionnaire which includes 16
questions and is standardly used in the context of
clinical studies.

Collecting dialogs that include information for
all of these questions is a difficult task however. To
facilitate data collection for the creation of the test
set, we therefore decrease the number of questions
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Figure 2: Dialog pre-processing schema

by selecting five questions out of sixteen. Because
the questions in the PBPI are often very similar, and
knowing the answer to one of them allows deriving
the answer to others, we chose questions that are
semantically distinct from one another. The list of
all PBPI questions is given in Appendix C and the
five selected questions are indicated in bold.

Test Data. To evaluate our approach, we create
a test set of 100 dialogs and their associated ques-
tion/answer pairs.

The creation of the test data involves first, col-
lecting human-bot dialogs and second, extracting
answers to the PBPI questions from the collected
dialogs.

Collecting Dialogs. We collect the dialogs using
the Amazon Mechanical Turk platform and ask-
ing Turkers to interact with the ComBot health bot
(Liednikova et al., 2021) while behaving as if they
had chronic pain issues. To avoid Turkers introduc-
ing the PBPI questions verbatim in the dialog, they
were given a list of topics to be mentioned rather
than the questions themselves (See details in Ap-
pendix D). In this way, we ensure that the collected
dialogs address the questions to be answered while
encouraging their diversified paraphrasing during
the conversation. Turkers received bonuses each
time they mention a topic. Turkers were also given
the ability to modify the bot utterance in order to
redirect the conversation more easily: they could
reject the current candidate in which case, the turn
with the next highest confidences score would be
displayed by the bot. More information about Turk-
ers payments is provided in the Ethic section (Sec.
A). Details of the instructions given to the Turk-
ers and a screenshot of the annotation interface are
given in the Appendix.

Identifying Question Answers. Two annotators
with good English proficiency were asked to se-
lect the correct answer for each of the five selected
questions based on each of the 100 collected di-
alogs. We computed agreement between the two
annotators on all Q/A pairs and all 100 dialogs.

The Kappa score is 0.94 for CQ and 0.86 for ALS
question type. Thereafter, we used adjudication to
decide on the final answer for all cases where the
two annotators disagreed. The annotators were the
first two authors of this paper.

The final test corpus consists of 100 dialogs,
each associated with 10 questions (5 yes/no ques-
tions and 5 ALS questions) and their answers. Di-
alog length varies from 4 to 70 turns and from 47
to 593 tokens, with 17.1 turns and 218.7 tokens on
average.

4 Approach

Following Toudeshki et al. (2021), we model ques-
tion answering as an NLI task where the premise
is derived from the dialog, the hypothesis from the
question and the answer from the NLI result. Given
a question and a dialog, our model, illustrated in
Figure 2, answers the question in three steps as
follows.

Deriving an NLI Premise from the dialog. The
NLI premise is derived from the input dialog using
first, Content Transformation and second, Content
Selection. As detailed in Section 5, we experiment
with different ways of transforming and selecting
content.

Deriving an NLI hypothesis from a question.
To derive an NLI hypothesis from a question, we
simply represent questions as statements (E.g., "I
have pain regularly" instead of "Do you have pain
regularly?"). Since the PBPI questionnaire ques-
tions are already in the form of a statement, we did
not make any changes to them and used them as
they are.

Deriving the answer. We use RoBERTa large
(Liu et al., 2019) 1 fine-tuned on the MNLI dataset
(Williams et al., 2018) to determine the entailment
relation. We then derive the answer from the en-
tailment relation between dialog and question as

1https://huggingface.co/
roberta-large-mnli
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Figure 3: Map NLI scores to ALS answer types

follows.
For Close Questions, we set the answer to "Yes"

if NLI returns an entailment, "No" if it returns a
contradiction and "NA" if it returns "neutral".

For ALS questions, we map the NLI result to
agreement choices as follows. If "neutral" has the
highest score, the answer is "NA". Else, the con-
tradiction score is subtracted from the entailment
score. The subtraction result lies in a range of (-1,1)
which is uniformly divided into 5 segments corre-
sponding to the 5 ALS answer types, as shown in
figure 3.

5 NLI-oriented Dialog Pre-processing

We consider different ways of transforming and
selecting dialog content.

We also study the impact of the NLI model used,
comparing DeBERTa, the model used in Toudeshki
et al. (2021), with RoBERTa (Liu et al., 2019), the
model used in our approach.

The DeBERTa model (He et al., 2020)2 extends
the BERT architecture with two innovative tech-
niques: disentangled attention mechanism and an
enhanced mask decoder. We compare AQF mod-
els with and without pre-processing and based on
RoBERTa vs. DeBERTa, and find that whereas,
when no pre-processing is applied, a DeBERTa
model generally outperforms a RoBERTa-based
model, the reverse is true when pre-processing
is applied. This shows that while the improved
DeBERTa-based, NLI model helps bridge the gap
between dialog and text, explicit pre-processing
still yields better results.

5.1 Content transformation

Null Transformation (CTnull) A null transfor-
mation baseline where we simply concatenate the
turns of the input dialog. To encode the speaker
information in each turn, the utterance is accompa-
nied by the speaker role (patient/bot) at the begin-
ning.

Summary (CTsum) Pairs of adjacent turns are
summarized, and the resulting summaries are con-

2https://github.com/microsoft/DeBERTa

catenated. In this way, the input dialog is trans-
formed into a sequence of two-turn summaries. We
also tried summarizing the whole dialog in one
go but found that applying summarization on each
two turns rather than on the whole dialog gives bet-
ter results.We use the BART-large model3 (Lewis
et al., 2020) fine-tuned on the News summariza-
tion corpus XSUM (Narayan et al., 2018) and on
the dialog summarization corpus SAMSum (Gliwa
et al., 2019). The model achieves ROGUE-L score
of 0.44 on SAMSum test set 4.

Long Answers (CTanswer) In information seek-
ing dialog, adjacent turns often are question-answer
pairs. Based on this observation, we map each pair
of adjacent turns in the dialog into a single declara-
tive sentence assuming that the first turn is a ques-
tion (e.g., "Which drug did you take?"), the second
is a short answer to that question (e.g., "Doliprane")
and the sentence derived from the mapping is a long
answer to the question (e.g., "I took Doliprane").
To learn this mapping, we fine-tune T5 (Raffel et al.,
2019), a pre-trained encoder-decoder model, on
two datasets of (question, incomplete answer, full
answer) triples, one for wh- and one for yes-no
(YN) questions. For wh-questions, we use 3,300
entries of the dataset consisting of (question, an-
swer, declarative answer sentence) triples gathered
by Demszky et al. (2018) using Amazon Mechani-
cal Turk workers. For YN questions, we used the
SAMSum corpus, (Gliwa et al., 2019) which con-
tains short dialogs in chit-chat format. We created
1,100 (question, answer, full answer) triples by au-
tomatically extracting YN (question, answer) pairs
from this corpus and manually associating them
with the corresponding declarative answer. Data
was splitted into train and test (9:1) and the fine-
tuned model achieved 0.90 ROUGE-L score on the
test set.

This fine-tuned model was applied to each two
subsequent turns of the input dialogs, and the result-
ing declarative sentences were then concatenated to

3https://huggingface.co/Salesforce/
bart-large-xsum-samsum

4https://paperswithcode.com/sota/
abstractive-text-summarization-on-samsum
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Figure 4: F1 macro average for Close Questions (on the left) and ALS questions (on the right) for the RoBERTa
variant of our model. The two most left columns indicate the performance of (Toudeshki et al., 2021)’s model on
their (dark blue) and our (light green) test set. The best results are obtained by the CTanswer, CSnli model.

form the declarative transform of the whole dialog.

5.2 Content selection
The transformation operations described in the pre-
vious section yield sequences of dialog turns, two-
turn summaries or full answers. We call these "in-
put units" and consider three ways of pre-selecting
the input units that will be used as premise when
testing for entailment.

Null Content Selection (CSnull) A null content
selection baseline where the premise is the con-
catenation of all the input units produced by the
content transformation operations (dialog turns, se-
quence of two turn summaries, sequence of full
form answers).

Unit-Based (CSunits). Each question is assessed
against each input item. Given an input sequence
In of length n, the answer ai to a question q is then
determined by aggregating the resulting entailment
probabilities as follows:

• ai = NA if for all input items i ∈ In, the
NA probability is highest.

• ai = Y es (resp. ai = No) if for at least one
item i ∈ In, the Y es (resp. No) probability is
highest and the highest Yes (resp. No) proba-
bility is higher than the highest No (resp. Yes)
probability.

Similarity (CSsim). For each question q, we se-
lect a subset of input units that are semantically
similar to q. We encode question and input units
using SBERT5 (Reimers and Gurevych, 2019) and

5https://huggingface.
co/sentence-transformers/
paraphrase-distilroberta-base-v2

compute cosine similarity for each (q, input unit)
pair. We then select items whose similarity score
is higher than 0.5, concatenate them and use the
result as the NLI premise.

NLI (CSnli). For each question q in the question-
naire, we select the input units that are related to q
using the NLI model (RoBERTa-Large). Specifi-
cally, we select sentences which have an entailment
or contradiction score higher than 0.5. All selected
sentences are then concatenated to form the NLI
premise.

5.3 Baseline and Comparison
Our baseline is the null method (CTnull+CSnull)
i.e., the approach where question answering applies
to the untransformed, unfiltered dialog. To com-
pare our approach with Toudeshki et al. (2021), we
also report the performance of their model on both
their test set (10 dialogs) and on ours (100 dialogs).

6 Results

We evaluate our approach using macro and
weighted F1 score.

6.1 How much does pre-processing help
improve performance ?

Figure 4 shows the results for all combinations of
our content transformation and selection methods6.

Improvement over the baseline. Comparing
our best model (CTanswer, CSnli) with the no-
preprocessing CTnull, CSnull baseline, we see
(Figure 4) that pre-processing can multiply the

6We first focus on the results of our RoBERTa based model
and delay the comparison with DeBERTa based models to
Section 6.4.
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Two turns

bot: do you feel anxiety or stress during nights awaken-
ings ?
patient: I feel stressed during night awakenings although
I am not feeling guilty about being in pain.

Generated summary
Patient feels stressed during night awakenings although
he’s not in pain.

Table 1: An example of the summarization model per-
formance on two subsequent turns, showing missing
and inconsistent information in the output summary

macro and weighted F1 scores by two. The best pre-
processing method combines a question+answer
to sentence transformation (CTanswer) with the
entailment-based content selection method (CSnli).

Content transformation The CTanswer ques-
tion+answer transform, which merges pairs of ad-
jacent dialog turns into declarative statements, con-
sistently yields the best results. A possible explana-
tion is that this transform yields an input, a declara-
tive sentence, which is consistent with the format
of the training data used for NLI models.

Conversely, summarization (CTsum) has the
lowest performance. This could be due to errors
such as hallucinations or omissions known to be
produced by summarization systems (Zhao et al.,
2020). Table 1 shows an example of such errors
when applying the CSsum transformation.

Figure 5: Break down of F1 macro average scores
for each question based on out-performed model
(CTanswer + CSnli) results

Content selection The NLI-based content selec-
tion method (CSnli) consistently outperforms other
content selection approaches. This is consistent
with Toudeshki et al. (2021)’s findings that for au-
tomatic questionnaire filling in a medical setting,
NLI models performed better on average on polar
and ALS question types.

We also see that the second best performing con-
tent selection method varies depending on the ques-
tion type. As CSunit first filters question/item pairs
with highest probability, the method works well on
CQ questions but struggles to handle more nuanced
ALS questions which leads to an overall drop in
performance on ALS questions.

6.2 Impact of pre-processing on different
question/answer types

Table 2 shows the results for all combinations of
pre-processing steps for each question/answer type.

Agreement answers (Yes, Totally agree) have the
highest accuracy (about 70% in the best case) in
both CQ and ALS questions, which suggests that
the NLI model is better at confirming rather than
rejecting a statement.

On CQ questions, various content selection
methods have different impacts on each answer
type. CSsim shows much lower (3-4 times lower)
performance on ’No’ class than on ’NA’ or ’Yes’,
CSnull has higher accuracy for the ’NA’ class than
for ’Yes’ or ’No’ classes and CSnli performs bet-
ter on ’Yes’ and ’No’ answers than on ’NA’. Both
CSnli and CSunits gives the most balanced F1 dis-
tribution across classes.

For ALS questions, CSnli and CSsim show the
best results. While the CSnli model is best at identi-
fying ’Totally agree’ and ’Totally disagree’ classes,
CSsim distinguishes well whether the answer is
absent (’NA’) or whether it belongs to the ’Totally
agree’ class.

Performance on ALS questions is always lower.
This can be explained by choice of threshold that
distinguishes classes ’Totally agree’ and ’Agree’ as
well as ’Totally disagree’ and ’Rather disagree’. As
mentioned above, CSunits favorizes the extreme
classes which leads to a higher performance drop
in comparison with CSsim on ALS.

6.3 Break down of results for each question
Figure 5 presents the results of our best model
(CTanswer+CSnli) for each PBPI question sepa-
rately.

The question “I am in constant pain.” obtains
highest score in CQ, while it performs poorly in
ALS, demonstrating that the model is effective at
detecting the presence of consistent pain but bad
at predicting the level of agreement. The same be-
havior can be seen for the question “There is a way
to heal my pain”. On the other hand, for question
“My pain will always be there” gets lowest score
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CQ ALS
NA YES NO macro weighted NA TD RD A TA macro weighted

support 142 228 130 142 54 79 115 110
CTnull

CSnull 0.39 0.15 0.27 0.27 0.25 0.28 0.11 0.26 0.07 0.16 0.18 0.18
CSunits 0.33 0.48 0.46 0.43 0.43 0.33 0.25 0.02 0.07 0.58 0.25 0.25
CSsim 0.52 0.55 0.10 0.39 0.42 0.54 0.07 0.09 0.23 0.60 0.31 0.36
CSnli 0.34 0.60 0.48 0.48 0.50 0.34 0.29 0.08 0.21 0.67 0.32 0.34

CTsum
CSnull 0.41 0.11 0.23 0.25 0.23 0.36 0.12 0.21 0.11 0.10 0.18 0.20
CSunits 0.32 0.33 0.43 0.36 0.35 0.32 0.23 0.06 0.02 0.44 0.22 0.23
CSsim 0.49 0.40 0.02 0.30 0.32 0.51 0.00 0.05 0.21 0.46 0.24 0.30
CSnli 0.37 0.43 0.46 0.42 0.42 0.31 0.28 0.10 0.09 0.48 0.25 0.26

CTanswer
CSnull 0.45 0.28 0.37 0.37 0.35 0.41 0.27 0.27 0.17 0.33 0.29 0.30
CSunits 0.40 0.59 0.51 0.50 0.52 0.41 0.29 0.17 0.16 0.57 0.32 0.33
CSsim 0.53 0.60 0.13 0.42 0.46 0.55 0.10 0.20 0.23 0.59 0.33 0.38
CSnli 0.45 0.70 0.57 0.57 0.59 0.42 0.35 0.16 0.23 0.65 0.36 0.38

Table 2: F1-Scores for RoBERTa for closed (CQ) and agreement Likert scale (ALS) question types; TD - totally
disagree, RD - rather disagree, A - agree, TA - totally agree. CT: content transformation, CS: content selection.

Figure 6: F1 macro average for the DeBERTa variant of our model on Closed Questions (CQ) on the left and
Agreement Likert Scale (ALS) on the right. Test set of 100 dialogs with 10 questions each (5 yes/no questions and 5
ALS questions).

for both question types. The presence of the term
“always” in the question turns it into a strong state-
ment and consequently the model mostly rejects the
statement unless it has been explicitly mentioned
in the dialog.

6.4 Comparison with previous work and a
different classifier (RoBERTa vs.
DeBERTa)

Our model differs from previous work by
Toudeshki et al. (2021) in two ways: it includes a
pre-processing phase and uses the RoBERTa clas-
sifier whereas Toudeshki et al. (2021) applies De-
BERTa to the whole input dialog. We compare our
model with (i) the same model using DeBERTa and
(ii) Toudeshki et al. (2021)’s model both on their
and our test set.

Comparison with previous work In Figure 4,
the two columns on the far left show the perfor-
mance of Toudeshki et al. (2021)’s model on two
test sets: the test set they used (10 instances and
16 questions) and our test set (100 instances and 5
questions).

Unsurprisingly, Toudeshki et al. (2021)’s results
vary with the test set: while they report F1 score of
41 for CQ and 24 for ALS questions on their test
set, these change to 35 and 30 on ours.

We also see that Toudeshki et al. (2021)’s
DeBERTa-based, no pre-processing model out-
performs our RoBERTa-based, null-preprocessing
model (CTnull, CSnull) on both test sets. We con-
jecture that this difference can be explained by De-
BERTa’s improved attention mechanism, which se-
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CQ ALS
NA YES NO macro weighted NA TD RD A TA macro weighted

support 142 228 130 142 54 79 115 110
CTnull

CSnull 0.43 0.33 0.31 0.35 0.35 0.41 0.23 0.19 0.22 0.47 0.30 0.32
CSunits 0.15 0.29 0.40 0.28 0.28 0.15 0.21 0.07 0.00 0.45 0.18 0.17
CSsim 0.51 0.45 0.09 0.35 0.37 0.54 0.03 0.05 0.24 0.60 0.29 0.35
CSnli 0.34 0.51 0.40 0.42 0.43 0.29 0.23 0.17 0.21 0.63 0.31 0.32

CTsum
CSnull 0.40 0.29 0.26 0.32 0.31 0.37 0.16 0.11 0.16 0.31 0.22 0.25
CSunits 0.20 0.18 0.33 0.24 0.23 0.20 0.17 0.11 0.05 0.26 0.16 0.16
CSsim 0.48 0.34 0.01 0.28 0.29 0.49 0.00 0.00 0.17 0.40 0.21 0.27
CSnli 0.39 0.39 0.35 0.38 0.38 0.37 0.20 0.07 0.15 0.45 0.25 0.27

CTanswer
CSnull 0.44 0.48 0.35 0.42 0.43 0.43 0.26 0.14 0.19 0.57 0.32 0.34
CSunits 0.19 0.45 0.39 0.34 0.36 0.19 0.20 0.07 0.10 0.55 0.22 0.23
CSsim 0.52 0.51 0.16 0.40 0.42 0.53 0.09 0.15 0.20 0.61 0.32 0.37
CSnli 0.40 0.60 0.42 0.47 0.50 0.41 0.30 0.21 0.16 0.63 0.34 0.36

Table 3: F1-Scores for DeBERTa for closed (CQ) and agreement Likert scale (ALS) question types; TD - totally
disagree, RD - rather disagree, A - agree, TA - totally agree. CT: content transformation, CS: content selection.

lects relevant information in the input dialog with
respect to the hypothesis.

However, our best model outperforms Toudeshki
et al. (2021)’s approach by 22 points F1 for CQ
questions and 6 points for ALS questions which
indicates that pre-processing better helps bridge the
gap between dialog and NLI-based QA.

DeBERTa vs. RoBERTa figure 6 and Table 3
show the result of our model when using DeBERTa
instead of RoBERTa.

When using pre-processing, we see that the best
RoBERTa model (CTanswer, CSnli) outperforms
the best DeBERTa model by 10 points F1 for CQ
questions and 2 points for ALS questions.

Conversely, when no pre-processing is applied,
the DeBERTa variant of our model outperforms
the RoBERTa variant which is consistent with
the results discussed in the previous paragraph.
For the DeBERTa variant, we observe that the
CSnull baseline is no longer the lowest perform-
ing content selection approach, while the perfor-
mance of CSunits and CSsim becomes lower than
the baseline (CSnull). This highlights the fact
that the DeBERTa model performs better without
weak content selection approaches. On the other
hand, it can be seen that the impact of content
selection and transformation approaches is signif-
icant in RoBERTa, although using a weaker clas-
sifier, and our model outperforms previous work.
This shows that the proposed select-and-transform

pre-processing approach improves results in both
RoBERTa and DeBERTa, though this improvement
is more significant in RoBERTa, suggesting that
this latter model is more sensitive to the form and
size of the input content.

7 Conclusion

In this paper, we studied how dialog pre-processing
can impact the task of filling medical question-
naires based on patient-bot interactions. Our ex-
perimental results show that converting pairs of
adjacent turns to declarative sentences and select-
ing input units based on their entailment relation
with the question can significantly enhance perfor-
mance.
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A Ethics

Regarding Regulation (EU) 2017/745, described
software is intended for general uses, even when
used in a healthcare environment, it is intended for
uses relating to lifestyle or well-being that do not
constitute any a medical prediction and medical
prognosis function without doctors validation or
correction.

We gathered dialogs for experiments using Ama-
zon Mechanical Turk. Because of the task’s dif-
ficulty and estimated completion time, we set the
initial reward at 1$. We assigned 0.5$ bonus for
each key point mentioned by the user during the
dialogue. If the user was successful in mentioning
all five key points, he was awarded a bonus of 2.5$
in total.

B Experiment time estimation

The experiments were conducted with a laptop hav-
ing Intel® Core™ i7-10610U CPU @ 1.80GHz *
8 and NVIDIA Quadro P520.

C Questionnaire

PBPI questionnaire statements are provided in table
4.

D Data Collection

Instructions used for data collection in Amazon
Mechanical Turk and the interface are shown in
figures 7, 8 and 9.

We requested the Turkers to converse with the
heath-bot for at least 10 turns in total.
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Id Question

1 No one is able to tell me why it hurts.
2 I thought my pain could be healed, but now I’m not so sure.
3 There are times when it doesn’t hurt.
4 My pain is difficult for me to understand.
5 My pain will always be there.
6 I am in constant pain.
7 If it hurts, it’s only my fault.
8 I don’t have enough information about my pain.
9 My pain is a temporary problem in my life.
10 I feel like I wake up with pain and fall asleep with it.
11 I am the cause of my pain.
12 There is a way to heal my pain.
13 I blame myself when it hurts.
14 I can’t understand why it hurts.
15 One day, again, I won’t have any pain at all.
16 My pain varies in intensity but it is always present with me.

Table 4: List of questions in PBPI questionnaire

Figure 7: Instructions (part 1)
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Figure 8: Instructions (part 2)

Figure 9: Interface

13



Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI), pages 14 - 25
December 7, 2022 ©2022 Association for Computational Linguistics

Assessing the Limits of Straightforward Models for Nested Named Entity
Recognition in Spanish Clinical Narratives

Matías Rojas1, Casimiro Pio Carrino2, Aitor Gonzalez-Agirre2
Jocelyn Dunstan1, and Marta Villegas2

1Center for Mathematical Modeling, University of Chile
2Text Mining Unit, Barcelona Supercomputing Center

Abstract

Nested Named Entity Recognition (NER) is an
information extraction task that aims to iden-
tify entities that may be nested within other
entity mentions. Despite the availability of sev-
eral corpora with nested entities in the Spanish
clinical domain, most previous work has over-
looked them due to the lack of models and a
clear annotation scheme for dealing with the
task. To fill this gap, this paper provides an em-
pirical study of straightforward methods for
tackling the nested NER task on two Span-
ish clinical datasets, Clinical Trials, and the
Chilean Waiting List. We assess the advan-
tages and limitations of two sequence label-
ing approaches; one based on Multiple LSTM-
CRF architectures and another on Joint label-
ing models. To better understand the differ-
ences between these models, we compute task-
specific metrics that adequately measure the
ability of models to detect nested entities and
perform a fine-grained comparison across mod-
els. Our experimental results show that employ-
ing domain-specific language models trained
from scratch significantly improves the perfor-
mance obtained with strong domain-specific
and general-domain baselines, achieving state-
of-the-art results in both datasets. Specifically,
we obtained F1 scores of 89.21 and 83.16 in
Clinical Trials and the Chilean Waiting List,
respectively. Interestingly enough, we ob-
serve that the task-specific metrics and analysis
properly reflect the limitations of the models
when recognizing nested entities. Finally, we
perform a case study on an aggregated NER
dataset created from several clinical corpora in
Spanish. We highlight how entity length and
the simultaneous recognition of inner and outer
entities are the most critical variables for the
nested NER task.

1 Introduction

Named Entity Recognition (NER) is a widely stud-
ied task that seeks to identify text spans associated
with predefined categories. Nested Named Entity

Figure 1: Example of nested entities in the Clinical
Trials and Chilean Waiting List datasets.

Recognition is a particular case of NER, where en-
tities can be nested within each other (Finkel and
Manning, 2009), such as the example in Figure 1.
Traditional NER models simplify nested entities
through predetermined rules, such as keeping the
most external entity and ignoring inner ones. This
simplified problem is better known as flat NER
and allows solving the task using traditional se-
quence labeling architectures such as the BiLSTM-
CRF (Lample et al., 2016) approach or fine-tuning
transformer-based models (Vaswani et al., 2017).

Regarding the Spanish language, there are sev-
eral biomedical and clinical datasets containing
nested entities, such as the Spanish radiology cor-
pus (Cotik et al., 2017), NUBes (Lima Lopez et al.,
2020), the Chilean Waiting List (Báez et al., 2020),
Clinical Trials (Campillos-Llanos et al., 2021).
However, most previous works transformed the
task into a flat NER. As mentioned in Wang et al.
(2022), this simplification is due to technological
rather than ideological reasons, mainly explained
by the difficulty of representing nested entities with
the traditional annotation scheme, for example,
with the IOB2 sequence labeling format. We ar-
gue that treating the nested NER task as flat NER
is not optimal since removing part of the entities
could result in a loss of information previously an-
notated by humans, wasting time and resources,
and harming the model’s performance.

This paper explores simple neural network-based
models as a proxy to address the challenging nested
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NER task. Specifically, we revisited the Multiple
LSTM-CRF (MLC) and the Joint Labeling architec-
tures and performed experiments on two Spanish
clinical corpora. The former consists of training
a flat NER model for each entity type following
the IOB2 format, while the latter transforms the
nested NER task into a flat NER using an annota-
tion scheme that allows preserving the nested en-
tities. We analyze the impact of using pre-trained
language models trained on specific domains com-
pared to general-domain ones.

To evaluate the performance of our models, we
provide a detailed analysis of task-specific evalua-
tion metrics that adequately measure the effective-
ness of the models in recognizing nested entities,
considering variables such as entity length, the nest-
ing depth level, and the different types of nested
entities. In addition, to better understand the limi-
tations of these models, we created an aggregated
corpus formed from several Spanish clinical NER
corpora.

In summary, the main contributions of our work
are the following:

• We show that straightforward architectures
leveraging domain-specific models can tackle
the nested NER task, achieving state-of-the-
art performances on two clinical datasets in
Spanish.

• We conduct an empirical study that compares
the impact of using domain-specific language
models against general-domain ones, either
by using contextualized embeddings or fine-
tuning the model in the task.

• We performed an in-depth analysis of the ad-
vantages and limitations of the previous ap-
proaches by testing our models on an aggre-
gated clinical corpus in Spanish exhibiting
complex annotations.

2 Related Work

The nested nature of named entities has recently
gained special attention from the NLP research
community. Several models have been proposed
to handle the nesting problem, which can be
mainly divided into three categories: region-based,
hypergraph-based, and sequence labeling-based
models.

Region-based models list potential span candi-
dates and then classify them into predefined cate-
gories. In Sohrab and Miwa (2018), they used an

exhaustive neural model enumerating all possible
spans within a limited length and then predicted
the entity types of those regions using boundary
and average internal token representation. Zheng
et al. (2019) used a sequence labeling layer to
identify candidate spans and then classified the
selected regions into their entity category labels.
Another region-based model was proposed by Yu
et al. (2020), who used contextual representations
models to encode sentences and two separate MLPs
to create start and end token representations. They
then ranked all possible start-end regions in the
sentence using nested constraints to predict the la-
bels. Recently, Shen et al. (2021) used a two-stage
identifier, using a filter and a regressor to identify
high-quality candidate spans and then classifying
them into their entity types.

Hypergraph-based models learn the nested struc-
ture of entities in the sentence through hypergraphs.
The aim is to capture the relations between in-
ner and outer entities to leverage the extraction
of nested entities. In Lu and Roth (2015), they pro-
posed a mention hypergraph representation for both
extracting entity boundaries and predicting entity
labels. Similarly, Katiyar and Cardie (2018) de-
signed a directed hypergraph using LSTM features
to learn the nesting structure. In Luo and Zhao
(2020), they used a flat NER module for recogniz-
ing the most external entities and a graph module
for inner entities.

Sequence labeling-based models formulate the
nested NER task as several flat NER models. Early
work from Alex et al. (2007) introduced three CRF-
based methods to reduce the nested NER as sev-
eral IOB2 tagging problems. Ju et al. (2018) took
advantage of inner entity information to improve
outer entity recognition. They dynamically stacked
LSTM-CRF layers predicting entities in an inside-
to-outside manner. In contrast, Shibuya and Hovy
(2020) recognized entities from outermost to in-
ner ones using a recursive method based on sepa-
rate CRFs. This method was improved in Wang
et al. (2021), demonstrating that inner to outermost
recognition is best for modeling this task. Finally,
Wang et al. (2020) recursively introduced the em-
bedding of tokens and regions into flat NER layers
simulating the shape of a pyramid and extracting
nested entities from the innermost to the outermost
entities. The models used in our experiments fall
into this category.
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3 Nested NER Models

In recent years, contextual representational mod-
els have improved the performance of many neu-
ral network-based models, making it possible to
achieve state-of-the-art in several NLP tasks. Un-
like traditional word embeddings, language models
can represent words according to the sentence-level
context. Regarding the NER task, using contextual
word embeddings or fine-tuning a pre-trained lan-
guage model to a specific domain has boosted the
performance of models in datasets from several
domains.

Previous work in clinical NER showed that us-
ing domain-specific language models improves re-
sults considerably compared to general-domain lan-
guage models. However, no studies show this be-
havior occurs when there is a nested structure in
the entities, especially in low-resource languages
such as Spanish. In this work, we study whether
this trend is confirmed in nested NER datasets us-
ing two sequence labeling-based architectures, the
Joint Labeling, and the Multiple LSTM-CRF mod-
els.

3.1 Joint Labeling Model

The Joint Labeling architecture (Agrawal et al.,
2022) consists of formulating nested NER as a flat
NER task using an appropriate annotation scheme.
Since nested entities allow a token to have more
than one entity type, all the token labels are merged
into a single token label using a delimiter. This
scheme allows solving the problem using tradi-
tional sequence labeling architectures that treats
the problem as a token-level classification.

We decided to use this architecture due to its
high performance on the nested NER task in other
languages, such as English and German. Therefore,
it is interesting to study the performance of this ap-
proach on Spanish datasets, which have been less
explored. To solve the token-level classification,
we followed the classic approach of fine-tuning
transformer-based language models on the NER
task. In other words, we fine-tuned language mod-
els trained on giant text corpora and added a linear
layer to perform the token-level classification.

3.2 Multiple LSTM-CRF

The second approach uses the Multiple LSTM-CRF
(MLC) architecture (Rojas et al., 2022a), which
trains separate flat NER models for each entity type.
The predicted labels of the input sentences corre-

spond to the union of the outputs of each model,
thus retrieving both nested entities and text spans
tagged with multiple labels.

Each flat NER module consists of three main
layers: the embedding layer, the encoding layer
with a BiLSTM, and the classification layer, where
the most likely sequence of labels is obtained us-
ing the CRF algorithm. Regarding the embedding
layer, we incorporated contextualized word repre-
sentations retrieved from a language model, replac-
ing traditional representations such as word and
character-level embeddings.

As for the previous model, we tested several
domain-specific and general-domain transformer-
based language models. The vector representation
of words was computed by averaging the repre-
sentations retrieved from all hidden states. Since
BERT-based language models use WordPiece tok-
enization, we calculated word embeddings using
the embedding of the first subtoken. In addition,
we tested Clinical Flair (Rojas et al., 2022b), a
character-level language model trained on Span-
ish clinical narratives. Being a character-level
model, it is particularly effective for handling out-
of-vocabulary and misspelled words, which are
very common in clinical texts.

4 Experiments

In this section, we present the datasets, settings,
and evaluation metrics used in our experiments.

4.1 Datasets

We conducted our experiments with two corpora
containing nested entities.

• Chilean Waiting List1 (Báez et al., 2020):
clinical corpus annotated from real diagnoses
of the Chilean healthcare system. It is com-
posed of 87, 024 entity mentions and seven
entity types. From a nested NER point of
view, it is a good resource since 48.23% of
the entities are involved in nesting.

• Clinical Trials2 (Campillos-Llanos et al.,
2021): clinical corpus created from 500 ab-
stracts of journal articles about clinical trials
and 700 announcements of trial protocols. It
consists of 46, 518 entity mentions and four

1https://zenodo.org/record/3926705
2http://www.lllf.uam.es/ESP/nlpmedterm_en
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Chilean Waiting List Clinical Trials
Train Test Dev Train Test Dev

tokens 291, 561 36, 963 34, 987 202, 541 67, 281 67, 661
sentences 15, 290 1, 912 1, 911 7, 604 2, 522 2, 550
avg sent len 19.07 19.33 18.31 26.64 26.68 26.53
entities 69, 847 8, 837 8, 340 27, 967 8, 940 9, 611
avg entity len 2.73 2.71 2.74 1.89 1.86 1.88
nested entities 33, 667 4, 182 4, 126 7, 373 2, 333 2, 580
nested entities (%) 48.20 47.32 49.47 26.36 26.10 26.84

Table 1: Statistics of the datasets used in our experiments.

entity types, which belong to a subset of se-
mantic groups from the Unified Medical Lan-
guage System (UMLS).

Table 1 shows the overall statistics for each cor-
pus. Compared to other well-known nested NER
datasets such as GENIA (Kim et al., 2003) and
GermEval (Benikova et al., 2014), where the nest-
ing percentage is less than 20%, these two datasets
are a valuable resource for the nested NER task.
Especially the Chilean Waiting List corpus, which
contains more than twice as much nesting com-
pared to the datasets mentioned above.

4.2 Settings
To analyze the impact of domain-specific language
models in Spanish, we used the biomedical ver-
sion of RoBERTa (bsc-bio-es3) and the clinical
version of RoBERTa (bsc-bio-ehr-es4) (Carrino
et al., 2022). We compared these models with a
general-domain Spanish model (BETO) (Cañete
et al., 2020), a multilingual model (mBERT) (De-
vlin et al., 2019), and two domain-specific models
based on continuous pre-training: mBERT-Galén
(based on mBERT) and BETO-Galén (based on
BETO) (López-García et al., 2021). As previously
mentioned, the MLC model uses these models as
contextualized embeddings, while for Joint Label-
ing, we used them to perform a fine-tuning and
solve the token-level classification task.

To train the Joint Labeling model, we used the
Adam optimizer and searched for an optimal learn-
ing rate out of 1e-5, 5e-5, 5e-6, and 1e-6, with
linear decay and no warm-up steps. We trained the
model up to a maximum of 20 epochs using a batch
size of 8 sequences with a maximum length of 512
tokens and a gradient accumulation of 2 steps, re-
sulting in a total batch size of 16. The training took

3https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-es

4https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-ehr-es

Figure 2: Example of different types of entities.

approximately 45 minutes for each dataset, using 2
AMD MI50 GPUs with 32 GB of VRAM each.

Regarding the MLC architecture, to train the
model of each entity type, we used the SGD op-
timizer to a maximum of 100 epochs, with mini-
batches of size 16 and a learning rate of 0.1. We set
the number of RNN layers to 1 and the hidden size
to 256. To control overfitting, we employed a learn-
ing rate scheduler and an early stopping strategy
based on the performance of the validation parti-
tion. We also applied dropout regularization after
the embedding layer and BiLSTM. The training
for each entity type took at most 7 hours under the
same hardware settings as Joint Labeling. Since
the model of each entity type is independent of the
others, this allows us to perform parallel training,
reducing the computational cost of this approach.

4.3 Metrics
To evaluate the performance of our models, we
computed the micro-average precision, recall, and
F1 score over all entities, which is the standard
metric used by the research community for evaluat-
ing NER systems. In this context, precision is the
percentage of entities found by our system that be-
longed to the test set, while recall is the percentage
of entities from the test set found by our system.
This metric follows a strict evaluation approach
since an entity is considered correct when both en-
tity types and boundaries are predicted correctly.
However, one of the main drawbacks of the above
metrics is that they do not differentiate nested en-
tities from flat entities. Since flat entities are the
most frequent in nested NER datasets, this could
overestimate the model’s performance on the task.
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Chilean Waiting List Clinical Trials
P R F1 P R F1

Joint Labeling w/ mBERT cased 74.330.84 78.081.02 76.160.93 83.340.64 85.970.55 84.640.55
Joint Labeling w/ mBERT-Galén 75.160.56 79.240.33 77.150.43 82.530.48 84.830.37 83.670.41
Joint Labeling w/ BETO 75.930.89 79.100.52 77.480.67 84.960.43 87.190.17 86.060.21
Joint Labeling w/ BETO-Galén 74.520.46 78.790.39 76.590.10 82.470.38 85.490.13 83.950.15
Joint Labeling w/ Biomedical RoBERTa 76.550.23 80.320.33 78.390.24 87.920.14 90.200.24 89.040.10
Joint Labeling w/ Clinical RoBERTa 77.310.40 81.270.46 79.240.39 88.030.34 90.430.12 89.210.14

MLC w/ mBERT cased 79.410.16 71.310.34 75.140.15 84.670.11 83.900.17 84.280.05
MLC w/ mBERT-Galén 78.940.18 75.560.09 77.210.13 84.990.26 81.670.30 83.290.24
MLC w/ BETO 79.330.58 72.260.25 75.630.40 86.040.81 81.020.73 83.460.76
MLC w/ BETO-Galén 79.140.30 74.670.17 76.840.23 85.910.18 82.210.26 84.020.22
MLC w/ Bio RoBERTa 80.300.19 75.400.35 77.770.27 87.970.06 84.840.43 86.370.20
MLC w/ Clinical RoBERTa 80.710.51 76.131.09 78.350.82 88.800.23 85.900.07 87.320.13
MLC w/ Clinical Flair 84.310.37 82.040.68 83.160.28 88.380.13 85.210.13 86.760.06

Table 2: Overall results on two nested NER datasets. The reported results correspond to the average of three
evaluation rounds using different seeds. Subscript numbers indicate the standard deviations.

To address the above issue, we compute task-
specific metrics proposed in Rojas et al. (2022a)
that allow analyzing the predictions in detail ac-
cording to the nested NER task. Specifically, we
compute a score for entities not involved in nestings
(mflat), entities involved in nestings (mnested),
inner entities in nestings (minner), outer enti-
ties in nestings (mouter), and complete nestings
(mnesting). In this context, a nesting is composed
of inner and outer entities, and mnested encom-
passes the minner and mouter metrics.

These task-specific metrics were calculated us-
ing micro-average precision, recall, and F1 score.
Using Figure 2 as an example to better understand
the different types of entities, the inner entity is
ósea, while the outer entity is densidad ósea. Both
inner and outer entities compose a nesting of depth
2, and there are no flat entities to measure. All ex-
periments and models are freely available to ensure
reproducibility5.

5 Overall Results

Table 2 shows the overall results of our experiments.
We observe that across all the experiments, the
Joint Labeling model obtains a lower precision than
the recall, while in the case of the MLC model, the
opposite occurs. As expected, in both models and
datasets, the incorporation of domain-specific con-
textual representation models contributes to signifi-
cant improvements in the performance compared to
general-domain models. However, in some cases, it
occurred that the BETO-Galén and mBERT-Galén
models did not provide improvements over the
general-domain base models. One plausible reason

5https://github.com/TeMU-BSC/
clinical-nested-ner

may be found in the domain-specific vocabulary
since the Galén model was trained with the continu-
ous training technique, unlike the RoBERTa-based
models, which were trained from scratch.

Although the MLC and Joint Labeling architec-
tures appear to be simple approaches for solving
nested NER, we observe that their results are pretty
high. Specifically, the best setting for the Chilean
Waiting List corpus is the MLC model with em-
beddings retrieved from the Clinical Flair model.
Using the same data splits, we obtained state-of-
the-art results with an improvement of almost three
micro F1 points over the best system to date, as
reported in Báez et al. (2022), where they achieved
a micro F1 score of 80.27. This excellent perfor-
mance could be explained since Clinical Flair is a
character-level language model, particularly bene-
ficial in datasets with many misspelled and out-of-
vocabulary words, such as diagnoses from public
hospitals.

On the other hand, the best setting in Clinical Tri-
als is the Joint Labeling approach with the clinical
version of RoBERTa. To date, the only result re-
ported on Campillos-Llanos et al. (2021) achieved
a micro F1 score of 86.74 without considering the
nested entities. In contrast, we obtained a micro
F1 score of 89.21, achieving state-of-the-art in the
corpus and demonstrating the importance of con-
sidering nested entities.

6 Discussion and Analysis

6.1 Nested NER Performance
For a more detailed analysis of the above results,
we employ the metrics introduced in Section 4.3
that decompose the model’s performances for dif-
ferent types of nested entities. Table 3 shows the
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Chilean Waiting List Clinical Trials
mflat minner mouter mnested mnesting mflat minner mouter mnested mnesting

Joint Labeling w/ mBERT cased 76.640.89 82.900.40 65.951.89 75.620.97 54.811.60 84.590.38 87.840.89 81.321.72 84.791.24 72.171.70
Joint Labeling w/ mBERT-Galén 77.061.00 83.440.56 69.110.31 77.270.23 57.250.17 83.670.43 87.130.51 79.730.57 83.640.47 70.551.06
Joint Labeling w/ BETO 78.221.15 83.050.29 68.230.10 76.640.13 56.350.21 86.110.13 89.090.61 82.320.36 85.930.48 74.070.43
Joint Labeling w/ BETO-Galén 76.180.41 83.220.74 68.810.32 77.070.42 57.130.71 83.850.12 88.060.29 79.950.32 84.250.24 71.570.18
Joint Labeling w/ Bio RoBERTa 78.400.19 85.050.12 69.420.74 78.370.36 58.800.34 89.090.23 91.540.40 85.950.21 88.910.29 78.620.62
Joint Labeling w/ Clinical RoBERTa 79.500.56 84.760.33 71.220.73 78.940.27 59.890.40 89.160.15 91.850.16 86.580.28 89.360.19 78.940.68
MLC w/ mBERT cased 75.570.30 82.450.17 64.320.28 74.660.03 52.300.14 84.630.10 85.890.17 80.410.28 83.300.10 67.930.18
MLC w/ mBERT-Galén 78.130.41 82.630.58 67.750.18 76.200.41 53.820.58 83.600.16 84.490.12 80.150.88 82.430.47 67.710.70
MLC w/ BETO 76.430.29 81.120.52 66.320.65 74.730.58 52.050.59 83.900.82 84.380.92 79.610.96 82.150.72 66.882.36
MLC w/ BETO-Galén 77.460.35 82.470.58 67.810.29 76.150.21 53.800.50 84.510.22 84.190.25 80.890.25 82.620.25 68.420.39
MLC w/ Bio RoBERTa 78.470.45 83.700.28 68.150.05 77.000.15 55.520.28 86.590.20 87.680.16 83.600.33 85.760.24 73.060.61
MLC w/ Clinical RoBERTa 79.340.73 83.730.70 68.711.37 77.260.94 55.721.67 87.470.12 89.460.20 84.040.18 86.900.18 74.720.19
MLC w/ Clinical Flair 84.110.27 88.620.19 73.410.85 82.090.34 62.820.86 86.690.03 90.690.29 82.760.16 86.980.23 74.770.48

Table 3: Task-specific metrics for nested NER.

results according to task-specific metrics. Inter-
estingly, we note that the nesting metric score,
which consists of simultaneously recognizing inner
and outer entities, is between 10 and 20 F1 points
lower than the standard F1 metric across models
and datasets. In fact, in all cases, the models fail
more in recognizing outermost entities than inner
ones, suggesting that straightforward methods for
nested NER cannot correctly model existing rela-
tions between the components of a nested entity.
Presumably, since outermost entities are longer in
the number of tokens, it is easier for the model to
make mistakes when using a strict evaluation met-
ric. Therefore, despite the high score obtained with
the standard F1 metric (see Table 2), this finding
points out the importance of using suitable metrics
to test the limitations of nested NER approaches.
Finally, we can notice that the best models, accord-
ing to the standard metric, also get the best results
according to the nested metrics, proving that the
standard metric is consistent but insufficient accord-
ing to the above findings.

Another point to analyze is the multilabel en-
tities. These entities correspond to text spans as-
sociated with more than one entity type, as in the
case of the medical term HTN, which is both an
Abbreviation and Disease. In the Chilean Wait-
ing List corpus, 1, 030 entities participate in this
type of nesting. Considering only the F1 score of
both models on these types of entities, the MLC
approach with Clinical Flair obtained 85.1, while
Joint Labeling with Clinical RoBERTa obtained
84.21. Therefore, the difference in the standard
metric cannot be explained by the performance of
these types of nestings. In the following sections,
we perform a detailed analysis of the model pre-
dictions, looking for information that explains the
difference in performance between the Joint Label-
ing and MLC approaches beyond the domain in

Level removed MLC [CF] Joint Labeling [CR] ∆F1

None 83.160.28 79.240.39 3.92
≥ 3 (88) 82.860.29 78.960.35 3.90

≥ 2 (1,875) 79.080.55 75.910.49 3.17

Table 4: Overall results of our two best models in the
Chilean Waiting List when removing deeper entities.
∆F1 corresponds to the subtraction in the performance
between two models. Here, CF stands for Clinical Flair,
while CR is Clinical RoBERTa. The values in parenthe-
ses correspond to the support.

which they were trained.

6.2 Nesting Depth
An interesting point to analyze between both ap-
proaches is the variation in the standard metric
when deeper nesting level entities are removed. In
Table 4, we show the results in the Chilean Wait-
ing List when entities of depths 2, 3, and 4 entities
are removed. Here, depth 1 are the outermost en-
tities, while entities in level 4 are the innermost.
First, we notice that by removing nested entities of
depths 3 and 4, the ∆F1 score between both mod-
els remains similar. However, when we removed
entities of depth 2, the difference was reduced by
1 F1 point. This might suggest that removing in-
ner entities within a nesting implies a higher decay
in MLC performance compared to the Joint La-
beling approach. To support this hypothesis, we
will analyze the performance of both architectures
according to entity length.

6.3 Entities of Different Length
In Figure 3, we separate the results obtained in
Table 2 depending on the entity’s length. The left
side of the figure shows that when the entity length
increases, the MLC curve gets closer to the Joint
Labeling curve, suggesting that the performance
on shorter entities is better for MLC. This finding
is confirmed when observing the Clinical Trials
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Figure 3: Results of our models according to the entity length.

Length ∆F1 Chilean Waiting List ∆F1 Clinical Trials
1 4.76 (4, 198) −1.82 (5, 312)
2 4.75 (1, 522) −2.59 (1, 780)
3 3.74 (976) −3.93 (917)
4 2.90 (667) −4.51 (442)
5 2.08 (470) −5.62 (207)
6 0.86 (289) −2.97 (116)
7 −0.01 (223) −3.49 (61)

≥ 8 1.8 (492) −3.28 (105)

Table 5: ∆F1 Score between MLC with Clinical Flair
and Joint Labeling with Clinical RoBERTa depending
on the length of entities. The values in parentheses
correspond to the support.

figure, where the curves move further apart as the
length increases.

In Table 5, we see this behavior more explic-
itly using the ∆F1, which corresponds to the sub-
traction of the F1 scores of both models. In the
case of MLC, we can see that the most signifi-
cant difference in the Chilean Waiting List occurs
in shorter entities, which could be influencing the
standard NER metric. In contrast, in Clinical Trials,
although the MLC approach does not outperform
Joint Labeling according to the standard metric, the
∆F1 score decreases as the entities become smaller.

In the following section, we perform a case study
on a synthetic dataset created from several clini-
cal corpora in Spanish. The aim is to study if this
behavior is repeated in a dataset containing a sim-
ilar percentage of nested entities compared to the
Chilean Waiting List. Note that this dataset was
not used in the experiments section since it is not
publicly available for privacy reasons; thus, future
works could not reproduce the experiments.

7 Case Study

In order corroborate the conclusions presented
above, we have created a synthetic nested NER cor-

Train Test Dev
tokens 240, 381 29, 600 31, 364
sentences 9, 482 1, 120 1, 230
avg sent len 25.35 26.43 25.50
entities 18, 912 2, 283 2, 597
avg entity len 2.15 2.21 2.14
nested entities 8, 167 1, 019 1, 147
- entities at level 1 6, 577 827 938
- entities at level 2 1, 572 191 209
- entities at level 3 18 1 0

Table 6: Statistics of the SPACCC Aggregated dataset.

pus by aggregating the datasets from the Pharma-
CoNER (Gonzalez-Agirre et al., 2019), CODIESP
(Miranda-Escalada et al., 2020), and the recent Dis-
TEMIST (Miranda-Escalada et al., 2022) shared
tasks. These datasets are based on the SPACCC
corpus6, a collection of 1, 000 clinical cases from
SciELO. Since all the datasets are annotated on
the same plain text, merging the annotation of the
different tasks is possible. The aggregated dataset
is composed of seven entity types, where three
are from the PharmaCoNER corpus, two from
CODIESP, and one from DisTEMIST.

To generate the aggregated dataset, some impor-
tant factors have been considered. First, CODIESP
is not a NER task but a clinical coding task. How-
ever, the authors annotated not only the ICD-10
codes but also the textual evidence that supports
the assigned codes. For this experiment, we used
the textual evidence from CODIESP as if they
were named entities. Secondly, we have found
that some textual evidences are either discontinu-
ous or partially contained within other evidences,
better known as crossing entities. Both cases are
beyond the scope of this research, so we decided
to discard them. Thirdly, DisTEMIST is an ongo-
ing task, and we do not have access to the test set

6https://zenodo.org/record/2560316
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Figure 4: Results of both models on the SPACCC ag-
gregated dataset depending on the entity length.

Metric MLC Joint Labeling Support
standard F1 78.530.16 78.250.09 2, 283

mflat 77.990.48 77.480.12 1, 264
minner 79.270.10 76.440.41 520
mouter 79.070.60 82.210.31 499
mnested 79.180.24 79.230.36 1, 019
mnesting 63.760.60 64.320.08 499
mlevel1 72.680.03 77.080.32 827
mlevel2 51.572.83 48.710.67 191

Table 7: Standard and nested metrics on the SPACCC
aggregated dataset.

annotations. For this reason, we only have annota-
tions for 750 clinical cases of the SPACCC corpus.
Finally, once the three datasets were aggregated,
we found that there were discontinuous annotations
between CODIESP and DisTEMIST in 17 of the
documents. We removed these documents from
the corpus, leaving us with 733 documents. The
dataset was divided into 80% for training, 10% for
validation, and 10% for testing. The statistics of the
corpus are shown in Table 6, and in Appendix A,
we show examples of nested entities in this corpus.

According to the standard NER metric, the re-
sults for the MLC and Joint Labeling approaches
are 78.53 and 78.25, respectively. Although the
performance was comparable between both mod-
els, analyzing Figure 4, we note that the behavior
in the two previous datasets is repeated. The MLC
curve is higher than the Joint Labeling curve for
the smallest entities, but as the number of tokens
increases, the Joint Labeling model obtains slightly
better results than MLC.

Considering the mnested and mnesting metrics
shown in Table 7, we see that Joint Labeling
achieves 79.23 and 64.32 F1 scores, while MLC
obtains 79.18 and 63.76. Therefore, the former ar-
chitecture handles better the nested entities in this

corpus. One possible reason why MLC performs
better on the standard evaluation metric is that this
model achieves the best results according to the
minner metric by a wide margin, obtaining 79.27
versus 76.44. In contrast, using the mouter metric,
MLC achieves 3.14 points less than Joint Labeling.
These findings reaffirm our hypothesis that MLC
is better at recognizing smaller entities. For exam-
ple, if we analyze the metrics in each nesting depth
level (mlevel1 and mlevel2), we can see how the
MLC model obtains better results in recognizing
entities in level 2, which are the innermost entities
within a nesting. Finally, and as seen in the other
corpora, the results according to the mnesting met-
ric are low, and the standard metric cannot reflect
this limitation.

8 Conclusions and Future Work

Since most previous works on nested NER have
focused on solving the task in English, this pa-
per contributes to the exploration of diverse mod-
els for solving the task on two Spanish clinical
datasets, resulting in the state-of-the-art in both cor-
pora. Specifically, we explore the advantages and
limitations of the Multiple LSTM-CRF approach,
which consists of training one model for each en-
tity type, and the Joint Labeling approach, which
through an appropriate annotation scheme, allows
solving the task by fine-tuning transformer-based
models.

To assess the limitations, we studied task-
specific metrics for the nested NER task, which
consider variables such as the entity position in
the nesting, the impact of nesting depth, and entity
length. Although our approaches achieve high re-
sults according to the standard metric, we found
limitations concerning the recognition of nested
entities. The main drawbacks of these architec-
tures are the low performance when recognizing
complete nestings and the outermost entities of a
nesting. In addition, the MLC approach combined
with a character-level language model performs
less when recognizing entities with many tokens.

We believe this work can contribute to the NLP
community to re-think how the nested NER task
is being evaluated, considering task-specific met-
rics beyond the traditional micro F1 score. Fur-
thermore, our case study on the SPACCC aggre-
gated dataset points out many of the challenges
of the nested NER task, especially when complex
annotations are allowed due to the aggregation pro-
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cess. Therefore, future work will analyze the per-
formance of other existing architectures beyond
the sequence labeling-based approach and compare
their performance against our models. We also
plan to propose new methods to treat the cases of
discontinuous entities and crossing entities, which
are entities that overlap others but are not fully
contained, to address the nested NER task fully.

Limitations

Although both approaches achieved excellent re-
sults across all the datasets in this research, they
have clear limitations. The main drawback is that
both models cannot handle the case of nested enti-
ties of the same type. This is explained since the file
format used for training these architectures cannot
incorporate this type of nesting. The second major
limitation of both models is that they cannot cap-
ture the existing relations between inner and outer
entities, leading to poor performance in recogniz-
ing complete nestings. These limitations could be
addressed by using architectures that separate the
problem of detecting entity boundaries from classi-
fying the entity type or hypergraph-based models.

Another significant limitation of the MLC archi-
tecture is the high computational cost. Although
the models of each entity type can be trained in
parallel, when scaling to a dataset with many en-
tity types, the training and inference time could
increase considerably compared with other mod-
els. On the other hand, we have shown that using
character-level language models in this architecture
obtains low performance when recognizing longer
entities.

Finally, despite the Joint labeling approach em-
ploying one model for all the entities, its label space
increase exponentially with the number of entities
involved, resulting in a bigger classification layer
and thus requiring more computational resources
than standard NER classification layers.
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A Examples from the SPACCC
Aggregated Dataset

As discussed in Section 7, the SPACCC aggre-
gated dataset represents a challenging case study
since it may pose severe limitations to straight-
forward approaches addressing nested NER tasks,
mainly due to entity annotations such as discontin-
uous entities, nested entities, and different entity
types. To better visualize such complex entity an-
notations, we selected some sentences from the
SPACCC aggregated dataset before we removed
them to perform our experiments. Specifically,
Figure 5 shows three different entities, namely,
disease entity (DIS_ENFERMEDAD), ICD diag-
nosis (CIE_DIAGNOSTICO), and protein names
(PHA_PROTEINAS), from the PharmaCoNER,
CODIESP, and DisTEMIST datasets are presented
in different colors to highlight the amount of over-
lap and crossing between them.

Figure 5: Example of annotations from the SPACCC ag-
gregated dataset with different types of entities belong-
ing to the PharmaCoNER, CODIESP, and DisTEMIST
datasets.
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Abstract

The medical codes prediction problem from
clinical notes has received substantial inter-
est in the NLP community, and several re-
cent studies have shown the state-of-the-art
(SOTA) code prediction results of full-fledged
deep learning-based methods. However, most
previous SOTA works based on deep learn-
ing are still in early stages in terms of pro-
viding textual references and explanations of
the predicted codes, despite the fact that this
level of explainability of the prediction out-
comes is critical to gaining trust from profes-
sional medical coders. This raises the impor-
tant question of how well current explainabil-
ity methods apply to advanced neural network
models such as transformers to predict cor-
rect codes and present references in clinical
notes that support code prediction. First, we
present an explainable Read, Attend, and Code
(xRAC) framework and assess two approaches,
attention score-based xRAC-ATTN and model-
agnostic knowledge-distillation-based xRAC-
KD, through simplified but thorough human-
grounded evaluations with SOTA transformer-
based model, RAC. We find that the support-
ing evidence text highlighted by xRAC-ATTN
is of higher quality than xRAC-KD whereas
xRAC-KD has potential advantages in produc-
tion deployment scenarios. More importantly,
we show for the first time that, given the cur-
rent state of explainability methodologies, us-
ing the SOTA medical codes prediction system
still requires the expertise and competencies of
professional coders, even though its prediction
accuracy is superior to that of human coders.
This, we believe, is a very meaningful step to-
ward developing explainable and accurate ma-
chine learning systems for fully autonomous
medical code prediction from clinical notes.

1 Introduction

Within current medical systems, the prediction of
medical codes from clinical notes is a practical and
essential need for every healthcare delivery organi-

zation (Dev, 2021). A human coder or health care
provider scans medical documentation in electronic
health records, identifying important information
and annotating codes for that specific treatment
or service. With a diverse range of medical ser-
vices and providers (primary care clinics, specialty
clinics, emergency departments, mother-baby units,
outpatient and inpatient units, etc.), the complexity
of human coders’ tasks grows, while productivity
standards fall as charts take longer to review. Thus,
even partial automation of the annotation work-
flow will save significant time and effort that hu-
man coders currently spend. The biggest challenge,
however, is directly identifying appropriate medical
codes from thousands of high-dimensional codes
from unstructured free-text clinical notes (Dong
et al., 2022).

Lately, advanced deep learning-based meth-
ods for predicting medical codes based on clini-
cal notes (Kim and Ganapathi, 2021; Sun et al.,
2021; Liu et al., 2021; Yuan et al., 2022) have
achieved state-of-the-art prediction performance
and even reached parity with human coders’ perfor-
mance (Kim and Ganapathi, 2021). However, most
current works on medical code prediction based on
deep learning models do not provide the end-user
with references from the clinical notes to explain
why the predicted codes were presented/chosen.
There have been some related works that provide
the rationales or text highlights from clinical notes
to explain why the predictions were made to sup-
port humans clinical decision making (Taylor et al.,
2021; Cao et al., 2020; Mullenbach et al., 2018;
Wood-Doughty et al., 2022). However, to the best
of our knowledge, there is still a gap in studies
that have thoroughly analyzed explainability to ex-
tract supporting text for code prediction, especially
made by state-of-the-art (SOTA) transformer-based
models such as the RAC model (Kim and Ganap-
athi, 2021).

Two examples are the attention score-based ap-
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proach first introduced in Mullenbach et al. (2018)
and the model-independent knowlege-distillation
based method recently initiated in Wood-Doughty
et al. (2022). The first approach utilizes the per-
label attention mechanism to select key sentences
for prediction decisions; however, if the model does
not have the per-label attention layer, it cannot gen-
erate text snippets, and even worse, applying this
method to transformer-based architecture and de-
ploying it to production comes with a range of com-
pute and memory challenges (Vaswani et al., 2017).
In the second knowledge-distillation approach, a
large neural network is distilled into linear student
models in a post-hoc manner without sacrificing
much accuracy of the teacher model while retain-
ing many advantages of linear models including
explainability and smaller model size, which is
beneficial for deployment.

This paper makes two primary contributions:

• First, we present a general and explainable
xRAC framework that generates evidentiary
text snippets for a predicted code, which are
oriented towards the needs of a deployment
scenario of the RAC model. Then, to better
assess the explainability of our xRAC frame-
work, human-grounded evaluations is con-
ducted with two groups of internal annota-
tors, one group with and one group without
medical coding expertise. We find that the
proposed xRAC framework can benefit pro-
fessional coders but not lay annotators who
lack relevant expertise and competencies.

• Second, we propose code-prior matching and
text-prior matching losses to augment the orig-
inal binary cross-entropy (BCE) loss used
to train the RAC model. Because trained
models with BCE loss typically tend to fo-
cus more on the frequent medical codes and
their associated clinical notes portions of the
dataset, these new losses are to help distribute
the gradient update evenly across all of the
codes and note tokens, regardless of code’s
frequency and token’s relevance to codes, so
as to improve the xRAC model’s prediction as
a whole.

2 xRAC Framework

2.1 xRAC-ATTN
The original RAC architecture is built on the code-
title guided attention module that considerably im-

proves the per-label attention mechanism first intro-
duced in Mullenbach et al. (2018). This enhanced
attention module is to address the extreme spar-
sity of the large code output space with so called
code-title embedding. Because code titles (or de-
scriptions) contain important semantic information
and meaning of the codes, the RAC model obtains
its embedding from its textual description as shown
in the Table 2 examples. Specifically, the code de-
scription is fed into an embedding layer, which is
then followed by a CNN and Global Max Pooling
layer to learn the code embedding.

Therefore, the first xRAC-ATTN directly lever-
ages the attention scores learned in the RAC
model to generate the evidence text for each code
i. In particular, the attention scores wATTN

i =
(wATTN

i,1 , ..., wATTN
i,nx

) on the input tokens for code-
i is computed as follows:

wATTN
i = Softmax

(
eiU

T
x√
d

)
, (1)

where ei ∈ R1×d is one row of Et ∈ Rny×d which
is the code embeddings from the code descriptions,
Ux ∈ Rnx×d is the text representation outputted by
the Reader, d is the dimension of code embedding,
nx is the number of tokens in the input document,
and ny is the number of codes in the dataset.

2.2 xRAC-KD

The application of the original idea of knowledge
distillation (Hinton et al., 2014) requires specific
adjustments to the problem setting of medical codes
prediction. Knowledge distillation is typically used
to train a compact neural network from a large or
ensemble of neural network models. Unlike those
standard approaches, xRAC-KD transfers the large
RAC-based “teacher” model into a set of reliable
and explainable “student” linear models by dis-
tilling the predictions made by the large teacher
model.

Assume that we have a trained “teacher”
neural network fteacher(xt) and training data.1

xRAC-KD approximates fteacher(xt) with a col-
lection of student linear models fstudent(xs) =
(fs,0(xs), ..., fs,ny(xs)) defined as

fs,i(xs) = wKD
i xs, (2)

1Note that because there is flexibility in using different
representations for the same clinical note, we use different
notations xt and xs to denote a tokenized clinical note. We
use Word2Vec for xt and bag of words for xs.
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where wKD
i = (wKD

i,1 , ..., w
KD
i,nx

). fteacher(xt)
produces predicted probability vector ŷt =
(ŷt,1, ..., ŷt,ny). First xRAC-KD converts ŷt to
qt = (qt,1, ..., qt,ny) which is defined as

qt,i = T logit(ŷt,i) = T log

(
ŷt,i

1− ŷt,i

)
, (3)

where a temperature parameter T is to adjust the
logit values and set it to 1 for convenience.

Then, as a distillation loss to train the student
models fstudent(xs), xRAC-KD uses the L1 regular-
ized regression loss between qt and the student’s
predicted output vectors qs written as follows

||qt − qs||2 + λ||wKD
i ||1, (4)

with λ parameter. xRAC-KD does not use any
additional loss term with respect to the training
data’s hard labels (either 0 or 1). Once the distilled
student models fstudent(xs) are ready, xRAC-KD
finally transforms the output vector qs back to the
prediction vector ŷs = (ŷs,0, ..., ŷs,ny) easily as
follows:

ŷs,i = expit
(
qs,i
T

)
=

1

1 + exp(−qs,i/T )
. (5)

The logit and expit transforms defined in Eq. (3)
and (5) pairs that are inverse to each other are a
fundamental improvement over the initial method
presented in Wood-Doughty et al. (2022). Previ-
ously, the distilled models showed consistently low
precision scores and it was hypothesized for the
independence of the distilled linear models. How-
ever, by comparing the first and last rows of Table 1,
it turns out that this new pair has resulted in a clear
outperformance across the board over the logistic
regression baseline unlike the initial approach.

2.3 Supporting Text Extraction

Lastly, the evidence text of the xRAC-ATTN and
xRAC-KD models is constructed by first locating
the n-gram with the highest average weight score
for each code i calculated as

argmax
j

∑

n−gram

wi,j , (6)

then m tokens on either side of the n gram are in-
cluded to obtain the final subsequence of evidence
with length of n+ 2m. We set n to 4 and m to 5.

2.4 xRAC with Augmented Losses
The RAC model utilizes a transformer encoder and
an attention-based architecture to attain SOTA per-
formance. It also makes use of code descriptions
to obtain code embeddings. Although the code
embeddings obtained from the code description
capture the semantic meaning of each code, due to
the natural characteristics of medical coding, most
of the codes appear just a few times compared to
other common codes associated with common dis-
eases.

Similarly, not all tokens in a given piece of text
can be learned sufficiently and equally during the
training process; therefore, frequent code embed-
ding (as well as token embeddings) will receive
more updates than infrequent codes (and tokens).
In other words, trained models with BCE loss tend
to focus more on the frequent codes and their asso-
ciated clinical notes portions in the dataset; there-
fore, we propose code-prior matching and text-
prior matching losses to supplement the BCE loss
to encourage the models better handle imbalance
issues and improve the model’s overall prediction.

Code Prior Matching (CPM): To alleviate the
issue of frequent codes receiving more updates than
infrequent codes during training, CPM is applied
to the second to the last output of the Coder, Vx ∈
Rny×d defined as

Vx = Softmax
(
EtU

T
x√

d

)
Ux. (7)

The CPM can help the model learn evenly across
all codes, regardless of frequency, by imposing
constraints on the learned Vx. This prior matching
module is implemented by a discriminator Dcpm,
which shares the same structure as Dlpm in Deng
et al. (2021) and introduces a regularization loss
for each code as

lic = −(Ecp∼Q[logDcpm(cp)]+

Evi∼P[log(1−Dcpm(vi))]),
(8)

where vi ∈ R1×d is one row of Vx which is the
vector for one code in the dataset, P is the code
embedding distribution learned by the model, cp
is a prior vector of the same size as vi for the
given code generated by a uniform distribution Q
in the interval of [0, 1), and lic is the prior matching
loss for code-i.2 We take the average of lic losses

2We chose a compact uniform distribution on [0, 1) as the
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from all codes to obtain the final CPM loss LC as
follows:

LC =
1

ny

ny∑

i=1

lic. (9)

Text Prior Matching (TPM): In the RAC
model, not all tokens in a particular clinic text note
can be learned equally, as the Reader focuses more
on tokens related to frequent codes in the data set.
To help the model’s gradient be updated equally
for all tokens in the input, a TPM loss is applied on
Ux output of the Reader. The TPM is also imple-
mented by a discriminator Dtpm similar to Dcpm,
where it introduces another prior matching loss LT
shown as

lit = −(Etp∼Q[logDtpm(tp)]+

Eui∼P[log(1−Dtpm(ui))]),
(10)

LT =
1

nx

nx∑

i=1

lit, (11)

where ui is one row of Ux that is the embedding
of a token in the input document, P is the distribu-
tion of text embedding learned by the model, tp
is the prior embedding vector for the given token
in the input document also generated by a uniform
distribution Q in the interval of [0, 1), and lit is the
TPM for a token in the input; we then use the av-
erage loss for all tokens in the input document as
the final TPM loss LT, similar to Eq. (9). This loss
can make the model evenly learn the embeddings
for all tokens in the input, which will be fed to the
Coder for code prediction.

Overall Training Loss: Finally, the total aug-
mented loss is written as

Ltotal = LBCE + α ∗ LC + β ∗ LT, (12)

where α and β are parameters to balance LC and
LT respectively. The updated RAC model trained
with Ltotal instead of BCE loss, is first used for
xRAC-ATTN and its performance is shown in the
third row of Table 1. Although we used the original
RAC model as a teacher model to distill from in
xRAC-KD, this updated RAC model can also be
used. Comparing the second (RAC model trained
with BCE loss) and third rows (updated RAC model
trained with Ltotal) in Table 1 shows modest im-
provements in both standard and hierarchical micro
F1 scores, indicating that prior matching modules
modestly help to address the imbalanced issues.

prior, which worked better in practice than other priors, such
as Gaussian, unit ball, or unit sphere as shown in previous
works (Deng et al., 2021; Hjelm et al., 2019).

3 Experimental Results

3.1 MIMIC-III Dataset

The MIMIC-III Dataset (MIMIC v1.4 Johnson et al.
(2016)) is a freely accessible medical database
that contains de-identified medical data from over
40,000 patients who visited the Beth Israel Dea-
coness Medical Center between 2001 and 2012.3

We extract the discharge summaries and the corre-
sponding medical codes, for this study. For a direct
comparison with previous works, we use the same
data processing, and data split described in (Mul-
lenbach et al., 2018). This processing results in
47,724 samples for training, 1,632 and 3,373 sam-
ples for validation and testing, respectively, with
an average number of 16 codes assigned to each
discharge summary. More dataset statistics, can be
found in Table 2 of (Mullenbach et al., 2018).

3.2 Training Details

The xRAC models follow the same training de-
tails as the RAC model, which can be found in the
original RAC paper (Kim and Ganapathi, 2021).
The xRAC-ATTN model is also trained with the
same hyperparameters as the RAC model.4 The
xRAC-ATTN model’s extra hyperparameters in-
clude α and β in Eq. (12), with values of 0.5 and
0.8 respectively. The temperature for the xRAC-
KD model is set to 1, λ to 1e-3, and the maximum
iteration for the training is set to 800.5

3.3 xRAC Model Performance

In addition to the same standard flat metrics used
in previous RAC model evaluations, recently in-
troduced hierarchical metrics (e.g. CoPHE (Falis
et al., 2021), set-based metrics (Kosmopoulos et al.,
2015)) are used. These two metrics take the hierar-
chical structure of the ICD codes tree into consider-
ation for evaluating codes prediction. The CoPHE

3One reason for using the MIMIC-III dataset for this study
is that it has been used as standard benchmark in previous
studies (Kim and Ganapathi, 2021; Mullenbach et al., 2018),
allowing meaningful head-to-head comparisons with our work.
We believe that the proposed xRAC model is not limited to the
MIMIC-III dataset and will also work well with a MIMIC-IV
dataset, but MIMIC-IV-Note is currently not available to the
public.

4The maximum sequence length is 4096, and there are four
stacks of attention layers with single attention head. The code
and text embedding dimensions are 300 and the batch size is
16.

5For the choices of hyper-parameters, we fine-tuned the
model by running a linear search of these hyper-parameters to
find the best value at which the model’s performance peaks.
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Table 1: Medical codes prediction results (in %) by ML systems on the MIMIC-III-full-label testing set as described
in Kim and Ganapathi (2021). The bold value shows the best (and highest) value for each column metric. The
logistic regression results are taken from Mullenbach et al. (2018), and the RAC results come from Kim and
Ganapathi (2021). All numbers are the results of a single run with fixed random seeds, as practiced in the previous
literature (Kim and Ganapathi, 2021; Mullenbach et al., 2018) for apples-to-apples comparisons. Note that our
baseline is the most recent SOTA model RAC, and our xRAC-ATTN outperforms RAC in most metrics.

.
Model AUC Standard F1 Precision@n Hierarchical F1

Macro Micro Macro Micro 5 8 15 CoPHE Set-Based

Logistic Regression 56.1 93.7 1.1 27.2 54.2 41.1
RAC 94.8 99.2 12.7 58.6 82.9 75.4 60.1 62.7 64.0

xRAC-ATTN (ours) 94.8 99.1 12.6 58.8 82.9 75.6 60.1 62.9 64.3
xRAC-KD (ours) 93.6 98.7 7.4 46.0 69.4 61.6 48.6 51.8 54.5

metric further utilizes depth-based hierarchical rep-
resentation and the count of codes at different an-
cestral levels of the tree to evaluate model’s predic-
tion, providing more meaningful evaluation in this
context.

The results of the xRAC-ATTN and the xRAC-
KD are shown in the last two rows of Table 1 re-
spectively. First, when compared to the prior RAC
model trained with BCE loss, the xRAC-ATTN
model improves both standard and hierarchical
micro F1 scores, as noted by comparing the sec-
ond and third rows of Table 1, suggesting that the
prior matching modules modestly help and effec-
tively improve the SOTA scores. Second, while the
xRAC-KD student model (shown in the last row)
performs slightly worse than that of the RAC-based
teacher model (shown in the second row), it still
significantly outperforms the logistic regression
baseline (shown in the first row, which was trained
from scratch and has the same level of model com-
plexity) across the board, which was not the case
in Wood-Doughty et al. (2022).

3.4 Human-Grounded Evaluation
Human Evaluation Design: Human-grounded
evaluation is important for evaluating the explain-
ability. Because medical code annotation involves
domain knowledge specific to medical coding,
human evaluation is challenging; thus, we con-
ducted a human evaluation with two groups of in-
ternal annotators. Group A had two annotators
without medical coding experience and Group B
had six certified professional coders. While both
groups followed the same annotation instructions
and guidelines, Group A was supervised by one
manager and Group B was supervised by two man-
agers with professional coder management experi-

ence to ensure annotation consistency (i.e., inter-
annotator agreement) within each group. Group
A worked full-time for two weeks to finish all the
annotation, while Group B worked part-time for
three weeks. Because the two groups of annotators
involved in the human evaluation process are well
aware that the task involves the medical notes of
anonymized patients, the study does not require
IRB approval and does not raise any ethical con-
cerns.

Annotation Task Design: We select the over-
lap of codes predicted between the xRAC-ATTN
and xRAC-KD models on the MIMIC-III-full-label
testing set and combine the code descriptions and
the corresponding textual explanations generated
by each model together in a question sheet 6. We
then provide the sheet to Groups A and B for eval-
uation. Specifically, the question sheet contains six
columns which are Question ID, Code and Descrip-
tion, Explanation Text Snippet, Highly Informative,
Informative, and Irrelevant (see Table 2 for sample
questions). Each code has two different text snip-
pets extracted by two models, respectively. The
annotators need to assign one of the three choices,
which are highly informative, informative, and ir-
relevant to every explanation text snippet extracted
to support the appearance of the predicted code.

Highly informative is defined as if the text snip-
pet provides an accurate explanation for the pre-

6The MIMIC-III dataset’s entire test set is used for human
evaluation. Specifically, both the xRAC-ATTN and xRAC-KD
models take clinical note from each example in the test set
as input and predict multiple codes associated with this note.
Because each model can predict differently for each example
in the test set, we select all the test examples from the two
models that are predicted with the same codes to compare
their explainability. As a result, there are a total of 3,813 test
examples predicted with the same codes by the xRAC-ATTN
and xRAC-KD models.
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Table 2: Two example questions provided for human evaluation: The codes in these two questions are the same,
“521.00, Dental caries, unspecified", however, the two explanation text snippets classified as A) and B) are extracted
by two different models, xRAC-ATTN and xRAC-KD. The information about the models is hidden from human
annotators, and the order of text snippets for the same code is permuted to prevent the annotators from guessing
the models based on the order. Note that HI, I, and IR stand for Highly Informative, Informative, and Irrelevant,
respectively.

Question
ID

Code and
Description

Explanation Text Snippet HI I IR

1
521.00, Dental caries,

unspecified

A) surgical or invasive procedure left
**and right heart catheterization**

coronary angiogram multiple dental extractions

1
521.00, Dental caries,

unspecified

B) balloon s p dental extractions
**s p exploratory laparotomy**

and cholecystectomy fungal sepsis discharge

Table 3: The overall informativeness of xRAC-ATTN and xRAC-KD retrieved explanatory text snippets. The left
half represents the outcome of Group A’s annotation, while the right half represents the outcome of Group B’s
evaluation. HI, I, and IR stand for Highly Informative, Informative, and Irrelevant, respectively. Percent denotes
the ratio of informative text snippets (HI and I) to the total extracted snippets, which is 3,813 (in %).

Model Group A (Lay Annotators) Group B (Professional Coders)
HI I IR Percent HI I IR Percent

xRAC-ATTN 1652 1389 772 79.75 1283 1094 1436 62.34
xRAC-KD 865 1318 1630 57.25 145 212 3456 9.36

Table 4: The evaluation agreements on Highly Informative and Informative text snippets between Groups A and B
as measured by Jaccard Similarity (in %). Note that we evaluated the annotation consistency between two groups as
described in Section 3.4, and the annotation consistency (or correctness) of lay annotators (Group A) is lower than
40% even provided with the same textual references as for professional coders (Group B).

Model Jaccard Similarty
HI I

xRAC-ATTN 39.2 18.5
xRAC-KD 7.0 5.0
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dicted code. Otherwise, it is informative as long
as the annotators believe that the text snippet ad-
equately explains the presence of the given code,
is related to the code’s description, or has a close
meaning to the code’s description. Because the
medical note contains domain knowledge, it is diffi-
cult for annotators to assign a finer-grained scale to
the textual evidence when deciding between highly
informative, informative, and irrelevant.

The final question sheet has a total of 3,813
codes predicted with different supporting text snip-
pets. Unlike all previous studies, which typically
collect less than 100 samples from clinicians (e.g.,
Mullenbach et al. (2018)), the task design of our
study is quite unique, as is the volume of questions
to our knowledge.

Human Evaluation Results: The results of
human evaluation for the explainability of xRAC
framework are shown in Tables 3 and 4. Table 3
shows the overall result of the informativeness of
the text snippets extracted by xRAC-ATTN and
xRAC-KD. The percentage column in Table 3 rep-
resents the percentage of explanations annotated as
highly informative or informative, excluding irrele-
vant explanations. Thus, the irrelevant explanations
generated by our model are about 20-40% as shown
in Table 3.

