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Abstract

Domain adaptation of word embeddings has
mainly been explored in the context of retrain-
ing general models on large specialized corpora.
While this usually yields good results, we ar-
gue that knowledge graphs, which are used less
frequently, could also be utilized to enhance ex-
isting representations with specialized knowl-
edge. In this work, we aim to shed some light
on whether such knowledge injection could be
achieved using a basic set of tools: graph-level
embeddings and concatenation. To that end,
we adopt an incremental approach where we
first demonstrate that static embeddings can in-
deed be improved through concatenation with
in-domain node2vec representations. Then, we
validate this approach on contextual models
and generalize it further by proposing a variant
of BERT that incorporates knowledge embed-
dings within its hidden states through the same
process of concatenation. We show that this
variant outperforms plain retraining on several
specialized tasks, then discuss how this simple
approach could be improved further. Both our
code and pre-trained models are open-sourced
for future research. In this work, we conduct
experiments that target the medical domain and
the English language.

1 Introduction

The popularization of transfer learning, particu-
larly in the context of pre-training language mod-
els to serve as encoders in downstream tasks, has
led to an ever-expanding set of methods for rep-
resenting textual data: e.g. ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019). While these models continuously
push forward the expected level of performance on
so-called “general domain” tasks (e.g. GLUE1),
they usually lag behind when it comes to more spe-
cialized areas like the medical domain (see BLUE2

1https://gluebenchmark.com/leaderboard
2https://github.com/ncbi-nlp/BLUE_Benchmark#

baselines

and BLURB3 benchmarks). As a result, there is
a growing interest in finding ways in which these
out-of-the-box representations can be specialized,
with most efforts focusing on retraining general
models on specialized corpora: e.g. ClinicalBERT
(Alsentzer et al., 2019), BioBERT (Lee et al., 2020),
and BioMed-RoBERTa (Gururangan et al., 2020).
However, pre-trained language models have also
been shown to benefit from external knowledge
injection, with approaches like LIBERT (Lauscher
et al., 2020), KnowBERT (Peters et al., 2019), and
KEPLER (Wang et al., 2021b) in the general do-
main, or (Hao et al., 2020) and (Lu et al., 2021) in
the medical domain. Yet, these efforts usually in-
volve complex modifications to the architecture of
underlying models and/or their pre-training proce-
dure, which may convey the impression that knowl-
edge injection cannot be achieved in simpler ways.

In this work, we propose a simple approach to
embedding specialization that relies on knowledge
graph embeddings and concatenation. We argue
that by building a simple but strong baseline first,
we lay the foundation for future improvements that
may be easily achieved by upgrading to more so-
phisticated knowledge embeddings or combination
methods. In practice, we show that medical concept
embeddings obtained from an in-domain knowl-
edge graph can be combined through concatenation
with word representations to effectively construct
specialized “meta-embeddings” (Yin and Schütze,
2016). Moreover, in the specific case of contextual
embeddings, we show that these concept embed-
dings can be combined either externally, with a
general-domain model, or internally, during the pre-
training of a specialized model, to achieve varying
levels of model specialization. All our models are
trained and evaluated in pairs, and in exactly the
same conditions, to highlight to the greatest extent
the impact of our strategies.

3https://microsoft.github.io/BLURB/
leaderboard.html
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Our contributions are the following:
• We build two sets of knowledge represen-

tations by applying node2vec (Grover and
Leskovec, 2016) to concepts from MeSH
(biomedical) and SNOMED CT (clinical).

• We construct specialized meta-embeddings
by concatenating fastText embeddings (Bo-
janowski et al., 2017) with the node2vec vec-
tors. We show that this improves the perfor-
mance of both general and medical domain
representations on several medical tasks.

• We conduct the same experiments with
contextual BERT and CharacterBERT
(El Boukkouri et al., 2020) representations,
and show similar improvements on most
evaluation tasks with a slight edge for the
character-based model.

• We generalize the meta-embedding approach
to the pre-training of contextual models by
introducing a ‘Knowledge Injection Module’
that combines incoming hidden states from a
Transformer layer (Vaswani et al., 2017) with
external knowledge representations through
the same process of concatenation.

