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Abstract

Drug-drug interaction (DDI) may lead to ad-
verse reactions in patients, thus it is impor-
tant to extract such knowledge from biomed-
ical texts. However, previously proposed ap-
proaches typically focus on capturing sentence-
aspect information while ignoring valuable
knowledge concerning the whole corpus. In
this paper, we propose a Multi-aspect Graph-
based DDI extraction model, named DDI-MuG.
We first employ a bio-specific pre-trained lan-
guage model to obtain the token contextualized
representations. Then we use two graphs to get
syntactic information from input instance and
word co-occurrence information within the en-
tire corpus, respectively. Finally, we combine
the representations of drug entities and verb to-
kens for the final classification. It is encourag-
ing to see that the proposed model outperforms
all baseline models on two benchmark datasets.
To the best of our knowledge, this is the first
model that explores multi-aspect graphs to the
DDI extraction task, and we hope it can estab-
lish a foundation for more robust multi-aspect
works in the future.

1 Introduction

According to statistics from the U.S. Centers of Dis-
ease Control and Prevention, from 2015 to 2018,
48.6 % of Americans used at least one prescrip-
tion drug in 30 days1. More seriously, 20% of the
elderly took more than 10 drugs simultaneously
(Zhang et al., 2020). However, drug-drug interac-
tion (DDI) may occur when patients take multi-
ple drugs, resulting in reduced drug effectiveness
or even, possibly, adverse drug reactions (ADRs)
(Zhu et al., 2020). Therefore, the study of DDI ex-
traction can be considerably important to patients’
healthcare, as well as clinical research. Currently, a
number of drug databases, such as DailyMed (Bar-
rière and Gagnon, 2011), TWOSIDES (Tatonetti

∗Corresponding Author (caren.han@sydney.edu.au)
1https://www.cdc.gov/nchs/data/hus/2019/039-508.pdf

et al., 2012) and DrugBank (Wishart et al., 2017)
can be used for retrieving DDI knowledge directly.
However, with the exponential growth in biomedi-
cal literature, huge amounts of the most current and
valuable knowledge remain hidden in biomedical
literature (Zhang et al., 2020). Thus, the devel-
opment of an automatic tool to extract DDI is an
urgent need.

During the past few years, various deep learning-
based approaches, such as (Liu et al., 2016; Zhang
et al., 2018; Li and Ji, 2019; Ren et al., 2019;
Mondal, 2020; Asada et al., 2020; Fatehifar and
Karshenas, 2021; Shi et al., 2022) have been pro-
posed to extract DDI knowledge. It is worth
noting that compared with Convolutional Neural
Networks (CNNs) and Long Short-Term Memory
(LSTM), which are sequential-based architectures,
Graph Neural Networks (GNNs) can better deal
with complex structural knowledge. Based on this,
Li and Ji (2019) combined a Bio-specific BERT
(Devlin et al., 2019) and Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) to capture
contextualized representation together with syn-
tactic knowledge. Shi et al. (2022) adopted the
Graph Attention Network (GAT) (Veličković et al.,
2018) on an enhanced dependency graph to obtain
higher-level drug representations for DDI extrac-
tion. However, as examples in Table 1, all the
previous models only pay attention to the sentence-
aspect features, and do not even exploit the corpus
knowledge, which could cause essential clues to be
overlooked.

To alleviate the issues mentioned above, in this
work, we propose a multi-aspect graphs-based DDI
extraction model, DDI-MuG, which can make use
of the information in both sentence and corpus
aspects. First, we use PubMedBERT to obtain sen-
tence semantic representation. We then apply a
GCN with an average pooling layer to capture syn-
tactic features from the input instance, and another
GCN with average pooling is employed to model
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Table 1: Summary of previous neural network-based models and our proposed model

