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Abstract

Clinical notes are the backbone of electronic
health records, often containing vital informa-
tion not observed in other structured data. Un-
fortunately, the unstructured nature of clini-
cal notes can lead to critical patient-related in-
formation being lost. Algorithms that orga-
nize clinical notes into distinct sections are of-
ten proposed in order to allow medical pro-
fessionals to better access information in a
given note. These algorithms, however, of-
ten assume a given partition over the note,
and classify section types given this informa-
tion. In this paper, we propose a multi-task
solution for note sectioning, where a single
model identifies context changes and labels
each section with its medically-relevant title.
Results on in-distribution (MIMIC-III) and
out-of-distribution (private held-out) datasets
reveal that our approach successfully identifies
note sections across different hospital systems.

1 Introduction

The increasing role of free-text narrative in Elec-
tronic Health Records (EHR) is both a blessing and
a curse. It allows much more nuanced information
about patients’ conditions being saved and docu-
mented (Uzuner et al., 2010; Jensen et al., 2012;
Wang et al., 2018; Feder et al., 2020). However,
the unstructured nature of this data can also make
it unavailable to medical care givers interested in
searching for specific patient-related information
(Walsh, 2004; Ford et al., 2016).

To better organize free-form clinical notes and al-
low researchers and practitioners to quickly search
over them, many solutions were proposed, mainly
focusing on sectioning notes to correspond to head-
ers described within the note (Pomares-Quimbaya
et al., 2019). These solutions were often rule-based
(Savova et al., 2010), identifying common section
headers in the data. Unfortunately, this approach
often failed to correctly classify sections across
different hospital departments, care providers and

EHR systems. For brevity throughout this paper,
we refer these as different data sources or distri-
butions interleaving. Alternatively, machine learn-
ing methods were proposed to classify individual
text-spans and map them into a pre-existing list
of possible sections. This approach successfully
outperformed rule-based approaches, but was of-
ten not deployed because of its inability to identify
section-boundaries.

With the recent success of transformer-based
models in natural language understanding, we iden-
tify an opportunity to tackle the section bound-
ary detection problem alongside section classifica-
tion, and propose a unified solution. Our approach
is based on pre-trained encoder-only transformer
models, which were shown to produce superior
results on natural language understanding (NLU)
tasks broadly (Vaswani et al., 2017; Devlin et al.,
2018), and specifically on clinically-relevant data
(Alsentzer et al., 2019; Lee et al., 2020).

We start by exploring current section classifica-
tion methods (§2). Then, we introduce our baseline,
a marker-based section header extraction system,
and describe how to use it to generate training la-
bels for ML-based methods (§3). We then pose hy-
potheses for when should ML systems outperform
rule-based approaches, and propose solutions based
on the hypotheses (§4). We continue by propos-
ing a dataset for training multi-task transformers
from rule-based labels (§5) and demonstrate how
such models can outperform rule-based approach
on in-distribution and out-of-distribution data (§6).
Finally, we conclude our work in light of our posed
hypotheses (§7).

2 Related Work

Identifying section headers in free-form clinical
notes is long identified as a crucial task for orga-
nizing patient-level data in biomedical informatics
(Li et al., 2010). Both ML-based and rule-based
solutions were proposed in the last decade to solve
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the problem (Pomares-Quimbaya et al., 2019). Un-
fortunately, existing solutions focus on solving the
relatively narrowly-defined task of classifying pre-
defined sections into section types, assuming that
section borders are already given (Li et al., 2010;
Tepper et al., 2012; Dai et al., 2015; Pomares-
Quimbaya et al., 2019). In practice, however, we
often observe complete notes, and are tasked with
identifying distinct paragraphs and only then clas-
sifying them into individual sections.

Recently, there has been an influx of research
demonstrating the power of pre-trained language
models in solving multi-task problems (Peng et al.,
2020; Radford et al., 2019; Wolf et al., 2020), in-
cluding on long texts (Beltagy et al., 2020). Follow-
ing this newly-formed conventional wisdom, we
embrace this approach here, and propose an ML
architecture that attempts to jointly detect section
boundaries and classify individual sections.

