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Abstract

Training of physicians requires significant prac-
tice writing patient notes that document the
patient’s medical and health information and
physician diagnostic reasoning. Assessment
and feedback of the patient note requires expe-
rienced faculty, consumes significant amounts
of time and delays feedback to learners. Grad-
ing patient notes is thus a tedious and ex-
pensive process for humans that could be im-
proved with the addition of natural language
processing. However, the large manual effort
required to create labeled datasets increases the
challenge, particularly when test cases change.
Therefore, traditional supervised NLP methods
relying on labelled datasets are impractical in
such a low-resource scenario. In our work, we
proposed an unsupervised framework as a sim-
ple baseline and a weakly supervised method
utilizing transfer learning for automatic assess-
ment of patient notes under a low-resource
scenario. Experiments on our self-collected
datasets show that our weakly-supervised meth-
ods could provide reliable assessment for pa-
tient notes with accuracy of 0.92.

1 Introduction

Sponsored by the Federation of State Medical
Boards (FSMB) and the National Board of Medi-
cal Examiners (NBME), the United States Medical
Licensing Examination (USMLE) is a "three-step
examination for medical licensure in the U.S. that
assesses a physician’s ability to apply knowledge,
concepts, and principles, and to demonstrate fun-
damental patient-centered skills, that are important
in health and disease and that constitute the ba-
sis of safe and effective patient care."1 Prior to
2020, the USMLE Step 2 exam included a sec-
ond component, Step 2 Clinical Skills, that used a
simulated clinical examination with standardized
patients to assess various clinical competencies,
including the ability to document relevant patient

1https://www.usmle.org/

history and differential diagnoses in a written pa-
tient note. After the discontinuation of the USMLE
Step 2 Clinical Skills examination, medical schools
may have more motivation to include a clinical
skills examination that requires patient note writ-
ing after observing standardized patients (Tsichlis
et al., 2021). Patient notes, as one type of health
documents, document clinical findings and reflect
examinees’ ability to gather information and com-
municate their findings to patients and colleagues.
Therefore, in Step 2 Clinical Skills, examinees’
written patient notes were assessed manually by
experienced physician raters. More than 30,000
examinees took this examination each year, result-
ing in more than 330,000 patient notes that were
graded by more than 100 raters (Sarker et al., 2019).
The case-specific nature of the patient notes and
large volume of exams make the human scoring
process time-consuming and tedious. Additionally,
it is well-documented that human judgement in gen-
eral is prone to bias and errors (Engelhard Jr et al.,
2018). Training of qualified physician graders also
requires assessment and feedback from medical
experts, costing significant amounts of time. The
manual effort required in grading medical exam-
inations makes this a challenging problem to be
addressed with the addition of NLP techniques.

NLP has been applied to automatically process
health documents, including assessing practical
clinical content from patient notes (Latifi et al.,
2016; Sarker et al., 2019). Specifically, patient
notes after simulated patient encounters are re-
quired to contain specific information, which is
specified by items in a checklist created through
faculty consensus. Figure 1 shows an example of
patient note and checklist items. The task of au-
tomatic patient note assessment aims to judge if
the given checklist items are included in the patient
notes by exactly same expressions or synonymous
expressions. Equivalents may be true synonyms,
acceptable abbreviations, or answer alternatives
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28 year old male with no PMHx who 
presents with HA for past 3 months. 
Initially, he had headaches once every 
couple of weeks, but now they occur 1-2 
times weekly. He describes pain in his 
left forehead and behind his L eye which 
radiates to the back of his neck. The 
headaches last 6-8 hours and interfere 
with his focus and concentration. They 
start 30 min after he wakes up in the 
morning. He has some associated 
nausea but is able to keep food down 
without vomiting. He has no auditory or 
visual aura, and has no tingling in his 
extremities. Taking tylenol extra strength 
helps, as well as coffee and naps. He 
denies any tearing of his eye, denies CP, 
SOB. He attributes the HA partly to his 
stressful job as an accountant. He 
normally has a chronic runny nose 
during this time of year from allergies, 
which is relieved by flonase normally, 
but he has not been using it lately. He 
denies cough, sore throat, nausea/
vomiting/abd pain.

History: 
past medical history of allergies

pain discribed as pounding

unilateral headache 

severity 8/10

nausea 

photophobia

aggravated by stress

relieved by coffee 

resolves after work 

no other neurologic symptoms

Physical Examination: 
no sinus tenderness to palpation

Diagnose: 
migraine headache

Tension Headache 

seasonal allergies

Cluster Headache

Depression

Figure 1: An example of patient note (right) and check-
list (left). The challenges to NLP include the use of syn-
onyms of checklist items, non-standard abbreviations,
different expressions of negation and non-continuous
occurrence of checklist items in patient notes.

deemed acceptable. Notes are further complicated
by indications of body side (right or left), frequent
negations, strings of positive or negative findings,
and nonstandard abbreviations used by learners.
Learners may use medical terms to describe find-
ings (cholelithiasis) or lay terms (gall stones) and
are typically judged the same if correct. Ideally,
the NLP model would directly identify the phrases
in patient notes correlated with the given checklist
items for the most granular grading analysis and
feedback to learners in formative settings. There-
fore, we study automatic patient note assessment as
two tasks: (i) directly judging if the given checklist
items are entailed in the patient notes (a natural
language inference task), and (ii) identifying the
phrases in patient notes correlated with the given
checklist items (a named entity recognition task).