Model Sentence Sentence Corpus(semantic) (syntactic)
AB-LSTM (Sahu and Anand, 2018) GloVe (Pennington et al., 2014) No No
DCNN(Liu et al., 2016) Order embedding(Lai et al., 2016) No No
ASDP-LSTM (Zhang et al., 2018) Word2Vec(Mikolov et al., 2013) Dependency parse No
RHCNN (Sun et al., 2019) Bio-word emb.(Pyysalo et al., 2013) Dependency parse No
GCNN-DDI (Xiong et al., 2019) Bio-word emb.(Pyysalo et al., 2013) Dependency parse No
BERTChem-DDI(Mondal, 2020) BioBERT(Jinhyuk et al., 2019) No No
BERTDesc-DDI(Asada et al., 2020) SciBERT(Beltagy et al., 2019) No No
DDI-MuG (Ours) PubMedBERT(Gu et al., 2021) Dependency parse PMI

the word co-occurrence in the corpus level simul-
taneously. After that, an attentive pooling is used
to integrate and obtain the optimal feature from the
output of PubMedBERT and both sentence-aspect
and corpus-aspect graphs. Finally, we employ a
fully connected neural network in the output layer
for the classification. Our proposed model is eval-
uated on two benchmark datasets: DDIExtraction-
2013 (Herrero-Zazo et al., 2013) and TAC 2018 cor-
pora (Demner-Fushman et al., 2018). Experimental
results show that our proposed model improves the
performance of DDI extraction effectively.

To recap, the main contributions of our work can
be summarized as follows:

• We propose a novel neural model, named DDI-
MuG, to exploit information from sentence-
aspect and corpus-aspect graph. As far as we
know, this is the first model that utilizes multi-
aspect graphs for the DDI extraction task.

• We explore the effectiveness of different com-
ponents in DDI-MuG. Experimental results
indicate that knowledge from multi-aspect
graphs are complementary, and their effective
combination can largely improve the perfor-
mance.

• We evaluate the proposed model on two
benchmark datasets, and achieve new state-
of-the-art performance on both of them.

The rest of the paper is organized as follows. First,
we introduce the background in Section 1. Then,
several related works are introduced in Section 2.
Next, in Section 3, we explain the framework in
the proposed model in detail. We then describe the
two benchmark datasets, evaluation metrics, and
parameters setting in Section 4. Section 5 presents
the experimental results and discussion, and finally,
we conclude this work in Section 6.

2 Related Works

Knowledge in many applications is exceedingly
complex for a single-aspect network to learn ro-
bust representations. Multi-aspect networks have
thus emerged naturally in different fields. Khan
and Blumenstock (2019) developed a multi-aspect
GCNs model to consider different aspects of phone
networks for poverty research. They employed
subspace analysis and a manifold ranking proce-
dure in order to merge multiple views and prune
the graph, respectively. Liu et al. (2020) first
constructed semantic-based, syntactic-based, and
sequential-based text graphs, and then utilized
an inter-graph propagation to coordinate hetero-
geneous information among graphs. In order
to exploit richer sources of graph edge informa-
tion, Gong and Cheng (2019) resorted to multi-
dimensional edge weights to encode edge direc-
tions. Similarly, Huang et al. (2020) used multi-
dimensional edge weights to exploit multiple at-
tributes, adapting the edge weights before entering
into the next layer.

3 Methods

The architecture of the proposed model is illus-
trated in Figure 1. First, we obtain the contextual
semantic representation of the input instances by
PubMedBERT. Then, a sentence-aspect graph is
constructed to encode the syntactic feature from
the dependency path, while a corpus-aspect graph
is used to explore word co-occurrence within the
entire corpus. Based on the vocabulary and in-
stances analysis, we find that the part-of-speech
(POS) tag of words, especially words correspond-
ing to verbs, might be helpful for the final rep-
resentation. Therefore, we subsequently feed the
representations of verbs and drug entities from Pub-
MedBERT, together with the two graphs, into an
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Figure 1: The proposed model architecture. This example is selected from DDIExtraction-2013 dataset. Two drugs
are labeled in bold. As the space is limited, only part of the edges are shown in the word co-occurrence-based graph.

attentive pooling layer, to distinguish important
features from all representations. Finally, a fully
connected layer with softmax is employed to per-
form the classification. The process is described in
the following subsections in detail.