One can see that there is a much larger gap in
xRAC-KD between Group A and Group B than
between xRAC-ATTN. Each group of annotators
adhered to use the same standard to evaluate the tex-
tual explanation and was monitored by managers
with professional coder management experience
to ensure that there was no annotation variation
among annotators in the same group. However, the
large deviation between the two groups (Groups A
and B) is understandable due to the domain knowl-
edge gap between professional coders and lay anno-
tators. Because of their limited medical knowledge
and understanding, lay annotators tend to assign
more highly informative and informative to the ex-
tracted textual explanation. Whereas, professional
coders are much stricter on the informativeness of
textual explanations.

In other words, this implies that xRAC-ATTN
is a more viable choice than xRAC-KD to extract
a text snippet from clinical notes to support code
prediction. However, Table 4 shows that the con-
sistency score measured by Jaccard Similarity be-
tween two groups is lower than 40% even with
xRAC-ATTN. This suggests that the automated

extraction system must continue to rely on profes-
sional coders’ feedback and domain experience,
and that text snippets alone are insufficient to re-
place them. In other words, there is still room to
improve explainability for a lay person without
expertise to appropriately code.

4 Conclusion

In this paper, a xRAC framework is presented to
obtain supporting evidence text from clinical notes
that justify the predicted medical codes from med-
ical code prediction systems. We have demon-
strated that the proposed xRAC framework may
help even complex transformer-based models (e.g.,
RAC model) to attain high accuracy with a decent
level of explainability (which is of high value for
deployment scenarios) through quantitative exper-
imental studies and qualitative human-grounded
evaluations. It was also shown for the first time that,
given the current state of explainability methodolo-
gies, using the proposed explainable yet accurate
medical codes prediction system still requires pro-
fessional coders’ expertise and competencies.

Limitations

The current human-grounded evaluation studies
only a simplified scenario: the impact of clinical-
text-based explanations provided alongside predic-
tions on explainability as judged by humans with
and without professional coding backgrounds. This
exercise sheds light on a key element that is neces-
sary for these AI coding-based models to be useful
in real-world deployment scenarios, but does not
definitively ascertain that these coding predictions
provided alongside explanations of the prediction
would enable a transition to AI-driven coding au-
tonomously. First, we have not studied how to
incorporate the proposed xRAC framework into
a human-in-the-loop situation with human coder
feedback, which may be a very common scenario of
deployment in practice. Second, we have not com-
pared a full AI-driven coding model with humans-
in-the-loop to a human-only process, in terms of
speed, manpower needed, and accuracy. Limita-
tions of the prediction model may become relevant
in these situations, as human coders must occa-
sionally combine disparate pieces of information
together (Dong et al., 2022). Third, while the
MIMIC-III dataset provides a useful benchmark
for evaluating approaches, it is not representative
of the wide range of clinical notes, so it would be
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beneficial to expand to other data sets with a wider
range of codes.

Ethics Statement

First and foremost, an automated and explainable
machine learning system for medical code predic-
tion aims to streamline the medical coding work-
flow, reduce the backlog of human coders by in-
creasing productivity, and assist human coders
quickly navigating complex and extended charts
while reducing coding errors (Crawford, 2013).
Second, an automated and explainable system is
designed to lessen the administrative burden on
providers, allowing them to focus on providing care
rather than mastering the complexities of coding.
Furthermore, better automated and explainable soft-
ware can improve clinical documentation, enhance
the overall picture of its quality, and eventually
redirect lost healthcare dollars to more meaningful
purposes (Shrank et al., 2019).
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Abstract

Scientific documents typically contain numer-
ous entity mentions, while only a subset are
directly relevant to the key contributions of
the paper. Distinguishing these focus entities
from background ones effectively could im-
prove the recovery of relevant documents and
the extraction of information from documents.
To study the identification of focus entities,
we developed two large datasets of disease-
causing biological pathogens using MEDLINE,
the largest collection of biomedical citations,
and PubMed Central, a collection of full text ar-
ticles. The focus entities were identified using
human-curated indexing on these collections.
Experiments with machine learning methods
to identify focus entities show that transformer
methods achieve high precision and recall and
that document discourse information is relevant.
The work lays the foundation for more targeted
retrieval/summarisation of entity-relevant doc-
uments.

1 Introduction
Scientific documents typically discuss one or more
topics linked to key entities of interest. However,
entities may also be mentioned incidentally to sup-
port argumentation, in discussing related work, or
be used in comparison with focus entities of direct
interest. Distinguishing between these focus and
background entities might improve the selection of
information most relevant to a user.

The automatic identification of entities in text
is typically achieved using named entity recogni-
tion or entity linking methods based on dictionary,
rule-based and/or machine learning methods, and
aims to identify all mentions of entities of the target
type(s). However, not all entities correctly identi-
fied in a text may be entities relevant for further
processing or important to the main conclusions of
a document. For example, it has been suggested
that only ~10% of chemical mentions play a ma-
jor role within a chemical patent (Akhondi et al.,

2019). Strategies for identifying entities that are in
focus in a document enable honing in on critical
document information, and can support filtering
out entities that are ancillary to the main objectives
of the work, e.g. for literature-based discovery ap-
plications (Henry and McInnes, 2017).

In this work, we introduce two large datasets
annotated with focus and background entities that
support experimentation with methods for distin-
guishing these two types of entity mentions1. We
evaluated several machine learning algorithms on
these dataset, setting baseline results for future
work to be done on this task, and laying the foun-
dation for more nuanced treatment of document
entities in document retrieval or in summarisation.

2 Related work
Entity salience, relevant to identifying focus enti-
ties, has been discussed in previous work. Use of
discourse structure has been suggested in previous
work on entity salience (Boguraev and Kennedy,
1999; Walker and Walker, 1998). The work of
Dunietz and Gillick (2014) evaluates a compre-
hensive set of features, showing that the discourse
structure and centrality may support predicting en-
tity salience. One hypothesis is that the focus and
background entities are distributed in specific ar-
gumentative sections of a document (Ruch et al.,
2007; Jimeno Yepes et al., 2021).

The identification of focus entities has multiple
relevant applications. In information retrieval (IR),
the objective is to recover documents that are rele-
vant to the user information needs, which is chal-
lenging for long documents (Webber et al., 2012)
as a larger number of entities are being mentioned.
In information extraction (IE), we find the task of
named entity recognition (NER), in which the ob-
jective is to identify entities of interest, from people
and locations to proteins and genes, depending on
the domain. In NER, all entities of a certain type

1https://zenodo.org/record/5866759
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are identified, even the ones that are not the main
focus (Dunietz and Gillick, 2014).

Our study relates specifically to identification
of biological pathogen entities in scientific litera-
ture. Pathogen NER has been studied in the Bac-
teria Biotope shared task (Bossy et al., 2019). The
GeoBoost tool (Tahsin et al., 2018) addresses the
identification of entities from the gene database
GenBank (Benson et al., 2012) and largely includes
information about viruses and bacteria.

3 Datasets
Development of large corpora is costly since hu-
man annotation is slow and expensive. There are
biomedical datasets that have been manually anno-
tated and could be considered as proxy for man-
ual annotation. For this work, we have developed
two large corpora automatically using existing re-
sources from the National Center for Biotechnol-
ogy Information (NCBI) at the NLM. The corpora
are targeted to microbial pathogens, some of the
most relevant entities for infectious diseases (Bal-
loux and van Dorp, 2017), such as COVID-19.

3.1 MEDLINE citation dataset

MEDLINE2 is the largest biomedical citation
database with over 30 million citations from more
than 5,000 journals. MEDLINE is indexed semi-
manually (Mork et al., 2013) with the MeSH (Med-
ical Subject Headings) controlled vocabulary3, pro-
viding a resource to identify focus entities in
biomedical articles. To identify the pathogens in
MEDLINE, we created a dictionary of pathogens
and collected MEDLINE citations that indexed
these pathogens. MeSH contains 360 of the 2.8k
pathogens of interest in our work, which constitutes
our focus entities. We applied a dictionary-based
approach using ConceptMapper (Tanenblatt et al.,
2010; Funk et al., 2014) with evaluation available
from Jimeno Yepes and Verspoor (2022).

With the list of PubMed identifiers (PMIDs) ob-
tained using MeSH indexing, we recovered their ci-
tations from MEDLINE and annotated the text with
the dictionary. Overlapping mentions of the same
entity were removed and removed pathogen men-
tions that could not be identified in MeSH. From
the set of selected pathogens identified in the cita-
tions, the ones that appeared in the MeSH index-
ing of the citation were considered focus entities,

2https://www.nlm.nih.gov/medline/
medline_overview.html

3https://www.ncbi.nlm.nih.gov/mesh

while the pathogens not mentioned in the indexing
were consider background entities. We considered
both major and minor MeSH headings. For each
pathogen identified in a citation, all of its mentions
in text were changed to the string @PATHOGEN$.
Table 1 presents the corpus statistics, divided into
2/3 for training 1/3 for testing.

3.2 PubMed Central full text dataset

In addition to MEDLINE citations, we also
consider full text articles from PubMed Cen-
tral (Roberts, 2001), a collection of full text ar-
ticles made available from the NLM. To collect the
full text articles from PubMed Central, we used the
PMIDs obtained using MeSH indexing and mapped
these identifiers to PubMed Central identifiers (PM-
CIDs). We applied the same methodology to high-
light the mentions of a specific pathogen as with
the MEDLINE citations. Statistics of the full text
collection are available in table 1.

MEDLINE dataset Training Testing
Unique citations 622,447 320,318
With more than one pathogen 136,546 70,670
Focus entities 661,470 340,991
Background entities 160,540 82,470
Document avg entities 1.3206 1.3220
Document avg focus entities 1.1250 1.1268
Full text dataset Training Testing
Unique articles 79,352 39,677
With more than one pathogen 53,003 26,551
Focus entities 82,922 41,602
Background entities 157,072 78,148
Document avg entities 3.0244 3.0181
Document avg focus entities 1.0450 1.0485

Table 1: Frequency of example documents and statistics
on focus and background pathogen entities in MED-
LINE and full text datasets.

Full text articles are already divided into dis-
course sections. We process these sections in two
ways, first by concatenating the text in the article
following the order in the PMC XML file, in which
each section is prefixed by the name of the section
starting with the character “@ ”and ending with “:”,
e.g. “@title:”. Second, we keep each information
in a separate section, which allows only consider-
ing text in a specific section and can be used with
learning algorithms that leverage this organization.
Table 2 shows entities distribution in full text.
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Background Count Focus Count
introduction 53,574 abstract 68,098
discussion 53,486 title 46,971

results 37,768 introduction 44,466
abstract 19,860 results 27,177
methods 18,674 discussion 21,313

background 11,483 methods 11,813
title 5,789 background 11,637

conclusions 3,526 conclusions 6,155
the study 969 the study 785

case layout 745 abbreviations 705
all 157,072 all 82,922

Table 2: Frequency of background and focus entities in
training full text sections

4 Methods

4.1 Baseline methods

We consider two baselines. The first baseline se-
lects a single focus entity per document on the basis
of frequency. We utilised the inverted document
frequency of entity mentions to evaluate if frequent
entities in the collection should be discounted. The
second baseline annotates all entities mentioned as
focus entities.

4.2 Bag-of-words entity categorization

In our work, focus entities are identified at the doc-
ument level. In a sense, we would be categorising
the mentions of the entity within a citation as fo-
cus or background. In our datasets, the entity of
interest has been renamed to @PATHOGEN$.

We trained a linear Support Vector Machine
(SVM) (Vapnik, 2013) with modified Huber
loss (Zhang, 2004) suited for imbalanced data and
AdaBoostM1 (Freund and Schapire, 1997), (both
from the MTIMLExtension package4 optimised for
large datasets and using uni-grams and bi-grams)
and FastText (Joulin et al., 2017)5, using default
parameters as well for classification.

4.3 Transformer based methods

Focus entities might appear in specific contexts
in comparison to background entities. Bag-of-
words methods have a limited coverage of the
context in which these entities might appear. Re-
cent advances in deep learning have delivered self-
attention methods that have led to the Transformer

4https://github.com/READ-BioMed/
MTIMLExtension

5https://fasttext.cc

architecture (Vaswani et al., 2017).
BERT (Devlin et al., 2019) is a transformer

based method that encodes the input tokens into
contextualised embeddings trained on large cor-
pora. Classification is achieved using the output
from BERT, pooled on the [CLS] character, and
a fully connected layer to predict if an entity is a
focus or background one.

BERT supports a maximum size of 512 tokens,
while other methods developed using the BERT
architecture, such as the Longformer (Beltagy et al.,
2020), allow for longer documents. Longformer
achieves this by using a sliding window instead
of attending to all tokens and by using a global
attention mask which we set to the [CLS] token
used in text categorisation settings.

Our MEDLINE corpus has an average of 308
tokens per document, with just a 6% of the citations
with length above 512 tokens. We have used the
SciBERT (Beltagy et al., 2019) pre-trained model6,
truncating documents at 512 tokens. When using
Longformer, we considered a maximum document
length of 1,250 tokens due to memory limitations.
Transformer methods were trained using 80% of
the training set for training purposes and 20% as
validation set. We used Adam (Kingma and Ba,
2015) with an initial learning rate of 2e-5 for 30
epochs. The model with best performance on the
validation set after each epoch was selected.

4.4 Scientific discourse focus entity selection

Scientific articles follow a discourse structure, with
information organised into different rhetorical sec-
tions. The mention of an entity in a certain section
can indicate the relevance of that entity in the docu-
ment. Only a small number of MEDLINE citations
have an explicit discourse structure (Ripple et al.,
2011). Hence, we apply a discourse tagger (Li
et al., 2021) to annotate sentences of a citation rele-
vant to a discourse section, except to the title which
is explicitly marked in the metadata. Table 3 shows
the frequency of each of the categories.

5 Results
Table 4 shows the results of using the different
methods. We observe that the baseline based on
classifying all entities identified by our dictionary
method as focus entities has maximum recall and al-
ready has a high precision. The most-frequent men-
tioned entity baseline has better precision, with de-

6We have used Huggingface’s (Wolf et al., 2020) imple-
mentations of tranformer methods.
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Category Background Focus
fact 33,044 139,290
goal 9,295 56,100
hypothesis 7,544 21,433
implication 14,077 42,828
method 44,132 203,225
none 1,026 4,452
problem 2,858 11,429
result 61,317 181,691
title 44,884 435,100
all 160,540 661,470

Table 3: Frequency of each discourse category in the
training MEDLINE dataset

creased recall. Considering the learning algorithms,
SciBERT and Longformer perform better than the
bag-of-words algorithms, which is expected since
these algorithms do not consider the context of
the pathogen mention, even with bigrams. The two
deep learning algorithms have similar performance.

Average Prec. Recall F1
All-focus entities 0.8052 1.0000 0.8921
tf baseline 0.9047 0.8508 0.8770
tf-idf baseline 0.8838 0.8311 0.8566
SVM 0.8975 0.9450 0.9206
AdaBoostM1 0.8654 0.9682 0.9139
fastText 0.8608 0.9572 0.9064
SciBERT 0.9359 0.9631 0.9493
Longformer 0.9285 0.9679 0.9478

Table 4: Focus entity prediction results on MEDLINE.
The All-focus baseline trivially has perfect Recall.

Table 5 shows the result of the learning algo-
rithms on the full text dataset. Compared to the
MEDLINE corpus, we identify that the baseline
methods suffer a substantial drop in performance.
This is expected since there are more background
entities in the full texts, and the most frequent en-
tity is not always in focus. Bag-of-words methods
have a lower performance as well, AdaBoostM1
with tag related words outperforms the other meth-
ods, indicating the effectiveness of linking words
to article sections. In this set, documents are longer
and longformer improves over the SciBERT model,
which has a limit of 512 tokens.

6 Discussion
The datasets we have constructed for the identifi-
cation of focus entities are large, supporting eval-

Average Prec. Recall F1
All-focus entities 0.3474 1.0000 0.5157
tf baseline 0.7475 0.7078 0.7271
tf-idf baseline 0.7587 0.7184 0.7380
SVM-tag 0.8110 0.6440 0.7179
SVM-all 0.6525 0.7761 0.7090
AdaBoostM1-tag 0.8447 0.8824 0.8631
AdaBoostM1-all 0.7845 0.7580 0.7710
fastText 0.8557 0.7374 0.7922
SciBERT 0.9115 0.9314 0.9213
Longformer 0.9410 0.9269 0.9339

Table 5: Focus entity prediction in PubMed Central.
The All-focus baseline trivially has perfect Recall.

uation of a variety of methods and comparison of
performance in both short and large documents.

Full text is more challenging compared to cita-
tions, consistent with findings on other tasks (Co-
hen et al., 2010), and mostly due to the higher
proportion of focus entities in citations. Machine
learning approaches based on bags-of-words tend
to improve over simple baseline methods but un-
derperform transformer methods.

The distribution of entities in article sections
(table 2) and prediction results in full text (table 5)
show that the discourse sections in which entities
appear are relevant for the identification of focus
entities in scientific articles.

7 Conclusions and future work
We have developed two large datasets of scien-
tific documents for the study of the identification
of focus entities. We find that short documents,
represented by MEDLINE citations, are easier to
process than longer (full-text) documents. Trans-
former methods showed higher performance.

Future work will address using the proposed
methods in scenarios in which focus entities be-
come relevant, and comparing our approach with
other existing methods (Lu and Choi, 2021; Duni-
etz and Gillick, 2014).
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Abstract

This paper introduces FrenchMedMCQA, the
first publicly available Multiple-Choice Ques-
tion Answering (MCQA) dataset in French for
medical domain. It is composed of 3,105 ques-
tions taken from real exams of the French medi-
cal specialization diploma in pharmacy, mixing
single and multiple answers. Each instance of
the dataset contains an identifier, a question,
five possible answers and their manual correc-
tion(s). We also propose first baseline models
to automatically process this MCQA task in
order to report on the current performances and
to highlight the difficulty of the task. A de-
tailed analysis of the results showed that it is
necessary to have representations adapted to
the medical domain or to the MCQA task: in
our case, English specialized models yielded
better results than generic French ones, even
though FrenchMedMCQA is in French. Cor-
pus, models and tools are available online.

1 Introduction

Multiple-Choice Question Answering (MCQA) is
a natural language processing (NLP) task that con-
sists in correctly answering a set of questions by
selecting one (or more) of the given N candidates
answers (also called options) while minimizing the
number of errors. MCQA is one of the most diffi-
cult NLP tasks because it requires more advanced
reading comprehension skills and external sources
of knowledge to reach decent performance.

In MCQA, we can distinguish two types of an-
swers: (1) single and (2) multiple ones. Most
datasets focus on single answer questions, such
as MCTest (Richardson et al., 2013), ARC-
challenge (Clark et al., 2018), OpenBookQA (Mi-
haylov et al., 2018), QASC (Khot et al., 2019),
Social-IQA (Sap et al., 2019), or RACE (Lai et al.,
2017). To our knowledge, few studies have been
done to construct medical MCQA dataset. We can
cite the MedMCQA (Pal et al., 2022) and HEAD-
QA (Vilares and Gómez-Rodríguez, 2019) corpora

which contain single answer questions in Span-
ish and English respectively. For the multiple an-
swer questions, MLEC-QA (Li et al., 2021) pro-
vides 136k questions in Chinese covering various
biomedical sub-fields, such as clinic, public health
and traditional Chinese medicine.

The French community has recently greatly in-
creased its efforts to collect and distribute medi-
cal corpora. Even if no open language model is
currently available, we can cite the named entity
recognition (Névéol et al., 2014) and information
extraction (Grabar et al., 2018) tasks. However,
they remain relatively classic, current approaches
already reaching a high level of performance.

In this article, we introduce FrenchMedMCQA,
the first publicly available MCQA corpus in French
related to the medical field, and more particularly
in the pharmacological domain. This dataset con-
tains questions taken from real exams of the French
diploma in pharmacy. Among the difficulties re-
lated to the task, the questions asked may require a
single answer for some and multiple ones for others.
We also propose to evaluate state-of-the-art MCQA
approaches, including an original evaluation of sev-
eral word representations across languages.

Main contributions of the paper concern (1) the
distribution of an original MCQA dataset in French
related to the medical field, (2) a state-of-the-art
approach on this task and a first analysis of the
results, and (3) an open corpus, including tools and
models, all available online on demand.

2 The FrenchMedMCQA Dataset

In this section, we detail the FrenchMedMCQA
dataset and discuss data collection and distribution.

2.1 Dataset collection

The questions and their associated candidate an-
swer(s) were collected from real French pharmacy

41

first.lastname@univ-avignon.fr
first.lastname@univ-nantes.fr


exams on the remede1 website. This site was built
around a community linked to the medical field
(medicine, pharmacy, odontology...), offering mul-
tiple information (news, job offers, forums...) both
for students and also professionals in these sectors
of activity. Questions and answers were manu-
ally created by medical experts and used during
examinations. The dataset is composed of 2,025
questions with multiple answers and 1,080 with
a single one, for a total of 3,105 questions. Each
instance of the dataset contains an identifier, a ques-
tion, five options (labeled from A to E) and correct
answer(s). The average question length is 14.17 to-
kens and the average answer length is 6.44 tokens.
The vocabulary size is of 13k words, of which 3.8k
are estimated medical domain-specific words (i.e.
related to the medical field). We find an average
of 2.5 medical domain-specific words in each ques-
tion (17% of words in average of a question) and
2.0 in each answer (36% of words in average of an
answer). On average, a targeted medical domain-
specific word is present in 2 questions and in 8
answers.

2.2 Dataset distribution

Table 1 presents the proposed FrenchMedMCQA
dataset distribution for the train, development (dev)
and test sets detailed per number of answers (i.e.
number of correct responses per question). Glob-
ally, 70% of the questions are kept for the train,
10% for validation and last 20% for testing.

# Answers Training Validation Test Total
1 595 164 321 1,080
2 528 45 97 670
3 718 71 141 930
4 296 30 56 382
5 34 2 7 43

Total 2171 312 622 3,105

Table 1: FrenchMedMCQA dataset distribution.

3 Methods

The use alone of the question to automatically find
the right answer(s) is not sufficient in the context
of a MCQA task. State-of-the-art approaches then
require external knowledge to improve system per-
formances (Izacard and Grave, 2020; Khashabi
et al., 2020). In our case, we decide to build a
two-step retriever-reader architecture comparable

1http://www.remede.org/internat/
pharmacie/qcm-internat.html

to UnifiedQA (Khashabi et al., 2020), where the re-
triever job is to extract knowledge from an external
corpus and using it by the reader to predict the cor-
rect answers for each question. Figure 1 presents
the two-step general pipeline, first step being the re-
triever module, that extracts external context from
the question (see Section 3.1), and second step
being the reader, called here question-answering
module (see Section 3.2), that automatically selects
answer(s) to the targeted question.

Figure 1: Steps of the pipeline.

3.1 Retriever module
An external medical-related corpus fully composed
of French has first been collected from two online
sources: Wikipedia life science and HAL, the latter
being an open archive run by the French National
Centre for Scientific Research (CNRS) where au-
thors can deposit scholarly documents from all aca-
demic fields. In our case, we focus on extracting
papers and thesis from various specialization, such
as Human health and pathology, Cancerology, Pub-
lic health and epidemiology, Immunology, Pharma-
ceutical sciences, Psychiatric disorders and Drugs.
This results in 1 million of passages (i.e. a portion
of text that contains at least 100 characters) in HAL
and 286k passages in Wikipedia.

This corpus is then used as a context exten-
sion for a question. We therefore used a retriever
pipeline to automatically assign questions to the
most likely passage in the external source. Two
retrieval approaches are compared in this article:

• BM25 Okapi (Trotman et al., 2014) for
the implementation of the base BM25 algo-
rithm (Robertson and Sparck Jones, 1988).

• SentenceTransformers framework (Reimers
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and Gurevych, 2019) is used to perform se-
mantic search using state-of-the-art language
representations taken from Huggingface’s
Transformers library (Wolf et al., 2019).

For both approaches, the goal is to embed each
passage of the external corpus into a vector space
using one of the two representations. On its side,
the question is concatenated with the five options
(i.e. answers associated to the question) to form
a new query embedded in the same vector space.
Embeddings from question and passages are finally
compared to return the closest passages of a query
(here, the cosine similarity is the distance met-
ric). For the SentenceTransformers approach, we
used a fast and non domain specific model called
MiniLMv2 (Wang et al., 2020). Note that the 1-
best passage is only used in these experiments.

3.2 Question-answer module

A goal of our experiments was to compare baseline
approaches regarding two different paradigms. The
first one is referred to a discriminative approach
and consists in assigning one of N classes to the in-
put based on their projection in a multidimensional
space. We also referred to it as a multi-class task.
At the opposite, the second method is a generative
one which consists of generating a sequence of to-
kens, also called free text, based on a sequence of
input tokens identical to the one used for the dis-
criminative approach. The difference with the dis-
criminative approach lies in the fact that we are not
outputting a single class, like ABE for the question
6234176387997480960, but a sequence of to-
kens following the rules of the natural language
and referring to a combination of classes like A +
B + E in the case of our studied generative model
(see Section 3.2.2).

3.2.1 Discriminative representations
Four discriminative representations are studied in
this paper. We firstly propose to use Camem-
BERT (Martin et al., 2020), a generic French pre-
trained language model based on RoBERTa (Liu
et al., 2019). Since no language representation
adapted to the medical domain are publicly avail-
able for French, we propose to evaluate the two
pre-trained representations BioBERT (Lee et al.,
2019) and PubMedBERT (Gu et al., 2022), both
trained on English medical data and reaching SOTA
results on biomedical NLP tasks, including QA (Pal
et al., 2022). Finally, we consider a multilingual

generic pre-trained model, XLM-RoBERTa (Con-
neau et al., 2020) based on RoBERTa, to evalu-
ate the gap in terms of performance with Camem-
BERT.

3.2.2 Generative representation
Recently, generative models have demonstrated
their interest on several NLP tasks, in particular for
text generation and comprehension tasks. Among
these approaches, BART (Lewis et al., 2019) is
a denoising autoencoder built with a sequence-to-
sequence model. Due to its bidirectional encoder
and left-to-right decoder, it can be considered as
generalizing BERT and GPT (Radford et al., 2019),
respectively. BART training has two stages: (1)
a noising function used to corrupt the input text,
and (2) a sequence-to-sequence model learned to
reconstruct the original input text. We then propose
to evaluate this representation in this paper.

4 Experimental protocol

Each studied discriminative and generative model
is fine-tuned on the MCQA task with FrenchMedM-
CQA training data using an input sequence com-
posed of a question, its associated options (i.e. pos-
sible answers) and its additional context, all sepa-
rated with a "[SEP]" token, e.g. [CLS] <question>
[SEP] (A) <answer.a> [SEP] (B) <answer.b> [SEP]
(C) <answer.c> [SEP] (D) <answer.d> [SEP] (E)
<answer.e> [SEP] <context> [EOS].

For each question, the context is the text pas-
sage with highest confidence rate and can either
be obtained using the BM25 algorithm or semantic
search as described in Section 3.1.

Concerning the outputs of the systems, we have
for the BART generative model a plain text contain-
ing the letter of the answers from A to E separated
with plus signs in case of the questions with multi-
ple answers, e.g. A + D + E. For the other architec-
tures (i.e. discriminative approaches), we simplify
the multi-label problem into a multi-class one by
classifying the inputs into one of the 31 existing
combinations in the corpus. Here, a class may be a
combination of multiple labels, e.g. if the correct
answers are the A and B ones, then we consider the
correct class being AB, which explains the number
of 31 classes.

4.1 Evaluation metrics
The majority of tasks concentrate either on multi-
class or binary classification since they have a sin-
gle class at a time. However, occasionally, we will
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Without Context Wiki w/ BM25 HAL w/ BM25 Wiki w/ MiniLMv2 HAL w/ MiniLMv2
Architecture Hamming EMR Hamming EMR Hamming EMR Hamming EMR Hamming EMR

BioBERT V1.1 36.19 15.43 38.72 16.72 33.33 14.14 35.13 16.23 34.27 13.98
PubMedBERT 33.98 14.14 34.00 13.98 35.66 15.59 33.87 14.79 35.44 14.79

CamemBERT-base 36.24 16.55 34.19 14.46 34.78 15.43 34.66 14.79 34.61 14.95
XLM-RoBERTa-base 37.92 17.20 31.26 11.89 35.84 16.07 32.47 14.63 33.00 14.95

BART-base 31.93 15.91 34.98 18.64 33.80 17.68 29.65 12.86 34.65 18.32

Table 2: Performance (in %) on the test set using the Hamming score and EMR metrics.

have a task where each observation has many la-
bels. In this case, we would have different metrics
to evaluate the system itself because multi-label
prediction has an additional notion of being par-
tially correct. Here, we focused on two metrics
called the Hamming score (commonly also multi-
label accuracy) and Exact Match Ratio (EMR).

4.1.1 Hamming score
The accuracy for each instance is defined as the
proportion of the predicted correct labels to the to-
tal number (predicted and actual) of labels for that
instance. Overall accuracy is the average across all
instances. It is less ambiguously referred to as the
Hamming score rather than Multi-label Accuracy.

4.1.2 Exact Match Ratio (EMR)
The Exact Match Ratio (EMR) is the percentage
of predictions matching exactly the ground truth
answers. To be computed, we sum the number of
fully correct questions divided by the total num-
ber of questions available in the set. A question
is considered fully correct when the predictions
are exactly equal to the ground truth answers for
the question (e.g. all multiple answers should be
correct to count as a correct question).

5 Results

Table 2 compiled the performance (in terms of
Hamming score and EMR) of all the studied ar-
chitectures and retrievers pipelines. For sake of
comparison, the column Without Context has been
added, considering that no retriever is used (i.e. no
external passage is present in the QA system).

As we can see, the best performing model is dif-
ferent according to the used metric. BioBERT V1.1
reaches best performance using the Hamming score
and BART-base in the case of the EMR. These first
observations are quite surprising since both models
are trained on English data. While we could expect
higher performance with French models (Camem-
BERT for example), the fact that these models are
trained on specialized data for one (BioBERT) and

on a model designed for the targeted task (SOTA
on question-answering for BART) finally shows
that language models trained on generic data are
inefficient for the MCQA task on medical domain.

In all considered architectures, context seems to
have a small impact on systems performance, with
a limited increase or drop depending on the con-
figurations. Clearly, the RoBERTa performance
is much higher without context (i.e. without the
use of the retriever part), while models based on
BERT generally (8 times on 12) outperform their
own baseline performances with external context.
The fact that we consider the 1-best passage only
may explain this impact.

Concerning XLM-RoBERTa-base (cross lin-
gual representation), we obtain in the case of the
context extracted using BM25 from Wikipedia, the
worst Hamming score and EMR out of all the dis-
criminative approaches. This confirms our first
observation that a non-specialized model does not
allow to achieve the best performance on this task.

Using BM25 promotes better context than se-
mantic search using MiniLMv2 on both Wikipedia
and HAL for most of the runs. Finally, the source
depends of the retriever and model used. A ma-
jority of the experiments demonstrate that HAL
outperforms Wikipedia on BM25 despite the fact
that the best model was obtained using Wikipedia.

The scripts to replicate the experiments2 as well
as the pre-trained models3 are available online.

6 Conclusion

We proposed in this paper FrenchMedMCQA, an
original, open and publicly available Multiple-
Choice Question Answering (MCQA) dataset in
the medical field. This is the first French corpus in
this domain, including single and multiple answers
to questions. Several state-the art systems have
been evaluated to show current performance on the
dataset. The analysis of these first results notably

2https://github.com/qanastek/FrenchMedMCQA
3https://huggingface.co/qanastek/FrenchMedMCQA-

BioBERT-V1.1-Wikipedia-BM25/tree/main
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highlighted the fact that language models special-
ized to the medical domain allow us to reach better
performance than generic models, even if these
have been trained in a different language (here, En-
glish biomedical models applied to French).

In future works, we will focus on improving
the existing methods for the task of MCQA, con-
sidering other strategies for the retriever module
(multiple passages, combining contexts...). Like-
wise, we will also consider the construction of data
representation models for French specialized for
medical domain.
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Abstract

Keyphrase generation is the task consisting in
generating a set of words or phrases that high-
light the main topics of a document. There
are few datasets for keyphrase generation in
the biomedical domain and they do not meet
the expectations in terms of size for training
generative models. In this paper, we introduce
kp-biomed, the first large-scale biomedical
keyphrase generation dataset with more than
5M documents collected from PubMed ab-
stracts. We train and release several gener-
ative models and conduct a series of experi-
ments showing that using large scale datasets
improves significantly the performances for
present and absent keyphrase generation. The
dataset is available under CC-BY-NC v4.0
license at https://huggingface.co/
datasets/taln-ls2n/kpbiomed.

1 Introduction

Keyphrase generation aims at automatically gen-
erating a set of keyphrases, that is, words and
phrases that summarize a given document. Since
they distill the important information from doc-
uments, keyphrases have showed to be useful in
many applications, most notably in information re-
trieval (Fagan, 1987; Zhai, 1997; Jones and Stave-
ley, 1999; Song et al., 2006; Boudin et al., 2020)
and summarization (Zha, 2002; Wan et al., 2007;
Qazvinian et al., 2010).

Current models for generating keyphrases are
built upon the sequence-to-sequence architec-
ture (Sutskever et al., 2014) and are able to gen-
erate absent keyphrases that is, keyphrases that
do not appear in the source text. However, train-
ing these models require large amounts of labeled
data (Meng et al., 2021). Unfortunately, such data
is only available for limited domains and languages
which greatly limits the applicability of these mod-
els (Ye and Wang, 2018). This work addresses
this issue and introduces kp-biomed, the first

large-scale dataset for keyphrase generation in the
biomedical domain.

Creating labeled data for keyphrase generation
is a challenging task, requiring expert annotators
and great effort (Kim et al., 2010; Augenstein et al.,
2017). A commonly-used approach to cope with
this task is to collect scientific abstracts and use
keyphrases provided by authors as a proxy for ex-
pert annotations. Authors provide keyphrases with-
out any vocabulary constraint to highlight impor-
tant points of their article; whereas indexers use a
specific vocabulary and focus on indexing the arti-
cle within a collection (Névéol et al., 2010). There-
fore, keyphrases may differ from MeSH headings
which are another indexing resource in the biomed-
ical domain. Fortunately, author keyphrases are
becoming increasingly available in the biomedi-
cal domain (Névéol et al., 2010), since they can
be incorporated into search strategies in PubMed
to improve retrieval effectiveness (Lu and Kipp,
2014). Despite this, the largest keyphrase-labeled
biomedical dataset that we know of has about 3k
abstracts, all of which are labeled with present-only
keyphrases (Gero and Ho, 2019). In this paper, we
take advantage of the expansive PubMed database
to build a sufficiently large dataset to train biomed-
ical keyphrase generation models1. We then com-
pare models trained with different training set sizes
to highlight the impact of dataset sizes in keyphrase
generation. Our contributions are as follows:

• kp-biomed, a large, publicly available
dataset for keyphrase generation in the
biomedical domain, available through the
Huggingface dataset platform2;

• Transformer-based models for biomedical
keyphrase generation, providing open bench-

1KP20k is currently considered as the reference dataset
size (≥ 500k) to train keyphrase generation models

2https://huggingface.co/datasets/taln-ls2n/kpbiomed
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marks to stimulate further work in the area3;

• Performance analysis of our models, which
provides valuable insights into their general-
ization ability to other domains.

2 Dataset

We employ the December 2021 baseline set of
MEDLINE/PubMed citation records4 as a resource
for collecting abstracts, which contains over 33
million records. We extracted all the records
(5.9 million) that include a title, an abstract and
some author keyphrases. Records of papers pub-
lished between 1939 and 2011 only account for
a small fraction of these extracted records (3%)
and were further filtered out to avoid possible di-
achronic issues. Last, we went through the re-
maining records to split the semicolon-separated
list of author keyphrases and discard those having
keyphrases with punctuation in it. The resulting
dataset is composed of 5.6 million abstracts and
was randomly and evenly divided by publishing
year into training, validation and test splits. To
investigate the impact of the amount of training
data on the quality of the generated keyphrases,
the training split was further divided into increas-
ingly large subsets: small (500k), medium (2M)
and large (5.6M). The training splits are also evenly
divided by publishing year.

Statistics of the kp-biomed dataset are de-
tailed in Table 1 along with other commonly-used
datasets for keyphrase generation and extraction.
We are aware of only two datasets in the biomed-
ical domain: NamedKeys (Gero and Ho, 2019)
which is made up of MEDLINE/PubMed abstracts
and is therefore mostly included in kp-biomed,
and Schutz (Schutz, 2008) which is composed
of full-text articles from the same source. It
is worth noting that these datasets are very lim-
ited in size (3k and 1.3k documents respectively)
compared to recent keyphrase generation datasets
KP20k (Meng et al., 2017), KPTimes (Gallina
et al., 2019) and LDKP10k (Mahata et al., 2022).
Table 1 shows that thanks to the amount of papers
available in MEDLINE/PubMed, kp-biomed is
the largest of all aforementioned datasets, being
more than 10 times larget than KP20k which is
the current reference dataset for keyphrase gen-
eration. The average number of keyphrases per

3https://huggingface.co/datasets/taln-ls2n/kpbiomed-
models

4https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/

document (#kp) in kp-biomed is roughly the
same than in KP20k and LDKP10k which have
their keyphrases assigned by authors as well. How-
ever, we see that this number is way below the
average number of keyphrases assigned by pro-
fessional indexers like in Inspec (Hulth, 2003) or
when authors’ keyphrases are combined with read-
ers’ as in SemEval-2010 (Kim et al., 2010). The un-
usually high number of keyphrases per document
in NamedKeys, despite having author assigned
keyphrases, is because of two restrictive criteria.
Indeed, each article has at least 5 keyphrases all of
which have to occur in the source text. The average
number of words per keyphrase (#kp_len) is also
comparable for all scientific datasets regardless of
the kind of annotators.

Using keyphrases as proxies for indexing or
expanding documents with queries composed of
words that do not appear in the source text, has
been proven more useful to enhance document
retrieval than using words occurring in the text
(Boudin et al., 2020; Nogueira et al., 2019). In
keyphrase generation, we call those keyphrases
absent keyphrases, for which several definitions
are being used. We refer to the definition from
(Meng et al., 2017) “we denote phrases that do
not match any contiguous subsequence of source
text as absent keyphrases" which was then pre-
cised in (Boudin and Gallina, 2021). In (Gero and
Ho, 2019) the keyphrase "anesthesia" is consid-
ered present if the word "postanesthesia" is in the
source text. In our case, it is considered absent
which is why NamedKeys does not appear with
100% present keyphrases in Table 1. The main dif-
ference between kp-biomed and NamedKeys,
despite the number of documents, is the proportion
of absent keyphrases. kp-biomed contains about
34% of absent keyphrases which is in the same
range as scientific datasets KP20k and LDKP10k
that were designed to train neural generative ap-
proaches (Meng et al., 2017; Mahata et al., 2022).

3 Experiments

3.1 Models
In keyphrase generation, the architectures are cur-
rently mainly based on autoencoders with Recur-
rent Neural Networks (Meng et al., 2017; Chen
et al., 2018, 2019; Chan et al., 2019) or Transform-
ers (Meng et al., 2021; Ahmad et al., 2021).

Following the work of (Meng et al., 2021) that
obtained state-of-the-art results with Transform-
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Domain Dataset #train #val #test #doc len #kp #kp len P A

kp-biomed (ours) 5.6M 20k 20k 271 5.3 1.9
Biomedical NamedKeys – – 3k 276 14.3 1.9

Schutz – – 1.3k 5.4k 5.4 1.9

General
KP20k 530k 20k 20k 175 5.3 2.1

scientific
SemEval-2010 144 – 100 192 15.4 2.1

articles
Inspec 1k 500 500 138 9.8 2.3
LDKP10k 1.3M 10k 10k 4.9k 6.9 2.1

News KPTimes 260k 10k 20k 921 5.0 1.5

Table 1: Statistics of the proposed dataset. For comparison purposes, we also report statistics of commonly-used
and other biomedical datasets. Columns P and A are respectively the percentage of keyphrases occurring in the
source text and absent ones.

ers, we used two different generative BART mod-
els (Lewis et al., 2020) and compared their per-
formances on different domains. However, in
this article we did not seek to get state-of-the-
art results, but rather introduce kp-biomed to
the community with results on well known base-
lines, which is why we employed pre-trained mod-
els that we just fine-tuned for keyphrase genera-
tion (Chowdhury et al., 2022). The models are
BioBART-base (Yuan et al., 2022) which is already
pre-trained on PubMed and BART-base (Lewis
et al., 2020) which is pre-trained on news, books
and webtext. To the best of our knowledge, there
is no generic scientific BART model. Therefore,
we chose BioBART for fine-tuning on scientific
datasets rather than BART. Models are available
via the huggingface platform.

For comparison with extractive approaches, we
considered MultipartiteRank (Boudin, 2018) as a
baseline, which is state-of-the-art in unsupervised
graph-based keyphrase extraction. We used the im-
plementation available in the keyphrase extraction
toolkit pke5 with the default settings.

3.2 Experimental settings
We followed the One2Seq paradigm (Meng et al.,
2021) for training which consists of generating the
keyphrases of an input article as a single sequence.
For each article, we concatenated the ground truth
keyphrases as a single sequence with a special de-
limiter. Following (Meng et al., 2021), present
keyphrases were ordered by their first occurrence
in the source text followed by the absent ones.

We trained each model for 10 epochs with a
5https://github.com/boudinfl/pke

batch size of 128. We set the input length limit
at 512 tokens for the text and 128 tokens for the
reference keyphrase sequence. All the parameters
and the training were handled with the hugging-
face trainer API6. Hyperparameters and hardware
details are available in appendix A. Training the
BioBART-base model on the small training split
for 10 epochs took about 9 hours and about 110
hours on the large training split. Once models were
trained, we over-generated keyphrase sequences
using beam search with a beam width of 20 for
evaluation. Inference on test sets took around 50
minutes each.

3.3 Evaluation
We evaluated our models on 3 datasets,
kp-biomed for biomedical data, KP20k
for generic scientific documents and KPTimes
for news articles. We did not use NamedKeys
as a test set as we noticed a substantial overlap
with our training set. We evaluated present and
absent keyphrase generation separately to get
better insights of our models’ performances. To
that end, we only compared each model’s output
to the present (respectively absent) keyphrases
of the ground truth. For present keyphrases we
employed F1@M and F1@10. F1@M is the F1
measure applied on the first keyphrase sequence
generated by the model whereas F1@10 evaluates
the top ten generated keyphrases. We evaluated
absent keyphrase generation with R@10 which
is the recall on the top 10 generated keyphrases.
As F1@10 and R@10 require 10 keyphrases, if
we did not have enough unique keyphrases with

6Our code is available for reproducibility.
https://github.com/MHoubre/kpbiomed
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Model kp-biomed KP20k KPTimes

F1@10 F1@M F1@10 F1@M F1@10 F1@M
MultipartiteRank 15.3 – 12.9 – 16.7 –
BioBART-small 31.4 32.5 25.2 27.1 22.0 24.4
BioBART-medium 32.5† 33.8† 26.2† 28.2† 22.1 24.6
BioBART-large 33.1† 34.7† 26.9† 28.9† 23.5† 26.2†

BioBART-KP20k 28.2 29.5 28.6† 31.9† 16.8 19.2
BART-KPTimes 9.1 9.6 3.6 2.7 29.7† 39.4†

Table 2: Performances of the models on present keyphrase generation. †means significant improvements over
BioBART-small. Second best results are underlined.

our over generation, we added the token "<unk>"
until we reached 10 keyphrases. The generated
keyphrases and the reference were stemmed with
the Porter Stemmer to reduce matching errors.
To measure statistical significance, we opted for
Student’s t-test at p < 0.01.

3.4 Results
The macro-averaged results of the evaluation are
reported in Table 2 and Table 3. BioBART-KP20k
(respectively BART-KPTimes) stands for the Bio-
BART (respectively BART) model which has been
fine-tuned on KP20k (respectively KPTimes).
For BioBART models, we add the size of the
kp-biomed training split in the name for clarity.

Model kp-biomed KP20k KPTimes

R@10 R@10 R@10
BioBART-small 3.3 1.8 2.6
BioBART-medium 3.6† 1.9 2.7
BioBART-large 4.1† 1.9 2.1
BioBART-KP20k 2.9 5.5† 1.6
BART-KPTimes 1.5 0.8 39.1†

Table 3: Performances of the models on absent
keyphrase generation. †means significant improvements
over BioBART-small. Second best results are under-
lined.

Transformer based approaches achieve the best
results but only on the datasets they were trained on
as previously showed for RNN based approaches in
(Gallina et al., 2019). For present keyphrase gener-
ation, BioBART-large achieves significant improve-
ments compared to its small and medium counter-
parts in all datasets. This shows that using more
data does improve the performances of the gener-
ative approaches in predicting present keyphrases
in in and out of domain data. The performance
drop of BioBART-KP20K on kp-biomed is in-
terestingly much more controlled than BioBART

models’ on KP20k. Compared to BioBART-small
which has been trained on the same amount of data,
the drop in F1@M is only of 7.5% relative for
BioBART-KP20k when it is of 16.6% relative for
BioBART-small. We think that BioBART’s pre-
training may be beneficial for BioBART-KP20k on
kp-biomed. On news articles though, BioBART-
KP20k shows a relative drop of 35%, when it is
only of 25% relative for BioBART-small. When
used on out of domain data, BART-KPTimes per-
forms even worse than MultipartiteRank.

In absent keyphrase generation, models fail in
attaining significant improvements outside of their
domain. Using more data does not seem to help
for out of domain absent keyphrase generation. We
can explain the high results of BART-KPTimes
on its test set by the fact that many of the absent
keyphrases are common to numerous articles.

We also think that the keyphrase order that we
chose for training is one reason for the models’
poor abstractive results. To verify this hypothesis,
we compute the average percentage of the models’
predictions appearing in the source text. Results
are reported in Table 4. For @10, we removed all
the added <unk> tokens before computing. It is
clear that the extraction percentage of each model
decreases when using top 10 predictions on all
datasets. This shows that models prioritize generat-
ing present keyphrases which can then lead to low
quality absent candidates.

Model kp-biomed KP20k KPTimes

@M @10 @M @10 @M @10
BioBART-large 96.3 92.2 94.8 88.5 93.5 84.6
BioBART-KP20k 95.4 84.5 91.8 82.7 83.7 66.6
BART-KPTimes 46.0 31.2 21.4 17.4 65.8 50.7

Table 4: Extraction percentage in top M and top 10
predictions
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4 Conclusion

This paper introduces kp-biomed, the first large
scale dataset for biomedical keyphrase generation.
We hope this new dataset will stimulate new re-
search in biomedical keyphrase generation. Several
generation models have been trained on this dataset
and showed that having more data significantly im-
proves the performances for present and absent
keyphrase generation. However, models still per-
form very poorly on absent keyphrase generation
even when using larger amounts of data. In future
work, we will focus on how to use kp-biomed to
improve biomedical absent keyphrase generation.

5 Broader Impact and Ethics

kp-biomed contains some abstracts that are part
of copyright protected articles. As the "all rights
reserved" statement is optional to be copyright pro-
tected, removing articles with this statement does
not solve the problem (i.e no copyright statement
does not mean free of use data). To be able to col-
lect, work with these data and share the dataset to
the research community, we complied with the con-
ditions of US fair use and the exceptions from the
2019/79 EU guideline on using copyright content
in text and data mining for research purposes. One
of those criteria was to not use the data for com-
mercial purposes which is why we opted for the
Creative Commons Non Commercial use license
CC-BY-NC v4.0.
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A Training settings

• GPU type: V100 32Go

• Number of GPU: 4

• Trainer: Seq2SeqTrainer

• Text max size: 512

• Reference max size: 128

• Optimizer : AdamW

• Learning rate: 5× 10−5

• Other hyperparameters: Seq2SeqTrainer de-
fault values
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Abstract

Clinical notes are the backbone of electronic
health records, often containing vital informa-
tion not observed in other structured data. Un-
fortunately, the unstructured nature of clini-
cal notes can lead to critical patient-related in-
formation being lost. Algorithms that orga-
nize clinical notes into distinct sections are of-
ten proposed in order to allow medical pro-
fessionals to better access information in a
given note. These algorithms, however, of-
ten assume a given partition over the note,
and classify section types given this informa-
tion. In this paper, we propose a multi-task
solution for note sectioning, where a single
model identifies context changes and labels
each section with its medically-relevant title.
Results on in-distribution (MIMIC-III) and
out-of-distribution (private held-out) datasets
reveal that our approach successfully identifies
note sections across different hospital systems.

1 Introduction

The increasing role of free-text narrative in Elec-
tronic Health Records (EHR) is both a blessing and
a curse. It allows much more nuanced information
about patients’ conditions being saved and docu-
mented (Uzuner et al., 2010; Jensen et al., 2012;
Wang et al., 2018; Feder et al., 2020). However,
the unstructured nature of this data can also make
it unavailable to medical care givers interested in
searching for specific patient-related information
(Walsh, 2004; Ford et al., 2016).

To better organize free-form clinical notes and al-
low researchers and practitioners to quickly search
over them, many solutions were proposed, mainly
focusing on sectioning notes to correspond to head-
ers described within the note (Pomares-Quimbaya
et al., 2019). These solutions were often rule-based
(Savova et al., 2010), identifying common section
headers in the data. Unfortunately, this approach
often failed to correctly classify sections across
different hospital departments, care providers and

EHR systems. For brevity throughout this paper,
we refer these as different data sources or distri-
butions interleaving. Alternatively, machine learn-
ing methods were proposed to classify individual
text-spans and map them into a pre-existing list
of possible sections. This approach successfully
outperformed rule-based approaches, but was of-
ten not deployed because of its inability to identify
section-boundaries.

With the recent success of transformer-based
models in natural language understanding, we iden-
tify an opportunity to tackle the section bound-
ary detection problem alongside section classifica-
tion, and propose a unified solution. Our approach
is based on pre-trained encoder-only transformer
models, which were shown to produce superior
results on natural language understanding (NLU)
tasks broadly (Vaswani et al., 2017; Devlin et al.,
2018), and specifically on clinically-relevant data
(Alsentzer et al., 2019; Lee et al., 2020).

We start by exploring current section classifica-
tion methods (§2). Then, we introduce our baseline,
a marker-based section header extraction system,
and describe how to use it to generate training la-
bels for ML-based methods (§3). We then pose hy-
potheses for when should ML systems outperform
rule-based approaches, and propose solutions based
on the hypotheses (§4). We continue by propos-
ing a dataset for training multi-task transformers
from rule-based labels (§5) and demonstrate how
such models can outperform rule-based approach
on in-distribution and out-of-distribution data (§6).
Finally, we conclude our work in light of our posed
hypotheses (§7).

2 Related Work

Identifying section headers in free-form clinical
notes is long identified as a crucial task for orga-
nizing patient-level data in biomedical informatics
(Li et al., 2010). Both ML-based and rule-based
solutions were proposed in the last decade to solve
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the problem (Pomares-Quimbaya et al., 2019). Un-
fortunately, existing solutions focus on solving the
relatively narrowly-defined task of classifying pre-
defined sections into section types, assuming that
section borders are already given (Li et al., 2010;
Tepper et al., 2012; Dai et al., 2015; Pomares-
Quimbaya et al., 2019). In practice, however, we
often observe complete notes, and are tasked with
identifying distinct paragraphs and only then clas-
sifying them into individual sections.

Recently, there has been an influx of research
demonstrating the power of pre-trained language
models in solving multi-task problems (Peng et al.,
2020; Radford et al., 2019; Wolf et al., 2020), in-
cluding on long texts (Beltagy et al., 2020). Follow-
ing this newly-formed conventional wisdom, we
embrace this approach here, and propose an ML
architecture that attempts to jointly detect section
boundaries and classify individual sections.

3 Marker-based Section Header
Extraction

We start by developing a marker-based section
header extractor. This extractor will then be used
for labeling our training data in §5 and as a baseline
in §6. In this approach, a marker corresponds to a
word that is usually used as the header of section.
E.g. PMH is a typical marker word that represents
the section Past Medical History. After examining
patterns in the data, we discover hundreds of such
markers in the MIMIC-III dataset (Johnson et al.,
2016). Lines that start with these markers are ex-
tracted and are labeled as section headers. These
headers mark the boundary between two sections
and the text between two headers is then treated as
one single section.

During our exploration, we recognized that there
exists correlations between the type of the notes
and the structure of the sections in the note. With
that in regard, we customized our markers to the
type of notes and certain markers will only be ap-
plied when the type of the note matches our def-
inition. We identified 5 core note types that are
most important for our usage: History and Phys-
ical, Progress, Discharge summary, Consult and
Operative.

Building on the MIMIC-III dataset, we use an
iterative approach to collect markers. A bootstrap-
ping marker set is first developed on a sampled set
of notes from the MIMIC-III dataset. The marker
set is then used to extract sections on the sampled

set and the extracted sections are then sent to ex-
perienced clinicians for rating. New markers are
then added according to the errors collected from
the raters and then used on a new set of randomly
collected notes. This process is repeated until no
more errors are reported from the raters. In prac-
tice, we found that this method shows both high
precision and high coverage in recognizing the sec-
tions. However, this approach does not work well
when we try to transfer it to a new dataset where
the medical notes come from a different healthcare
provider, where we see the recall numbers dropping
significantly (see §6 for complete results).

By analyzing the errors, we are seeing the fol-
lowing patterns:

• Plurals. E.g. “complaint” and “complaints”
• Abbreviations. E.g. “ALL” for “allergy”,

“Hx” for “history”.
• Mutation of marker orders. E.g. “PMH/PSH”

and “PSH/PMH”.
• Additional punctuations. E.g “** Marker **”
• Character splits, e.g. “P H Y S I C A L E X A

M I N A T I O N”.

By comparing with MIMIC-III, we observe that
while the headers are semantically similar across
different healthcare providers, many cases are ac-
tually non-identical and can therefore cause recall
losses. Additionally, this approach does not take
the context information into consideration, and is
not able to recognize many cases above even if the
section contents look similar to each other.

4 Section Classification Methods

To build solutions that are robust across different
distributions or require minimum learning efforts
to adapt, we need to understand what is the trans-
ferable knowledge that applies. Based on our expe-
riences in building the marker-based approach, we
have the following hypotheses:

• Section titles are shared across different
sources. This means that we expect the same
terminology is shared across different sources.
For example, we would expect “assessment
and plan” is a common terminology shared
across different sources. There might be some
slight variations, for example, “chief com-
plaint” vs. “chief complaints”.

• Section contents are similar across differ-
ent sources. We are expecting that the same
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section type would have similar content even
if they are from different healthcare systems.

• Structure of the sections is different for dif-
ferent types of notes. For example, we would
expect the discharge summary notes to have
a different set of sections in comparison to
operative notes.

For the first hypothesis, we want to understand
if we can build source-agnostic solutions by just
expanding the markers used in the baseline. For
the second hypothesis, we want to check if we can
improve the accuracy of section type identification
with additional information from the surrounding
text of the section titles. For the last hypothesis, we
propose to take advantage of the note type informa-
tion within a multi-task framework.

4.1 Expanding section titles

We first explore the approach using the same mech-
anism as the baseline approach, where we iden-
tify section titles as section boundaries and cat-
egorize sections according to the marker types.
Instead of the exact match used in the baseline
approach, we modify the method to fuzzy-match
with embedding-based similarity calculation. Here,
we use embeddings from the Universal Sentence
Encoder (Cer et al., 2018) to generate a sentence
embedding for each section marker. Using the sen-
tence embeddings, we calculate the cosine similar-
ity and use it to filter out section markers. Using
the dev set to select the best threshold in terms of
both precision and recall, we find that 0.98 cosine
similarity is the best for filtering potential markers.

4.2 Using context information

We conducted three types of experiments regarding
the use of context information: (1) Section title
only. For this, we only use the text of the target
sentence itself as the input feature for our model
and generate the input feature as <CLS><Target>.
(2) Context information only. We exclude the sec-
tion titles from the input feature of our model to
see if we can achieve good enough performance
with only context information. We generate the
feature as <CLS><Text before><SEP><Text af-
ter>. (3) Title + Context. For this we use the entire
segment of text including title + context for pre-
diction and generate the feature as <CLS><Text
before><SEP><Target><Text after>.

[CLS][Sentences Before] [Sentence][Sentences After] 

Medical BERT

SegmentationOutput SectionTypeOutput NoteTypeOutput

IsSectionTitle Section Type Note Type

SegLoss SecLoss NoteLoss

FinalLoss

Pooled Output

Dense + 
Softmax

Dense + DropOut

Dense + 
Softmax

Dense + 
Softmax

Figure 1: Structure of our multi-task BERT-based trans-
former model.

4.3 Multi-task BERT model
We propose the multi-task bert model1 as shown in
Fig 12: We split the text into text spans according
to line breaks and treat each text span as a training
example. For each example, we create three sepa-
rate losses for different tasks and use a combined
loss as the final loss function.

• Segmentation Loss: This task does a binary
classification regarding whether the target sen-
tence is a section title or not.

• Section Type Loss: This task does a multi-
class classification regarding the section type
of the target sentence. We end up with a 19-
way softmax by identifying 18 most important
section type sand treat the rest as others. The
details of thse 18 section types can be seen in
Appendix A.

• Note Type Loss: This task predicts which type
of the note the target sentence comes from.
We end up with a 7-way softmax, including
5 core types as mentioned in Section 3 + 1
unspecified type for notes with no obvious
structures + 1 others.

The combined loss is calculated as a weighted
sum of all losses. We tested on our dev set and set
an equal weight for each loss in our experiment. To
verify whether the use of note type information is
actually helpful, we added the experiment where
we set the weight for note type loss to 0.

1For BERT, we are using medical-bert fine-tuned on
pubmed data.

2Dense layers set as (128 - 32 - Final prediction towers)
with 0.1 dropout
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Method Description P R

Embedding-based Title only 0.82 1
BERT (target only) Title only 0.94 0.99
BERT (context only) Context Only 0.88 0.94
BERT (target + context) Title + Context 0.94 0.99
BERT (no note loss) Title + Context 0.92 0.99

Table 1: MIMIC-III (in-distribution) segmentation re-
sults. We only report segmentation results here as we
found that the section type accuracy is usually high
when we can recognize the correct section title.

5 Data

To have enough data for training/evaluation, the
output of the baseline system (Section 3) is used as
the golden data. Due to the nature of the baseline
algorithm, we can expect the generated data to
have high precision/recall for training models on
MIMIC-III and also high precision but low recall
for validation on the held-out private dataset.

Test data For MIMIC-III data, we use the data
described above. For the held-out private data, we
use the same approach as described above and use
all the extracted data as the test data. We randomly
selected 500 notes for validation.

Data pre-processing The baseline approach
uses the following rules for identifying the poten-
tial section titles which satisfy the following two
constraints: (1) Sentence at the start of the text.
(2) Sentence that ends with title endings (“:”, “-”,
“(“). We followed similar ideas and relaxed this
constraint in our data processing, where we split
the text into spans of text when there is line break
or a title ending. The section type information are
then assigned the text spans according to the output
of the baseline approach.

Training data We use MIMIC-III dataset as the
training data. We randomly selected 4,000 notes
for each of the five core note types, 4,000 notes
where the note type is not specified and 8,000 notes
randomly sampled from the entire dataset. As we
don’t have enough data for some categories, we
end up having 20,000 notes with 3M text spans
(among which there are 200k section titles). We
split these examples to training/validation/testing
in the ratio of 8:1:1.

6 Experiments and Results

We first conducted experiments on MIMIC-III
dataset and Table 1 demonstrates the results. As

Method Description P R

MIMIC3 Markers Baseline 0.98 0.65

Embedding-based Title Only 0.66 0.84
BERT (target only) Title Only 0.72 0.88
BERT (context only) Context Only 0.66 0.80
BERT (target + context) Title + Context 0.70 0.95

Table 2: out-of-distribution validation results

our approaches are based on MIMIC-III markers
and we are evaluating on the results extracted from
the markers, we expected to see good recall perfor-
mance for all our approaches. We are seeing that
the embedding-based approach and BERT models
that use title information were able to get a recall
of more than 0.99. To our surprise, we also see that
we are able to get a recall of 0.94 with just context
information, proving that context information is
useful even if used alone. However, we did not
see better results with both title and context infor-
mation, probably because that there exists limited
headroom for improvement. In the meanwhile, we
do see a small boost in precision with the inclusion
of note type classification loss.

We applied the models trained on MIMIC-III and
then to a new held-out dataset and results are shown
in Table 2. The MIMIC3 markers-based approach
was used as a baseline for comparison. We can see
that while the markers-based approach still has a
high precision due to its exact-match nature while
its recall dropped to 0.65. With fuzzy title match-
ing, the embedding-based approach improved the
recall to 0.84 at the cost of dropping the precision
to 0.66. Again, we see a reasonable performance
with BERT + only context information. The BERT
model with only title information reached a preci-
sion of 0.72 and recall of 0.88. With the addition
of context information, the model’s recall improves
to 0.95 without much loss in precision.

7 Conclusion

In this work, we explored approaches for recog-
nizing sections in free-form clinical notes. Our
approach is based on the hypothesis that section
content is similar across distributions and can be
used to generate a robust section classifier. Our
results demonstrate that our BERT-based model
trained on MIMIC-III has very good performance
on MIMIC-III and on our held-out private data,
outperforming strong baselines.
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A Appendix: Section Types

Table 3 shows a list of section types covered in this
paper.

Section Type Example Markers

CHIEF COMPLAINT Chief Complaint, CC, Presenting Problem
PAST MEDICAL HISTORY Pmh, Past Medical Problem
REVIEW OF SYSTEMS ROS, Review of Systems
SOCIAL HISTORY Family/Social History, Social Hx, SH
OTHER SUBJECTIVE Subjective, health maintenance, Influenza vaccine screening
IMAGING Image Result, IMAGING STUDIES
MEDICATION Allergies/Medication List, med list, Infusions
PHYSICAL EXAMINATION Physical Exam, Phys exam, PEx, Height And Weight
LAB RESULTS Review of Laboratory Data, Labs and Reports, Blood Chemistry Studies
OTHER OBJECTIVE Stress test, pathology
ASSESSMENT AND PLAN A&P, Impression and Plan, Plan
PROBLEM LIST Problem list, Problems (Active), Diagnoses
HOSPITAL COURSE Brief history of hospital course, Hospital Summary
DISCHARGE TRANSFER DIAGNOSIS Discharge/Transfer Diagnoses, Primary Diagnosis
DISCHARGE TRANSFER MEDICATION Medications on discharge, Transfer Meds
FOLLOW UP Discharge instructions and followup, Follow-up Plan, Followup Instructions
OTHER DISCHARGE INFORMATION Discharge activity, Discharge Diet
INTERVAL EVENTS Interval events, 24 hour events, o/n

Table 3: 18 core section types used in the study.
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Abstract

Clinical notes often contain useful information
not documented in structured data, but their
unstructured nature can lead to critical patient-
related information being missed. To increase
the likelihood that this valuable information is
utilized for patient care, algorithms that sum-
marize notes into a problem list have been
proposed. Focused on identifying medically-
relevant entities in the free-form text, these so-
lutions are often detached from a canonical on-
tology and do not allow downstream use of
the detected text-spans. Mitigating these is-
sues, we present here a system for generating
a canonical problem list from medical notes,
consisting of two major stages. At the first
stage, annotation, we use a transformer model
to detect all clinical conditions which are men-
tioned in a single note. These clinical condi-
tions are then grounded to a predefined ontol-
ogy, and are linked to spans in the text. At
the second stage, summarization, we develop
a novel algorithm that aggregates over the set
of clinical conditions detected on all of the
patient’s notes, and produce a concise patient
summary that organizes their most important
conditions.

1 Introduction

The pervasiveness of free-text narrative in Elec-
tronic Health Records (EHR) is both a blessing and
a curse. It allows much more nuanced information
about patients’ conditions being saved and docu-
mented (Uzuner et al., 2010; Savova et al., 2010;
Jensen et al., 2012; Wang et al., 2018; Feder et al.,
2020). However, the unstructured nature of the
data can also impede care givers’ understanding of
patient conditions (Walsh, 2004; Ford et al., 2016).

To allow care providers to better understand their
patients’ condition from medical notes, many ma-
chine learning (ML) models have been proposed
(Uzuner et al., 2011; Jensen et al., 2012; Lee et al.,
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Figure 1: System overview: Conditions are extracted
form each individual note at the annotation stage, and
a single patient level list is generated from them at the
sumarization stage.

2020). These algorithms often solve a named-entity
recognition (NER) task over the clinical notes, iden-
tifying text spans that correspond to clinical prob-
lems (Uzuner et al., 2011). While performance on
such task has improved in the last decade (Wang
et al., 2018), these models often do not link the
identified entities to an ontology and are there-
fore sensitive to abbreviations, spelling errors and
language ambiguity (Reátegui and Ratté, 2018;
Gopinath et al., 2020; Gao et al., 2021). More-
over, these solutions operate at the note level, and
are not able to aggregate a patient’s overall medical
problem list (Baumel et al., 2018). Both of these
limitations decrease the utility of deploying these
models in the real-world.
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Another important limitation of many existing
solutions is that they are built on top of recurrent
neural networks designed for solving NER tasks
which often do not fully utilize the nuanced linguis-
tic signal (Wang et al., 2018). These approaches
were shown to produce very good results on de-
identification tasks on clinical notes (Hartman et al.,
2020), but can fail when presented with tasks that
demand better understanding of context (Devlin
et al., 2019). The recent transition of the entire
NLP community to pre-trained transformer-based
models (Wu et al., 2020) thus offers an opportunity
to further improve on existing condition extraction
methods (Zhu et al., 2018).

In this paper, we take on the task of addressing
these problems and limitations, and describe how to
build an end-to-end system that is robust and trust-
worthy. Concretely, given a set of notes describing
a single patient, our goal is to output a clinically-
focused problem list. Our system consists of two
major stages: (1) Annotation (§4): operating at the
level of a single medical note, we detect all clinical
conditions which are mentioned in the text. These
clinical conditions are then grounded to a prede-
fined set of entities, and are linked to text spans.
More formally, the output of the annotation stage
is a set of tuples, where each tuple is a clinical con-
dition identifier, a character span and context meta-
data (e.g., the acuity and presence of the condition).
(2) Summarization (§5): operating at patient-level,
we consume the set of clinical conditions detected
during the annotation stage, and produce a con-
cise patient summary that organizes the conditions.
Our system is backed by a tailored Ontology (§3),
defined on-top of SNOMED-CT (Donnelly et al.,
2006) used by both stages to model the clinical
knowledge required for this task. See Figure 1 for
an illustration of our system.

2 Related Work

Identifying patient-related information in medical
notes is long recognized as a core task in clinical-
NLP. As such, there exist standardized datasets and
competitions (Uzuner, 2009; Savova et al., 2010;
Jensen et al., 2012; Ford et al., 2016; Zhu et al.,
2018). The task of identifying medical concepts
in clinical notes was organized as a competition
in i2b2 2010 (Uzuner et al., 2011). In i2b2 and
in subsequent work, this task was defined as a
named entity recognition (NER) task (Hartman
et al., 2020), where individual words are classified

as to whether they contain medical problems. Sub-
sequently, a Named Entity Normalization (NEN)
task, where entities are standardized into known
medical concepts, was later added to the i2b2 (now
n2c2) competitions (Luo et al., 2019). Solutions
to the problem consequently followed the conven-
tional NLP approaches to solving NER tasks. Re-
cent approaches harness the transformer architec-
ture, solving a token-level binary classification task
(Peng et al., 2019; Yadav and Bethard, 2019; Si
et al., 2019; Lee et al., 2020).

To connect identified text spans to an ontology, a
common solution is to look for the most similar en-
tity in a given knowledge graph. Knowledge graphs
use a graph-structured data model to integrate data
(Ehrlinger and Wöß, 2016). They are often used to
store interlinked descriptions of entities—objects,
events, situations or abstract concepts—while also
encoding the semantics underlying the used ter-
minology. They were shown to be very useful in
the medical domain and are often used to encode
medical knowledge (Lindberg et al., 1993; Don-
nelly et al., 2006; Lipscomb, 2000). Specifically, in
the context of free-form text, as that in the clinical
notes, graph structured data models can be used to
map many alternative descriptions of the same con-
dition into one canonical definition (Organization,
2015).

Finally, the task of aggregating patient-related
information across multiple documents into one
problem list in a single system was not, to the best
of our knowledge, published in prior research. The
focus of our work is building an end-to-end system
that connects the text annotation with the summa-
rization stage.

3 Ontology

Our system is based on a universe of entities (ontol-
ogy). The ontology captures the clinical knowledge
required for our system to provide a concise and
clinically-focused problem list. This knowledge
improves both the detection of clinical conditions
in medical notes (§4), and the subsequent bucketing
of related conditions (§5).

On the detection side, it is necessary for our
algorithm to be aware of the ways in which clini-
cal conditions may appear in medical notes. For
example, “iddm” (“insulin dependent diabetes mel-
litus”) is an alternative phrasing of “Diabetes mel-
litus type 1”, and “Miller” may refer to "Miller
Fisher syndrome". On the bucketing side, it is nec-
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essary to have knowledge about related conditions
(e.g., “Biventricular congestive heart failure” is re-
lated to “Right heart failure”) and about possible
complications of certain conditions (e.g., “Diabetic
nephropathy” is a complication of “Diabetes melli-
tus”).

Failure to capture this knowledge may increase
the redundancy at the problem list level, and might
cause dilution of signals and features, which in
turn results in poor quality. The ontology is there-
fore a fundamental building block that is being
used across all the system stages, and the way it
is created has critical quality implications. In this
section, we describe the creation of our ontology.
Instead of creating a full ontology end-to-end, we
have opted to base our ontology on pre-existing
datasets. We collected a set of Ground Truth Prob-
lem List, which were curated by clinicians, and
examined the properties of each dataset against this
ground truth. A useful ontology should demon-
strate the following properties:

(i) High coverage of the entries in the ground
truth Problem List’s, and in the right granu-
larity level.

(ii) Easy to match an entity from the ontology
to the actual text in the medical note.

(iii) Entities should have meaningful relation-
ships with other entities that are useful for
reducing redundancy in the aggregated Prob-
lem List.

We considered multiple data sources, including:
SNOMED-CT (Donnelly et al., 2006), MeSH (Lip-
scomb, 2000), ICD-10-CM (Organization, 2015),
and UMLS (Lindberg et al., 1993).

3.1 ICD-10

.

ICD-10 is lacking some conditions (e.g.,
“Odynophagia”) violating property ((i)); a single
main entity is missing for some conditions (e.g.
“Sepsis” and “Pneumonia” are associated with mul-
tiple unrelated entities), these conditions are clut-
tered across the dataset, making it more difficult to
group mentions together (violating property ((iii)));
and due to the verbose description of some entities
(e.g. “K44.9 Diaphragmatic hernia without obstruc-
tion or gangrene”), it is hard to match an ontology
entity to the text (“Hiatal hernia” in the previous
example), in violation of property ((ii)).

3.2 MeSH

In MeSH we observed some significant recall
losses. For example, "Hypertensive urgency” and
"Generalized anxiety disorder” were missing, vio-
lating property ((i)).

3.3 UMLS

Since UMLS is a combination of multiple systems,
the relationships and granularity it provides vary
across entities. This makes all properties only par-
tially satisfied.

3.4 SNOMED-CT

While SNOMED-CT was missing some entities
(e.g., "Right eye glaucoma”), these could usually
be compensated by other SNOMED concepts with-
out any significant clinical impact, and overall, it
outperformed on all three properties the other op-
tions considered.

We note that due to the uniqueness in structure,
relation types and granularity of each ontology, any
attempt of reconciliation is exposed to similar is-
sues as observed in UMLS. Therefore we chose
to base our solution on a single ontology source
(SNOMED), where each entity in our ontology cor-
responds to exactly one SNOMED concept. This
allows us to maintain the consistency and gran-
ularity of SNOMED concepts and relationships,
and also allows us to incorporate new versions of
SNOMED as they are released, which keeps the
ontology up to date.

Additionally, in order to enhance the ability to
match a SNOMED concept to text from medi-
cal notes, we enrich SNOMED concepts with the
followings (using our NameMapper algorithm de-
scribed in section 4.2):
1. The ICD-10 codes of all ICD-10 diagnoses for

which the SNOMED concept is their closest
concept in SNOMED.

2. Phrases which are alternative ways to mention
the entity in medical notes.
For (1), we use two sources for mapping ICD-10

diagnoses to their closest SNOMED concept: (a)
OHDSI-OMOP (Stang et al., 2010; Hripcsak et al.,
2015); and (b) the NameMapper (details in sec-
tion 4.2) algorithm, applied on a diagnosis’ name
in order to match it against the set of SNOMED
terms. For (2), we consider clusters of phrases
that are originated from various sources: MeSH,
UMLS and manually-curated abbreviations. All
phrases in a cluster refer to the same entity. We
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use NameMapper again, in order to match each
phrase in a cluster against the full set of SNOMED
terms. We add the entire cluster to the entity that
corresponds to the closest SNOMED concept.

4 Annotation

The annotation stage is performed at the
level of a single clinical note. At the
end of this stage each mention of a condi-
tion in the text is exported in the form of
(ConditionID, (start, end), ContextInfo) tu-
ple (where start, end refer to a char offset from
the beginning of the note), ConditionID is a
unique entry in the ontology described in §3,
and ContextInfo includes extracted information
about the condition, such as acuity, presence, etc.

We start this section by describing our detec-
tion (§4.1), and mapping (§4.2) algorithms.

4.1 ML model for surfacing candidates and
context information

We extract condition spans from free text using
an ML NER model. Later, we try to map these
candidate spans into our ontology (§4.2).

Our model is a multi-task encoder-only trans-
former model (BERT; Devlin et al., 2019). Its main
task is a 4-class classification task (using the labels
PROBLEM, BODY PART, QUALIFIER, PRO-
CEDURE), with additional two supplementary-
tasks:

• Existences: For each of the four labels,
whether it is PRESENT or ABSENT; e.g., in
“ruled out cancer”, “cancer” is labeled as AB-
SENT.

• Relation: For both BODY_PARTS /
QUALIFIERS, are they associated with the
PROBLEM / PROCEDURE on their left, or
on their right. E.g., in "diabetic foot ulcer",
"ulcer" will have a LEFT_HAND_SIDE
label. This information is later used to map
the annotated term to the most accurate
ontology entity.

This is the 2nd generation of NER models used
in our system, our previous model was based on
GloVe, Bi-LSTM and CRF (Hartman et al., 2020).
On top of the CRF layer we placed three softmax
layers to solve each of the three aforementioned
tasks (this model is referred as Bi-LSTM below).

The BERT model described here showed supe-
rior performance (see table below). For BERT, we

use a similar approach where we place three soft-
max layers on top of the pre-trained contextual em-
bedding. The added layers are then fine-tuned on
the MIMIC-III dataset (Johnson et al., 2016; using
the same labels of the Bi-LSTM). We experimented
with 3 pre-trained BERTs:

BERT-base from the original paper (Devlin et al.,
2019).

BERT-small based on (Turc et al., 2019) – x2
more efficient than BERT-base.

PubMED BERT same architecture as BERT-
base, pre-trained from scratch on MED-
LINE/PubMed, using the original uncased
word-piece tokenizer (Lee et al., 2020).

The labels are split 80%/20% for train/eval sets.
The following table shows the results on the eval
set. As can be seen, PubMED BERT surpasses the
other models.

4.2 NameMapper – A graph traversal-based
approach for ontology matching

In many cases, the hand-written text by clinicians
in notes does not match the names of conditions in
the ontology. To bridge this gap, and to increase
the coverage of problems detected and matched
by our algorithm in §4.1, we introduce a graph-
based fuzzy text matcher called NameMapper. The
NameMapper is used during the following stages
of our system:

(i) Ontology creation (§3): For mapping
between entities in different ontologies
(ICD-10→ SNOMED).

(ii) Increase detection coverage: Build a vo-
cabulary used at the annotation stage for
matching text spans to entities from the on-
tology.

(iii) Mapping: Map conditions spans generated
in §4.1 to entities in our ontology.

NameMapper is essentially a string matching
algorithm. It operates on text that is suspected to
match a name of an entity in the ontology. It ex-
pands the string using different variations of each
word within, and allows string manipulations using
pre-defined operations. Each operation is associ-
ated with a cost. We use a graph (with these costs
set as edge weights) to find the closest entity in
the ontology to the input string. See an illustration
in Figure 3). The process consists of three main
stages:
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Pt arrived bleeding from their forehead no signs of concussion 

- - CONDITION - - BODY_PART - - - CONDITION

- - PRESENT - - PRESENT - - - ABSENT

- - - - - RIGHT - - - -

Transformer encoder (BERT)

Main

Existence

Relation

Figure 2: Illustration of our multi-task encoder-only transformer: Each token is labeled for type classifica-
tion(Main), Existence and Relation.

Parsing. We first break the input string into a
(non-intersecting) sequence of name components
of different types: e.g., connectors such as "due to"
or "of" are modeled as a special type.

Generation. For each name component, we gen-
erate a set of alternatives, each alternative is as-
sociated with a cost. These alternatives represent
different ways to refer to the same concept, e.g.,
"malignant tumor" → "cancer", "lung" → "pul-
monary", "kidney"→ "renal", "diabetes mellitus"
→ "diabetes"). These costs were manually curated.
One could think of them as the conceptual distance
between the two synonyms (e.g., replacing "ii" with
"2" has a lower cost compared to replacing "infec-
tious disease" with "infection"). The alternating
names include the original string as it appears in
the input name (up to lower-casing and some other
default operations) and alternative wordings that
are based on synonyms, dropping optional phrases,
stemming and more. We manually curated those
rules. For example, "diabetes" is a synonym of
diabetes mellitus, diabet is the canonical form of
"diabetes".