Despite its importance, the task of automatic
grading of patient notes remains under-explored
with only a few works that have studied it (Yim
et al., 2019; Sarker et al., 2019). Traditional super-
vised models have been utilized for this task (Latifi
et al., 2016; Yim et al., 2019), but are limited in
scope because they rely on large scale annotated
datasets. The significant manual effort associated
with labeled dataset creation makes these methods
difficult and impractical. Besides, the traditional
supervised models trained on data with prior clin-
ical cases will be less effective for new clinical
cases. Another challenge lies in the inconsistency
between the checklist item and the corresponding
phrase(s) in the patient note owing to their being

non-exact matches occurring as, for instance, syn-
onyms or abbreviations.

To overcome the limitations of previous works
and the challenges of traditional supervised mod-
els for a low-resource scenario, we propose our
method without strong supervision. First we pro-
pose a simple baseline unsupervised method with a
pipeline framework which could be used in a zero-
resource scenario. Then we propose our weakly su-
pervised method utilizing multi-level transfer learn-
ing, including data-level and task-level. Data-level
transfer learning refers to the ability of transferring
knowledge learned from data in one domain to an-
other domain. Task-level transfer learning refers to
the ability of transferring knowledge learned from
one task to another task. A BERT model (Devlin
et al., 2019) pretrained on biomedical texts and a
publicly available dataset2 are used for data-level
transfer learning. A key assumption is that judging
if the checklist item is entailed in the patient note
and identifying the corresponding phrases in the pa-
tient note are mutually related and thus we treat the
automatic grading as a multi-task learning problem.
With experiments on our self-collected datasets, we
show that our weakly supervised method achieves
a state-of-the-art performance.

Overall, the main contributions are as follows:

• We study an under-explored task of automatic
patient note assessment and apply novel NLP
methods to solve this task.

• We propose propose a weakly supervised
method utilizing multi-level transfer learning
at both data- and task-level. Furthermore, a
multi-task learning mechanism is proposed
for task-level transfer.

• Experimental results on case-specific datasets
show that our weakly supervised method
achieves SOTA performance. A unique contri-
bution of our work not studied before and crit-
ically important for a low-resource scenario
is understanding the effect of out-of-domain
data. Our analyses show that our method
has the ability of data-level transfer learning
and task-level transfer learning even using in-
stances that are not case-specific.

2The USMLE® Step 2 Clinical Skills Patient Note was
made available for research purposes by NBME and can be
requested at https://www.nbme.org/services/data-sharing. For
more details about the corpus, see (Yaneva et al., 2022).
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2 Related Work

Being a research task that is currently under-
explored, there are very few works studying au-
tomatic patient note assessment. The most closely
related task that past works focus on is automatic
short answer grading (ASAG) for scientific top-
ics (Liu et al., 2016; Hermet et al.; Mitchell et al.,
2002; Sukkarieh and Pulman, 2005; Sukkarieh and
Bolge, 2010; Dzikovska et al., 2012; D’Mello et al.,
2008; Zhu et al., 2022; Haller et al., 2022), which
is different from complex domain-specific answer
assessment (e.g. medical domain in our work).
ASAG aims to grade free text that answers to a
prompt categorically or numerically. Produced by
ETS, C-rater (Leacock and Chodorow, 2003) is one
example system for ASAG focusing on grading
school-level examinations based on the presence or
absence of required answers. Text goes through a
sequence of NLP modules for spelling correction,
syntactic analysis, pronoun resolution, morpholog-
ical analysis and synonym detection. Generated
canonical representations are then fed into a maxi-
mum entropy model for classification. (Nehm et al.,
2012) also focused on a similar task of awarding
content points for specific items for college biol-
ogy essays. Two text analytic platforms are uti-
lized: SPSS Text Analysis 3.0 (SPSSTA) relying
on hand-crafted vocabulary and rules and Sum-
marization Integrated Development Environment
(SIDE) using a classic bag-of-words representation
and support vector machine. With the development
of transformers, different transformers and large
pre-trained models including BERT and RoBERTa
have also been applied (Zhu et al., 2022).