3.1 Encoding sentences with PubMedBERT

PubMedBERT was pre-trained on 14 million
biomedical abstracts with 3.2 billion words
from scratch. Given an input sentence S =
[w1, w2, ..., wn, ..., wt] with drug entities d1 and
d2, we convert each word wi into word pieces and
then feed them into PubMedBERT. After the Pub-
MedBERT calculation, we employ average pool-
ing to aggregate vectorial representations of word
pieces as the word representations. We denote the
two drugs and verbs representations by drug1pub,
drug2pub, and verbspub respectively.

3.2 Graph construction

Considering a graph with n nodes, the node i at the
l-th layer is updated based on the representation
of all neighborhood nodes in the (l-1)-th layer as
follows:

H l = σ (ÂH l−1W l) (1)

Here, Â = D̃− 1
2 ÃD̃

1
2 represents the normalized

adjacency matrix, and Ã = A+ I is the adjacency
matrix with added self-connections. D̃ is the diago-
nal node degree matrix with D̃(i, i) =

∑
j Ã(i, j).

H l ∈ Rn∗dl is the node embedding matrix at

the l-th layer, n is the number of nodes, dl indi-
cates the dimension of the node features. Finally,
W l ∈ Rdl∗dl+1 denotes a layer-specific trainable
weight matrix, and σ is a nonlinear function.

For each input instance, we encode a dependency
graph from the current instance and a word co-
occurrence over the entire corpus.

3.2.1 Sentence-aspect dependency graph
Dependency parser is widely used in relation clas-
sification tasks with the aim of exploring syntactic
information of sentence. We apply the Stanford
dependency parser (Chen and Manning, 2014) to
extract dependency syntactic information. Figure 2
shows the dependency relation of the input text in
Figure 1. The connection from coadministered to
colestipol means that coadministered is the head
word of colestipol, and "nsubjpass" denotes the
"passive nominal subject" dependency relation be-
tween the two words. We use the word embedding
from PubMedBERT as the initial node representa-
tions, and set edge weights as 0 or 1 to indicate if
two nodes are connected in the dependency path.

Let the node representations in l-th layer of the
dependency graph be M l. We apply two graph
convolutional layers to update each node, thus the
updated M2 is expressed as follows:

M2 = σ (ÂM1W 2) (2)

Then, an average pooling layer is applied to
get the syntactic-based sentence embedding. Let
d1, d2, ..., dn, ..., dt be the updated node represen-
tations obtained from graph convolutional layers,
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the output of dependency graph, GDep, is shown
as:

GDep = avg
1≤i≤t

[di] (3)

We denote the outputs of drug and verbs repre-
sentations as drug1dep, drug2dep, and verbsdep,
respectively.

3.2.2 Corpus-aspect word co-occurrence
graph

Information on the co-occurrence of words in-
dicates the connection between them, such as
whether they form as a common phrase or provide
clues for classification tasks. Firstly, we first lem-
matize each word with Natural Language Toolkit
(NLTK) 2. Then we connect all word pairs in graph,
and employ point-wise mutual information (PMI)
(Turney, 2001), a word associations measure, to
store the word correlation information as an edge
weight as follows:

Aij =





1, i = j
PMI(i, j), i ̸= j, PMI(i, j) > 0

0, i ̸= j, PMI(i, j) ≤ 0
(4)

The PMI between any two words is calculated
as:

PMI(i, j) = log
p(i, j)

p(i)p(j)
, (5)

p(i, j) =
#W (i, j)

#W
,p(i) =

#W (i)

#W
. (6)

where i, j are words, #W(i,j) is the number of exam-
ples in a fixed sliding window that contains both
words, #W(i) is the number of instances in the slid-
ing window that contain word i, and #W is the total
number of sliding windows. It is worth noting that
the entire input sentence is set as the sliding win-
dow. Suppose there are 31,738 instances in the
corpus, and the word of "decrease" and "coadmin-
ister" appear 1,821 and 953 times respectively, and
that they occur 27 times together in the whole cor-
pus. Based on Formula 5 to 6, the PMI between
this two words is -4.8. A positive PMI value cor-
responds to a high correlation between two words,
while a negative value means that the two words
have a small probability or no probability of oc-
currence. When two words have a negative PMI
value, we view them as non-co-occurring and set
their edge weight as 0.