• We retrain both original and modified versions
of BERT and CharacterBERT on a medical
corpus and show that the modified models
perform better on several medical tasks.

• We propose improvements to our methods and
share our code and pre-trained models to fa-
cilitate future attempts at enhancing word em-
beddings using knowledge graphs.

Our experiments are conducted on general and
medical corpora in the English language. General-
ization to other cases is left for future work.

2 Related Work

Our approach is related to the similar but usually
distinct topics of knowledge injection and domain
adaptation. In fact, most attempts at domain adap-
tation do not aim to inject external knowledge di-
rectly into models but rather indirectly, through
retraining on specialized corpora, as this is known
to bring significant improvements when such in-
domain corpora are available (Si et al., 2019). On
the other hand, research concerned with knowledge
injection usually tackles the problem within the
same domain. For instance, SemBERT (Zhang
et al., 2020), COMET (Bosselut et al., 2019),
ERNIE (Zhang et al., 2019), K-BERT (Liu et al.,
2020), and KEPLER all inject general knowledge

into general-domain models. Similar efforts in the
medical domain (Hao et al., 2020; He et al., 2020a;
Michalopoulos et al., 2021; Lu et al., 2021) di-
rectly inject medical knowledge during medical
pre-training. In this work, we first set out to deter-
mine whether the performance of general-domain
models, both static and contextual, can be improved
solely using specialized knowledge embeddings,
then only do we incorporate this approach into the
usual model adaptation via pre-training.

Methods that utilize knowledge graphs, for in-
stance (Roy and Pan, 2021; Sharma et al., 2019;
Chang et al., 2021), can be broadly grouped into
two categories: those that use the structured data
directly and those that encode this data into numer-
ical representations. Instances of direct utilization
include KG-BERT (Yao et al., 2019) where triples
(concept_1, relation, concept_2) are used to
inject BERT with medical information through aux-
iliary tasks like knowledge graph completion and
triple classification. Entity linking in (Yuan et al.,
2021) or more specialized tasks in (He et al., 2020c)
are also used as auxiliary tasks for performing such
injection. While these methods can be effective,
we argue that an indirect approach is desirable as
it presents the specialized knowledge in the same
format as the word embeddings, thus reformulating
knowledge injection as a meta-embedding prob-
lem.

Meta-embeddings combine two or more un-
derlying sets of embeddings into a single final
representation. There are many approaches to
meta-embeddings like Dynamic Meta Embeddings
(DME, Kiela et al. (2018)) where each embed-
ding is projected down to the same dimension be-
fore being used in a linear combination, or Word
Prisms (He et al., 2020b), which further improve
upon DMEs by enforcing desirable orthogonality
properties during training. In this work, we use a
simple but strong baseline for meta-embeddings—
concatenation—which ensures that both word and
knowledge information is accessible at all times.
More sophisticated approaches, although likely to
improve our overall performance, are left for future
work.

3 Knowledge Graph Representations

In order to use concatenation to specialize word
embeddings with a knowledge base, we first need
to be able to convert this knowledge base into dense
numerical representations. There are several meth-
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Figure 1: PCA of MeSH and SNOMED embeddings for four categories of medical concepts.

ods for embedding knowledge graphs (e.g. RotatE
(Sun et al., 2019), TuckER (Balazevic et al., 2019)),
and these usually produce multifaceted relation-
dependent concept representations. However, for
simplicity, we only consider a single relation which
enables us to use a graph-level method instead,
namely node2vec (Grover and Leskovec, 2016).

3.1 UMLS, MeSH, and SNOMED CT
The Unified Medical Language System (UMLS)
(Lindberg et al., 1993) includes a meta-thesaurus
that contains multiple subsets (called vocabu-
laries) that organize specific groups of medical
concepts according to a large number of var-
ied relationships (e.g. active_ingredient_of,
associated_with, branch_of). Among the many
vocabularies in the UMLS, we use the Medical
Subject Headings (MeSH)4, which mainly orga-
nizes concepts from the biomedical domain, as well
as the Systematized Nomenclature Of Medicine -
Clinical Terms (SNOMED_CT),5 which also has a
coverage of the clinical domain. Given both vocab-
ularies, we query6 the UMLS and recover all pairs
of Concept Unique Identifiers (CUI) for concepts
related through the is_a relation (e.g. Chronic
Bronchitis is a Chronic disease). Although
many more types of relations are available, we fo-
cus on the single most frequent type is_a, which
also allows us to extract a single graph and use a
graph-level method like node2vec.