3 Marker-based Section Header
Extraction

We start by developing a marker-based section
header extractor. This extractor will then be used
for labeling our training data in §5 and as a baseline
in §6. In this approach, a marker corresponds to a
word that is usually used as the header of section.
E.g. PMH is a typical marker word that represents
the section Past Medical History. After examining
patterns in the data, we discover hundreds of such
markers in the MIMIC-III dataset (Johnson et al.,
2016). Lines that start with these markers are ex-
tracted and are labeled as section headers. These
headers mark the boundary between two sections
and the text between two headers is then treated as
one single section.

During our exploration, we recognized that there
exists correlations between the type of the notes
and the structure of the sections in the note. With
that in regard, we customized our markers to the
type of notes and certain markers will only be ap-
plied when the type of the note matches our def-
inition. We identified 5 core note types that are
most important for our usage: History and Phys-
ical, Progress, Discharge summary, Consult and
Operative.

Building on the MIMIC-III dataset, we use an
iterative approach to collect markers. A bootstrap-
ping marker set is first developed on a sampled set
of notes from the MIMIC-III dataset. The marker
set is then used to extract sections on the sampled

set and the extracted sections are then sent to ex-
perienced clinicians for rating. New markers are
then added according to the errors collected from
the raters and then used on a new set of randomly
collected notes. This process is repeated until no
more errors are reported from the raters. In prac-
tice, we found that this method shows both high
precision and high coverage in recognizing the sec-
tions. However, this approach does not work well
when we try to transfer it to a new dataset where
the medical notes come from a different healthcare
provider, where we see the recall numbers dropping
significantly (see §6 for complete results).

By analyzing the errors, we are seeing the fol-
lowing patterns:

• Plurals. E.g. “complaint” and “complaints”
• Abbreviations. E.g. “ALL” for “allergy”,

“Hx” for “history”.
• Mutation of marker orders. E.g. “PMH/PSH”

and “PSH/PMH”.
• Additional punctuations. E.g “** Marker **”
• Character splits, e.g. “P H Y S I C A L E X A

M I N A T I O N”.

By comparing with MIMIC-III, we observe that
while the headers are semantically similar across
different healthcare providers, many cases are ac-
tually non-identical and can therefore cause recall
losses. Additionally, this approach does not take
the context information into consideration, and is
not able to recognize many cases above even if the
section contents look similar to each other.

4 Section Classification Methods

To build solutions that are robust across different
distributions or require minimum learning efforts
to adapt, we need to understand what is the trans-
ferable knowledge that applies. Based on our expe-
riences in building the marker-based approach, we
have the following hypotheses:

• Section titles are shared across different
sources. This means that we expect the same
terminology is shared across different sources.
For example, we would expect “assessment
and plan” is a common terminology shared
across different sources. There might be some
slight variations, for example, “chief com-
plaint” vs. “chief complaints”.

• Section contents are similar across differ-
ent sources. We are expecting that the same
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section type would have similar content even
if they are from different healthcare systems.

• Structure of the sections is different for dif-
ferent types of notes. For example, we would
expect the discharge summary notes to have
a different set of sections in comparison to
operative notes.

For the first hypothesis, we want to understand
if we can build source-agnostic solutions by just
expanding the markers used in the baseline. For
the second hypothesis, we want to check if we can
improve the accuracy of section type identification
with additional information from the surrounding
text of the section titles. For the last hypothesis, we
propose to take advantage of the note type informa-
tion within a multi-task framework.