Suppose the node representations in l-th layer is
N l. Similar to the dependency graph, the updated

2https://www.nltk.org/

N2 is shown as:

N2 = σ (ÂN1W 2) (7)

After an average pooling layer was utilized to
get the word co-occurrence-based embedding, the
GWord graph is expressed as:

GWord = avg
1≤i≤t

[wi] (8)

where wi is the updated l-th node representation
from graph convolutional layers.

Drug and verbs representations, denotes by
drug1word, drug2word, and verbsword, are ex-
tracted from GWord and used as input for the next
layer.

3.3 Attentive pooling layer

So far, given two drug entities and verbs, we have
obtained rich feature representations from PubMed-
BERT and two graphs. As each instance has a dif-
ferent number of verbs, we apply an attentive pool-
ing to get a fixed-length representation for verbs.
In detail, this pooling mechanism computes the
weights of feature vectors by using an attention
mechanism, allowing it to learn the most signifi-
cant feature effectively. Let Adrug1 and Adrug2 be
the combined representation of drug entities from
PubMedBERT and the two graphs, and Averbs be
the corresponding verbs representation:

Adrug1 = [drug1pub; drug1dep; drug1word] (9)

Adrug2 = [drug2pub; drug2dep; drug2word]
(10)

Averbs = [verbspub; verbsdep; verbsword] (11)

where [;] denotes concatenation. These three
representations are fed into the attentive pooling
layer separately as follows:

Hdrug1 = tanh(Adrug1) (12)

α = Softmax(waHdrug1) (13)

zdrug1 = αAdrug1 (14)

where wa is the learning parameter, α is the
attention weights. zdrug1, zdrug2 and zverbs are the
representation of the two drugs and verbs, as the
output of the attentive pooling layer.
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Figure 2: An example of dependency relation. Two drugs are labeled in bold.

3.4 Fully connected and softmax layer
In this layer, the updated representation of two
drugs and verbs are concatenated as ztotal, and a
nonlinear activation functions tanh is then applied
over ztotal into a fully connected layer. Finally, we
deploy a softmax with a dropout layer to get the
probability score for each class. The process is
expressed as follows:

ztotal′ = tanh(ztotal) (15)

p(y|x) = Softmax(W sztotal′ + bs) (16)

where ztotal′ is the output of the fully connected
layer, W s and bs are the softmax matrix and the
bias parameter, respectively.

4 Experiments

In our experiments, two public DDI extraction
corpora, i.e., DDIExtraction-2013 and TAC 2018,
were used to evaluate the proposed model. This
section introduces the two corpora in detail and
then presents the evaluation metrics and parame-
ters setting.

4.1 DDIExtraction-2013 dataset
We obtained the corpus from the challenge
SemEval-2013 Task 9 (Segura-Bedmar et al., 2013).
This corpus is the major dataset that can be used
to evaluate and compare the performance of DDI
extraction models. It contains manually annotated
sentences from 175 abstracts in MedLine3, and 730
abstracts in DrugBank4. There are four kinds of
positive interaction types: Advice, Effect, Mech-
anism, Int. If the two drugs are unrelated, their
relations are labeled as Negative. The definitions
of the five types are as follows:

• Advice: a recommendation or advice regard-
ing the simultaneous use of two drugs is de-
scribed between two drugs.

• Effect: an effect or a pharmacodynamic mech-
anism is described between two drugs.

3https://www.nlm.nih.gov/bsd/medline.html
4https://go.drugbank.com/

• Mechanism: a pharmacokinetic mechanism
is described between two drugs.

• Int: a DDI occurs between two drugs, but no
additional information is provided.

• Negative: there is no interaction between two
drugs.

The original corpus suffers from a serious data
imbalance problem. For example, the ratio of Int
to Negative instances in the training set is 1:123.7,
which heightens the difficulty of classifying drug
pairs that hold Int relations, and continually affect
the overall performance. To alleviate this data im-
balance issue, many negative examples are filtered
out in earlier studies, e.g., (Kim et al., 2015; Liu
et al., 2016; Zhao et al., 2016; Wang et al., 2017;
Sahu and Anand, 2018; Zhu et al., 2020). To ensure
that the experiment results can be compared fairly
with other baseline models, we adopted three rules
in (Liu et al., 2016) to remove negative instances:

• If both drugs have the same name, remove the
corresponding instances. The assumption is
that drug will not interact with itself.