Using the alternatives of each name component,
we generate a list of alternative writings for the
entire phrase. The alternatives include different
combinations of the options created for the name

components generated during the previous stage.
This stage also allows phrase level transformations
(with additional cost). For example, the connector
"due to" allows a transformation of dropping itself
and the possibility of swapping both of its sides:
"coma due to diabetes mellitus" may generate al-
ternatives such as "coma diabetes mellitus" and
"diabetes mellitus coma" (each with a cost). The
final (phrase level) cost is set to be the costs sum
of all replacements and operations applied to the
input string.

Selection. We output the ontology entity that
matches the best candidate (lowest cost). For ex-
ample, the terms "diabetic coma", "coma due to di-
abetes mellitus" and "diabetes mellitus coma" will
all be mapped to the same ontology entity "Coma
due to diabetes mellitus", each with a cost.

5 Summarization

The Annotation Phase (§4) outputs the mentions of
clinical conditions in the medical notes. The goal of
the Summarization Phase is to take all the mentions
across all the notes and generate a comprehensive
and coherent problem list, optimized for the needs
of clinicians who care for the patient. In addition to
the mentions themselves, the Summarization Phase
can use additional information in the patient’s chart

PROBLEM [3.8K] BODY PART [1.4K] QUALIFIER [0.7K] PROCEDURE [0.4K]

P R F1 P R F1 P R F1 P R F1

Bi-LSTM 84.74 86.80 85.76 75.52 80.02 77.70 60.65 55.17 57.78 71.83 64.15 67.77
PubMED BERT 87.64 89.69 88.65 72.61 86.79 79.07 65.27 62.18 63.69 65.94 76.58 70.86
BERT base 86.47 87.19 86.83 74.22 82.51 78.15 61.24 57.77 59.45 64.99 67.80 66.36
BERT small 84.10 86.65 85.35 69.82 81.22 75.09 59.51 55.83 57.61 62.13 57.36 59.65

Table 1: ML model classification results
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as well as general medical knowledge. We now
describe the sequence of steps that make up the
Summarization Phase.

5.1 Grouping

The first step is to collect all the clinical condition
mentions related to the same condition. In this
step, we drop conditions that the patient never had
(e.g., mentions of known side effects of treatments,
speculations written in the note etc.) using the
existence signal generated by our annotator (§4.1).

5.2 Bucketing

In the next step, we group clinical conditions that
are related to each other. For example, if we found
mentions of Systolic Heart Failure, Diastolic Heart
Failure, Acute Heart Failure, and Acute Diastolic
Heart Failure in a patient’s medical notes, we
would bucket those mentions under a Heart Fail-
ure bucket, even if "Heart Failure" itself was not

explicitly mentioned in the patient’s record.

In the example above, Heart Failure is an an-
chor entity, used to bucket together more specific
conditions as defined by the is-a relation of the
SNOMED ontology (see Section 3). A bucket is
defined as a collection of patient conditions com-
posed of one or more anchor entities and their cor-
responding descendants (in the ontology).

Ideally, conditions inside a bucket should in-
volve similar pathophysiologies, medications and
therapies. Anchor entities should thus follow the
Goldilocks Principle and be neither too broad nor
too narrow. Overly broad anchor entities (e.g.,
Heart disease) represent conditions with very dif-
ferent pathophysiologies and therapies and there-
fore do not provide a good clinical view. Overly
narrow anchor entities (e.g., Systolic Heart Fail-
ure, Diastolic Heart Failure, Acute Heart Failure,
and Acute Diastolic Heart Failure) would make
the Problem List overly long and redundant, reduc-

“Diabetic coma” Coma due to diabetes 
mellitus

(disorder #420662003)

IN: OUT:

Alternatives to: "coma due to diabetes 
mellitus"

There are 3 name parts:
* Name part #1: "coma"
  "coma", cost=0
* Name part #2: "due to"
  (connector)
* Name part #3: "diabetes mellitus"
  "diabetes mellitus", cost=0
  "diabetes", cost=20  // Synonym
  "diabet mellitus", cost=25  // 
Canonicalization of orig
  "diabet", cost=45  // Canonicalization of 
synonym (combined costs)

Together:
"coma due to diabetes mellitus", cost=0
"coma due to diabet mellitus", cost=25
"coma due to diabet", cost=45
"coma due to diabetes", cost=20
"coma diabetes mellitus", cost=15
"coma diabet mellitus", cost=40
"coma diabet", cost=60
"coma diabetes", cost=35
"diabetes mellitus coma", cost=15
"diabet mellitus coma", cost=40
"diabet coma", cost=60
"diabetes coma", cost=35

diabetic coma
coma due to 

diabetes mellitus

coma due to 
diabetes

diabetes coma

Use of synonym for 
“diabetes mellitus” 

Use of canonical form of 
“diabetes” 

25
15

0 0

coma due to diabet 
mellitus

25

20 Canonization of 
“diabetes mellitus” 

Drop of the 
connector and 

reorder

diabet coma

25
Canonization of 

“diabetes” 

Canonization of 
“diabetes” 

Name part #1: 
"coma”

Name part #2:
"due to” (connector)

Name part #3: 
"diabetes mellitus”

Name part #1: 
"diabetic coma”

Lowercasing

Lowercasing

Figure 3: Illustration of the NameMapper: At stage Parsing the input "Diabetic coma" is parsed to its single
name component (blue parallelogram). Additionally, the ontology entity "Coma due to diabetes mellitus" is parsed
to Coma, diabetes mellitus and the connector due to (green parallelograms). Then the generation stage Generation
will use the variations of each name component to create all possible permutations both for the input and the
ontology entity(ies), given in blue and green ovals accordingly. Finally stage Selection will find the shortest path
between the input and the ontology, that is Coma due to diabetes mellitus with the cost of 85 (in bold).
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ing its usefulness. Identifying good anchor entities
requires clinical expertise.

As part of the Bucketing step, we also determine
the name of the bucket. This is typically the name
of the anchor entity or entities around which the
bucket is defined. However, if the bucket only con-
tains more specific entities than the anchor entities,
we give the bucket a more specific name.

For example, if the only conditions in the bucket
anchored on Heart Failure were Diastolic Heart
Failure, and Acute Diastolic Heart Failure, instead
of naming the bucket "Heart Failure", we would
name it "Diastolic Heart Failure", which is a more
accurate description of all the entities that ended
up in the bucket for this particular patient.

5.2.1 Secondary buckets
Some conditions are associated with other condi-
tions typically but not always. For example, Hy-
perglycemia is often associated with Diabetes Mel-
litus but it is possible to have nondiabetic Hyper-
glycemia. In this case we consider Diabetes Melli-
tus as a secondary bucket of Hyperglycemia, mean-
ing that if the Diabetes Mellitus bucket includes
other conditions then it should also include Hyper-
glycemia, but if it is empty (does not exist) then
Hyperglycemia should be its own bucket.

5.3 Bucket Presence

At the end of the bucketing step, we generate col-
lections of clinical conditions that were mentioned
in the patient’s medical notes. However, the patient
does not necessarily have all conditions that were
mentioned. The typical reasons are mistakes in the
Annotation Phase or actual uncertainty, e.g., a pa-
tient may have a mention indicating that Covid-19
is likely only to be ruled out in a later mention.
Obviously, it is desirable to omit these conditions
from the list, as the patient does not have them.

In the Condition Bucket Presence step, we deter-
mine if the patient is having, or has ever had each
of the condition buckets. First, we make use of
the Existence signal extracted during the Annota-
tion phase (see Section 4.1), and drop the mentions
classified as "ABSENT" by the algorithm based on
the surrounding context. Since (as expected) the
Annotator’s existence classification is not always
perfect, we apply an additional second level to im-
prove the presence detection. To handle mistakes
from the Annotation Phase we take into account the
frequency with which the condition was mentioned
in medical notes, the section where the condition

was mentioned, and the credentials of the medical
note’s author. We are looking into using additional
signals such as mentions in the notes of related con-
ditions, documentations of conditions in the EHR
structured Problem Lists, information about labs,
vitals and medications, and many others.

5.4 Classification

Over time, a patient is expected to have many clin-
ical conditions. However, not all conditions are
active when the patient is reviewed, and if they all
were to be displayed, the list would quickly become
overwhelmingly long and not particularly useful.
Imagine reading a chart of a patient that caught a
common cold a few years ago who is also diabetic;
more details about diabetes and related conditions
should be surfaced, and the information about the
common cold’s occurrence in the far past would
be no longer relevant today, and therefore should
be skipped to avoid unnecessary clutter. Since our
Annotation phase also detects symptoms and pro-
cedures seen in the patient’s medical notes, the
length of the generated Problem List can become
extremely long. It is thus important for us to strive
for conciseness, and avoid information overload
that could distract physicians from the important
active conditions.

To make the Problem List easier to comprehend,
we classify the clinical conditions into four cate-
gories: Active Conditions, Historical Conditions,
Procedures, and Symptoms.

SNOMED classifies every entity into a type
which includes disorders, findings, and procedures.
We consider the SNOMED types of all the entities
in a bucket to determine the type of the bucket:
a bucket with disorders is a Conditions bucket, a
bucket with findings is a Symptoms bucket and so
on. We have additional logic for mixed buckets,
e.g., a mixture of disorders and findings is consid-
ered a Conditions bucket.

In the next step we classify the Conditions buck-
ets into Active and Historical category. We do this
by first classifying individual conditions included
in a bucket separately and then again classifying
the entire bucket based on the whole collection: a
bucket with at least one Active condition is Active,
otherwise it is Historical. A chronic lifelong con-
dition such as Type 1 Diabetes Mellitus is always
considered Active. The remaining conditions are
considered Active and then moved to Historical if a
mention confirming their presence wasn’t seen for
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a long time, or if a mention was found explicitly
indicating that the condition was resolved. The
duration after which a non-lifetime condition is au-
tomatically classified as Historical (because it was
not mentioned again as present) varies, and is part
of our curated knowledge gathered with assistance
of expert clinicians.

5.5 Ranking

Finally, we rank the conditions in each category
so that the most clinically important conditions
are displayed first. Our ranking function accounts
for the severity and recency clinical conditions to
determine the order. More severe and more re-
cent conditions are ranked higher to highlight the
conditions that might require more attention from
physicians.

5.6 Summarization evaluation

Each step in the Summarization Phase is evaluated
separately so that we are able to test those steps
in isolation. At the same time, we also test the
overall pipeline by evaluating the resulting Problem
List holistically. In addition to evaluating metrics
such as precision and recall, we also measure the
usefulness of the Problem List, which captures the
effects of steps such as Bucketing, Classification,
and Ranking.

6 Conclusion

In this work, we present an end-to-end system for
summarizing a patient’s problem list directly from
their entire collection of medical notes. This sys-
tem aggregates over identified conditions in each
note, producing a concise list mapped to a canon-
ical ontology and without duplicated conditions.
Building on recent improvements in natural lan-
guage understanding models, especially encoder-
only transformers, we show how NLP models can
be used as part of an holistic system. We hope that
our work will spur more research on how to utilize
NLP for better, more robust and trustworthy, health
informatics systems.
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Abstract

Domain adaptation of word embeddings has
mainly been explored in the context of retrain-
ing general models on large specialized corpora.
While this usually yields good results, we ar-
gue that knowledge graphs, which are used less
frequently, could also be utilized to enhance ex-
isting representations with specialized knowl-
edge. In this work, we aim to shed some light
on whether such knowledge injection could be
achieved using a basic set of tools: graph-level
embeddings and concatenation. To that end,
we adopt an incremental approach where we
first demonstrate that static embeddings can in-
deed be improved through concatenation with
in-domain node2vec representations. Then, we
validate this approach on contextual models
and generalize it further by proposing a variant
of BERT that incorporates knowledge embed-
dings within its hidden states through the same
process of concatenation. We show that this
variant outperforms plain retraining on several
specialized tasks, then discuss how this simple
approach could be improved further. Both our
code and pre-trained models are open-sourced
for future research. In this work, we conduct
experiments that target the medical domain and
the English language.

1 Introduction

The popularization of transfer learning, particu-
larly in the context of pre-training language mod-
els to serve as encoders in downstream tasks, has
led to an ever-expanding set of methods for rep-
resenting textual data: e.g. ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019). While these models continuously
push forward the expected level of performance on
so-called “general domain” tasks (e.g. GLUE1),
they usually lag behind when it comes to more spe-
cialized areas like the medical domain (see BLUE2

1https://gluebenchmark.com/leaderboard
2https://github.com/ncbi-nlp/BLUE_Benchmark#

baselines

and BLURB3 benchmarks). As a result, there is
a growing interest in finding ways in which these
out-of-the-box representations can be specialized,
with most efforts focusing on retraining general
models on specialized corpora: e.g. ClinicalBERT
(Alsentzer et al., 2019), BioBERT (Lee et al., 2020),
and BioMed-RoBERTa (Gururangan et al., 2020).
However, pre-trained language models have also
been shown to benefit from external knowledge
injection, with approaches like LIBERT (Lauscher
et al., 2020), KnowBERT (Peters et al., 2019), and
KEPLER (Wang et al., 2021b) in the general do-
main, or (Hao et al., 2020) and (Lu et al., 2021) in
the medical domain. Yet, these efforts usually in-
volve complex modifications to the architecture of
underlying models and/or their pre-training proce-
dure, which may convey the impression that knowl-
edge injection cannot be achieved in simpler ways.

In this work, we propose a simple approach to
embedding specialization that relies on knowledge
graph embeddings and concatenation. We argue
that by building a simple but strong baseline first,
we lay the foundation for future improvements that
may be easily achieved by upgrading to more so-
phisticated knowledge embeddings or combination
methods. In practice, we show that medical concept
embeddings obtained from an in-domain knowl-
edge graph can be combined through concatenation
with word representations to effectively construct
specialized “meta-embeddings” (Yin and Schütze,
2016). Moreover, in the specific case of contextual
embeddings, we show that these concept embed-
dings can be combined either externally, with a
general-domain model, or internally, during the pre-
training of a specialized model, to achieve varying
levels of model specialization. All our models are
trained and evaluated in pairs, and in exactly the
same conditions, to highlight to the greatest extent
the impact of our strategies.

3https://microsoft.github.io/BLURB/
leaderboard.html
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Our contributions are the following:
• We build two sets of knowledge represen-

tations by applying node2vec (Grover and
Leskovec, 2016) to concepts from MeSH
(biomedical) and SNOMED CT (clinical).

• We construct specialized meta-embeddings
by concatenating fastText embeddings (Bo-
janowski et al., 2017) with the node2vec vec-
tors. We show that this improves the perfor-
mance of both general and medical domain
representations on several medical tasks.

• We conduct the same experiments with
contextual BERT and CharacterBERT
(El Boukkouri et al., 2020) representations,
and show similar improvements on most
evaluation tasks with a slight edge for the
character-based model.

• We generalize the meta-embedding approach
to the pre-training of contextual models by
introducing a ‘Knowledge Injection Module’
that combines incoming hidden states from a
Transformer layer (Vaswani et al., 2017) with
external knowledge representations through
the same process of concatenation.

• We retrain both original and modified versions
of BERT and CharacterBERT on a medical
corpus and show that the modified models
perform better on several medical tasks.

• We propose improvements to our methods and
share our code and pre-trained models to fa-
cilitate future attempts at enhancing word em-
beddings using knowledge graphs.

Our experiments are conducted on general and
medical corpora in the English language. General-
ization to other cases is left for future work.

2 Related Work

Our approach is related to the similar but usually
distinct topics of knowledge injection and domain
adaptation. In fact, most attempts at domain adap-
tation do not aim to inject external knowledge di-
rectly into models but rather indirectly, through
retraining on specialized corpora, as this is known
to bring significant improvements when such in-
domain corpora are available (Si et al., 2019). On
the other hand, research concerned with knowledge
injection usually tackles the problem within the
same domain. For instance, SemBERT (Zhang
et al., 2020), COMET (Bosselut et al., 2019),
ERNIE (Zhang et al., 2019), K-BERT (Liu et al.,
2020), and KEPLER all inject general knowledge

into general-domain models. Similar efforts in the
medical domain (Hao et al., 2020; He et al., 2020a;
Michalopoulos et al., 2021; Lu et al., 2021) di-
rectly inject medical knowledge during medical
pre-training. In this work, we first set out to deter-
mine whether the performance of general-domain
models, both static and contextual, can be improved
solely using specialized knowledge embeddings,
then only do we incorporate this approach into the
usual model adaptation via pre-training.

Methods that utilize knowledge graphs, for in-
stance (Roy and Pan, 2021; Sharma et al., 2019;
Chang et al., 2021), can be broadly grouped into
two categories: those that use the structured data
directly and those that encode this data into numer-
ical representations. Instances of direct utilization
include KG-BERT (Yao et al., 2019) where triples
(concept_1, relation, concept_2) are used to
inject BERT with medical information through aux-
iliary tasks like knowledge graph completion and
triple classification. Entity linking in (Yuan et al.,
2021) or more specialized tasks in (He et al., 2020c)
are also used as auxiliary tasks for performing such
injection. While these methods can be effective,
we argue that an indirect approach is desirable as
it presents the specialized knowledge in the same
format as the word embeddings, thus reformulating
knowledge injection as a meta-embedding prob-
lem.

Meta-embeddings combine two or more un-
derlying sets of embeddings into a single final
representation. There are many approaches to
meta-embeddings like Dynamic Meta Embeddings
(DME, Kiela et al. (2018)) where each embed-
ding is projected down to the same dimension be-
fore being used in a linear combination, or Word
Prisms (He et al., 2020b), which further improve
upon DMEs by enforcing desirable orthogonality
properties during training. In this work, we use a
simple but strong baseline for meta-embeddings—
concatenation—which ensures that both word and
knowledge information is accessible at all times.
More sophisticated approaches, although likely to
improve our overall performance, are left for future
work.

3 Knowledge Graph Representations

In order to use concatenation to specialize word
embeddings with a knowledge base, we first need
to be able to convert this knowledge base into dense
numerical representations. There are several meth-
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Figure 1: PCA of MeSH and SNOMED embeddings for four categories of medical concepts.

ods for embedding knowledge graphs (e.g. RotatE
(Sun et al., 2019), TuckER (Balazevic et al., 2019)),
and these usually produce multifaceted relation-
dependent concept representations. However, for
simplicity, we only consider a single relation which
enables us to use a graph-level method instead,
namely node2vec (Grover and Leskovec, 2016).

3.1 UMLS, MeSH, and SNOMED CT
The Unified Medical Language System (UMLS)
(Lindberg et al., 1993) includes a meta-thesaurus
that contains multiple subsets (called vocabu-
laries) that organize specific groups of medical
concepts according to a large number of var-
ied relationships (e.g. active_ingredient_of,
associated_with, branch_of). Among the many
vocabularies in the UMLS, we use the Medical
Subject Headings (MeSH)4, which mainly orga-
nizes concepts from the biomedical domain, as well
as the Systematized Nomenclature Of Medicine -
Clinical Terms (SNOMED_CT),5 which also has a
coverage of the clinical domain. Given both vocab-
ularies, we query6 the UMLS and recover all pairs
of Concept Unique Identifiers (CUI) for concepts
related through the is_a relation (e.g. Chronic
Bronchitis is a Chronic disease). Although
many more types of relations are available, we fo-
cus on the single most frequent type is_a, which
also allows us to extract a single graph and use a
graph-level method like node2vec.

4https://www.nlm.nih.gov/mesh/meshhome.html
5https://www.nlm.nih.gov/healthit/snomedct/

index.html
6SQL scripts are available in our code repository.

3.2 Dense Representations with node2vec
The node2vec (Grover and Leskovec, 2016)
method effectively applies a word2vec (Mikolov
et al., 2013) objective to learn node representa-
tions from a set of node sequences that are gen-
erated randomly using a flexible type of random
walks on the knowledge graph. Running the official
Python implementation7 with default parameters
allows us to learn 256-dimensional dense represen-
tations for each node of the provided graphs. This
step yields 29,738 CUI embeddings for MeSH con-
cepts and 389,872 CUI embeddings for SNOMED
with 15,418 overlapping CUIs having both a MeSH
and SNOMED representation. The visualization
of these embeddings using a PCA (see Figure 1)
shows that this method is able to separate different
categories of medical concepts in different sub-
spaces, which suggests some level of encoded med-
ical knowledge.

Using node2vec Embeddings in Practice For
each possible CUI, we concatenate both sets
of knowledge embeddings and use zero-padding
when a CUI does not appear in either MeSH or
SNOMED. This produces a final 512-dimensional
knowledge representation for each concept. How-
ever, using these representations in practice re-
quires locating concept mentions in texts, which
refers to the task of concept normalization. This
normalization aims to identify the various linguistic
forms that a given concept can take, which we per-
form in our case by running an exact string match-
ing between the reference linguistic forms from the

7https://github.com/aditya-grover/node2vec
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UMLS8 and the target texts. Ultimately, the tokens
from each mention are assigned the node2vec rep-
resentation of their concept, with out-of-mention
tokens getting an empty zero-valued vector instead.

4 Embedding-Specialization Methods

4.1 Static Representations
To determine whether word embeddings can be suc-
cessfully specialized using in-domain knowledge
representations, we first conduct experiments on
static embeddings. In particular, we learn word
representations using fastText9 (Bojanowski et al.,
2017) and then attempt to specialize these repre-
sentations by concatenating fastText and node2vec
vectors at the token level. We consider the follow-
ing corpora for learning word embeddings:

Gigaword (Graff et al., 2003): a newswire cor-
pus constructed from many sources including the
New York Times. This is a general domain corpus
with ≈ 1 billion tokens.

PubMed (MEDLINE): scientific abstracts from
the biomedical literature.10 This is a medical do-
main corpus with ≈ 2 billion tokens.

MIMIC (Johnson et al., 2016): clinical notes
from several hospitals.11 This is a medical domain
corpus with ≈ 0.5 billion tokens.

4.2 Contextual Representations
We also experiment with contextual embeddings,
namely: BERT (Devlin et al., 2019) and Character-
BERT (El Boukkouri et al., 2020).12 The former
is included as a strong baseline for transformer-
based embeddings and the latter is included as it
produces word-level representations and seems to
perform well in the medical domain. Furthermore,
considering these two models allows us to have a
larger sample size for measuring the impact of our
strategies on transformer-based models.

We specialize contextual embeddings in two
ways: either externally, via token-level concate-
nation similar to static embeddings; or internally,
by introducing the following specialization layers.

8These synonyms are available in the MRCONSO table.
9Training scripts are available in our code repository.

10Available at: https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

11Available at: https://physionet.org/content/
mimiciii-demo/1.4/

12We use the “base-uncased” versions of these models.

Knowledge Injection Modules (KIM) These
are small layers that generalize the idea of con-
catenating word and knowledge embeddings to the
internal states of a transformer-based model. When
placed after a given layer, this module concate-
nates the hidden representations from that layer
hi with their corresponding knowledge represen-
tations KGi. Then, it projects this concatenation
to recover a set of “enhanced states” hi with the
same dimensionality as the original hidden repre-
sentations. Since this operation may lose some
of the information from the original hidden states,
we compute a mixture of the enhanced and origi-
nal states with trainable parameters α ∈ [0, 1] and
β = 1 − α. The final output hi is fed to the next
layer. In summary:

hi = α hi + β hi

where hi = [hi; KBi] W + b and W, b are respec-
tively the weight matrix and bias of the linear pro-
jection operation (see Figure 2).

Our KIMs are loosely related to Adapter Mod-
ules (Houlsby et al., 2019; Wang et al., 2021a) but
are conceptually simpler and only focus on incor-
porating external representations into the hidden
states of transformer-based models.

5 Experiments

5.1 Embedding Models
Our final embeddings come in five configurations:

Random: randomly initialized 256-dimensional
static embeddings used as a baseline for static word
representations.

Model: either 256-dimensional static embed-
dings of the form “fastText(corpus)” where corpus
is one of the corpora presented in section 4.1, or a
768-dimensional BERT or CharacterBERT model.

[Model, node2vec]: token-level concatenation
of Model with the pre-trained 512-dimensional
node2vec representations from Section 3.2.

Model(medical): a transformer model adapted
via pre-training on a large medical corpus that con-
sists of ≈ 0.5 billion tokens from MIMIC-III clin-
ical notes and ≈ 0.5 billion tokens from abstracts
extracted from PMC-OA13 biomedical articles.

13https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/
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Figure 2: Detailed view of a Knowledge Injection Module (KIM) between two Transformer layers. Given an
incoming hidden (hi) and knowledge representation (KGi), the module concatenates both vectors ([hi; KGi]),
applies a linear projection down to the original size (hi), then computes a mixture of the enhanced and original
states using parameters α ∈ [0, 1] and β = 1− α. The output (hi) is ultimately fed to the next Transformer layer.

EnhancedModel(medical): same as the config-
uration above but this time, the architecture is
changed to use a KIM after each transformer layer,
as well as either the WordPiece embeddings (Wu
et al., 2016) for BERT, or Character-CNN (Peters
et al., 2018) for CharacterBERT.

For the last two configurations, we follow a stan-
dard pre-training procedure comprising Masked
Language Modeling (MLM) and Next Sentence
Prediction (NSP), and adapt the implementation
from El Boukkouri et al. (2020) while keeping the
same hyper-parameters.14

5.2 Evaluation Tasks
Insights from model evaluation can be misleading,
especially when only a few tasks are considered. To
conduct a thorough evaluation of our models, we
consider multiple tasks from both the biomedical
and clinical domains (see Table 1):

i2b2 This is the i2b2/VA 2010 clinical concept
extraction task (Uzuner et al., 2011), which is a
sequence labeling task that aims to detect three
categories of clinical entities: PROBLEM (e.g.
“headache"), TREATMENT (e.g. “oxycodone")
and TEST (e.g. “MRI"). The exact match F1-score
is used as an evaluation metric.

BC5-Disease/Chemical These are two sequence
labeling tasks from BioCreative V CDR (Li et al.,

14Specifically, we use the parameters at this URL.

2016), which respectively aim to detect DISEASE
(e.g. “hepatitis") and CHEMICAL (e.g. “corticos-
teroid") entities. The exact F1 is used as a metric.

DDI This is a relation extraction task from Se-
mEval 2013 - Task 9.2. (Herrero-Zazo et al., 2013),
which focuses on classifying drug-drug interactions
into five categories: ADVISE (DDI-advise), EFFECT

(DDI-effect), MECHANISM (DDI-mechanism), IN-
TERACTION (DDI-int), and DDI-false for no inter-
action. The micro-averaged F1 over all four non-
negative classes is used as a metric.

ChemProt This is a relation extraction task from
BioCreative VI (Krallinger et al., 2017), which
focuses on classifying chemical-protein relations
into six categories: ACTIVATOR (CPR:3), IN-
HIBITOR (CPR:4), AGONIST (CPR:5), ANTAGO-
NIST (CPR:6), SUBSTRATE (CPR:9) and FALSE

for no relation. The micro-averaged F1-score over
non-negative classes is used as a metric.

BIOSSES This is a small sentence similarity
dataset in the biomedical domain (Soğancıoğlu
et al., 2017). The Pearson correlation of predicted
and gold similarities is used as a metric.

ClinicalSTS This is a clinical sentence similarity
task from the OHNLP Challenge 2018 (Wang et al.,
2018). It uses Pearson correlation as well.
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i2b2 BC5-Disease BC5-Chemical ChemProt DDI BIOSSES ClinicalSTS MEDNLI
Train 22,263 4,182 5,203 4,154 2,937 64 600 11,232
Val. 5,565 4,244 5,347 2,416 1,004 16 150 1,395
Test 45,009 4,424 5,385 3,458 979 20 318 1,422

Table 1: Number of examples (entities, positive relations, or samples) for each evaluation task.

MedNLI This is a clinical natural language in-
ference task (Romanov and Shivade, 2018), which
aims to classify pairs of sentences into three cate-
gories: ENTAILMENT, CONTRADICTION, and NEU-
TRAL. The classification accuracy is used as a met-
ric.

5.3 Evaluation Architectures
We use different architectures depending on the
model and fine-tuning tasks at hand.

Sequence Labeling The architecture for tagging
uses an encoder followed by a classification layer
and a CRF (Lafferty et al., 2001). The encoder
changes according to the type of input embeddings:
fastText and [fastText, node2vec] are fed to a
Bi-LSTM,15 variants of BERT are their own en-
coders, and variants of [BERT, node2vec] concate-
nate knowledge (node2vec) embeddings with token
(BERT) representations and feed it forward.

Classification The architecture for relation ex-
traction is similar but requires a summarized repre-
sentation at the example level to be fed to a classi-
fication layer. Here again, fastText and [fastText,
node2vec] are fed to a Bi-LSTM, but this time,
the output is average-pooled to produce a single
feature vector. With variants of BERT, the pooler
output is used. Finally, when using variants of
[BERT, node2vec], the knowledge representations
are average-pooled before being concatenated with
the pooler representation.

Sentence Similarity For STS tasks, we use a
different approach for static and contextual em-
beddings. For static embeddings, we compute a
bag-of-word representation for each sentence, then
measure the cosine similarity between the two rep-
resentations. When contextual embeddings are
involved, we treat the task as a regression problem
and use the same encoder as for classification.

Natural Language Inference For NLI tasks,
we require a summarized representation at the
sentence-pair level that we can ultimately feed to a

15All future mentions of a Bi-LSTM refer to a 3-layer net-
work with 50% recurrent dropout and an output size of 512.

classification layer. For static embeddings, we
compute an average-pooled Bi-LSTM represen-
tation for the first sentence u as well as for the
second one v, then compute a global feature vec-
tor [u, v, |u− v|, u ∗ v] following the approach of
InferSent (Conneau et al., 2017). When using vari-
ants of BERT, we simply use the pooler represen-
tation as these models can accept sentence pairs.
Finally, with variants of [BERT, node2vec], we
concatenate the pooler output with InferSent-style
features computed from the node2vec vectors.

5.4 Evaluation Method
Optimization All parameters (including static
and knowledge embeddings) are fine-tuned using
the following hyper-parameters:

• Validation Ratio: when no validation set is
available, we use 20% of the training data.

• Epochs: we run 15 epochs for all tasks, ex-
cept for BIOSSES and ClinicalSTS for which
we run 100 and 50 epochs respectively.

• Batch Size: we use batches of 32 examples.
• Optimizer & Learning Rate: we use the

Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 1e-3 for non-transformer
weights and a learning rate of 3e-5 for trans-
former weights. We also use a weight decay of
10% and a linear schedule with a 10% warmup
for transformer weights.

Model Ensembles To account for some of the
randomnesses during fine-tuning, we evaluate each
model on each task using 10 different random seeds.
Given these single models, we compute ensembles
using a majority vote, except for STS tasks where
we use the average similarity instead. Then, to
account for the variance of the ensembles as well,
we compute 10 different ensembles by excluding
a single seed from the ensemble set and repeating
this process. The average ensemble score is then
used as the final performance for the model.

Statistical Significance We use Almost Stochas-
tic Order (ASO) tests from Dror et al. (2019) in
an attempt to rigorously compare our models. In
this framework, the test takes a set of scores from

74



Table 2: Performance of model ensembles on evaluation tasks from the medical domain. Results are displayed in
pairs: baseline model on the top line and specialized version (either through concatenation or KIM) on the bottom
line. The colors show statistical significance, with bluer colors meaning the specialized models improve more
significantly over the baselines and redder colors showing a more significant degradation in performance.

a model A and a model B, then returns a value
ϵ ∈ [0, 1] that quantifies the stochastic order be-
tween A and B, with ϵ = 0 meaning A ⪰ B, ϵ = 1
meaning B ⪰ A, and ϵ = 0.5 meaning that no
stochastic order can be found for A and B.

6 Results and Discussion

For better visibility and given the large number of
experiments, we present our results in pairs com-
posed of a baseline and a specialized version of
that baseline. We report the performances of each
model pair as a set of two consecutive rows with the
baseline on top (see Table 2). We also emphasize
in bold the best performance on each task (column)
and color the specialized version according to its
ASO distance (ϵ) to the baseline model.16

Random vs. [Random, node2vec] It is interest-
ing to note that randomly initialized static embed-
dings manage to achieve reasonable results, some-
times even outperforming pre-trained fastText rep-

16Colors range from red (ϵ = 0) for a significant degrada-
tion, to blue (ϵ = 1) for a significant improvement.

resentations (see Random vs. Gigaword or PubMed
on MedNLI). However, given the random nature
of these vectors, we can easily expect in-domain
knowledge representations to be able to improve
the performance on downstream specialized tasks.
While this is verified in most situations, we note a
degradation on BIOSSES and MedNLI. This could
point to situations where external knowledge is not
relevant to the task at hand.

fastText(X) vs. [fastText(X), node2vec] Overall,
using concatenation to combine knowledge rep-
resentations with fastText embeddings seems to
result in consistent gains, notably on tagging and
classification tasks (see the top-left section of the
table). Moreover, these results seem to hold regard-
less of the domain of origin, as word embeddings
trained on Gigaword (general domain), PubMed
(biomedical domain), and MIMIC (clinical domain)
all seem to benefit from this combination. However,
we can see that the results on STS are significantly
worse with drops of up to 30 points of correlation
on BIOSSES with fastText(Gigaword). This may
be due to the “bag-of-word + cosine similarity”
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approach not being suited for meta-embeddings
made of both word and knowledge representations,
especially since the node2vec vectors are rather
sparse (most concepts do not have both a MeSH
and SNOMED representation) and twice as large
as the word representations.

BERT vs. [BERT, node2vec] When looking
at the results for contextual embeddings, we can
see several instances where the concatenation with
node2vec proves to be beneficial. However, there
seems to be a discrepancy where sometimes this
concatenation does improve the CharacterBERT
baseline on one hand but impairs the BERT base-
line on the other (see ChemProt and DDI). A closer
look at these cases shows that plain CharacterBERT
performs slightly lower than plain BERT in these
situations, which may mean that the knowledge rep-
resentations compensate for any information that
may be missing in the baseline CharacterBERT
model, relative to the task.

BERT(medical) vs. EnhancedBERT(medical)
The addition of KIMs seems to give variable re-
sults depending on the evaluation task. In fact,
we can see that EnhancedBERT and Enhanced-
CharacterBERT respectively lose 1.05 and 1.28 F1
relative to their baselines on the DDI task, how-
ever, we also see that these same models gain 1.6
and 1.45 F1 on the BC5-Disease task. Incidentally,
the BC5 tasks are interesting as they use the ex-
act same corpus but focus on two different types
of entities: DISEASE and CHEMICAL. Therefore,
given that EnhancedBERT(medical) performs bet-
ter than BERT(medical) on BC5-Disease and worse
on BC5-Chemical, we can safely assume that this is
not due to the KIMs being particularly harmful but
rather to the information available in the knowledge
representations being, relative to what is already
available in the base model, more relevant for the
first task than for the second one. Consequently, we
may assume that the KIMs can successfully incor-
porate external information into a model but that
the downstream performance may depend on the
relevance of this information for any given task.

Observed Trends All in all, we notice
that the best models remain either BERT or
CharacterBERT-based models and that the addition
of external knowledge to static representations
is not sufficient to make them outperform their
contextual counterparts. This is globally true
with a few exceptions. In fact, we may observe

all no some full homog
fastText(PubMed) +3.3 -4.6 +4.5 +5.1 +6.2
CharacterBERT +0.3 -1.7 +0.6 +0.9 +1.1
EnhancedCBERT +1.4 -1.7 +1.8 +2.1 +2.5

Table 3: Variations (percentages) of True Positives for
the BC5-Disease task according to the coverage of the
gold entities by concepts of our knowledge graph.

in the case of sequence labeling tasks (i2b2
and BC5-Disease/Chemical) that the addition of
knowledge is often beneficial for static models.
The matter is more complex for contextual models
however, where the benefits are less clear but for
which it may still be desirable to use external
knowledge as any potential degradation seems to
be relatively minor. In the case of relation clas-
sification tasks (ChemProt and DDI), leveraging
external knowledge is once again positive for
static models but seems to be harmful to some
Transformer-based models (especially BERT).
Finally, for semantic similarity and inference tasks
(BIOSSES, ClinicalSTS, and MedNLI), we may
not recommend using our methods as any existing
gains are relatively small when compared to the
potential losses, although there may be some
benefit for contextual models. Overall, we can see
that our knowledge enhancement methods, either
by external concatenation or through KIMs, always
benefit CharacterBERT with appreciable gains
in performance: choosing CharacterBERT with
KIMs ensures obtaining the highest performance
or being very close to it.

Contribution of the Knowledge Graph To mea-
sure the contribution of external knowledge, specif-
ically in the case of sequence labeling tasks, we
compute, for each gold entity of the test set, the
average change in true positives brought by the
use of the knowledge embeddings. To dig a bit
deeper, we compute this change in buckets with
varying the degrees of coverage of gold entities by
a concept of the knowledge graph: no coverage;
some coverage; all the tokens are fully covered;
and finally, a full and homogeneous coverage (i.e.
same CUI everywhere). We display the results for
BC5-Disease and three different models in Table 3:
fastText(PubMed) and CharacterBERT, which both
rely on token-level concatenations, and Enhanced-
CharacterBERT (EnhancedCBERT), which lever-
ages KIMs. While the overall contribution is posi-
tive, we can see that this effect increases with the
coverage of gold entities by the knowledge base.
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Moreover, when the coverage is null, the impact
becomes negative, emphasizing the importance of
choosing a complete and adequate knowledge base
when using such knowledge injection methods.

7 Conclusion and Future Work

In this paper, we focused on exploring the extent
to which specialized information from a knowl-
edge graph could be injected into existing word
embeddings using a very simple set of tools: graph
embeddings and concatenation. While focusing
on the medical domain in the English language,
we conducted multiple evaluations on tasks rang-
ing from entity recognition to sentence similarity.
These evaluations demonstrated that concatenation
with in-domain graph representations can be a sim-
ple yet effective approach to model specialization,
with significant gains on several tasks. Moreover,
applying the same process of concatenation within
transformer-based contextual models proved ben-
eficial as well, with notable improvements using
Knowledge Injection Modules (KIMs) on several
downstream tasks.

As mentioned in Section 3.1, many more types
of relations beyond is_a could be used to improve
the quality of the generated knowledge representa-
tions. An interesting path for future work may be
to use recent meta-embedding methods like Word
Prisms to learn multifaceted knowledge represen-
tations from multiple underlying representations
corresponding to two or more types of relations.
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Abstract
Sentence embeddings in the form of fixed-size
vectors that capture the information in the sen-
tence as well as the context are critical com-
ponents of Natural Language Processing sys-
tems. With transformer model based sentence
encoders outperforming the other sentence em-
bedding methods in the general domain, we
explore the transformer based architectures to
generate dense sentence embeddings in the
biomedical domain. In this work, we present
BioSimCSE, where we train sentence embed-
dings with domain specific transformer based
models with biomedical texts. We assess our
model’s performance with zero-shot and fine-
tuned settings on Semantic Textual Similarity
(STS) and Recognizing Question Entailment
(RQE) tasks. Our BioSimCSE model using Bi-
oLinkBERT achieves state of the art (SOTA)
performance on both tasks.

1 Introduction

Word embeddings or vector representations of
words generated by neural network architectures,
capture the semantic relationships between words
much better than traditional methods such as one
hot encoding, bag of words, and so on. When deal-
ing with large texts in real-world situations, it is
essential to capture the semantic relationship be-
tween words as well as between sentences. Thus,
rich sentence embeddings that capture the overall
sentence semantics are critical for NLP systems.
Sentence embeddings play a significant role in var-
ious NLP tasks such as information retrieval, se-
mantic search, intent detection, natural language
inference tasks.

In recent years, pre-trained models with trans-
former architecture for the general domain have
grown in popularity. The advent of BERT Devlin
et al. (2018) based models has made generating
high-quality vector representations for natural lan-
guage text much more manageable. These em-
beddings act as feature inputs for several down-

stream tasks. However, these models only generate
word-level embeddings, from which we can de-
rive sentence-level embeddings by averaging over
the word-level embeddings. Another method is
to use a cross encoder network from BERT to di-
rectly fine-tune for the task.Although this approach
outperforms the averaging approach, it is compu-
tationally expensive and unsuitable for semantic
similarity search and clustering tasks.

The biomedical domain with its corpora, signifi-
cantly different from the general domain corpora,
needs sophisticated and domain-specific models for
effective knowledge representation. In this paper,
we adapt SimCSE Gao et al. (2021), a state-of-the-
art contrastive learning-based sentence embedding
method, and release BioSimCSE - a biomedical
domain-specific sentence embedding model.

In summary, our contributions are

1. We train and release1 biomedical sentence em-
beddings with supervised and unsupervised
training objectives from SimCSE.

2. We evaluate our models on biomedical STS
and RQE tasks and demonstrate that our
BioSimCSE achieves outstanding outcomes
in both zero-shot and fine-tuned settings.

2 Background

Transformer-based language representations pro-
duced by Universal Sentence Encoder Cer et al.
(2018) and BERT has aided NLP practitioners and
researchers in various NLP tasks. Using BERT,
sentence embeddings can either be generated by
averaging the context embeddings of the last few
layers or from the output of the last layer. SBERT
Reimers and Gurevych (2019) shows that sentence
embeddings produced by averaging word-level em-
beddings from BERT-like transformer models are
unsuitable for standard similarity measurements

1https://github.com/kamalkraj/BioSimCSE
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such as cosine similarity. SBERT uses the siamese
network Schroff et al. (2015), a modified BERT
network for the generation of fixed-size sentence
embeddings. Though SBERT significantly reduces
the time during inference and produces quality sen-
tence embeddings, it follows a supervised approach.
It heavily relies on labelled data to train sentence
embedding models that might not be suitable for
domains without labelled corpora.

Natural Language Inference (NLI) datasets are
commonly used for supervised training of sentence
embeddings models. The Multi-Genre Natural Lan-
guage Inference (MultiNLI) Williams et al. (2018)
corpus is mainly used to train general domain sen-
tence embeddings. MultiNLI has 433k sentence
pairs that have textual entailment information an-
notated. In the biomedical domain, large corpora
of text are publicly available as research papers
and articles. However, the availability of annotated
datasets is lower than that of the general domain,
and the number of samples is also low. Medical
Natural Language Inference (MedNLI) Romanov
and Shivade (2018) and Radiology Natural Lan-
guage Inference (RadNLI) Miura et al. (2021a)
Miura et al. (2021b) are biomedical NLI datasets;
merging both yields only 15K sentence pairs for
supervised training.

Recent research has explored different training
objectives to derive sentence embeddings in an un-
supervised manner. Before widespread adoption
of transfomer-based models, Skipthought vectors
Kiros et al. (2015) and Quick thoughts Logeswaran
and Lee (2018) use unsupervised learning to de-
rive sentence representations from unlabeled data
with encoder-decoder and encoder architectures re-
spectively. Semantic Re-tuning with Contrastive
Tension (CT) Carlsson et al. (2021), BERT-flow Li
et al. (2020), Transformer-based Sequential Denois-
ing Auto-Encoder (TSDAE) Wang et al. (2021) and
Simple Contrastive Learning of Sentence Embed-
dings (SimCSE) Gao et al. (2021) propose methods
to generate sentence embeddings using a unsuper-
vised approach with different training objectives. A
domain like biomedical, where supervised datasets
are unavailable, has to rely on unsupervised tech-
niques. In this work, we selected SimCSE because
its unsupervised training is comparable to that of
its supervised competitors for training sentence em-
beddings; in addition, SimCSE performed better in
our initial experiment with the other unsupervised
training objectives described above.

3 Methods

The training objective for SimCSE Gao et al. (2021)
utilises the contrastive learning approach, which
has a cross-entropy loss function with in-batch neg-
atives. In Unsupervised learning, positive pairs are
made by giving the same sentence to the pre-trained
encoder twice with regular dropout as noise, all
other sentences in a mini-batch act as negative pairs.
The NLI dataset has a contradiction hypothesis for
each premise and its entailment hypothesis. For
supervised sentence embeddings training, SimCSE
uses entailment pairs as positive cases and adds
matching contradiction pairs and other sentences
in the mini-batch as negatives. As in the original
SimCSE implementation, we use the [CLS] (first
token of the sequence) as sentence embedding. Un-
supervised SimCSE uses [CLS] with an MLP layer
(only used in training), and supervised SimCSE
uses [CLS] with MLP.

We initialize our sentence embeddings models
from state-of-the-art transformer model, PubMed-
BERT Gu et al. (2020) and BioLinkBERT Ya-
sunaga et al. (2022) from Biomedical Language Un-
derstanding and Reasoning Benchmark (BLURB)
Gu et al. (2020) for our experiments. We excluded
ELECTRA Clark et al. (2020) variants BioELEC-
TRA Kanakarajan et al. (2021) and BioM Alrowili
and Shanker (2021) from the BLURB because the
quality of embeddings created by ELECTRA due
to its Replaced Token Detection pre-training task
is poor as shown in COCO-LM Meng et al. (2021).

Using biomedical corpora detailed in 3.1, we
train biomedical domain-specific unsupervised and
supervised sentence transformer models. The sen-
tence embeddings training is done only with the
model base architecture - 12 layers of transformers
block with a hidden dimension of 768 and multi-
head attention over 12 layers. Hyper-parameters
used for training are provided in Appendix A. The
trained sentence embeddings are then evaluated
in zero-shot and fine-tuned settings on the three
datasets outlined in 4.2.

3.1 Training data
We obtained 1 million sentences randomly sampled
from PubMed Central (PMC) 2 published as of
April 2022. Pubmed Parser Achakulvisut et al.
(2020) is used to extract the abstracts and SciSpacy
Neumann et al. (2019) for sentence tokenization.
This data is used for unsupervised model training.

2https://www.ncbi.nlm.nih.gov/pmc/
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The MedNLI dataset comprises sentence pairs
annotated for contradiction, neutrality, and entail-
ment by physicians from the Past Medical History
section of MIMIC-III Johnson et al. (2016) clin-
ical notes. The dataset contains 11,232 training,
1,395 validation, and 1,422 test cases. The RadNLI
dataset contains annotated sentence pairings from
the MIMIC-CXR database Johnson et al. (2019).
The dataset includes a validation set of 480 and
a test set of 480 pairings. For supervised model
training, we merge the training, validation, and test
sets from these two datasets.

4 Evaluation

We use STS and RQE tasks in the biomedical do-
main to evaluate the performance of our BioSim-
CSE sentence embeddings model. The datasets
used for evaluation are detailed in 4.2. The sim-
ilarity between two sentence embeddings is de-
termined using cosine similarity. We determine
a threshold in cosine similarity using the devel-
opment set to classify entailment or not for RQE
(binary classification) dataset. Using Spearman’s
correlation, we evaluate STS in line with the origi-
nal SimCSE research. For RQE, accuracy is used.
We evaluate BioSimCSE sentence embeddings un-
der zero-shot and fine-tuned settings.

4.1 Evaluation Settings

In a zero-shot setting, the trained supervised and
unsupervised BioSimCSE model is used to derive
the sentence embeddings directly and evaluate the
tasks. In the fine-tuned setting, With task-specific
datasets, we further fine-tune the supervised and
unsupervised trained BioSimCSE models to adapt
better to the task’s requirements for the sentence
embeddings. For fine-tuning, the sentence embed-
dings (u, v) for each pair of sentences are derived.
Using mean squared loss as the objective function
for STS datasets and contrastive loss for question
entailment datasets, we optimize cosine similarity
between (u, v). Hyper-parameters used for fine-
tuning are provided in Appendix A. The fine-tuned
sentence embeddings are evaluated only with the
corresponding task used for fine-tuning.

The results for zero-shot and fine-tuned are
shown in table 1. We also train cross encoder,
in which the transformer model takes two sen-
tences and predicts a similarity score or a classifi-
cation label, as described in the BERT Devlin et al.
(2018) paper. This is the standard approach for

STS and RQE (Binary classification) tasks. Results
for cross encoder is available in table 2. We only
compare our models to biomedical-specific models
because recent research Gu et al. (2020) has shown
that models pretrained with biomedical domain-
specific corpora perform significantly better than
general-domain language models for Biomedical
NLP tasks.

4.2 Evaluation Data

BIOSSES dataset provides a collection of 100
similar sentence pairs manually annotated in the
biomedical domain. We use the train-test split from
BLURB Gu et al. (2020), 64 pairs for training, 16
pairs for validation and the remaining 20 pairs for
testing. ClinicalSTS is the STS task in the clin-
ical domain, the latest version provided by n2c2
2019 challenge Wang et al. (2020) has 1641 sam-
ples for training and a test set of 412 samples. We
use the test set for evaluation, and we have split
1641 samples into 80% train and 20% validation
set. Finding entailment between two questions in
the context of QA is the objective of RQE. 8,588
training pairs and 302 testing pairs in the initial
release Abacha and Demner-Fushman (2016). We
use the MEDIQA 2019 Challenge Ben Abacha et al.
(2019) test set as the testing pair and the original
as the development set.

Figure 1: The t-SNE of sentence representation of Bi-
oLinkBERT before training with SimCSE

Figure 2: : The t-SNE of sentence representations after
with training Unsupervised SimCSE. Similar pairs are
denoted by identical shapes. The points are drawn from
ClinicalSTS’s most semantically comparable sentence
pairings (with 5-score labels).
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Zero shot fine-tuned
BIOSSES ClinicalSTS RQE BIOSSES ClinicalSTS RQE

Sent2vec BioSentVec 77.98 48.72 51.56 - - -

BioSimCSESupervised PubMedBERT 83.13 72.17 53.04 85.91 77.87 56.52
BioLinkBERT 90.32 76.42 54.35 92.73 81.35 57.39

BioSimCSEUnsupervised PubMedBERT 90.61 80.67 51.94 93.57 81.16 56.52
BioLinkBERT 94.55 81.02 56.61 96.37 83.76 60.04

Table 1: Results on BIOSSES, ClinicalSTS and RQE test sets as described in 4. Metric, Spearman’s correlation for
BIOSSES and ClinicalSTS and accuracy for RQE.

BIOSSES ClinicalSTS RQE
PubMedBERT 89.94 79.28 51.73

BioLinkBERT 91.75* 80.42 53.47

Table 2: Results on cross encoder architecture. * Cur-
rent state of the art (SOTA). Metric, Spearman’s corre-
lation for BIOSSES and ClinicalSTS and accuracy for
RQE.

5 Results

The BioSimCSEunsupervised BioLinkBERT model
achieves remarkable results on all three datasets
during the zero-shot evaluation. The zero-shot per-
forms even better than BioLinkBERT fine-tuned
with task-specific data using cross-encoder archi-
tecture. From the t-sne of sentence representation
Figure 2, we can see that the similar sentence pairs
(denoted by the same shapes) are closely aligned af-
ter training the BioLinkBERT model with SimCSE
and also the average cosine similarity increased
from 86.5 to 90.1 for the same. We can also ob-
serve that the transformer-based models have out-
performed BioSentVec Chen et al. (2019), a non-
transformer-based model with a large margin for
both BIOSSES and ClinicalSTS. BioSentVec uti-
lizes word vectors and n-grams approach to gen-
erate sentence embeddings using sent2vec Pagliar-
dini et al. (2018) model. From the results, we
can see that the supervised training of SimCSE
is not practical as the unsupervised training, as the
biomedical domain has a limited no.of samples in
the NLI dataset.

When fine-tuned with task-specific data
BioSimCSEunsupervised BioLinkBERT model sets
new state-of-the-art results for all three datasets.
For BIOSSES, Spearman’s correlation is improved
by +4.62 points, compared to the previous SOTA
of 91.75. For ClinicalSTS the current SOTA
is by BioELECTRA Kanakarajan et al. (2021)

82.11, BioSimCSE improve the SOTA by +1.65
points. BioSimCSE improve the RQE baseline
54.1 accuracy score Abacha et al. (2019) by +5.94
points and sets a new SOTA. We have omitted the
RQE SOTA result from PANLP Zhu et al. (2019)
(accuracy of 74.9), as this score is achieved using
multitask and ensemble methods.

Performance on the evaluation datasets has
steadily improved for both BioLinkBERT and Pub-
MedBERT following training with SimCSE com-
pared to the cross-encoder approach.

6 Conclusion

In our work, we have explored SimCSE for train-
ing sentence embeddings in the biomedical do-
main. We utilize the publicly available biomed-
ical literature and NLI dataset for training the net-
work in an unsupervised and supervised fashion
and further fine-tune them with the task-specific
datasets to adapt better to the task’s requirements.
Our BioSimCSE model has achieved SOTA on all
three evaluation datasets. Our results demonstrate
that SimCSE unsupervised training objectives can
be able to train high-quality biomedical domain-
specific sentence embeddings. We make the code
and weights available for all of our models for re-
producibility.

Limitations

In our experiments, we have only considered trans-
former base size models, whereas the Original
SimCSE work evaluated both base and large size
models. The sample sizes of the datasets used to
evaluate sentence embeddings are limited. How-
ever, these are the biomedical domain’s only sen-
tence pair datasets. After training with SimCSE,
the models have only been evaluated on sentence
pair similarity/classification tasks and not on any
classification of single sentence tasks.
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A Example Appendix

The learning rate and batch size for training Sim-
CSE supervised, and unsupervised models are the
same as the original work. Our search for hyperpa-
rameters also shows that these give the best results.
Both supervised, and unsupervised training was
done using 512 batch sizes and learning rates 1e-5
and 5e-5, respectively. For the unsupervised model,
we train the model with 1 million and 2 million
examples, and we use zero-shot sentence similarity
to measure how well it does. For one epoch, the
model was trained. Adding more data after 1 mil-
lion does not make a big difference in performance

compared to the cost of training the model. The se-
quence length is restricted to 128 tokens in all our
experiments. We use the SimCSE3 implementation
that the authors made available as open source to
train our sentence embeddings. All the experiments
are done using a single NVIDIA Titan RTX (24GB
VRAM) GPU.

Table 3 lists all of the hyperparameters used for
task specific fine-tuning of sentence embedding
and cross encoder fine-tuning.

Hyperparameters

Epochs 3-20

Learning rate 1e-5, 2e-5, 5e-5

Batch size 8, 16

Table 3: Sentence embeddings and cross encoder fine-
tuning hyperparameters

Figure 3 shows how the similarity of sentence
pairs is computed using the cosine similarity metric.
The standard cross encoder architecture used with
transformer models for sentence pair tasks is shown
in Figure 4.

Figure 3: Finding similarity of sentence pair using
BioSimCSE model

Figure 4: Cross encoder fine-tuning for sentence pair
regression/classification

3https://github.com/princeton-nlp/SimCSE
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Abstract

A recent advancement in the domain of biomed-
ical Entity Linking is the development of pow-
erful two-stage algorithms – an initial candi-
date retrieval stage that generates a shortlist
of entities for each mention, followed by a
candidate ranking stage. However, the effec-
tiveness of both stages are inextricably depen-
dent on computationally expensive components.
Specifically, in candidate retrieval via dense
representation retrieval it is important to have
hard negative samples, which require repeated
forward passes and nearest neighbour searches
across the entire entity label set throughout
training. In this work, we show that pairing a
proxy-based metric learning loss with an adver-
sarial regularizer provides an efficient alterna-
tive to hard negative sampling in the candidate
retrieval stage. In particular, we show com-
petitive performance on the recall@1 metric,
thereby providing the option to leave out the
expensive candidate ranking step. Finally, we
demonstrate how the model can be used in a
zero-shot setting to discover out of knowledge
base biomedical entities.

1 Introduction

The defining challenge in biomedical Entity Link-
ing (EL) is performing classification over a large
number of entity labels with limited availability
of labelled mention data, in a constantly evolv-
ing knowledge base. For instance, while the Uni-
fied Medical Language System (UMLS) knowl-
edge base (Bodenreider, 2004) contains millions
of unique entity labels, the EL training data in the
biomedical domain as a whole is notoriously scarce,
particularly when compared to the general domain
– Wikipedia, for instance, is powerful as both a
Knowledge base and a source of matching entities
and mentions. Furthermore, biomedical knowledge
bases are evolving rapidly with new entities be-
ing added constantly. Given this knowledge base

∗ Corresponding author.

evolution and scarcity of training data it is crucial
that biomedical entity linking systems can scale
efficiently to large entity sets, and can discover or
discern entities outside of the knowledge base and
training data.

Recent methods in the general entity linking do-
main (Logeswaran et al., 2019; Wu et al., 2020)
address the data issue with zero-shot entity linking
systems that use entity descriptions to form en-
tity representations and generalise to entities with-
out mentions. A particularly powerful architecture
was initially proposed by Humeau et al. (2019)
and further improved by Wu et al. (2020). It con-
sists of a two-stage approach: 1) candidate retrieval
in a dense space performed by a bi-encoder (Wu
et al., 2020) which independently embeds the entity
mention and its description, and 2) candidate rank-
ing performed by a cross-encoder which attends
across both the mention and entity description (Lo-
geswaran et al., 2019). In this work we focus on
the former, which is traditionally optimised with
the cross-entropy (CE) loss and aims to maximise
the similarity between the entity mention and its
description relative to the similarities of incorrect
mention-description pairs. In practice, the large
number of knowledge base entities necessitates the
use of negative sampling to avoid the computa-
tional burden of comparing each mention to all
of the entity descriptions. However, if the sam-
pled distribution of negatives is not reflective of the
model distribution, the performance may be poor.
Recently, Zhang and Stratos (2021) showed that
using hard negatives - the highest scoring incorrect
examples - results in bias reduction through better
approximation of the model distribution. Collect-
ing hard negatives is computationally expensive, as
it requires periodically performing inference and
retrieving approximate nearest neighbours for each
mention.

At the ranking stage, negative sampling is not
required, as the number of candidates usually does
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not exceed 64. However, the state-of-the-art cross-
encoder model used for ranking is very expen-
sive to run, scaling quadratically with the input
sequence length. This highlights the need for ef-
ficient and performant candidate retrieval models
capable of disambiguating mentions without the
need for the expensive ranking step.

In this paper, we propose and evaluate a novel
loss for the candidate retrieval model, which breaks
the dependency between the positive and nega-
tive pairs. Our contributions are: (1) a novel loss
which significantly outperforms the benchmark
cross-entropy loss on the candidate retrieval task
when using random negatives, and performs com-
petitively when using hard negatives. (2) We design
and apply an adversarial regularization method,
based on the Fast Gradient Sign Method (Good-
fellow et al., 2015), which is designed to simulate
hard negative samples without expensively mining
them. (3) We construct a biomedical dataset for out
of knowledge base detection evaluation using the
MedMentions corpus and show that our model can
robustly identify mentions that lack a correspond-
ing entry in the knowledge base, while maintaining
high performance on the retrieval task.

Our main testing ground is the biomedical en-
tity linking dataset MedMentions (Mohan and Li,
2019), which utilizes UMLS as its knowledge base.
Additionally, to confirm that our method works also
in the general, non-biomedical domain, we evalu-
ate it on the Zero-Shot Entity Linking (ZESHEL)
dataset proposed in Logeswaran et al. (2019). We
focus on the retrieval task with the recall@1 metric,
because we are aiming to predict the entity directly
without requiring the additional expensive ranking
stage. Our results show that both the proposed loss
and regularization improve performance, achieving
state-of-the-art results on recall@1 and competitive
performance on recall@64 on both datasets. Fi-
nally, we demonstrate that our model can robustly
identify biomedical out of knowledge base enti-
ties, without requiring any changes to the training
procedure.

2 Related Work

Zero-Shot Entity Linking There is a plethora
of work on zero-shot entity linking methods lever-
aging the bi-encoder architecture (Wu et al., 2020)
for candidate retrieval. These include novel scoring
functions between the input and the label (Humeau
et al., 2019; Luan et al., 2021; Khattab and Zaharia,

2020), cross-domain pretraining methods (Varma
et al., 2021), training and inference optimisation
techniques (Bhowmik et al., 2021) and effective en-
tity representation methods (Ma et al., 2021). Our
work instead focuses on optimising the candidate
retriever’s loss function.

The impact of hard negatives on the entity link-
ing model performance has also been investigated
(Gillick et al., 2019; Zhang and Stratos, 2021). No-
tably, Zhang and Stratos (2021) develop analytical
tools to explain the role of hard negatives and evalu-
ate their model on the zero-shot entity linking task.
We draw on this work, but move away from the CE
loss towards a novel contrastive proxy-based loss.

Finally, there is a body of work on zero-shot en-
tity linking in the biomedical domain using cluster-
ing (Angell et al., 2021; Agarwal et al., 2021). Our
method does not consider the affinities between
mentions directly and links them independently.
Therefore, we do not study entity discovery.

An important aspect of biomedical entity linking
systems is the detection of “unlinkable” mentions
that lack a corresponding entry in the Knowledge
Base - referred to as NIL detection. Methods for
this task can be grouped into four main strategies
(Shen et al., 2014; Sevgili et al., 2020): (1) label
a mention as NIL when the corresponding candi-
date retriever does not return any candidate entities
(Tsai and Roth, 2016), (2) assign the NIL label to
mentions whose corresponding top-ranked entity
does not exceed some score threshold (Bunescu and
Pasca, 2006; Gottipati and Jiang, 2011; Lazic et al.,
2015), (3) train a classifier that predicts whether
the top-ranked entity for a given mention is correct
(Moreno et al., 2017), (4) explicitly introduce a
NIL class to the candidate ranking model (Kolitsas
et al., 2018). A downside of the final approach is
that knowledge of the NIL mention distribution is
required at training time. In this work we tune a
NIL score threshold (2) on a validation set. Detect-
ing unlinkable mentions is particularly important
in the biomedical domain, where the knowledge
bases are rapidly evolving.

Proxy-based Losses State-of-the-art entity link-
ing models such as BLINK (Wu et al., 2020) lever-
age metric learning loss during training to make
mentions similar to its assigned entity representa-
tions. Metric learning losses could be divided into
two categories, pair-based and proxy-based losses
(Kim et al., 2020). Pair-based losses can lever-
age semantic relations between data points, here
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mentions. However, training them can be highly
computationally expensive. On the other hand,
proxy-based losses are significantly less compu-
tationally complex. This is done by establishing a
proxy for each class and trying to increase the sim-
ilarity between data points and its assigned prox-
ies. Therefore, avoiding comparing the mentions
to each other in favour of comparing the mentions
to their proxies. We draw heavily on proxy-based
losses (Movshovitz-Attias et al., 2017; Kim et al.,
2020) from metric learning by treating entity de-
scriptions as the proxies. We establish a proxy
for each entity, creating mention-proxy (i.e. en-
tity) pairs, and optimise the model to embed the
mention close to its assigned proxy. The loss pro-
posed here is similar to the Proxy-NCA loss of
Movshovitz-Attias et al. (2017). Our modification
is the use of the Softplus function, similar to Kim
et al. (2020), to avoid a vanishing gradient for the
true mention-proxy pair.

Adversarial Regularization Entity linking sys-
tems often rely on careful mining of hard nega-
tive examples to boost their performance (Gillick
et al., 2019; Zhang and Stratos, 2021) at the ex-
pense of increased computational complexity. The
model needs update hard negatives for each men-
tion periodically. A potential alternative to hard
negative mining is training on adversarial exam-
ples (Szegedy et al., 2013; Goodfellow et al., 2015)
- synthetic data points designed to induce the model
to making incorrect predictions, such that they are
more challenging. Adversarial training can be seen
as data augmentation and can help reduce overfit-
ting. Goodfellow et al. (2015) introduced a simple
method for generating adversarial examples, called
Fast Gradient Sign Method (FGSM), which we
build upon in this work. FGSM creates adversarial
examples by applying small perturbations to the
original inputs - often the word embeddings for
NLP problems. FGSM has been used successfully
as a regulariser in supervised and semi-supervised
NLP tasks (Miyato et al., 2016; Pan et al., 2021).
Here, we follow a similar approach and use FGSM
to augment our training pairs with adversarial posi-
tive and negative examples.

3 Task formulation

In the Entity Linking task we are provided with
a list of documents D ∈ D, where each document
has a set of mentions MD = {m1,m2, . . . ,mND

}.
The task is to link each mention mi to an entity

ei, where each entity belongs to the Knowledge
Base (KB) E . In this work we focus specifically
on the problem of biomedical zero-shot entity link-
ing. The setup for the zero-shot task is the same as
for entity linking introduced above, except that the
set of entities present in the test set is not present
in the training set, i.e. Etrain ∩ Etest = ∅ with
Etrain ∪ Etest = E . We focus specifically on the
Candidate Retrieval task, where the goal is given
a mention mi, reduce the pool of potential candi-
date entities from a KB to a smaller subset. Candi-
date retrieval is crucial for biomedical entity linking
because of the large size of knowledge bases. In
this work we use the bi-encoder architecture for
candidate retrieval. Finally, in addition to the in-
KB entity linking task, where you only consider
entities inside the KB, we also consider an out of
KB scenario, where the task is to map mentions to
the augmented set of labels E ∪NIL, with NIL in-
dicating the absence of a corresponding KB entity.

4 Methods

adv

adv

adv

adv

“We detect a correlation in the 
expression of these two genes”

Mention

Espresso
“A type of strong black coffee 

made by forcing steam through 
ground coffee beans”

Entity - ‘Easy’ negative

Expression
“A look on someone's face that 
conveys a particular emotion”

Entity - ‘Hard’ negative

Gene Expression
“The process by which informa-
tion from a gene is used in the 

synthesis of a product”

Entity - Positive

Figure 1: Overview of our proxy-based entity link-
ing method. The mention and entity embeddings are
encoded into a joint embedding space. During train-
ing, the magnitude of the gradients of the Proxy loss
function with respect to the embedding coordinates is
a function of the similarity between the mention and
the entities (proxies). The gradients are represented
by arrows whose widths indicate their magnitude. The
adv-labelled dotted arrows are the Fast Gradient Sign
Method adversarial perturbations. The blue circle sym-
bolizes the margin δ.

In this section, we review the categorical CE
loss, used by current state-of-the-art models, in the
context of entity linking (Wu et al., 2020; Zhang
and Stratos, 2021). We then compare it to our
proposed Proxy-based loss. Finally, we describe
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and motivate our regularization approach.

4.1 Loss

Given a set of data points corresponding to mention
representations m ∈ M and to a set of proxies
corresponding to entities e ∈ E , the categorical CE
loss is defined as:

LCE(m,P ) := − log

(
exp(s(m, e+))∑
e∈P exp(s(m, e))

)
,

(1)
where s(·, ·) denotes a similarity function (e.g. co-
sine similarity or dot product), e+ is the positive
proxy for mention representation m, P− is a set
of negative proxies used as negative samples, and
P = {e+} ∪ P−.

The gradient of the CE loss with respect to
s(m, e) is given by:

∂LCE

∂s(m, e)
=





−1 + exp(s(m, e+))∑
e∈P exp(s(m, e))

, e = e+

exp(s(m, e−))∑
e∈P exp(s(m, e))

, e ∈ P−

(2)
In practice training is performed with negative

sampling. If the negatives are sampled randomly,
often the exponential term for the positive entity
is much larger than that of the negative samples
and the gradients vanish. When s(m, e+) ≫
s(m, e−) ∀e− ∈ P− then ∂LCE/∂s(m, e) → 0.
This behaviour is desirable when training with the
full distribution of negative pairs, but stifles learn-
ing in the noisier sampling setup. A common ap-
proach is the use of hard negatives (Gillick et al.,
2019; Zhang and Stratos, 2021), which increases
performance over training with random negatives
at the cost of increased computational complexity.

On the other hand, contrastive metric learn-
ing losses (Bromley et al., 1993; Chopra et al.,
2005; Hadsell et al., 2006) alleviate the vanish-
ing gradients problem by decoupling the positive
and negative loss terms. Proxy-based contrastive
losses, such as Proxy-NCA (Movshovitz-Attias
et al., 2017), aim to increase the similarity between
a data point x and its assigned proxy e+, while
decreasing the similarity between x and its nega-
tive proxies e− ∈ P−. As demonstrated in (Kim
et al., 2020), a downside of Proxy-NCA is that the
scale of its gradient is constant for positive samples.
This issue is alleviated by the Proxy Anchor loss
(Kim et al., 2020), whose gradient reflects the rel-

ative hardness of both positive and negative pairs,
resulting in improved model performance.

Drawing inspiration from the proxy-based met-
ric learning losses described above, we formulate
our Proxy-based (Pb) candidate retrieval loss as
follows:

LPb(m,P ) = log(1 + exp(−α(s(m, e+)− δ))

+ log(1 +
∑

e−∈P−
exp(α(s(m, e−) + δ)),

(3)

where we use the same notation as in Eq. 1. In
addition, α is a hyperparameter controlling how
strongly positive and negative samples pull and
push each other, and δ is a margin. If α and δ are
large, the model will be strongly penalized for the
positive pair being too far from each other, and
conversely the negative pair for being too close to
each other. If α and δ are small, the model will
receive weaker feedback. The Softplus function, a
smooth approximation of the ReLU, introduces an
additional margin beyond which the model stops
penalising both positive and negative pairs, thus
reducing overfitting. The gradient of our Proxy-
based loss function is given by:

∂LPb

∂s(m, e)
=





−α exp(−αs+)
1 + exp(−αs+) , e = e+

α exp(αs−)
1 +

∑
e−∈P−

exp(αs−) , e ∈ P−

(4)
where s+ = s(m, e+) − δ, s− = s(m, e−) +

δ. This gradient reflects the relative hardness of
negative examples, decoupled from the positive
pair, which makes it less sensitive to the choice of
negative sampling scheme.

4.2 Regularization
Our regularization approach is based on a simple
adversarial training technique, called Fast Gradi-
ent Sign Method (FGSM) (Goodfellow et al., 2015).
The idea of FGSM is to generate adversarial exam-
ples according to the following equation:

xadv = x+ ϵ ∗ sign(∇xL(x, y)) (5)

where x is the original training example, y its
corresponding label, L the loss function that is
minimised during model training, and ϵ a small
number defining the magnitude of the perturbation.
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FGSM applies a small perturbation to the input
example that should not change the label of the re-
sulting example xadv. However, Goodfellow et al.
(2015) demonstrated that even infinitesimal per-
turbations can cause drastic changes to the model
output when carefully designed. This effect is due
to the locally linear nature of neural networks in
combination with the high dimensionality of their
inputs. Moreover, it is the direction, rather than
the magnitude, of the perturbation that matters the
most. In FGSM the direction is determined by
the gradient of the loss function with respect to the
model input - x is pushed in the direction of highest
loss increase given its true label y.

In the context of entity linking task, we are
interested in generating examples adversarial to
the learned metric, in other words hard negative
and hard positive examples for a given mention
m. To this end, we applied the following per-
turbations to the entity encoder input embeddings
z = input_embed(e):

z−adv = z− + ϵ ∗ sign(∇z−s(m, e−)) (6)

z+adv = z+ − ϵ ∗ sign(∇z+s(m, e+)) (7)

where m is the anchor mention and z−, z+ are the
encoder input embeddings of negative and positive
entities e−, e+ correspondingly.

Given N negative entities for a mention m, the
generated adversarial entity embeddings Padv =
{z−adv_1, . . . , z

−
adv_N, z

+
adv} are used as additional

training examples, giving rise to an auxiliary loss
term that encourages the model to be invariant to
local adversarial perturbations. Thus, the final ob-
jective we are trying to minimise becomes:

LPb(m,P ) + λLPb(m,Padv) (8)

where λ is a hyperparameter controlling the relative
contributions of the two losses.

5 Experiments

5.1 Datasets
MedMentions This is is a biomedical entity-
linking dataset consisting of over 4,000 PubMed
abstracts (Mohan and Li, 2019). As recommended
by the authors, we use the ST21PV subset, which
has around 200,000 mentions in total. A large num-
ber of mentions in both the validation and test splits
are zero-shot, meaning their ground truth label is
not present in the training data. We do not carry out
any additional preprocessing on the dataset. Finally,

MedMentions Zero-Shot EL
Train Val Test Train Val Test

Mentions 120K 40K 40K 49K 10K 10K
Entities 19K 8K 8K 333K 90K 70K
% Entities seen 100 57.5 57.5 100 0 0

Table 1: Statistics of datasets used. "% Entities seen"
signifies the percentage of ground truth entities seen
during training.

for the knowledge base (KB), we follow the frame-
work in Varma et al. (2021) and use the UMLS
2017AA version filtered by the types present in the
ST21PV subset. The final KB includes approxi-
mately 2.36M entities.

To evaluate our models in the NIL detection
setting, we have created a new dataset based on
MedMentions. In this dataset, we have assigned
mentions corresponding to 11 entity types a NIL
label and removed them from the Knowledge Base.
Details on the dataset statistics and removed entity
types can be found in the Appendix.

Zero-Shot Entity Linking dataset ZESHEL, a
general domain dataset was constructed by Lo-
geswaran et al. (2019) from Wikias1. It consists
of 16 independent Wikias. The task is to link men-
tions in each document to a Wikia-specific entity
dictionary with provided entity descriptions. The
dataset is zero-shot, meaning there is no overlap in
entities between training, validation and test sets.

5.2 Input Representation and Model
Architecture

Similarly to Wu et al. (2020); Zhang and Stratos
(2021); Varma et al. (2021) our candidate retriever
is a bi-encoder consisting of two independent
BERT transformers. We use the bi-encoder to en-
code a textual mention and an entity description in-
dependently then obtain a similarity score between
them.

Namely, Given a mention and its surrounding
context τm and an entity τe, we obtain dense
vector representations ym = red(T1(τm)) and
ye = red(T2(τe)), where T1 and T2 are the two
independent transformers of the bi-encoder and
red(·) is a function that reduces the output of a
transformer into a single vector. We use a mean
pooling operation for the function red(·).

As in Wu et al. (2020); Zhang and Stratos (2021);
Varma et al. (2021) we use the dot product to score
the mention ym against an entity vector ye when

1https://wikia.com
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using the CE loss. For our Proxy-based loss we use
cosine similarity.

In this, work, we focus on entity linking by ef-
ficient candidate retrieval, but we also include the
ranker results using the highest scoring candidate
entities in the Appendix, where we also include
more details on entity, mention and context mod-
elling.

5.3 Training & Evaluation Details

In all our experiments we used the transformer ar-
chitecture (Vaswani et al., 2017) for the encoders.
Namely, we used BERT (Devlin et al., 2019), ini-
tialised with appropriate pre-trained weights: Sap-
BERT (Liu et al., 2021) for MedMentions and
the uncased BERT-base (Devlin et al., 2019) for
ZESHEL. For FGSM regularization, we apply ad-
versarial perturbations to the composite token em-
beddings (i.e. sum of word, position and segment
embeddings) used as input to BERT. We apply our
regularization to both Proxy-based and CE. For in-
formation on hyperparameter tuning please refer
to the Appendix. We tune all of our experiments
on the validation set and report results on the test
set. Due to hardware limitations, the training was
conducted on a single V100 GPU machine with 16
GB of GPU memory. The limited GPU capacity, in
particular, memory, posed a challenge by constrain-
ing us to using a relatively low number of negatives
when training a retriever.

5.3.1 Candidate Retriever
The retriever model is optimised with the Proxy-
based loss (3) and benchmark CE loss (1) for fair
comparison. We evaluate the retriever on the micro-
averaged recall@1 and recall@64 metrics, where
in our setup recall@1 is equivalent to accuracy.
Here we focus on the recall@1 metric, which is
highly relevant for efficient candidate retrieval mod-
els that do not necessitate running an expensive
cross-encoder for candidate ranking. We use two
negative sampling techniques: (1) Random, where
the negatives are sampled uniformly at random
from all entities in the knowledge base, and (2)
Mixed-p: p percent of the negatives are hard, the
rest are random. This is motivated by the results
shown in Zhang and Stratos (2021). We set the p
to 50%.

Hard negative mining Retrieving hard negatives
requires running the model in the inference mode
over the entire KB. Then, for each mention, the

most similar (i.e. hard) negatives are sampled ac-
cording to a scoring function. Here, we use FAISS
(Johnson et al., 2019) for obtaining hard negatives
given a mention and an index of entity embeddings
from the KB.

Running a forward pass over the entire KB at reg-
ular intervals can be costly and time-consuming as
the KB often amounts to millions of entities. More-
over, the computational complexity of retrieving
hard negatives may grow exponentially depending
on the scoring function. For example, the tradition-
ally used scoring function also leveraged in this
work, where the mention and entity are both rep-
resented with a single embedding requires O(me)
approximate nearest neighbour searches, where m
and e are the number of mentions and entities re-
spectively. However, employing an alternative scor-
ing function such as the sum-of-max used in Zhang
and Stratos (2021) which requires comparing a set
of mention embeddings with a set of entity em-
beddings results in O(mexy) where x and y is the
number of mention vector and entity vector embed-
dings. In Zhang and Stratos (2021) x and y are
set to 128, the number of maximum tokens in the
mention and entity input sequence.

This highlights the computational cost of hard
negative mining and underlines the need for both
methods which can work effectively with random
samples as well as more efficient hard negative min-
ing strategies. In this work we propose a method
for the former.

Biomedical Out of Knowledge Base Detection
For the biomedical NIL detection scenario training
proceeds exactly as in the in-KB setting. We train
models with the Proxy-based loss with different
margins, and also a model with the CE loss. In
each case, we use a validation set that includes NIL
mentions to select an appropriate threshold for the
retrieval model. Mentions whose corresponding
top-ranked entity does not achieve this score are
assigned the NIL label. We choose the threshold
that maximises the F1 score for NIL entities in
the validation set. We then apply this threshold to
detect NIL mentions in the test set.

6 Results

We present the results for candidate retrieval and
benchmark our models against suitable methods.
We name our method Proxy-based Entity Linking
(PEL-Pb). We also report the results of a version
of our model which uses the CE (PEL-CE) loss on
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# Neg. recall@1 recall@64

Angell et al. (2021) - 50.8 85.3
Agarwal et al. (2021) - 72.3 95.6
Varma et al. (2021) 100 71.7 -

PEL-CE
32 (mixed) 72.1 95.5
64 (mixed) 72.1 95.6

64 (random) 55.7 94.0

PEL-Pb
32 (mixed) 71.6 93.3
64 (mixed) 72.6 95.0

64 (random) 63.3 95.9

PEL-CE + FGSM 32 (mixed) 72.3 95.5
PEL-Pb + FGSM 32 (mixed) 72.4 93.7

Table 2: Candidate retrieval results on the MedMentions
dataset. CE and Pb refers to cross-entropy and proxy-
based losses respectively. All experiments were run
with mixed random and hard negatives “(mixed)", or
only “(random)" negatives. The bold figures represent
the best score for each recall metric. Note that FGSM
PEL variants were only run with 32 negatives due to
GPU memory constraints.