4https://www.nlm.nih.gov/mesh/meshhome.html
5https://www.nlm.nih.gov/healthit/snomedct/

index.html
6SQL scripts are available in our code repository.

3.2 Dense Representations with node2vec
The node2vec (Grover and Leskovec, 2016)
method effectively applies a word2vec (Mikolov
et al., 2013) objective to learn node representa-
tions from a set of node sequences that are gen-
erated randomly using a flexible type of random
walks on the knowledge graph. Running the official
Python implementation7 with default parameters
allows us to learn 256-dimensional dense represen-
tations for each node of the provided graphs. This
step yields 29,738 CUI embeddings for MeSH con-
cepts and 389,872 CUI embeddings for SNOMED
with 15,418 overlapping CUIs having both a MeSH
and SNOMED representation. The visualization
of these embeddings using a PCA (see Figure 1)
shows that this method is able to separate different
categories of medical concepts in different sub-
spaces, which suggests some level of encoded med-
ical knowledge.

Using node2vec Embeddings in Practice For
each possible CUI, we concatenate both sets
of knowledge embeddings and use zero-padding
when a CUI does not appear in either MeSH or
SNOMED. This produces a final 512-dimensional
knowledge representation for each concept. How-
ever, using these representations in practice re-
quires locating concept mentions in texts, which
refers to the task of concept normalization. This
normalization aims to identify the various linguistic
forms that a given concept can take, which we per-
form in our case by running an exact string match-
ing between the reference linguistic forms from the

7https://github.com/aditya-grover/node2vec
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UMLS8 and the target texts. Ultimately, the tokens
from each mention are assigned the node2vec rep-
resentation of their concept, with out-of-mention
tokens getting an empty zero-valued vector instead.

4 Embedding-Specialization Methods

4.1 Static Representations
To determine whether word embeddings can be suc-
cessfully specialized using in-domain knowledge
representations, we first conduct experiments on
static embeddings. In particular, we learn word
representations using fastText9 (Bojanowski et al.,
2017) and then attempt to specialize these repre-
sentations by concatenating fastText and node2vec
vectors at the token level. We consider the follow-
ing corpora for learning word embeddings:

Gigaword (Graff et al., 2003): a newswire cor-
pus constructed from many sources including the
New York Times. This is a general domain corpus
with ≈ 1 billion tokens.

PubMed (MEDLINE): scientific abstracts from
the biomedical literature.10 This is a medical do-
main corpus with ≈ 2 billion tokens.

MIMIC (Johnson et al., 2016): clinical notes
from several hospitals.11 This is a medical domain
corpus with ≈ 0.5 billion tokens.

4.2 Contextual Representations
We also experiment with contextual embeddings,
namely: BERT (Devlin et al., 2019) and Character-
BERT (El Boukkouri et al., 2020).12 The former
is included as a strong baseline for transformer-
based embeddings and the latter is included as it
produces word-level representations and seems to
perform well in the medical domain. Furthermore,
considering these two models allows us to have a
larger sample size for measuring the impact of our
strategies on transformer-based models.

We specialize contextual embeddings in two
ways: either externally, via token-level concate-
nation similar to static embeddings; or internally,
by introducing the following specialization layers.

8These synonyms are available in the MRCONSO table.
9Training scripts are available in our code repository.

10Available at: https://www.nlm.nih.gov/databases/
download/pubmed_medline.html

11Available at: https://physionet.org/content/
mimiciii-demo/1.4/

12We use the “base-uncased” versions of these models.