• If one drug is a particular case or an abbrevia-
tion of the other, filter out the corresponding
instances. Several patterns, such as "DRUG-A
(DRUG-B)" and "DRUG-A such as DRUG-B",
are used to identify such cases.

• If both drugs appear in the same coordi-
nate structure, filter out the corresponding
instances. Also, we use some pre-defined
patterns, like "DRUG-A, (DRUG − N)+,
DRUG-B", to filter out such instances.

Table 2 summarizes the statistics and divisions
of this corpora.

4.2 TAC 2018 corpus

One of the tasks in "Drug-Drug Interaction Extrac-
tion from Drug Labels" track of the Text Analysis
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Table 2: The statistics of DDIExtraction-2013 corpus.

Training Test
Original Filtered Original Filtered

Positive

Advice 826 824 221 221
Effect 1,687 1,676 360 358
Mechanism 1,319 1,309 302 301
Int 188 187 96 96

Negative 23,772 19,342 4,737 3,896
Overall 27,792 23,338 5,716 4,872

Conference (TAC) 20185 was to detect and extract
DDIs from structured product labelings (SPLs).
The organizers provided a set of 22 SPLs for train-
ing (Training-22). Two other datasets containing
57 and 66 SPLs were provided as test sets. The
organizers also provided an additional 180 SPLs
(NLM-180) to supplement the training set. Inter-
actions in this corpus are classified into one of the
following three types:

• Pharmacokinetic: This type includes phrases
that demonstrate changes in physiological
functions (Demner-Fushman et al., 2018),
such as decrease exposure, increased bioavail-
ability.

• Pharmacodynamic: This type includes
phrases that describe the effects of the drugs,
e.g., blood pressure lowering.

• Unspecified: This type corresponds to caution
phrases, e.g., avoid use.

As the original corpus is in .XML format, we
use the dataset in the KLncLSTMsentClf model
(Baruah and Kolla, 2018) to train and evaluate our
proposed model. In total, we obtain 6,436 training
sentences by merging the training-22 and NLM-
180 corpora. The two test sets contain 8,205 and
4,256 sentences, respectively.

4.3 Evaluation metrics
precision(P), recall(R) and F-score(F) are the ma-
jor evaluation metrics in the DDI extraction task.
In this paper, we adopt the standard micro-average
precision, recall and F-score to evaluate the per-
formance and the formulas are listed as follows:

Precision =
TP

(TP + FP )
, (17)

Recall =
TP

(TP + FN)
, (18)

5https://tac.nist.gov/2018/

F − score =
2 ∗ P ∗R
(P +R)

. (19)

TP(true positive) represents the number of correctly
classified positive instances, FP(false positive) de-
notes the number of negative instances that are
misclassified as positive instances, and FN(false
negative) is the number of positive instances that
are misclassified as negative ones.

4.4 Parameters setting

In our experiment, PyTorch library (Paszke et al.,
2019) is used as the computational framework. As
there is no development or validation set in the
original corpus, we randomly select 20% of the
training dataset as the validation set to adjust the
model parameters, and the remaining 80% as the
training set. The parameters used are shown as
follow:

• Maximal length n = 128.

• Embedding size of PubMedBERT m1 = 768.

• Hidden layer dimension of dependency and
co-occurrence graph m2 & m3 = 200.

• Mini-batch size = 32.

• Dropout rate p = 0.1.

• Learning rage lr = 0.0001.

• Number of epoch = 10.

5 Results and Discussion

5.1 Results on DDIExtraction-2013

5.1.1 Comparison with baseline methods
We compare the performance of our DDI-MuG
with 11 baseline methods. The comparison results
of different models are showed in Table 3. The
highest value is labeled in bold, and the second
highest value is marked underline. In general, deep
neural network-based approaches achieve better
performance than statistical ML-based methods. It
demonstrates the capability and potential of uti-
lizing neural network in DDI extraction task. A
notable exception is that the F1-score of SVM-DDI
(Kim et al., 2015) is slightly higher than the AB-
LSTM model (Sahu and Anand, 2018). This might
be due to SVM-DDI (Kim et al., 2015) benefit-
ing from rich and complex lexical and syntactic
handcraft features. It can be seen that our DDI-
MuG obtains the best overall performances in view
of precision and F1-score. In terms of the perfor-
mances for all four types, DDI-MuG performs best
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Table 3: Performance Comparisons on DDIExtraction-2013 Corpus. The highest value is labeled in bold, and the
second highest value is marked underline.