Random Mixed
recall@1 recall@64 recall@1 recall@64

Wu et al. (2019)∗ - 81.80 46.5 84.8
Agarwal et al. (2021) 38.6 84.0 50.4 85.1
Ma et al. (2021) 45.4 90.8 - -
Zhang and Stratos (2021) - 87.62 - 89.6

PEL-CE 44.1 84.8 52.5 87.2
PEL-Pb 48.9 85.2 53.1 86.0
PEL-CE + FGSM 44.1 85.2 53.2 87.2
PEL-Pb + FGSM 49.7 85.6 54.2 86.6

Table 3: Candidate retrieval results on the ZESHEL
dataset. CE and Pb refers to cross-entropy and proxy-
based losses respectively. The negative to positive sam-
ple ratio for all PEL runs is 32. The bold figures repre-
sent the best score for each sampling strategy (random
vs. mixed random and hard). The highlighted figure
represents the best overall score across strategies. * we
use the results reported in Zhang and Stratos (2021)
for random negatives and Ma et al. (2021) for mixed
negatives.

all experiments for comparison.

6.1 MedMentions

Table 2 shows that all approaches using bi-encoder
transformer models strongly outperform the N-
Gram TF-IDF proposed in Angell et al. (2021) for
recall@1 and also recall@64. We also observe the
strong positive effect of including hard negatives
during model training. The effect is particularly
strong for the CE loss, where recall@1 increases by
17% compared with training on random negatives.
We believe that such difference is partly due to the
large size of the KB MedMentions KB, amounting
to 2.36M entities, which contributes to the impor-

tance of hard negative mining. For the Proxy-based
loss, including hard negatives increases recall@1
by 9%, achieving state-of-the-art performance of
72.6%. Adding FGSM regularisation boosted per-
formance, as can be seen from the experiments with
32 negatives (the largest number of negatives we
could fit into GPU memory when applying FGSM).
However, it did not exceed the performance of the
unregularized model with 64 negative samples.

NIL All classes incl. NIL
auPR Precision Recall Recall@1 Recall@64

Pb (m=0) 83.7 81.2 71.0 72.6 90.4
Pb (m=0.01) 84.4 81.6 71.5 72.5 90.2
Pb (m=0.05) 85.8 83.3 73.5 72.4 89.9
Pb (m=0.1) 87.6 85.2 79.2 69.4 85.7
CE 32.3 31.8 74.0 64.4 76.1

Table 4: NIL detection results on the MedMentions
dataset. auPR, precision and recall are reported ex-
clusively for the NIL class, whereas micro-averaged
recall@1 and recall@64 are reported for all classes in-
cluding NIL. Pb: Proxy-based with margin m, CE:
Cross-Entropy.
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Figure 2: Precision Recall curves for NIL detection on
the MedMentions dataset. Pb: Proxy-based with margin
m, CE: Cross-Entropy.

Biomedical Out of Knowledge Base detection
We also evaluated our proposed loss function on
NIL detection. All models trained with the Proxy-
based loss significantly outperform the CE-based
model in terms of both precision and recall (Figure
2). The CE loss does not encourage low scores in
absolute value for negatives examples, but rather
encourages scores that are lower than the scores of
positive examples. As we can see from the results,
CE training fails to assign low scores to NIL men-
tions, as these are out-of-distribution negatives and
thus have not been compared to positive examples
during model training. Our Proxy-based loss does
not suffer from this issue, even with a margin of 0.
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We believe that this is accomplished by the decou-
pling of the positive and negative loss terms, such
that low absolute score values are encouraged for
negative examples.

Furthermore, the higher the Proxy-based margin
the better the model’s performance with respect to
detecting NIL mentions. At the same time, Proxy-
based models with lower margins perform better at
the overall recall metrics (Figure 2). These metrics
are computed with respect to all classes including
the NIL class. Given that the performance differ-
ences among models with different margins are
minimal, a practitioner could choose how to set
the margin considering the trade-off between NIL
detection and overall model performance. To our
knowledge, we are the first to propose a method for
NIL detection using the bi-encoder architecture.

6.2 Zero-Shot Entity Linking dataset

Based on the candidate retrieval results in Table 3,
we can conclude six key points. (1) Proxy-based
models (Pb) outperform their Cross-Entropy (CE)
counterparts across all considered settings for re-
call@1. In particular, our Proxy-based model using
hard negatives and FGSM regularization achieves
state-of-the-art recall@1 on this dataset. This high-
lights the gain that we get by breaking the depen-
dency between positive and negative pairs. (2) In-
cluding hard negatives always boosts model perfor-
mance. This is particularly evident on the recall@1
metric. The model trained with CE loss strongly de-
pends on hard negatives, with recall@1 increasing
by 8% compared to training with random negatives.
For the Proxy-based loss the increase is 4%, as
the model already performs competitively when
trained with random negatives. This showcases the
importance of hard negative sampling for the CE
loss. Hard negatives provide the model with much
more meaningful feedback and avoid the threat of
vanishing gradients (Eq. 2). (3) The difference be-
tween Pb and CE models becomes much smaller
for recall@64. Trivially, as k increases, recall@k
for all models will converge towards 1. Addition-
ally, as k increases to above the number of hard
negatives, the model’s ability to distinguish the
hard negatives from the positive will not be seen in
the metric. (4) CE models marginally outperform
Pb models with hard negatives at recall@64. Hard
negatives consistently have a larger impact on CE
compared to Pb also at recall@64 (2), while the
benefits of Pb have been nullified as discussed in

(3). (5) Alternative methods leveraging the CE loss
and different model architectures such as MuVER
(Ma et al., 2021) and SOM (Zhang and Stratos,
2021) outperform the bi-encoder based approach
at recall@64. However, both MuVER and SOM
are more complex models tuned for achieving high
recall@64, whereas the main focus of our approach
is high recall@1 in the pursuit of avoiding the ad-
ditional ranking stage. Pb outperforms the only
single stage entity linking model Agarwal et al.
(2021) across the board. (6) FGSM regularization
boosts the results of both Proxy-based and CE mod-
els, demonstrating its promise as a general method
for regularizing the retrieval model.

7 Discussion & Future Work

We have proposed and evaluated a novel proxy-
based loss for biomedical candidate retrieval. Ad-
ditionally, we have adopted an adversarial regular-
ization technique designed to simulate hard neg-
atives, and shown that both our loss and regular-
ization boost performance on the recall@1 metric.
We have also constructed a biomedical dataset for
NIL detection and demonstrated that our candidate
retrieval model can robustly identify biomedical
NIL entities, while maintaining high overall per-
formance. These are important advances towards
closing the gap between the two-stage approach
that include an expensive cross-encoder and a can-
didate retriever-only setup.

Notably, our work highlights the importance of
hard negative sampling when optimising the can-
didate generator with the CE loss. Random nega-
tive sampling together with CE loss can result in
the problem becoming trivial, for example the ran-
domly sampled negative entity having a different
type. However, accessing hard negative examples
during model training can be challenging, particu-
larly when the knowledge base is large and entity
representations are frequently updated.

Considering this, we recommend to employ our
Proxy-based loss for the candidate retrieval task in
three different scenarios: (1) training with random
negatives, (2) optimising for recall@1, (3) detect-
ing NIL entities. Moreover, we also recommend
leveraging FGSM regularisation in any setup and
both retrieval and ranking tasks.

An interesting approach would be to attempt
to approximate hard negatives without frequent
updates of the entity representations. This could
potentially be done by keeping the entity encoder
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frozen, or exploring alternative relatedness mea-
sures which does not require frequently running
the model over the whole knowledge base. Fi-
nally, there is a plethora of work on proxy-based
(Movshovitz-Attias et al., 2017; Kim et al., 2020)
and pair-based losses (Bromley et al., 1993; Chopra
et al., 2005; Schroff et al., 2015; Dong and Shen,
2018), usually discussed in the computer vision and
metric learning literature. Improving the candidate
retrieval is a crucial step towards high-performing
and efficient entity linking systems that can be eas-
ily applied in real-world settings.

Limitations

There are several limitations of our work. Firstly,
we only demonstrate the advantages of our pro-
posed method when computing hard negatives is
computationally expensive, which is the case with
large knowledge bases and expensive scoring meth-
ods. If computing hard negatives is not a bottleneck,
one may use negative sampling with the baseline
CE loss. However, biomedical knowledge bases
typically contain a huge number of entities. Sec-
ondly, in our experiments we were limited to single
GPU machines with at most 16GB of GPU mem-
ory. This prevented us from including more than
64 negatives samples in the standard setup and
32 negative samples when using FGSM regular-
ization, which could potentially be benefit model
performance. Thirdly, we acknowledge that some
comparison to related work is missing, in particu-
lar, Zhang and Stratos (2021). We were not able to
reproduce the results cited in the paper using the
publicly available code. Finally, our work is limited
to proxy-based metric learning losses. More space
could be devoted to the topic of how one could
utilise metric learning more broadly for biomedical
entity linking. We leave this for future work.

Ethics Statement

The BERT-based models fine-tuned in this work
and datasets are publicly available. We will also
make our code as well as the biomedical out of
knowledge base detection dataset publicly avail-
able.

The task of entity linking is often crucial for
downstream applications, such as relation extrac-
tion, hence potential biases at the entity lining stage
can have significant harmful downstream conse-
quences. One source of such biases are the pre-
trained language models fine-tuned in this work.

There is a considerable body of work devoted to
the topic of biases in language models. One way
the entity linking systems can be particularly harm-
ful is when they commit or propagate errors in
the language models, knowledge bases, mention
detection across certain populations such as races
or genders. Because of the high ambiguity across
biomedical mentions and entities in the knowledge
base, it is important that the users investigate the
output prediction of the entity linking system and
often take is a suggestion, rather than gold standard.
Finally, we highlight that linking the entity to its
entry in the knowledge base and out of knowledge
base detection can be analogous to surveillance
and tracking in the computer vision domain, which
comes with substantial ethical considerations.
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Appendices

A Context and Mention Modelling

We represent a mention and its surrounding context,
τm, as a sequence of word piece tokens

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP]

where mention, ctxtl and ctxtr are the word-piece
tokens of the mention, left and right context, and
[Ms] and [Me] are special tokens marking the start
and end of a mention respectively.

Due to the differences in available data, we rep-
resent entities differently for ZESHEL and Med-
Mentions. On ZESHEL, we represent entities with
a sequence of word piece tokens

[CLS] title [ENT] description [SEP]

where [ENT] is a special separator token. In con-
trast, when training on the MedMentions dataset
we represent an entity by the sequence

[CLS] title [SEP] types [SEP] description [SEP]

Descriptions of entities were sourced from UMLS.

B Candidate ranker setup and results

To evaluate the impact of our candidate retriever
model on the downstream task of candidate ranking,
we also conducted ranking experiments on both
datasets.

# Candidates Ranker Accuracy

Z
E

SH
E

L

Wu et al. (2020) 64 Base 61.3
Wu et al. (2020) 64 Large 63.0
Zhang and Stratos (2021) 64 Base 66.7
Zhang and Stratos (2021) 64 Large 67.1
PEL-Pb 16 Base 62.8
PEL-Pb + FGSM 16 Base 64.6

M
ed

M
en

tio
ns

Bhowmik et al. (2021)∗ - - 68.4
Angell et al. (2021) - - 72.8
Varma et al. (2021) 10 Base 74.6
PEL-Pb 16 Base 74.0
PEL-Pb + FGSM 16 Base 74.6

Angell et al. (2021) - - 74.1+ post-processing
Varma et al. (2021) 10 Base 74.8+ post-processing

Table 5: Ranker results on the ZESHEL and MedMen-
tions datasets. * uses the full MedMentions dataset,
rather than the ST21PV subset used by other models re-
ported in the table and recommended by MedMentions
authors’.
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Figure 3: Comparison of smoothed gradient norms over training steps using two losses, CE and Proxy-based.
The left plot visualizes the smoothed gradient norm when using random, and the right one leveraging mixed-50%
negatives. All the experiments were conducted on ZESHEL using 32 negatives.

Training & Evaluation setup Similarly as in
related work (Logeswaran et al., 2019; Wu et al.,
2020; Zhang and Stratos, 2021), the highest scor-
ing candidate entities from the candidate retriever
are passed to a ranker, which is a cross-encoder
consisting of one BERT transformer. The cross-
encoder Logeswaran et al. (2019) is used to select
the best entity out of the candidate pool. It takes
as input τm,e, which is the concatenation of men-
tion/context and entity representations τm and τe.
We then obtain a dense vector representation for
a mention-entity pair ym,e = Tcross(τm,e), where
Tcross(τm,e) is the BERT transformer of the cross-
encoder and red(·) is a mean pooling function that
takes the mean over input tokens embeddings. En-
tity candidates are scored by applying a linear layer
scross(m, e) = ym,eW.

We pick the best performing retrieval model on
recall@16 and use it to retrieve top 16 candidate
entities for each mention. As the number of can-
didate entities is relatively low, we do not perform
negative sampling and optimise the cross-encoder
with the CE loss (Eq. 1). We report the micro-
averaged unnormalized accuracy on the MedMen-
tions dataset and macro-averaged unnormalized
accuracy on the ZESHEL dataset in line with the
prior work (Zhang and Stratos, 2021; Wu et al.,
2020). The results are shown in the Table 5.

Results In Table 5 we can observe the down-
stream effect of having a candidate generator model
with high recall@1 performance. On ZESHEL,
We can see that a cross-encoder trained with the
top 16 candidates from our best performing can-
didate generator achieved higher accuracy than
Wu et al. (2020) who used the top 64 candidates.
Moreover, similarly as with the candidate retrieval,

FGSM boosts performance. For completeness, we
have also included the state-of-the-art results from
Zhang and Stratos (2021) who used 64 candidates
and a larger BERT model in the cross-encoder.
In our experiments we were limited to a single
GPU with 16 GB memory which restricted us to
a low number of maximum candidates, namely
16. We strongly believe that including more candi-
dates than 16 would boost the performance of our
method.

On MedMentions a cross-encoder trained with
the top 16 candidates from our best performing
candidate generator model achieved a competitive
accuracy of 74%. The accuracy further increased
to 74.6% when adding FGSM regularisation, com-
ing close to the state-of-the-art performance of
Varma et al. (2021), which includes additional post-
processing.

C Training details

The hyperparameters used for conducting the ex-
periments are visible in Table 6. We use a single
NVIDIA V100 GPU with 16 GB of GPU memory
for all model trainings.

D Biomedical Out of Knowledge Base
dataset details

We constructed the OKB dataset by replacing the
label of a set of mentions from the MedMentions
corpus (Mohan and Li, 2019) with the NIL class.
Namely we pick the mentions belonging to 11
types: Mental Process, Health Care Related Or-
ganization, Element Ion or Isotope, Medical De-
vice, Health Care Activity, Diagnostic Procedure,
Professional or Occupational Group, Mental Pro-
cess, Laboratory Procedure, Regulation or Law,

98



Param Bi-encoder Cross-Encoder
Input sequence length 128 256
learning rate 1e-5 2e-5
warmup proportion 0.25 0.2
eps 1e-6 1e-6
gradient clipping value 1.0 1.0
effective batch size 32 4
epochs 7 5
learning rate scheduler linear linear
optimiser AdamW AdamW
α 32 -
δ 0.0 -
FGSM λ 1 1
FGSM ϵ 0.01 0.01

Table 6: Learning parameters for the bi-encoder and
cross-encoder.

Organization, Professional Society. The final OKB
subset includes approximately 24K mentions and
3K unique entities.

To ensure that the OKB dataset does not suf-
fer from easy inferences and allows us to evaluate
model performance. We ensured that the zero-shot
distribution of the OKB mentions and types across
the train/validation/test split was in line with the
zero-shot distribution of mentions and types in the
whole dataset. Additionally, we verified that there
is no significant overlap between mention surface
forms across the splits. Moreover, we looked at
the length of entity descriptions which are used
to create entity representations checking that the
OKB mentions entity representations statistics are
similar to the statistics computed using the whole
dataset.

E Gradient norm analysis

Train Dev Test
Mentions 14K 4.8K 4.7K
Entities 2.2K 1.1K 1.1K
% Entities seen 100 57.7 57.5

Table 7: Statistics of the OKB MedMentions subset.

Figure 3 shows the behaviour of the gradient l2
norm for both losses. We can see that for both ran-
dom and mixed negatives, the norm of the Proxy-
based loss has considerably lower variance. This
is visible particularly when using the mixed nega-
tives.
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Abstract

Transformer models have achieved great suc-
cess across many NLP problems. However,
previous studies in automated ICD coding con-
cluded that these models fail to outperform
some of the earlier solutions such as CNN-
based models. In this paper we challenge this
conclusion. We present a simple and scalable
method to process long text with the existing
transformer models such as BERT. We show
that this method significantly improves the pre-
vious results reported for transformer models
in ICD coding, and is able to outperform one
of the prominent CNN-based methods.

1 Introduction

The International Classification of Diseases (ICD)
codes provide a standard way of keeping track of
diagnoses and procedures during a patient visit.
These codes are used worldwide for epidemiolog-
ical studies, billing and reimbursement, and re-
search in health care. The codes are maintained
by the World Health Organization (WHO) and are
revised and updated periodically. As of 2022 the
ICD codes are in the 11th revision.

Assigning ICD codes to a clinical note, such
as a discharge summary, is done by professional
medical coders. Human coders require extensive
training, and the process of coding is often time-
consuming, costly, and error-prone. Due to these
challenges there is an incentive to automate the
coding process. Therefore in recent years this prob-
lem has gained interest among machine learning
researchers in health care (See, Mullenbach et al.
(2018); Li and Yu (2020); Zhang et al. (2020) and
references therein). On the surface, the problem
can be considered as a multi-label document clas-
sification problem. However, there are aspects of
the problem that make it particularly challenging.

∗ Equal contribution
† Technical leadership

The primary challenge is that there are tens of thou-
sands of classes. For instance, billable ICD-10-CM
codes consist of approximately 73,000 codes. In ad-
dition, the distribution of the codes is not uniform.
Many of the codes are related to rare conditions and
are mentioned infrequently in text, which makes it
difficult to train a reliable classifier for them.

Transformer-based language models developed
based on self attention (Vaswani et al., 2017) have
become the state-of-the-art across many NLP prob-
lems by outperforming previous solutions that were
mostly based on recurrent neural networks (RNN)
and convolutional neural networks (CNN). So one
would expect that they perform well in ICD coding
too. However, examining the literature of ICD cod-
ing methods reveals that transformer-based solu-
tions fail to outperform CNN-based models. Many
studies have applied the BERT language model
(Devlin et al., 2018) to this task, for example Pas-
cual et al. (2021); Singh et al. (2020); Biseda et al.
(2020); Amin et al. (2019). More recently, Ji
et al. (2021) performed a comprehensive quanti-
tative study to compare BERT and some of its
variants pre-trained on medical text against CNN-
based models such as Mullenbach et al. (2018)
and Cao et al. (2020) to answer the question of
whether the magic of BERT (as observed across
many NLP problems) also applies to automated
ICD coding. They concluded that BERT cannot out-
perform CNN-based models in the full ICD code
case.

Unlike RNN or CNN models, which in theory
can process sequences of arbitrary length, trans-
formers’ computational complexity scales quadrat-
ically with sequence length. This means that most
of these models can handle limited size sequences.
For instance, BERT models usually are pre-trained
and fine-tuned on sequences with at most 512 to-
kens. Clinical notes normally contain long snippets
of text beyond the sequence limit of transformers.
We hypothesize that this constraint could explain
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the poor performance of transformers in this task,
and will present empirical evidence for that.

We emphasize that we do not claim to achieve
state-of-the-art performance in ICD coding, or that
our design is the most efficient transformer archi-
tecture for processing long text. For a review of
efficient transformers see Tay et al. (2020) and ref-
erences therein. Our goal is to provide new empir-
ical evidence that shows even the standard trans-
former models can outperform some of the previ-
ous prominent methods and are a viable solution
for ICD coding.

2 Related work

Medori and Fairon (2010) applied a rule-based
method to extract important snippets of text and
encode them with ICD codes. Perotte et al. (2014)
proposed SVM classification with bag-of-words
features. They experimented with both flat SVM
(i.e. one classifier per code) and a hierarchical
classifier.

With the success of deep learning in NLP tasks,
many researchers focused on using RNN and CNN
models for ICD coding. CNN models provide a
convenient way to learn a contextual representa-
tion of text in NLP problems (Chen, 2015). For
example, Mullenbach et al. (2018) proposed the
CAML model: a convolutional layer on word2vec
embedding vectors to learn a contextual represen-
tation for each word. The word representations are
combined into a class-specific document represen-
tation using the attention mechanism. They also
suggested a method to leverage code descriptions
via a regularization term. Li and Yu (2020) pro-
posed Multi-filter Residual CNN (MultiResCNN)
that uses convolutional layers with different kernel
sizes to capture patterns with different lengths. Ad-
ditionally, they used residual blocks on top of the
convolutional layer. Similar to Mullenbach et al.
(2018) they employed a per-class attention mecha-
nism to make the document representation attend
to different parts of the input for each code.

Recurrent neural networks (RNN) are also stud-
ied extensively for ICD coding. Shi et al. (2017)
applied LSTM at character and word level to en-
code both the clinical note and the code description.
Baumel et al. (2018) employs a two-layer bidirec-
tional Gated Recurrent Unit (GRU) model, where
the first layer encodes individual sentences, and the
second layer encodes the document.

With the success of transformer architectures

f1 fc fK……

Linear classifiers

de1,...,e512 e513,...,e1024 e(τ-1)×512,...,eτ×512
…

BERT Encoder

1x1,...,x512 x513,...,x1024 … x(τ-1)×512,...,xτ×512

Attention

z1 zc zK……

w1 wc wK

Figure 1: Model architecture proposed for handling
long text inputs.

across many NLP tasks, researchers focused their
attention to designing such models for ICD coding.
BERT-XML (Zhang et al., 2020) with access to a
large corpus of private data managed to pre-train
the model with sequence length of 1024. Most
of the work in this area, however, considered the
standard BERT model and its variants pre-trained
on medical text to encode the document (Pascual
et al., 2021; Singh et al., 2020; Biseda et al., 2020;
Amin et al., 2019). One observation with these
models was that they were unable to outperform
CNN-based models. Ji et al. (2021) performed
a comprehensive study to answer a few research
questions on the suitability of BERT models for
ICD coding. They studied and compared different
variants of BERT pre-training. They also proposed
a hierarchical attention method so that long clinical
notes can be processed with a BERT model with a
limit of 512 tokens. Most importantly, they com-
pared different BERT variants against traditional
CNN-based models, and through extensive exper-
iments showed that BERT-based models are not
capable of outperforming CNN-based models in
ICD coding. In the next sections we show that a
simple method that enables processing of long text
with transformers will attain results that contradict
the findings of Ji et al. (2021).
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3 Method

In this section we explain our method for building
a model to predict medical codes. As illustrated
in Figure 1, our model consists of an encoder that
calculates token-level representation of the input
text. This can be done in various ways, e.g. Mul-
lenbach et al. (2018) used word2vec and a CNN
layer to calculate word-level representations. We
choose the BERT language model for this purpose.
A class-specific representation of the document is
then calculated using class-specific attention vec-
tors, similar to Mullenbach et al. (2018). For d-
dimensional token representations and K classes,
this layer requires d × K parameters. Linear bi-
nary classifiers are built on top of the document
representation to produce the probability that the
document belongs to any of the K classes. This
layer requires (d+ 1)×K parameters (one scalar
for the offset).

LetX = [x1, . . . , xs] denote the tokenized input
sequence with s tokens. Let e1(X), . . . , es(X) de-
note the representation of tokens 1, . . . , s obtained
from an encoder. That is,

ei(X) = φ(xi|X), i ∈ {1, . . . , s},

where φ is an encoder, such as BERT, that returns
a context-dependent representation for each token.
For each class c, token-level representations are
combined into a single vector that represents the
entire document using the attention mechanism:

zc(X) =
s∑

i=1

αc,i(X)ei(X),

where

αc,i(X) =
exp (〈ei(X), qc〉)∑s
j=1 exp (〈ej(X), qc〉)

, (1)

i ∈ {1, . . . , s},

are the normalized attention coefficients and 〈·, ·〉
denotes inner product, and qc is the d-dimensional
attention vector for class c. The predicted probabil-
ity of the model for class c is calculated by

fc(X) = σ (〈zc(X), wc〉+ bc) ,

where wc is the weight vector for class c, bc is
the scalar offset for class c, and σ is the sigmoid
function.

3.1 Handling long text

Language models such as BERT can handle input
text up to a certain length. For example, BERT
can take input of at most 512 tokens. While it is
possible to pre-train the model on longer sequences
(mostly to learn useful positional embedding vec-
tors), memory requirement grows quadratically
with input size. So pre-training a BERT model
on longer text is not scalable.

There are transformer-based models that can
handle long sequences, such as BigBird (Zaheer
et al., 2020), ETC (Ainslie et al., 2020), Long-
former (Beltagy et al., 2020), and LongT5 (Guo
et al., 2021). There are a few factors that limit
their usability in the medical coding task. For ex-
ample, these models are usually designed to train
on TPU, so training on GPU is often a slow pro-
cess, if feasible, especially for longer sequences.
Also, pre-trained checkpoints of these models are
limited, unlike the BERT models that have many
pre-trained variants including those pre-trained on
medical text.

In this paper, we propose a simple idea, which
enables us to use a vanilla BERT model on
long sequences. Inspired by the local attention
feature of CNN models, we propose to split
the input text into (optionally overlapping)
segments of 512 tokens. These segments are
passed sequentially to a BERT model, and the
token representations are concatenated to form
[e1(X), ..., e512(X), e513(X), ..., e1024(X), ...].
One may argue that a limitation of this approach is
that the token representations are calculated with
a 512-token attention span. However, we have
observed that in practice this method performs
well. In fact, we conjecture that in many cases
short snippets of text (as evidence) are sufficient
for assigning the correct ICD codes to the input
document. Algorithm 1 shows the training
procedure.

4 Evaluation

We evaluate the accuracy of the proposed method
with several sequence lengths and compare it
against the CAML method (Mullenbach et al.,
2018), which is one of the prominent CNN-based
methods for ICD coding.

4.1 Data sets

For this task we chose the publicly-available
MIMIC-III (Johnson et al., 2016) and MIMIC-IV
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Algorithm 1 Training on a single example.

1: Input: tokenized input text of length s: X = [x1, . . . , xs], sparse binary label vector Y =
[y1, . . . , yK ] for K classes, where yc = 1 if the example belongs to class c, and 0 otherwise.

2: Pad input text X = [x1, . . . , xs] to length τ × 512 to obtain X ′ = [x1, . . . , xs, . . . , xτ×512], where
τ = ds/512e.

3: Split X ′ into segments of 512 tokens: S1 = [x1, . . . , x512], S2 = [x513, . . . , x1024], . . . , Sτ .
4: Pass Si’s, i ∈ {1, . . . , τ} sequentially to the BERT module and obtain the corresponding token

representations.
5: Concatenate token representations from all sequences to obtain [e1, . . . , es, . . . , eτ×512].
6: Calculate class-specific document representations by zc(X) =

∑s
i=1 αc,i(X)ei(X), with αc,i from

Eq. 2.
7: Calculate model predictions for all classes: fc(X) = σ (〈zc(X), wc〉+ bc) , c ∈ 1, . . . ,K.
8: Calculate and apply gradient updates for loss function

∑K
c=1 `(yc, fc(X)), where ` is binary cross-

entropy.

(Johnson et al., 2020) data sets. MIMIC-III is
a large de-identified data set of over 40,000 pa-
tients admitted to intensive care units at the Beth
Israel Deaconess Medical Center. The data set con-
tains structured and unstructured data, including
lab measurements, vital signs, medications, clin-
ical notes, etc. Following previous studies, we
focus on predicting ICD codes for discharge sum-
maries where each note corresponds to a hospital
stay event. MIMIC-IV is an update to MIMIC-
III, which incorporates contemporary data. It is
sourced from two in-hospital database systems: a
custom hospital wide EHR and an ICU specific
clinical information system.

Each discharge summary in MIMIC-III is man-
ually coded by human coders with one or more
ICD-9 codes that specify diagnoses and procedures
of that particular stay. The data set contains 8,921
unique ICD-9 codes, including 6,918 diagnosis and
2,003 procedure codes. There are patients with mul-
tiple admissions and therefore multiple discharge
summaries. To be consistent with the previous stud-
ies and to ensure that all of the notes of a patient
are assigned to one of train/validation/test sets we
use the data split provided by Mullenbach et al.
(2018). This results in 47,724 discharge summaries
for training, 1,632 summaries and 3,372 summaries
for validation and test sets respectively.

The discharge summaries in MIMIC-IV are addi-
tionally labeled with ICD-10 codes. At the time of
writing this paper the MIMIC-Note module, which
contains the discharge summaries, is not yet pub-
licly available. In our experiments we only consider
the ICD-10 diagnosis set, which contains 72,748
codes in the data set.

For tokenizing text we used the standard BERT
vocabulary and tokenizer (Devlin et al., 2018). Fig-
ure 2 shows the cumulative distribution function of
the number of tokens per note for MIMIC-III and
MIMIC-IV.

4.2 Models

Our classification model uses a BERT language
model with the method described in Section 3.
We dub this model LongBERT below. The BERT
checkpoint we use in the experiments is a model
with 2 transformer blocks and 256-dimensional
embedding vectors. The checkpoint can be down-
loaded from TensorFlow Hub.1

The baseline model (BERT-baseline) was trained
and evaluated on the first 512 tokens of in-
put text. To measure the impact of sequence
length we trained and evaluated similar models
on the first s tokens of each note, with s ∈
{1024, 2048, 4096, 8192}. All BERT parameters
and the additional attention and classification pa-
rameters were fine-tuned during training. We used
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 2e-4. The batch size was set to 4 in
all experiments, except for the models trained with
the sequence length of 8192 which were trained
with the batch size of 2 to avoid running out of
memory. The models were trained for 1 million
steps (each step is one batch). No hyper-parameter
tuning was performed except for the number of
training steps. The best model corresponds to the
training step that achieves the highest validation
micro F1 score.

1 https://tfhub.dev/tensorflow/small_bert/bert_
en_uncased_L-2_H-256_A-4/2
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Figure 2: Cumulative distribution function (CDF) of the number of tokens per note for MIMIC-III (left) and
MIMIC-IV (right) data sets.

We compare these models against a CAML
model trained on sequences of 2500 words fol-
lowing Mullenbach et al. (2018). The hyper-
parameters were set according to the optimal val-
ues obtained in Mullenbach et al. (2018). Training
was performed for 1 million steps, and the best
model was selected according to validation micro
F1 score.

Following previous work, in the MIMIC-III ex-
periments, training and evaluation was performed
on the full ICD-9 label set as well as the 50 most
frequent codes. In the MIMIC-IV experiment, we
consider only the ICD-10 diagnosis codes. Each
ICD code has its own attention and classification
weight vectors in the models. Table 1 breaks down
the number of parameters of the models in the ex-
periments.

4.3 Evaluation metrics

Our primary evaluation metric is micro-averaged
F1 (micro F1 for short). Micro-averaged values are
calculated by treating each code as a (binary) label
for each note. That is, each (note, code) pair is
counted as one instance for calculating the metrics.
Let,

micro precision =

∑
x,c TP (x, c)∑

x,c TP (x, c) + FP (x, c)
,

micro recall =

∑
x,c TP (x, c)∑

x,c TP (x, c) + FN(x, c)
,

where TP (x, c) = 1 if class c is a true positive pre-
diction for note x and 0 otherwise. FP (x, c) (false
positive) and FN(x, c) (false negative) are defined
analogously. Finally, micro F1 is the harmonic

mean of micro precision and micro recall:

micro F1 = 2
micro precision×micro recall
micro precision + micro recall

.

The optimal threshold on model predictions, which
is used to calculate TP/FP/FN counts, is ob-
tained by a grid search to maximize the validation
set F1 score.

Additionally we report precision-recall AUC
(PR-AUC), and ROC-AUC. In contrast to F1 score,
these metrics are independent of a specific operat-
ing point and provide an aggregated view of model
accuracy.

4.4 Results

Table 2 shows the results of the LongBERT and
CAML models on the MIMIC-III full-code test
set. Table 3 shows accuracy metrics obtained on
the MIMIC-IV diagnosis code data set. Bold num-
bers represent the best value of each metric. A
clear trend observed in both data sets is that as
the sequence length of LongBERT increases, the
accuracy of the model improves. These results
demonstrate that the capability to process long text
is critical in achieving high accuracy.

The LongBERT models with sequence lengths of
4096 and 8192 both outperform the CAML model.
This finding contradicts the previous finding of Ji
et al. (2021). While their hierarchical attention
proposal and our method both handle long text by
breaking it into segments of 512 tokens, one key
difference is that they use the CLS token representa-
tion from each segment, whereas we use individual
token representations. The best MIMIC-III full-
code performance reported in Ji et al. (2021) was
F1 = 0.47 with BioBERT full-text (Lee et al., 2020)
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MIMIC-III full MIMIC-III top 50 MIMIC-IV diagnosis
Language model 9,591,040 9,591,040 9,591,040
Attention layer 2,283,776 12,800 18,623,488
Classification layer 2,292,697 12,850 18,696,236

Total 14,167,513 9,616,690 46,910,764

Table 1: Breakdown of the number of parameters of BERT-baseline and LongBERT with 2 transformer blocks and
256-dimensional embedding vectors. MIMIC-III full contains 8,921 classes, and MIMIC-IV diagnosis contains
72,748 classes.

checkpoint and hierarchical attention, while our
small vanilla BERT model with sequence length
of 8192 achieves F1 = 0.5680. These results show
that with a proper modeling approach transformer-
based models are indeed capable of outperforming
CNN-based models in ICD coding.

MIMIC-III top 50. Following previous work,
we also trained and evaluated the models on the
MIMIC-III 50 most frequent codes. Table 4 shows
the results. Similar to the full-code case we observe
that processing longer segments results in higher
accuracy.

In this case, however, there is no clear win-
ner between LongBERT and CAML. While Long-
BERT achieves a higher micro F1 score, the CAML
model has a higher PR-AUC. We conjecture that
the smaller performance difference between the
two models in this experiment compared to the
full-code experiment is due to the amount of in-
formation in the data sets. By removing many of
the labels in the top-50 experiment we essentially
remove information. This information is more help-
ful to larger models (i.e. transformers) than smaller
models, such as CAML. As a result, we observe a
larger performance gap in the full-code experiment
between LongBERT and CAML.

We also note that the accuracy numbers of the
CAML model in this experiment are higher than
those reported in Mullenbach et al. (2018). One
difference here is that we do not discard notes that
aren’t assigned any of the top 50 codes as was
done in the original paper. Such notes are used as
negative examples for the top 50 codes. Therefore
our data set contains more negative examples than
the data set used in Mullenbach et al. (2018).

5 Discussion

Most of the existing BERT models pre-trained on
generic or medical text can take input segments
of up to 512 tokens. Clinical notes, however, are

much longer than this limit. To deal with this lim-
itation, much of the existing works in automated
ICD coding that use BERT limit the input to the
model by truncating the text or selecting specific
spans of text. This results in loss of information
and poor performance.

In this paper we proposed a simple method to ap-
ply BERT models to sequences longer than 512 to-
kens. Our method is simple and consists of two key
components: (i) apply BERT sequentially to (op-
tionally overlapping) segments of 512 tokens, and
(ii) concatenate token-level representations from all
segments, and combine them using a class-specific
attention layer.

We demonstrated that processing long text se-
quences minimizes information loss and is critical
for achieving high performance in automated ICD
coding. We also showed that contrary to previ-
ous findings, this method with even a small vanilla
BERT model outperforms CNN-based methods,
and achieves competitive performance.

Future steps include evaluating medical variants
of BERT, and exploring other transformer-based
architectures that were designed to handle long
sequences.

Limitations

While our method enables the processing of text
longer than 512 tokens, one of the limitations of
this approach is that context-dependent token rep-
resentations are still calculated using a window
of 512 tokens. Despite good performance of this
method in practice, there could be cases where a
context window of longer than 512 must be used
to make accurate predictions.

Furthermore, while our method reduces compu-
tational complexity from quadratic (in sequence
length) to linear, the memory requirement of the
model could still be prohibitive in certain cases.
For instance, for sequence length of 8192, and a
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Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.5465 0.5973 0.5036 0.5361 0.9831
BioBERT full-
text (Ji et al.,
2021)

entire note 0.470 N/A N/A N/A 0.974

BERT-
baseline

512 0.4149 0.4769 0.3672 0.3793 0.9745

LongBERT 1024 0.4697 0.5421 0.4144 0.4309 0.9766
LongBERT 2048 0.5036 0.5777 0.4463 0.4703 0.9794
LongBERT 4096 0.5514 0.6038 0.5074 0.5305 0.9820
LongBERT 8192 0.5680 0.6148 0.5278 0.5402 0.9827

Table 2: Accuracy metrics in the MIMIC-III full-code experiment.

Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.5439 0.5739 0.5169 0.5313 0.9889

BERT-baseline 512 0.4010 0.4298 0.3757 0.3580 0.9883
LongBERT 1024 0.4607 0.5094 0.4205 0.4254 0.9839
LongBERT 2048 0.4852 0.5268 0.4497 0.4559 0.9852
LongBERT 4096 0.5635 0.5925 0.5371 0.5450 0.9850
LongBERT 8192 0.5703 0.6046 0.5397 0.5517 0.9871

Table 3: Accuracy metrics in the MIMIC-IV diagnosis experiment.

Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.6390 0.6506 0.6278 0.6410 0.9102

BERT-baseline 512 0.5027 0.5367 0.4727 0.5117 0.8360
LongBERT 1024 0.5568 0.5923 0.5252 0.5406 0.8560
LongBERT 2048 0.5908 0.5987 0.5832 0.5604 0.8834
LongBERT 4096 0.6375 0.6157 0.6609 0.6229 0.9115
LongBERT 8192 0.6522 0.6417 0.6629 0.6303 0.9181

Table 4: Accuracy metrics in the MIMIC-III top-50 experiment.

small BERT checkpoint with only two transformer
blocks we had to reduce batch size to 2 in order
to train the models. Using a larger BERT check-
point for long sequences requires more memory
and multiple GPUs, which increases the cost of
compute.
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Abstract

Pre-trained language models (LMs) have been
deployed as the state-of-the-art natural lan-
guage processing (NLP) approaches for multi-
ple clinical applications. Model generalisabil-
ity is important in clinical domain due to the
low available resources. In this study, we eval-
uated transfer learning techniques for an im-
portant clinical application: detecting suicide
attempt (SA) and suicide ideation (SI) in elec-
tronic health records (EHRs). Using the an-
notation guideline provided by the authors of
ScAN (Rawat et al., 2022), we annotated two
EHR datasets from different hospitals. We then
fine-tuned ScANER (Rawat et al., 2022), a pub-
licly available SA and SI detection model, to
evaluate five different parameter efficient trans-
fer learning techniques, such as adapter-based
learning and soft-prompt tuning, on the two
datasets. Without any fine-tuning, ScANER
achieve macro F1-scores of 0.85 and 0.87 for
SA and SI evidence detection across the two
datasets. We observed that by fine-tuning less
than ∼ 2% of ScANER’s parameters, we were
able to further improve the macro F1-score
for SA-SI evidence detection by 3% and 5%
for the two EHR datasets. Our results show
that parameter-efficient transfer learning meth-
ods can help improve the performance of pub-
licly available clinical models on new hospital
datasets with few annotations.

1 Introduction

In the past decade, 90% of the US hospitals have
adopted a certified electronic health record (EHR)
system (IT, 2022). This has led to an enormous
availability of EHRs with rich information about
patients’ health (Henry et al., 2016). With the ad-
vancement of natural language processing (NLP),
there has been a significant improvement in the
development of clinical models and systems to ex-
tract clinically relevant information from the EHRs
for further downstream tasks (Uzuner et al., 2011;
Rawat et al., 2022). Recent years have seen clinical

datasets being publicly released for different NLP
tasks such as named entity recognition, relation ex-
traction, text de-identification and disease classifi-
cation (Pampari et al., 2018; Sun et al., 2013; Henry
et al., 2020). Medical Information Mart for Inten-
sive Care - III (MIMIC) (Johnson et al., 2016) has
enabled a large and continually growing set of de-
identified EHR notes from an intensive care unit for
developing other publicly available datasets such as
emrQA (Pampari et al., 2018), ScAN (Rawat et al.,
2022) and adverse drug reaction (ADR) extraction
(Henry et al., 2020).

This increase in availability of the clinically an-
notated datasets has led to the improvement in per-
formance of different NLP models. While this
improvement is great, a key question is whether
these improvements generalize to new datasets of
the same task or not. This question is quite diffi-
cult to answer because it requires annotating multi-
ple datasets or new datasets with the same guide-
lines when it is already difficult to annotate a single
dataset (Laparra et al., 2021; Futoma et al., 2020).
In this study, we evaluate different parameter ef-
ficient transfer learning techniques on the task of
an important clinical application, namely suicide
attempt (SA) and suicide ideation (SI) detection
from EHRs.

Recently, a SA-SI detection dataset (ScAN)
(Rawat et al., 2022) was publicly released in an
effort to extract suicidal information from patients’
EHRs. ScAN was released along with the annota-
tion guidelines used by the experts and the base-
line model to detect the suicidal evidences from
EHR notes (ScANER). We followed the annotation
guideline to annotate two new datasets: EHR notes
from School of Medicine at University of Pitts-
burgh (hereby referred as ScAN_UP) and EHR
notes from the US Veterans Health Administration
(ScAN_VA). We used ScAN and ScANER as our
base dataset and model for creating the two new
datasets and evaluating different transfer learning

108



techniques. In order to evaluate the transfer learn-
ing performance of ScANER, we kept the size of
ScAN_UP and ScAN_VA relatively smaller than
ScAN for further fine-tuning. These fine-tuned
models could eventually help clinical professionals
in making patient-aware clinical judgements for
further treatments.

Pre-trained language models have significantly
grown in size since the inception of BERT (Devlin
et al., 2018) model. BERT was introduced with
110 million parameters but recent LMs such as gen-
erative pre-trained transformer (GPT-3) (Brown
et al., 2020) and Open Pretrained Transformer
(OPT) (Zhang et al., 2022) have ∼ 175 billion
parameters. Given their unprecedented perfor-
mance gains over different downstream tasks, the
researchers in the clinical community have also
adopted these models. But all hospitals or medical
organizations do not have the resources to adapt
these billion parameter models in their ecosys-
tem. Hence it is important to evaluate parameter-
efficient transfer learning techniques that keep most
of the model parameters frozen during fine-tuning
on a newer dataset for the same task. We de-
cided to try five different techniques: fine-tuning
the classification layer, BitFit (Zaken et al., 2021),
adding adapter modules (Houlsby et al., 2019), soft-
prompt fine-tuning (Lester et al., 2021) and tuning
the last four layers (Lee et al., 2019). Most of these
techniques require fine-tuning of less than 2% of
ScANER’s parameters except tuning the last four
layers which requires tuning of ∼ 23% parameters.

In this study, we found that ScANER achieves
> 85% macro F1-score for SA-SI evidence detec-
tion on two new datasets without any fine-tuning.
We were able to further improve the SA-SI ev-
idence detection by 3% for ScAN_UP and 5%
for ScAN_VA by fine-tuning less than ∼ 2%
of ScANER’s parameters. Both ScAN_UP and
ScAN_VA contain less than 8% annotations when
compared to the original ScAN dataset. This shows
that parameter-efficient transfer learning methods
can help in improving the performance of publicly
available clinical models on new hospital datasets
with few annotations.

2 Dataset

In order to evaluate different transfer learning tech-
niques, we focused heavily on choosing a task that
has a publicly available dataset along with the an-
notation guidelines and the baseline model. The

annotation guidelines are very important because
they would help us in keeping the annotation de-
cisions across different datasets uniform. Hence,
we chose the task of detecting suicide attempt and
ideations events in EHRs because of the availability
of ScAN dataset (Rawat et al., 2022). The anno-
tations guidelines for creating ScAN are publicly
available along with their proposed baseline model
(ScANER).

2.1 ScAN: Suicide Attempt and Ideation
Events Dataset

ScAN (Rawat et al., 2022) is a publicly available
SA and SI events dataset which is a subset of the
MIMIC-III (Johnson et al., 2016) dataset. The
EHRs were filtered for the hospital stays that con-
sisted of diagnostic codes associated with suicide
and overdose. These EHRs were annotated at
sentence-level for SA and SI events. Each hospital-
stay consisting of multiple EHR notes, such as
nursing note, physician note, and discharge sum-
mary, was also annotated for SA and SI. ScAN
consists of 12, 759 EHR notes with 19, 960 unique
evidence annotations for suicidal behavior. The
publicly available annotation guidelines of ScAN
allows the creation of new datasets for the same
task with uniform annotations.

We decided to annotate two parallel datasets
using the EHR notes of patients at School of
Medicine, University of Pittsburgh and EHR notes
of Veterans at Veteran Health Administration. For
both datasets, we filtered the notes using the
phrases related to suicidal behavior extracted from
the ScAN dataset, such as overdose, suicide at-
tempt, and killing myself. We were not able to
map different EHRs from the same hospital-stay.
Hence, we decided to focus only on extracting SA-
SI evidence paragraphs from the EHRs using the
evidence retriever module of ScANER. The evi-
dence retriever module consists of a pre-trained
LM (medRoBERTa) in a multi-task setting to ex-
tract all the evidence paragraphs from the EHR
notes of the patients.

2.2 School of Medicine, University of
Pittsburgh

There were 99, 736 EHR notes available from the
School of Medicine, University of Pittsburgh. Af-
ter filtering notes with the help of the selected key-
words for suicidal behavior we were able to find
220 unique EHR notes with a mention of SA or SI.
The dataset was annotated by two expert annotators
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ScAN_UP ScAN_VA
(220 EHRs) (880 EHRs)

Evidence Yes No Yes No

Train 302 517 1171 2171
Validation 72 108 233 467
Test 258 491 968 1927

SA Positive Neg_Unsure Neutral-SA Positive Neg_Unsure Neutral-SA

Train 199 35 585 419 35 2888
Validation 47 11 125 77 8 615
Test 149 42 558 340 44 2511

SI Positive Negative Neutral-SI Positive Negative Neutral-SI

Train 80 34 702 566 440 2316
Validation 13 15 151 98 91 506
Test 60 42 638 440 364 2066

Table 1: The distribution of evidences paragraphs in ScAN_UP and ScAN_VA for train, validation and test sets.
A paragraph is considered an evidence, labeled as Yes, if it has at least one sentence annotated as SA or SI. A No
evidence paragraph is Neutral-SA and Neutral-SI.

under the supervision of a senior physician. Follow-
ing the annotation guidelines provided via ScAN
(Rawat et al., 2022), we created four categories
for SA: positive, negative, unsure and neutral-SA.
A paragraph is marked positive for SA if it men-
tions a positive suicide attempt, such as ‘tried to
hang myself’. A negative SA annotation denotes an
accidental self-inflicted harm which could be mis-
interpreted as a suicide attempt such as a clinically
diagnosed ‘accidental overdose’. An annotation
is marked as unsure for SA if it is not clear from
the text whether the suicide attempt is positive or
negative. Any paragraph with none of the SA an-
notation would be considered as neutral-SA. For
SI, we have three categories: positive, negative and
neutral-SI. As per ScAN (Rawat et al., 2022), we
also merged our two labels negative and unsure
for suicide attempt to create one label: neg_unsure.
Similar to the original dataset, ScAN_UP is also
highly imbalanced consisting of only few instances
of neg_unsure SA labeled paragraphs.

This resulted in 853 unique annotations at sen-
tence level where 613 were for SA and 240 for
SI. Similar to ScAN (Rawat et al., 2022), we also
created paragraphs from the EHR notes using an
overlapping window of 5 sentences. We divided
the EHRs into train, validation and test set in the
ratio of 50 : 10 : 40. This resulted in total 632
evidence paragraphs, where an evidence paragraph
is any paragraph which contains at least one anno-
tation related to SA or SI. The annotators achieved
an agreement of 97.76% at paragraph-level and
100% on document-level. The distribution of the

paragraphs for SA and SI is provided in Table 1.

2.3 Veterans Healthcare Administration
(VHA)

In the VHA system, we found hundreds of thou-
sands EHR notes with keywords related to suicidal
behavior. We sampled 883 notes from all the avail-
able notes to keep the size of VHA dataset roughly
4 times bigger than ScAN_UP. The dataset was
again annotated by two annotators under the guid-
ance of a senior physician. The annotators achieved
an agreement of 93.97% at paragraph-level and
100% agreement on document-level. There were
total of 1371 unique annotations for suicide attempt
and 2270 for suicide ideation. As a preventive
measure by VHA, Veterans with any form of sui-
cidal behavior are regularly screened for suicidal
ideation resulting in an inflated number of negative
SI annotations in ScAN_VA dataset. Similar to
ScAN_UP, we created paragraphs from the EHR
notes using an overlapping window of 5 sentences.
We divided the EHRs into train, validation and test
set in the ratio of 50 : 10 : 40. This resulted in
a total of 2372 evidence paragraphs. The distribu-
tion of the paragraphs for SA and SI across train,
validation and test set is provided in Table 1.

These two datasets are quite different from each
other as the EHR notes used for ScAN_UP are writ-
ten for civilians whereas the notes for ScAN_VA
are written for Veterans and contain medical lin-
guistics specific to veteran healthcare administra-
tion. As mentioned earlier, the negative SI anno-
tations are frequently observed in ScAN_VA as
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compared to ScAN_UP. Thus the label distribution
is also quite different amongst the two datasets.
These two datasets would provide a good challenge
to ScANER and it’s further fine-tuned versions us-
ing different transfer learning techniques.

3 Methodology

ScANER (Rawat et al., 2022) consists of two sub-
modules: (a) an evidence retriever module that
extracts the evidence paragraphs related to SA and
SI events and (b) a predictor module that predicts
SA or SI label for a patient’s hospital stay using all
the EHR notes from the hospital admission. For
our two datasets, ScAN_UP and ScAN_VA, we
have sentence-level annotations in an EHR but do
not have all the EHRs for patients’ single admis-
sion. Hence, we only focus on the first module
of ScANER which can be used to extract all the
evidence paragraphs from an EHR. The evidence
retriever module consists of a medRoBERTa model
trained in a multi-task learning setting to identify
the evidence paragraphs along with classifying the
SA and SI event label for the paragraphs. We used
the ScANER model trained on the original ScAN
(Rawat et al., 2022) dataset for our experiments.
We used five different transfer learning techniques
with varying number of trainable parameters on
ScAN_UP and ScAN_VA.

3.1 Fine-tuning the classifier layers

ScANER consists of three classification layers for
predicting the evidence class label, SA label and
SI label. We decided to only fine-tune these three
final classification layers on our datasets while
freezing the rest of the encoder parameters. This
is the most parameter efficient transfer learning
technique as it uses only ∼ 8 thousand parameters,
out of the available 125 million, refer Table 2. This
technique takes the least amount of resources for
fine-tuning but provides very low capacity for the
model to learn new information or patterns.

3.2 Soft prompt tuning

Soft prompt tuning (Lester et al., 2021) is a
powerful technique for adapting pre-trained
models for new downstream tasks. For prompt
tuning, all the encoder parameters are frozen
during fine-tuning except a few additional k
tunable tokens for each downstream task. These
tunable soft-prompts help the model in adapting
to new tasks using the previously trained encoder

parameters. The length of the soft-prompts (k) can
be tuned as a hyper-parameter. These soft-prompts
can be initialized randomly or using an existing
embedding from the encoder’s vocabulary (Lester
et al., 2021) related to the downstream task at
hand. We experimented with different length of
soft prompts ranging from 10 to 40 and initializing
the soft prompts with the embedding of the word
‘the’ and ‘suicide’. This transfer learning technique
uses only 0.02% of ScANER’s parameters.

3.3 BitFit

BitFit (Zaken et al., 2021) is a sparse fine-tuning
technique that modifies only the bias terms of the
trained model. Zaken et al. (2021) showed that
on small to medium sized training datasets, BitFit
is competitive with fine-tuning the entire training
model. BitFit is also a light fine-tuning method that
only uses 0.2% of ScANER’s parameters.

3.4 Adapters

Adapter modules (Houlsby et al., 2019) were pro-
posed as another efficient transfer learning tech-
nique which requires adding a few trainable param-
eters for the downstream task while freezing all
the original encoder parameters. Adapters require
more additional tunable parameters as compared
to soft prompt tuning because adapter modules are
added in multiple transformer layers of the encoder.
Though in comparison to training all the model
parameters, it only adds ∼ 2% parameters to the
ScANER model.

3.5 Fine-tuning few last layers

Lee et al. (2019) studied the effect of freezing mul-
tiple early encoder layers and found that only a
fourth of the final layers need to be fine-tuned to
achieve 90% of the performance achieved via full
model training. We experimented with fine-tuning
last two to five layers for our new datasets. As com-
pared to the earlier transfer learning methods, this
technique requires the most number of parameters
even with fine-tuning of only last 2 layers (∼ 11%).

Evaluation Metrics As our main task is to clas-
sify a paragraph as an evidence or not, we looked
at the accuracy, macro F1-score and weighted F1-
score on the test sets of ScAN_UP and ScAN_VA.
Since, the models are being fine-tuned in the multi-
task setting we would also look at the auxiliary
tasks of predicting the SA and SI labels for the para-
graphs. Accuracy and weighted F1-score provides
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ScAN_UP Evidence SA SI

Transfer Learning # Tunable Params ↑ Acc F1 Wt-F1 Acc F1 Wt-F1 Acc F1 Wt-F1

ScANER - 0.88 0.87 0.88 0.81 0.57 0.82 0.89 0.58 0.88

Classifier 8 Thousand 0.88 0.87 0.88 0.85 0.54 0.82 0.89 0.56 0.88

Soft Prompt-tuning 23 Thousand 0.91 0.90 0.91 0.86 0.56 0.84 0.88 0.49 0.86

BitFit 130 Thousand 0.88 0.87 0.88 0.85 0.54 0.83 0.89 0.54 0.88

Adapter 2 Million 0.91 0.90 0.91 0.87 0.56 0.84 0.89 0.50 0.87

Last 4 layers 28 Million 0.89 0.88 0.89 0.85 0.54 0.83 0.89 0.52 0.87

All layers 125 Million 0.91 0.90 0.91 0.87 0.56 0.84 0.89 0.52 0.87

ScAN_VA Evidence SA SI

Transfer Learning # Tunable Params ↑ Acc F1 Wt-F1 Acc F1 Wt-F1 Acc F1 Wt-F1

ScANER - 0.86 0.85 0.86 0.81 0.49 0.84 0.79 0.63 0.79

Classifier 8 Thousand 0.90 0.88 0.89 0.90 0.50 0.89 0.81 0.63 0.81

Prompt-tuning 23 Thousand 0.90 0.89 0.90 0.91 0.52 0.89 0.81 0.63 0.80

BitFit 130 Thousand 0.91 0.89 0.90 0.91 0.52 0.90 0.82 0.64 0.81

Adapter 2 Million 0.91 0.90 0.91 0.92 0.53 0.91 0.82 0.65 0.82

Last 4 layers 28 Million 0.90 0.89 0.90 0.90 0.51 0.89 0.82 0.64 0.81

All layers 125 Million 0.92 0.91 0.92 0.93 0.58 0.92 0.84 0.70 0.84

Acc: Accuracy, F1: Macro F1-score, Wt-F1: Weighted F1-score

Table 2: Evidence, SA and SI classification performance of all the transfer learning techniques on ScAN_UP and
ScAN_VA datasets. The transfer learning techniques are Classifier layers tuning, Soft prompt-tuning (Lester et al.,
2021), BitFit (Zaken et al., 2021), Adapter modules fine-tuning (Houlsby et al., 2019) and fine-tuning last 4 layers
(Lee et al., 2019). ScANER (Rawat et al., 2022) refers to the original model without any fine-tuning on ScAN_UP
and ScAN_UP and all layers refers to the fine-tuning of all the parameters of ScANER model.

overall model performance whereas the macro F1-
scores provides class level model performance and
is quite important in our cases as our dataset is
highly imbalanced (refer Table1). All the final
hyper-parameter settings for the transfer learning
techniques are provided in Appendix A.

4 Results and Discussion

For evidence retrieval, even without fine-tuning
the original ScANER model is able to achieve a
macro-F1 score of 0.87 and 0.85 for ScAN_UP
and ScAN_VA datasets respectively, refer Table 2.
When all the parameters of ScANER are fine-tuned,
the macro F1-score of the evidence retriever mod-
ule improved by 3% and 6% for evidence retrieval
for ScAN_UP and ScAN_VA. For ScAN_VA, the
macro F1-score for SA and SI also improved by 9%
and 7% respectively. But for ScAN_UP, the perfor-
mance for both SA and SI classification dropped
when all the layers of the encoder are fine-tuned.
This is mainly because of the extreme imbalance

for both SA and SI in the ScAN_UP dataset. The
accuracy and weighted F1-score performance for
SA classification improved by 6% and 2% respec-
tively because the fine-tuned ScANER model per-
formed well for the positive and neutral-SA class
but performed poorly for the under-represented
neg_unsure class. We tried multiple techniques
to counter the imbalance, such as up-sampling and
weighted log-loss learning as described in Rawat
et al. (2022), but none of the techniques helped in
improving the performance of fully-trained model
on ScAN_UP. One thing to notice is that the per-
formance for the main task of evidence retrieval
improved for both datasets with transfer learning.
We also observed that the performance improve-
ment is not strictly correlated with the number of
tunable parameters available for transfer learning.

ScAN_UP The adapter module and soft-prompt
fine-tuning performed the best for the evidence re-
trieval task. Both techniques were able to achieve
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the same performance as the fully-trained evidence
retrieval module while using less than 2% of the
module parameters. They also achieved similar
SA prediction performance in terms of F1-score
but under-performed for the SI prediction task.
Amongst the two, adapter modules based fine-
tuning performed better for SI prediction by 1%.
These results are encouraging as they suggest that
with the help of only 132 annotated EHRs and fine-
tuning of less than 2% of the parameters, we can
significantly improve the performance of the evi-
dence retrieval module. BitFit performed almost
similar to only classifier fine-tuning even when it
has 16 times more tunable parameters. For last few
layers technique, we found that tuning last 4 layers
yield the best results. It was also able to improve
over the baseline ScANER performance but under-
performed as compared to adapter and soft-prompt
tuning.

For adapter modules, we found that 64 dimen-
sional adapters work the best for our dataset. For
soft-prompt fine-tuning, we tried initializing the
soft prompt randomly, using the existing vocabu-
lary embedding of the token ‘the’, and the vocab-
ulary embedding of the token ‘suicide’. For our
dataset, the model with soft-prompt initialized us-
ing the embedding of the token ‘suicide’ performed
the best. It outperformed the model with the soft-
prompts using the emebeddings of the token ‘the’
by ∼ 1%. The results also show that even without
any fine-tuning ScANER can retrieve evidences
with a strong performance of macro F1 of 0.87.

ScAN_VA This dataset is almost twice the size
of ScAN_UP which allows the ScANER model to
improve even more. This is evident as the fully-
trained evidence retrieval module outperformed
the original ScANER module by 6%, 9% and 7%
for evidence, SA and SI classification respectively.
The adapter based model is able to achieve the best
macro F1-score of 0.90 amongst all the transfer
learning fine-tuning techniques. It outperformed
all the other models for SA and SI classification as
well while improving the performance of the origi-
nal ScANER model by 5% for evidence retrieval,
4% for SA classification and 2% for SI classifica-
tion. Even the classifier only fine-tuning technique
is able to improve the performance of ScANER by
3% for evidence detection. The rest of the fine-
tuning techniques improved the macro F1-score for
evidence retrieval by atleast 4%.

Recommendations We observed that for both
datasets, adapter based fine-tuning performed the
best for evidence retrieval and SA classification.
It also outperformed the other transfer learning
techniques for SI classification on ScAN_VA but
under-performed on ScAN_UP. As a result, for
improving any publicly available clinical model
using transfer learning we would recommend the
use of adapter modules. If the availability of com-
putational resources is still a problem, we would
recommend using soft-prompt based fine-tuning as
it uses ∼ 86 times lesser parameters as compared
to adapter modules while consistently performing
very well across both datasets. BitFit performed
well on ScAN_VA dataset but under-performed
when compared with most of the fine-tuning tech-
niques on ScAN_UP dataset.

Overall, ScANER generalizes well on new
datasets and achieved a macro F1-score of 0.87
and 0.85 on two new datasets without any further
fine-tuning. With the help of parameter efficient
transfer learning techniques, such as adapter and
soft-prompt fine-tuning, we can significantly im-
prove the performance of ScANER on new datasets.
We observed that the SA-SI label distribution and
the size of the dataset can also significantly affect
the SA-SI classification performance of the fine-
tuned models.

5 Related Works

Laparra et al. (2021) performed an extensive re-
view to study the recent work on building more
adaptable and generalizable NLP models for clin-
ical domain using adaptive and transfer learning
techniques. They reviewed the most recent rele-
vant work to characterize different type of methods
and tasks that are being used and studied in the
clinical domain. They showed that most of the
work is using pre-trained language models such
as BioBERT (Lee et al., 2020) and clinicalBERT
(Alsentzer et al., 2019). Laparra et al. (2021) also
discussed work that uses multi-task learning, se-
quential transfer learning and cross-lingual adapta-
tion but did not review any recently developed pa-
rameter efficient transfer learning techniques such
as adapter modules (Houlsby et al., 2019), soft-
prompt tuning (Lester et al., 2021) and BitFit (Za-
ken et al., 2021). They also mentioned that the
high costs of creating and distributing new clinical
datasets favor creating a new dataset for a new task
rather than creating another dataset for an existing
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task. In order to mitigate such imbalance, we study
the effectiveness of transfer learning techniques by
creating two new datasets for an existing task with
a publicly available dataset (ScAN) and evaluating
newly introduced transfer learning techniques.

Narayanan et al. (2020) studied different transfer
learning techniques for adverse drug event (ADE)
and medication entity extraction. They mainly fo-
cused on evaluating different biomedical contex-
tual embeddings and using these pretrained em-
beddings for improved performance on their tasks.
Similarly, Sun and Yang (2019) also studied the
effectiveness of multilingual BERT and BioBERT
for a named entity recognition (NER) task of ex-
tracting chemical and protein entities from Spanish
biomedical texts. Zhou et al. (2019) adapted a CRF
trained on general medical domain for NER on
nursing handover data to achieve improved perfor-
mance. A participant at MediQA 2019 challenge
(Abacha et al., 2019) combined multiple classifica-
tion tasks such as sentence classification, pairwise
text classification and relevance ranking for im-
proved performance in the shared task of the chal-
lenge. All the studies, either used a pre-trained LM
or multi-task learning to improve the performance
of their model on a task. Whereas in our study,
we use an openly available trained LM-based clas-
sification model and further fine-tune it using re-
cently developed parameter efficient transfer learn-
ing techniques (Houlsby et al., 2019; Lee et al.,
2019; Lester et al., 2021; Zaken et al., 2021) to
improve it’s performance on two new datasets of
the same downstream tasks.

6 Conclusion

In this paper, we evaluated different parameter
efficient transfer learning techniques on the task
of suicide attempt (SA) and suicide ideation (SI)
events detection in the EHR notes. According to the
publicly available annotation guidelines of ScAN
(Rawat et al., 2022) dataset, we created two new
datasets: ScAN_UP and ScAN_VA. We tested the
baseline model ScANER on these two datasets and
achieved macro F1-scores of 0.87 and 0.85 for SA-
SI evidence detection. We were able to further im-
prove the performance of ScANER by at least 3%
after fine-tuning only 2% of ScANER’s parameters.
We show that parameter efficient transfer learning
can help improve the performance of publicly avail-
able clinical models on new hospital datasets with
few annotations. We would recommend the use

of adapter modules for further transfer learning
of clinical models as they consistently performed
well for SA-SI detection while tuning only 2% of
the parameters. If the computational resources are
still a constraint, we would recommend using soft-
prompt tuning as they only tune 0.02% of the pa-
rameters while achieving a performance quite close
to adapter module tuning.
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A Hyper-parameters for transfer
learning techniques

Transfer Learning # Prompts LR Epochs Size

Classifier - 1e-3 5 -
Soft prompts 20 1e-3 5 -
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Last 4 layers - 1e-4 5 -
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Abstract

Training of physicians requires significant prac-
tice writing patient notes that document the
patient’s medical and health information and
physician diagnostic reasoning. Assessment
and feedback of the patient note requires expe-
rienced faculty, consumes significant amounts
of time and delays feedback to learners. Grad-
ing patient notes is thus a tedious and ex-
pensive process for humans that could be im-
proved with the addition of natural language
processing. However, the large manual effort
required to create labeled datasets increases the
challenge, particularly when test cases change.
Therefore, traditional supervised NLP methods
relying on labelled datasets are impractical in
such a low-resource scenario. In our work, we
proposed an unsupervised framework as a sim-
ple baseline and a weakly supervised method
utilizing transfer learning for automatic assess-
ment of patient notes under a low-resource
scenario. Experiments on our self-collected
datasets show that our weakly-supervised meth-
ods could provide reliable assessment for pa-
tient notes with accuracy of 0.92.

1 Introduction

Sponsored by the Federation of State Medical
Boards (FSMB) and the National Board of Medi-
cal Examiners (NBME), the United States Medical
Licensing Examination (USMLE) is a "three-step
examination for medical licensure in the U.S. that
assesses a physician’s ability to apply knowledge,
concepts, and principles, and to demonstrate fun-
damental patient-centered skills, that are important
in health and disease and that constitute the ba-
sis of safe and effective patient care."1 Prior to
2020, the USMLE Step 2 exam included a sec-
ond component, Step 2 Clinical Skills, that used a
simulated clinical examination with standardized
patients to assess various clinical competencies,
including the ability to document relevant patient

1https://www.usmle.org/

history and differential diagnoses in a written pa-
tient note. After the discontinuation of the USMLE
Step 2 Clinical Skills examination, medical schools
may have more motivation to include a clinical
skills examination that requires patient note writ-
ing after observing standardized patients (Tsichlis
et al., 2021). Patient notes, as one type of health
documents, document clinical findings and reflect
examinees’ ability to gather information and com-
municate their findings to patients and colleagues.
Therefore, in Step 2 Clinical Skills, examinees’
written patient notes were assessed manually by
experienced physician raters. More than 30,000
examinees took this examination each year, result-
ing in more than 330,000 patient notes that were
graded by more than 100 raters (Sarker et al., 2019).
The case-specific nature of the patient notes and
large volume of exams make the human scoring
process time-consuming and tedious. Additionally,
it is well-documented that human judgement in gen-
eral is prone to bias and errors (Engelhard Jr et al.,
2018). Training of qualified physician graders also
requires assessment and feedback from medical
experts, costing significant amounts of time. The
manual effort required in grading medical exam-
inations makes this a challenging problem to be
addressed with the addition of NLP techniques.

NLP has been applied to automatically process
health documents, including assessing practical
clinical content from patient notes (Latifi et al.,
2016; Sarker et al., 2019). Specifically, patient
notes after simulated patient encounters are re-
quired to contain specific information, which is
specified by items in a checklist created through
faculty consensus. Figure 1 shows an example of
patient note and checklist items. The task of au-
tomatic patient note assessment aims to judge if
the given checklist items are included in the patient
notes by exactly same expressions or synonymous
expressions. Equivalents may be true synonyms,
acceptable abbreviations, or answer alternatives
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28 year old male with no PMHx who 
presents with HA for past 3 months. 
Initially, he had headaches once every 
couple of weeks, but now they occur 1-2 
times weekly. He describes pain in his 
left forehead and behind his L eye which 
radiates to the back of his neck. The 
headaches last 6-8 hours and interfere 
with his focus and concentration. They 
start 30 min after he wakes up in the 
morning. He has some associated 
nausea but is able to keep food down 
without vomiting. He has no auditory or 
visual aura, and has no tingling in his 
extremities. Taking tylenol extra strength 
helps, as well as coffee and naps. He 
denies any tearing of his eye, denies CP, 
SOB. He attributes the HA partly to his 
stressful job as an accountant. He 
normally has a chronic runny nose 
during this time of year from allergies, 
which is relieved by flonase normally, 
but he has not been using it lately. He 
denies cough, sore throat, nausea/
vomiting/abd pain.

History: 
past medical history of allergies

pain discribed as pounding

unilateral headache 

severity 8/10

nausea 

photophobia

aggravated by stress

relieved by coffee 

resolves after work 

no other neurologic symptoms

Physical Examination: 
no sinus tenderness to palpation

Diagnose: 
migraine headache

Tension Headache 

seasonal allergies

Cluster Headache

Depression

Figure 1: An example of patient note (right) and check-
list (left). The challenges to NLP include the use of syn-
onyms of checklist items, non-standard abbreviations,
different expressions of negation and non-continuous
occurrence of checklist items in patient notes.

deemed acceptable. Notes are further complicated
by indications of body side (right or left), frequent
negations, strings of positive or negative findings,
and nonstandard abbreviations used by learners.
Learners may use medical terms to describe find-
ings (cholelithiasis) or lay terms (gall stones) and
are typically judged the same if correct. Ideally,
the NLP model would directly identify the phrases
in patient notes correlated with the given checklist
items for the most granular grading analysis and
feedback to learners in formative settings. There-
fore, we study automatic patient note assessment as
two tasks: (i) directly judging if the given checklist
items are entailed in the patient notes (a natural
language inference task), and (ii) identifying the
phrases in patient notes correlated with the given
checklist items (a named entity recognition task).

Despite its importance, the task of automatic
grading of patient notes remains under-explored
with only a few works that have studied it (Yim
et al., 2019; Sarker et al., 2019). Traditional super-
vised models have been utilized for this task (Latifi
et al., 2016; Yim et al., 2019), but are limited in
scope because they rely on large scale annotated
datasets. The significant manual effort associated
with labeled dataset creation makes these methods
difficult and impractical. Besides, the traditional
supervised models trained on data with prior clin-
ical cases will be less effective for new clinical
cases. Another challenge lies in the inconsistency
between the checklist item and the corresponding
phrase(s) in the patient note owing to their being

non-exact matches occurring as, for instance, syn-
onyms or abbreviations.

To overcome the limitations of previous works
and the challenges of traditional supervised mod-
els for a low-resource scenario, we propose our
method without strong supervision. First we pro-
pose a simple baseline unsupervised method with a
pipeline framework which could be used in a zero-
resource scenario. Then we propose our weakly su-
pervised method utilizing multi-level transfer learn-
ing, including data-level and task-level. Data-level
transfer learning refers to the ability of transferring
knowledge learned from data in one domain to an-
other domain. Task-level transfer learning refers to
the ability of transferring knowledge learned from
one task to another task. A BERT model (Devlin
et al., 2019) pretrained on biomedical texts and a
publicly available dataset2 are used for data-level
transfer learning. A key assumption is that judging
if the checklist item is entailed in the patient note
and identifying the corresponding phrases in the pa-
tient note are mutually related and thus we treat the
automatic grading as a multi-task learning problem.
With experiments on our self-collected datasets, we
show that our weakly supervised method achieves
a state-of-the-art performance.

Overall, the main contributions are as follows:

• We study an under-explored task of automatic
patient note assessment and apply novel NLP
methods to solve this task.

• We propose propose a weakly supervised
method utilizing multi-level transfer learning
at both data- and task-level. Furthermore, a
multi-task learning mechanism is proposed
for task-level transfer.

• Experimental results on case-specific datasets
show that our weakly supervised method
achieves SOTA performance. A unique contri-
bution of our work not studied before and crit-
ically important for a low-resource scenario
is understanding the effect of out-of-domain
data. Our analyses show that our method
has the ability of data-level transfer learning
and task-level transfer learning even using in-
stances that are not case-specific.

2The USMLE® Step 2 Clinical Skills Patient Note was
made available for research purposes by NBME and can be
requested at https://www.nbme.org/services/data-sharing. For
more details about the corpus, see (Yaneva et al., 2022).
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2 Related Work

Being a research task that is currently under-
explored, there are very few works studying au-
tomatic patient note assessment. The most closely
related task that past works focus on is automatic
short answer grading (ASAG) for scientific top-
ics (Liu et al., 2016; Hermet et al.; Mitchell et al.,
2002; Sukkarieh and Pulman, 2005; Sukkarieh and
Bolge, 2010; Dzikovska et al., 2012; D’Mello et al.,
2008; Zhu et al., 2022; Haller et al., 2022), which
is different from complex domain-specific answer
assessment (e.g. medical domain in our work).
ASAG aims to grade free text that answers to a
prompt categorically or numerically. Produced by
ETS, C-rater (Leacock and Chodorow, 2003) is one
example system for ASAG focusing on grading
school-level examinations based on the presence or
absence of required answers. Text goes through a
sequence of NLP modules for spelling correction,
syntactic analysis, pronoun resolution, morpholog-
ical analysis and synonym detection. Generated
canonical representations are then fed into a maxi-
mum entropy model for classification. (Nehm et al.,
2012) also focused on a similar task of awarding
content points for specific items for college biol-
ogy essays. Two text analytic platforms are uti-
lized: SPSS Text Analysis 3.0 (SPSSTA) relying
on hand-crafted vocabulary and rules and Sum-
marization Integrated Development Environment
(SIDE) using a classic bag-of-words representation
and support vector machine. With the development
of transformers, different transformers and large
pre-trained models including BERT and RoBERTa
have also been applied (Zhu et al., 2022).

While there are some works on ASAG for sci-
entific topics, only three works studied automatic
patient note assessment (Latifi et al., 2016; Sarker
et al., 2019; Yim et al., 2019). Inspired by the
works on ASAG, the first two (Latifi et al., 2016;
Yim et al., 2019) studied two systems: a feature
based system including an n-gram feature extrac-
tion followed by a SVM and a simple BERT based
neural network. The third (Sarker et al., 2019)
followed previous works on ASAG and leveraged
the pipeline framework. Their system employs
a sequence of modules including text normaliza-
tion, lexicon-based matching, fuzzy matching and
supervised concept detection all utilizing signifi-
cant manual annotation and brute force exhaustive
searches. Inspired by these works, we also pro-
posed a pipeline model without supervision, which

Datasets Headache Abdominal Pain
Total num. of patient notes 510 570

Average Num. of Tokens in patient notes 132.35 97.05
Label Distribution 258/252 337/233

IAA 0.916 0.938
History Checklist 11 8
PEXAM Checklist 1 6

DDX Checklist 5 5
Total 17 19

Table 1: Statistics of our datasets. History, PEXAM
and DDX represents the number of checklist items on
History, Physical Examination and Diagnose. Total
represents the number of all checklist items. Label
Distribution is represented as the number of label 1
and the number of label 0. IAA refers to inter-annotator
agreement evaluated by Cohen’s kappa coefficient.

could be used under zero-resource scenario. A key
departure from the prior pipeline efforts is our non-
reliance on task-specific manual annotation.

However, the methods proposed in previous
works are insufficient for the task of automatic pa-
tient note assessment. N-gram features and SVMs
are limited for extracting linguistic and semantic
features, especially for complex domain-specific
text. BERT based model requires a huge amount
of annotated data for training, which is usually
unavailable for our task, whereas, pipeline mod-
els have the obvious problem of error propagation.
Therefore, we also proposed an end-to-end model,
which utilizes multi-level transfer learning to alle-
viate the dependence on annotated data.

3 Datasets

We used two datasets in our study. The first is a self-
collected dataset on two clinical cases— headache
and abdominal pain—collectively referred to as
case-specific datasets. Data from the same clini-
cal case is referred to as in-domain data and data
from a different clinical case is referred to as out-
of-domain data. Collected data pertains to patient
notes written by examinees, where each note cov-
ers three sections: (i) history, (ii) physical exam
and (iii) differential diagnosis. Patient note in each
section should pertain to items from the same do-
main in the checklist, which includes 17 checklist
items for the headache case and 19 for the abdom-
inal pain case. The checklist item may contain
fine-grained medical concepts (e.g., ‘headache’)
and general descriptions (e.g., ‘pain started two
weeks ago’). The medical concepts included in the
checklist items for different cases may be similar
or vastly different, depending on the clinical condi-
tion being portrayed by the patient. As part of the
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grading process two expert raters, typically physi-
cian faculty members, are asked to judge if the
checklist items are stated in the patient notes. Inter-
annotator agreements on both cases are reported in
Table 1. For both cases, the inter-annotator agree-
ments are above 0.9, which shows the reliability
of our constructed dataset. Additionally, for the
purpose of our experiments the raters were asked
to identify the phrases in the patient notes that cor-
respond to the checklist items when the checklist
item was matched. The tokens in the highlighted
phrases were labeled following the BIO convention
(Ramshaw and Marcus, 1999). Due to the cost of
physician faculty rater time, we only collected data
from 30 examinees. Of these patient notes from
25 examinees were used for fine-tuning and those
from the remaining 5 were set aside for testing.

A second dataset is the USMLE® Step 2 Clini-
cal Skills Patient Note (Yaneva et al., 2022), which
contains a total of 43,985 patient note history por-
tions from 10 clinical cases, where 2,840 patient
notes (284 notes per case) were annotated with con-
cepts from the exam scoring rubrics. At the time
of the writing of this paper the dataset was used
for a Kaggle competition on automated scoring of
clinical patient notes3, and only a subset of 100
patient notes from the annotated data were made
available to the public (the remaining 184 notes
per case were used as a test set for the competi-
tion). Therefore, the study presented here has used
a subset of 100 annotated patient notes per case,
which was not large enough to be directly used
for training or fine-tuning the model but was still
considered as a diverse but related dataset. This
dataset is referred to as generic dataset in the rest
of the paper.