Knowledge Injection Modules (KIM) These
are small layers that generalize the idea of con-
catenating word and knowledge embeddings to the
internal states of a transformer-based model. When
placed after a given layer, this module concate-
nates the hidden representations from that layer
hi with their corresponding knowledge represen-
tations KGi. Then, it projects this concatenation
to recover a set of “enhanced states” hi with the
same dimensionality as the original hidden repre-
sentations. Since this operation may lose some
of the information from the original hidden states,
we compute a mixture of the enhanced and origi-
nal states with trainable parameters α ∈ [0, 1] and
β = 1 − α. The final output hi is fed to the next
layer. In summary:

hi = α hi + β hi

where hi = [hi; KBi] W + b and W, b are respec-
tively the weight matrix and bias of the linear pro-
jection operation (see Figure 2).

Our KIMs are loosely related to Adapter Mod-
ules (Houlsby et al., 2019; Wang et al., 2021a) but
are conceptually simpler and only focus on incor-
porating external representations into the hidden
states of transformer-based models.

5 Experiments

5.1 Embedding Models
Our final embeddings come in five configurations:

Random: randomly initialized 256-dimensional
static embeddings used as a baseline for static word
representations.

Model: either 256-dimensional static embed-
dings of the form “fastText(corpus)” where corpus
is one of the corpora presented in section 4.1, or a
768-dimensional BERT or CharacterBERT model.

[Model, node2vec]: token-level concatenation
of Model with the pre-trained 512-dimensional
node2vec representations from Section 3.2.

Model(medical): a transformer model adapted
via pre-training on a large medical corpus that con-
sists of ≈ 0.5 billion tokens from MIMIC-III clin-
ical notes and ≈ 0.5 billion tokens from abstracts
extracted from PMC-OA13 biomedical articles.

13https://www.ncbi.nlm.nih.gov/pmc/tools/
openftlist/
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Figure 2: Detailed view of a Knowledge Injection Module (KIM) between two Transformer layers. Given an
incoming hidden (hi) and knowledge representation (KGi), the module concatenates both vectors ([hi; KGi]),
applies a linear projection down to the original size (hi), then computes a mixture of the enhanced and original
states using parameters α ∈ [0, 1] and β = 1− α. The output (hi) is ultimately fed to the next Transformer layer.

EnhancedModel(medical): same as the config-
uration above but this time, the architecture is
changed to use a KIM after each transformer layer,
as well as either the WordPiece embeddings (Wu
et al., 2016) for BERT, or Character-CNN (Peters
et al., 2018) for CharacterBERT.

For the last two configurations, we follow a stan-
dard pre-training procedure comprising Masked
Language Modeling (MLM) and Next Sentence
Prediction (NSP), and adapt the implementation
from El Boukkouri et al. (2020) while keeping the
same hyper-parameters.14

5.2 Evaluation Tasks
Insights from model evaluation can be misleading,
especially when only a few tasks are considered. To
conduct a thorough evaluation of our models, we
consider multiple tasks from both the biomedical
and clinical domains (see Table 1):

i2b2 This is the i2b2/VA 2010 clinical concept
extraction task (Uzuner et al., 2011), which is a
sequence labeling task that aims to detect three
categories of clinical entities: PROBLEM (e.g.
“headache"), TREATMENT (e.g. “oxycodone")
and TEST (e.g. “MRI"). The exact match F1-score
is used as an evaluation metric.

BC5-Disease/Chemical These are two sequence
labeling tasks from BioCreative V CDR (Li et al.,

14Specifically, we use the parameters at this URL.

2016), which respectively aim to detect DISEASE
(e.g. “hepatitis") and CHEMICAL (e.g. “corticos-
teroid") entities. The exact F1 is used as a metric.

DDI This is a relation extraction task from Se-
mEval 2013 - Task 9.2. (Herrero-Zazo et al., 2013),
which focuses on classifying drug-drug interactions
into five categories: ADVISE (DDI-advise), EFFECT

(DDI-effect), MECHANISM (DDI-mechanism), IN-
TERACTION (DDI-int), and DDI-false for no inter-
action. The micro-averaged F1 over all four non-
negative classes is used as a metric.