4.1 Expanding section titles

We first explore the approach using the same mech-
anism as the baseline approach, where we iden-
tify section titles as section boundaries and cat-
egorize sections according to the marker types.
Instead of the exact match used in the baseline
approach, we modify the method to fuzzy-match
with embedding-based similarity calculation. Here,
we use embeddings from the Universal Sentence
Encoder (Cer et al., 2018) to generate a sentence
embedding for each section marker. Using the sen-
tence embeddings, we calculate the cosine similar-
ity and use it to filter out section markers. Using
the dev set to select the best threshold in terms of
both precision and recall, we find that 0.98 cosine
similarity is the best for filtering potential markers.

4.2 Using context information

We conducted three types of experiments regarding
the use of context information: (1) Section title
only. For this, we only use the text of the target
sentence itself as the input feature for our model
and generate the input feature as <CLS><Target>.
(2) Context information only. We exclude the sec-
tion titles from the input feature of our model to
see if we can achieve good enough performance
with only context information. We generate the
feature as <CLS><Text before><SEP><Text af-
ter>. (3) Title + Context. For this we use the entire
segment of text including title + context for pre-
diction and generate the feature as <CLS><Text
before><SEP><Target><Text after>.

[CLS][Sentences Before] [Sentence][Sentences After] 

Medical BERT

SegmentationOutput SectionTypeOutput NoteTypeOutput

IsSectionTitle Section Type Note Type

SegLoss SecLoss NoteLoss

FinalLoss

Pooled Output

Dense + 
Softmax

Dense + DropOut

Dense + 
Softmax

Dense + 
Softmax

Figure 1: Structure of our multi-task BERT-based trans-
former model.

4.3 Multi-task BERT model
We propose the multi-task bert model1 as shown in
Fig 12: We split the text into text spans according
to line breaks and treat each text span as a training
example. For each example, we create three sepa-
rate losses for different tasks and use a combined
loss as the final loss function.

• Segmentation Loss: This task does a binary
classification regarding whether the target sen-
tence is a section title or not.

• Section Type Loss: This task does a multi-
class classification regarding the section type
of the target sentence. We end up with a 19-
way softmax by identifying 18 most important
section type sand treat the rest as others. The
details of thse 18 section types can be seen in
Appendix A.

• Note Type Loss: This task predicts which type
of the note the target sentence comes from.
We end up with a 7-way softmax, including
5 core types as mentioned in Section 3 + 1
unspecified type for notes with no obvious
structures + 1 others.

The combined loss is calculated as a weighted
sum of all losses. We tested on our dev set and set
an equal weight for each loss in our experiment. To
verify whether the use of note type information is
actually helpful, we added the experiment where
we set the weight for note type loss to 0.

1For BERT, we are using medical-bert fine-tuned on
pubmed data.

2Dense layers set as (128 - 32 - Final prediction towers)
with 0.1 dropout
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Method Description P R

Embedding-based Title only 0.82 1
BERT (target only) Title only 0.94 0.99
BERT (context only) Context Only 0.88 0.94
BERT (target + context) Title + Context 0.94 0.99
BERT (no note loss) Title + Context 0.92 0.99

Table 1: MIMIC-III (in-distribution) segmentation re-
sults. We only report segmentation results here as we
found that the section type accuracy is usually high
when we can recognize the correct section title.

5 Data

To have enough data for training/evaluation, the
output of the baseline system (Section 3) is used as
the golden data. Due to the nature of the baseline
algorithm, we can expect the generated data to
have high precision/recall for training models on
MIMIC-III and also high precision but low recall
for validation on the held-out private dataset.

Test data For MIMIC-III data, we use the data
described above. For the held-out private data, we
use the same approach as described above and use
all the extracted data as the test data. We randomly
selected 500 notes for validation.

Data pre-processing The baseline approach
uses the following rules for identifying the poten-
tial section titles which satisfy the following two
constraints: (1) Sentence at the start of the text.
(2) Sentence that ends with title endings (“:”, “-”,
“(“). We followed similar ideas and relaxed this
constraint in our data processing, where we split
the text into spans of text when there is line break
or a title ending. The section type information are
then assigned the text spans according to the output
of the baseline approach.