4 Baseline Method

In this section, we introduce our proposed unsuper-
vised method used as a baseline model for written
patient note assessment. This approach utilized
Amazon Comprehend Medical4 for the purpose of
medical entity extraction. Amazon Comprehend
Medical is an API that performs various types of
text analysis for the medical domain, and is a ser-
vice that is provided by Amazon Web Services
(AWS). We made use of the medical entity detec-
tion feature of this API, that allowed extraction

3https://www.kaggle.com/c/nbme-score-clinical-patient-
notes/data

4https://aws.amazon.com/cn/comprehend/medical/

Checklist Item Patient Note

List of Medical 
Entities

List of Medical 
Entities

Entities Match 
Model 

All entities match?

Comprehend Medical

DetectEntitiesV2 format

Comprehend Medical

DetectEntitiesV2 format

Entailed Not Entailed

Yes No

Figure 2: Unsupervised Method Model

and detection of six different types of medical en-
tities: anatomy, medical conditions, medications,
protected health information, test treatment proce-
dures as well as time expressions in the medical
context (Bhatia et al., 2019).

4.1 Model Architecture
Here we describe the architecture of our unsuper-
vised model presented in Figure 2. Taking the
patient note p = {wp

1, ..., w
p
n} and checklist item

c = {wc
1, ..., w

c
m} as input, the model aims to pre-

dict if the given checklist item is included in the
given patient note.
Medical Entity Extraction. The first step con-
verts the text of the checklists items and patient
notes into the medical entities object format used
by Amazon Comprehend Medical. The purpose
is to then easily establish matching between medi-
cal entities extracted from checklist items and the
medical entities extracted from patient notes.
Medical Entity Match. In the second step, we
run a match-detection function based on each med-
ical entity extracted from the checklist item and
the medical entities extracted from the patient note.
The match-detection function first filters the list
of medical entities in the patient note by category.
Comprehend Medical has six different entity cate-
gories, hence, if we are trying to find a match for
a medical condition entity, then only medical con-
dition entities are processed as potential candidate
matches. This reduces the search space in the pa-
tient note based on medical entity categories. Once
we obtain candidate matches by filtering based
on these categories, we compare the similarity be-
tween the checklist item entity and the candidate
entity from the patient note. If there is a surface
level similarity (character-by-character equality),
then we have found a match. If not, we compute
a similarity score between the checklist item and
the patient note medical entity using BioWordVec
(Zhang et al., 2019). If the similarity score is be-
yond a certain threshold empirically chosen to be
0.8, only then we characterize the pair of entities
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as a match. A checklist item is considered entailed
by the patient note if all of the medical entities in
the checklist item have a match in the patient note.

5 Weakly Supervised Method

In this section, we provide the details of our pro-
posed weakly supervised method. In our work,
the first task of judging checklist items’ entailment
by the patient note is formulated as a natural lan-
guage inference task. The second task of identify-
ing phrases that correspond to a checklist item can
be treated as labeling the span of corresponding
phrases, which is similar to named entity recogni-
tion. Therefore, we refer to it as the NER-related
task. These two tasks are mutually beneficial in
our setting; identification of corresponding phrases
directly means the checklist item is entailed by
the patient note and the entailment of checklist
item indicates that the corresponding phrases are
in the patient note. In order to harness this mutual
benefit, we propose a multi-task transfer learning
setting with a mutual feedback mechanism. Us-
ing this method, data from different clinical cases
could help the model to learn the basic concepts
of our tasks and build appropriate representation
for underlying medical concepts. Therefore, we
also utilize data from different clinical cases for
transferring common medical and task knowledge.
Finally, we propose a multi-level transfer learning
method including task-level and data-level transfer
learning which removes the need for large-scale
annotated corpora and is thus weakly supervised.

5.1 Model Architecture

Here we describe the architecture of our model,
which is related to the task-level transfer learn-
ing. Figure 3 shows the architecture of our multi-
level transfer learning model. Taking the patient
note p = {wp

1, ..., w
p
n} and the checklist item

c = {wc
1, ..., w

c
m} as input, the model aims to pre-

dict if the given checklist item is entailed by the
given patient note and also identifies the span of the
expressions corresponding to the given checklist
item. BIO labels are used to label the span of the
target phrases. In our model, the lower encoder
layers are used for extracting the hidden represen-
tations of the input text and are shared across all
tasks and data while the top task-specific layers
with a mutual feedback mechanism are used for
different tasks. The mutual feedback mechanism is
used for sharing knowledge across different tasks

via outputs of different task-specific layers. The
architecture details are as follows:
Encoder Layers. The encoder layers are used
to extract contextual embeddings for input text.
We use BERT model as our encoder shared
across different tasks. For BERT model, [CLS]
is used at the start of the input and [SEP]
is used to separate patient note and checklist
item. Therefore, the final input to the encoder is
{[CLS], wp

1, ..., w
p
n, [SEP], wc

1, ..., w
c
m, [SEP]}.

The output contextual embeddings would be X =
{x[CLS], x

p
1, ..., x

p
n, x[SEP], x

c
1, ..., x

c
m, x[SEP]}.

Task-Specific Layers. For task-specific layers, dif-
ferent layers take different outputs of encoder lay-
ers as input. For NLI task, the contextual embed-
ding x[CLS] is used as input because the whole
sequence information are encoded into this em-
bedding (Devlin et al., 2019). For NER task, the
contextual embeddings of each token in the patient
note {xp1, ..., xpn} are used:

[ps, pns] = NLI(x[CLS])

[piB, p
i
I , p

i
O] = NER(xpi )

where NLI(·) represents the NLI task layer and
[ps, pns] is the output distribution with ps as the
probability of checklist item is stated and pns as the
probability of checklist item is not stated. NER(·)
represents the NER task layer and [piB, p

i
I , p

i
O] is

the output distribution with piB as the probability
of token i is predicted as the beginning of the target
phrase, piI as the probability of token i is predicted
as inside the target phrase and piO as the probability
of token i is predicted as outside the target phrase.
Mutual Feedback Mechanism As stated before,
the NLI task and NER task can actually benefit
each other. Therefore, the output of one task could
be used to enhance the input of another task. Then
the enhanced inputs would be fed into two new
task-specific layers for these two tasks. For the
NLI task, the output from the previous NER task
layer is used to enhance the input as follows:

[paveB , paveI , paveO ] = [
1

n

n∑

i=1

piB,
1

n

n∑

i=1

piI ,
1

n

n∑

i=1

piO]

x̂[CLS] = cat(x[CLS], [p
ave
B , paveI , paveO ])

[p̂s, p̂ns] = NLInew(x̂[CLS])

where [p̂s, p̂ns] is the final output distribution for
the whole sequence. The average of the output
distribution over all the tokens in the patient note
is used to enhance the input. Therefore, if the
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Figure 3: Architecture of our weakly supervised method. Dashed arrows represent outputs from NLI and NER task
layers that are used to enhance the input to the new task layers. New NLI and NER task layers take outputs from
NLI and NER task layers and outputs from the BERT encoder layers as input and generate the final outputs.

target phrase corresponding to the checklist item is
identified, paveB and paveI would be non-zero, which
could be used to guide the new NLI layer. Similarly,
for the NER task, the output from previous NLI
task layer is used to enhance the input:

x̂pi = cat(xpi , [ps, pns])

[p̂iB, p̂
i
I , p̂

i
O] = NERnew(x̂

p
i )

where [p̂iB, p̂
i
I , p̂

i
O] is the final output distribution

for token i. The output distribution from previous
NLI layer is used to enhance the input. If the check-
list item is found to be stated in the patient note,
ps would be much larger than pns which could be
used as a guidance for new NER layer. Finally, the
enhanced input x̂pi is fed into the new NER layer.

5.2 Training Protocol
We use a simple joint training objective for our
model, which is the sum of the sequence classifica-
tion loss and the token classification loss, each of
which is given by the corresponding cross-entropy
loss. This training allows the task-level transfer as
shown in Section 8.2.

The model is first trained with the generic dataset
to learn the basic concept pertaining to the two
tasks and the common medical/clinical knowledge.
Then for new clinical cases with a few annotated
instances, the model is fine-tuned with the case-
specific data. Our hypothesis is that with the
knowledge of the two tasks and the common medi-
cal knowledge learned during training, the model
should be able to transfer to new clinical cases
without the need for a large scale annotated dataset.
In addition, for new clinical cases without any an-
notated data, our model can still be used because

the knowledge of the two tasks and the common
medical knowledge learned during training can be
transferred to new clinical cases. The ability of
data-level transfer is presented in Section 8.1.

6 Experiments

6.1 Baselines

Due to the fact that related prior works did not re-
lease their codes and did not provide enough details
for reproduction, we only test one baseline model
for comparison with our proposed unsupervised
and weakly supervised methods on the NLI-related
task. Besides, we also use one baseline model for
comparison on the NER-related task.

• NLI model: For the NLI-related task of judg-
ing if the given checklist item is stated in the
patient note, a simple BERT sentence pair
classification model is used as the baseline
with only the sequence classification loss as
the training objective.

• NER model: For the NER-related task of
identifying corresponding phrases in the pa-
tient note given checklist items, a simple
BERT token classification model is used as
baseline, which generates BIO labels to label
the span of the target phrases. For this NER
model, only the token classification loss is
used as the training objective.

For both the baselines, the experimental settings
and the parameters are set to be the same as those
in our weakly supervised method. In addition, the
baseline models and our weakly supervised model
are trained on the same data but with different la-
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Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

Unsupervised 0.72 0.30 0.87 0.63 0.68 0.58 0.93 0.73
NLI baseline 0.83 0.88 0.89 0.87 0.88 0.70 0.89 0.82

Weakly Supervised 0.91 0.94 0.94 0.93 0.91 0.90 0.93 0.91

Table 2: Performance of different methods on NLI-related task. Accuracy is used for evaluation. History,
PEXAM and DDX represents the accuracy averaged on History, Physical Examination and Diagnose checklist
items respectively. Total represents the accuracy averaged on all checklist items

Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

NER baseline 0.56 0.54 0.49 0.53 0.57 0.55 0.53 0.55
Weakly Supervised 0.60 0.59 0.63 0.61 0.61 0.62 0.63 0.62

Table 3: Performance of different methods on NER-related task. F1 score is used for evaluation.

bels. That is, for the NLI model, only the sequence-
level labels indicating if the given checklist item
is entailed or not are used. For the NER model,
only the token-level labels indicating if each token
belongs to the target phrase are used for training.

6.2 Evaluation Metrics
For the different tasks, different evaluation
metrics are used. Accuracy defined as
Num of Correct Predictions

Num of All Predictions is used for NLI-related
task, whereas the NER-related task, we use the F1
score, which is widely used for NER.

7 Results

The performances of the different models on the
NLI task of judging if the checklist item is entailed
by the patient note are summarized in Table 2. We
find that our proposed unsupervised framework
achieves an average accuracy of 0.63 across all
the checklist items on the headache dataset and an
average accuracy of 0.73 on the abdominal pain
dataset. Compared with the unsupervised method,
our weakly supervised method achieves a much
better performance showing an average accuracy
of 0.93 on the headache dataset and 0.91 on the ab-
dominal pain dataset. As shown in Table 2, our pro-
posed weakly supervised method outperforms the
baseline NLI model and the unsupervised method
across all the sections (checklist items averaged
by section—history, physical exam and diagnosis)
by a large margin. Looking at the accuracy values
averaged across each section, we notice that our
proposed weakly supervised method performs con-
sistently well on all the checklist types whereas the
baseline NLI model and the unsupervised method

Number Headache Case Abdominal Pain
NLI NER NLI NER

0 0.89 0.32 0.82 0.42
1 0.90 0.41 0.87 0.50
5 0.92 0.54 0.89 0.56

10 0.93 0.60 0.90 0.60
15 0.93 0.61 0.91 0.62
20 0.93 0.60 0.90 0.62
25 0.93 0.61 0.91 0.62

Table 4: Performance of weakly supervised method.
The weakly supervised method is fine-tuned on different
number of in-domain data. NLI refers to NLI-related
task that is evaluated by accuracy. NER represents NER-
related task that is evaluated by F1 score5.

only perform well on specific sections.

For the NER task of identifying the corre-
sponding phrases, our weakly supervised method
achieves an F1 score of 0.61 on the headache
dataset and 0.62 on abdominal pain dataset, which
is better than the performance of the baseline NER
model as shown in Table 3. This demonstrates that
our proposed weakly supervised method utilizing
multi-level transfer learning achieves the SOTA
performance in both tasks when compared to all
the baselines and our unsupervised method.

8 Analysis

In this section, we provide some ablation studies to
analyze the contribution of data and the different
modules used in our weakly supervised method.

5Due to the space limitation, the analysis on the number
of in-domain data is provided in the appendix.
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Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

Unsupervised 0.72 0.30 0.87 0.63 0.68 0.58 0.93 0.73
Weakly Supervised wo Fine-tuning 0.83 0.88 0.89 0.87 0.88 0.70 0.89 0.82

Weakly Supervised + Out-of-domain Data 0.83 0.94 0.89 0.89 0.87 0.81 0.90 0.86
Weakly Supervised + In-domain Data 0.91 0.94 0.94 0.93 0.91 0.90 0.93 0.91

Table 5: Performance of our methods on the NLI-related task. Our weakly supervised method is fine-tuned using
different data sizes to show the ability of data-level transfer learning. Accuracy is used as the evaluation metric.

Tasks Methods Headache Abdominal Pain
No Fine-tune Out-of-domain In-domain No Fine-tune Out-of-domain In-domain

NLI NLI baseline 0.82 0.84 0.87 0.77 0.80 0.82
Ours 0.87 0.89 0.93 0.82 0.86 0.91

NER NER baseline 0.08 0.36 0.53 0.08 0.40 0.55
Ours 0.32 0.47 0.61 0.42 0.51 0.62

Table 6: Comparison between baseline models with single-task training and our weakly supervised model with
multi-task training. For the NLI task, accuracy is used for evaluation, and for the NER task, F1 score is used.

8.1 Data-Level Transfer

Here we explore our method’s data-level transfer
learning ability, which is reflected in the perfor-
mance of the model with the out-of-domain data.
Two settings are used for our experiments. In
the first setting we train our weakly supervised
model with the generic dataset and then directly
test the model on the case-specific dataset with no
fine-tuning. In the second setting, we train our
weakly supervised model with the generic dataset
and then fine-tune it on the case-specific dataset on
one of the two clinical cases. After training and
fine-tuning, we test our model on the case-specific
dataset related to another clinical case (e.g., fine-
tuning on abdominal pain and testing on headache).

From the results in Table 5, for the first setting,
we see that our model outperforms the other mod-
els even when trained on the generic dataset alone.
For the second setting, when fine-tuned on the ab-
dominal pain dataset and tested on the headache
case-specific dataset, our model’s performance im-
proved from 0.87 to 0.89. Similarly, when fine-
tuned on the headache dataset and tested on the
abdominal pain dataset, our model’s performance
improved from 0.82 to 0.86. This shows that even
the out-of-domain data can aid the performance
of our weakly supervised method, suggesting that
our method can transfer knowledge learned from
out-of-domain data to new cases.

In addition, we also provide an analysis on the
influence of training data amount on the perfor-
mance in the Appendix. It is concluded that our
weakly supervised method only requires a small
number of in-domain data for fine-tuning to achieve

a satisfactory performance for both tasks.

8.2 Task-Level Transfer

In this part we show our weakly supervised
method’s ability of task-level transfer learning via
comparison between our model with multi-task
training and the baseline models with single-task
training. Our model and the baseline models are
trained on the same datasets for a fair comparison.

Results are presented in Table 6. When only
trained on the generic data and tested on the
NLI-related task (corresponding to No Fine-tune
columns), our model with multi-task training has
an averaged accuracy of 0.87 on the headache case
and 0.82 on the abdominal pain case whereas the
NLI baseline model has an accuracy of only 0.82
on headache case and 0.77 on abdominal pain case.
For the NER-related task, when only trained on the
data from kaggle dataset, our model has an aver-
aged F1 score of 0.32 on the headache case and
0.42 on the abdominal pain case whereas the NLI
baseline model has an averaged F1 score of only
0.08 on headache and 0.08 on abdominal pain.

When in-domain data is used for fine-tuning, our
model with multi-task training still outperforms the
NLI and NER baseline models on both tasks. When
trained using the generic data, fine-tuned on the in-
domain data and tested on the NLI-related task
(corresponding to In-domain columns), our model
with multi-task training has an averaged accuracy
of 0.93 on the headache case and 0.91 on abdominal
pain case whereas the NLI baseline model has an
averaged accuracy of only 0.87 on headache case
and 0.82 on abdominal pain case. For the NER-
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related task, our model has an averaged F1 score
of 0.61 on headache case and 0.62 on abdominal
pain case whereas the NLI baseline model has an
averaged F1 score of 0.53 on headache case and
0.55 on abdominal pain case.

Similarly, when out-of-domain data is used
for fine-tuning (corresponding to Out-of-domain
columns), our model with multi-task training also
outperforms the NLI and NER baseline models on
both tasks. Therefore, as shown by the higher per-
formance compared with the NLI and NER base-
line models, our weakly supervised model benefits
from the multi-task training and shows a strong
ability of task-level transfer learning.

9 Practical Impact

Our system is currently undergoing pilot testing by
learners and faculty to assess the perceived impact
on providing more immediate and automated feed-
back. The immediacy is important so that the case
is fresh, and it will likely impact debriefing of sim-
ulation cases, potentially making debriefing more
focused on areas of learner struggles identified in
the notes. With our system grading all learners,
automated feedback could be provided to the users
and learners in time, which can be used to help
their study of patient notes writing.

10 Conclusion and Future Work

In this paper, we study the problem of automatic
written medical examination assessment. The com-
plexity and huge manual effort required make data
resources for this task very limited. Therefore,
traditional NLP systems relying on large anno-
tated corpora are impractical. With these fac-
tors in mind, we proposed a weakly supervised
method. Our weakly supervised method utilizes
multi-level transfer learning including data-level
transfer learning and task-level transfer learning to
simultaneously judge if the checklist item is stated
in the patient note and also identify spans of rel-
evant phrases. Experiments on two self-collected
datasets show that our weakly supervised method
is able to achieve the SOTA performance on both
tasks. Therefore, our weakly supervised method
can correctly judge if the checklist item is stated in
the given patient note and can also find the relevant
phrases most of the time. Our future work involves
developing more effective transfer learning mecha-
nisms to improve the performance on identifying
the relevant phrases.
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A Appendix

A.1 Training Data Amount
First, we analyze the influence of training data
amount on the performance. We use different
amounts of in-domain data to fine-tune our weakly
supervised method. As shown in Table 4, we notice
that when the data used for fine-tuning is less than
10 patient notes the amount of training data has a
big influence on the performance, with the perfor-
mance improving with the increase of training data.
When the training data is increased from 0 to 10
patient notes, the averaged accuracy increased from
0.89 to 0.93 and the F1 score increased from 0.32 to
0.6 on headache case. case of 0 training instances
corresponds to the out-of-the-box performance of
the weakly supervised model. On the abdominal
pain case, the averaged accuracy increased from
0.85 to 0.9 and the F1 score increased from 0.42 to
0.6. However, when the data used for fine-tuning is
more than 10, the performance did not change sig-
nificantly with the increase of training data. Based
on this, we note that our weakly supervised method
only requires a small number of in-domain data for
fine-tuning to achieve a satisfactory performance
for both tasks.

A.2 Limitations
Although our weakly supervised model shows a
satisfactory performance on NLI-related task af-
ter fine-tuning on in-domain data, the performance
on NER-related task is still limited. Therefore,
our weakly supervised model is limited on relating
phrases in the patient notes with the given checklist
item. Besides, without fine-tuning on in-domain
data, the performance on NLI-related task is not
good enough, which means that our weakly su-
pervised model still relies on annotated in-domain
data. In addition, it is obvious that our unsuper-
vised model has a much worse performance com-
pared with our weakly supervised model. There-
fore, one important limitation lies on the relying
of in-domain data given that unsupervised model’s
performance is unsatisfactory and weakly super-
vised model need in-domain data for fine-tuning.

Another important limitation lies in the data used
for testing. In our experiments, we only use patient
notes from 5 examinees for testing, which is not a
large test set. Therefore, future studies should con-
sider validating these results with larger samples
and wider variety of cases.
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Abstract

Drug-drug interaction (DDI) may lead to ad-
verse reactions in patients, thus it is impor-
tant to extract such knowledge from biomed-
ical texts. However, previously proposed ap-
proaches typically focus on capturing sentence-
aspect information while ignoring valuable
knowledge concerning the whole corpus. In
this paper, we propose a Multi-aspect Graph-
based DDI extraction model, named DDI-MuG.
We first employ a bio-specific pre-trained lan-
guage model to obtain the token contextualized
representations. Then we use two graphs to get
syntactic information from input instance and
word co-occurrence information within the en-
tire corpus, respectively. Finally, we combine
the representations of drug entities and verb to-
kens for the final classification. It is encourag-
ing to see that the proposed model outperforms
all baseline models on two benchmark datasets.
To the best of our knowledge, this is the first
model that explores multi-aspect graphs to the
DDI extraction task, and we hope it can estab-
lish a foundation for more robust multi-aspect
works in the future.

1 Introduction

According to statistics from the U.S. Centers of Dis-
ease Control and Prevention, from 2015 to 2018,
48.6 % of Americans used at least one prescrip-
tion drug in 30 days1. More seriously, 20% of the
elderly took more than 10 drugs simultaneously
(Zhang et al., 2020). However, drug-drug interac-
tion (DDI) may occur when patients take multi-
ple drugs, resulting in reduced drug effectiveness
or even, possibly, adverse drug reactions (ADRs)
(Zhu et al., 2020). Therefore, the study of DDI ex-
traction can be considerably important to patients’
healthcare, as well as clinical research. Currently, a
number of drug databases, such as DailyMed (Bar-
rière and Gagnon, 2011), TWOSIDES (Tatonetti

∗Corresponding Author (caren.han@sydney.edu.au)
1https://www.cdc.gov/nchs/data/hus/2019/039-508.pdf

et al., 2012) and DrugBank (Wishart et al., 2017)
can be used for retrieving DDI knowledge directly.
However, with the exponential growth in biomedi-
cal literature, huge amounts of the most current and
valuable knowledge remain hidden in biomedical
literature (Zhang et al., 2020). Thus, the devel-
opment of an automatic tool to extract DDI is an
urgent need.

During the past few years, various deep learning-
based approaches, such as (Liu et al., 2016; Zhang
et al., 2018; Li and Ji, 2019; Ren et al., 2019;
Mondal, 2020; Asada et al., 2020; Fatehifar and
Karshenas, 2021; Shi et al., 2022) have been pro-
posed to extract DDI knowledge. It is worth
noting that compared with Convolutional Neural
Networks (CNNs) and Long Short-Term Memory
(LSTM), which are sequential-based architectures,
Graph Neural Networks (GNNs) can better deal
with complex structural knowledge. Based on this,
Li and Ji (2019) combined a Bio-specific BERT
(Devlin et al., 2019) and Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) to capture
contextualized representation together with syn-
tactic knowledge. Shi et al. (2022) adopted the
Graph Attention Network (GAT) (Veličković et al.,
2018) on an enhanced dependency graph to obtain
higher-level drug representations for DDI extrac-
tion. However, as examples in Table 1, all the
previous models only pay attention to the sentence-
aspect features, and do not even exploit the corpus
knowledge, which could cause essential clues to be
overlooked.

To alleviate the issues mentioned above, in this
work, we propose a multi-aspect graphs-based DDI
extraction model, DDI-MuG, which can make use
of the information in both sentence and corpus
aspects. First, we use PubMedBERT to obtain sen-
tence semantic representation. We then apply a
GCN with an average pooling layer to capture syn-
tactic features from the input instance, and another
GCN with average pooling is employed to model
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Table 1: Summary of previous neural network-based models and our proposed model

Model Sentence Sentence Corpus(semantic) (syntactic)
AB-LSTM (Sahu and Anand, 2018) GloVe (Pennington et al., 2014) No No
DCNN(Liu et al., 2016) Order embedding(Lai et al., 2016) No No
ASDP-LSTM (Zhang et al., 2018) Word2Vec(Mikolov et al., 2013) Dependency parse No
RHCNN (Sun et al., 2019) Bio-word emb.(Pyysalo et al., 2013) Dependency parse No
GCNN-DDI (Xiong et al., 2019) Bio-word emb.(Pyysalo et al., 2013) Dependency parse No
BERTChem-DDI(Mondal, 2020) BioBERT(Jinhyuk et al., 2019) No No
BERTDesc-DDI(Asada et al., 2020) SciBERT(Beltagy et al., 2019) No No
DDI-MuG (Ours) PubMedBERT(Gu et al., 2021) Dependency parse PMI

the word co-occurrence in the corpus level simul-
taneously. After that, an attentive pooling is used
to integrate and obtain the optimal feature from the
output of PubMedBERT and both sentence-aspect
and corpus-aspect graphs. Finally, we employ a
fully connected neural network in the output layer
for the classification. Our proposed model is eval-
uated on two benchmark datasets: DDIExtraction-
2013 (Herrero-Zazo et al., 2013) and TAC 2018 cor-
pora (Demner-Fushman et al., 2018). Experimental
results show that our proposed model improves the
performance of DDI extraction effectively.

To recap, the main contributions of our work can
be summarized as follows:

• We propose a novel neural model, named DDI-
MuG, to exploit information from sentence-
aspect and corpus-aspect graph. As far as we
know, this is the first model that utilizes multi-
aspect graphs for the DDI extraction task.

• We explore the effectiveness of different com-
ponents in DDI-MuG. Experimental results
indicate that knowledge from multi-aspect
graphs are complementary, and their effective
combination can largely improve the perfor-
mance.

• We evaluate the proposed model on two
benchmark datasets, and achieve new state-
of-the-art performance on both of them.

The rest of the paper is organized as follows. First,
we introduce the background in Section 1. Then,
several related works are introduced in Section 2.
Next, in Section 3, we explain the framework in
the proposed model in detail. We then describe the
two benchmark datasets, evaluation metrics, and
parameters setting in Section 4. Section 5 presents
the experimental results and discussion, and finally,
we conclude this work in Section 6.

2 Related Works

Knowledge in many applications is exceedingly
complex for a single-aspect network to learn ro-
bust representations. Multi-aspect networks have
thus emerged naturally in different fields. Khan
and Blumenstock (2019) developed a multi-aspect
GCNs model to consider different aspects of phone
networks for poverty research. They employed
subspace analysis and a manifold ranking proce-
dure in order to merge multiple views and prune
the graph, respectively. Liu et al. (2020) first
constructed semantic-based, syntactic-based, and
sequential-based text graphs, and then utilized
an inter-graph propagation to coordinate hetero-
geneous information among graphs. In order
to exploit richer sources of graph edge informa-
tion, Gong and Cheng (2019) resorted to multi-
dimensional edge weights to encode edge direc-
tions. Similarly, Huang et al. (2020) used multi-
dimensional edge weights to exploit multiple at-
tributes, adapting the edge weights before entering
into the next layer.

3 Methods

The architecture of the proposed model is illus-
trated in Figure 1. First, we obtain the contextual
semantic representation of the input instances by
PubMedBERT. Then, a sentence-aspect graph is
constructed to encode the syntactic feature from
the dependency path, while a corpus-aspect graph
is used to explore word co-occurrence within the
entire corpus. Based on the vocabulary and in-
stances analysis, we find that the part-of-speech
(POS) tag of words, especially words correspond-
ing to verbs, might be helpful for the final rep-
resentation. Therefore, we subsequently feed the
representations of verbs and drug entities from Pub-
MedBERT, together with the two graphs, into an

128



Figure 1: The proposed model architecture. This example is selected from DDIExtraction-2013 dataset. Two drugs
are labeled in bold. As the space is limited, only part of the edges are shown in the word co-occurrence-based graph.

attentive pooling layer, to distinguish important
features from all representations. Finally, a fully
connected layer with softmax is employed to per-
form the classification. The process is described in
the following subsections in detail.

3.1 Encoding sentences with PubMedBERT

PubMedBERT was pre-trained on 14 million
biomedical abstracts with 3.2 billion words
from scratch. Given an input sentence S =
[w1, w2, ..., wn, ..., wt] with drug entities d1 and
d2, we convert each word wi into word pieces and
then feed them into PubMedBERT. After the Pub-
MedBERT calculation, we employ average pool-
ing to aggregate vectorial representations of word
pieces as the word representations. We denote the
two drugs and verbs representations by drug1pub,
drug2pub, and verbspub respectively.

3.2 Graph construction

Considering a graph with n nodes, the node i at the
l-th layer is updated based on the representation
of all neighborhood nodes in the (l-1)-th layer as
follows:

H l = σ (ÂH l−1W l) (1)

Here, Â = D̃− 1
2 ÃD̃

1
2 represents the normalized

adjacency matrix, and Ã = A+ I is the adjacency
matrix with added self-connections. D̃ is the diago-
nal node degree matrix with D̃(i, i) =

∑
j Ã(i, j).

H l ∈ Rn∗dl is the node embedding matrix at

the l-th layer, n is the number of nodes, dl indi-
cates the dimension of the node features. Finally,
W l ∈ Rdl∗dl+1 denotes a layer-specific trainable
weight matrix, and σ is a nonlinear function.

For each input instance, we encode a dependency
graph from the current instance and a word co-
occurrence over the entire corpus.

3.2.1 Sentence-aspect dependency graph
Dependency parser is widely used in relation clas-
sification tasks with the aim of exploring syntactic
information of sentence. We apply the Stanford
dependency parser (Chen and Manning, 2014) to
extract dependency syntactic information. Figure 2
shows the dependency relation of the input text in
Figure 1. The connection from coadministered to
colestipol means that coadministered is the head
word of colestipol, and "nsubjpass" denotes the
"passive nominal subject" dependency relation be-
tween the two words. We use the word embedding
from PubMedBERT as the initial node representa-
tions, and set edge weights as 0 or 1 to indicate if
two nodes are connected in the dependency path.

Let the node representations in l-th layer of the
dependency graph be M l. We apply two graph
convolutional layers to update each node, thus the
updated M2 is expressed as follows:

M2 = σ (ÂM1W 2) (2)

Then, an average pooling layer is applied to
get the syntactic-based sentence embedding. Let
d1, d2, ..., dn, ..., dt be the updated node represen-
tations obtained from graph convolutional layers,
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the output of dependency graph, GDep, is shown
as:

GDep = avg
1≤i≤t

[di] (3)

We denote the outputs of drug and verbs repre-
sentations as drug1dep, drug2dep, and verbsdep,
respectively.

3.2.2 Corpus-aspect word co-occurrence
graph

Information on the co-occurrence of words in-
dicates the connection between them, such as
whether they form as a common phrase or provide
clues for classification tasks. Firstly, we first lem-
matize each word with Natural Language Toolkit
(NLTK) 2. Then we connect all word pairs in graph,
and employ point-wise mutual information (PMI)
(Turney, 2001), a word associations measure, to
store the word correlation information as an edge
weight as follows:

Aij =





1, i = j
PMI(i, j), i ̸= j, PMI(i, j) > 0

0, i ̸= j, PMI(i, j) ≤ 0
(4)

The PMI between any two words is calculated
as:

PMI(i, j) = log
p(i, j)

p(i)p(j)
, (5)

p(i, j) =
#W (i, j)

#W
,p(i) =

#W (i)

#W
. (6)

where i, j are words, #W(i,j) is the number of exam-
ples in a fixed sliding window that contains both
words, #W(i) is the number of instances in the slid-
ing window that contain word i, and #W is the total
number of sliding windows. It is worth noting that
the entire input sentence is set as the sliding win-
dow. Suppose there are 31,738 instances in the
corpus, and the word of "decrease" and "coadmin-
ister" appear 1,821 and 953 times respectively, and
that they occur 27 times together in the whole cor-
pus. Based on Formula 5 to 6, the PMI between
this two words is -4.8. A positive PMI value cor-
responds to a high correlation between two words,
while a negative value means that the two words
have a small probability or no probability of oc-
currence. When two words have a negative PMI
value, we view them as non-co-occurring and set
their edge weight as 0.

Suppose the node representations in l-th layer is
N l. Similar to the dependency graph, the updated

2https://www.nltk.org/

N2 is shown as:

N2 = σ (ÂN1W 2) (7)

After an average pooling layer was utilized to
get the word co-occurrence-based embedding, the
GWord graph is expressed as:

GWord = avg
1≤i≤t

[wi] (8)

where wi is the updated l-th node representation
from graph convolutional layers.

Drug and verbs representations, denotes by
drug1word, drug2word, and verbsword, are ex-
tracted from GWord and used as input for the next
layer.

3.3 Attentive pooling layer

So far, given two drug entities and verbs, we have
obtained rich feature representations from PubMed-
BERT and two graphs. As each instance has a dif-
ferent number of verbs, we apply an attentive pool-
ing to get a fixed-length representation for verbs.
In detail, this pooling mechanism computes the
weights of feature vectors by using an attention
mechanism, allowing it to learn the most signifi-
cant feature effectively. Let Adrug1 and Adrug2 be
the combined representation of drug entities from
PubMedBERT and the two graphs, and Averbs be
the corresponding verbs representation:

Adrug1 = [drug1pub; drug1dep; drug1word] (9)

Adrug2 = [drug2pub; drug2dep; drug2word]
(10)

Averbs = [verbspub; verbsdep; verbsword] (11)

where [;] denotes concatenation. These three
representations are fed into the attentive pooling
layer separately as follows:

Hdrug1 = tanh(Adrug1) (12)

α = Softmax(waHdrug1) (13)

zdrug1 = αAdrug1 (14)

where wa is the learning parameter, α is the
attention weights. zdrug1, zdrug2 and zverbs are the
representation of the two drugs and verbs, as the
output of the attentive pooling layer.
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Figure 2: An example of dependency relation. Two drugs are labeled in bold.

3.4 Fully connected and softmax layer
In this layer, the updated representation of two
drugs and verbs are concatenated as ztotal, and a
nonlinear activation functions tanh is then applied
over ztotal into a fully connected layer. Finally, we
deploy a softmax with a dropout layer to get the
probability score for each class. The process is
expressed as follows:

ztotal′ = tanh(ztotal) (15)

p(y|x) = Softmax(W sztotal′ + bs) (16)

where ztotal′ is the output of the fully connected
layer, W s and bs are the softmax matrix and the
bias parameter, respectively.

4 Experiments

In our experiments, two public DDI extraction
corpora, i.e., DDIExtraction-2013 and TAC 2018,
were used to evaluate the proposed model. This
section introduces the two corpora in detail and
then presents the evaluation metrics and parame-
ters setting.

4.1 DDIExtraction-2013 dataset
We obtained the corpus from the challenge
SemEval-2013 Task 9 (Segura-Bedmar et al., 2013).
This corpus is the major dataset that can be used
to evaluate and compare the performance of DDI
extraction models. It contains manually annotated
sentences from 175 abstracts in MedLine3, and 730
abstracts in DrugBank4. There are four kinds of
positive interaction types: Advice, Effect, Mech-
anism, Int. If the two drugs are unrelated, their
relations are labeled as Negative. The definitions
of the five types are as follows:

• Advice: a recommendation or advice regard-
ing the simultaneous use of two drugs is de-
scribed between two drugs.

• Effect: an effect or a pharmacodynamic mech-
anism is described between two drugs.

3https://www.nlm.nih.gov/bsd/medline.html
4https://go.drugbank.com/

• Mechanism: a pharmacokinetic mechanism
is described between two drugs.

• Int: a DDI occurs between two drugs, but no
additional information is provided.

• Negative: there is no interaction between two
drugs.

The original corpus suffers from a serious data
imbalance problem. For example, the ratio of Int
to Negative instances in the training set is 1:123.7,
which heightens the difficulty of classifying drug
pairs that hold Int relations, and continually affect
the overall performance. To alleviate this data im-
balance issue, many negative examples are filtered
out in earlier studies, e.g., (Kim et al., 2015; Liu
et al., 2016; Zhao et al., 2016; Wang et al., 2017;
Sahu and Anand, 2018; Zhu et al., 2020). To ensure
that the experiment results can be compared fairly
with other baseline models, we adopted three rules
in (Liu et al., 2016) to remove negative instances:

• If both drugs have the same name, remove the
corresponding instances. The assumption is
that drug will not interact with itself.

• If one drug is a particular case or an abbrevia-
tion of the other, filter out the corresponding
instances. Several patterns, such as "DRUG-A
(DRUG-B)" and "DRUG-A such as DRUG-B",
are used to identify such cases.

• If both drugs appear in the same coordi-
nate structure, filter out the corresponding
instances. Also, we use some pre-defined
patterns, like "DRUG-A, (DRUG − N)+,
DRUG-B", to filter out such instances.

Table 2 summarizes the statistics and divisions
of this corpora.

4.2 TAC 2018 corpus

One of the tasks in "Drug-Drug Interaction Extrac-
tion from Drug Labels" track of the Text Analysis
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Table 2: The statistics of DDIExtraction-2013 corpus.

Training Test
Original Filtered Original Filtered

Positive

Advice 826 824 221 221
Effect 1,687 1,676 360 358
Mechanism 1,319 1,309 302 301
Int 188 187 96 96

Negative 23,772 19,342 4,737 3,896
Overall 27,792 23,338 5,716 4,872

Conference (TAC) 20185 was to detect and extract
DDIs from structured product labelings (SPLs).
The organizers provided a set of 22 SPLs for train-
ing (Training-22). Two other datasets containing
57 and 66 SPLs were provided as test sets. The
organizers also provided an additional 180 SPLs
(NLM-180) to supplement the training set. Inter-
actions in this corpus are classified into one of the
following three types:

• Pharmacokinetic: This type includes phrases
that demonstrate changes in physiological
functions (Demner-Fushman et al., 2018),
such as decrease exposure, increased bioavail-
ability.

• Pharmacodynamic: This type includes
phrases that describe the effects of the drugs,
e.g., blood pressure lowering.

• Unspecified: This type corresponds to caution
phrases, e.g., avoid use.

As the original corpus is in .XML format, we
use the dataset in the KLncLSTMsentClf model
(Baruah and Kolla, 2018) to train and evaluate our
proposed model. In total, we obtain 6,436 training
sentences by merging the training-22 and NLM-
180 corpora. The two test sets contain 8,205 and
4,256 sentences, respectively.

4.3 Evaluation metrics
precision(P), recall(R) and F-score(F) are the ma-
jor evaluation metrics in the DDI extraction task.
In this paper, we adopt the standard micro-average
precision, recall and F-score to evaluate the per-
formance and the formulas are listed as follows:

Precision =
TP

(TP + FP )
, (17)

Recall =
TP

(TP + FN)
, (18)

5https://tac.nist.gov/2018/

F − score =
2 ∗ P ∗R
(P +R)

. (19)

TP(true positive) represents the number of correctly
classified positive instances, FP(false positive) de-
notes the number of negative instances that are
misclassified as positive instances, and FN(false
negative) is the number of positive instances that
are misclassified as negative ones.

4.4 Parameters setting

In our experiment, PyTorch library (Paszke et al.,
2019) is used as the computational framework. As
there is no development or validation set in the
original corpus, we randomly select 20% of the
training dataset as the validation set to adjust the
model parameters, and the remaining 80% as the
training set. The parameters used are shown as
follow:

• Maximal length n = 128.

• Embedding size of PubMedBERT m1 = 768.

• Hidden layer dimension of dependency and
co-occurrence graph m2 & m3 = 200.

• Mini-batch size = 32.

• Dropout rate p = 0.1.

• Learning rage lr = 0.0001.

• Number of epoch = 10.

5 Results and Discussion

5.1 Results on DDIExtraction-2013

5.1.1 Comparison with baseline methods
We compare the performance of our DDI-MuG
with 11 baseline methods. The comparison results
of different models are showed in Table 3. The
highest value is labeled in bold, and the second
highest value is marked underline. In general, deep
neural network-based approaches achieve better
performance than statistical ML-based methods. It
demonstrates the capability and potential of uti-
lizing neural network in DDI extraction task. A
notable exception is that the F1-score of SVM-DDI
(Kim et al., 2015) is slightly higher than the AB-
LSTM model (Sahu and Anand, 2018). This might
be due to SVM-DDI (Kim et al., 2015) benefit-
ing from rich and complex lexical and syntactic
handcraft features. It can be seen that our DDI-
MuG obtains the best overall performances in view
of precision and F1-score. In terms of the perfor-
mances for all four types, DDI-MuG performs best
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Table 3: Performance Comparisons on DDIExtraction-2013 Corpus. The highest value is labeled in bold, and the
second highest value is marked underline.

Methods Breakdown F1 Overall performance
Advice Effect Mechanism Int Precision Recall F1

Statistical ML-based methods
UTurKu(Björne et al., 2013) 0.630 0.600 0.582 0.507 0.732 0.499 0.594
WBI(Thomas et al., 2013) 0.632 0.610 0.618 0.510 0.642 0.579 0.609
FBK-irst(Chowdhury and Lavelli, 2013) 0.692 0.628 0.679 0.547 0.646 0.656 0.651
SVM-DDI(Kim et al., 2015) 0.725 0.662 0.693 0.483 - - 0.670
Deep neural network-based methods
AB-LSTM(Sahu and Anand, 2018) 0.697 0.683 0.681 0.542 0.678 0.659 0.669
DCNN(Liu et al., 2016) 0.777 0.693 0.702 0.464 0.757 0.647 0.698
Joint AB-LSTM(Sahu and Anand, 2018) 0.794 0.676 0.763 0.431 0.734 0.697 0.715
ASDP-LSTM (Zhang et al., 2018) 0.803 0.718 0.740 0.543 0.741 0.718 0.729
RHCNN (Sun et al., 2019) 0.805 0.734 0.782 0.589 0.773 0.737 0.754
GCNN-DDI (Xiong et al., 2019) 0.835 0.758 0.794 0.514 0.801 0.740 0.770
DREAM(Shi et al., 2022) 0.848 0.761 0.816 0.551 0.823 0.747 0.783
Our methods
DDI-MuG(with word. graph) 0.893 0.812 0.871 0.599 0.868 0.805 0.835
DDI-MuG(with dep. graph) 0.900 0.826 0.865 0.583 0.842 0.835 0.839
DDI-MuG 0.907 0.823 0.893 0.606 0.870 0.824 0.847

on Advice, Mechanism and Int, and obtain the sec-
ond best performance on Effect. It is worth noting
that all methods achieve relatively low performance
on Int. This discrepancy might be caused by the
insufficient training samples of Int, which leads to
these models to be underfitting.

Then, we find out the contributions of multi-
aspect graphs to the proposed model. By remov-
ing in turn the sentence-aspect dependency graph
and corpus-aspect word co-occurrence graph, our
method reduces to DDI-MuG(with word. graph)
and DDI-MuG(with dep. graph), respectively.
From Table 3, we can see that the F1-score of DDI-
MuG(with dep. graph) is higher than the F1-score
of DDI-MuG(with word. graph), which proves that
the syntactic features are indeed valuable for iden-
tifying the interaction relation between two drugs.
Overall, it can be seen that the F1-score of DDI-
MuG surpass the DDI-MuG(with word. graph) and
DDI-MuG(with dep. graph) by 0.012 and 0.008,
seperately. This indicates that multi-aspect graphs
are complementary to each other, and together can
serve as an appropriate supplement to contextual
information.

5.1.2 Impact of pre-trained embedding

To evaluate the efficiency of the pre-trained lan-
guage model, we conduct the experiments of re-
placing PubMedBERT with other similar models.
As shown in Table 4, the four bio-specific models,
i.e., BioBERT, SciBERT, ouBioBERT(Wada et al.,
2020), and PubMedBERT, leading to improvement
over standard BERT. DDI-MuG by PubMedBERT

achieves the best result for the reason that it was
pre-trained on biomedical texts from scratch.

5.1.3 Error analysis

In addition to present the above achievements, it
is necessary to discuss the limitations of our ap-
proach. One common type of error is that the four
kinds of positive instances are often misclassified
as negative instances. This is due to the imbalanced
data that small instances categories being misclas-
sified as large instance categories. There is another
notable error that 34.4% of Int type instances are
misclassified as Effect type. This is because that
some Int instances have similar semantics to Ef-
fect instances. For example, in the following two
instances:

• "arbiturates may decrease the effectiveness of
oral contraceptives, certain antibiotics, quini-
dine, theophylline, corticosteroids, anticoag-
ulants, and beta blockers."

• "sulfoxone may increase the effects of barbi-
turates, tolbutamide, and uricosurics."

The words decrease and increase are the clues for
identifying interactions in the two semantically
close sentences. However, the first instance be-
longs to the Int type, while the second belongs to
Effect. The number of Int instances is far smaller
than the number of Effect instances, which also
leads to the occurrence of this kind of mistake.
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Table 4: The effect of pre-trained embedding. The
highest value is labeled in bold.

Pre-trained embedding P R F1
DDI-MuG(by BERT) 0.801 0.790 0.795
DDI-MuG(by BioBERT) 0.843 0.816 0.829
DDI-MuG(by SciBERT) 0.839 0.825 0.832
DDI-MuG(by ouBioBERT) 0.850 0.826 0.838
DDI-MuG(by PubMedBERT) 0.870 0.824 0.847

5.1.4 Are verb representations really helpful?
In our previous vocabulary and instances analysis,
we found that in the DDIExtraction-2013 corpus,
when instances contain the words inhibit, increased,
decreased, there is a great possibility that the drug
pair has the Mechanism relation. On the other hand,
when instances contain avoided, recommended or
administered, the drug pair is likely to have the
Advice relation.

Thus, to further investigate how the verbs are
important for the final classification, we studied
the effect of extracting DDI only from the drug
information, without using the verbs knowledge.
Table 5 shows the comparison of the performance
with and without the verbs information. This re-
sult indicates verbs representation can serve as a
supplement to improve the model performance.

Table 5: The comparison of with or without verbs infor-
mation. The highest value is labeled in bold.

Precision Recall F-score
DDI-MuG(drug-only) 0.863 0.823 0.843

DDI-MuG(all) 0.870 0.824 0.847

5.2 Results on TAC 2018

5.2.1 Comparison with baseline model
Since we use the same dataset as KLncLSTMsent-
Clf (Baruah and Kolla, 2018), we view it as the
baseline model. From Table 6, we can see that our
proposed model achieves better results in both two
test sets, which indicates the transferability of our
proposed model.

6 Conclusions

In this paper, we propose DDI-MuG, a novel multi-
aspect graphs framework for DDI extraction task.
Concretely, a bio-specific pre-trained language
model, PubMedBERT, is firstly employed to en-
code the context information of each word from
the aspect of sentence semantic information. Then,

Table 6: Comparison with baseline models on the TAC
2018 corpus. The highest value is labeled in bold.

Dataset Model P R F1
Test1 KLncLSTMsentClf 0.470 0.620 0.530
Test1 DDI-MuG(with word. graph) 0.717 0.712 0.715
Test1 DDI-MuG(with dep. graph) 0.688 0.718 0.703
Test1 DDI-MuG(all) 0.721 0.728 0.723
Test2 KLncLSTMsentClf 0.490 0.670 0.567
Test2 DDI-MuG(with word. graph) 0.710 0.726 0.718
Test2 DDI-MuG(with dep. graph) 0.713 0.730 0.721
Test2 DDI-MuG(all) 0.717 0.743 0.729

two graphs are utilized to explore sentence syn-
tactic and corpus word co-occurrence information,
respectively. After that, attentive pooling mecha-
nism is employed to update the representations of
drug entities and verbs. Finally, by feeding the con-
catenated representation of the two drugs and verbs
into a fully connected and softmax classifier, the
interaction between two drugs is obtained. Exten-
sive comparison experiments with baseline models
on two public datasets verify the effectiveness of
utilizing multi-aspect graphs in the DDI extraction
task.

For the future work, there are at least two direc-
tions could be considered. Firstly, the performance
on categories with small training samples, like Int
in the DDIExtraction-2013 corpora, is unsatisfac-
tory. The solution of contrastive learning can be
explored. Secondly, drug knowledge from external
databases could be integrated in the architecture for
richer drug representations.
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Abstract

Clinical coding is the task of transforming med-
ical documents into structured codes following
a standard ontology. Since these terminolo-
gies are composed of hundreds of codes, this
problem can be considered an Extreme Multi-
label Classification task. This paper proposes
a novel neural network-based architecture for
clinical coding. First, we take full advantage
of the hierarchical nature of ontologies to cre-
ate clusters based on semantic relations. Then,
we use a Matcher module to assign the prob-
ability of documents belonging to each clus-
ter. Finally, the Ranker calculates the proba-
bility of each code considering only the doc-
uments in the cluster. This division allows a
fine-grained differentiation within the cluster,
which cannot be addressed using a single clas-
sifier. In addition, since most of the previous
work has focused on solving this task in En-
glish, we conducted our experiments on three
clinical coding corpora in Spanish. The exper-
imental results demonstrate the effectiveness
of our model, achieving state-of-the-art results
on two of the three datasets. Specifically, we
outperformed previous models on two subtasks
of the CodiEsp shared task: CodiEsp-D (dis-
eases) and CodiEsp-P (procedures). Automatic
coding can profoundly impact healthcare by
structuring critical information written in free
text in electronic health records.

1 Introduction

The International Classification of Diseases (ICD)
is a medical glossary published by the World Health
Organization, which establishes specific coding
rules for healthcare procedures and diseases. Map-
ping electronic health records into alphanumeric
codes allows rapid summarization of information,
which is necessary to calculate costs, support clin-
ical decisions, and conduct detailed epidemiolog-
ical studies. However, manual coding is time-
consuming, resource-intensive, and error-prone,

even for specialists. For this reason, developing
tools to support this task is precious.

Extreme multi-label classification is a subset of
the multi-label classification task in which the ob-
jective is to learn feature architectures and classi-
fiers that can automatically tag a data point with the
most relevant labels from a huge label set (Bhatia
et al., 2016). The term extreme is justified in this
case since the space of possible labels is generally
very large and can exceed the number of documents
in a given corpus.

Figure 1: Example of a CodiEsp Electronic Health
Record annotated, every diagnostic and procedure men-
tion has a unique code. Every code from this Electronic
Health Record is aggregated, and the document is la-
beled with all the codes present in the document. Each
entity mention and its span is later used in the different
data augmentation techniques explained in 3.6. Figure
extracted from (Miranda-Escalada et al., 2020b).

Clinical coding is an important Natural Lan-
guage Processing (NLP) task that seeks to automat-
ically assign codes to medical documents following
a standard terminology, such as the ICD glossary.
Since each document can be labeled with more than
one code from an extensive list, this task can be
considered an Extreme Multi-label Classification
task (Liu et al., 2017). An example of a Codiesp-
D medical document is shown in Figure 1. De-
spite the availability of clinical coding datasets in
Spanish, such as CANTEMIST (Miranda-Escalada

138



et al., 2020a) or CodiEsp (Miranda-Escalada et al.,
2020b), the size of these resources is not yet com-
parable to that for the English language. For ex-
ample, Codiesp has 1,000 clinical case reports,
while the MIMIC-III dataset (Johnson et al., 2016)
has 52.726 discharge summaries. This scarcity of
data forces models in other languages to have dif-
ferent architectures than those trained on English
datasets.

To fill this gap, we introduce a novel architecture
for solving clinical coding on three Spanish clini-
cal datasets. This architecture is composed of two
modules: the Ranker and the Matcher. The first
module calculates the probability of a document
belonging to a cluster, while the second performs
the classification of documents into codes. Each
cluster is created previously by analyzing the ontol-
ogy of each dataset. Our experimental results show
the effectiveness of our model, achieving state-of-
the-art performance on CodiEsp-D (diseases) and
CodiEsp-P (procedures) according to the Mean Av-
erage Precision (MAP) and F1 score.

2 Related Work

In recent years, there has been a growing interest
from the NLP research community in studying the
clinical coding task. Early work focuses on creat-
ing machine learning-based classifiers with heavy
feature engineering (Larkey and Croft, 1995; Gold-
stein et al., 2007). However, as mentioned in Kaur
et al. (2021) and Teng et al. (2022), recent deep
learning advancements have greatly improved clin-
ical coding models’ performance for all languages.

Regarding extreme multi-label architectures,
there is one work that heavily inspired this work,
which is X-Transformers (Chang et al., 2020). It
proposes creating a clusterization of labels using
the distance between the label descriptions encoded
using contextualized embeddings retrieved from
transformers’ language models. Then they predict
the clusters using a transformers classifier, and fi-
nally, they predict the labels over the subset of
predicted clusters using one-vs-rest linear classi-
fiers. The design of this architecture was thought
to handle corpora much larger than the ones we
have studied in this work, thus prioritizing time
efficiency much more.

One of the most popular datasets used for clin-
ical coding for the Spanish language is CodiEsp
(Miranda-Escalada et al., 2020b). Most of the work
proposed formulated the problem as text classifi-

cation. In López-Garcıa et al. (2020), they used a
transformer-based model to classify the sentences
of the documents. Then, the whole document set
of codes is the union of the sentence-level codes.
Other approaches focused on solving the problem
as a Named Entity Recognition (NER) task. In
Cossin and Jouhet (2020), they created a dictio-
nary based on entity mentions and code definitions.
Then, they matched spans of documents with the
code definitions in the dictionary using a tree-based
algorithm. Finally, other ensemble-based models
combined text classification and NER tasks to solve
the clinical coding problem. For example, Blanco
et al. (2020) implemented a model that used string-
matching encoders and one-vs-rest document clas-
sification. This model obtained the best results in
the competition.

Another important task of clinical coding in
Spanish is Cantemist (Miranda-Escalada et al.,
2020a), which aims to identify codes present in can-
cer diagnoses. This task had two winner systems
obtaining the same MAP score. The first model
proposed by García-Pablos et al. (2020) used dif-
ferent transformer-based models to predict specific
parts of a code. These models were ensembled us-
ing a novel voting system. The second winner was
López-García et al. (2020), who reused their ap-
proach proposed in CodiEsp but further pre-trained
a language model with a private oncology corpus.

Recent work by López-García et al. (2021) out-
performed previous models in CodiEsp and CAN-
TEMIST by a wide margin. First, they trained three
multilingual language models using private oncol-
ogy datasets and then fine-tuned these models for
classifying documents into codes. To improve the
performance of their models, they ensembled the
results from five different instances of each trained
transformer.

3 Model

Our proposed architecture comprises two main
modules: the Matcher and the Ranker. The first
module calculates the probability that a document
belongs to some cluster, while the second one cal-
culates the probability of codes in the document.
The results of both modules are used to perform the
final prediction of codes. This process is carried out
by multiplying the probability of codes obtained
from the Ranker for each document with the code
cluster probability obtained from the Matcher mod-
ule. We refer to this approach as the Divide and
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emc
Code partitioning Assigned Cluster
From a00 to b99 Some diseases caused by infections and parasites
From c00 to d49 Tumors and neoplasia
From d50 to d89 Diseases of the blood and hematopoietic organs
From h00 to h59 Diseases of the eye and its adnexa
From h60 to h95 Diseases of the ear and mastoid process

Table 1: Example of five clusters defined for CodiEsp
Diagnostics.

Figure 2: Overview of the Matcher module. P (Ci):
probability of document having a code in cluster i.

Conquer (D&C) model since dividing the original
task into two simpler text classification subtasks
allows us to improve the results considerably.

3.1 Clusters
As a preliminary step before training our model,
we create partitions of semantically related codes
based on the ontologies hierarchy. We will refer to
these groups as clusters. In Table 1, we show an
example of clusters defined in the CodiEsp Diag-
nostics corpus. Here, we used the first three letters
of a code that, in the ontology, are related to a
disease category.

For Codiesp-D, we created 21 clusters; for
Codiesp-P 17 clusters; and for CANTEMIST 51
clusters. The clusters were defined using the cat-
egories systematized by the ontology’s creators
leveraging extensive work from clinicians world-
wide to group semantically related codes, which
gives us confidence about the quality of the selected
clusters.

3.2 Matcher
As shown in Figure 2, the Matcher module assigns
the probability of each document belonging to each
cluster. Each document is categorized with the clus-
ters mapped to the document labels, where each
label belongs to a single cluster. This task can be
formulated as multi-label text classification. No-
tably, the number of clusters is significantly lower
than the number of labels on the corpus. For ex-
ample, in the Codiesp-D subtask, the amount of
different labels is 2.557, and the number of clus-
ters is 21. This simplifies the task charged to the

Figure 3: Overview of the Ranker module. P (Lij):
probability of document having a mention of code i in
cluster j.

Matcher, classifying in fewer classes using signifi-
cantly more documents per class.

To perform this classification, we decided to fine-
tune a transformer-based architecture, as these mod-
els have boosted the performance of NLP architec-
tures in several NLP tasks, including text classifi-
cation. Transformers models are based entirely on
attention, replacing the recurrent layers most com-
monly used in encoder-decoder architectures with
multi-headed self-attention (Vaswani et al., 2017).
This aims to draw global dependencies between
input and output without the need for sequential
computation of Recurrent Neural Networks (RNN)
(Rumelhart et al., 1986) or Long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997).

3.3 Ranker

The Ranker module calculates, for each possible
code, the probability of belonging to the document.
This process is carried out by training a single bi-
nary model per code, following a one-vs-rest ap-
proach. Each model is trained only with documents
with codes belonging to the cluster, which allows
for a fine-grained differentiation between similar
codes. This way, the gold labels of this task are the
codes in the document.

Since each document can contain many codes,
this problem, like the Matcher, can be formulated
as a multi-label text classification task. However,
this subtask is considered extreme since possible
codes are much larger than the number of possible
clusters in the other task. The Ranker module is
based on the one-vs-rest approach, where the input
documents are binary classifiers encoded using the
TF-IDF method, and the output is fed into an Ex-
treme Gradient Boosting (XGBoost) model (Chen
et al., 2015).

We decided to use the Gradient Boosting Trees
algorithm considering the computational cost of
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training one model per label and also the quality of
the model’s predictions. Although, as previously
discussed, neural networks are the go-to choice
when solving an NLP task, it is not feasible to train
one neural network (specifically a Transformer or
LSTM) per label due to the computational costs
of training in an extreme multi-label environment.
Because each cluster has fewer examples than the
entire corpus, even training one neural network
model per cluster yields worse results because of
the data scarcity issue.

3.4 Combining output of Matcher and Ranker

Having trained both the Matcher and the Ranker,
the issue of how to combine the results is left. To
handle this task, we implemented two approaches;
one that outputs probabilities of all labels and an-
other that predicts the labels of the document.

First, to get the probabilities of all labels, it is
important to note that the output probabilities of
the Ranker are not precisely the probabilities of the
label because it was trained only with documents
in the cluster. More rigorously, these values can be
defined as the conditional probabilities of the label
given that it belongs to the cluster. Therefore, to
compute the probabilities of the label, we can use
the Bayes Theorem,

P (L) = PMatcher(C) ∗ PRanker(L|C), L ∈ C.
(1)

Where PMatcher(C) is the probability that the
Matcher module assigns a document to cluster C,
and PRanker(L|C) is the conditional probability
that the Ranker module assigns a label L to a docu-
ment given that it belongs to cluster C.

3.5 Ensemble

Using an ensemble of strong learners only lever-
ages different runs of the same computationally
expensive training process and thus confounds the
advances obtained by creating better architectures.
However, since most of the previous work proposed
ensemble models, we implemented an ensemble
strategy to perform a fair comparison with that sys-
tems.

The ranking of all the labels is done by summing
the probabilities of the ensembled models for each
label, where the prediction of the final labels is a
union of the predicted labels in all the ensembled
models.

3.6 Data Augmentation
In addition, to improve the performance of our
models, we implemented four data augmentation
techniques. Three methods are based on entity
mentions associated with the codes, while the other
uses code descriptions. Specifically, we added new
documents as follows:

• NE Mentions: Each entity mentioned is a
new document.

• NE Sentences: Each sentence in the original
corpus is considered as a new document.

• NE Stripped: New documents only with
words that participate in some entity mention.

• Definition codes: Each definition of a code is
a new document.

The first three techniques need to have a corpus
in which the different labels are associated with
a span of the document (Named Entity), which is
widespread because most corpora are created to
solve Named Entity Recognition tasks and Text
Classification tasks. Not all of these data augmen-
tation techniques are used by the Matcher and the
Ranker. In fact, the Matcher uses a transformer ar-
chitecture that is trained using sentences and needs
semantic context, so for the Matcher, NE Stripped
would only make the results worse and is not used.

4 Experiments

4.1 Datasets
We conducted our experiments with three clini-
cal coding corpora in Spanish. Table 2 shows a
summary of descriptive statistics for each corpus:
CodiEsp-D, CodiEsp-p, and CANTEMIST.

• CodiEsp1 (Miranda-Escalada et al., 2020b):
Corpus composed of 1,000 clinical cases
manually annotated using the guidelines
ICD10-Clinical Modification and ICD10-
Procedure. This dataset was used for two
shared tasks: CodiEsp Diagnostics (CodiEsp-
D) and CodiEsp Procedures (CodiEsp-P).

• CANTEMIST2 (Miranda-Escalada et al.,
2020a): Corpus composed of 1,301 oncologic
clinical case reports annotated using the ICD-
O-3 codes.

1https://zenodo.org/record/3837305
2https://zenodo.org/record/3978041
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CodiEsp-D CodiEsp-P CANTEMIST
Train Dev Test Train Dev Test Train Dev Test

Documents 500 250 250 500 250 250 501 500 300
Avg document length 410 411 414 410 411 414 894 804 812
Avg codes per document 14.4 13.7 14.7 3.9 4.2 4.4 12.8 12 12.1
Avg clusters per document 4.9 4.9 4.8 1.9 2.0 2.0 2.8 2.8 2.8
Number of different codes 2557 870 850
Number of clusters 21 17 51

Table 2: Descriptive statistics of the datasets.

4.2 Settings

For ease of reading, we explain the different hy-
perparameters and strategies used for the Matcher
and the Ranker training. We used the same data
splits as in previous work (Miranda-Escalada et al.,
2020b,a) to guarantee a fair comparison.

Regarding the Matcher module, we fine-tuned a
Biomedical version of RoBERTa in Spanish, leav-
ing only the last layer trainable. We trained our
model during 15 epochs using the Adam with
weight decay optimizer (Loshchilov and Hutter,
2017), which is an improved version of Adam
(Kingma and Ba, 2014) using a batch size of 25
documents. To handle overfitting, we employed a
linear scheduler with warmup, which linearly in-
creases the learning from 0 to the max learning rate
during warmup and then decreased the learning
rate to 0. This module was implemented using the
Flair framework (Akbik et al., 2019).

To choose the optimizer, we used the defaults of
the Flair framework. The number of epochs was
chosen after training on the train split and evalu-
ating on the Codiesp-D validation split. The loss
reduction stagnated at epoch 10. Given that we
used a Linear Scheduler that decreases the learning
rate for each epoch, we used 15 epochs to ensure
that we reached the best performance.

Each one-vs-rest model of the Ranker was cre-
ated using the XGBoost implementation provided
by the Sklearn library (Pedregosa et al., 2011). Re-
garding the hyperparameters, we used the exact tree
method, the ratio of the negative class to the posi-
tive class as the scaling weight, the Dart enhancer,
and 60% of subsample and column subsample.

To ensure the reproducibility of our results, we
released an open-source library3 with the code of
our experiments. This framework allows extending
the model to other datasets by simply implementing
the preprocessing data functions. Likewise, data
augmentation techniques can be extended to other
corpora by implementing a preprocessing function

3https://github.com/plncmm/dac-divide-and-conquer

that obtains the span, the document, and the men-
tion of a code. All the experiments were performed
using a GPU Nvidia DGX A100.

4.3 Metrics

To evaluate the performance of our model, we com-
pute the metrics used in previous work on CodiEsp
and CANTEMIST. First, we calculate the MAP,
which is a widely used evaluation score for ranking
problems (Miranda-Escalada et al., 2020b) and has
shown good discrimination and stability (Schütze
et al., 2008). MAP is defined as the mean of the
average precision (AP) of all documents:

AP =

∑
P (k) ∗ rel(k)

number of relevant labels
,

where P (k) is the precision at position k, and
rel(k) is an indicator function equaling 1 if the
item at rank k is a relevant label, zero otherwise.
Second, we calculated the micro average F1 score,
corresponding to the harmonic mean of the preci-
sion and recall.

These metrics were evaluated on the test set pro-
vided by the shared tasks, so comparability to other
models is assured. To correctly determine whether
the differences between the performance of our
model and the other models are reliable or due to
statistical chance, we have done five different eval-
uation rounds, each with a different seed, ensuring
different results. The results reported are the mean
of these five evaluation rounds, and the standard
deviation is also reported.

Regarding the performance of the ensemble mod-
els, the report of different evaluation rounds is un-
feasible due to the high computational time cost.
However, the ensemble interiorizes the statistical
chance because it uses 15 different instances of the
architecture.

To provide a more comprehensive analysis of the
architecture, we computed metrics for each one of
the modules. These metrics help us gain insights
into which part of the architecture levels are accept-
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able and allow us to know when high scores for the
architecture as a whole can be expected.

Regarding the Matcher module, we report the
MAP and the F1 score when the gold labels are
the clusters. In the case of the Ranker module, we
had to approach the issue of creating metrics that
could evaluate its performance independently from
the Matcher step, which is not straightforward. To
overcome this issue, we have defined a weighted
version of the metrics in which, for each cluster,
we calculate the MAP and the F1 score for that
cluster’s sentences. Then, the cluster metrics are
aggregated and weighted by the number of sen-
tences in each cluster. This metric indicates how
well the Ranker is labeling the documents. This
metric can be interpreted as what the metric would
be if the Matcher had a perfect performance and
thus acts as a ceiling for the DAC model’s final
performance.

5 Results

Table 3 shows the overall results of our model. We
reported two different results for the DAC archi-
tecture: the average of five different evaluation
rounds using the original approach and other re-
sults from a version that ensembled 15 different
model instances.

Our base model achieves state-of-the-art re-
sults in both CodiEsp tasks, surpassing the best
base model (Clinical Coding Transformers - Best
(López-García et al., 2021)) by 8% in CodiEsp di-
agnostics and by 6% in CodiEsp procedures. Even
in comparison with an ensemble of strong learners,
which obtains a similar performance (Clinical Cod-
ing Transformers - Ensemble (López-García et al.,
2021)), our base model surpasses their results by
a small margin of 0.5% in CodiEsp Diagnostics
and 0.2% in CodiEsp Procedures. Their results
correspond to 15 different runs of 3 strong learn-
ers, where each language model was trained with
a private oncology corpus. Unlike the mentioned
work, we used only publicly available resources
and a simpler architecture regarding computational
cost.

Most notably, our ensemble-based version of 15
different instances of our model outperformed pre-
vious results in the CodiEsp tasks by a wide margin,
outperforming state-of-the-art methods, including
ensembles of strong learners, in CodiEsp-D and
CodiEsp-P by 3.0% and 3.3%, respectively.

We hypothesize that the high performance of

our model is explained since the original text clas-
sification task is reduced to two subtasks, where
the number of possible labels is smaller. First, the
Matcher module performs a text classification in
which the number of labels equals the number of
clusters. Second, the Ranker is trained only with
documents belonging to a cluster, which allows
for a fine-grained differentiation between similar
codes.

We believe that the incapability to obtain state-
of-the-art for CANTEMIST is because it is a sim-
pler task than Codiesp-D and Codiesp-P. This is
noticeable by looking at the performance of every
model in each task. Our architecture is built to
thrive under challenging tasks where a straightfor-
ward fine-tuning of a transformer is not the best
approach. Nonetheless, our architecture is the third
best evaluated for CANTEMIST, considering that
ICB-UMA (López-García et al., 2020) and Clinical
Coding Transformers (López-García et al., 2021)
are from the same authors and used the same ap-
proach. Therefore, we obtained competitive results
compared to state-of-the-art models and surpassed
the performance of most of the systems (Miranda-
Escalada et al., 2020a).

6 Module Analysis

In Table 4, we report the mean results using dif-
ferent language models and compare the perfor-
mance with the ensemble for each corpus. We
performed experiments for 15 instances of the ar-
chitecture with different seeds, five using BioClin-
ical RoBERTa, five using BioMedical RoBERTa,
and five using BETO.

Notably, the MAP and F1 scores for the Matcher
are high in all experiments. This is required for
the architecture to be competitive; otherwise, the
error propagation leads to a low-quality final model.
Another interesting finding is that we can see no
significant difference between the domain-specific
language models (BioMedical RoBERTa and Bio-
Clinical) across all our experiments. However, the
general-domain language model we have tested
(BETO) has significantly lower performance on
all tasks. Finally, it is worth mentioning that the
ensemble-based architecture significantly outper-
forms all base models at hand, at least in the MAP
metric. According to the F1 metric, it surpasses the
models in the CodiEsp tasks and fails in the Can-
temist corpus. This adds room for improvement in
how the class prediction is combined to calculate
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CodiEsp-D CodiEsp-P CANTEMIST
Model MAP F1 MAP F1 MAP F1

IXA-AAA (Blanco et al., 2020) 0.593 0.009 0.425 0.008 - -
IAM (Cossin and Jouhet, 2020) 0.521 0.687 0.493 0.522 - -
FLE (García-Santa et al., 2020) 0.519 0.679 0.443 0.514 - -
The Mental Strokers (Costa et al., 2020) 0.517 0.591 0.445 0.488 - -
Vicomtech (García-Pablos et al., 2020) - - - - 0.847 0.855
ICB-UMA (López-García et al., 2020) 0.482 0.009 - - 0.847 0.013
Clinical Transformers - Best (López-García et al., 2021) 0.616 - 0.514 - 0.862 -
Clinical Transformers - Ensemble (López-García et al., 2021) 0.662 - 0.544 - 0.884 -
Divide and Conquer (DAC) 0.665 0.746 0.545 0.553 0.788 0.712
Divide and Conquer - Ensemble (DAC-E) 0.682 0.744 0.562 0.560 0.804 0.695

Table 3: Overall results on three clinical coding datasets. Results of the Clinical Transformers are taken from the
author’s paper, all the other results are obtained from the competitions overview. Some results are missing because
those approaches were not implemented for the corresponding tasks.

Codiesp-D Matcher Ranker DaC
MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.930 0.852 0.729 0.726 0.665 0.727
BioMedical RoBERTa - Mean 0.938 0.865 0.730 0.726 0.665 0.729
BETO - Mean 0.916 0.824 0.728 0.728 0.653 0.713
Ensemble - - - - 0.682 0.744
Codiesp-P Matcher Ranker DaC

MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.941 0.879 0.614 0.584 0.545 0.536
BioMedical RoBERTa - Mean 0.947 0.867 0.617 0.587 0.546 0.531
BETO - Mean 0.936 0.853 0.612 0.587 0.533 0.525
Ensemble - - - - 0.562 0.560
CANTEMIST Matcher Ranker DaC

MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.953 0.900 0.821 0.711 0.788 0.706
BioMedical RoBERTa - Mean 0.948 0.898 0.819 0.713 0.784 0.708
BETO - Mean 0.915 0.857 0.822 0.712 0.763 0.692
Ensemble - - - - 0.804 0.695

Table 4: Report of metrics for each module and model trained in CodiEsp-D, CodiEsp-P, and CANTEMIST. The F1

scores of both the DaC model and the Ranker use only the first three characters of the code as the label in Codiesp-D
and the first four characters of the code in Codiesp-P. We used only the first characters following the procedures of
evaluating the models created by the competition. The bolded results indicate the best metric score for each module,
and the underline marks the worst performance.

the F1 metric.

7 Conclusions and Future Work

This paper proposes a novel model for clinical
coding in Spanish, outperforming previous results
in two datasets; CodiEsp-D and CodiEsp-P. Our
method uses a Divide and Conquer approach that
creates semantic groups of codes to build an archi-
tecture composed of two specialized modules: the
Matcher and the Ranker.

The clinical coding task is separated into two
simpler tasks solved with the modules mentioned
above. First, the Matcher predicts the clusters of
each document, and then the Ranker predicts the
codes of each document given a cluster. This divi-

sion allows us to use state-of-the-art transformers
to solve the task of cluster prediction and permits a
fine-grained differentiation between similar codes
in a cluster using XGBoost.

Although our base model achieves better results
than previous ensemble-based models, we included
the results of an ensemble strategy to perform a fair
comparison with previous work. Our experimental
results demonstrate that ensembling models yield
better results than our base model. Furthermore,
our DaC approach allows us to identify where fu-
ture research can have a greater impact on improv-
ing accuracy. The results of each module indicate
that there is more potential for improvement focus-
ing on the Ranker module.

Future directions include implementing and test-
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ing the Divide and Conquer model on other multi-
label text classification corpora. First, we expect
to test the DaC architecture on clinical corpora in
other languages, including languages with more
resources, such as English. Second, we expect to
test the architecture on other extreme multi-label
classification corpora. This poses a challenge since
the number of labels we have processed thus far,
although very vast, falls into the category of small
extreme multi-label classification datasets (Bhatia
et al., 2016). We expect to encounter issues with
the training time required to process other large cor-
pora, forcing us to modify the library to optimize
the speed.

In terms of improving the performance using
this architecture, we identify opportunities to opti-
mize the number of layers that we left fine-tuneable
in the Matcher module, given that we have seen
research that shows that fine-tuning more layers
provides better results (Lee et al., 2019). Also, for
the Ranker, we know that XGBoost can be trained
with a ranking objective function, thus providing
an alternative to the one-vs-rest approach. Imple-
menting the Ranker using this approach would be
faster to train and may provide similar or better
results. In addition, we would like to improve data
augmentation techniques by improving NER mod-
els. This can be achieved by using contextualized
embeddings at the character level, which has been
shown to improve the performance of models on
various NLP tasks (Rojas et al., 2022a,b).

Finally, the DaC architecture is a black box when
defining which labels to assign for each document.
Recently, explainability features of the different
architectures are gaining more relevance. It is
paramount that the model’s predictions are under-
stood to help the user make appropriate choices
(Duque et al., 2021). We expect to develop explain-
ability to the labels predicted by providing textual
queues of what features the model used to choose
each label. The textual queues that support label
assignment can be provided by the Ranker lever-
aging the explainability features of tree ensembles
(Petkovic et al., 2018), and the textual queues that
support the cluster choice can be obtained using
the attention weights of the transformer model (Liu
et al., 2021).

Limitations

Although our approach achieved excellent results
across all the corpora in this research, they have

clear limitations. The main drawback is that to ap-
ply this approach, it is necessary to have codes that
can be clusterized. In fact, only a thorough catego-
rization of similar codes into groups yields accurate
results. Another major drawback is that the archi-
tecture predicts codes at the document level, thus
having information that is not as complete as an
entity-level prediction.

Finally, one limitation of the Matcher module is
that it has a maximum document size of 512 tokens
since it uses pre-trained transformers, which can
contribute to losing important information on the
cluster prediction process.
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Abstract
Automatically generating short summaries
from users’ online mental health posts could
save counselors’ reading time and reduce their
fatigue so that they can provide timely re-
sponses to those seeking help for improv-
ing their mental state. Recent Transformers-
based summarization models have presented
a promising approach to abstractive summa-
rization. They go beyond sentence selection
and extractive strategies to deal with more com-
plicated tasks such as novel word generation
and sentence paraphrasing. Nonetheless, these
models have a prominent shortcoming; their
training strategy is not quite efficient, which
restricts the model’s performance. In this paper,
we include a curriculum learning approach to
reweigh the training samples, bringing about
an efficient learning procedure. We apply our
model on extreme summarization dataset of
MENTSUM posts —a dataset of mental health
related posts from Reddit social media. Com-
pared to the state-of-the-art model, our pro-
posed method makes substantial gains in terms
of ROUGE and BERTSCORE evaluation metrics,
yielding 3.5% (ROUGE-1), 10.4% (ROUGE-2),
and 4.7% (ROUGE-L), 1.5% (BERTSCORE) rel-
ative improvements.

1 Introduction

Summarization of mental health online posts is an
emerging task that aims to summarize users’ posts
who are seeking help to enhance their mental state
in online networks such as Reddit 1 and Reachout 2.
The post might address several issues of the user’s
concerns or simply be an elaboration on the user’s
mental and emotional situation. With user prefer-
ence, each user-written post can be accompanied
by a succinct summary (known as TL;DR 3), con-

* Work partially done during the internship at Adobe
Research.

1https://www.reddit.com/
2https://au.reachout.com/
3TL;DR is the abbreviation of “Too Long, Didn’t Read”.

We use “TL;DR” and “summary” exchangeably in this paper.

densing major points of the user post. This TL;DR

summary is deemed to urge the counselors for a
faster read of the user’s posted content before read-
ing the post in its entirety; hence, counsellors can
provide responses promptly. Herein, we aim to im-
prove state-of-the-art results reported in (Sotudeh,
Goharian, and Young, 2022) for this task.

Large-scale deep neural models are often hard
to train, leaning on intricate heuristic set-ups,
which can be time-consuming and expensive to
tune (Gong et al., 2019; Chen et al., 2021). This is
especially the case for the Transformers-based sum-
marizers, which have been shown to consistently
outperform the RNN networks when rigorously
tuned (Popel and Bojar, 2018), but also require
heuristics such as specialized learning rates and
large-batch training (Platanios et al., 2019). In this
paper, we attempt to overcome the mentioned prob-
lem on BART (Lewis et al., 2020) Transformers-
based summarizer by introducing a Curriculum
Learning (CL) strategy (Bengio et al., 2009) for
training the summarization model, leading to im-
proved convergence time, and performance.