ChemProt This is a relation extraction task from
BioCreative VI (Krallinger et al., 2017), which
focuses on classifying chemical-protein relations
into six categories: ACTIVATOR (CPR:3), IN-
HIBITOR (CPR:4), AGONIST (CPR:5), ANTAGO-
NIST (CPR:6), SUBSTRATE (CPR:9) and FALSE

for no relation. The micro-averaged F1-score over
non-negative classes is used as a metric.

BIOSSES This is a small sentence similarity
dataset in the biomedical domain (Soğancıoğlu
et al., 2017). The Pearson correlation of predicted
and gold similarities is used as a metric.

ClinicalSTS This is a clinical sentence similarity
task from the OHNLP Challenge 2018 (Wang et al.,
2018). It uses Pearson correlation as well.
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i2b2 BC5-Disease BC5-Chemical ChemProt DDI BIOSSES ClinicalSTS MEDNLI
Train 22,263 4,182 5,203 4,154 2,937 64 600 11,232
Val. 5,565 4,244 5,347 2,416 1,004 16 150 1,395
Test 45,009 4,424 5,385 3,458 979 20 318 1,422

Table 1: Number of examples (entities, positive relations, or samples) for each evaluation task.

MedNLI This is a clinical natural language in-
ference task (Romanov and Shivade, 2018), which
aims to classify pairs of sentences into three cate-
gories: ENTAILMENT, CONTRADICTION, and NEU-
TRAL. The classification accuracy is used as a met-
ric.

5.3 Evaluation Architectures
We use different architectures depending on the
model and fine-tuning tasks at hand.

Sequence Labeling The architecture for tagging
uses an encoder followed by a classification layer
and a CRF (Lafferty et al., 2001). The encoder
changes according to the type of input embeddings:
fastText and [fastText, node2vec] are fed to a
Bi-LSTM,15 variants of BERT are their own en-
coders, and variants of [BERT, node2vec] concate-
nate knowledge (node2vec) embeddings with token
(BERT) representations and feed it forward.

Classification The architecture for relation ex-
traction is similar but requires a summarized repre-
sentation at the example level to be fed to a classi-
fication layer. Here again, fastText and [fastText,
node2vec] are fed to a Bi-LSTM, but this time,
the output is average-pooled to produce a single
feature vector. With variants of BERT, the pooler
output is used. Finally, when using variants of
[BERT, node2vec], the knowledge representations
are average-pooled before being concatenated with
the pooler representation.

Sentence Similarity For STS tasks, we use a
different approach for static and contextual em-
beddings. For static embeddings, we compute a
bag-of-word representation for each sentence, then
measure the cosine similarity between the two rep-
resentations. When contextual embeddings are
involved, we treat the task as a regression problem
and use the same encoder as for classification.

Natural Language Inference For NLI tasks,
we require a summarized representation at the
sentence-pair level that we can ultimately feed to a

15All future mentions of a Bi-LSTM refer to a 3-layer net-
work with 50% recurrent dropout and an output size of 512.

classification layer. For static embeddings, we
compute an average-pooled Bi-LSTM represen-
tation for the first sentence u as well as for the
second one v, then compute a global feature vec-
tor [u, v, |u− v|, u ∗ v] following the approach of
InferSent (Conneau et al., 2017). When using vari-
ants of BERT, we simply use the pooler represen-
tation as these models can accept sentence pairs.
Finally, with variants of [BERT, node2vec], we
concatenate the pooler output with InferSent-style
features computed from the node2vec vectors.

5.4 Evaluation Method
Optimization All parameters (including static
and knowledge embeddings) are fine-tuned using
the following hyper-parameters:

• Validation Ratio: when no validation set is
available, we use 20% of the training data.

• Epochs: we run 15 epochs for all tasks, ex-
cept for BIOSSES and ClinicalSTS for which
we run 100 and 50 epochs respectively.

• Batch Size: we use batches of 32 examples.
• Optimizer & Learning Rate: we use the

Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 1e-3 for non-transformer
weights and a learning rate of 3e-5 for trans-
former weights. We also use a weight decay of
10% and a linear schedule with a 10% warmup
for transformer weights.