Training data We use MIMIC-III dataset as the
training data. We randomly selected 4,000 notes
for each of the five core note types, 4,000 notes
where the note type is not specified and 8,000 notes
randomly sampled from the entire dataset. As we
don’t have enough data for some categories, we
end up having 20,000 notes with 3M text spans
(among which there are 200k section titles). We
split these examples to training/validation/testing
in the ratio of 8:1:1.

6 Experiments and Results

We first conducted experiments on MIMIC-III
dataset and Table 1 demonstrates the results. As

Method Description P R

MIMIC3 Markers Baseline 0.98 0.65

Embedding-based Title Only 0.66 0.84
BERT (target only) Title Only 0.72 0.88
BERT (context only) Context Only 0.66 0.80
BERT (target + context) Title + Context 0.70 0.95

Table 2: out-of-distribution validation results

our approaches are based on MIMIC-III markers
and we are evaluating on the results extracted from
the markers, we expected to see good recall perfor-
mance for all our approaches. We are seeing that
the embedding-based approach and BERT models
that use title information were able to get a recall
of more than 0.99. To our surprise, we also see that
we are able to get a recall of 0.94 with just context
information, proving that context information is
useful even if used alone. However, we did not
see better results with both title and context infor-
mation, probably because that there exists limited
headroom for improvement. In the meanwhile, we
do see a small boost in precision with the inclusion
of note type classification loss.

We applied the models trained on MIMIC-III and
then to a new held-out dataset and results are shown
in Table 2. The MIMIC3 markers-based approach
was used as a baseline for comparison. We can see
that while the markers-based approach still has a
high precision due to its exact-match nature while
its recall dropped to 0.65. With fuzzy title match-
ing, the embedding-based approach improved the
recall to 0.84 at the cost of dropping the precision
to 0.66. Again, we see a reasonable performance
with BERT + only context information. The BERT
model with only title information reached a preci-
sion of 0.72 and recall of 0.88. With the addition
of context information, the model’s recall improves
to 0.95 without much loss in precision.

7 Conclusion

In this work, we explored approaches for recog-
nizing sections in free-form clinical notes. Our
approach is based on the hypothesis that section
content is similar across distributions and can be
used to generate a robust section classifier. Our
results demonstrate that our BERT-based model
trained on MIMIC-III has very good performance
on MIMIC-III and on our held-out private data,
outperforming strong baselines.
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A Appendix: Section Types

Table 3 shows a list of section types covered in this
paper.

Section Type Example Markers

CHIEF COMPLAINT Chief Complaint, CC, Presenting Problem
PAST MEDICAL HISTORY Pmh, Past Medical Problem
REVIEW OF SYSTEMS ROS, Review of Systems
SOCIAL HISTORY Family/Social History, Social Hx, SH
OTHER SUBJECTIVE Subjective, health maintenance, Influenza vaccine screening
IMAGING Image Result, IMAGING STUDIES
MEDICATION Allergies/Medication List, med list, Infusions
PHYSICAL EXAMINATION Physical Exam, Phys exam, PEx, Height And Weight
LAB RESULTS Review of Laboratory Data, Labs and Reports, Blood Chemistry Studies
OTHER OBJECTIVE Stress test, pathology
ASSESSMENT AND PLAN A&P, Impression and Plan, Plan
PROBLEM LIST Problem list, Problems (Active), Diagnoses
HOSPITAL COURSE Brief history of hospital course, Hospital Summary
DISCHARGE TRANSFER DIAGNOSIS Discharge/Transfer Diagnoses, Primary Diagnosis
DISCHARGE TRANSFER MEDICATION Medications on discharge, Transfer Meds
FOLLOW UP Discharge instructions and followup, Follow-up Plan, Followup Instructions
OTHER DISCHARGE INFORMATION Discharge activity, Discharge Diet
INTERVAL EVENTS Interval events, 24 hour events, o/n

Table 3: 18 core section types used in the study.
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