Inspired by humans’ teaching style, curriculum
learning suggests moving the teaching process
from easier samples to more difficult ones and dates
back to the nineties (Elman, 1993). The driving
idea behind this approach is that networks can ac-
complish better task learning when the training
instances are exposed to the network in a specific
and certain order, from easier samples to more dif-
ficult ones (Chang et al., 2021). In the context of
neural networks, this process can be thought of as a
technique that makes the network robust to getting
stuck at local optima, which is more likely in the
early stages of the training process. Given the men-
tioned challenge of summarization networks, we
utilize the SUPERLOSS (Castells et al., 2020) func-
tion that falls into the family of confidence-aware
curriculum learning techniques, introducing a new
parameter called confidence (i.e., σ) to the network.
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We validate our model on MENTSUM (Sotudeh,
Goharian, and Young, 2022) dataset, containing
over 24k instances mined from 43 mental health
related communities on Reddit social media. Our
experimental results show the efficacy of applying
curriculum learning objectives on BART summa-
rizer, achieving a new state-of-the-art performance.

2 Related Work

While majority of works in mental health research
have focused on studying users’ behavioral patterns
through classification and prediction tasks (Choud-
hury et al., 2013; Resnik et al., 2013; Coppersmith
et al., 2014; Yates et al., 2017; Cohan et al., 2017,
2018; MacAvaney et al., 2018), summarization of
online mental health posts has been recently made
viable. Sotudeh, Goharian, and Young (2022) were
the first to step on this direction via introducing
MENTSUM dataset of online mental health posts,
pinpointing the baseline results. Curriculum Learn-
ing (CL) has gained growing interest from the re-
search communities during the last decade (Tay
et al., 2019; MacAvaney et al., 2020; Xu et al.,
2020). Bengio et al. (2015) were the first to apply
this strategy in the context of sequence prediction
through scheduled sampling approach, which gen-
tly changes the training process from ground truth
tokens to model-generated ones during decoding.
Sample’s difficulty is a key concept in this scheme
as it is used to distinguish easy examples from dif-
ficult ones. Researchers have used many textual
features as the “difficulty measure” including n-
gram frequency (Haffari et al., 2009), word rarity
and sentence length (Platanios et al., 2019). Recent
works (Saxena et al., 2019; Cachola et al., 2020)
have made use of confidence-aware approaches that
learn the difficulty of training samples and dynami-
cally reweight samples in the training process.

3 Our Approach

In this section, we describe the details of our pro-
posed model, where a curriculum learning archi-
tecture is added to the BART’s Transformers-based
framework, upweighting easier training samples;
hence, increasing their contribution in learning
stage.
Curricular Learner for BART. Considering the
applicability of curriculum learning in training
large-scale networks, we aim to use it in our sum-
marization framework. Before incorporating the
curriculum learning strategy into our model’s train-
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Neural Network 
(e.g., BART)

Training Sample

Neural Network 
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Ground truth
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m
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m
inim
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Figure 1: Training with standard loss function (left-hand
side) and SuperLoss criteria (right-hand side)

.

ing stage, we first need to define the difficulty met-
ric to distinguish the hardness of samples. In prac-
tice, estimating a prior difficulty for each sample
is considered a complex task, so we propose to
discriminate the samples with progressive signals
—such as the respective sample loss at each training
iteration— in the training process. In this context,
CL is achieved by predicting the difficulty of each
sample at the training iterations in the form of a
weight, such that difficult samples receive lower
weights during the early stages of training and vice
versa. To model the curriculum, we propose to
use SUPERLOSS (Castells et al., 2020) which is a
generic loss criterion built upon the task loss func-
tion as shown in Figure 1.

More specifically, SUPERLOSS is a task-
agnostic confidence-aware loss function that takes
in two parameters: (1) the task loss Li = ℓ(yi, ŷi),
where yi is neural network’s (i.e., BART’s gener-
ated summary) output and ŷi is the gold label (i.e.,
ground-truth summary); and (2) σi as the confi-
dence parameter of the ith sample. SUPERLOSS is
framed as Lλ(Li, σi) and computed as follows,

Lλ(Li, σi) = (Li − τ)σi + λ(log σi)
2 (1)

in which λ is the regularization parameter, and τ is
the running or static average of task loss (i.e., L)
during the training. While SUPERLOSS provides a
well-defined approach to curriculum learning strat-
egy, learning σ parameter is not tractable for tasks
with abundant training instances such as text sum-
marization. To circumvent this issue and hinder
imposing new learnable parameters, SUPERLOSS

suggests using the converged value of σi at the
limit,
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σ∗
λ(ℓi) = argmin

σi

Lλ(ℓi, σi)

SLλ(ℓi) = Lλ(ℓi, σ
∗
λ(ℓi, σi)) = min

σi

Lλ(ℓi, σi),

(2)

Using this technique, the confidence parameters
are not required to be learned during the training.
Castells et al. (2020) found out that σ∗

λ(ℓi) has a
closed-form solution, computed as follows,

σ∗
λ(ℓi) = e−W ( 1

2
max(− 2

e
,β)), β =

ℓi − τ

λ
(3)

in which W is the Lambert W function. With this
in mind, SUPERLOSS upweights easier samples
dynamically during the training, providing a cur-
riculum learning approach to summarization. We
call this model CURRSUM in our experiments.

4 Experimental Setup

4.1 Dataset

We use the MENTSUM dataset in our experiments.
This dataset contains over 24k post-TL;DR pairs,
making up 21,695 (train), 1209 (validation), and
1215 (test) instances, and is gathered by mining
43 mental health subreddit communities on Reddit
with rigorous filtering rules. We refer the readers to
the main paper for more details on this dataset (So-
tudeh, Goharian, and Young, 2022).

4.2 Comparison

We compare our model against the BART (Lewis
et al., 2020) baseline, which does not utilize the
curriculum learning objective. BART is an abstrac-
tive model that uses a pre-trained encoder-decoder
architecture, unlike BERT which only utilizes a pre-
trained encoder. As shown in (Sotudeh, Goharian,
and Young, 2022), BART is the strongest baseline;
thus, we apply CL on it to evaluate its impact on
summarization. We refer the reader to the original
paper for more extractive and abstractive baselines.

4.3 Implementation details

We use the Huggingface’s Transformers library
(Wolf et al., 2020) 4 to implement our models. We
train all of our models for 8 epochs, performing
evaluation step in intervals of 0.5 epochs, and use
the checkpoint that achieves the best ROUGE-L

4https://github.com/huggingface/transformers

Model R-1 R-2 R-L BS

ORACLEEXT 35.98 11.59 23.21 82.72
BART (2020) 29.13 7.98 20.27 85.01

CURRSUM (Ours) 30.16 8.82 21.24 86.32

Table 1: ROUGE and BERTSCORE results on test set of
MENTSUM dataset. As BART was the most performant
baseline provided in (Sotudeh, Goharian, and Young,
2022), we evaluate the effectiveness of Curriculum on
BART in this work. For other baselines, we refer the
reader to the main paper.

score in the validation for the inference. AdamW
optimizer (Loshchilov and Hutter, 2019) initialized
with learning rate of 3e−5, (β1, β2) = (0.9, 0.98),
and weight decay of 0.01 is used for all of our
summarization models, as well as for BART. Cross-
entropy loss is used for all models. To keep track
of the learning process, we use Weights & Bi-
ases (Biewald, 2020) toolkit 5.

5 Ethics and privacy

While we use publicly available Reddit data to
train and validate our model, we recognize that
special care should be taken when dealing with this
type of data due to its sensitivity and users’ pri-
vacy (Benton et al., 2017; Nicholas et al., 2020).
Thus, we have made no attempts to identify, con-
tact the users, or explore user relations to trace their
social media account. It has to be mentioned that
the MENTSUM dataset is distributed through Data
Usage Agreement (DUA) 6 document to further en-
sure that users’ identity would never be disclosed.

6 Results

Automatic evaluation. Table 1 reports the per-
formance of the baseline model along with our
model’s in terms of ROUGE score variants (Lin,
2004) and BERTSCORE (Zhang et al., 2020) over
MENTSUM dataset. As indicated, the best model is
our CURRSUM that uses SUPERLOSS curriculum
directly on top of the BART model and is a clear im-
provement over it across all metrics, achieving the
current state-of-the-art performance. Specifically,
our model outperforms its ground baseline that has
no curriculum (i.e., BART) by improvement gains
of 3.5%, 10.4%, 4.7%, 1.5% for ROUGE-1, ROUGE-
2, ROUGE-L, BERTSCORE, respectively. Having
looked at the ORACLEEXT scores which shows

5https://wandb.ai/
6https://ir.cs.georgetown.edu/resources/

mentsum.html
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Human-written BART-generated CURRSUM-generated

... having kids ... my ADHD ... opin-
ions on parenthood...

I think it’s better to not have a child now than never
having a child in the future.

I’m thinking of having a child and I don’t want to
be a shi**y dad for my ADHD. Any parents with
ADHD experience?

... symptoms of depression ... go to get
help ...

I think I am clinically depressed, and I have pretty
much all the symptoms of depression, so I am ask-
ing for help

I think I am clinically depressed xxx. I have pretty
much every symptom on this list.

... free of anxiety for a decade.. symp-
toms come ...

I’ve been free of anxiety for less than a week and
I’m afraid that it’s only a temporary solution. I
don’t know what to do.

I’ve been free of anxiety for a decade and I’m
afraid that if the symptoms start to come back, I’ll
be able to slip back into it again.

... ask her out ... barely talked to her...
mess up my chance...

I like a girl at work and I want to ask her out, but I
don’t want to ruin that chance in the process.

I like a girl at work, but I don’t know how to ask
her out.

Table 2: Four samples of the the human-written, BART-generated, and CURRSUM-generated TL;DR summaries. The
human-written samples are partially shown to preserve users’ privacy. That is, we have only shown the important
human-written phrases to trace them within the generated summaries. The text that is unfaithful to the post (i.e., not
supported by the user post) is in Gray and the salient information that is picked up by the summarization systems is
shown in Bold.

the upper bound performance of an ideal extrac-
tive summarizer, it seems that there is room for
improvement on the extractive setting to achieve
state-of-the-art performance. More sophisticated
models can invest in extractive or hybrid summa-
rization models such as those done in (Gehrmann
et al., 2018; MacAvaney et al., 2019; Sotudeh et al.,
2020).
Case study and analysis. While our proposed
model significantly improves upon the BART base-
line, we recognize the limitations of ROUGE metric
in evaluation of summarization systems (Cohan
and Goharian, 2016). In order to explore the qual-
ities and limitations of our work, we analyze the
human-written TL;DRs along with the generated
results by BART and our model, comparing them
against each other. Table 2 shows four samples
of the human and systems generated TL;DRs. As
seen, our model can improve the faithfulness of the
summary 7 in the first, second, and third samples.
Having looked at other cases in our study, it ap-
pears that curriculum learning positively mitigates
faithfulness errors. This might be attributed to the
fact that the summarizer can achieve an improved
understanding of the source document when the
contribution of each sample is controlled in each
iteration of the learning process. Looking at the
second sample, it turns out that our model can im-
prove the conciseness of the summaries; that is,
briefly conveying the main points within the sum-
mary. Comparing system-generated summaries in

7Faithfulness is defined as generating output text that is
supported by the user post.

the fourth sample, it is observed that our system
generated a phrase (shown in Gray) by mixing up
different regions of the user post. Surprisingly, it
appears that “I don’t know how/what to” is a com-
mon phrase used in most human-written summaries
that are seeking advice from the community. The
experimented summarization systems (i.e., BART

and ours) adhere to overgenerating this phrase.

7 Conclusion

Generating short summaries given the users’ on-
line posts can save counselors’ reading time, and
reduce their fatigue. On this basis, they can pro-
vide faster responses to community users. While
neural Transformers-based summarization models
have shown to be promising, they suffer from in-
efficient training process that hinders their poten-
tials for showing a promising performance. To
compensate for this issue, in this paper, we incor-
porated a confidence-aware curriculum learning
approach, which uses task-agnostic SUPERLOSS,
to the summarization framework in the hope of
increasing model’s generalization, and ultimately
improving model performance. Our automatic eval-
uations over MENTSUM dataset of mental health
posts show the effectiveness of our model, yielding
3.5%, 10.4%, 4.7%, 1.5% relative improvements
over BART summarizer on ROUGE-1, ROUGE-2,
ROUGE-L, and BERTSCORE, respectively. Our
model tailors the new state-of-the-art performance
on MENTSUM dataset. We further showed vari-
ous system-generated summaries to showcase the
qualities and limitations of our proposed model.
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Abstract

Clinical data often exists in different forms
across the lifetime of a patient’s interaction
with the healthcare system - structured, unstruc-
tured or semi-structured data in the form of
laboratory readings, clinical notes, diagnostic
codes, imaging and audio data of various kinds,
and other observational data. Formulating a
representation model that aggregates informa-
tion from these heterogeneous sources may al-
low us to jointly model on data with more pre-
dictive signal than noise and help inform our
model with useful constraints learned from bet-
ter data. Multimodal fusion approaches help
produce representations combined from hetero-
geneous modalities, which can be used for clin-
ical prediction tasks. Representations produced
through different fusion techniques require dif-
ferent training strategies. We investigate the
advantage of adding narrative clinical text to
structured modalities to classification tasks in
the clinical domain. We show that while there
is a competitive advantage in combined repre-
sentations of clinical data, the approach can be
helped by training guidance customized to each
modality. We show empirical results across
binary/multiclass settings, single/multitask set-
tings and unified/multimodal learning rate set-
tings for early and late information fusion of
clinical data.

1 Introduction

A variety of clinical use cases emerge where it
is not sufficient to use a single data modality as
input to a learning or decision making system (We-
ber et al., 2014). A single data modality is often
known to be insufficient for a clinical purpose. For
instance, diagnoses that require imaging data as
well as lab values or outcomes that depend on val-
ues routinely recorded in the narrative text but not
elsewhere. An additional modality can be used
to characterize additional features. For instance,
information in narrative text that conflicts with or
adds specificity to diagnosis or procedure codes or

imaging data that can indicate severity of a condi-
tion not recorded in structured form or qualitatively
mentioned in narrative text. Sometimes, a modality
with highly predictive or informative features is par-
ticularly expensive or invasive and an alternative
source is present that may have features unintelligi-
ble or hard to parse for humans. Also, most clinical
machine learning systems focus on one clinical
prediction task at a time (D’Costa et al., 2020; Ji
et al., 2020). However, in real-world systems more
than one such task are often performed simultane-
ously and are interrelated (Yang and Wu, 2021).
There is a need to investigate task-specific unified
representations of multimodal clinical data in both
single-task and multi-task settings to improve de-
cisions in the clinical workflow by demonstrating
an increase in predictive power, robustness, and
confidence over any single mode of data (Tiulpin
et al., 2019). Besides creating and combining effi-
cient representations of data from more than one
modality, we also need to study the factors that af-
fect the design and evaluation of these multimodal
representations.

2 Multimodal Representations

There are various ways modalities of clinical data
can be combined. Multimodal deep learning mod-
els integrate information at various possible steps.
This can occur in the following ways –

• By finding a common representation for in-
put data for a specific task before modeling.
e.g., extracting clinical mentions from narra-
tive text and concatenating it with independent
diagnostic signals to form a model input.

• By jointly learning intermediate feature repre-
sentations for one or more additional modali-
ties, besides the basic input e.g., learning text
embeddings from narrative text and using that
as an additional input besides the structured
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data to the same neural network. This is de-
signed for the training algorithm to jointly
improve the intermediate embeddings along
with the task-specific loss.

• By modeling each modality separately and
combining predictions from different models
under a task-specific scheme. e.g., aggregat-
ing diagnostic predictions from a text model-
ing and an image modeling system through an
averaging scheme or a meta classifier.

As detailed in (Baltrušaitis et al., 2018), multimodal
models can be categorized by the fusion techniques
based on which they learn the join representations
of underlying data. The most common approaches
are called early fusion (Chen and Jin, 2015) where
individual modality features are combined right af-
ter feature extraction and late fusion (Atrey et al.,
2010) which combines outputs from unimodal pre-
dictors jointly. Early fusion is expected to cap-
ture some of the feature-level interactions of each
modality and often is easier to model and train. On
the other hand, late fusion allows for more flexi-
bility and is expected to model individual modali-
ties better and also handles scenarios where one or
more modalities are missing. However, it cannot be
expected to capture low level interaction between
the modalities. While training late fusion models,
the simplest choice is to use the same learning rate
across all modalities. But it is both intuitive as well
as demonstrable through layer analysis (Yao and
Mihalcea, 2022) that learning rates for different
modalities can differ a lot and must be handled sep-
arately to optimize learning from heterogeneous
sources.

3 Methodology

3.1 Data source

We use a publicly available clinical data set - Medi-
cal Information Mart for Intensive Care (MIMIC)
Johnson et al. (2016) - containing data across vari-
ous modalities for patients admitted and readmit-
ted to the intensive care unit (ICU). MIMIC-III is
a large, freely-available database comprising de-
identified health-related data associated with over
forty thousand patients who stayed in critical care
units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. The database includes
information such as demographics, vital sign mea-
surements made at the bedside ( 1 data point per

hour), laboratory test results, procedures, medica-
tions, caregiver notes, imaging reports, and mortal-
ity, including post-hospital discharge. It contains
highly granular data, including vital signs, labora-
tory results, and medications.

3.2 Data modalities
The following structured and semi-structured
modalities typically found in inpatient settings in
clinical data were extracted and compiled at a pa-
tient level -

• Clinical Notes - Free-form narrative text is
entered by clinicians and nurses during the
stay of a patient and these usually summarize
reasons for admission, details of treatment,
nutrition, and the patient’s symptoms and di-
agnoses. These clinical notes are temporally
ordered.

• Tabular Data – Metadata such as sex, age,
height, weight at admission, the type of the
ICU, and other tabular inputs were recorded
for each patient. Values such as weight, may
vary during the patient’s stay and are poten-
tially part of the time series data set as well.

• Time Series data – Various temporal phys-
iological variables, such as diastolic blood
pressure, systolic blood pressure, oxygen sat-
uration, were recorded for each patient. These
physiological variables are recorded irregu-
larly, and they are important indicators of the
patient’s condition during the hospital stay.

We add the two different kinds of structured data
from the MIMIC-III dataset to the clinical text.
Data is preprocessed as in (Harutyunyan et al.,
2019), excluding ICU stays with missing events
or missing length-of-stay and excluding patients
younger than eighteen years of age since both clin-
ical dynamics and clinical documentation of pae-
diatrics facilities are significantly different from
those of adults.

3.3 Experiments
The experiments focus on the following two tasks -

• In-hospital mortality prediction : To predict
death by the end of the hospital stay based on
first 48 hours of observations. To prevent mor-
tality is the primary aim and a number of task
formulations as in (Harutyunyan et al., 2019)
and (Khadanga et al., 2019) attempt to predict
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patient survival at the end of the hospital stay.
The hypothesis is that observations from the
first 48 hours of a patient’s stay in the ICU
include crucial clues towards the probability
of survival.

• Phenotyping : To predict a patient’s pheno-
type at the time of discharge in terms of billing
codes. This is a multilabel classification task
and the target label set is derived from the
billing code at a patients discharge, which is
then converted to 25 labels following the pro-
cedure from (Harutyunyan et al., 2019).

The above two are standard tasks in clinical pre-
diction settings and allowed us to compare directly
with prior work such as (Harutyunyan et al., 2019)
and (Khadanga et al., 2019). They provide two
representative tasks in binary and multiclass, multi-
label settings. Multitask learning is a particularly
useful direction to explore in clinical settings with
potential to capture dependencies between tasks,
especially in low-data regimes. It was first pro-
posed in the clinical prediction setting by (Caruana
et al., 1995), where they used future lab values as
auxiliary targets during training improving predic-
tion of mortality among pneumonia patients.
Multimodal embeddings are used as the input to
the two task- specific components. Each layer per
task is a fully connected network with ht hidden
units, a dropout layer with dropout probability αt,
a ReLU activation, and an output layer matching
the shape of the individual component’s respec-
tive task. Each task-specific component shares the
base multimodal embedding but is independent of
the other layers. The multimodal encoder is com-
prised of one child encoder per input modality. In
the early fusion setup, the multimodal embedding
is a concatenation of the outputs from each child
encoder. In the late fusion setting, for each time
step, the model structure is a linear layer with 512
hidden states with ReLU activation projected to
a 128-dimensional linear layer to predict the out-
put class. For the phenotyping task each of the 25
output neurons has a sigmoid activation. The re-
sults for late fusion multimodal learning have been
reported only in single-task settings.

Each task-specific component can employ a task-
specific loss. To learn across both tasks simulta-
neously in the multitask experiments, we take the
weighted sum of all the losses resulting to form
the multitask loss. The current experiments use

cross entropy loss for both tasks. To find multitask
weights, we used uncertainty weighting described
in (Kendall et al., 2018).
Time series encoder.Given a patient’s ICU stay of
length of T hours, the time series data is resampled
with 1 hour interval to obtain [TSt] from t = 1 to t
= T. The time series encoder is an LSTM (Hochre-
iter and Schmidhuber, 1997). The input [TSt] at
time step t is directly the input to an LSTM model
(Hochreiter and Schmidhuber, 1997) along with
the previous states, and the next hidden state is the
extracted feature, denoted by fn

t .

fn
t = LSTM(TSt, f

n
t−1) (1)

The experiments use a 1-layer LSTM with 256 hid-
den units as the time series encoder.
Clinical Text Encoder. For each ICU stay,
there are N clinical notes recorded at irregu-
lar intervals.The chart time of these notes are
[Time(i)Ni=1] where N <= T The convolutional
model TextCNN in (Kim, 2014) is used to extract
features from textual clinical notes. To create em-
beddings from Nt notes collected at time Timei,
the CNN model gives us the feature matrix z per
clinical note. A weighted average of all notes,
weighted by recency produces a feature vector for
a record.

weight(t, i) = exp(−λ(t− Timei)) (2)

ft = γ
N∑

i=1

weight(t, i).zi (3)

Here, λ is a scaling factor and γ is a normaliza-
tion term. The embeddings are generated using
word2vec embeddings (Mikolov et al., 2013). The
TextCNN model has three 1-D kernels of size 2,3
and 4 with 128 filters each.
Tabular Data Encoder. To process the tabular
inputs, we learn an embedding table for each cate-
gorical input dimension as in (De Brébisson et al.,
2015) and individual features are concatenated to
form one tabular embedding. All features are rep-
resented as 32-dimensional embeddings.

In the early fusion setup, the default Adam opti-
mizer (Kingma and Ba, 2014) is used with a learn-
ing rate of 1e-4 with early stopping. The mortality
prediction task uses ht = 108. The phenotyping
task uses ht = 512. In the late fusion setup, we ran
the following sets of experiments -
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• Unified learning rate across modalities : We
use the default Adam optimizer with a learn-
ing rate of 3e-4 with early stopping. The mor-
tality prediction task uses ht = 108. The
phenotyping task uses ht = 512.

• Adapted learning rate per modality : We
use the best fine-tuned learning rate per modal-
ity for each of them while training the late-
fusion model.

We observed better results with the AdamW opti-
mizer (Loshchilov and Hutter, 2017) but report re-
sults using the default Adam optimizer to be able to
at least partially compare with (Harutyunyan et al.,
2019) since learning rates can vary a lot based on
the optimizer used.

4 Results

Since the mortality prediction is a binary classifi-
cation problem, we report the AUC-PR numbers,
which is a standard evaluation metric. Because dis-
eases can co-occur and a majority of patients often
have more than one diagnosis, phenotyping is a
multilabel classification problem, which requires
the performance to be reported by averaging across
labels or examples. These labels have varying base
rates. In imbalanced tasks, (Lipton et al., 2014)
show that if the predictive features for rare labels
are lost, which is possible due to feature selec-
tion, macro F1 is an unsuitable metric. We report
the macro AUC-ROC, which is the unweighted
mean of AUC-ROC for each label. We also add
a weighted average AUC-ROC metric accounting
for base rate of the diseases in Table 3. The pheno-
typing task does not categorically benefit from the
multitask setting. The model is trained to jointly
predict 25 labels which in itself might have a reg-
ularizing effect akin to multitask learning and the
additional regularization expected from adding the
in-hospital mortality prediction task may be unable
to provide further significant improvement over the
single-task setting.
We follow (Harutyunyan et al., 2019) as the base-
line for the MultiTask TimeSeries set-up and
(Khadanga et al., 2019) for the SingleTask Notes
+ TimeSeries set-up. We show results of the early
fusion runs in Table 1 and the late fusion runs in
Table 2.
We also report error bounds for the experiments by
choosing observations at the 2.5th percentile and
the 97.5th percentiles and reporting the median.

This was computed by drawing 5000 samples with
replacement 100 times from the test set.

5 Related Work

We refer to (Harutyunyan et al., 2019) that uses a
single modality of time series in a multi-task setting
using LSTMs and channel-wise LSTMs. Similarly,
(Khadanga et al., 2019) presents a unimodal model
with clinical notes only for individual task settings
but they also report additional results in a multi-
modal setting using both time series and text data
without using multitask learning. We reuse some
of the multitasking configuration for the MIMIC
dataset described in (Huang et al., 2020). There are
also available comparisons against baseline logis-
tic regression and random forest models in (Zhang
et al., 2020). All of these use only a unified learn-
ing rate across modalities. A number of works note
the need of exploiting modality-specific features
such as (Wang et al., 2015; Liu et al., 2018) for
combining text with other modalities such as im-
age and audio. In the late-fusion setting, a closely
related work is (Yao and Mihalcea, 2022) that in-
vestigates modality-specific learning rates. They
do not investigate a multitask setting and also study
modalities structurally different from ours. Another
closely related work is (Fujimori et al., 2019) that
take up the issue of potential overfitting to certain
modalities. Their approach is via early stopping
and is still closer to our unified learning rate set
up. It is also worth noting that the typical modal-
ities in clinical data are very domain-specific and
even well-studied modalities such as text in general-
domain NLP often behave differently in the clinical
domain (Rumshisky et al., 2020).

6 Limitations and Future Work

This work investigates one way to adapt learn-
ing rates to modalities. There can be more adap-
tive strategies that take a priori clinical knowledge
about a modality into account, which is a possi-
ble topic of future work. The late fusion meth-
ods discussed are also occasionally unstable during
training. It is also conceivable that clinical text
with different linguistic structure (e.g. short, more
standardised radiology reports vs longer, less struc-
tured progress reports) behave differently when
combined with other modalities. Further investiga-
tion is required to mitigate these issues. The current
work aims to show the effect of adding modalities
and adapting parameters specific to useful modal-
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Task Modality IHMortality Phenotype
SingleTask Notes 0.517±0.052 0.712±0.004
SingleTask TimeSeries 0.423±0.052 0.788±0.004
SingleTask Notes + Tabular 0.519±0.04 0.72±0.007
SingleTask Notes + TimeSeries 0.580±0.05 0.796±0.005
SingleTask Notes + TimeSeries + Tabular 0.570±0.051 0.814±0.005
MultiTask TimeSeries 0.423±0.052 0.77±0.005
MultiTask TimeSeries + Tabular 0.526±0.003 0.781±0.002
MultiTask Notes + TimeSeries 0.601±0.05 0.773±0.005
MultiTask Notes + TimeSeries + Tabular 0.599±0.051 0.813±0.004

Table 1: Effect of multimodal learning with early fusion

RateAcrossModality Modality IHMortality Phenotype
- Notes 0.517±0.052 0.712±0.004
- Time series 0.423±0.052 0.788±0.004
unified Notes + TimeSeries 0.590±0.049 0.802±0.005
multimodal Notes + TimeSeries 0.614±0.047 0.803±0.004
unified Notes + TimeSeries + Tabular 0.601±0.051 0.815±0.005
multimodal Notes + TimeSeries + Tabular 0.62±0.050 0.817±0.004

Table 2: Effect of multimodal learning with late fusion with varying learning rate across modalities

Task Modality Phenotype
SingleTask Notes 0.707±0.003
SingleTask TimeSeries 0.781±0.005
SingleTask Notes + Tabular 0.73±0.006
SingleTask Notes + TimeSeries 0.789±0.007
SingleTask Notes + TimeSeries + Tabular 0.808±0.002
MultiTask TimeSeries 0.767±0.006
MultiTask TimeSeries + Tabular 0.772±0.002
MultiTask Notes + TimeSeries 0.766±0.004
MultiTask Notes + TimeSeries + Tabular 0.812±0.004

Table 3: Effect of multimodal learning with early fusion on phenotype (AUC-ROC weighted by label prevalence)

ities. Future work will also address comparisons
not possible with existing baselines. More complex
models with advanced architecture can be applied
in a modular fashion in both single task and multi-
task settings.
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Abstract
Large pre-trained language models (LMs) have
been widely adopted in biomedical and clini-
cal domains, introducing many powerful LMs
such as bio-lm and BioELECTRA. However,
the applicability of these methods to real clin-
ical use cases is hindered, due to the limita-
tion of pre-trained LMs in processing long
textual data with thousands of words, which
is a common length for a clinical note. In
this work, we explore long-range adaptation
from such LMs with Longformer, allowing
the LMs to capture longer clinical notes con-
text. We conduct experiments on three n2c2
challenges datasets and a longitudinal clinical
dataset from Hong Kong Hospital Authority
electronic health record (EHR) system to show
the effectiveness and generalizability of this
concept, achieving 10% F1-score improvement.
Based on our experiments, we conclude that
capturing a longer clinical note interval is ben-
eficial to the model performance, but there are
different cut-off intervals to achieve the optimal
performance for different target variables. Our
code is available at https://github.com/
HLTCHKUST/long-biomedical-model.

1 Introduction

Clinical note is one of the most abundant data
available in EHR systems, which records most
of the patient interaction with the hospital ser-
vices, such as consultation with doctors, procedure
note, laboratory report, discharge summary, etc.1

Despite retaining rich clinical information, clini-
cal notes are highly unstructured and composed

∗These authors contributed equally.
1https://www.healthit.gov/isa/

uscdi-data-class/clinical-notes

of non-standardized information, which curbs the
potential practicality of such information. Large
pre-trained LMs, such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2020), GPT-2 (Rad-
ford et al., 2019), etc., have been shown to work
well in extracting crucial information from clinical
notes by utilizing transfer learning and attention
mechanism (Ji et al., 2021; Alsentzer et al., 2019;
Lewis et al., 2020). The adaptation of these mod-
els to biomedical and clinical domain emphasizes
this success, establishing many new state-of-the-art
performances on multiple biomedical and clinical
benchmarks (Peng et al., 2019; Gu et al., 2021;
Zhang et al., 2022).

While the attention mechanism embedded in
the pre-trained models enables them to achieve
great performance, it is to be noted that it also
causes a quadratic growth in computation cost
with respect to input sequence length (Tay et al.,
2022; Wang et al., 2020; Cahyawijaya et al., 2022).
This makes efficiently processing long documents
with pre-trained LMs difficult, especially in clini-
cal note modeling, in which a single clinical note
tends to consist of hundreds or even thousands of
words (Uzuner et al., 2008; Uzuner, 2009; Stubbs
et al., 2015; Gehrmann et al., 2018; Johnson et al.,
2019; Stubbs et al., 2019). Current approaches to
this problem commonly involve truncation, chunk-
ing, or windowing of the long input sequence, pre-
venting the models from acquiring an entire medi-
cal record information provided by a whole clinical
note. Considering that clinical note modeling re-
quires capturing and understanding the underlying
long-term dependencies in the clinical notes, this
certainly puts a limit on their predictive capability.
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For this reason, to maximize the models’ capabil-
ity without sacrificing a part of the input clinical
notes, we explore the application of long-range
adaptation through linear attention mechanism (Dai
et al., 2019; Beltagy et al., 2020; Wang et al., 2020;
Choromanski et al., 2021), which reduces the com-
putation cost of attention from quadratic to linear
in regards to input sequence length.

In this work, we focus on assessing the benefit of
capturing longer clinical notes on large pre-trained
LMs to n2c2 (National Clinical NLP Challenges)2

clinical tasks by adapting a linear attention mecha-
nism, i.e., Longformer (Beltagy et al., 2020). Fur-
thermore, to test the generality of this approach, we
evaluate it on a longitudinal clinical note corpus
from Hong Kong Hospital Authority EHR system,
which covers records from 43 hospitals in Hong
Kong. Lastly, we hypothesize that modeling longer
interval of clinical notes improves the prediction
quality of the models on any clinical task. To prove
our hypothesis, we conduct our experiment using
different context-length, allowing the model to ac-
cess various intervals of clinical notes. Our result
suggests that a longer interval of clinical notes in-
creases the prediction quality of the models in most
cases, but there is a limit of context length required
depending on the target variable.

Our contributions in this work can be summa-
rized in three-fold:

• We assess the effectiveness of capturing
longer interval of clinical notes on biomedical
and clinical large pre-trained LMs on three
n2c2 challenges which increase the perfor-
mance by ∼10% F1-score,

• We evaluate the generalization of this ap-
proach using longitudinal clinical note data
gathered in Hong Kong Hospital Authority
EHR system on two clinical tasks, i.e., dis-
ease risk and mortality risk predictions, which
improve the performance by ∼5-10 F1-score,

• We observe that each target variable has a dif-
ferent optimal clinical notes cut-off interval
and we conclude that the optimal cut-off in-
terval for mortality risk prediction is ∼2-3
months, while for disease risk prediction, it
requires 3.5 years or even longer interval to
achieve the optimal performance.

2https://n2c2.dbmi.hms.harvard.edu/

2 Related Works

Clinical Note Modeling Clinical notes have been
utilized for various applications in healthcare. Text
mining methods for analyzing pharmacovigilance
signals using clinical notes have been explored and
yield promising results (Haerian et al., 2012; LeP-
endu et al., 2012, 2013). Clinical notes with other
EHR data are also employed for estimating the
readmission time and mortality risk of the next
patient encounter (Hammoudeh et al., 2018; Ra-
jkomar et al., 2018). Clinical note data is also
effective for analyzing disease comorbidity, such
as mental illness (Wu et al., 2013), autoimmune
diseases (Escudié et al., 2017), and obesity (Pan-
talone et al., 2017). Predicting disease risk using
clinical note data has also been explored (Miotto
et al., 2016; Choi et al., 2018; Liu et al., 2019, 2018;
Koleck et al., 2019). Despite all the efforts in clin-
ical note modeling, to the best of our knowledge,
how clinical note interval impacts the performance
of pre-trained LMs has never been studied.

Biomedical and Clinical Pre-trained LMs
Self-supervised pre-training LMs employing
transformer-based architectures (Vaswani et al.,
2017), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2020), and ELECTRA (Clark
et al., 2019), have thrived in various general domain
NLP benchmarks (Wang et al., 2018; Rajpurkar
et al., 2016; Ladhak et al., 2020; Lai et al., 2017;
Wilie et al., 2020; Cahyawijaya et al., 2021; Park
et al., 2021). To extend the understanding of these
LMs to the linguistic properties in biomedical and
clinical domain, a generation of LMs exploiting
biomedical and clinical corpora emerges.

In 2019, Alsentzer et al. (2019) introduce
BioBERT, an extended version of BERT pre-
trained on large-scale biomedical data (i.e.,
PubMed abstracts and PMC full-text articles)
which surpasses off-the-shelf BERT in three fun-
damental downstream tasks in biomedical do-
main. Due to the linguistic differences exhib-
ited by non-clinical biomedical texts and clinical
texts, Alsentzer et al. (2019) introduce Clinical-
BERT by fine-tuning BERT and BioBERT on the
MIMIC-III corpus, and improve the performance
over five clinical NLP tasks.

Unlike prior works, PubMedBERT (Gu et al.,
2020) performs biomedical pre-training from
scratch, which offers larger performance gains
over various biomedical downstream tasks in the
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BLURB benchmark. Similarly, bio-lm (Lewis
et al., 2020) employs recent pre-training advances,
utilizes various biomedical and clinical corpora
for pre-training, and achieves the highest perfor-
mance on 9 biomedical and clinical NLP tasks. In
2021, BioELECTRA (Kanakarajan et al., 2021),
a general domain ELECTRA (Clark et al., 2019)
pre-trained on biomedical corpora, sets the new
state-of-the-art performance for all datasets in the
BLURB benchmark and 4 datasets in the BLUE
benchmark (Peng et al., 2019).

Long Sequence Language Modeling Recent
progress in language modeling is dominated by
transformer-based models which shows a remark-
able results on numerous tasks. Nevertheless, these
models have limited capability to process long-
range clinical notes data due to its quadratic at-
tention complexity. Various approaches have been
introduced to reduce this complexity problem, such
as recurrence approach (Dai et al., 2019; Rae et al.,
2020), sparse and local attention patterns (Kitaev
et al., 2020; Qiu et al., 2020; Child et al., 2019;
Zaheer et al., 2020; Beltagy et al., 2020), low-rank
approximation (Wang et al., 2020; Winata et al.,
2020), and kernel methods (Katharopoulos et al.,
2020; Choromanski et al., 2021). Adaptation from
existing pre-trained models to some of these meth-
ods have also been explored and show the potential
for knowledge transfer (Beltagy et al., 2020; Choro-
manski et al., 2021). In this work, we utilize Long-
former (Beltagy et al., 2020) to enable the model
to capture long-range clinical note information.

3 Methodology

3.1 Problem Definition

Clinical notes are narrative patient data relevant
to the context identified by note types3. There are
multiple types of clinical notes, e.g., discharge sum-
mary, consultation note, progress note, lab report,
etc. In general, a single clinical note consists of a
text narrative and additional metadata defining the
clinical note, e.g., note identifier, recording times-
tamp of the note, etc. In n2c2 challenges, a single
clinical note is presented in a textual format with
the metadata written on top of the text narrative,
while a longitudinal clinical note is presented as a
concatenation of several clinical notes with a sepa-
rator text placed between two clinical notes. This

3https://www.healthit.gov/isa/
uscdi-data-class/clinical-notes

clinical note is usually long, ranging from several
hundreds to thousands words, while most existing
biomedical and clinical pre-trained LMs can only
capture up to 512 subwords, which is insufficient
to capture the whole content of most clinical notes.

3.2 Long-Range Clinical Note LMs

We increase the capacity of LMs to process longer
clinical notes by adapting Longformer (Beltagy
et al., 2020) to the existing biomedical and clinical
pre-trained LMs. Longformer enables linear atten-
tion mechanism by dividing single quadratic all-to-
all attention into two attention steps, i.e., sliding-
window and global attentions. Sliding-window at-
tention allows each token to attend to neighboring
tokens, while global attention allows some, usu-
ally a few, tokens to attend to all tokens, hence has
a better computation complexity compared to the
quadratic attention mechanism. It is to be noted
that when extending an original transformer-based
model into a Longformer, some new parameters are
introduced, i.e., the new positional embeddings, the
sliding-window projection parameters, and global
attention projection parameters. For the positional
embeddings, following (Beltagy et al., 2020), we
copy the weights of the pre-trained positional em-
beddings to initialize the new positional embed-
dings. For the sliding-window and global attention
parameters, we initialize both projection parame-
ters with the pre-trained projection parameters.

4 Long-Range Clinical Note LMs on n2c2
Challenges

We assess the effectiveness of long-range clinical
note LMs on US-based clinical note datasets from
three n2c2 challenges. Additionally, we also eval-
uate six different pre-trained LMs without long-
range adaptation to benchmark the performance of
the biomedical and clinical LMs.

4.1 Dataset

We use three clinical datasets concentrating on clas-
sifying diverse clinical problems from n2c2. These
datasets are: 1) n2c2 2006 smoking challenge, fo-
cusing on predicting smoking status of patients
based on their discharge summary; 2) n2c2 2008
obesity challenge, focusing on recognizing obe-
sity and its comorbidities of patients through their
discharge summary; and 3) n2c2 2018 cohort selec-
tion challenge, focusing on determining if a patient
meets selection criteria of certain clinical trials co-

162

https://www.healthit.gov/isa/uscdi-data-class/clinical-notes
https://www.healthit.gov/isa/uscdi-data-class/clinical-notes


Dataset |Train| |Test|
Word count

Longitudinal? #Label #Class
Median Q3 95% Max

2006 Smoking 398 104 677 1096 1775 3023 No 5 1
2008 Obesity (Textual) 730 507 1084 1425 2094 4280 No 16 4
2008 Obesity (Intuitive) 730 507 1084 1425 2094 4280 No 16 4
2018 Cohort Selection 202 86 2550 3235 4578 7070 Yes 13 1

Table 1: The overall statistics of the n2c2 datasets used in our experiment.

horts through longitudinal clinical notes. We uti-
lize BigBIO framework (Fries et al., 2022)4 to load
the n2c2 datasets. We provide overview of these
datasets in Table 1.

n2c2 2006 Smoking Challenge We utilize the
smoking prediction subtask from n2c2 2006 chal-
lenge (Uzuner et al., 2008), where each data in-
stance consists of a de-identified discharge sum-
mary annotated by two pulmonologists with smok-
ing status. This smoking status can be either past
smoker" (when it is explicitly stated that the pa-
tient is a past smoker or that the patient used to
smoke but has stopped for at least a year), "current
smoker" (when it is explicitly stated that the patient
is a current smoker or that the patient has smoked
within the past year), "smoker" (when there is not
enough temporal information to classify whether
a patient is a "past smoker" or "current smoker"),
"non-smoker" (when a patient’s discharge summary
indicates an absence of smoking habit), or "un-
known" (when there is no mention of smoking).

n2c2 2008 Obesity Challenge The n2c2 2008
obesity challenge (Uzuner, 2009) consists of 1027
pairs of de-identified discharge summaries and
16 disease labels. The disease labels include
obesity and its 15 comorbidities, e.g., asthma,
atherosclerotic cardiovascular disease (CAD), con-
gestive heart failure (CHF), depression, diabetes
mellitus (DM), gallstones/cholecystectomy, gas-
troesophageal reflux disease (GERD), gout, hy-
percholesterolemia, hypertension (HTN), hyper-
triglyceridemia, obstructive sleep apnea (OSA),
osteoarthritis (OA), peripheral vascular disease
(PVD), and venous insufficiency.

The annotation for each discharge summary is
done by providing each disease label with either
"present", "absent", "questionable", or "unmen-
tioned". The dataset has two types of annotations,
i.e., textual judgement (only based on related ex-

4https://github.com/bigscience-workshop/
biomedical

plicit statements) and intuitive judgement (based
on everything written in the discharge summaries).
We use both annotations in our experiments and
report the evaluation scores for each annotation.

n2c2 2018 Cohort Selection Challenge The
2018 Shared Task 1: Clinical Trial Cohort Selec-
tion (Stubbs et al., 2019) reuses 288 patient records
from the 2014 n2c2 shared task dataset (Stubbs
et al., 2015) and reframes it as a cohort selection
task, which requires an automatic evaluation of
whether a patient fits or does not fit in certain co-
horts according to their longitudinal de-identified
clinical notes, ranging between 2-5 clinical notes.

The cohorts or selection criteria used in the
dataset as labels are: DRUG-ABUSE (current or
past usage of drugs), ALCOHOL-ABUSE (current
alcohol intake over weekly recommended limit),
ENGLISH (English-speaking patient), MAKES-
DECISIONS (patients required to make their
own medical decisions), ABDOMINAL (history
of related surgery), MAJOR-DIABETES (major
diabetes-related complication), ADVANCED-CAD
(advanced cardiovascular disease), MI-6MOS (my-
ocardial infarction in the past 6 months), KETO-
1YR (diagnosis of ketoacidosis in the past year),
DIETSUPP-2MOS (dietary supplement intake in
the past 2 months, excluding vitamin D), ASP-
FOR-MI (usage of aspirin to prevent MI), HBA1C
(any hemoglobin A1c value between 6.5% and
9.5%), and CREATININE (serum creatinine above
the upper limit of normal). Two annotators with
medical expertise classify each label of a patient’s
set of clinical notes as either "met" or "not met".

4.2 Models

In this experiment, we compare several pre-trained
LMs, covering two variants of BERT model repre-
senting general domain LMs, i.e., uncased BERT5

and cased BERT6, two variants of biomedical do-

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/bert-base-cased

163

https://github.com/bigscience-workshop/biomedical
https://github.com/bigscience-workshop/biomedical
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-cased


2006 Smoking 2008 Obesity (Text.) 2008 Obesity (Intui.) 2018 Cohort Selection

micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1
Baseline

Top-5 scorer 88.00% 69.00% 97.04% 77.18% 95.58% 63.44% 90.30%
Top-10 scorer 86.00% 58.00% 96.39% 61.40% 95.08% 62.87% 87.70%

Pre-trained Language Model
BERT-cased 61.63% 31.79% 82.47% 38.73% 81.69% 51.71% 72.80% 48.45%

BERT-uncased 65.63% 41.12% 85.73% 40.83% 83.46% 53.28% 74.86% 51.32%
clinicalBERT 56.59% 39.34% 85.64% 40.64% 85.20% 54.88% 72.83% 49.99%

PubMedBERT 69.38% 41.65% 88.98% 46.27% 87.11% 56.47% 74.78% 49.94%
bio-lm 71.44% 49.43% 86.57% 43.15% 84.92% 54.73% 75.03% 52.18%

BioELECTRA 70.72% 48.26% 86.71% 48.26% 85.31% 55.00% 74.32% 49.10%

Long-range Pre-trained Language Model
bio-lm (1024) 82.12% 55.72% 92.52% 50.36% 90.36% 59.13% 77.03% 53.94%
bio-lm (2048) 86.01% 62.30% 96.44% 55.99% 94.76% 62.61% 76.76% 52.93%
bio-lm (4096) 84.52% 57.76% 97.11% 55.68% 95.48% 63.19% 79.42% 57.85%
bio-lm (8192) 84.66% 59.49% 97.07% 55.08% 95.48% 63.20% 81.43% 61.95%

BioELECTRA (1024) 82.98% 63.35% 93.54% 54.47% 90.40% 59.12% 74.95% 51.69%
BioELECTRA (2048) 82.84% 61.09% 96.03% 56.08% 91.69% 60.21% 77.59% 54.39%
BioELECTRA (4096) 80.40% 57.22% 95.81% 56.06% 92.88% 61.12% 79.10% 56.38%
BioELECTRA (8192) 85.21% 64.32% 96.20% 59.59% 92.78% 61.09% 81.63% 58.44%

Table 2: Evaluation results of our experiments on the n2c2 datasets. Top-5 and Top-10 scorers are retrieved from the
submission benchmark of corresponding challenge. The number inside the bracket denotes the length of context
that can be captured by the model. Bold and underline denotes the first and second best scores within a group.

main LMs, i.e. PubMedBERT (Gu et al., 2021)7

and BioELECTRA (Kanakarajan et al., 2021)8,
one variant of clinical domain LM, i.e., Clinical-
BERT (Alsentzer et al., 2019)9, and one variant of
mixed biomedical and clinical domains LM, i.e.,
bio-lm (Lewis et al., 2020)10.

To enable longer context clinical note modeling,
we adapt Longformer (Beltagy et al., 2020) with the
initialization strategy specified in §3.2. We conduct
experiments with four different context lengths, i.e.,
{1024, 2048, 4096, 8192} on two pre-trained LMs
variants, i.e., BioELECTRA and bio-lm.

4.3 Training and Evaluation
Following BERT, RoBERTa, and bio-lm experi-
ments, we tune the learning rate for all BERT
and RoBERTa models from [1e-5, 2e-5, 3e-5].
While for the BioELECTRA model, following
ELECTRA (Clark et al., 2019) and BioELEC-
TRA (Kanakarajan et al., 2021), we tune the learn-
ing rate from [5e-5, 1e-4, 2e-4]. In all experiments,
we use a batch size of 8, and a linear learning rate

7https://huggingface.co/microsoft/
BiomedNLP-PubMedBERT-base-uncased-abstract

8https://huggingface.co/kamalkraj/
bioelectra-base-discriminator-pubmed

9https://huggingface.co/emilyalsentzer/Bio_
ClinicalBERT

10https://huggingface.co/EMBO/bio-lm

decay. For the n2c2 2006 and n2c2 2008 tasks, we
train the models for 50 epochs, while for the n2c2
2018 task, we train the models for 80 epochs. For
the evaluation, we incorporate the official evalu-
ation metrics defined for each challenge. All of
them report micro-F1 and macro-F1 scores.

4.4 Result and Analysis

As shown in Table 2, in general, domain-specific
LMs yield higher performance compared to general
domain LMs, except for ClinicalBERT which per-
forms on a par with the general domain BERT mod-
els. PubMedBERT, bio-lm, and BioELECTRA pro-
duce comparable evaluation performances across
all tasks, with ∼2-5% higher F1-score compared
to the general domain BERT and ClinicalBERT.
Nevertheless, the scores are much lower compared
to the Top-10 scorer on the challenge benchmark
since the models can only capture partial informa-
tion of the clinical note data.

By increasing the context length of the model,
the performance rises significantly. Comparing
with the original pre-trained versions of the mod-
els, the best performing long-range pre-trained LM
improves the evaluation performance by ∼10% F1-
score in all datasets. As shown in Figure 1, models
with longer context length tend to perform better,
but the performance gain is limited to the length of
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Figure 1: Effect of capturing longer clinical notes context to the evaluation performance, i.e., on micro-F1 (Left)
and macro-F1 (Right), averaged over the context length across the evaluated n2c2 tasks.

the clinical notes in the dataset. For instance, on
the n2c2 2006 dataset, the performance improve-
ment of both bio-lm and BioELECTRA models
are steeper from context length 512 to 1024 rather
than from context length 1024 to 2048, 2048 to
4096, and 4096 to 8192. This is because a huge
portion of the notes in the datasets can be suffi-
ciently captured within 1024 subwords. In contrast,
the performance improvement on the n2c2 2018
dataset is more linear per context length step since
most of the length of the clinical notes is much
longer than the other two datasets. Every step of
extending the context length provides more infor-
mation to the model, which is likely to improve the
model performance considerably.

On the n2c2 2006 and 2008 challenges, our best
performing models mostly achieve a comparable
score to the Top-10 or Top-5 scorer of the corre-
sponding challenge benchmark. This is a remark-
able feat since our models neither utilize any en-
semble method, incorporate any clinical expert, nor
exploit external data–common practices used by the
top scorers in the challenge benchmarks.

5 Long-Range Clinical Note LMs on
Hong Kong Longitudinal Dataset

We assess the generalization and effectiveness of
long-range clinical notes LMs on Hong Kong lon-
gitudinal clinical note data. We construct a longitu-
dinal dataset with two target variables, i.e., disease
risk and mortality risk, and evaluate long-range
LMs on the dataset. In addition, we add a baseline
model, which takes high-level features extracted
from the corresponding tabular data provided by
the EHR system as the input, to assess the effec-
tiveness of clinical note modeling.

Split # Patients # Seen patient # Unseen patient
records records

Train 278,253 2,027,561 -
Valid 3,621 3,177 -
Test 17,903 15,541 2,362

Total 299,777 2,046,279 2,362

Table 3: The overall statistics of our Hong Kong longi-
tudinal dataset. # Seen patient records and # Unseen
patient records indicate the number of records on the
seen and unseen test set respectively.

5.1 Dataset Construction

We construct a longitudinal clinical note dataset
for disease risk and mortality risk predictions from
anonymized cancer cohort patient records gathered
in the Hong Kong Hospital Authority EHR sys-
tem covering 43 hospitals in Hong Kong. The
patient records span across the year 2000 and
2018. We exclude all patients having less than
two clinical notes and gather a total of ∼300,000
patients. To construct labelled data for the su-
pervised learning, from patient Pi with T clinical
records, we build T−1 labelled autoregressive data
DPi = {{CPi

k }tk=1, Y
Pi
t+1}T−1

t=1 , where {CPi
k }tk=1

denotes t prior clinical notes of the patient Pi, and
Y Pi
t+1 denotes the target criterion retrieved from the

t+ 1th clinical record of the patient Pi. We collect
over ∼2M labelled clinical notes from all patients
with two targets: disease risk and mortality risk.

We take the last two health records from all pa-
tient records in the year 2018 as the validation and
test sets. To assess the generalization to new patient
data, we omit some patient data from the training
set and only used the last labelled record of those
patients as the unseen test set. The remaining test
data becomes the seen test set. The dataset statistics
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Test set Models
Diagnosis Mortality

Top-1 Top-3 Top-5 F1 F1 AUC

Seen

EHR-FFN 64.3% 75.7% 80.3% 40.6% 49.5% 78.1%
BioELECTRA (512) 76.2% 88.6% 91.8% 51.6% 61.5% 92.0%
BioELECTRA (2048) 79.8% 91.5% 94.3% 54.2% 65.3% 91.9%
BioELECTRA (8192) 81.3% 92.9% 95.5% 55.7% 64.9% 91.8%

Unseen

EHR-FFN 17.8% 32.9% 43.1% 9.5% 49.6% 73.9%
BioELECTRA (512) 63.4% 78.6% 83.7% 43.1% 52.2% 84.8%
BioELECTRA (2048) 66.3% 81.2% 85.9% 45.1% 52.0% 85.8%
BioELECTRA (8192) 69.1% 84.0% 88.2% 46.8% 52.3% 88.1%

Table 4: Evaluation results of our experiments on the seen patient test set and the unseen patient test set. Bold and
underline denotes the first and the second best score on each test set, respectively.

is shown in Table 3. For the disease risk estima-
tion, we take the final disease diagnosis on the next
clinical record as the label. For cancer diseases,
we group the diagnosis based on the cancer site
categorization from the Hong Kong Cancer Reg-
istry11, while for other diseases, we take the first
three digits of the ICD-10 codes. In total, there are
79 classes for disease risk estimation. For the mor-
tality label, we retrieve the mortality status from
the discharge code from the next clinical record of
the corresponding patient. The label distribution of
the dataset is shown in Appendix A.

5.2 Models

We experiment using Longformer with three vari-
ants of sequence length, i.e., {512, 2048, 8192}.
We initialized all models with the same pre-trained
BioELECTRA (Kanakarajan et al., 2021) check-
point as in §4.3. To assess the effectiveness of clin-
ical note modeling, we employ another baseline
using a 4-layer feedforward model (∼5M parame-
ters), which takes an input of 3,942 dimension high-
level features from the EHR database (EHR-FFN).
Similar to DeepPatient (Miotto et al., 2016), we
extract high-level features from the diagnoses, med-
ications, procedures, and laboratory test records by
counting the occurrence of each feature type. In
addition, we also add other features such as length
of stay, the indicator for emergency unit admission,
age group, etc. The details of EHR-FFN and the
extracted features are shown in Appendix B.

5.3 Training and Evaluation

We train all of the models with an initial learning
rate of 5e-5, batch size of 48, and a linear learning

11https://www3.ha.org.hk/cancereg/allages.asp

rate decay. We train the model for 3 epochs and
test the model with the best validation score. For
evaluating the diagnosis label, we incorporate the
F1-score along with the Top-1, Top-3,and Top-5
accuracy scores. For the mortality label, we in-
corporate F1-score and AUC. The evaluation is
conducted on two different test sets: (i) the seen
patient test set and (ii) the unseen patient test set.

5.4 Results and Analysis

Effect of Clinical Note Modeling We show our
experiment results for the seen and the unseen test
sets in Table 4. All BioELECTRA models yield
higher results than the EHR-FFN for both test sets,
showing the effectiveness of clinical note modeling
for disease risk and mortality risk predictions using
EHR data. From the comparison between different
clinical notes interval of the BioELECTRA model,
we found that modeling longer clinical note interval
will likely increase the performance on both tasks.
This behavior aligns with the results reported in §2.
Nevertheless, this behavior does not apply to the
mortality risk prediction on the seen test set. We
describe this phenomenon further in §5.4.

Generalization to New Patient Data We ob-
serve that there is a huge gap of performance for the
baseline EHR-FFN model, especially in the diag-
nosis predictions of seen and unseen test set (∼40
p.p.). In this case, utilizing clinical note modeling
closes the performance gap on the seen and unseen
test sets to be much narrower (∼10 p.p.) on either
label, especially for the BioELECTRA model with
longer context length. This suggests that longer
clinical notes interval not only improves the perfor-
mance of the model on the similar patient record
distribution, but also improves the performance on
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Figure 2: (Left) and (Right) show the clinical notes time importance of the disease risk prediction and mortality
risk prediction, respectively.

the out-of-distribution patient records.

Optimal Cut-off Interval for Disease Risk and
Mortality Risk Prediction We measure the num-
ber of clinical notes that can be processed by the
models to analyze the optimal cut-off interval. Us-
ing the length statistics on our dataset, we find that
our BioELECTRA (512), BioELECTRA (2048),
and BioELECTRA (8192) models can encode 4,
17, 66 clinical notes on average, which correspond
to the average clinical note intervals of 2-3 months,
∼1 year, and 3.5 years, respectively. As shown in
Table 4, for the disease risk prediction label, the
utilization of longer clinical notes intervals always
yields better performance, while the same trend
is not observed for the mortality risk label. This
evidence suggests that there are different optimal
interval of clinical notes required to infer the cor-
rect prediction for different target labels.

To verify this phenomenon, we analyze the input
fractions considered to be important by the models.
Specifically, we retrieve 1,000 correctly-predicted
samples with the highest confidence values from
each of the models and collect the clinical note
timestamps corresponding to the high-magnitude
(>5% of the total input gradient magnitude) input
gradient with respect to the output prediction by us-
ing saliency map (Simonyan et al., 2014; Yosinski
et al., 2015; Wallace et al., 2019). The timestamps
from all samples are then aggregated with yearly
granularity. We denote the number of year occur-
rences divided by the total number of timestamps
collected as time importance to show how likely
the model attends to the clinical note from the cor-
responding year given the label prediction in 2018.

As shown in Figure 2, for the disease risk label,
the slope of the time importance curves over the

years become more flattened as the utilized clini-
cal note interval widens, indicating that the time
importance spreads more uniformly on longer clin-
ical note intervals. Whereas for the mortality risk
label, the time importance curve has a similar
slope over different clinical notes intervals. This
evidence supports that for modeling an accurate
disease risk prediction, a long clinical note interval
(≥ 3.5 years) is required. While for mortality risk
prediction, a shorter clinical note interval (∼2-3
months) is sufficient to reach optimal performance.

6 Conclusion

In this paper, we show the importance of capturing
longer clinical notes for biomedical and clinical
large pre-trained LMs on 6 clinical NLP tasks on
the United States and Hong Kong clinical note data.
Our result suggests that utilizing longer clinical
notes can significantly increase the performance
of LMs by ∼5-10% F1-score without the loss of
generalization to the unseen data. We also observe
that incorporating a longer interval of clinical notes
does not always entail performance improvement
and there is an optimal cut-off interval depending
on the target variable. Based on our analysis, we
conclude that an interval of ∼2-3 months is the
optimal cut-off for mortality risk prediction, while
3.5 years or an even longer interval of clinical notes
is required to achieve the optimal performance for
disease risk prediction. Future work in long-range
clinical note modeling would open up opportunities
towards a general solution in clinical NLP.

7 Limitation

Although there are many linear attention mecha-
nisms that have been proposed (Dai et al., 2019; Ki-
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taev et al., 2020; Beltagy et al., 2020; Zaheer et al.,
2020), the exploration of linear attention in our ex-
periments is currently limited to Longformer (Belt-
agy et al., 2020). Furthermore, the constructed lon-
gitudinal clinical note dataset from the Hong Kong
Hospital Authority EHR system cannot be made
public due to the data-sharing policy. Lastly, due
to the limited computational power, we only con-
duct the long-range clinical notes experiment for
bio-lm and BioELECTRA for the n2c2 experiment
and BioELECTRA for the Hong Kong longitudi-
nal dataset. We conjecture that the performance of
the long-range versions of other pre-trained models
will follow similar trends to the result on existing
biomedical and clinical benchmarks.
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A Label Distribution

Our Hong Kong longitudinal clinical notes dataset
is extracted from Hong Kong Hospital Authority
EHR system which covers records from 43 hospi-
tals in Hong Kong. For the diagnosis, to reduce
the dimensionality, we group the diagnosis labels
into 79 classes. For cancer diseases, we group the
diagnosis based on the cancer site categorization
from the Hong Kong Cancer Registry12. While for
other diseases, we take the first three digits of the
ICD-10 codes as the grouping. We show the label
distribution of our Hong Kong longitudinal clinical
notes dataset in Figure 3.

B Detail of EHR-FFN Model

We derive 3,942 features from the tabular data for
each encounter. We derive these features from 4
data tables: diagnosis, procedure, prescription, and
inpatient data. Specifically, we generate one-hot
representations for each derived feature and con-
catenate all the one-hot representation into a sin-
gle vector . The detail of each one-hot feature is
shown in Table 5. We extract the feature vectors per
patient encounter. To aggregate all the historical
tabular feature vectors, we aggregate the vectors
into a single feature vector by summing up all the
vectors producing a single high-level feature vector
per patient. To learn the high-level feature vector,
we employ a feed forward network with 3 hidden
layers with a total size of∼5M parameters. The hy-
perparameters of the feed forward model is shown
in Table 6.

Feature Name Length Description

Diagnosis Type 1699 Diagnosis type based on ICD-
10 code

Procedure Type 127 Procedure type based on ICD-
9 code

Prescription Type 1271 Type of presribed drug based
on regional standard

Prescription BNF 73 Type of presribed drug based
on BNF Therapeutic Classifi-
cation

Emergency Indicator 1 Indicator for emergency unit
admission

Length of Stay 5 Length of stay in the hospital
Age Group 5 Age of the patient during ad-

mission to the hospital
Ward Type 4 Type of hospital ward
Ward Sub-Care Type 6 Sub-type of hospital ward

Table 5: Details of the tabular features

12https://www3.ha.org.hk/cancereg/allages.asp
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Figure 3: Label statistics of our dataset. (Left) shows the aggregated distribution of diagnosis based on the cancer
ICD-10’s site grouping13. Unspecified denotes all cancer diagnoses with unspecified site. Others denotes diseases
other than cancer. (Right) shows the distribution of the discharge status (discharged/death) gathered from all
inpatient records, which is used to define the mortality label.

Hyperparameter settings Value

Tabular Encoder
#hidden layers 3
hidden size [1024, 512, 256]
input size 3942
layer activation ReLU
drop out 0.1

Table 6: Details of the model hyperparameters
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Abstract

Schizophrenia is one of the most disabling
mental health conditions to live with. Ap-
proximately one percent of the population has
schizophrenia which makes it fairly common,
and it affects many people and their fami-
lies. Patients with schizophrenia suffer differ-
ent symptoms: formal thought disorder (FTD),
delusions, and emotional flatness. In this paper,
we quantitatively and qualitatively analyze the
language of patients with schizophrenia mea-
suring various linguistic features in two modal-
ities: speech and written text. We examine the
following features: coherence and cohesion of
thoughts, emotions, specificity, level of commit-
ted belief (LCB), and personality traits. Our
results show that patients with schizophrenia
score high in fear and neuroticism compared
to healthy controls. In addition, they are more
committed to their beliefs, and their writing
lacks details. They score lower in most of the
linguistic features of cohesion with significant
p-values.

1 Introduction

Schizophrenia is a mental illness that can disrupt
thought processes and perception (Kerns and Beren-
baum, 2002). It can impair people’s ability to man-
age their emotions, and can cause motor and behav-
ioral disorders (Elvevag and Goldberg, 2000).

Understanding and identifying the underlying
signs of schizophrenia is critical in early detec-
tion and intervention before the malady becomes
severely disabling if left untreated (Seeber and Ca-
denhead, 2005). Moreover, it is vital to support
mental health practitioners as well as policymakers
to eliminate barriers to treating mental illnesses
such as schizophrenia.

Gradual decline in functioning and cognition are
some common characteristics of schizophrenia pa-
tients. Symptoms may include delusions, which
are fixed false beliefs, as well as hallucinations but

also importantly, they tend to have strong convic-
tions regardless of the veridicality of the beliefs
themselves. Another symptom that some individ-
uals with schizophrenia exhibit is formal thought
disorder (FTD), where a patient becomes unable
to form coherent or logical thoughts (Kuperberg,
2010). Moreover, they suffer in some cases from
lack of motivation and/or emotional response.

One way to capture mental disorders and related
symptomatology is by analyzing patients’ linguistic
cues. Hence, we map the aforementioned symp-
toms to linguistic features that we can measure.
To date, most of the employed measures used by
clinicians measure superficial linguistic cues and
they tend to be more qualitative. We hypothesize
that advances in pragmatic NLP tools allow us to
measure many of these symptoms via analyzing
language cues used by patients. We surmise that
given such tools, we help create objective quantita-
tive measures for clinicians beyond what they are
using today for diagnostics. Moreover having such
tools could help them discover and codify further
studies allowing for even more signals in detect-
ing such mental health disorders.1 Accordingly,
we present the first comprehensive study of deep
pragmatically oriented linguistic modeling tools
for diagnostic purposes. We leverage an emotion
detection model to assess the lack of emotional
response. We also employ a personality detection
model to measure lack of motivation, which is one
of the negative symptoms they may exhibit. We use
a level of committed belief detection model to iden-
tify the level of committed belief corresponding to
strength of conviction. Formal Thought Disorder
(FTD) is measured by using language model-based
sentence scoring as well as other coherence fea-
tures such as LSA, connectives, lexical diversity,
syntactic complexity, word information, and level

1Despite our focus in this work on schizophrenia, we be-
lieve that many of the tools we use here could be applicable to
other mental disorders.
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of linguistic specificity. Finally, we employ the
Coh-metrix computational tool for analyzing texts
for a variety of cohesion measures.(Graesser et al.,
2004).

Accordingly, we investigate the following met-
rics: cohesion, level of committed belief, emotion,
and personality and their corresponding correlation
with symptomatic patients’ language use. We ex-
amine both speech and text modalities, comparing
patients vs. a matched set of controls.

Our results show that when patients express their
emotions in writing or speech, they tend to show
fear more often than other emotions. The find-
ings also detect a neuroticism personality as they
may suffer from feelings such as anger, and anxiety
more frequently and severely. Furthermore, the
results indicate that their writings lack specificity
(details), and they are more committed to their be-
liefs in contrast with healthy controls. In addition,
our results show that writings of healthy controls
are more coherent demonstrated via the high scores
of language model probabilities of their writing.
To the best of our knowledge, our findings present
the first set of measurable pragmatic linguistic cues
that significantly correlate with contrastive mental
health patients’ language use that goes beyond the
typical superficial metrics used in the literature to
date. Our study provides a set of objective linguis-
tic measures that can serve as metrics that further
assist clinicians and policy makers in the mental
health domain. The contributions of this paper are
as follows:

1. It provides a comprehensive set of cogni-
tive and linguistics quantitative metrics for
schizophrenia patients language use;

2. We provide a translation of clinical observa-
tions of patient language use onto specific
measurable linguistic cues that are mapped
into advance NLP technology;

3. For the first time, our work leverages advances
in the pragmatic NLP to measure patients’
cognitive state (namely their levels of com-
mitted beliefs), personality traits, emotions,
specificity and coherence;

4. We use LM with perplexity scores to measure
both coherence and cohesion.

2 Related Work

Language provides significant insight into the con-
tent of thought. It also reflects the presence of
impairments resulting from mental disorders such
as schizophrenia. The predominent reflection of
mental impairment for schizophrena is the lack of
coherent text or speech. Accordingly, cohesion
scores were first proposed as an indicator of pre-
dicting schizophrenia (Elvevåg et al., 2007) where
they used Latent Semantic Analysis (LSA) as a
feature extractor. This was further amplified by
(Bedi et al., 2015) where they measured the seman-
tic coherence in disorganized speech captured by
LSA, specifically where large amounts of language
overlap was interpreted as coherent language. The
study found that these features, together with syn-
tactic markers of complexity, could predict later
development of psychosis with 100% accuracy us-
ing a convex hull algorithm. Later, Corcoran et al.
(2018) used a logistic regression model to predict
the onset of psychosis using coherence as measured
by LSA combined with the usage of possessive pro-
nouns. This approach showed an accuracy of 83%
in predicting the onset of psychosis with a cross-
validation accuracy of 79%.

Metrics for Schizophrenia detection were inves-
tigated by (AlQahtani et al., 2019) where they
used linguistic features such as referential cohe-
sion, text ease, situation model, and readability in
patients’ and controls’ writing or speech to clas-
sify presence or absence of the disorder. The re-
searchers trained Support Vector Machine (SVM)
and Random Forests (RF) models. The study re-
sults showed that the situation model and readabil-
ity performed the best among all cohesion features
for the SVM model yielding a 72% F-score in
the binary classification task of detecting whether
a person (through their writing or speech) is a
schizophrenia patient.

Different from previous studies of schizophrenia,
we propose measuring cohesion using language
model perplexity. Moreover, we provide a compre-
hensive exploration of the language of patients rel-
ative to that of controls along the following linguis-
tics cues: coherence, emotion, personality, level of
specificity, and level of committed belief.

3 Data

Our study comprises two datasets speech, Lab-
Speech, and written text, LabWriting. The data
is obtained from schizophrenia patients and healthy
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controls. Both datasets are described in detail in
(Kayi et al., 2018).2 LabWriting has 188 partici-
pants who are native English-speakers between the
ages of 18− 50 years, corresponding to 93 patients
and 95 healthy controls. All participants are asked
to write two paragraph-long essays: the first one is
about their average Sunday and the second essay is
about what makes them the angriest. The total num-
ber of writing samples collected from both patients
and controls is 373 pieces of text.

The second dataset, LabSpeech, includes three
questions that prompt participants to describe some
emotional and social events. Patients and controls
are asked to describe (1) a picture, (2) their ideal
day, and (3) their scariest experience. The total
number of speech script samples collected from
both patients and controls is 431. Speech data is
transcribed to text and a punctuation tool (Tilk and
Alumäe, 2016) is used to add the missing punctua-
tion.

3.1 Superficial Descriptive statistics

Table 1 illustrates various descriptive statistics com-
paring and contrasting the LabWriting and Lab-
Speech datasets. The results indicate that healthy
controls in both datasets are more verbose (pro-
duce more words and sentences) when answering
questions in both modalities, i.e. writing or speech.
The mean values of the number of words and the
number of sentences generated by Controls in Lab-
Writing are 141 and 7, respectively. However, the
mean values are lower for Patients, with 110 and 6
for the same analysis. The Patients in LabSpeech
also score lower averages in all the descriptive fea-
tures. These results are in line with a previous
study (De Boer et al., 2020) that individuals with
schizophrenia speak less and use less complex sen-
tences. * in Table 1 indicates the higher results and
statistically significant.

4 Pragmatic Cues

4.1 Emotion

Emotion refers to a person’s internal or external
reaction to an event. This reaction can be ex-
pressed verbally, outwardly/visibly (e.g., frown-
ing), or physiologically (e.g., crying) (Kring and
Caponigro, 2010). Schizophrenia patients are often
characterized as having disorganized thinking; how-
ever, according to (Kring and Elis, 2013), they still

2The authors of (Kayi et al., 2018) kindly shared the data
after we obtained IRB permission.

Descriptive LabWriting LabSpeech
P C P C

Avg. # words 110 141* 220 277*
Avg. #sent. 6 7* 11 14*
sent./paragraph 5.6 6.6* 11 14*

Table 1: Descriptive statistics for LabWriting and Lab-
Speech datasets. We present overall average number of
words, overall average number of sentences and a finer
grained average number of sentences per paragraph. P
denotes patient, and C denotes control.

report their emotional experiences using the same
general definitions of emotions (happy, sad, etc.)
as persons who do not have schizophrenia. We use
the EmoNet 3 (Abdul-Mageed and Ungar, 2017)
to obtain the eight core emotions (PL8), which are
trust, anger, anticipation, disgust, joy, fear, sadness,
and surprise.

4.2 Specificity

Specificity in computational linguistic measures
how much detail exists in a text (Louis and
Nenkova, 2011). This is an important pragmatic
concept and a characteristic of any text (Li and
Nenkova, 2015). We quantify this feature because
schizophrenia may impacts one’s language speci-
ficity. Hence, our hypothesis is that patients tend
to write less specific paragraphs which lack refer-
ences to any specific person, object, or event. We
use (Ko et al., 2019) to measure a sentence speci-
ficity by indicating how many details exist in each
sentence. This tool generates a rate for each sen-
tence between 0 (general sentence) and 1 (detailed
sentence). We also use Coh-Metrix (Graesser et al.,
2004) to measure word hyponyms (i.e., word speci-
ficity) in a text. A higher value reflects an overall
use of more specific words, which increases the
ease and speed of text processing.

4.3 Level of Committed belief (LCB)

In natural language, the level of committed belief
is a linguistic modality that indicates the author’s
belief in a given proposition (Diab et al., 2009).
We measure this feature as it can detect an indi-
vidual’s cognitive state. We want to explore this
feature to test our hypothesis that patients with
schizophrenia may hold strong beliefs towards their
own propositions. We rely on a belief tagger (Ram-
bow et al., 2016) to label each sentence with the

3https://github.com/UBC-NLP/EmoNet
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committed belief tags as (CB) where someone (SW)
strongly believes in a proposition, Non-committed
belief (NCB) where SW reflects a weak belief in
the proposition, and Non-Attributable Belief (NA)
where SW is not (or could not be) expressing a be-
lief in the proposition (e.g., desires, questions, etc.).
There is also the ROB tag where SW’s intention is
to report on someone else’s stated belief, regardless
of whether or not they themselves believe it. The
feature values are set to a binary 0 or 1 for each
CB, NCB, NA, and ROB corresponding to unseen
or observed. The following text is an example from
LabWriting.

Every Sunday I usually <cb−I> get
</cb−I> up and <cb−I> watch </cb−I>

gospel shows on TV. I <cb−I> do
</cb−I> my house chores and then
<cb−I> watch </cb−I> other things on
TV. Then later on I <cb−I> go </cb−I>

down the street to the food resturants to
<na−I> eat </na−I> something to eat.4

We calculate the LCB as:

LCB < tag > = total < tag > in a text
/ all LCB tags in the same text

where < tag > is one of the 4 LCB features:
CB, NCB, NA, or ROB.

4.4 Personality
In psychology, personality is the distinctive sets of
behaviors, cognitions, and emotional patterns that
derive from biological and environmental influence
(Major et al., 2000). We study the personality of
patient and healthy controls in our datasets based
on the famous Big-Five (Digman, 1990) person-
ality measure, which are the following five traits:
Extraversion (EXT), Neuroticism (NEU), Agree-
ableness (AGR), Conscientiousness (CON), and
Openness (OPN). Neuroticism is characterized by
a proclivity for negative emotions (Bono and Vey,
2007). Individuals with high scores for neuroticism
experience feelings such as anxiety, worry, fear,
anger, frustration, depressed mood, and loneliness
(Widiger, 2009). Extraversion indicates how out-
going and social a person is (Smelser et al., 2001).
A low score in extraversion means an individual
prefers to stay alone. We explore personality to
test our hypothesis that patients with schizophre-
nia are high in neuroticism (emotionally unstable),

4Typos are in the original text.

especially if delusional, and low in extraversion
(Horan et al., 2008). We use (Kazameini et al.,
2020) to predict personality traits for each text in
our datasets. The model makes binary predictions
of the author’s personality.

5 Cohesion Linguistic Features

5.1 Information Structure (Givenness)

Latent Semantic Analysis (LSA) measures the se-
mantic similarity/overlap between sentences or be-
tween paragraphs (Dennis et al., 2003). We use
LSA to evaluate givenness, which is an informa-
tion structure defined as a phenomenon where a
speaker presumes that the listener is already famil-
iar with the context of a discussion topic (Féry and
Ishihara, 2016). The sentence is considered to be
coherent when the average givenness score is high
(Graesser et al., 2004).

5.2 Lexical Diversity

Lexical diversity of a text is a measure of unique
words (types), and consequently a measurement of
different words that appear in the text compared
to the total number of words (tokens) in that text
(Durán et al., 2004) (Johansson, 2008). Type-token
ratio (TTR), i.e., the ratio of types to tokens, is the
most basic metric of lexical diversity (Durán et al.,
2004). When the number of types equals that of
tokens in a text, all words are different, with TTR
being equal to 1, and the lexical diversity of the text
reaches its maximum possible value. Such a text,
i.e., one with very high lexical diversity, is likely to
be either low in cohesion because cohesion requires
repetition of words or very short in length. After all,
a naturally occurring longer text implies a greater
frequency of the same word (Graesser et al., 2004).

5.3 Connectives

The use of connecting words creates cohesive links
between ideas and clauses and provides clues about
text organization (Graesser et al., 2004). We eval-
uate two types of connectives which are logic and
temporal. The logic connectives are used to con-
nect two or more ideas (such as and, or). In con-
trast, temporal connectives are words or phrases
that are used to indicate when something is taking
place (such as first, until).

5.4 Syntactic Complexity

Syntax refers to the arrangements of words and
morphemes in forming larger units, such as phrases
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and clauses, ultimately resulting in well-formed
sentences in a language (Crowhurst, 1983). A tree-
like structure, a syntactic tree, can visualize the
arrangement of words in a sentence. A tree can be
simple: containing basic structure like actor-action-
object; or complex, larger in size, with significant
number of branches, and a complicated relationship
among its different parts (Graesser et al., 2004).

5.5 Word Information

All words in a sentence can be categorized as one
of two types: a) Content words, such as nouns,
verbs, adjectives, and adverbs, which primarily
carry the semantic substance of the sentence and
contribute to its meaning; and, b) Function words,
such as prepositions, determiners, and pronouns,
which primarily express the grammatical relation-
ships among content words without significant se-
mantic content (Wilks, 1998).5 Word Information
refers to the notion that each word can be assigned
a syntactic part-of-speech category and, with this
assignment, be further rendered as a content or a
function word, thus carrying either substantive or
“inconsequential" meaning (Graesser et al., 2004).

5.6 Language Model (LM)

A Language model (LM) is the probability distri-
bution over text (Bengio et al., 2003). To analyze
coherence in free text, we propose an approach
based on LMs. We use a python library LM-scorer
(Simone, 2020) to calculate probabilities of each
word in a text and score sentences. The library uses
the GPT2 model (Radford et al., 2019) internally to
provide a probability score for each next word.The
sentence score (probability) is computed as the
mean of tokens’ probabilities. For a given sentence,
the LM predicts a higher score for a sentence that is
more grammatically correct. Performance of LMs
is commensurate with word information, content
words tend to have lower probabilities compared to
function words.