Model Ensembles To account for some of the
randomnesses during fine-tuning, we evaluate each
model on each task using 10 different random seeds.
Given these single models, we compute ensembles
using a majority vote, except for STS tasks where
we use the average similarity instead. Then, to
account for the variance of the ensembles as well,
we compute 10 different ensembles by excluding
a single seed from the ensemble set and repeating
this process. The average ensemble score is then
used as the final performance for the model.

Statistical Significance We use Almost Stochas-
tic Order (ASO) tests from Dror et al. (2019) in
an attempt to rigorously compare our models. In
this framework, the test takes a set of scores from
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Table 2: Performance of model ensembles on evaluation tasks from the medical domain. Results are displayed in
pairs: baseline model on the top line and specialized version (either through concatenation or KIM) on the bottom
line. The colors show statistical significance, with bluer colors meaning the specialized models improve more
significantly over the baselines and redder colors showing a more significant degradation in performance.

a model A and a model B, then returns a value
ϵ ∈ [0, 1] that quantifies the stochastic order be-
tween A and B, with ϵ = 0 meaning A ⪰ B, ϵ = 1
meaning B ⪰ A, and ϵ = 0.5 meaning that no
stochastic order can be found for A and B.

6 Results and Discussion

For better visibility and given the large number of
experiments, we present our results in pairs com-
posed of a baseline and a specialized version of
that baseline. We report the performances of each
model pair as a set of two consecutive rows with the
baseline on top (see Table 2). We also emphasize
in bold the best performance on each task (column)
and color the specialized version according to its
ASO distance (ϵ) to the baseline model.16

Random vs. [Random, node2vec] It is interest-
ing to note that randomly initialized static embed-
dings manage to achieve reasonable results, some-
times even outperforming pre-trained fastText rep-

16Colors range from red (ϵ = 0) for a significant degrada-
tion, to blue (ϵ = 1) for a significant improvement.

resentations (see Random vs. Gigaword or PubMed
on MedNLI). However, given the random nature
of these vectors, we can easily expect in-domain
knowledge representations to be able to improve
the performance on downstream specialized tasks.
While this is verified in most situations, we note a
degradation on BIOSSES and MedNLI. This could
point to situations where external knowledge is not
relevant to the task at hand.

fastText(X) vs. [fastText(X), node2vec] Overall,
using concatenation to combine knowledge rep-
resentations with fastText embeddings seems to
result in consistent gains, notably on tagging and
classification tasks (see the top-left section of the
table). Moreover, these results seem to hold regard-
less of the domain of origin, as word embeddings
trained on Gigaword (general domain), PubMed
(biomedical domain), and MIMIC (clinical domain)
all seem to benefit from this combination. However,
we can see that the results on STS are significantly
worse with drops of up to 30 points of correlation
on BIOSSES with fastText(Gigaword). This may
be due to the “bag-of-word + cosine similarity”
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approach not being suited for meta-embeddings
made of both word and knowledge representations,
especially since the node2vec vectors are rather
sparse (most concepts do not have both a MeSH
and SNOMED representation) and twice as large
as the word representations.

BERT vs. [BERT, node2vec] When looking
at the results for contextual embeddings, we can
see several instances where the concatenation with
node2vec proves to be beneficial. However, there
seems to be a discrepancy where sometimes this
concatenation does improve the CharacterBERT
baseline on one hand but impairs the BERT base-
line on the other (see ChemProt and DDI). A closer
look at these cases shows that plain CharacterBERT
performs slightly lower than plain BERT in these
situations, which may mean that the knowledge rep-
resentations compensate for any information that
may be missing in the baseline CharacterBERT
model, relative to the task.