Methods Breakdown F1 Overall performance
Advice Effect Mechanism Int Precision Recall F1

Statistical ML-based methods
UTurKu(Björne et al., 2013) 0.630 0.600 0.582 0.507 0.732 0.499 0.594
WBI(Thomas et al., 2013) 0.632 0.610 0.618 0.510 0.642 0.579 0.609
FBK-irst(Chowdhury and Lavelli, 2013) 0.692 0.628 0.679 0.547 0.646 0.656 0.651
SVM-DDI(Kim et al., 2015) 0.725 0.662 0.693 0.483 - - 0.670
Deep neural network-based methods
AB-LSTM(Sahu and Anand, 2018) 0.697 0.683 0.681 0.542 0.678 0.659 0.669
DCNN(Liu et al., 2016) 0.777 0.693 0.702 0.464 0.757 0.647 0.698
Joint AB-LSTM(Sahu and Anand, 2018) 0.794 0.676 0.763 0.431 0.734 0.697 0.715
ASDP-LSTM (Zhang et al., 2018) 0.803 0.718 0.740 0.543 0.741 0.718 0.729
RHCNN (Sun et al., 2019) 0.805 0.734 0.782 0.589 0.773 0.737 0.754
GCNN-DDI (Xiong et al., 2019) 0.835 0.758 0.794 0.514 0.801 0.740 0.770
DREAM(Shi et al., 2022) 0.848 0.761 0.816 0.551 0.823 0.747 0.783
Our methods
DDI-MuG(with word. graph) 0.893 0.812 0.871 0.599 0.868 0.805 0.835
DDI-MuG(with dep. graph) 0.900 0.826 0.865 0.583 0.842 0.835 0.839
DDI-MuG 0.907 0.823 0.893 0.606 0.870 0.824 0.847

on Advice, Mechanism and Int, and obtain the sec-
ond best performance on Effect. It is worth noting
that all methods achieve relatively low performance
on Int. This discrepancy might be caused by the
insufficient training samples of Int, which leads to
these models to be underfitting.

Then, we find out the contributions of multi-
aspect graphs to the proposed model. By remov-
ing in turn the sentence-aspect dependency graph
and corpus-aspect word co-occurrence graph, our
method reduces to DDI-MuG(with word. graph)
and DDI-MuG(with dep. graph), respectively.
From Table 3, we can see that the F1-score of DDI-
MuG(with dep. graph) is higher than the F1-score
of DDI-MuG(with word. graph), which proves that
the syntactic features are indeed valuable for iden-
tifying the interaction relation between two drugs.
Overall, it can be seen that the F1-score of DDI-
MuG surpass the DDI-MuG(with word. graph) and
DDI-MuG(with dep. graph) by 0.012 and 0.008,
seperately. This indicates that multi-aspect graphs
are complementary to each other, and together can
serve as an appropriate supplement to contextual
information.

5.1.2 Impact of pre-trained embedding

To evaluate the efficiency of the pre-trained lan-
guage model, we conduct the experiments of re-
placing PubMedBERT with other similar models.
As shown in Table 4, the four bio-specific models,
i.e., BioBERT, SciBERT, ouBioBERT(Wada et al.,
2020), and PubMedBERT, leading to improvement
over standard BERT. DDI-MuG by PubMedBERT

achieves the best result for the reason that it was
pre-trained on biomedical texts from scratch.

5.1.3 Error analysis

In addition to present the above achievements, it
is necessary to discuss the limitations of our ap-
proach. One common type of error is that the four
kinds of positive instances are often misclassified
as negative instances. This is due to the imbalanced
data that small instances categories being misclas-
sified as large instance categories. There is another
notable error that 34.4% of Int type instances are
misclassified as Effect type. This is because that
some Int instances have similar semantics to Ef-
fect instances. For example, in the following two
instances:

• "arbiturates may decrease the effectiveness of
oral contraceptives, certain antibiotics, quini-
dine, theophylline, corticosteroids, anticoag-
ulants, and beta blockers."