We calculate multiple LM scores: the perplexity
scores at sentence and paragraph level. Moreovere,
we analyze the LM probabilities (scores) across two
segmentation/levels: paragraph level and sentence
level. We compare the performance of both levels
using the means of statistical hypothesis testing.

5We contend that this view is controversial since function
words are critical to the meaning of utterances, however we
would like to emphasize the qualitative difference between
content words and function words.

5.6.1 Analysis at Paragraph level
1. Mean Sentence Probability: For a

given sentence, the LM predicts a higher
score/probability for a sentence that is more
grammatically and logically sound. We
calculate the mean sentences probability in
a text for each observation in each group
(control/patient).

2. Median Sentence Probability: This statistic
is calculated by taking the median of the prob-
abilities of sentences. The justification for
using this score is that the median, compared
to the mean, is more robust to outliers.

5.6.2 Analysis at Sentence level
1. Sentence probabilities: This statistic is ex-

tracted by aggregating LM individual sentence
scores. Sentences scores for all patients and
all controls are compared. The number of sen-
tence probability scores analyzed is equivalent
to the number of all sentences in the sample.

2. Mean of the deltas in sentence probabilities:
By using the sentences scores, the changes be-
tween the consecutive probability scores of
the sentences in the paragraphs are extracted
(deltas), and their average is calculated. The
total number of this statistic is equivalent to
the number of instances in the dataset. Our
aim here is to check if the patient group has
more fluctuations in their sentence probabili-
ties.

3. Minimum deltas in sentence probabilities:
The minimum of changes in the sentence prob-
abilities of consecutive sentences in each para-
graph is calculated and compared. The total
number of this statistic equals the number of
instances in the dataset.

4. Maximum of deltas in sentence probabili-
ties: Similar to the last statistic, the maximum
of changes in the sentence probabilities of
consecutive sentences in each paragraph are
calculated and compared. The total number
of this statistic equals the number of instances
in the dataset.

6 Discussion of the Results

Table 2 and Table 3 illustrate the results of emo-
tion analysis and specificity, respectively. Table
4 reports LCB averages and Table 5 summarizes
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Emotion LabWriting LabSpeech
P C P C

Anger 0.159 0.162 0.104* 0.095
Anticip. 0.043 0.039 0.035 0.039
Disgust 0.086 0.093 0.117 0.112
Fear 0.117* 0.103 0.181* 0.167
Joy 0.372 0.381 0.297 0.311
Sadness 0.127 0.127 0.139 0.138
Surprise 0.077 0.079 0.117 0.127
Trust 0.019* 0.015 0.010 0.010

Table 2: Emotion results. The bold values above indi-
cate the high means, and * indicates only the statistically
significant values.

personality percentages. Table 6 in appendix A
summarize the values of the cohesion linguistic
features: Information Structure (Givenness), Con-
nectives, Lexical Diversity, Syntactic Complexity,
Syntactic Pattern Density, and Word Information.
Table 7 and Table 8 in appendix A show the values
of the language model and perplexity scores. For
each comparison criteria we compare the p-value
to a significance level α = 0.05 to make conclu-
sions about our hypotheses. * is used to indicate
the results with a statistically significant p-value.

1. Descriptive features The p-values of the total
number of sentences in both datasets are sig-
nificant. There is a noticeable difference be-
tween the distribution of this statistic between
the two groups and it shows that Controls, on
average, generate more sentences.

2. Emotion We hypothesise that Patients score
high in fear. Our results show that Patients in
both LabWriting and LabSpeech score high in
fear (p–value = 0.002) and (p-value=0.004),
respectively. This result is consistent with
a previous study (Suslow et al., 2003) which
states that Patients tend to feel fear more often.
Patients in LabWriting score high in trust, and
this may be due to interviewing them in a
trustful environment.

3. Specificity We hypothesise that Patients write
less specific paragraphs. In the score of word
hyponyms (Noun) as a measure of specificity,
our results show that the Controls score signif-
icantly higher in LabWriting (p-value = 0.03).
Furthermore, Controls score higher in Lab-
Speech, though not significantly. Specificity

Specificity LabWriting LabSpeech
P C P C

Sent. level 0.47 0.48* 0.39 0.39
Hyponym 5.85 6.06* 6.36 6.45

Table 3: Specificity results. The above table shows the
average specificity at sentence level as well as word
hyponyms (Noun).

LCB LabWriting LabSpeech
P C P C

CB 0.52 0.51 0.60 0.58
NCB 0.013 0.020* 0.04 0.05
NA 0.45 0.46 0.34 0.35
ROB 0.008 0.010 0.010 0.012

Table 4: LCB results.

at sentence level is also significantly higher
in LabWriting for Controls (p-value = 0.009).
However, there is no difference between Con-
trols and Patients in LabSpeech. It should be
noted that the speech data are faithfully tran-
scribed where pauses and filler words such as
um, er, uh can lower the quality of the speech
relative the specificity model which is trained
on native textual input hence making it chal-
lenging to capture specificity.

4. LCB The hypothesis of this study states that
Patients show more commitment to their be-
liefs. Table 4 shows the results of LCB. It can
be noticed that Patients in both datasets score
higher in committed belief (CB) and Con-
trols score higher in Non-committed belief
(NCB). It confirms our hypothesis, and these
findings coincide with a previous study (Kayi
et al., 2018) that patients with schizophrenia
may show more commitment of their belief
to propositions expressed in either modality,
writing or speech.

5. Personality The hypothesis of this study
states that Patients score high levels of neu-
roticism and low levels of extraversion. Ta-
ble 5 reports the results of personality analysis.
The results show that Patients in both datasets
score lower in extroversion (EXT) (p-value
= 0.03) in LabWriting and score higher in
neuroticism (NEU) (p-value = 0.04) in Lab-
Writing. These results are in line with previ-
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Personality LabWriting LabSpeech
P C P C

EXT 34% 50%* 27% 30%
NEU 52%* 40% 35% 27%
AGR 60% 63% 81% 85%
CON 46% 54% 6.6% 7.3%
OPN 45% 40% 84% 75%

Table 5: Frequency Distribution of Personality Traits.

ous studies (Camisa et al., 2005),(Horan et al.,
2008), (Smeland et al., 2017) which show that
schizophrenia is associated with high levels
of neuroticism and low levels of extraversion.
We report all other personality traits in table 5;
However, our analysis mainly focuses on neu-
roticism and extraversion.

6. Information Structure (Givenness) The
average givenness per sentence of the
schizophrenia patients is statistically signif-
icantly lower than that of the Controls in both
LabWriting (p-value =0.001) and LabSpeech
(p-value = 0.01). Patients demonstrate chal-
lenges in recognizing things that others would
find obvious and consequently question or re-
peat those. In addition, they present some-
thing that they have already mentioned earlier
as completely new, compromising givenness.

7. Lexical Diversity In the metric Type-token
ratio (TTR) for all words, Patients scored
higher than Controls, with the difference be-
ing statistically significant in both LabWriting
(p-value = 0.004) and LabSpeech (p-value =
0.0001). The higher proportion of types by
Patients stems from the fact that they produce
more incomplete, indistinct, inaudible, or in-
comprehensible words or sounds and shorter
sentences and utterances, struggling to reor-
ganize their thoughts (Hinzen et al., 2019)
(Merrill et al., 2017). These non-words, par-
ticularly shorter sentences, contribute to the
higher TTRs for Patients.

Schizophrenic patients, however, are known to
repeat words and phrases (Manschreck et al.,
1985), and hence a basic TTR in itself is not a
reliable indicator for distinguishing between
Controls and Patients. TTR is only possible to
apply when text or speech are of equal length.
We thus compute two more metrics of lexical

diversity, namely measure of textual lexical
diversity (MTLD) and measure D vocabulary
diversity (VocD), which allow comparison of
lexical diversity of texts of unequal lengths.
By these measures, we find text and speech
of Controls to be lexically much more diverse,
with p-values in the order of 10−4.

8. Connectives In the uses of logical, temporal,
and extended temporal connectives in text and
speech, Controls consistently score higher.
The difference in scores is statistically signif-
icant in all three cases of speech which are
logic, temporal, and extended temporal con-
nectives with p-values respectively 0.03, 0.04,
and 0.03. In LabWriting, the difference is,
however, found to be statistically significant
(p-value = 0.03) only in the case of logical
connectives. Our findings validate one of the
decisive signs of schizophrenia, deficits of log-
ical reasoning among patients (Willits et al.,
2018) (Mackinley et al., 2021).

9. Syntactic Complexity In addition to phonetic
anomalies in terms of more pauses, loss of
prosody, and mumbled sounds, syntactic and
semantic conventions that govern the forma-
tion of sentences and ultimately the language
are routinely violated by schizophrenia pa-
tients (Stein, 1993). One of the manifestations
of these violations is the decrease in the syn-
tactic complexity of their writing and speech,
resulting in disorganized language with poor
content. According to all our three mea-
sures of syntactic complexity – SYNMEDpos,
SYNMEDwrd, and SYNMEDlem – Controls
demonstrate much higher syntactically com-
plex text, with statistically significant differ-
ences from Patients in all cases, except in Lab-
Speech, in which the difference is nevertheless
nearly significant. These results concur with
previous studies (Kayi et al., 2018) (Hinzen
et al., 2019) which showed that a patient with
schizophrenia alters the patterns of linguistic
organization, which leads to increased syntac-
tic errors.

10. Word Information In the usage of pronouns,
our results show that Patients use the first-
person pronouns, e.g., I, my, me, compara-
tively more, while Controls prefer first person
plural, second-person, and third-person more.
The differences are statistically significant in
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text but not in speech. This result is in line
with the previous study (Kayi et al., 2018)
(Tang et al., 2021). One metric in which Con-
trols score significantly higher in both Lab-
Writing and LabSpeech is the average mini-
mum word frequency in sentences. With Con-
trols producing significantly longer writings
or speeches, a greater frequency of words is
necessary to maintain coherence and a logical
flow in the text.

11. Language Model Analysis at Paragraph-
Level We measure the mean of the probabil-
ities of the sentences and the corresponding
medians to account for outlier effects. Since
both Patients and Controls produced an appre-
ciable number of tokens per sentence, we find
these probabilities lower for both groups. We
are primarily interested in the comparison of
the probabilities and find that the mean and
median probabilities are significantly lower
for Patients than for Controls in LabWriting,
with mean p-values of 0.01 and median p-
values of 0.02. The findings are in line with
previous studies (Kuperberg, 2010), (Hinzen
and Rosselló, 2015),(De Boer et al., 2020) that
schizophrenia patients often produce idiosyn-
cratic expressions and hence less probable nat-
urally occurring sentences.

While the probabilities in LabSpeech are
lower for Patients, the differences in corre-
sponding probabilities are not statistically sig-
nificant at mean p-values of 0.524 and me-
dian p-values of 0.237. This can be explained
by the fact that Controls can exploit the time
during writing better to their advantage to
produce more organized and coherent text.
Speech, on the other hand, is swift and spon-
taneous.

12. Language Model Analysis at Sentence
Level

In line with the mean and median of the prob-
abilities of the sentences at the paragraph
level, we compute the average of the prob-
abilities of all sentences. This metric, aver-
age sentence probabilities, is also significantly
lower for Patients (0.109) than for Controls
(0.117) with (p-value=0.0007). The differ-
ence in LabSpeech dataset, like that in the
paragraph level, is again not statistically sig-
nificant at (p-value=0.175).

The mean of changes in the sentence proba-
bilities, computed to evaluate how strongly
the sentence probabilities change from one
sentence to another in a paragraph and con-
sequently how much the sentences deviate
from a coherent and logical flow, is higher for
Controls (p-value= 0.05) in LabWriting. Two
other metrics related to this, the minimum and
the maximum of changes in sentence proba-
bilities, provide mixed, hence inconclusive,
results. These probabilities, therefore may not
be consistent indicators for the fluctuations
we expected.

13. Perplexity Table 8 in appendix A shows the
results of perplexity. We compute it at two lev-
els: the sentence level and the paragraph level,
to determine how predictable the language
of Patients is compared to that of Controls.
In LabWriting, the model is more perplexed
for Patients in both levels, and the difference
between the two groups is highly significant
(p-value =0.01) at the paragraph level while
(p-value =0.00005) at the sentence level. How-
ever, the results are not significant for Lab-
Speech for any of the two levels.

7 Conclusion

Patients with schizophrenia experience different
symptoms, some of which involve problems with
concentration and memory, which in return may
lead to disorganization in speech or behavior.
Therefore, diagnosing this disorder early and cor-
rectly is extremely important as it may help allevi-
ate the adverse effects on patients.

Among the linguistic features of cohesion inves-
tigated in this study, we found that Patients’ scores
are lower, with significant p-values in information
structure (givenness), lexical diversity except for
Type-token ratio (TTR), connectives, and syntactic
complexity in both datasets. Among the pragmatic
cues, we found that Patients’ score high in fear, and
their personality is associated with elevated neuroti-
cism. They also show more commitment to their
beliefs, and their average specificity at sentence
and word levels is lower than Controls.

In the future, we plan to expand our analysis to
other related mental health disorders. We also plan
to explore the pragmatically motivated linguistics
features of schizophrenia in other languages.
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Limitations

One of the main limitations of this study is the size
of the sample, and this is due to the data privacy and
the cost associated with collecting scripts written
by patients with schizophrenia.
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Cohesion Linguistic Featuress LabWriting LabSpeech
P C P C

1. LSA
Avg. givenness of each sentence 0.20 0.23* 0.31 0.32*
2. Lexical Diversity
Type token ratio (TTR) for all words 0.63* 0.60 0.46* 0.43
MTLD lexcical diversity measure for all words 59.9 68.82* 40.10 44.95*
VOC lexical diversity measure for all words 40.6 67.7* 42.73 52.20*
3. Connectives
Score of logic connectives 47.1 53.1* 33.66 38.31*
Score of temporal connectives 24.5 26.7 12.24 14.74*
Score of extended temporal connectives 24.3 27.2 14.44 18.04*
4. Syntactic Complexity
SYNMEDpos* 0.56 0.61* 0.66 0.68
SYNMEDwrd* 0.73 0.81* 0.84 0.87*
SYNMEDlem* 0.71 0.79* 0.82 0.84*
5. Word Information
Score of pronouns, first person, single form 96.6* 86.11 56.68 55.03
Score of pronouns, first person, plural form 6.3 10.2* 5.24 7.26
Score of pronouns, second person 3.37 6.22* 7.99 7.33
Score of pronouns, third person, plural form 7.90 12.25* 7.20 8.65
Avg. minimum word frequency in sentences 0.83 1.01* 1.30 1.45*

SYNMEDpos*: mean minimum editorial distance score between adjacent sentences computed from POS.
SYNMEDwrd*: minimum editorial distance score between adjacent sentences computed from words.
SYNMEDlem*: This is the minimum editorial distance score between adjacent sentences from lemmas.

Table 6: Coh-Metrix Linguistic Features Results

Cohesion Linguistic Features LabWriting LabSpeech
P C P C

1. Analysis at Paragraph level
- Mean of probabilities of sentences 0.110 0.119* 0.106 0.107
- Median of probabilities of sentences 0.107 0.117* 0.104 0.107
2. Analysis at Sentence level
-Sentence Probabilities 0.109 0.117* 0.103 0.106
-Mean of changes in sentence probabilities -0.106 -0.045* -0.060 -0.062
-Minimum of changes in sentence probabilities -1.283 -1.036* -1.835* -2.107
-Maximum of changes in sentence probabilities 1.036 0.986 1.572 1.902*

Table 7: The language model scores (probabilities) across different segmentation (levels)

Levels LabWriting LabSpeech
P C P C

Sentence 1.12 1.10* 1.11 1.12
Paragraph 203.9 150.4* 245.5 230.1

Table 8: Perplexity across different segmentation (levels)
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Abstract

In recent years, there has been a surge of in-
terest in research on automatic mental health
detection (MHD) from social media data lever-
aging advances in natural language processing
and machine learning techniques. While sig-
nificant progress has been achieved in this in-
terdisciplinary research area, the vast majority
of work has treated MHD as a binary classifi-
cation task. The multiclass classification setup
is, however, essential if we are to uncover the
subtle differences among the statistical patterns
of language use associated with particular men-
tal health conditions. Here, we report on ex-
periments aimed at predicting six conditions
(anxiety, attention deficit hyperactivity disorder,
bipolar disorder, post-traumatic stress disorder,
depression, and psychological stress) from Red-
dit social media posts. We explore and compare
the performance of hybrid and ensemble mod-
els leveraging transformer-based architectures
(BERT and RoBERTa) and BiLSTM neural net-
works trained on within-text distributions of a
diverse set of linguistic features. This set en-
compasses measures of syntactic complexity,
lexical sophistication and diversity, readabil-
ity, and register-specific ngram frequencies, as
well as sentiment and emotion lexicons. In
addition, we conduct feature ablation experi-
ments to investigate which types of features
are most indicative of particular mental health
conditions.

1 Introduction

Mental health is a major challenge in healthcare
and in our modern societies at large, as evidenced
by the topic’s inclusion in the United Nations’ 17
Sustainable Development Goals. The World Health
Organization estimates that 970 million people
worldwide suffer from mental health issues, the
most common being anxiety and depressive disor-
ders1. The problem is compounded by the fact that

1https://www.who.int/news-room/fact-sheets/
detail/mental-disorders

the rate of undiagnosed mental disorders has been
estimated to be as high as 45% (La Vonne et al.,
2012). The societal impact of mental health disor-
ders requires prevention and intervention strategies
focused primarily on screening and early diagnosis.
In keeping with the WHO Mental Health Action
Plan (Saxena et al., 2013), natural language pro-
cessing and machine learning can make an impor-
tant contribution to gathering more comprehensive
information and knowledge about mental illness.
In particular, an increasing use of social media plat-
forms by individuals is generating large amounts
of high-quality behavioral and textual data that can
support the development of computational solu-
tions for the study of mental disorders. An emerg-
ing, interdisciplinary field of research at the in-
tersections of computational linguistics, health in-
formatics and artificial intelligence now leverages
natural language processing techniques to analyze
such data to develop models for early detection of
various mental health conditions.

Systematic reviews of this research show that
the vast majority of the existing work has focused
primarily on automatic identification of specific
disorders, with depression and anxiety being the
most commonly studied target conditions (Calvo
et al., 2017; Chancellor and De Choudhury, 2020;
Zhang et al., 2022). As a result, existing work has
focused on developing binary classifiers that aim
to distinguish between individuals with a particular
mental illness and control users.

The current work addresses the more complex
problem of distinguishing between multiple men-
tal states, which is essential if we are to uncover
the subtle differences among the statistical pat-
terns of language use associated with particular
disorders. Specifically, in this paper we make the
following contributions to the existing literature
on health text mining based on social media data:
(1) We frame the MHC detection tasks as a multi-
class prediction task aimed to determine to what
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extent six mental health conditions (anxiety, atten-
tion deficit hyperactivity disorder, bipolar disorder,
post-traumatic stress disorder, depression, and psy-
chological stress) can be predicted on the basis of
social media posts from Reddit. (2) We explore
and compare the performance of hybrid and ensem-
ble models leveraging transformer-based architec-
tures (BERT and RoBERTa) and BiLSTM neural
networks trained on within-text distributions of a
diverse set of linguistic features. (3) We conduct
feature ablation experiments to investigate which
types of features are most indicative of particular
mental health conditions.

This paper is organized into five sections. Sec-
tion 2 provides a concise overview of the current
state of research on mental health detection from
Reddit social media posts. Section 3 presents the
experimental setup including descriptions of the
data, the type of linguistic features used and their
computation, and the modeling approach. The
main results are presented and discussed in Sec-
tion 4. In Section 5 general conclusions are drawn
and an outlook is given.

2 Related work

A growing body of research has demonstrated that
NLP techniques in combination with text data from
social media provide a valuable approach to under-
standing and modeling people’s mental health and
have the potential to enable more individualized
and scalable methods for timely mental health care
(see Calvo et al. (2017); Chancellor and De Choud-
hury (2020); Zhang et al. (2022), for systematic
reviews). A surge in the number of research initia-
tives by way of workshops and shared tasks, such
as Computational Linguistics and Clinical Psychol-
ogy (CLPsych) Workshop, Social Media Mining
for Health Applications (SMMH) and International
Workshop on Health Text Mining and Information
Analysis (LOUHI), are advancing this research
area: It fosters an interdisciplinary approach to
automatic methods for the collection, extraction,
representation, and analysis of social media data for
health informatics and text mining that tightly inte-
grates insights from clinical and cognitive psychol-
ogy with natural language processing and machine
learning. It actively contributes to making publicly
available large labeled and high quality datasets,
the availability of which has a significant impact
on modeling and understanding mental health.

While earlier research on social media mining

for health applications has been conducted primar-
ily with Twitter texts (Braithwaite et al., 2016;
Coppersmith et al., 2014), a more recent stream
of research has turned towards leveraging Reddit
as a richer source for constructing mental health
benchmark datasets (Cohan et al., 2018; Turcan
and McKeown, 2019). Reddit is an interactive,
discussion-oriented platform without any length
constraints like Twitter, where posts are limited to
280 characters. Its users, the Redditors, are anony-
mous and the site is clearly organized into more
than two million different topics, subreddits. An-
other crucial fact that makes Reddit more suitable
for health text mining is that, unlike Twitter (with
its limited text length), extended text production
provides a richer linguistic signal that allows anal-
ysis at all levels of organization (morpho-syntactic
complexity, lexical and phrasal variety, and sophis-
tication and readability). Yates et al. (2017), for
instance, proposed an approach for automatically
labeling the mental health status of Reddit users.
Reflecting the topic organization of Reddits with
its subreddits, the authors created high precision
patterns to identify users who claimed to have been
diagnosed with a mental health condition (diag-
nosed users) and used exclusion criteria to match
them with control users. To prevent easy identi-
fication of diagnosed users, the resulting dataset
excluded all obvious expressions used to construct
it. This approach was also adapted to other mental
health conditions (Cohan et al., 2018).

Previous research on health text mining from
social media posts has primarily focused on the
automatic identification of specific mental disor-
ders and has treated it as a binary classification
task aimed at distinguishing between users with
a target mental condition and control ones (see
the systematic reviews mentioned above). To the
best of our knowledge, the only two exceptions are
Gkotsis et al. (2017) and Murarka et al. (2021).
Gkotsis et al. (2017) proposed an approach to
classify mental health-related posts according to
theme-based subreddit groupings using deep learn-
ing techniques. The authors constructed a dataset
of 458,240 posts from mental health related sub-
reddits paired with a control set approximately
matched in size (476,388 posts). The mental health-
related posts were grouped into 11 MHC themes
(addiction, autism, anxiety, bipolar, BPD, depres-
sion, schizophrenia, selfharm, SuicideWatch, crip-
plingalcoholism, opiates) based on a combination
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of manual assessment steps and automated topic
detection. Their best performing model, a convo-
lutional neural network classifier trained on word
embeddings, was able to identify the correct theme
with a weighted average accuracy of 71.37%. The
approach taken in this work was primarily aimed
at identifying posts that are relevant to a men-
tal health subreddit, as well as the actual mental
health topic to which they relate. Another more
recent exception similar to our work is Murarka
et al. (2021). The authors used RoBERTa (Ro-
bustly Optimized BERT Pretraining Approach, Liu
et al. (2019)) to build multiclass models to identify
five mental health conditions from Reddit posts
(ADHD, anxiety, bipolar disorder, depression, and
PTSD). The model was trained on a dataset con-
sisting of Reddit subreddits with 17,159 posts. The
RoBERTa-based model achieved a macro-averaged
F1 value of 89%, with F1 values for individual con-
ditions ranging from 84% for depression to 91% for
ADHD. Although these results appear impressive,
they should be interpreted with caution: To obtain
data for each of the mental health conditions, the
authors extracted posts from five subreddits (r/adhd,
r/anxiety, r/bipolar r/disorder, r/depression, r/ptsd)
and assigned them a class label corresponding to
the name of the condition with which they were as-
sociated. Posts for the control group were selected
from subreddits with a wide range of general top-
ics (music, travel, India, politics, English, datasets,
mathematics and science). The way the datasets
in Gkotsis et al. (2017) and Murarka et al. (2021)
are constructed rendered the classification tasks
relatively easy, as it allows the classifier to use ex-
plicit mentions of mental health terms associated
with a particular mental health condition. However,
there is growing recognition that careful dataset
construction is critical to developing robust and
generalizable models for detecting mental health
status on social media. This requires the removal of
expressions indicating mental health status for both
diagnosed and control users (see (Yates et al., 2017)
or SMHD (Cohan et al., 2018); see also Chancel-
lor and De Choudhury (2020) and Harrigian et al.
(2021) for discussions on obtaining ground truth
labels for the positive classes and data preprocess-
ing/selection).

The existing research on the detection of mental
health conditions in social media mainly follows
one of two approaches: One focuses on linguistic
features, mainly in the form of unigrams with TF-

IDF (term frequency-inverse document frequency)
weighting, or on specialized dictionaries, espe-
cially the categories from the Linguistic Inquiry
and Word Count (LIWC) dictionaries (De Choud-
hury et al., 2013; Nguyen et al., 2014; Sekulic and
Strube, 2019; Zomick et al., 2019). The second
centers on leveraging contextualized embedding
techniques and pre-trained language models such
as BERT (Devlin et al., 2019), ELMo (Peters et al.,
2018), and RoBERTa (?), minimizing the need for
tasks such as feature engineering or feature selec-
tion (Gkotsis et al. (2017); Murarka et al. (2021),
see also Su et al. (2020) for a review). However,
less work has been undertaken to date to explore
hybrid and ensemble models for mental illness
recognition that integrate engineered features with
transformer-based language models. Such hybrid
models have recently been successfully applied in
the neighboring research area of personality recog-
nition (Mehta et al., 2020; Kerz et al., 2022).

3 Experimental setup

3.1 Dataset

The dataset used in this work was constructed from
two recent corpora used for the detection of MHC:
(1) the Self-Reported Mental Health Diagnoses
(SMHD) dataset (Cohan et al., 2018) and (2) the
Dreaddit dataset (Turcan and McKeown, 2019).
Both SMHD and Dreaddit were compiled from
Reddit, a social media platform consisting of indi-
vidual topic communities called subreddits, includ-
ing those relevant to MHC detection. The length
of Reddit posts makes them a particularly valuable
resource, as it allows modeling of the distribution
of linguistic features in the text.

SMHD is a large dataset of social media posts
from users with nine mental health conditions
(MHC) corresponding to branches in the DSM-5
(APA, 2013), an authoritative taxonomy for psy-
chiatric diagnoses. User-level MHC labels were
obtained through carefully designed distantly su-
pervised labeling processes based on diagnosis pat-
tern matching. The pattern matching leveraged a
seed list of diagnosis keywords collected from the
corresponding DSM-5 headings and extended by
synonym mappings. To prevent that target labels
can be easily inferred from the presence of MHC in-
dicating words/phrases in the posts, all posts made
to mental health-related subreddits or containing
keywords related to a mental health condition were
removed from the diagnosed users’ data. Dread-
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Table 1: Datasets statistics (number of posts, means
and standard deviations of post length (in words) across
mental health conditions and control groups.

MHC Dataset N posts M length SD
Stress Dreaddit 1857 91 35
ADHD SMHD 1849 91.4 57
Anxiety SMHD 1846 91.7 56.3
Bipolar SMHD 1848 93 57.7
Depression SMHD 1846 92.4 58.7
PTSD SMHD 1600 95.7 59.9
Control Dreaddit 1696 83.6 29.7

SMHD 1805 78.8 48.6

dit is a dataset of lengthy social media posts from
subreddits in five domains that include stressful
and non-stressful text. For a subset of 3.5k users
employed in this paper, binary labels (+/- stress-
ful) were obtained from aggregated ratings of five
crowdsourced human annotators.

Based on these two corpora, we constructed a
dataset with the goal of obtaining sub-corpora of
equal size for the six MHCs targeted in this paper.
To this end, we downsampled SMHD to match the
size of Dreaddit and to be balanced in terms of
class distributions. The sampling procedure from
the SMHD dataset was such that each post was pro-
duced by a distinct user. In doing so, we addressed
a concerning trend described in recent review ar-
ticles that points to the presence of a relatively
small number of unique individuals, which may
hinder the generalization of models to platforms
that are already demographically skewed (Chan-
cellor and De Choudhury, 2020; Harrigian et al.,
2021). These constraints were met for five of the
nine MHC in the SMHD dataset (attention deficit
hyperactivity disorder (ADHD), anxiety, bipolar,
depression, post-traumatic stress disorder (PTSD)).
The data for the control groups contained the full
Dreaddit control subset, which comtains just under
1700 posts, plus an additional 1805 control posts
from the SMHD dataset that were matched in terms
of post length. The control subset was intentionally
designed as a majority class to reduce false posi-
tive (overdiagnosis) rates (see Merten et al. (2017)
for discussion). Statistics for these datasets are
presented in Table 1.

3.2 Measurement of within-text distributions
of engineered features

A diverse set of features used in this work fall into
the following eight broad categories: (1) features
of morpho-syntactic complexity (N=19), (2) fea-

tures of lexical richness (N=52), (3) register-based
n-gram frequency features (N=25), (4) readability
features (N=14), and lexicon features designed to
detect sentiment, emotion and/or affect (N=325).
These features were subdivided into four categories:
(5) Emotion/Sentiment, (6) LIWC, (7) Affect, and
(8) General Inquirer. An overview of these fea-
tures can be found in Table 4 in the appendix. All
measurements of these features were calculated us-
ing an automated text analysis (ATA) system that
employs a sliding window technique to compute
sentence-level measurements (for recent applica-
tions of the ATA system in the context of text clas-
sification, see Qiao et al. (2021) and Kerz et al.
(2022)). These measurements capture the within-
text distributions of scores for a given feature. To-
kenization, sentence splitting, part-of-speech tag-
ging, lemmatization and syntactic PCFG parsing
were performed using Stanford CoreNLP (Man-
ning et al., 2014).

Figure 1 provides some examples of within-text
distributions for four selected features for twelve
randomly selected Reddit posts from two datasets
used in our work. Each of panels in Figure 1 shows
the distributions of four of the 436 textual features
for one 24 randomly selected texts. The panels on
top show the within-text distributions for 12 ran-
domly selected Reddit posts categorized as exhibit-
ing stress from the Dreaddit dataset. The panels
panels on the bottom show the within-text distri-
butions for 12 randomly selected posts from the
SMHD daatset from users diagnosed with depres-
sion. We note that the distribution of feature values
is generally not uniform, but shows large fluctua-
tions over the course of the text. Furthermore, high
values in one feature are often counterbalanced by
low values in another feature. The classification
models described in Section 3.3 are designed to
detect local peaks of particular features and exploit
the fluctuations for the detection of specific MHCs.

3.3 Modeling approach

We built five multiclass classification models to
predict six mental health conditions (depression,
anxiety, bipolar, ADHD, stress and PTSD): Two of
these models leverage transformer-based architec-
tures: BERT (Devlin et al., 2019) and RoBERTa
(?). These serve as the baseline models and compo-
nents of our hybrid model. We used the pretrained
‘bert-base-uncased’ and ‘roberta-base’ models from
the Huggingface Transformers library (Wolf et al.,
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Figure 1: Within-text distributions of ClS (Clauses per Sentence), CTTR (corrected Type/Token Ratio), MLS
(Mean Length of Sentence in Words), NGSL (Number of Sophisticated Words). Panels on top show the within-text
distributions for 12 randomly selected Reddit posts categorized as exhibiting stress from the Dreaddit dataset.
Bottom panels show the within-text distributions for 12 randomly selected posts from the SMHD daatset from users
diagnosed with depression.

2020), each with an intermediate bidirectional long
short-term memory (BiLSTM) layer with 256 hid-
den units (Al-Omari et al., 2020). The third model
is a BiLSTM classifier (Psyling-BiLSTM) trained
solely on the eight feature groups described in
Section 3.2. Specifically, we constructed a 4-
layer BiLSTM with a hidden state dimension of
1024. The input to that model was a sequence
CMN

1 = (CM1, CM2 . . . , CMN ), where CMi,
the output of ATA for the ith sentence of a post, is
a 436 dimensional vector and N is the sequence
length. To predict the labels of a sequence, we
concatenate the last hidden states of the last layer
in forward (

−→
hn) and backward directions (

←−
hn). The

result vector of concatenation hn = [
−→
hn|←−hn] is then

transformed through a 2-layer feedforward neural
network, whose activation function is Rectifier Lin-
ear Unit (Agarap, 2018). The output of this is then
passed to a Fully Connected (FC) layer with ReLu
activation function and dropout of 0.2 and it is fed
to a final FC layer. The output is passed through
sigmoid function and finally a threshold is used
to determine the labels. We trained these models
for 500 epochs, and saved the model that performs
best on validation set, with a batch size of 256 and
a sequence length of 10. The fourth model (Hy-
brid) is a hybrid classification model that integrates
(i) a pretrained RoBERTa model whose output is
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Figure 2: Structure diagram of BiLSTM mental health
classification model trained on linguistic features

passed through a BiLSTM layer and a subsequent
FC layer with (ii) a BiLSTM network of linguis-
tic features of the text with a subsequent FC layer.
The FC layers of both components take as input
the concatenation of last hidden states of the last
BiLSTM layer in forward and backward direction.
We concatenated the outputs of these components
before finally feeding them into a final FC layer
with a sigmoid activation function. Specifically, the
component with the pretrained RoBERTa model
comprised a 2-layer BiLSTM with 256 hidden units
and a dropout of 0.2. The component with the with
the linguistic features consists of a 3-layer BiLSTM
with a hidden size of 512 and a dropout of 0.2. We
trained this model for 12 epochs, saving the model
with the best performance (F1-Score) on the devel-
opment set. The optimizer used is AdamW with a
learning rate of 2e-5 and a weight decay of 1e-4.
Structure diagrams of the model based solely on
linguistic features and the hybrid architectures are
presented in Figures 2 and 3. In order to reduce
the variance of the estimates, we trained all models
in a 5-fold CV setup. Reported values represent
averages over five runs. The fifth model (Stacking)
applied a stacking approach to ensemble all models
(Wolpert, 1992).

The training procedure consisted of two stages
(see Figure 4). In Stage 1, each of the four mod-
els was trained independently using 5-fold cross-
validation. For each text sample in the test fold, we
obtained a prediction vector from each of the four
component models. These predictions vectors were
then concatenated and constituted the input data
in a subsequent training stage (Stage 2). The final
predictions of the ensemble model were derived
from another logistic regression model trained on
the concatenated prediction vectors from Stage 1.
To perform inference on the test set, the predic-

Figure 3: Structure diagram of the hybrid mental health
classification models

Figure 4: Schematic representation of ensembling by
stacking.

tions of all model instances trained in Phase 1 were
taken and averaged by model to serve as input to
Phase 2 after concatenation. All hyperparameters
for the training of each of the ensembled models
were selected as specified above.

3.4 Feature ablation

To assess the relative importance of the feature
groups in predicting six mental health condi-
tions, we used Submodular Pick Lime (SP-LIME;
(Ribeiro et al., 2016)). SP-LIME is a method to
construct a global explanation of a model by ag-
gregating the weights of linear models, that locally
approximate the original model. To this end, we
first constructed local explanations using LIME.
Analogous to super-pixels for images, we catego-
rized our features into eight groups (see section
3.2). We used binary vectors z ∈ {0, 1}d to denote
the absence and presence of feature groups in the
perturbed data samples, where d is the number of
feature groups. Here, ‘absent’ means that all values
of the features in the feature group are set to 0, and
‘present’ means that their values are retained. For
simplicity, a linear regression model was chosen as
the local explanatory model. An exponential kernel
function with Hamming distance and kernel width
σ = 0.75

√
d was used to assign different weights

to each perturbed data sample. After construct-
ing their local explanation for each data sample in
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the original dataset, the matrix W ∈ Rn×d was
obtained, where n is the number of data samples
in the original dataset and Wij is the jth coeffi-
cient of the fitted linear regression model to ex-
plain data sample xi. The global importance score
of the SP-LIME for feature j can then be derived
by: Ij =

√∑n
i=1 |Wij |

4 Results and Discussion

Table 2 gives an overview of the results of the five
multiclass classification models described in Sec-
tion 3.2 Our overall best-performing model (Stack-
ing) achieved a macro F1 score of 31.4%, corre-
sponding to an increase in performance of +3.4%
F1 over the BERT baseline and +3.95% F1 over
the RoBERTa baseline. In terms of class-wise
performance, the highest prediction accuracy was
achieved in the detection of stress with a maxi-
mum average F1 score of 77%. The second highest
prediction accuracy was achieved for the control
class with a maximum average F1 score of 53.58%.
The next highest classification accuracies were ob-
served for depression (27.48% F1) and ADHD
(24.84% F1). Anxiety and bipolar exhibited max-
imum prediction accuracies greater than 18% F1.
Lowest accuracy (14%) was obtained for PTSD.
Our Psyling-BiLSTM-model trained exclusively
on within-text distributions of eight feature groups
achieved a macro F1 score of 22.20%, a decrease of
-5.8% F1 from the BERT baseline and -5.25% F1
from the RoBERTa baseline. Another key finding
of our experiments is that mental health state pre-
diction benefits immensely from a hybrid approach:
The results show that a hybrid model integrating
a RoBERTa-based model with text-internal distri-
butions of eight feature groups outperforms the
transformer-based models by +1.8% (vs. BERT)
and +2.35% (vs. RoBERTa) macro-F1. More-
over, the hybrid model efficiently combined the
strengths of the two transformer models (BERT
and RoBERTa) and Psyling-BiLSTM, which sig-
nificantly increased the robustness of the model
predictions: Both the transformer-based baseline
models and the Psyling-BiLSTM showed below
chance performance (< 12.5 % F1) for two of the
seven classes. The hybrid model compensated for
such drawbacks in an effective manner.

As for the error analysis, Figure 5 shows the
confusion matrix of our best model (Stacking) nor-
malized over the actual classes (in rows). We found
that for five of the seven mental health conditions,

Figure 5: Confusion matrix of the stacking model on
multi-class mental health status prediction.

the majority of model predictions applied to the cor-
rect class (ADHD 25%, bipolar 23%, depression
34%, stress 76%, control 54%). Bipolar disorder
was frequently misclassified as PTSD (23%). Anx-
iety was most often classified as ADHD (18%),
followed by bipolar disorder and correct classifi-
cation (both 16%). Depression posts were most
frequently confused with ADHD (19%), bipolar
disorder (16%) and anxiety (14%). At the same
time, depression was by far the most frequently
predicted class overall, with an average prediction
rate of 24.4%.

These findings reflect evidence in the psychiatric
literature indicating that there is considerable over-
lap in clinical symptoms and pathophysiological
processes and that depressive symptoms may also
occur in the context of another psychiatric disorder
(e.g., bipolar disorder) (Baldwin et al., 2002). Fur-
thermore, psychiatric data suggest that depressive
disorders (i.e., major depressive disorder and dys-
thymia) are highly comorbid with other common
mental disorders (Rohde et al., 1991; Gold et al.,
2020). In contrast, misclassifications in the stress
category were almost exclusively controls (22% of
all predictions), indicating that statistical patterns
of language use reflecting stress differ from those
for diagnosed mental health disorders. Controls
were in turn most frequently confused with ADHD
(13% of all predictions). This finding is consistent
with the prevalence of overdiagnosis of ADHD in
children and adolescents (Kazda et al., 2019). Fi-
nally, PTSD was correctly classisfied in only 1% of
the cases, and typically misclassified as depression
(36%) or bipolar (23%). That said, user posts were
predicted by the stacking model to be PTSD only
6.5% (21/320) of the time, suggesting that the clas-
sifier is sensitive to the slightly lower frequency of
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Table 2: Results of the multiclass classification. All numbers represent F1 scores averaged across 5 folds.

Mental Health Condition
Models Depression Anxiety Bipolar ADHD Stress PTSD Control Average
BERT 17.40 15.20 19.80 5.80 71.20 7.60 48.00 28.00
RoBERTa 27.48 12.83 3.46 17.88 76.22 1.46 52.85 27.45
Psyling-BiLSTM 19.40 15.80 9.60 14.60 51.80 4.00 36.60 22.20
Hybrid 18.40 17.00 11.80 19.40 77.00 14.00 50.60 29.80
Stacking 27.23 18.55 18.21 24.84 76.61 0.96 53.58 31.40

Table 3: Results of the feature ablation. Values represents I scores of a feature group in percent. Values in
parentheses indicate the rank of a feature groups per MHC.

Importance
Feature Group Depression Anxiety Adhd Bipolar Stress Ptsd
Readability (N=14) 37.06 (1) 38.83 (1) 34.68 (1) 40.1 (1) 25.14 (2) 41.86 (1)
Reg.-spec. Ngram (N=25) 21.85 (2) 21.11 (2) 24.02 (2) 20.56 (2) 21.43 (3) 20 (2)
Lexical richness (N=52) 15.92 (3) 15.17 (3) 15.48 (3) 14.73 (3) 26.15 (1) 14.27 (3)
EmoSent (N=39) 12.09 (4) 11.98 (4) 11.79 (4) 11.87 (4) 12.18 (4) 11.46 (4)
MorphSyn complexity (N=19) 8.01 (5) 7.94 (5) 8.69 (5) 7.81 (5) 9.47 (5) 7.7 (5)
LIWC (N=61) 2.48 (6) 2.42 (6) 2.61 (6) 2.41 (6) 2.71 (6) 2.29 (6)
General Inquirer (N=188) 1.98 (7) 1.94 (7) 2.08 (7) 1.91 (7) 2.22 (7) 1.84 (7)
GALC (N=38) 0.62 (8) 0.61 (8) 0.66 (8) 0.6 (8) 0.69 (8) 0.58 (8)

this mental disorder. In view of the model’s ten-
dency to avoid predictions for the less populated
class, we conducted additional multiclass experi-
ments without the PTSD class to determine how
this would affect the overall pattern of findings.
The results of these experiments revealed that the
exclusion of PTSD yielded a slight improvement
in overall classification accuracy, with the improve-
ment over chance increasing from 18.9% F1 to
23.65% F1. In regards to rank order, the perfor-
mances of the models mirror those of the models
with PTSD: the hybrid model still outperformed
both transformer-based models (+3.6% F1 over
BERT and +3.37% F1 over RoBERTa) and the
stacked generalization still yielded highest classifi-
cation accuracy (+2.05% F1 over the hybrid model).
The general patterns of misclassification remained
the same (for further details, see Table 5 in the
appendix).

The results of the feature ablation experiments
are presented in Table 3. We found that the three
most important feature groups across all six men-
tal health conditions are rather general in nature:
Readability, lexical richness, and register-specific
n-gram frequencies. In comparison, the feature
groups representing closed vocabulary approaches
(EmoSent, LIWC, General Inquirer, GALC), which
have been prominently used in previous work on
health text mining, play a minor role. This is par-
ticularly striking given that these groups comprise
a much greater number of features that have re-
peatedly been identified as mental health signals

(see, e.g., Resnik et al., 2013; Alvarez-Conrad et
al., 2001; Tausczik and Pennebaker, 2010, Cop-
persmith et al., 2014). It is noteworthy that the
ranking of the three most important feature groups
is consistent across all five mental disorders as-
sessed, with readability features being the most
important group. In contrast, stress is strongly as-
sociated with features of lexical richness, which
includes measures of lexical sophistication, variety,
and density. Taken together, these results suggest
that research in health text mining and automatic
prediction of mental health conditions should move
beyond lexicon-based feature groups and place a
greater emphasis on more general text features.

5 Conclusion and Outlook

In this paper, we reported on multiclass classifi-
cation experiments aimed at predicting six mental
health conditions from Reddit social media posts.
We explored and compared the performance of hy-
brid and ensemble models leveraging transformer-
based architectures (BERT and RoBERTa) and BiL-
STM networks trained on within-text distributions
of a diverse set of linguistic features. Our results
show that the proposed hybrid models significantly
improve both model robustness and model accuracy
compared to transformer-based baseline models.
The use of model stacking proved to be an effec-
tive technique to further improve model accuracy.
Ablation experiments revealed that the importance
of textual features concerning readability, register-
specific n-gram frequency and lexical richness far
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outweighs the importance of closed vocabulary fea-
tures. In future work, we intend to perform com-
prehensive feature analysis based on within-text
distribution to identify most distinctive indicators
of diverse depressive disorders. We also intend to
extend the approach presented here to incorporate
features of textual cohesion. In addition, we intend
to integrate the proposed approach with data on the
behavioral activity of the individual, such as the
frequency of posting and the temporal distribution
of posting histories.
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A Appendix

Table 4: Overview of the 436 features investigated in the work.

Feature group Number Features Example/Description
of features

Morpho-syntactic 19 MLC Mean length of clause (words)
MLS Mean length of sentence (words)
MLT Mean length of T-unit (words)
C/S Clauses per sentence
C/T Clauses per T-unit
DepC/C Dependent clauses per clause
T/S T-units per sentence
CompT/T Complex T-unit per T-unit
DepC/T Dependent Clause per T-unit
CoordP/C Coordinate phrases per clause
CoordP/T Coordinate phrases per T-unit
NP.PostMod NP post-mod (word)
NP.PreMod NP pre-mod (word)
CompN/C Complex nominals per clause
CompN/T Complex nominals per T-unit
VP/T Verb phrases per T-unit
BaseKolDef Kolmogorov Complexity
MorKolDef Morphological Kolmogorov Complexity
SynKolDef Syntactic Kolmogorov Complexity

Lexical richness 52 MLWc Mean length per word (characters)
MLWs Mean length per word (sylables)
LD Lexical density
NDW Number of different words
CNDW NDW corrected by Number of words
TTR Type-Token Ration (TTR)
cTTR Corrected TTR
rTTR Root TTR
AFL Sequences Academic Formula List
ANC LS (ANC) (top 2000)
BNC LS (BNC) (top 2000)
NAWL LS New Academic Word List
NGSL LS (General Service List)
NonStopWordsRate Ratio of words in NLTK non-stopword list
WordPrevalence See Brysbaert et al. (2019)
Prevalence Word prevalence list

incl. 35 categories
(Johns et al. (2020))

AoA-mean avg. age of acquisition
(Kuperman et al. (2012))

AoA-max max. age of acquisition
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(continued)
Register-based 25 Spoken (n ∈ [1, 5]) Frequencies of uni-, bi-
N-gram Fiction (n ∈ [1, 5]) tri-, four-, five-grams

Magazine (n ∈ [1, 5]) from the five sub-components
News (n ∈ [1, 5]) (genres) of the COCA,
Academic (n ∈ [1, 5]) see Davies (2008)

Readability 14 ARI Automated Readability Index
ColemanLiau Coleman-Liau Index
DaleChall Dale-Chall readability score
FleshKincaidGradeLevel Flesch-Kincaid Grade Level
FleshKincaidReadingEase Flesch Reading Ease score
Fry-x x coord. on Fry Readability Graph
Fry-y y coord. on Fry Readability Graph
Lix Lix readability score
SMOG Simple Measure of Gobbledygook
GunningFog Gunning Fog Index readability score
DaleChallPSK Powers-Sumner-Kearl Variation of

the Dale and Chall Readability score
FORCAST FORCAST readability score
Rix Rix readability score
Spache Spache readability score

Lexicons: 325
EmoSent 39 ANEW-Emo lexicons (Stevenson et al., 2007)

Affective Norms for English Words (Bradley and Lang, 1999)
DepecheMood++ (Araque et al., 2019)
NRC Word-Emotion Association (Mohammad and Turney, 2013)
NRC Valence, Arousal, and Dominance (Mohammad, 2018)
SenticNet (Cambria et al., 2010)
Sentiment140 (Mohammad et al., 2013)

GALC 38 Geneva Affect Label Coder (Scherer, 2005)
LIWC 61 LIWC (Pennebaker et al., 2001)
Inquirer 188 General Inquirer (Stone et al., 1966)

Table 5: Results of the multiclass classification of MHCs (without PTSD).

Mental Health Condition
Models Depression Anxiety Bipolar ADHD Stress Control Average
BERT 4.36 29.12 3.47 28.88 77.37 52.22 32.2
RoBERTa 8.07 6.40 26.00 18.84 82.8 52.26 32.43
Psyling-BiLSTM 11.48 6.88 11.43 21.25 59.00 38.32 24.84
Hybrid 20.80 16.00 14.2 26.8 81.60 52.6 35.80
Model Stacking 21.93 18.96 21.93 19.10 83.14 55.22 37.85
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Abstract

Using language models created from large data
sources has improved the performance of sev-
eral deep learning-based architectures, obtain-
ing state-of-the-art results in several NLP ex-
trinsic tasks. However, little research is re-
lated to creating intrinsic tests that allow us to
compare the quality of different language mod-
els when obtaining contextualized embeddings.
This gap increases even more when working on
specific domains in languages other than En-
glish. This paper proposes a novel graph-based
intrinsic test that allows us to measure the qual-
ity of different language models in clinical and
biomedical domains in Spanish. Our results
show that our intrinsic test performs better for
clinical and biomedical language models than a
general one. Also, it correlates with better out-
comes for a NER task using a probing model
over contextualized embeddings. We hope our
work will help the clinical NLP research com-
munity to evaluate and compare new language
models in other languages and find the most
suitable models for solving downstream tasks.

1 Introduction

In healthcare, text plays a role of enormous impor-
tance. One of the media that a medical practitioner
can persist is the text in clinical records (Dalianis,
2018). Text is one of the richest forms of infor-
mation inside the electronic health record, so it is
fundamental to develop tools to extract information
from these text sources. To create these tools in
this field, we must pay special attention to ensuring
quality and reproducibility.

Analyzing unstructured texts written by humans
is challenging since it is complex to formally under-
stand and describe the rules governing human lan-
guage, as it is ambiguous and constantly evolving.
Natural Language Processing (NLP) is an interdis-
ciplinary field of artificial intelligence that seeks
to develop algorithms capable of understanding,
interpreting, and manipulating these unstructured

texts (Jurafsky and Martin, 2000).
In the medical context, using NLP helps to ad-

dress tasks such as extracting medical entities, dis-
ease coding, text classification, and relation ex-
traction, among others. However, one of the steps
before solving any of these tasks is to create robust
numerical representations of the text so that the
computer can handle this data.

Word embeddings are dense, semantically mean-
ingful vector representations of a word. These
models have proven to be a fundamental build-
ing block of neural network-based architectures
(Lample et al., 2016). Although these models have
obtained excellent results for several NLP tasks,
their main drawback is that they provide a single-
word representation in a given document. This is
not optimal since a word meaning may depend on
the sentence in which it appears. This type of word
embedding is known as static word embeddings.

Contextual representation models handle this
issue by creating word representations based on
sentence-level context. These representations are
commonly retrieved from pretrained language mod-
els (PLM). Classic examples of these models are
ELMO, BERT, RoBERTa, Flair, ALBERT, among
others. However, contextualized word embeddings
may not represent words as well as static ones, as
results obtained in Reimers and Gurevych (2019)
suggest.

Although contextualized word embeddings have
these drawbacks, we can use these numeric repre-
sentations of words to understand PLM represen-
tations. Specifically, we are interested in study-
ing how domain-specific and general-domain PLM
represent clinical and biomedical concepts. In this
study, we aim to create a simple and efficient test
for measuring concept embeddings’ quality and
comparing clinical and biomedical PLM perfor-
mance using a relevant knowledge base and graph,
the Unified Medical Language System (UMLS).

A knowledge graph is an extensive network of
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entities relevant to a specific domain. The network
describes each entity’s semantic types, properties,
and relationships. Knowledge graphs represent
real-world entities and their relations in a graph,
define possible classes, and allow to relate arbitrary
entities with each other (Ehrlinger and Wöß, 2016).

The UMLS is a knowledge graph that combines
many clinical and biomedical vocabularies and
standards to enable interoperability between com-
puter systems (Bodenreider, 2004). The UMLS
consists of multiple knowledge sources. One is the
metathesaurus, a large, multi-purpose, and multi-
lingual vocabulary database that contains informa-
tion about biomedical and clinical-related concepts,
their various names, and their relationships. An-
other source is the semantic network, a consistent
categorization of all concepts represented in the
metathesaurus, providing a set of valuable relation-
ships between these concepts. In this work, we
used both knowledge sources.

Two testing frameworks have been developed
to measure the quality of language representations.
First, an extrinsic test framework that uses the lan-
guage representations to construct a more complex
architecture to solve a specific downstream task.
Second, an intrinsic test framework that measures
the capacity of the language representation to re-
solve semantic questions regarding the language
domain it represents (Zhai et al., 2016; Wang et al.,
2019; Bakarov, 2018).

To construct intrinsic tests, we must compose
questions based on a source of truth. This source
can be expert knowledge, where we ask human
experts to write each one of these questions manu-
ally, or we can use a knowledge base to compose
these questions automatically. We used the UMLS
knowledge graph to automatically derive a concept
similarity intrinsic test using the length of the short-
est path in the graph to compute a true similarity
measure between concepts.

This intrinsic test will be used as a metric to
check how good language representations are, but
also as a comparison measure of whether clini-
cal and biomedical PLM are better compared to
general ones in downstream tasks such as Named
Entity Recognition (NER).

2 Related work

PLM such as BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018), and GPT-2 (Radford et al.,
2019) are able to produce contextualized word em-

beddings. It has been shown that contextualized
word embeddings can achieve near state-of-the-art
performance in tasks such as POS tagging or NER
using probing models (Liu et al., 2019). Addi-
tionally, contextualized word embeddings from top
layers of PLM produce more context-specific and
anisotropic representations (Ethayarajh, 2019).

Regarding the clinical and biomedical domain
in English, there are several models to obtain con-
textualized embeddings, such as BioELMo (Jin
et al., 2019), Clinical BERT (Alsentzer et al., 2019),
SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2020), among others. However, there re-
mains a significant lack of language models in
Spanish. The only models available are SciELO
Flair (Akhtyamova et al., 2020), Clinical Flair
(Rojas et al., 2022b), and clinical and biomedical
versions of RoBERTa (Carrino et al., 2022). Al-
though these studies have shown that incorporating
domain-specific contextualized embeddings signifi-
cantly improves the models’ performance in several
extrinsic tasks, comparing their performances with
intrinsic tests is still necessary.

Since PLM creates word-level contextual repre-
sentations, it is necessary to define a method for
combining these vectors to create sentence-level
embeddings. For this purpose, a popular technique
is the mean pooling of contextual word embed-
dings (Reimers and Gurevych, 2019). However,
this method may lead to poor results if the PLM
is not explicitly trained for similarity. Another
study has proposed transforming the distribution
of sentence-level embeddings to generate isotropic
and smooth representations (Li et al., 2020). Cre-
ating these sentence-level representations is fun-
damental for testing the intrinsic tests proposed in
this research.

Common approaches to evaluate biomedical
PLM performance are benchmarks such as BLUE
(Peng et al., 2019) and BLURB (Gu et al., 2021),
which are built for the English language. There
is no relevant benchmark in Spanish, and every
author selects some annotated datasets to evaluate
PLM performance on specific downstream tasks.
Although the amount of annotated datasets in Span-
ish is growing, there is a lack of intrinsic tasks that
can help to understand if a PLM is improving, and
this research tries to fill that gap.
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3 Methods

Our proposed method creates a semantic similar-
ity intrinsic test with medical concept pairs and
their semantic distances. We extracted these con-
cept pairs from the UMLS1 term graph and com-
puted their distances as the length of the short-
est directed path of parent relationships between
the concepts. We measured the correlation of the
knowledge-graph-derived distance to the cosine
similarity of the terms string descriptions on an em-
bedding space projected using different language
representations. Finally, we compare these correla-
tions with the performance on downstream tasks of
each language representation.

3.1 Concept pair selection and its graph
distances

In this vocabulary database, a concept is simply the
meaning of a medical entity. Each concept in the
metathesaurus has a unique and permanent concept
identifier (CUI).

A UMLS concept can have multiple names be-
cause the same meaning can be described with nu-
merous strings, for example, in different languages
or source vocabularies. Each concept named de-
scription is called an atom and is identified by an
atom identifier (AUI). To select a single concept
description, we filtered out the atoms marked as
non-preferred in the metathresaurus. With this fil-
ter and by only selecting atoms in Spanish, we
assigned a single string describing each medical
concept. In the UMLS Semantic Network, con-
cepts are related using multiple relation types. The
only relation type we used to connect the concepts
was the parent relationship (PAR). We tried other
relationship types but continued with PAR relation-
ships because they are the most frequent. Child
relationships (CHD) have the same frequency as
PAR relationships, given they are the inverse re-
lation type of PAR. Thus we can choose any of
them.

After the previous step, we imported concepts
and their PAR relations into a graph database2.
Next, we queried the graph to select several ran-
dom concepts and recursively extracted direct or
related concepts at multiple distances. This means
there is a path of one or more PAR relations of
distance between pairs of concepts, as shown in
Figure 1. Given that sometimes it is possible to

1version 2022AA
2Neo4j (https://neo4j.com/)

find multiple paths between two concepts, we only
used the shortest path between them. This process
allowed us to extract the path length between two
concepts. We select 20,000 concepts for this study
to conduct the intrinsic tests rapidly. However, we
can choose more concepts if necessary.

C0040426
Tooth structure

C0011334
Dental caries

C0266853
Enamel caries

C0266858
Incipient enamel c.

C4708523
Initial state c.

C0266854
Acute enamel c.

C0266846
Dentin caries

Figure 1: PAR-related concepts from C0040426 (Tooth
structure). We highlight multiple paths,

•••• A dash-dot line represents the path between
C0266858 (Incipient enamel caries) and
C4708523 (Initial state caries) with a distance of 1
PAR edge.

• A dash-dash line represents the path between
C0040426 (Tooth structure) and C0266846
(Dentin caries) with a distance of 2 PAR edges.

• A dot-dot line represents the path between
C0040426 (Tooth structure) and C0266858 (In-
cipient enamel caries) with a distance of 3 PAR
edges.

3.2 Generation of UMLS concepts’
embeddings

After selecting the pairs of concepts and their de-
scriptions, we generate concepts’ embeddings us-
ing PLM. As UMLS concepts may contain more
than one token, extracting embeddings that can
represent the whole concept and not just one
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word is essential. To do this, we used mean
pooling of embeddings obtained for concept to-
kens from a PLM. For models hosted in the Hug-
gingface Model Repository3, we used the Python
library sentence-transformers4 (Reimers and
Gurevych, 2019), and for models hosted in the
Flair repository, we used the Python library flair5

(Akbik et al., 2019).
All of our experiments were conducted for Span-

ish language datasets. We generated concept em-
beddings for several PLM of interest with different
base architectures and domains. For the base archi-
tectures, we selected BERT, RoBERTa, and Flair.
As for the domain, we chose, whenever possible,
general, biomedical, and clinical models. As we
did not find a publicly available BERT linguistic
model for the clinical domain trained on Spanish
text, we tuned a general domain model in Span-
ish (Cañete et al., 2020) with clinical text obtained
from the Chilean Waiting List Corpus (Báez et al.,
2020, 2022).

3.3 Implementation of intrinsic test

We build our intrinsic test as follows. First, we
calculate the cosine similarity between concept
embedding pairs. Then, we obtained the Spear-
man correlation between cosine similarity and path
length, which we called ρ. This simple process
allowed us to get our first metric. We expect that
a greater path length between two concepts will
result in a lower cosine similarity, given that they
are farther semantically. Therefore, the Spearman
correlation (ρ) between these two distances over
all concepts pairs will be negative. If we compare
embeddings generated by different PLM, we could
expect that more domain-specific PLM will gen-
erate embeddings with more semantic differences
between concepts within the domain, resulting in
a more negative ρ. Thus, a more negative ρ indi-
cates a PLM that can separate better semantically
concepts within a domain.

As a part of our analysis, we calculated the av-
erage cosine similarity per path length. This step
led us to obtain a complementary metric, the differ-
ence of mean cosine similarity for the shortest path
length and the longest path length, that we called
δ. The rationality behind this metric is similar to
what we found in the previous one. However, in

3https://huggingface.co/models
4https://github.com/UKPLab/

sentence-transformers
5https://github.com/flairNLP/flair

this case, a more positive δ indicates a PLM that
can better separate concepts semantically within a
domain.

3.4 Comparison with extrinsic test

Our intrinsic metrics were compared to extrinsic
metrics using the F1 score in relevant biomedical
and clinical NER datasets. The idea of incorporat-
ing extrinsic tests is to check if having better values
of our intrinsic metrics will translate into better
performance in downstream tasks for the selected
PLM.

To build a reproducible extrinsic comparison
for all PLM base architectures, we create a prob-
ing task for NER. In other words, we extracted
contextualized embeddings from a PLM without
fine-tuning for any downstream task, and those em-
beddings were input into a linear layer trained for
NER.

The clinical and biomedical datasets in Spanish
used for the NER probing task were:

• CANTEMIST6 (Miranda-Escalada et al.,
2020): annotated corpus with tumor morphol-
ogy mentions in 1,301 oncological clinical
case reports.

• PharmaCoNER7 (Gonzalez-Agirre et al.,
2020): annotated corpus with entities such
as chemical compounds and drugs in 1,000
clinical case studies.

• CT-EBM-SP8 (Campillos-Llanos et al., 2021):
annotated corpus with UMLS entities in 1,200
texts about clinical trials studies and clinical
trials announcements.

• NUBes9 (Lopez et al., 2020): annotated cor-
pus with negation and uncertainty entities
in anonymised health records (29,682 sen-
tences).

4 Results

We queried 20,000 pairs of random atoms to select
UMLS concepts from the graph database. Figure 2
shows the histogram of those pairs by path length.
We can see that pair frequency increases as path
length increase until seven parent relationships of

6https://zenodo.org/record/3978041
7https://zenodo.org/record/4270158
8http://www.lllf.uam.es/ESP/nlpmedterm_en
9https://github.com/Vicomtech/

NUBes-negation-uncertainty-biomedical-corpus
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distance. After that point, the frequency of pairs
decreases until it reaches 14 relations of distance.
We removed all path lengths containing less than
300 pairs of concepts to calculate the metrics ρ and
δ.
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Figure 2: Histogram of UMLS concept pairs by path
length

Then, we plot a boxplot of cosine similarity by
path length for every PLM. Figure 3 shows such
a boxplot for a general-domain BERT trained in
Spanish text (Cañete et al., 2020)10. This plot al-
lows us to understand how cosine similarity dis-
tributes along path length.

It is clear from the plot that average cosine simi-
larity decreases as path length increases. However,
the decline is near null or even negative from path
length four onwards. Moreover, the average cosine
similarity is not going near zero. We hypothesize
this pattern is because all concepts are related to
clinical and biomedical domains and also due to
the anisotropic behavior of sentence embeddings
obtained from PLM. As discussed in Ethayarajh
(2019), contextualized embeddings obtained from
PLM tend to distribute not evenly in the embed-
ding space but in a small portion of it. Therefore,
they still have a relatively high similarity when
comparing dissimilar concepts.

To compare several PLM, we plot only average
cosine similarity by path length for every language
model, as shown in Figure 4. As we can see, av-
erage cosine similarity by path length varies for
different base architectures and domains of PLM.
However, they all repeat the same decline pattern
as path length increases.

Similarly to Figure 3, Figure 4 does not show any
average cosine similarity going near zero. How-
ever, the similarity level where each PLM stabilizes

10Other models’ plots are included in the appendix
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Figure 3: Boxplot of cosine similarity by path length
for a general-domain BERT trained on Spanish text.

is different. Not surprisingly, language models
trained on a similar corpus or being a fine-tuned
version from another have comparable similarity
levels. RoBERTa-es-clinical was trained with the
same corpora as RoBERTa-es-biomedical plus a
clinical corpus (Carrino et al., 2022), and BERT-
es-clinical is a fine-tuned model from BERT-es-
general over a clinical corpus.
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RoBERTa-es-clinical
RoBERTa-es-biomedical
RoBERTa-es-general

Flair-es-clinical
Flair-es-biomedical
Flair-es-general

BERT-es-clinical
BERT-es-general

Figure 4: Average cosine similarity by path length for
multiple language models

To measure the degree of the decline, we calcu-
lated the metrics ρ and δ for all the selected PLM,
as shown in Table 1. We notice that ρ and δ are
greater in absolute value for biomedical and clini-
cal models than general ones within the same base
architecture. This means that given a PLM base
architecture, the degree of decline of the average co-
sine similarity is greater for domain-specific mod-
els than for general domain models. This finding
suggests that domain-specific PLM and their con-
cept embeddings better represent UMLS concepts;
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Reference Architecture Domain ρ δ

Ours BERT Clinical -0.38 0.25
(Cañete et al., 2020) BERT General -0.30 0.18
(Akhtyamova et al., 2020) Flair Biomedical -0.24 0.27
(Rojas et al., 2022b) Flair Clinical -0.23 0.27
(Akbik et al., 2018) Flair General -0.20 0.11
(Carrino et al., 2021) RoBERTa Clinical -0.31 0.09
(Carrino et al., 2021) RoBERTa Biomedical -0.28 0.13
(Gutiérrez-Fandiño et al., 2022) RoBERTa General -0.23 0.03

Table 1: Correlations and differences for each language representation. The table is sorted ascending by ρ and then
by base architecture. Every ρ is statistically significant.

Architecture Domain CANTEMIST PharmaCoNER CT-EBM-SP NUBes
BERT Clinical 0.739 (0.018) 0.577 (0.013) 0.742 (0.012) 0.791 (0.009)
BERT General 0.757 (0.004) 0.582 (0.007) 0.714 (0.006) 0.797 (0.013)
Flair Biomedical 0.784 (0.006) 0.615 (0.013) 0.725 (0.008) 0.792 (0.003)
Flair Clinical 0.771 (0.009) 0.580 (0.021) 0.694 (0.000) 0.802 (0.003)
Flair General 0.714 (0.013) 0.558 (0.002) 0.633 (0.002) 0.780 (0.005)
RoBERTa Clinical 0.794 (0.009) 0.633 (0.010) 0.792 (0.012) 0.820 (0.004)
RoBERTa Biomedical 0.784 (0.006) 0.626 (0.009) 0.794 (0.014) 0.821 (0.005)
RoBERTa General 0.767 (0.014) 0.584 (0.006) 0.734 (0.005) 0.804 (0.003)

Table 2: F1 scores and standard deviations for NER probing task over four datasets in Spanish. The table is sorted
according the same criteria as Table 1

hence the similarity pattern displayed. However, it
is important to note that we do not find this behav-
ior when comparing different base architectures.

We can see F1 scores for every NER probing
task by PLM in Table 2. As expected, we can see a
tendency to obtain better F1 scores for clinical or
biomedical PLM than general ones. However, in
the case of BERT architecture, results are mixed.
We believe this behavior could be due to the cre-
ation of the clinical BERT model. Instead of being
trained from scratch with clinical and biomedical
data, it is a fine-tuned version of a general BERT.
On the other hand, clinical and biomedical Flair
and RoBERTa models were trained from scratch
with domain-specific data.

Interestingly, when ρ metric is greater for a clini-
cal model compared to a biomedical one, F1 scores
for NER probing tasks are also greater, as we can
see in the case of RoBERTa architecture for CAN-
TEMIST and PharmaCoNER datasets. In the case
of CT-EBM-SP and NUBes, there are no such dif-
ferences, but F1 scores for clinical and biomedical
are almost the same. On the contrary, when ρ met-
ric is greater for a biomedical model compared to a
clinical one, then F1 scores present a similar behav-
ior, as we can see in the case of Flair architecture

for CANTEMIST, PharmaCoNER, and CT-EBM-
SP datasets. And as same as the previous situation,
F1 scores for another dataset (NUBes) are almost
the same. We do not observe this pattern for δ
metric.

This finding suggests that ρ metric could be ap-
plied as a useful intrinsic test for comparing PLM
within the same base architecture. However, it is
important to note when comparing ρ metric for dif-
ferent base architectures, we do not find a clear
relation with F1 scores. Consequently, we present
the ρ metric as an intrinsic test to measure improve-
ments for PLM within the same base architecture.

5 Conclusion and future work

Using domain-specific PLMs for downstream tasks
has allowed reaching the state-of-the-art in sev-
eral benchmarks. However, since these models are
trained in large corpora, fine-tuning them or train-
ing from scratch is time-consuming. Therefore,
before using these models to solve downstream
tasks, it is crucial to create intrinsic tests that vali-
date whether a domain-specific PLM yields better
results than its base version.

In this study, we build an intrinsic test for clini-
cal and biomedical PLM using contextualized em-
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beddings and the UMLS knowledge graph. We
suggest that our intrinsic test can help compare
domain-specific PLM performance within its base
architecture, which could be used to evaluate im-
provements when building PLM. Our experimental
results show that this intrinsic test can capture im-
provements in clinical and biomedical PLM over
general ones. Also, it correlates with better results
in a NER probing task over four datasets in Span-
ish.

In future work, we can implement this study for
other languages. Additionally, we can compare
our intrinsic test with other probing tasks such as
POS-tagging or coreference or even other clinical
downstream tasks such as patient mortality or un-
planned readmission. On the other hand, since our
experimental datasets contain nested entities, but
for simplicity, they were ignored, we would like to
explore the use of contextualized embeddings in
models that can address them, such as those pro-
posed in Rojas et al. (2022a). Finally, we can com-
pare several experimental settings, such as multiple
numbers of concept pairs.

Limitations

We can group the limitations of our study in
the ones related to the graph knowledge, the se-
lected PLM, comparison with other embedding
techniques, and language. First, regarding graph
knowledge, we could have chosen several random
subsets of concept pairs of different lengths and
types of relations to check if our findings are still
present. Second, we selected three base architec-
tures, and all of them were of encoder type. Third,
we could have compared our results with static em-
beddings. And finally, we could have selected more
languages for comparison.
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Abstract

Empathy is a vital component of health care
and plays a key role in the training of future
doctors. Paying attention to medical students’
self-reflective stories of their interactions with
patients can encourage empathy and the forma-
tion of professional identities that embody de-
sirable values such as integrity and respect. We
present a computational approach and linguistic
analysis of empathic language in a large cor-
pus of 440 essays written by pre-med students
as narrated simulated patient – doctor interac-
tions. We analyze the discourse of three kinds
of empathy: cognitive, affective, and prosocial
as highlighted by expert annotators. We also
present various experiments with state-of-the-
art recurrent neural networks and transformer
models for classifying these forms of empathy.
To further improve over these results, we de-
velop a novel system architecture that makes
use of frame semantics to enrich our state-of-
the-art models. We show that this novel frame-
work leads to significant improvement on the
empathy classification task for this dataset.

1 Introduction

Empathy is a complex phenomenon concerning
how we seek to understand and experience, to some
extent, the experiences of others (Ratcliffe, 2017)
– i.e., having a sense of the other’s story and the
context in which it takes place. One way to get to
an appreciation of one’s complex situation (i.e., the
embodied actions and the contexts within which
they act) is through narratives of lived experience
(McIntyre, 1981; Gallagher, 2012). Self-reflective
(i.e., first person) narratives, for instance, offer a
wide range of resources for empathy, as they bring
together one’s inner and outer worlds, thus giv-
ing meaning to experience (Mattingly, 2000). In
this respect, narratives seem necessary for empa-
thy, as our first-person experience is grounded in
the contextualized content of the narrative. They
also provide a form or structure that allows us to

frame an understanding of others, together with a
learned set of skills and practical knowledge that
shapes our understanding of what we and others
are experiencing.

Reflective writing is a dynamic process that al-
lows for an active engagement with knowledge and
experience, being widely used in clinical practice
(Jasper et al., 2013; Burkhardt et al., 2019; Arti-
oli et al., 2021). Putting into words the focused
inspection of their thoughts, feelings, and events
enables one to reprocess the experience, build new
insights, and new ways to conceive reality (Ar-
tioli et al., 2021). Thus, narrative exercises like
self-reflective stories can help medical students
recognise and derive meaning from key experi-
ences, which in turn can support critical thinking,
self-consciousness, and the development of per-
sonal skills, communication and empathy skills,
self-knowledge, professional identify development,
and instill behavior change (Craft, 2005; Borgstrom
et al., 2016; Mintz-Binder et al., 2019; Allan and
Driscoll, 2014; Peterson et al., 2018; Liu et al.,
2016; Bekker et al., 2013). Such writing can lead
to an increase in experience-taking skills (Kaufman
and Libby, 2012) and can decrease stereotyping,
prejudice, and racial bias in healthcare (Williams
and Wyatt, 2015).

In this research, we take a narrative approach
to empathy and explore the experiences of premed
students at a large university by analysing their
self-reflective writing portfolios (a large corpus
of first-person essays written by premed students
in narrated simulated patient-doctor interactions).
Specifically, we introduce an exploratory study of
empathy in clinical encounters paying attention to
the discourse of three types of empathy: cognitive
(the drive and ability to identify and understand
another’s emotional or mental states), affective (the
capacity to experience an appropriate emotion in re-
sponse to another’s emotional or mental state), and
prosocial behavior (a response to having identified
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the perspective of another with the intention of act-
ing upon the other’s mental and/or emotional state),
following established practices in psychology (Cuff
et al., 2016; Eisenberg et al., 2006; Rameson et al.,
2012). We introduce a set of informative baseline
experiments using state-of-the-art recurrent neural
networks and transformer models for classifying
the various forms of empathy. As initial experi-
ments show relatively low scores, we explore a
novel FrameNet-based system architecture where
we use sentence frames to extract additional seman-
tic features. We apply this framework to state-of-
the-art and representative neural network models
and show significant improvement in the empathy
classification task for this dataset. Although previ-
ous research suggests that narrative-based interven-
tions tend to be effective education-based methods,
it is less clear what are some of the mechanisms
through which narratives achieve such an effect,
which is another contribution of this research.

2 Related Work

In spite of its increasing theoretical and practical
interest, empathy research in computational linguis-
tics has been relatively sparse and lacks cohesion.
Even more so, investigations of empathy as it re-
lates to clinical practice have received even less
attention mainly due to data and privacy concerns.

Most of the research on empathy detection has
focused on conversations or interactions, as dia-
logue systems (Zhong et al., 2020; Chen et al.,
2022a; Samad et al., 2022), or in online platforms
(e.g. (Pérez-Rosas et al., 2017; Khanpour et al.,
2017; Otterbacher et al., 2017; Sharma et al., 2020;
Lahnala et al., 2022; Sharma et al., 2021; Hosseini
and Caragea, 2021), a few on news stories and other
narratives (Buechel et al., 2018; Wambsganss et al.,
2021b; Sedoc et al., 2020; Mundra et al., 2021;
Guda et al., 2021), and even less on empathy in
clinical settings (Zhou et al., 2021; Shi et al., 2021).
Buechel et al. (2018) used crowd-sourced work-
ers to self-report their empathy and distress levels
and to write empathic reactions to news stories.
Wambsganss et al. (2021b) built a text corpus of
student peer reviews collected from a German busi-
ness innovation class annotated for cognitive and
affective empathy levels. Furthermore, using Bat-
son’s Empathic Concern-Personal Distress Scale
(Batson et al., 1987), Buechel et al. (2018) have
focused only on negative empathy instances (i.e.,
pain and sadness "by witnessing another person’s

suffering"). This year, the WASSA shared task
focused on predicting empathy, emotion, and per-
sonality in reaction to news stories (Barriere et al.,
2022; Vasava et al., 2022). The dataset is an ex-
tension of Buechel et al. (2018)’s dataset – i.e., it
includes news articles that express harm to an en-
tity (e.g. individual, group of people, nature). Each
article comes with reaction essays in which au-
thors expressed their empathy and distress toward
these news articles. Each essay is annotated for
empathy and distress, and with authors’ personality
traits and demographic information (age, gender,
ethnicity, income, and education level). Here, we
could not compare our models with the WASSA
results – our dataset does not capture the meta-data
in WASSA. Moreover, our empathy instances are
not always negative (Fan et al., 2011): a dataset
reflecting empathetic language should ideally allow
for expressions of empathy that encompass a vari-
ety of positive and negative emotions. We could
not compare against its best performing system due
to limited reproducibility (Chen et al., 2022b).

In multimodal research, R. M. Frankel (2000)
and Cordella and Musgrave (2009) identify sequen-
tial patterns of empathy frequently expressed in
video-recorded exchanges by medical graduates in-
teracting with a cancer patient. Sharma et al. (2020)
analyzed the discourse of conversations in online
peer-to-peer support platforms. They successfully
trained novice writers to improve low-empathy re-
sponses by giving the writers feedback with exam-
ples of sentences that are typical of recognition and
interpretation of others’ feelings or experiences.
In a subsequent set of experiments (Sharma et al.,
2021), they suggested that empathic written dis-
course should be coherent, specific to the conversa-
tion at hand, and lexically diverse.

To our knowledge, no self-reflective narrative
text corpora have been developed for computational
linguistics investigations of clinical student train-
ing. Adding to the scarcity of empathy-dedicated
resources, there is also a lack of understanding of
which linguistic features might contribute to the
various types of empathy, like cognitive, affective,
and prosocial behavior.

3 Self-reflective Narrative Essays in
Medical Training

In this research, we focus on self-reflective narra-
tives written by premed students given a simulated
scenario. Simulation is strongly set on our first-
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person experiences, relying on resources that are
available to the simulator. In a simulation process,
the writer puts themselves in the other’s situation
and asks what “I would do if I were in that situa-
tion.” Perspective taking (i.e., cognitive empathy)
is crucial for fostering affective abilities, enabling
writers to imagine and learn about the emotions
of others and to share them, too. As empathy is
other-directed (De Vignemont and Jacob, 2012;
Gallagher, 2012), this means that we, as narrators,
are open to the experience and the life of the other,
in their context, as we can understand it.