BERT(medical) vs. EnhancedBERT(medical)
The addition of KIMs seems to give variable re-
sults depending on the evaluation task. In fact,
we can see that EnhancedBERT and Enhanced-
CharacterBERT respectively lose 1.05 and 1.28 F1
relative to their baselines on the DDI task, how-
ever, we also see that these same models gain 1.6
and 1.45 F1 on the BC5-Disease task. Incidentally,
the BC5 tasks are interesting as they use the ex-
act same corpus but focus on two different types
of entities: DISEASE and CHEMICAL. Therefore,
given that EnhancedBERT(medical) performs bet-
ter than BERT(medical) on BC5-Disease and worse
on BC5-Chemical, we can safely assume that this is
not due to the KIMs being particularly harmful but
rather to the information available in the knowledge
representations being, relative to what is already
available in the base model, more relevant for the
first task than for the second one. Consequently, we
may assume that the KIMs can successfully incor-
porate external information into a model but that
the downstream performance may depend on the
relevance of this information for any given task.

Observed Trends All in all, we notice
that the best models remain either BERT or
CharacterBERT-based models and that the addition
of external knowledge to static representations
is not sufficient to make them outperform their
contextual counterparts. This is globally true
with a few exceptions. In fact, we may observe

all no some full homog
fastText(PubMed) +3.3 -4.6 +4.5 +5.1 +6.2
CharacterBERT +0.3 -1.7 +0.6 +0.9 +1.1
EnhancedCBERT +1.4 -1.7 +1.8 +2.1 +2.5

Table 3: Variations (percentages) of True Positives for
the BC5-Disease task according to the coverage of the
gold entities by concepts of our knowledge graph.

in the case of sequence labeling tasks (i2b2
and BC5-Disease/Chemical) that the addition of
knowledge is often beneficial for static models.
The matter is more complex for contextual models
however, where the benefits are less clear but for
which it may still be desirable to use external
knowledge as any potential degradation seems to
be relatively minor. In the case of relation clas-
sification tasks (ChemProt and DDI), leveraging
external knowledge is once again positive for
static models but seems to be harmful to some
Transformer-based models (especially BERT).
Finally, for semantic similarity and inference tasks
(BIOSSES, ClinicalSTS, and MedNLI), we may
not recommend using our methods as any existing
gains are relatively small when compared to the
potential losses, although there may be some
benefit for contextual models. Overall, we can see
that our knowledge enhancement methods, either
by external concatenation or through KIMs, always
benefit CharacterBERT with appreciable gains
in performance: choosing CharacterBERT with
KIMs ensures obtaining the highest performance
or being very close to it.

Contribution of the Knowledge Graph To mea-
sure the contribution of external knowledge, specif-
ically in the case of sequence labeling tasks, we
compute, for each gold entity of the test set, the
average change in true positives brought by the
use of the knowledge embeddings. To dig a bit
deeper, we compute this change in buckets with
varying the degrees of coverage of gold entities by
a concept of the knowledge graph: no coverage;
some coverage; all the tokens are fully covered;
and finally, a full and homogeneous coverage (i.e.
same CUI everywhere). We display the results for
BC5-Disease and three different models in Table 3:
fastText(PubMed) and CharacterBERT, which both
rely on token-level concatenations, and Enhanced-
CharacterBERT (EnhancedCBERT), which lever-
ages KIMs. While the overall contribution is posi-
tive, we can see that this effect increases with the
coverage of gold entities by the knowledge base.
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Moreover, when the coverage is null, the impact
becomes negative, emphasizing the importance of
choosing a complete and adequate knowledge base
when using such knowledge injection methods.

7 Conclusion and Future Work

In this paper, we focused on exploring the extent
to which specialized information from a knowl-
edge graph could be injected into existing word
embeddings using a very simple set of tools: graph
embeddings and concatenation. While focusing
on the medical domain in the English language,
we conducted multiple evaluations on tasks rang-
ing from entity recognition to sentence similarity.
These evaluations demonstrated that concatenation
with in-domain graph representations can be a sim-
ple yet effective approach to model specialization,
with significant gains on several tasks. Moreover,
applying the same process of concatenation within
transformer-based contextual models proved ben-
eficial as well, with notable improvements using
Knowledge Injection Modules (KIMs) on several
downstream tasks.

As mentioned in Section 3.1, many more types
of relations beyond is_a could be used to improve
the quality of the generated knowledge representa-
tions. An interesting path for future work may be
to use recent meta-embedding methods like Word
Prisms to learn multifaceted knowledge represen-
tations from multiple underlying representations
corresponding to two or more types of relations.
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