• "sulfoxone may increase the effects of barbi-
turates, tolbutamide, and uricosurics."

The words decrease and increase are the clues for
identifying interactions in the two semantically
close sentences. However, the first instance be-
longs to the Int type, while the second belongs to
Effect. The number of Int instances is far smaller
than the number of Effect instances, which also
leads to the occurrence of this kind of mistake.
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Table 4: The effect of pre-trained embedding. The
highest value is labeled in bold.

Pre-trained embedding P R F1
DDI-MuG(by BERT) 0.801 0.790 0.795
DDI-MuG(by BioBERT) 0.843 0.816 0.829
DDI-MuG(by SciBERT) 0.839 0.825 0.832
DDI-MuG(by ouBioBERT) 0.850 0.826 0.838
DDI-MuG(by PubMedBERT) 0.870 0.824 0.847

5.1.4 Are verb representations really helpful?
In our previous vocabulary and instances analysis,
we found that in the DDIExtraction-2013 corpus,
when instances contain the words inhibit, increased,
decreased, there is a great possibility that the drug
pair has the Mechanism relation. On the other hand,
when instances contain avoided, recommended or
administered, the drug pair is likely to have the
Advice relation.

Thus, to further investigate how the verbs are
important for the final classification, we studied
the effect of extracting DDI only from the drug
information, without using the verbs knowledge.
Table 5 shows the comparison of the performance
with and without the verbs information. This re-
sult indicates verbs representation can serve as a
supplement to improve the model performance.

Table 5: The comparison of with or without verbs infor-
mation. The highest value is labeled in bold.

Precision Recall F-score
DDI-MuG(drug-only) 0.863 0.823 0.843

DDI-MuG(all) 0.870 0.824 0.847

5.2 Results on TAC 2018

5.2.1 Comparison with baseline model
Since we use the same dataset as KLncLSTMsent-
Clf (Baruah and Kolla, 2018), we view it as the
baseline model. From Table 6, we can see that our
proposed model achieves better results in both two
test sets, which indicates the transferability of our
proposed model.

6 Conclusions

In this paper, we propose DDI-MuG, a novel multi-
aspect graphs framework for DDI extraction task.
Concretely, a bio-specific pre-trained language
model, PubMedBERT, is firstly employed to en-
code the context information of each word from
the aspect of sentence semantic information. Then,

Table 6: Comparison with baseline models on the TAC
2018 corpus. The highest value is labeled in bold.

Dataset Model P R F1
Test1 KLncLSTMsentClf 0.470 0.620 0.530
Test1 DDI-MuG(with word. graph) 0.717 0.712 0.715
Test1 DDI-MuG(with dep. graph) 0.688 0.718 0.703
Test1 DDI-MuG(all) 0.721 0.728 0.723
Test2 KLncLSTMsentClf 0.490 0.670 0.567
Test2 DDI-MuG(with word. graph) 0.710 0.726 0.718
Test2 DDI-MuG(with dep. graph) 0.713 0.730 0.721
Test2 DDI-MuG(all) 0.717 0.743 0.729

two graphs are utilized to explore sentence syn-
tactic and corpus word co-occurrence information,
respectively. After that, attentive pooling mecha-
nism is employed to update the representations of
drug entities and verbs. Finally, by feeding the con-
catenated representation of the two drugs and verbs
into a fully connected and softmax classifier, the
interaction between two drugs is obtained. Exten-
sive comparison experiments with baseline models
on two public datasets verify the effectiveness of
utilizing multi-aspect graphs in the DDI extraction
task.

For the future work, there are at least two direc-
tions could be considered. Firstly, the performance
on categories with small training samples, like Int
in the DDIExtraction-2013 corpora, is unsatisfac-
tory. The solution of contrastive learning can be
explored. Secondly, drug knowledge from external
databases could be integrated in the architecture for
richer drug representations.
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