This study’s intervention was designed as a writ-
ten assignment in which premed students were
asked to consider a hypothetical scenario where
they took the role of a physician breaking the
news of an unfavorable diagnosis of high blood
cholesterol to a middle-aged patient1. They were
instructed to recount (in first person voice) the hy-
pothetical doctor-patient interaction where they ex-
plained the diagnosis and prescribed medical treat-
ment using layman terms and language they be-
lieved would comfort as well as persuade the hypo-
thetical patient to adhere to their prescription.

With the students’ consent, we collected a corpus
of 774 essays over a period of one academic year
(Shi et al., 2021). Following a thorough annotation
process, annotators (undergraduate and graduate
students in psychology and social work)2 labeled a
subset of 440 randomly selected essays (henceforth,
"the corpus"). Using a rich color code schema, each
sentence in every essay was labeled as either cog-
nitive empathy (green; e.g., "She looked tired"),
affective empathy (yellow; e.g.: "I felt the pain"),
or prosocial behavior (cyan; e.g.: "I reassured her
this was the best way") (everything else was "no
empathy") (Cuff et al., 2016; Eisenberg et al., 2006;
Rameson et al., 2012). The six paid undergraduate
students were trained on the task and instructed to
annotate the data. Two meta-annotators, paid grad-
uate students with prior experience with the task,
reviewed the work of the annotators and updated
the annotation guidelines at regular intervals, in an
iterative loop process after each batch of essays3.
The meta-annotators reached a Cohen’s kappa of
0.82, a good level of agreement. Disagreed cases
were discussed and mitigated. At the end, all the
essays were re-annotated per the most up-to-date

1The patient was referred to as Betty or John.
2The students were hired based on previous experience

with similar projects in social work and psychology.
310 essays per week

guidelines. The resulting annotated data shows
an uneven label distribution in the annotated cor-
pus (11,763 total): 667 (cognitive), 1,659 (affec-
tive), and 723 (prosocial) sentences (and 8,714 non-
empathy sentences).

4 Empathy Classification Task

In this research, our goal is to explore machine
learning models of empathy classification in nar-
rative essays to better our understanding of the
mechanisms through which empathy can be ex-
pressed. Since we are interested in the linguistic
expressions of empathy, we zoom in to the sentence
level. Given such a corpus of essay sentences, we
first build a binary classifier which can be useful
in applications requiring a general linguistic un-
derstanding of the presence of empathy. In some
cases such as medical communication training of
pre-med students, a more fine-grained understand-
ing of different kinds of empathy is useful. Thus,
we also build a classifier that can identify each type
of empathy: cognitive, affective, and prosocial.

For both types of classifiers, we first experiment
with several state-of-the-art statistical and machine
learning models. As our research is focused on
the subcategorization of empathy, we seek to im-
prove our multi-label classifier. Thus, we introduce
a new and better performing system architecture
by employing FrameNet (Baker et al., 1998), the
research and development project which builds on
the theory of frame semantics. Using a state-of-
the-art FrameNet sentence parser (Swayamdipta
et al., 2017), we extract semantic frames from each
sentence in our corpus and use this resource to en-
hance our original (baseline) models with these
additional knowledge. As we will show in Subsec-
tion 4.4, incorporating FrameNet semantics into
state-of-the-art deep learning models leads to an
increase in empathy classification results.

4.1 Baseline Models

We started with the following representative base-
line models: Naive Bayes (NB), support vector
machines (SVM), and logistic regression (logR).
We are also interested in observing the performance
of deep learning methods and, among them, we ex-
periment with long-short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and bidirec-
tional long-short term memory (bi-LSTM) (Graves
and Schmidhuber, 2005) models; additionally, we
use the transformer neural network models BERT
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(Devlin et al., 2018) and RoBERTa (Liu et al.,
2019). We used unigrams as our features. We
also initialized the embedding layers in our neu-
ral models (LSTM and bi-LSTM) with GloVe em-
beddings since the expression of empathy involves
larger units than words, and embeddings are known
to better capture contextual information. For the
transformer models, we use the default BERT em-
beddings. Since our dataset is imbalanced, we
report the precision, recall, and F1-score (harmonic
mean of the precision and recall).

We identify sentences with empathy by using the
annotator’s highlights – e.g., a sentence containing
cyan and green highlights is considered a prosocial
and cognitive empathy sentence. For our binary
empathy classification, we use colored sentences
as empathy sentences. We consider sentences with
no highlights as no empathy sentences.

For the NB, logistic regression, and SVM mod-
els, we generate binary classifiers for each type of
empathy. For all the neural network models, we
generate multi-label classifiers. For each type of
empathy highlighted sentences, we reserve 80/20
training/test ratio, with 5-fold cross validation. For
the logistic regression models, we use a L2 regu-
larization and for the SVM models, a linear kernel
function. We decided to apply an attention layer
for the LSTM and bi-LSTM models to learn pat-
terns that may improve the classification. For our
final output layer, we use the sigmoid activation
function, as we are dealing with a multi-label classi-
fication task. For the BERT and RoBERTa models,
we apply a dropout layer with probability 0.4 which
helps to regularize the model; we use a linear out-
put layer and apply a sigmoid on the outputs.

For our binary empathy classification task, we
find that the imbalanced dataset greatly affects the
performance of most models; the best performing
model: BERT achieves an F1-score of 0.56 for
empathy sentences and 0.79 for no empathy sen-
tences. To combat this imbalance, we randomly
downsampled the no empathy sentence dataset (to
get an equal number of empathy and no-empathy
sentences). This resulted in an improved BERT
model (0.72 F1 for empathy and 0.79 F1 for no em-
pathy sentences). For our second empathy classifi-
cation task, we again downsample the total number
of no empathy sentences, resulting in a final dataset
of 1,659 affective empathy sentences, 723 proso-
cial sentences, 667 cognitive sentences, and 1,659
no empathy sentences. Table 1 shows the precision,

recall, and F1-measure scores for these baseline
experiments. As only 5.81% of our sentences con-
tain multiple types of empathy, we only present
collapsed results for each category. We leave the
study of these sentences for future research.

The Naive Bayes, SVM, and logistic regression
models all overfit the training data and, in general,
do not handle the imbalanced dataset well. The
neural network models provide more promising re-
sults, with affective empathy even reaching 0.81 F1
scores. Prosocial empathy seems to be the most
difficult to identify, with the highest F1 of 0.73 as
obtained by the BERT model. Overall, the trans-
former models, BERT and RoBERTa, achieve the
best performance across all three types of empathy.

4.2 Incorporating FrameNet to Improve
Empathy Classification

In our attempt to improve the classification of our
empathic narrative sentences, we decided to ex-
plore feature generation to further enhance these
models. Since empathy is a highly complex
semantic-pragmatic phenomenon, one intuition is
that semantic knowledge should help the classifiers.
One linguistic theory called frame semantics de-
constructs a sentence into predicate-argument struc-
tures that describe meaning not at the level of indi-
vidual words, but is instead based on the concept of
a scenario, scene, or event called a frame. Frames
are defined by the group of words that evoke the
scene (frame-evoking elements or FEEs), as well
as by their expected semantic arguments (frame
elements). A JUDGMENT frame, for instance, has
FEEs like praise.v, criticize.v, and disapprove.v,
and frame elements such as Cognizer, Evalueee,
Expressor, Reason. The Berkeley FrameNet project
(Baker et al., 1998; Ruppenhofer et al., 2016) is the
most well-known lexical resource of frame seman-
tics, with definitions for over 1200 frames.4

To generate new features, we leverage frame se-
mantics to identify all the frames that occur in a sen-
tence. Each sentence in our essay corpus is parsed
with the Frame-Semantic Parser (Swayamdipta
et al., 2017), which is based on a softmax margin
segmental recurrent neural network model. Specifi-
cally, we use the FrameNet 1.7 pretrained models
to predict frames for each of our sentences. For
instance, for “He played an important role in pre-
venting her from becoming depressed", the frame

4We used the release 1.7 which has 1,222 frame annota-
tions ( http://framenet.icsi.berkeley.edu).
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Classifier Cognitive Affective Prosocial None
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NB 0.03 0.18 0.05 0.05 0.38 0.09 0.14 0.05 0.07 1.0 0.72 0.84
SVM 0.30 0.19 0.23 0.46 0.50 0.48 0.44 0.37 0.40 0.80 0.71 0.75
LogR 0.44 0.38 0.40 0.74 0.58 0.65 0.20 0.25 0.22 0.77 0.71 0.74
LSTM 0.62 0.72 0.67 0.63 0.61 0.62 0.51 0.59 0.55 0.71 0.76 0.73
biLSTM 0.64 0.71 0.67 0.79 0.62 0.69 0.59 0.62 0.60 0.78 0.74 0.76
BERT 0.74 0.78 0.76 0.92 0.73 0.81 0.72 0.75 0.73 0.75 0.84 0.79
RoBERTa 0.74 0.83 0.78 0.77 0.78 0.77 0.69 0.68 0.68 0.77 0.80 0.78
FN-LSTM 0.73 0.73 0.73 0. 83 0.68 0.75 0.66 0.78 0.72 0.79 0.77 0.78
FN-biLSTM 0.71 0.88 0.79 0.85 0.78 0.81 0.72 0.86 0.78 0.73 0.75 0.74
FN-BERT 0.78 0.89 0.83 0.88 0.79 0.83 0.82 0.88 0.85 0.71 0.80 0.75
FN-RoBERTa 0.73 0.88 0.80 0.85 0.79 0.82 0.82 0.86 0.84 0.71 0.80 0.75

Table 1: Precision, recall and F1 scores of all baseline and FrameNet-incorporated classifiers on the test dataset: 133
cognitive, 332 affective, 145 prosocial, and 332 no-empathy sentences. Bolded numbers indicate best performance.

semantic parser identifies four frames: PERFORM-
ERS_AND_ROLES (i.e., he played a role), IMPOR-
TANCE (i.e., important role), THWARTING (i.e., pre-
venting her), EMOTIONS_BY_POSSIBILITY (i.e.,
becoming depressed).

Given the parser’s extraction of 669 unique
frames from our entire sentence dataset, we ex-
plore the most common frames present in sentences
containing each type of empathy (Table 2). Many
of the frames exhibited in cognitive empathy sen-
tences focus on speaking, supporting, and seeing,
while affective empathy sentences contain frames
related to responses, stimulating emotions, and per-
ceiving emotions/states. Many of the prosocial
empathy sentences include frames that discuss a
form of action e.g. trying to [perform an action],
reassure, seek to achieve, etc.

To use the frame identification as a feature in our
models, we generate a frequency vector to encode
the occurrences of a frame in a sentence. For exam-
ple, if we had a total of 3 frames Fa, Fb, Fc, and
sentence x contained one mention of frame Fa, 2
mentions of Fb, and no Fc, our encoding vector
would be: [1, 2, 0], representing their frequencies.
Thus, we generate a vector of size 669 for each of
our sentences in the whole essay dataset.

In our quest for improved empathy classification,
we focus on our neural network (LSTM, bi-LSTM,
BERT, and RoBERTa) models as these proved to
perform best in our baseline experiments. For our
LSTM and bi-LSTM models, we use GloVe embed-
dings to encode the processed sentence, and then
add the FrameNet encoding vector to the end of
the embedding vector. We then apply the LSTM or

bi-LSTM layer followed by the attention layer and
transform outputs using the sigmoid activation to
get class probabilities (Figure 1 shows the system
architecture for this framework).

For the BERT and RoBERTa models, we first
input the processed sentence and extract the textual
embeddings, and append the FrameNet encoding
vector to the embedding vector. We then apply a
feedforward neural network – i.e., a multi layer
perceptron (MLP) with a sigmoid activation func-
tion – to get predictions (Figure 2 shows the system
architecture for this framework).

4.3 Constructing a Frame Lattice

An initial exploration of the FN parser shows that
our training dataset contained a total of 616 unique
frames, roughly 50% of them appearing only in at
most 5 sentences. To optimize learning in the neu-
ral network models, we identify a lattice of frames
from our training corpus that most improves the
classification performance. To do this, we iterate
through each combination of subsets of size K of
the identified frames in our training dataset. We
then compute weighted average accuracy scores for
empathy classification using the training dataset
and identify the set of frames most influential in
each of the four models considered. An initial set
of exploratory experiments has shown that lattices
of sizes between 5 and 20 yield the highest im-
provement. Frame lattices of size 2, 3, and 4 did
not show any significant improvement (i.e., no in-
crease in score above 0.01). Latices larger than 20
become very noisy and, thus, negatively impact per-
formance. Thus, we decided to further explore this
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Cognitive Affective Prosocial
JUDGMENT (159) RESPONSE (831) GESTURE (458)
MAKE_COGNITIVE_CONNECTION (143) COMMUNICATION_RESPONSE (368) DESIRABILITY (290)
SPEAK_ON_TOPIC (134) PERCEPTION (293) REASSURING (274)
SUPPORTING (108) STIMULATE_EMOTION (209) FACIAL_EXPRESSION (231)
SEE_THROUGH (96) SOCIABILITY (148) AWARENESS (173)

Table 2: Most common frame classes for each empathy class

Figure 1: Architecture for LSTM & bi-LSTM models
Figure 2: Architecture for BERT & RoBERTa models

5-20 range. Specifically, we iterate through all pos-
sible combinations of 5 frames that appeared in the
training corpus. We then increment the frame size
by 1 in each iteration, and recompute performance.
Results on test data are shown in Fig. 3.

Since we wanted to use a metric that would mea-
sure the performance for all three empathy types
together, we did not use the individual F1 scores
for our categories. The closest measurement was
the macro-F1 score, but this is still an unweighted
average (since we have already had good perfor-
mance for affective empathy, using this metric, the
results would not increase by much). Thus, the
weighted average made more sense to identify the
best lattice.

Figure 3: Weighted average scores for varying lattice
sizes: 5 to 20

4.4 FrameNet Experiments’ Results

To improve classification, we thus incorporate each
neural network’s best performing lattice and build
a frame encoding vector for each sentence in our

dataset. We then follow the system architectures in
Figures 1 and 2 and compute the performance for
each model (See Table 1).

The experimental results show that the inclusion
of the FrameNet lattices improves performance con-
siderably. The best models are FrameNet-BERT
and FrameNet-RoBERTa, for which all the metric
scores significantly improve with this additional
feature. We also notice that the classification per-
formance for prosocial empathy significantly im-
proved over the baseline models (0.85 vs. previous
score: 0.73). The enhanced BERT model yields
the highest F1 scores for all three empathy types,
with all empathy categories scoring above 0.8; the
no-empathy category however does drop in perfor-
mance (0.75 vs. previous score: 0.79).

These experiments indicate that our system
learns best from a lattice of different sizes for
each learning model. Table 3 shows the specific
frames per model. Many of the learning architec-
tures choose the same frames in their lattices, e.g.
INTENTIONALLY_ACT, GESTURE, SOCIABILITY,
PERCEPTION, SENSATION. Interestingly, the trans-
former models select some additional frames di-
rectly linked to certain types of empathy: cognitive
(MAKE_COGNITIVE_CONNECTION, MENTION),
affective (PERCEPTION, RESPONSE), and proso-
cial (SEEKING_TO_ACHIEVE). These frames are
possibly somewhat tied to our specific dataset and
narrative genre, issue we leave for future research.

FrameNet-BERT vs. BERT
We also examined a bit closer the results to get
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LSTM (latice size = 13) bi-LSTM (latice size = 14)
CAUSE_EMOTIONS, INTENTIONALLY_ACT, GESTURE,
JUDGMENT, DESIRABILITY, PERCEPTION, COMMUNI-
CATION_RESPONSE, SEEKING_TO_ACHIEVE, SENSA-
TION, SOCIABILITY, TELLING, WORRY)

EMOTIONS, EMOTIONS_BY_POSSIBILITY, EVOK-
ING, GESTURE, JUDGMENT, MENTION, OPIN-
ION, INTENTIONALLY_ACT, PERCEPTION, RE-
SPONSE, RESPOND_TO_PROPOSAL, COMMUNICA-
TION_RESPONSE_SCENARIO, SENSATION, SOCIABIL-
ITY, STIMULATE_EMOTION, SEEKING_TO_ACHIEVE

BERT (latice size = 14) RoBERTa (latice size = 12)
CAUSE_EMOTIONS , EMOTIONS_BY_POSSIBILITY,
EVOKING, GESTURE, INTENTIONALLY_ACT,
MAKE_COGNITIVE_CONNECTION, MENTION,
OPINION, PERCEPTION, RESPONSE, SENSATION,
SOCIABILITY, SUPPORTING, WORRY

CAUSE_EMOTIONS, EMOTIONS_BY_POSSIBILITY, GES-
TURE, FACIAL_EXPRESSION, INTENTIONALLY_ACT,
JUDGMENT, MAKE_COGNITIVE_CONNECTION,
MENTION, PERCEPTION, RESPONSE, SEEK-
ING_TO_ACHIEVE, SPEAK_ON_TOPIC

Table 3: Best frame latices for each learning model

more insights into the contribution of the FrameNet
external semantic knowledge to the task of empa-
thy classification. Specifically, we wanted to see
what kinds of examples FrameNet-BERT classifies
correctly over the baseline transformer BERT.

Overall, there was a total of 197 instances
(affective: 76; cognitive: 59; prosocial: 62) that
FrameNet-BERT classified correctly and BERT
incorrectly. A look at these sentences shows
a balanced combination of frames like MEDI-
CAL_CONDITIONS, DIFFICULTY, QUESTIONING,
BIOLOGICAL_CLASSIFICATION, EXPLAIN-
ING_THE_FACTS, CURE, as well as AWARENESS,
EMOTION_DIRECTED, COMING_TO_BELIEVE,
EXPERIENCER_FOCUS, EXPERIENCER_OBJ,
FEAR. These empirical results support new
evidence in medical education (Warmington,
2019; Warmington et al., 2022) – meaning, they
highlight how important it is for future doctors to
focus and reflect not only on how to diagnose and
provide proper treatment to the patient, but also to
develop an awareness of how patients experience
their illness and focus on how patients need their
experience of illness acknowledged.

In addition to these frames, a specific subset
deserves particular attention and discussion, sub-
set which works best in combination with those
mentioned above. Table 4 lists the most frequent
frames of non-verbal communication that tend to
occur in true positive test instances as identified by
FrameNet-BERT. These results indicate that, even
in self-reflective narratives, both verbal and non-
verbal aspects of interaction play an important role.
What we wear and the way we physically interact
with others communicate a great deal about who
we are (Iedema and Caldas-Coulthard, 2008). Such
narratives include information about non-verbal
communication and impressions of other aspects

of the context. For instance, the importance of
the senses of sight and sound in building up a rich
description of both the setting and events is well
recognised (i.e., laughter, cry, the tone or volume of
voices). These empirical results indicate that cog-
nitive and sensory self-awareness are critical to the
clinical encounter process. Doctors paying close
attention to their patients’ as well as to their own
sensations, perceptions and emotional responses
picture a process that emphasizes the importance
of self-awareness and awareness of others, both in-
dispensable in effective empathic communication.

5 Discussion and Conclusions

Medical education should and can incorporate
guided self-reflective practices that show how im-
portant it is for the students to develop an aware-
ness of the emotional and relational aspects of the
clinical encounter with their patients (Warmington,
2019). The way people identify themselves and
perform in particular roles and in relations to oth-
ers brings together a specific set of values, attitudes,
and competencies that can be supported through
ongoing self-reflection. Thus, students learn not
only how to diagnose and treat patients’ medical
conditions, but also how to witness the patient’s
illness experience. In practice, they often switch
between these positions: witnessing what it is like
for the patient, as well as understanding what they
need medically.

Often, clinical encounters can be highly charged
emotionally especially for patients in case of seri-
ous illness. Unfortunately, medicine lags behind
other health professions (like nursing, social work,
psychology) which learn from reflective practice
and respect it from the beginning. Yet, acknowledg-
ing the patient’s situation, who they are and their
experience can make a huge impact on the quality
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Frame Examples Count
BODY_PARTS I noticed Betty fidgeting and clasping her hands, and so I tried to reassure her

we would work together and develop a recovery plan.
59

SENSATION After he left the meeting room, I began feeling very helpless. 71
BODY_MOVEMENT He seemed to almost roll his eyes at that moment which I don’t blame him for. 41
CHANGE_POSTURE He quietly sat down with his hands folded without responding to my remark. 19
FACIAL_EXPRESSION I noticed after I told her the news, her mouth forming into a frown and she

seemed very depressed.
38

GESTURE I proceeded with the diagnosis to explain the severity of elevated levels but
stopped as she waved her hand.

83

BREATHING Betty and her family both sighed a breath of relief. 40
SOUND_LEVEL After I told him the bad news, my patient became silent. 16

Table 4: Examples of empathy sentences with non-verbal communication frames

of that relationship and the trust that is built up
for the patient. Narrative-based interventions and
activities can facilitate self-reflection and enrich
medical students’ professional identity formation.

Computational approaches to empathy can be
very valuable, but it is clear that such AI initiatives
must be multidisciplinary, using and developing a
variety of core sets of requirements and expertise
and engaging many participants, e.g. AI designers,
developers, frontline clinical teams, ethicists, hu-
manists, patients, caregivers (Matheny et al., 2019).

The research experiments and findings summa-
rized in this paper are part of a larger interdisci-
plinary and highly collaborative project where we
analyze both self-reflective narratives of simulated
interactions, as well as multimodal patient-doctor
encounters in real clinical settings (Girju, 2021;
Girju and Girju, 2022). In this paper, we presented
a computational approach and linguistic analysis
of empathic language in a large corpus of premed
student essays of narrated simulated patient-doctor
interactions. Specifically, we showed that semantic
information at the sentence level can be very useful
not only in empathy identification but provides de-
tails on the differences among the three main types
of empathy: cognitive, affective, and prosocial. We
presented novel and performant FrameNet-based
transformer models for empathy classification. In
future work, we will expand this analysis by con-
sidering discourse-level context. We will also inte-
grate other resources like WordNet (Miller, 1995),
VerbNet (Kipper et al., 2000), and take advantage
of larger discourse.

6 Ethical Considerations

Despite the clear benefits that such empathy detec-
tion systems can bring, there are also ethical issues
that arise from their use. First, machine learning
models are susceptible to design biases that may re-

sult in systematic errors, in addition to lower trans-
parency, loss of control, and potential lack of trust
by human users (Wambsganss et al., 2021a). More-
over, such models are data-driven – and most of
the time such data is potentially biased, highly sen-
sitive, where user privacy becomes an even more
important concern. For instance, although we fol-
lowed the ethical protocols put forward in academia
for data collection and annotation, our data is im-
balanced demographically (for both pre-med stu-
dents and the hypothetical patient) and limited to
only one clinical scenario (i.e., breaking bad news).
Furthermore, special attention should be given to
models designed to empathize with vulnerable pop-
ulation like children and people of various abili-
ties. Moreover, focusing only on one hypothetical
medical scenario, resulted in a dataset with limited
diversity. Another aspect to consider in future re-
search is the use of self-assessment vs. third-party
empathy reports. Although most of our pre-med
students were highly confident in their empathetic
abilities, more thorough research is needed in this
direction. AI research on empathy should compare
against and even integrate qualitative metrics like
the Jefferson Scale of Physician Empathy (Hojat
et al., 2001) or the Consultation and Relational
Empathy (CARE) Measure (Mercer et al., 2004).

Obviously, we are currently far from being able
to deploy such models to help in medical student
training. However, our annotated corpus and ex-
periments help shed new light on the empathy clas-
sification task and show what kind of linguistic
(semantic) knowledge can contribute to it. We also
hope such work will encourage future research and
collaboration between AI practitioners and clini-
cians. Overall, developers and providers alike need
to increasingly follow ethical considerations in the
human-value sensitive design of these systems to
ensure the well-being of their users.
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Abstract

Social media has become a popular platform
where people share information about personal
healthcare conditions, diagnostic histories, and
medical plans. Analyzing posts on social media
depicting such realistic information can help
improve quality and clinical decision-making;
however, the lack of structured resources in this
genre limits us to build robust NLP models for
meaningful analysis. This paper presents a new
corpus annotating relations among many types
of conditions, treatments, and their attributes
illustrated in social media posts by patients and
caregivers. For experiments, a transformer en-
coder is pretrained on 1M raw posts and used to
train several document-level relation extraction
models using our corpus. Our best-performing
model achieves the F1 scores of 70.9 and 51.7
for Entity Recognition and Relation Extraction,
respectively. These results are encouraging as
it is the first neural model extracting complex
relations of this kind on social media data.

1 Introduction

There is an increasing number of disease-related
posts published online every day. On social media
platforms such as Reddit and Twitter, people dis-
cuss medical conditions and treatments they use to
obtain insights from one another. Capturing medi-
cal entities and their relations in these real-world
data may significantly benefit tasks such as disease
detection (Amin et al., 2020), adverse drug event
(O’Connor et al., 2014), and pharmacovigilance
(Nikfarjam et al., 2015).

Previous studies have established guidelines and
corpora focusing on medical mention, chemical-
disease relations, and drug-drug interactions
(Uzuner et al., 2011; Patel et al., 2018; Schulz et al.,
2020). One limitation of most existing corpora is
that their data are collected from well-structured
medical text, including electronic health records
(EHRs), medical discharges, and clinical notes.
Models trained on the corpora of formal medical

texts may not perform well on the social media
data because social media data are noisy (Bald-
win et al., 2013) with poor sentence structures and
spelling mistakes. An annotated corpus with care-
fully designed guidelines is necessary to take full
advantage of the large-scale disease-related social
media data. However, only a few research works
contribute to medical text mining in the social me-
dia context (Nikfarjam et al., 2015; Jimeno-Yepes
et al., 2015; Basaldella et al., 2020), and no work
has directly investigated the condition-treatment
relation extraction (RE) on social media data.

To bridge the research gap mentioned above, we
develop annotation guidelines and address the auto-
matic extraction of medical entities and condition-
treatment relations on social media data (Section 2).
Our annotation scheme and the new corpus are il-
lustrated in Section 4. We then experiment with
joint models between NER and RE using our cor-
pus (Section 5). Finally, a detailed error analysis
of the experiment results is provided in Section 6.
The contributions of this paper are as follows:

1. We present annotation guidelines that do not
require prior medical knowledge. Unlike many
existing medical annotation schemes, our guide-
lines are not restricted to specific conditions or
drugs.

2. We introduce an open-access corpus of 1,150
annotated social media posts in terms of 14 en-
tity types and 2 relation types. To the best of our
knowledge, this is the first English condition-
treatment RE corpus targeting social media
posts.

3. We conduct pilot experiments on automatic en-
tity detection and relation extraction, using a
state-of-art document-level joint model. With
the pre-trained language model on one million
medical social media posts, the best F1 scores
for entity detection and relation extraction are
70.9 and 51.7.
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2 Related Work

2.1 Medical Datasets
Annotated corpora are essential resources for super-
vised machine learning. With the advance of NLP
in the medical domain, there is increasing research
on developing reliable medical corpora for various
tasks. For Named Entity Recognition (NER), many
datasets are restricted to specific tasks (Uzuner
et al., 2008; Uzuner, 2009; Uzuner et al., 2010). For
example, in n2c2 datasets1 (originally known as
i2b2), one of their subsets, i2b2 medication dataset
(Uzuner et al., 2010) only annotates Medications
and related entities such as Dosage, Frequency, and
Duration in discharge summaries. Moreover, the
sources of most datasets are discharge summaries,
clinical reports, electronic healthcare records, and
biomedical literature.

Very few datasets aim to capture medical en-
tities on social media. Karimi et al. (2015) pre-
sented CADEC, the first open-access corpus of
medical forum posts. Their corpus comprises 1,321
posts, with annotated entities that are linked to med-
ical terms in controlled vocabularies, such as drug
names, adverse drug event, disease, and symptoms.
However, one limitation of CADEC is that the cor-
pus only covers 12 drugs and their adverse events.
Jimeno-Yepes et al. (2015) introduced a corpus of
1300 posts collected on Twitter, with 3 types of
entities: disease, pharmacologic substance, and
symptom. Furthermore, they experimented with
automatic NER and achieved an F1 score ranging
from 55% to 66%. Alvaro et al. (2017) collected
2,000 posts from Twitter and PubMed articles by
searching 30 drugs. Annotated entities include
drug in SIDER database, disease and symptom in
the MedDRA ontology. Scepanovic et al. (2020)
obtained 1,980 posts from 18 disease-specific sub-
reddits and annotated symptom/disease and drug
names. They further adopted the BiLSTM-CRF
model to extract entities and trained a classifier to
categorize the Reddit posts on a large scale.

As for relation extraction, even fewer datasets
are available. Uzuner et al. (2011) published the
i2b2 clinical relation corpus with 871 annotated
clinical records. Their corpus captures the relations
in terms of the medical problem–treatment, med-
ical problem–test, and medical problem–medical
problem. Segura-Bedmar et al. (2013) provided
the DDI Corpus, which annotates the drug-drug
1https://portal.dbmi.hms.harvard.edu/
projects/n2c2-nlp/

interaction in 1,017 documents from the DrugBank
database and MedLine abstracts. Focusing on ra-
diology reports, Jain et al. (2021) created the Rad-
Graph dataset, which consists of 4 entity types and
4 relation labels. In addition, the authors developed
a benchmark model for relation extraction, with a
micro F1 score of 82.3/72.9 on two test datasets.

2.2 Medical Text Mining in Social Media
In the past few years, there has been a surge of
interest in social media medical text mining, in-
cluding tasks such as mental illness detection (Ji-
meno Yepes et al., 2015; Benton et al., 2017; Gkot-
sis et al., 2017), pharmacovigilance (MacKinlay
et al., 2015; Sarker et al., 2016; Correia et al.,
2020), and monitoring epidemic (Drinkall et al.,
2022). For medical entity extraction in social me-
dia, recent studies show that neural network mod-
els (Yepes and MacKinlay, 2016; Scepanovic et al.,
2020) outperform traditional approaches using con-
ditional random fields or support vector machine.

3 Data

Our data is collected from various social media
forums, using the keyword-based method to filter
out disease-related posts. The source sites include
online support groups, disease forums, message
boards, etc. We obtain approximately one million
unlabeled social media posts. Table 1 describes the
statistics and source site distributions of the data.

4 Annotation Scheme

4.1 Annotation Environment
The annotation platform used for this project is
INCEpTION (Klie et al., 2018), a web-based text
annotation environment that allows users to cre-
ate customized annotation layers and import/export
documents in various formats. We created one span
layer for entities and one relation layer for relations
between entities. Each layer is assigned a tagset
that controls the possible values for annotation la-
bels (see Section 4.2 and Section 4.3 for details).
Figure 3 shows how the post is annotated in IN-
CEpTION. The dataset is exported in the format of
WebAnno TSV 3.3 since it supports custom layers.
The format captures document properties, includ-
ing full text, token positions, token offsets, and
annotations on custom layers with disambiguation
IDs to identify stacked and multi-unit annotations.
Appendix A.1 provides a detailed example of ex-
ported annotation in TSV format.
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Total Posts 1,068,330

Average Word Count 307.9

Source Sites Proportion(%)

dailystrength 9.90
healthboards.com 9.11
mdjunction.com 4.84
cancercompass.com 4.38
netmums.com 4.01
csn.cancer.org 3.91
alzheimers.org.uk 3.59
celiac.com 3.30
psychforums.com 3.05
experienceproject.com 2.87
addforums.com 2.76
forum.childrenwithdiabetes.com 2.68
alzconnected.org 2.56
ehealthforum.com 2.29
inspire.com 2.06
neurotalk.psychcentral.com 1.98
ibsgroup.org 1.79
crohnsforum.com 1.64
diabetes.co.uk 1.55
cancerforums.net 1.53
depresionforums.org 1.49
exchanges.webmd.com 1.32
ourhealth 1.29
diabetesdaily 1.28
reddit.api 1.28
Other (101) 23.5

Table 1: Data statistics. Source sites: the data distribu-
tion of the top 25 sites and the remaining 101 sites.

4.2 Entity Types

The Entity layer tagset contains 14 labels in total,
which are further divided into 4 subcategories: Con-
dition, Treatment, Attribute, and Miscellaneous.

Condition Generally, condition labels capture
the disease and any related symptoms, side effects,
or impairment caused by the disease or medication.
Depending on whom the sufferer is, we annotate
the condition as follows:

• PATIENT CONDITION refers to the condition
from which the writer of the passage suffers. ‘lu-
pus’ in Fig 1a is labeled as PATITENT CONDI-
TION since the sufferer is the writer of the post.

• CAREGIVER CONDITION marks the condition
affecting someone the writer of the passage cares
for (e.g., family members or friends). We anno-

tate ‘tourette’s’ in Fig 1b as CAREGIVER CON-
DITION, since the patient is the son of the writer.

• UNSPECIFIED CONDITION appears in the con-
text where the sufferer of the condition is un-
known or unclear. Another case of UNSPECI-
FIED CONDITION happens when the condition
is assumed or deduced. In Fig 1c, the sufferer is
another user in the previous post threads. Hence,
‘PND’ is labeled as UNSPECIFIED CONDITION.

Hi 2 years ago I was diagnosed with lupus .

PCON

(a) Patient Condition.

I am the mother of a son who was diagnosed

with tourette’s at age 6.

CCON

(b) Caregiver Condition.

im very sorry to hear about your diagnosis of PND .

UCON

(c) Unspecified Condition.

Figure 1: Examples for Condition labels.

Treatment Treatment labels annotate medical
treatments (e.g., medicine, surgery, or even coun-
seling) performed to deliver healthcare.

There is an over the counter medication

called Mucus Relief DM .

MED

(a) Medicine.

Diagnosed with breast cancer in 2002 ,

PCON

I tried lumpectomy and chemo .

PROC PROC

TREAT

TREAT

(b) Procedure.

Figure 2: Examples for Treatment labels.

• MEDICINE refers to any substance used in treat-
ing disease and illness. It could be a drug name,
a brand name, or a type of medication. Example
is shown in Fig 2a.
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Figure 3: Annotation Interface.

• PROCEDURE marks any medical procedure ex-
cept for the diagnostic procedure. Common kinds
of procedures include surgical procedures (e.g.,
‘lumpectomy’ in Fig 2b) and medical therapy
(e.g., ‘chemo’ in Fig 2b).

Attribute A condition or treatment may have
modifiers (usually adjectives or nouns) used attribu-
tively to describe them. After carefully examining
possible modifier types in the dataset, we conclude
8 attribute labels as follows:

• LOCATION describes where the condition is lo-
cated or where the treatment happens, such as
body parts, anatomical structures, and organs.
‘lip’ in Fig 4a gives an example for the LOCA-
TION label.

• OBJECT annotates the object to which the treat-
ment is directed. Sometimes it is difficult to dis-
tinguish from LOCATION. For example, the ‘thy-
roid’ in the second sentence of Fig 4c is labeled
as OBJECT since it is the object that was removed.
However, the ‘thyroid’ in the first sentence speci-
fies where the pain occurs and thus is annotated
as LOCATION.

• QUANTITY marks the quantity determiner used
to specify the condition. It could be concrete
numbers (e.g., ‘a’ in Fig 4a) or quantifiers (e.g.,
‘several’ and ‘some’).

• COLOR refers to the modifiers that describe the
color of the condition. ‘yellowish’ in Fig 4a gives
an example of this label.

• SIZE marks the magnitude and dimension of the
condition. It could be linear dimensions (e.g.,
‘2mm’ in Fig 4a) or size adjectives (e.g., ‘large’
and ‘small’).

• DEGREE shows how severe the condition is, such
as disease stages that provides important infor-
mation on disease development. We label both

disease staging (e.g., ‘stage IV’ in Fig 4b) and
adjectives like ‘severe’ and ‘bad’ as DEGREE.

• TYPE annotates the specific types of the condi-
tion. For instance, ‘diabetes’ in Fig 4b has three
main types, each of which has different symp-
toms. And the patient is suffering from ‘type 2’
in the post.

• PROPERTY captures other modifiers that do not
fit into the previous attribute labels but provide
important properties or characteristics for the
condition (e.g., ‘shooting’ in Fig 4c).

I had a 2mm yellowish pinhead bump

QUANT SIZE COLOR PCON

on my lip .

LOC

ATTR

ATTR

ATTR

TREAT

(a) Example for Quantity, Size, Color, and Location.

She was diagnosed with type 2 diabetes , stage IV .
TYPE CCON DEGREE

ATTR ATTR

(b) Example for Type and Degree.

I had shooting pain in my thyroid before.
PROP PCON LOC

I got my thyroid removed last month.
OBJ PROC

ATTRATTR

ATTR

(c) Example for Location, Object, and Property.

Figure 4: Examples for Attribute labels.

Note that attribute labels are always attached to
corresponding conditions or treatments. Normally,
attribute labels would not appear without condi-
tion/treatment entities.
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Miscellaneous Miscellaneous covers entities that
do not fit in any of the previous categories, and that
may be useful for condition-treatment extraction.
Currently, we have one label, PROFILE, under this
subcategory. Social media posts on some forums
may follow specific conventions, providing addi-
tional information after the post content. As shown
in Fig 5, the user adds personal information, in-
cluding username, their relation to the patient, and
the patient’s medical history to the end of the post.
Since it is not a grammatical or complete sentence,
we label it as PROFILE separately.

[...post...] Rella. mom to Bredan – 15-yrs-old, dx’d

March ’08 at 8 years old Navigator CGM since 2/11

PROFILE

Figure 5: Example for PROFILE.

4.3 Relation Types

Apart from entities, we also annotate directed re-
lations between entities, where applicable. The
direction of the relationship is always from the gov-
ernor to the dependent.

• ATTRIBUTE captures relations between condi-
tion/treatment labels and their attribute labels. As
shown in Fig 4, all ATTRIBUTE relations go from
conditions to attributes. Note that ATTRIBUTE

relations are usually intra-sentence relations.

• TREATMENT annotates relations between con-
dition labels and their corresponding treatments.
The treatment should be attached to the closest
condition with an in-going arc. Fig 2b gives ex-
ample annotations.

4.4 Corpus Analytics

Since the annotation guidelines we developed re-
quire no prior medical knowledge, we recruited
undergraduates from Computer Science and Lin-
guistics departments. All annotators went through
at least three rounds of annotation training before
starting annotation. Initially, 2 annotators were in-
vited and asked to test the guidelines on 6 batches
of annotation (10~15 posts per batch). We dis-
cussed the issues reported and revised the guide-
lines accordingly. After this pilot phase, another 2
annotators were recruited to expedite the annota-
tion process. All annotations have been examined
and curated by one of the authors.

Table 2 displays the Inter-Annotator Agreement
(IAA) scores on the final 3 training batches before
the single annotation. Previous study on interrater
reliability (Hripcsak and Rothschild, 2005) proves
that F1 score is preferable for tasks where the neg-
ative case count is unknown or undefined. Our an-
notation task requires annotators to identify entity
boundaries, choose entity labels, and connect rela-
tions if applicable. In this case, the annotated enti-
ties and relations do not contain any negative cases,
which makes traditional metrics such as Cohen’s
Kappa score inapplicable. Furthermore, calculat-
ing the Kappa score on the token level may yield
either an unfairly high score if including unanno-
tated tokens or an extremely low score if ignoring
unannotated tokens(Brandsen et al., 2020). Hence,
F-measure is adopted as the evaluation metric for
IAA scores. The F1 score is measured between
annotations labeled by annotators and ground-truth
annotations we created for the training purpose.

Round 1 (45) Round 2 (50) Round 3 (50)

Ent Rel Ent Rel Ent Rel

Annotator 1 42.5 15.9 67.0 44.9 75.5 60.0

Annotator 2 44.5 15.6 69.5 57.9 79.6 76.8

Annotator 3 67.5 55.6 66.2 39.1 78.0 53.5

Annotator 4 73.9 55.9 64.1 44.4 76.5 53.9

Table 2: Inter-Annotator Agreement results measured
by F1 score. The number of posts annotated in each
round is given in the parenthesis.

On average, we reach an IAA score ~77 for Entity
and ~60 for Relation. Though the IAA scores of Re-
lations are lower than Entity, note that the relation
is correct only if the boundaries and labels of two
entities and the relation label are exactly the same.
It is noticeable that Annotator 1 and 2 obtained
F1 scores ~16 for Relation in Round 1. It could
be explained by the fact that the guidelines were
updated after the two annotators finished the pilot
phase, and the agreement scores were measured
against the improved ground-truth annotations.

To further analyze the results, we examined an-
notation disagreements. Disease-related social me-
dia data poses certain challenges to the annotation
process. First, different from discharge notes or
electronic health records, the texts in our dataset
use casual language with various expressions to
describe the condition/treatment rather than struc-
tured formal language with unified medical termi-
nologies. This would lead to the inconsistency of
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the entity annotation. Also, the dataset contains
considerable long-distance relations, which poses
difficulties for annotators to identify the correct
governor/dependent entities. Another challenge for
annotators is to distinguish between labels such as
LOCATION/OBJECT, and PROPERTY/TYPE.

Count

Total Posts 1,150

Average Word Count 198.53

Entity 9786

Relation 3645

Table 3: Corpus statistics.

Table 3 presents the corpus statistics. We currently
have 1,150 annotated posts with 9,786 entities and
3,645 relations. Detailed statistics on specific la-
bels will be provided in Section 5.

5 Experiments

For automatic entity recognition and relation ex-
traction, we adopt the state-of-art joint model for
mention detection, coreference resolution, and re-
lation extraction (Xu and Choi, 2022). Focusing
on task interactions between mention detection and
relation extraction, the model incorporates graph
propagation and graph compatibility, which im-
proves decision-making. Since our dataset does
not include coreference annotation, the coreference
evaluation is not performed in this paper.

Pretraining Though there are existing pre-
trained language models for the medical domain
(Lee et al., 2019; Alsentzer et al., 2019), they are
trained on biomedical literature, clinical notes, and
discharge summaries. Due to the novelty of the
dataset, these language models may not provide
good representations for online posts due to the
different language styles. To take advantage of
pre-trained language models, we continue to train
3 models, namely BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and SpanBERT (Joshi
et al., 2020), on 1,068,330 disease-related social
media posts.

Preprocessing The joint model requires input
documents to be segmented into sentences. Since
our annotated dataset is not pre-segmented, one
additional preprocessing step is necessary before
experimenting with the model. Initially, we uti-
lize ELIT tokenizer (He et al., 2021) to segment

posts, followed by remapping all token index, off-
set and label index. However, the tokenizer fails
to process some posts due to the following prob-
lems: (1) inappropriate spacing (e.g., lacking space
between two sentences in ‘...vomiting.She...’); (2)
unknown characters between entities (e.g., ‘ ■? ’ in
entity ‘Alzeheimer ■? s’); (3) period after digits and
abbreviations (e.g., ‘Type 1.’ or ‘MS.’). There-
fore, we create rules to filter out and segment the
problematic posts.

Iterative Stratify Split Table 4 shows that the
dataset is imbalanced, especially for the entity la-
bels. For instance, PATIENT CONDITION has 2949
instances in the corpus, while COLOR only has 12
instances. As a result, the model generalizability
may be hindered, if we randomly split the dataset.
To avoid a skewed train/dev/test split, we employ
the iterative stratification algorithm designed for
multi-label data (Sechidis et al., 2011). Detailed
sampling statistics are provided in Table 4.

Train Dev Test Total

Post 859 118 173 1150
Avg length 198.15 207.71 194.13 198.53

Entity

PCON 2,189 344 416 2,949
UCON 1,259 173 244 1,676
MED 924 125 165 1,214
CCON 835 94 170 1,099
LOC 565 87 104 756
PROC 492 50 111 653
TYPE 375 60 73 508
DEG 309 44 63 416
PROP 165 18 30 213
OBJ 91 12 16 119
QUANT 72 11 16 99
SIZE 39 4 8 51
PROF 16 2 3 21
COLOR 9 1 2 12

Relation

ATTR 1,644 246 316 2,206
TREAT 1,088 135 216 1,439

Table 4: Statistics for iterative stratify split.

Results Table 5 gives the results of the joint
model on entity recognition and relation extraction
tasks using 6 different pre-trained language models
as the encoder. It is apparent from this table that
by using language models pre-trained on the one
million unlabeled data, most models achieve better
performance, with an increase ranging from 3.9%
to 7.8% for entity and from 3.5% to 5.1% for rela-
tion. It is not surprising that SpanBERT-large-med
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Entity Relation

P R F1 P R F1

BERT-large 55.9 70.1 62.2 (±0.80) 33.1 54.5 41.1 (±0.52)

BERT-large-med 66.8 73.6 70.0 (±0.22) 40.0 57.6 47.2 (±1.00)

RoBERTa-large 65.9 73.1 69.3 (±0.53) 42.0 52.9 46.7 (±1.22)

RoBERTa-large-med 65.0 72.3 68.4 (±0.10) 35.9 48.4 41.2 (±1.37)

SpanBERT-large 63.4 71.1 67.0 (±0.57) 45.4 51.3 48.2 (±0.34)

SpanBERT-large-med 67.5 74.9 70.9 (± 0.51) 48.85 55.0 51.7 (± 0.66)

Merged Labels

Condition 68.1 78.8 73.0 (±0.98) 45.4 51.4 48.2 (±1.96)

Treatment 70.1 75.2 72.4 (±1.34) 47.1 54.1 50.3 (±0.35)

Table 5: Experiment results comparing different pre-trained language models. All scores are the average scores
based on 3-5 rounds of experiments. The med suffix indicates the model is trained on the one million unlabeled data.
The Merged Labels section gives results on tagsets with merged labels (e.g., ‘Condition’ means entity labels under
Condition subcategory are merged into one tag).

reaches the highest F1 scores for both entity (70.9)
and relation (51.7), since it provides an improved
prediction on spans and is proved to be promising
on span selection tasks.

Besides experimenting with pre-trained lan-
guage models, we also trained models with various
merged tagsets. As in the Merged Labels section
in Table 5, most merged tagset settings bring an
increase on entity F1 scores. However, none of
the merged label settings outperforms the original
label setting in terms of the relation F1 score.

Postprocessing For this task, higher precision
scores are preferable to higher recall scores since
less false positive output would benefit the subse-
quent medical decision-making processes. Hence,
we attempt to improve the precision score through
postprocessing. First, we adjust the top span ratio
for entity extraction, which controls the pruning
rate of candidate entities according to their men-
tion scores. Top span ratios ranging from 0.4 to 0.1
are tested, which leads to an average of 1~2 percent
increase in precision. Then, we filter out singleton2

attribute entities with no relation attached, which
gives a precision increase of ~2 percent.

6 Error Analysis

Further analysis is conducted based on the model
prediction on the test dataset. Table 6 displays the
breakdown of results using pre-trained SpanBERT-
large model. The best F1 scores are obtained on
2Singleton refers to the single entity without ingoing or outgo-
ing relations attached to other entities.

MEDICINE, CAREGIVER CONDITION, and PA-
TIENT CONDITION since most entities in these
labels are likely to be medical terms. The relatively
low F1 score of UNSPECIFIED CONDITION is due
to mislabeling it as PATIENT CONDITION or CARE-
GIVER CONDITION. The primary reason for the
low performance on OBJECT is that the model is
prone to predict anatomical structures as LOCA-
TION. The majority of the entities in PROPERTY

are common words, such as ‘short’ and ‘double’,
which leads to a high false positive rate.

Count(%) Results

Cor Spu P R F1

Entity

MED 86.1 5.5 78.0 80.7 79.3
CCON 84.1 9.4 73.7 76.9 75.3
PCON 83.2 13.5 72.9 75.8 74.4
LOC 81.7 15.4 70.2 77.3 73.6
UCON 77.9 11.5 66.2 68.6 67.4
PROC 73.9 23.4 60.3 70.1 64.8
DEG 61.9 11.1 60.0 57.4 58.6
QUANT 68.8 18.8 57.9 57.9 57.9
PROF 66.7 0 66.7 50.6 57.1
TYPE 57.5 5.5 56.8 53.2 54.9
SIZE 62.5 37.5 45.5 62.5 52.6
COLOR 50.0 0 50.0 50.0 50.0
OBJ 37.5 25.0 40.0 35.3 37.5
PROP 33.3 20.0 26.3 28.6 27.4

Relation

ATTR - - 55.7 58.7 57.1
TREAT - - 44.0 48.0 45.9

Table 6: SpanBERT-large-med result breakdown.
Count shows the proportion of correctly predicted en-
tity count and spurious entity count for each label.
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One crucial problem that is observed from the pre-
dicted results is the spurious problem. In other
words, the model predicts entities that do not exist
in the gold annotation. There is a total of 178 spu-
rious entities produced in 173 posts. The majority
of predicted spurious entity types are condition la-
bels (100 spurious entities detected) and treatment
labels (35 spurious entities detected). The reasons
for this problem are threefold:

1. During the annotation process, we do not an-
notate singletons such as ‘pain’ and ‘problem’
unless they have modifiers that are labeled as
attributes (e.g., ‘thyroid problem’). The model
fails to rule out this kind of singletons.

2. Certain terms such as ‘B12’ could be treatment
for diseases (labeled as MEDICINE in ‘B12 sup-
plement’) or non-entity (as in ‘B12 level’). The
model fails to distinguish between these two
scenarios.

3. Since most attribute entities we labeled could
be non-entity in most times, the model is likely
to produce false positive responses. Taking ‘se-
vere’ as an example, the model may mistakenly
label it as DEGREE in ‘severe situation’, since
the model has seen many instances (e.g., ‘severe
anxiety disorder’).

Subsequently, relation extraction also suffers from
the spurious problem. Since the relation is gen-
erated based on the detected entities, the model
would predict relations on spurious entities. More-
over, long-distance relations pose challenges to
the relation extraction task. For instance, when
more than one condition are labeled in the post, the
model is prone to attach the treatment to the closer
condition rather than the corresponding one.

7 Conclusion

To facilitate medical text mining in the social me-
dia context, we develop an annotation scheme of
disease-related posts for the condition-relation ex-
traction. Following the guidelines, we present a
reliable corpus3 with 9,785 entities and 3,645 re-
lations, which is a valuable addition to the limited
corpora in this field. Additionally, we experiment
with automatic entity recognition and relation ex-
traction, providing a promising model for mining

3https://github.com/emorynlp/REDSM We dis-
tribute the dev and test dataset and part of the training dataset
(add up to 50% of the corpus), as requested by the sponsor.

online medical posts. We also conduct a detailed
error analysis that may shed light on future work.

The findings of our work suggest potential di-
rections for further studies in this domain. Pos-
sible progress could be made by increasing the
corpus size since the current corpus is relatively
small. Also, the model structure could be designed
to solve the spurious problem.
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A Appendix

A.1 Annotation Output

Raw Sentence: I had very bad de realisation when I was first diagnosed with schizoaffective disorder. The doctor came to the house and
immediately knew what to do. I had to have a massive dose of tranquillisers over three days. It worked very weel.

#Text=I had very bad de realisation when I was first diagnosed with schizoaffective disorder .

1-1 0-1 I _ _ _

1-2 2-5 had _ _ _

1-3 6-10 very _ _ _

1-4 11-14 bad Degree Attribute 1-5[1_0]

1-5 15-17 de Patient Condition[1] _ _

1-6 18-29 realisation Patient Condition[1] _ _

……

1-13 62-77 schizoaffective Patient Condition[2] _ _

1-14 78-86 disorder Patient Condition[2] _ _

1-15 86-87 . _ _ _

#Text=The doctor came to the house and immediately knew what to do .

2-1 88-91 The _ _ _

……

#Text=I had to have a massive dose of tranquillisers over three days .

……

3-9 182-196 tranquillisers Medicine Treatment 1-13[2_0]

……

#Text=It worked very well .

4-1 214-216 It _ _ _

……
Figure 6: Exported annotation example after segmentation and remapping (See Section 5). Framed text is the raw
text collected from social media forums. Tokens of each sentence have 6 properties: token position (e.g., sentence
ID - token ID), token offset, token, entity label, relation label, and disambiguation ID (e.g., governor sentence ID
[multi-unit entity ID]).
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Abstract

Recently, research into bringing outside
knowledge sources into current neural NLP
models has been increasing. Most approaches
that leverage external knowledge sources re-
quire laborious and non-trivial designs, as well
as tailoring the system through intensive ab-
lation of different knowledge sources, an ef-
fort that discourages users to use quality on-
tological resources. In this paper, we show
that multiple large heterogeneous KSs can be
easily integrated using a decoupled approach,
allowing for an automatic ablation of irrele-
vant KSs, while keeping the overall param-
eter space tractable. We experiment with
BERT and pre-trained graph embeddings, and
show that they interoperate well without per-
formance degradation, even when some do not
contribute to the task.

1 Introduction

Integration of external knowledge sources (KSs)
is seen as a daunting task by the community. Most
KSs like ontologies are large and complex. Thus,
a majority of the current efforts focus on leverag-
ing a single task relevant KS using hand-tailored
architectures (Goodwin and Demner-Fushman,
2020; Peters et al., 2019; Bagherzadeh et al.,
2018). During the design process, knowledge
sources are often selected through an ablation
study, which is laborious and makes the result
task-dependent. Thus for every new task the set
of relevant knowledge sources has to be identified
with a similar study.

It is possible to ignore the tailoring step and use
all available KSs, trusting that the training process
will properly weigh the heterogeneous KSs given
the internal dynamics of the model. This ideal case
requires sufficient training data, but most tasks
(like many biomedicial tasks) have only small or
moderate-sized training data, a common problem
for large, monolithic machine learning systems

(Glasmachers, 2017). In those systems all KSs
are always contributing their expertise, which can
result in decreased rather than improved perfor-
mance. We explore here a way to integrate several
large, heterogeneous KSs with partly overlapping,
partly divergent, and possibly even contradictory
expertise in such a way that they interoperate well
without adaptation, with no resulting performance
decrease as well as low parameter implications.
We use an integration of six KSs as our experi-
ment system and test it over seven different shared
task datasets to assess its robustness. We visualize
and inspect the contribution of each KS and ana-
lyze the parameter space in detail.

The question is how to integrate multiple het-
erogeneous KSs so that the same system can be
used for multiple, unrelated tasks without manual
adaptation and without large overhead. We argue
that a system with decoupled modules is suitable
for this purpose. Decoupled modules can be acti-
vated conditioned on the input, allowing the sys-
tem to ignore an irrelevant KS and thus preventing
performance loss with fewer parameter updates at
each training step (Shazeer et al., 2017). In this
paradigm, instead of hand-picking KSs, an inter-
nal and automatic ablation is performed at each
step for all KSs, making it easy to use the same
system for different tasks, with the least detrimen-
tal effects.

Our KSs consist of the pre-trained language
model BERT, as well as six structured knowl-
edge repositories designed for human useage:
WordNet, DBpedia, ConceptNet, MeSH, GO, and
UMLS. For all but ConceptNet we found open
source graph embeddings, and we embed Con-
ceptNet using RDF2Vec (see Section 2).

The recently proposed multi-input RIM frame-
work (Bagherzadeh and Bergler, 2021) comes
close to our ideas and we use it here for decoupled
integration of our KSs. (Bagherzadeh and Bergler,
2021) showed successful decoupled integration of
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simple KSs like gazetteer lists that were task ap-
propriate but did not report on experiments with
large, structured KSs.

We test the same system on 7 different biomed-
ical shared task datasets and show that our hetero-
geneous KSs interoperate well and achieve syn-
ergy, despite their overlap in coverage. Our re-
sults improve on two baselines contributed by the
knowledge-enhanced models bioBERT (Lee et al.,
2020) and KB-BERT (Hao et al., 2020). The sys-
tem is competitive with state of the art systems
(see Table 1).

2 Heterogeneous knowledge sources

Specialized ontological resources contain quality
curated information and are often very large and
complex. A graph-based knowledge representa-
tion is symbolic and discrete, making it hard to
use in a machine learning framework, as most ma-
chine learning models prefer conducting computa-
tions on continuous data. The past few years have
seen several techniques to embed graph structures
into vector spaces. Inspired by distributional word
representations (Mikolov et al., 2013), where each
word is embedded in a low dimensional space,
graph embedding models embed a graph into a
vector space. In graph embedding models, enti-
ties (nodes) and relations (edges) are represented
by vectors or matrices (Bordes et al., 2013; Ris-
toski and Paulheim, 2016).

Inspection of graph embedding models shows
that they can capture a fair amount of ontological
information. For instance (Nayyeri et al., 2021)
show that related concepts are often close to each
other in the vector space. We use the following
ontologicial resources encoded using a pre-trained
graph embedding:

WordNet is a lexical databese that defines word
senses by their relations to other senses (Miller,
1995). The most important relation in WordNet
is synonymy that is used to group synonymous
senses into synsets.

DBpedia (Auer et al., 2007) extracts knowledge
from Wikipedia info boxes, providing a large num-
ber of facts, largely focused on named entities that
have Wikipedia articles.

We use the pre-trained RDF2Vec (Ristoski and
Paulheim, 2016) embeddings of WordNet and DB-
pedia, which are available from KGvec2go web-

site.1

ConceptNet is a large multi-lingual graph of
general knowledge (Speer et al., 2017). Concept-
Net uses closed class of 36 relations. To embed
ConceptNet a set of graph embeddings is obtained
in-house, using RDF2Vec.

MeSH or Medical Subject Headings is a hierar-
chical vocabulary, produced by the US National
Library of Medicine (NLM) (Lipscomb, 2000).
It is used for indexing, cataloging, and search-
ing of biomedical and health-related information
in PubMed.2 MeSH is also embedded using a pre-
trained graph embedding called MeSH2Vec (Guo
et al., 2020).

GO or Gene Ontology (Ashburner et al., 2000)
is a controlled vocabulary that describes gene-
and protein-related terms. We use the pre-trained
GO2Vec embeddings (Zhong et al., 2019) for en-
coding the Gene Ontology.

UMLS or Unified Medical Language System
(Bodenreider, 2004) is a rich and large seman-
tic network of biomedical vocabularies developed
by NLM. UMLS comprises 127 semantic types
and 54 semantic relations. Currently UMLS en-
compases 222 biomedical vocabularies including
MeSH, GO, DrugBank, etc. For UMLS, we use
the embeddings provided by (Maldonado et al.,
2019).

KS Size Reference
WordNet 300 (Ristoski and Paulheim, 2016)
ConceptNet 200 In-House
GO 100 (Grover and Leskovec, 2016)
MeSH 64 (Guo et al., 2020)
UMLS 50 (Maldonado et al., 2019)
DBpedia 200 (Ristoski and Paulheim, 2016)

Table 1: Summary of pre-trained graph embeddings
used in experiments

Table 1 provides a summary of the pre-trained
graph embeddings used in the experiments. In this
paper, the pre-trained graph embeddings are used
off-the-shelf, without any special adjustments. We
do not fine-tune the graph embeddings for three
reasons. First, ontological resources represent

1http://kgvec2go.org
2https://pubmed.ncbi.nlm.nih.gov/
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facts that should not be biased depending on the
task. In a decoupled approach, the modules are re-
sponsible for representation learning and any task-
specific adaptations are performed by the mod-
ules. Second, using graph embeddings as is en-
hances reproducibility of the model, as all future
replications can use the same embeddings. Third,
freezing the pre-trained graph embeddings signif-
icantly reduces the number of training parameters
(see Section 4.5).

3 Tasks

We choose seven biomedically oriented datasets
from different shared task competitions that range
from simple classification tasks over multi-label
classification and relation extraction to sequence
labeling tasks. Comparing results for the same
system on such a variety of tasks and datasets (in-
cluding NER on Spanish!) allows us to be confi-
dent that the decoupled integration together with
sparse activation in the miRIM architecture suc-
cessfully avoids interference of the KSs and per-
formance degradation.

BB-Rel or Bacteria Biotope which is part of the
BioNLP 2019 challenge focuses on the ex-
traction of two types of relations namely
Lives_In and Exhibits (Bossy et al.,
2019). Lives_In relations link a microor-
ganism entity to its location. Exhibits rela-
tions on the other hand link a microorganism
entity to a phenotype entity. To evaluate the
test predictions we use the online tool pro-
vided by the organizers.3

ChemProt or BioCreative VI track 5 involves
detection of relations between mentions of
chemicals and genes/proteins in medical
journals (Krallinger et al., 2017). The
ChemProt task provides a manually anno-
tated corpus, where domain experts have
exhaustively labeled all chemical and gene
mentions, and all binary interactions be-
tween them corresponding to a specific set
of biologically relevant relation types, called
ChemProt relation classes (CPRs).

DDI or SemEval 2013 task 9.b (Segura-Bedmar
et al., 2013) is a relation extraction task for
drug-drug interaction mentions in DrugBank
(Wishart et al., 2018) and MedLine abstracts.

3http://bibliome.jouy.inra.fr/demo/
BioNLP-OST-2019-Evaluation/index.html

HoC or Hallmarks of Cancer (Baker et al., 2015)
is a multi-label classification task where zero
or more labels are assigned to sentences from
PubMed abstracts describing cancer hall-
marks. Note that the HoC data set is not
pre-spitted into train, development, and test
sets. We therefore randomly split the data
with 60%, 20%, and 20% ratios for train, de-
velopment, and test respectively.

LitCov or BioCreative VII track 5 (Chen et al.,
2021) concerns multi-label classification of
abstracts from Covid-related articles into 7
classes, namely: Treatment, Mechanism, Pre-
vention, Case Report, Diagnosis, Transmis-
sion, and Epidemic Forecasting.

LivNER is a sequence labeling task that requires
recognition and classification living things
into the two categories HUMAN and SPECIES

in Spanish clinical reports. Note that since
LivNER is a recent challenge, the gold stan-
dard labels for the official test set is not dis-
closed, thus, we used a hold out test set from
the training data.

PPI or BioCreative III Article Classification Task
(ACT) is a binary task in which biomedi-
cal articles describing protein-protein inter-
actions (PPI) must be identified (Krallinger
et al., 2011).

Task Metric Train/Dev/Test split
BB-Rel F1 1000/64/500
ChemProt F1 1682/612/800
DDI F1 500/214/191
HoC F1 10.4k/3.5k/3.5k
LitCov mac-F1 24.9k/6.2k/2.5k
LivingNER µF1 500/250/250
PPI Acc 6280/6000

mac-F1: macro-F1, µF1: micro-F1, Acc: Accuracy

Table 2: Size and evaluation metric for datasets

Table 2 provides a summary of the biomedical
tasks. The tasks differ in their complexity, number
of training samples, as well as the type of knowl-
edge they require. The diversity of the biomedical
tasks allows to evaluate the efficacy of the decou-
pled integration of heterogeneous KSs.
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4 Experiments

4.1 Decoupled framework

As described in (Bagherzadeh and Bergler, 2021),
mi-RIM is an architecture of M decoupled recur-
rent modules f1, . . . , fM , where each module fm
operates on a different input, making it possible to
integrate different KSs.

In mi-RIM, each KSm (for instance a pre-
trained model) provides its representation xmt for
a token at position t to the module fm. Module fm
selects its input using an attention mechanism:

x̃mt = Attention(hmt−1, X
m
t , Xm

t ) (1)

where Attention(hmt−1, X
m
t , Xm

t ) is the dot-
product attention (Vaswani et al., 2017) with hmt−1

as query and Xm
t as both key and value, and

Xm
t = [0 ;xmt ], where 0 is an all-zero vector and

; denotes row-level concatenation. This attention
mechanism allows a module to ignore the input
from a KS by attending more to the null input (the
all-zero vector).

Once all modules have selected their input, M
sets of attention scores are available. Among the
modules, a set of top-k modules with the least at-
tention to the null input are selected as active mod-
ules, denoted by Ft. As argued by (Goyal et al.,
2019), sparse activity leads to competition among
modules which leads to developing more special-
ized expertise for them. We show that this input
selection mechanism allows for an automatic ab-
lation of KSs, identifying and blocking irrelevant
ones and thus preventing a module to be updated
by its corresponding KS.

The active modules are updated using their se-
lected input to obtain temporary hidden represen-
tations h̃mt (m ∈ Ft):

h̃mt = fm(x̃mt , hmt−1) m ∈ Ft (2)

where fm(x̃mt , hmt−1) denotes a single recurrence
of fm with x̃mt as input and hmt−1 as previous hid-
den state. For the inactive modules, the temporary
hidden representation is copied from the previous
position, in other words, h̃mt = hmt−1.

The active modules then interact with each other
via another attention mechanism to obtain their ac-
tual hidden representations:

hmt = Attention(h̃mt , H̃t, H̃t) m ∈ Ft (3)

where H̃t = [h̃1t ; . . . ; h̃
M
t ]. The actual hidden state

for inactive modules is the same as their temporary
hidden state (hmt = h̃mt m /∈ Ft).

Because the input selection and interaction
mechanisms are attention based and attention can
take a variable number of argument representa-
tion, new KS modules can be added to an existing
model without major changes.

(Bagherzadeh and Bergler, 2021) provided a
proof of concept for integration of language mod-
els and a few gazetteer lists on simple tweet-
related biomedical tasks. Here, instead, we test the
decoupled mi-RIM framework on complex tasks
and on a more diverse set of KSs.

4.2 Preprocessing and implementation
details

We use a GATE pipeline (Cunningham et al.,
2002) for preprocessing with CoreNLP (Manning
et al., 2014) plugin for tokenization and sentence
splittting. For LivNER we use the Spanish version
of CoreNLP for preprocessing4. The integration
of KSs requires minimal prepossessing. Tokens
are matched against each ontology using a simple
case-insensitive exact match approach, by match-
ing for the longest possible span. The exact match-
ing approach is widely used for incorporating ex-
ternal KSs. For instance (Goodwin and Demner-
Fushman, 2020) successfully use exact matching
to incorporate information from ConceptNet.

We use the PyTorch library (Paszke et al., 2017)
for mi-RIM implementation. We use 7 LSTM
modules5 to accommodate the BERT and the
graph embeddings. The hidden size of all mod-
ules is set to dh = 128. All models are trained
using the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of lr = 5× 10−6.

4.3 Numerical results

Table 3 reports the results. The first 2 rows of the
table report the performance of BERT and BERT
(frozen) as the sole KSs, forming baselines for the
experiments. We use the same system with all
knowledge sources for all tasks to observe how
the system behaves for widely different tasks with
different knowledge requirements. For LivNER,

4see https://stanfordnlp.github.io/
CoreNLP/human-languages.html

5see https://pytorch.org/docs/stable/
generated/torch.nn.LSTMCell.html
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mic-F1 mic-F1 F1 mac-F1 F1 F1 mic-F1

KSs M k BB-Rel ChemProt DDI LitCov PPI HoC LivNER
BERT (frozen) 1 1 58.3 68.3 85.7 75.5 68.3 79.1 85.3
BERT 1 1 62.9 74.2 87.3 79.2 70.2 83.1 87.9

BERT (frozen), All
Graph Emb.

7

7 64.1 70.9 87.2 79.2 72.6 82.4 88.9
6 64.7 71.4 87.8 79.7 73.1 82.7 89.3
5 64.9 72.2 88.3 80.6 73.8 83.4 89.5
4 66.0 73.4 88.6 81.1 74.2 83.8 90.4
3 66.1 74.1 88.9 81.3 73.3 84.3 90.6
2 64.7 72.6 87.6 79.1 72.6 82.2 89.4
1 62.9 70.1 86.3 76.7 70.9 81.6 88.8

BERT, All Graph
Emb.

7

7 66.3 76.2 89.8 83.2 73.8 85.6 91.2
6 66.9 76.8 90.1 84.2 74.1 85.9 91.5
5 67.4 77.0 90.7 84.7 74.6 86.3 91.8
4 67.6 77.4 91.3 85.1 75.7 86.5 92.3
3 66.8 78.8 91.8 85.6 74.9 86.9 92.8
2 66.2 77.3 89.0 83.0 73.1 85.2 91.6
1 64.5 75.5 88.2 81.9 72.2 84.4 89.7

BioBERT 65.3 75.2 89.9 81.7 73.8 84.6 NA
KB-BERT 65.8 76.1 90.3 81.5 72.7 85.1 NA
SOTA 64.81 77.22 92.23 88.74 NA NA NA

1. (Zhang et al., 2019) 2. (Gu et al., 2021) 3. (Luo et al., 2020) 4. (Fang and Wang, 2021)

Table 3: Decoupled Integration of KSs using a mi-RIM. The same system is used for all tasks

which is a Spanish task, we use the Spanish ver-
sion of BERT (Cañete et al., 2020).

The table indicates the number of modules M :
for the simple BERT baseline, there is only one
module (namely, BERT). The experimental sys-
tem has 7 modules, 6 graph embeddings and
BERT’s language model.

Column 3 indicates the degree of enforced spar-
sity k. When all modules are active (k = 7),
all KSs contribute their information and update
their corresponding modules. In this case, the sys-
tem corresponds to a monolithic model and shows
small improvements (of 2-5%). This shows that
to some extent, the monolithic model can ignore
irrelevant KSs using its inner dynamics.

Integration of BERT with the extant graph em-
beddings never shows loss of performance com-
pared to the respective baseline. This is a strong
result, considering how heterogeneous the KSs are
and how varied and small the datasets and tasks.
The strongest results of the decoupled design with
sparse activation are for k = 3 or k = 4. This
can be attributed to the competition among KSs,
allowing for their contribution only if they are rel-
evant to the task using input selection. This miti-

gates the inclusion of irrelevant KSs. For instance,
LitCov and DDI tasks do not require knowledge
on genes, thus GO is an irrelevant KS. Neverthe-
less, its inclusion does not lead to a performance
decrease for the two tasks compared to the BERT
and BERT (frozen) baselines. They are, however,
the only two tasks for which SOTA outperforms
our experimental system for k = 3.

Extreme sparsity (k = 1 or k = 2) shows
lower performance than k = 3 but never below
the BERT baselines. k = 1 is generally lower than
k = 7 but still close to SOTA performances. This
shows that although the system is forced to ablate
most of the KSs, it can still find a combination that
improves overall performance. Note that k = 1 is
not equivalent to injecting only a single KS into
the system since the miRIM architecture makes
decisions at the token level and in certain cases
the computation graph for k = 1 may include all
7 KSs.

As discussed in the next section, sparsity gener-
ally leads to a significant reduction in the number
of parameters.

Although LitCov (which has the largest train-
ing set) benefits the most from the integration of
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KSs compared to its BERT baseline, other tasks
with smaller sized training data also show siz-
able improvements, which are more pronounced
with sparse activity of the modules. This demon-
strates the benefits of an automatic internal abla-
tion mechanism for integration of large heteroge-
neous KSs.

In general, a decoupled approach also allows
to reuse embeddings of KSs. Consider LivNER,
which is a Spanish task. We use the same system
as for the English tasks and only replace BERT
with its Spanish version. Note that a language
model trained on Spanish text has significantly
different representations compared to its English
version, however, as the results suggest, it inter-
operates well with the other (English) KSs. This
recommends the approach also for underresourced
languages.

The pre-trained graph embeddings also interop-
erate well with frozen BERT. The results show that
once integrated with frozen BERT (which has no
fine tuning on the target task datasets), the lexi-
cal information in the knowledge sources effec-
tively compensates for the loss. In most cases,
integration of the off-the-shelf KSs with frozen
BERT outperforms fine-tuned BERT significantly
with almost 100M less parameters. This is very
attractive for training on small or moderated-sized
data, with less potential for overfitting (Li et al.,
2021) or in resource limited situations.

Table 3 also reports on other knowledge en-
hanced models such as BioBERT (Lee et al., 2020)
and KB-BERT (Hao et al., 2020), as well as
the state-of-the-art (SOTA). With sparse activity
(k = 4 or k = 3), integration of lexical KSs
with BERT always outperforms both BioBERT
and KB-BERT, showing that the automatic abla-
tion of discrete KSs is competitive with domain
specific pre-training.

Note that the k values for best-preforming set-
tings fall within an arrow interval (k = 3 or
k = 4), suggesting that automatic mechanisms can
be used to determine k during training.

4.4 Analysis of results

In precision-oriented applications such as biomed-
ical tasks, users require to understand why and
how a prediction is made (Amini and Kosseim,
2019). In a decoupled approach, the activity of
each module is often transparent for inspection.
Likewise, in mi-RIM, contributions of KS are

transparent. Each module selects its input from its
corresponding KS using an attention mechanism
and if the input is deemed relevant, the module
has a high chance of activation. The activation
patterns can be traced, providing insight into the
functionality of the system. Consider Example 1
(from HoC task):

(1) Unlike insulin, ghrelin inhibited Akt kinase
activity as well as up-regulated gluconeoge-
nesis

In this example, the term gluconeogenesis is
matched with UMLS, MeSH, GO, ConceptNet,
and DBpedia. Note that BERT also provides a
representation for the term. Figure 1 shows the
activation patterns of mi-RIM for Example 1. The
gray regions indicate activity for a module.

BERT → f1

k
=

3

UMLS → f2
MeSH → f3

GO → f4
WordNet → f5

ConceptNet → f6
DBpedia → f7

BERT → f1

k
=

2

UMLS → f2
MeSH → f3

GO → f4
WordNet → f5

ConceptNet → f6
DBpedia → f7
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Figure 1: Activation patterns of mi-RIM for Example 1

For the term gluconeogenesis, when k = 3,
modules f2, f4, and f6 (corresponding to UMLS,
GO, and ConceptNet respectively) win the com-
petition and are active. Note that the model has
selected a very specialized KS for genes (GO), a
more comprehensive KS (UMLS), and a general
KS (ConceptNet). This suggests that the model is
trying to balance the expertise of active KSs. In
this light, the activity of ConceptNet versus the
inactivity of MeSH is interesting where the gen-
eral resource ConceptNet is selected over the more
specialized MeSH. A similar pattern is also ob-
served when k = 2, where ConceptNet is selected
over GO, suggesting that it is a more robust re-
source.

The activation patterns suggest that an auto-
matic and internal ablation is performed by the de-
coupled model. This suggests that an established
system of M KSs can be used for different tasks
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without pre-ablating relevant KSs because contri-
butions of irrelevant KSs are mitigated by input
selection.

4.5 Parameter space and inference time

Let Θmod denote the set of training parameters im-
plicated by all modules and |Θmod| denotes the
overall number of parameters. Due to conditional
computation in mi-RIM, the number of trained pa-
rameters |Θmod|′ (sample-wise) is linked to the
value of k. If k = M , all modules are part of the
computation graph, i.e. all parameters are trained:
|Θmod|′ = |Θmod|.

However, when k < M (sparse activity)
k
M |Θmod| ≤ |Θmod|′ ≤ |Θmod|. The best case
( k
M |Θmod|) occurs when M−k modules are never

active and thus not included in the computation
graph. The worst case (|Θmod|) on the other hand
occurs, when all modules are active at least for a
single position t, forcing all to be included in the
computation graph.

Consider the activation patterns of Figure 1
when k = 3. Module f4 (corresponding to
GO) is active only at three positions, leading to
the inclusion of the module in the computation
graph. Moreover, module f3 (corresponding to
MeSH) shows activity for four positions. Al-
though the top-k activity is set to 3, overall, 5 mod-
ules demonstrate activity for at least one position.
In this case, |Θmod|′ = 5

7 |Θmod|. Note that the
best case when k = 3, is |Θmod|′ = 3

7 |Θmod|.
Although more reduction is expected with smaller
values of k, it is possible that all modules demon-
strate activity at least for one position even if k =
1.

Figure 2 shows a comparison of the fraction of
trained parameters |Θmod|

|Θmod|
′

for two different tasks.
Sparse activity consistently reduces the number
of trained parameters. Note that on average, the
fraction of trained parameters never approaches its
best case ( k

M ). For instance, when k = 1, for HoC,
|Θmod|
|Θmod|

′
= 0.46 while the best case is about 0.14.

This shows that on average 3.2 modules show ac-
tivity at least for one position even tough k = 1.

The reported experiments showed that most
runs demonstrate their best performance when
k = 4 or 3. As Figure 2 shows, on average, when
k = 4 and k = 3, 67% and 52% of parameters
are trained respectively. This shows that while im-
proving performance, sparse activity can signifi-
cantly reduce the number of trained parameters.
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Figure 2: Fraction of trained parameters vs number of
active modules

The reduced parameter space allows for training
on small or moderate-sized data sets with less po-
tentials for over-fitting (Li et al., 2021).

A brief analysis of the inference time is also
provided in Figure 3. We measure the inference
time for different values of top-k activity. Note
that the reported inference time is the average tim-
ing on all tasks, timed on an Intel Corei7 CPU.

As Figure 3 shows, sparse activity significantly
reduces the inference time. This is expected since
once a KS is not selected, there is no need to up-
date its corresponding module, leading to speed-
up in the inference time.

7 6 5 4 3 2

500

600

700

800

Number of active modules (k)

M
ill

is
ec

on
ds

Figure 3: Inference time of mi-RIM with 7
KSs/modules for different k values

5 Conclusion

This paper presents extensive experiments on de-
coupled integration of heterogeneous KSs such as
language models and pre-trained graph embed-
dings. The same system with all KSs was used
for all tasks, without special calibrations, demon-
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strating reusability of extant knowledge sources.
The tasks differed in terms of complexity as

well as their knowledge requirements (specialized
or general knowledge). The results show that for
the tasks considered here, the KSs interoperate
well and they do not confound each other’s perfor-
mances. Moreover, we showed that a system that
leverages multiple KS does not necessarily show
significant improvement, rather the sparse activity
of modules is required to effectively improve per-
formance.

Inspection of activation patterns shows that a
decoupled system can ignore irrelevant/redundant
KSs, showing an automatic ablation behavior.

We show that in terms of the number of trained
parameters, a decoupled approach is efficient. The
sparse activity significantly reduces the number
of trained parameters. Moreover, since the pre-
trained graph embeddings are not fine-tuned, the
overall model does not have large parameter im-
plications.

We also stress the ease of reusing and replicat-
ing such a decoupled system, since the same pre-
trained embeddings will be used by different users.
Moreover, the pre-trained embeddings do not have
to be stored on the same machine that the model
is trained on. KGvec2go6, for instance, provides
an API through which pre-trained embeddings are
accessible. This ultimately results in lightweight
models.

In conclusion, a decoupled approach allows for
robust and efficient integration of heterogeneous
KSs, allowing the user to leverage multiple knowl-
edge sources, without any need for special calibra-
tion or tailoring.
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