While there are some works on ASAG for sci-
entific topics, only three works studied automatic
patient note assessment (Latifi et al., 2016; Sarker
et al., 2019; Yim et al., 2019). Inspired by the
works on ASAG, the first two (Latifi et al., 2016;
Yim et al., 2019) studied two systems: a feature
based system including an n-gram feature extrac-
tion followed by a SVM and a simple BERT based
neural network. The third (Sarker et al., 2019)
followed previous works on ASAG and leveraged
the pipeline framework. Their system employs
a sequence of modules including text normaliza-
tion, lexicon-based matching, fuzzy matching and
supervised concept detection all utilizing signifi-
cant manual annotation and brute force exhaustive
searches. Inspired by these works, we also pro-
posed a pipeline model without supervision, which

Datasets Headache Abdominal Pain
Total num. of patient notes 510 570

Average Num. of Tokens in patient notes 132.35 97.05
Label Distribution 258/252 337/233

IAA 0.916 0.938
History Checklist 11 8
PEXAM Checklist 1 6

DDX Checklist 5 5
Total 17 19

Table 1: Statistics of our datasets. History, PEXAM
and DDX represents the number of checklist items on
History, Physical Examination and Diagnose. Total
represents the number of all checklist items. Label
Distribution is represented as the number of label 1
and the number of label 0. IAA refers to inter-annotator
agreement evaluated by Cohen’s kappa coefficient.

could be used under zero-resource scenario. A key
departure from the prior pipeline efforts is our non-
reliance on task-specific manual annotation.

However, the methods proposed in previous
works are insufficient for the task of automatic pa-
tient note assessment. N-gram features and SVMs
are limited for extracting linguistic and semantic
features, especially for complex domain-specific
text. BERT based model requires a huge amount
of annotated data for training, which is usually
unavailable for our task, whereas, pipeline mod-
els have the obvious problem of error propagation.
Therefore, we also proposed an end-to-end model,
which utilizes multi-level transfer learning to alle-
viate the dependence on annotated data.

3 Datasets

We used two datasets in our study. The first is a self-
collected dataset on two clinical cases— headache
and abdominal pain—collectively referred to as
case-specific datasets. Data from the same clini-
cal case is referred to as in-domain data and data
from a different clinical case is referred to as out-
of-domain data. Collected data pertains to patient
notes written by examinees, where each note cov-
ers three sections: (i) history, (ii) physical exam
and (iii) differential diagnosis. Patient note in each
section should pertain to items from the same do-
main in the checklist, which includes 17 checklist
items for the headache case and 19 for the abdom-
inal pain case. The checklist item may contain
fine-grained medical concepts (e.g., ‘headache’)
and general descriptions (e.g., ‘pain started two
weeks ago’). The medical concepts included in the
checklist items for different cases may be similar
or vastly different, depending on the clinical condi-
tion being portrayed by the patient. As part of the
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grading process two expert raters, typically physi-
cian faculty members, are asked to judge if the
checklist items are stated in the patient notes. Inter-
annotator agreements on both cases are reported in
Table 1. For both cases, the inter-annotator agree-
ments are above 0.9, which shows the reliability
of our constructed dataset. Additionally, for the
purpose of our experiments the raters were asked
to identify the phrases in the patient notes that cor-
respond to the checklist items when the checklist
item was matched. The tokens in the highlighted
phrases were labeled following the BIO convention
(Ramshaw and Marcus, 1999). Due to the cost of
physician faculty rater time, we only collected data
from 30 examinees. Of these patient notes from
25 examinees were used for fine-tuning and those
from the remaining 5 were set aside for testing.

A second dataset is the USMLE® Step 2 Clini-
cal Skills Patient Note (Yaneva et al., 2022), which
contains a total of 43,985 patient note history por-
tions from 10 clinical cases, where 2,840 patient
notes (284 notes per case) were annotated with con-
cepts from the exam scoring rubrics. At the time
of the writing of this paper the dataset was used
for a Kaggle competition on automated scoring of
clinical patient notes3, and only a subset of 100
patient notes from the annotated data were made
available to the public (the remaining 184 notes
per case were used as a test set for the competi-
tion). Therefore, the study presented here has used
a subset of 100 annotated patient notes per case,
which was not large enough to be directly used
for training or fine-tuning the model but was still
considered as a diverse but related dataset. This
dataset is referred to as generic dataset in the rest
of the paper.

4 Baseline Method

In this section, we introduce our proposed unsuper-
vised method used as a baseline model for written
patient note assessment. This approach utilized
Amazon Comprehend Medical4 for the purpose of
medical entity extraction. Amazon Comprehend
Medical is an API that performs various types of
text analysis for the medical domain, and is a ser-
vice that is provided by Amazon Web Services
(AWS). We made use of the medical entity detec-
tion feature of this API, that allowed extraction

3https://www.kaggle.com/c/nbme-score-clinical-patient-
notes/data

4https://aws.amazon.com/cn/comprehend/medical/

Checklist Item Patient Note

List of Medical 
Entities

List of Medical 
Entities

Entities Match 
Model 

All entities match?

Comprehend Medical

DetectEntitiesV2 format

Comprehend Medical

DetectEntitiesV2 format

Entailed Not Entailed

Yes No

Figure 2: Unsupervised Method Model

and detection of six different types of medical en-
tities: anatomy, medical conditions, medications,
protected health information, test treatment proce-
dures as well as time expressions in the medical
context (Bhatia et al., 2019).

4.1 Model Architecture
Here we describe the architecture of our unsuper-
vised model presented in Figure 2. Taking the
patient note p = {wp

1, ..., w
p
n} and checklist item

c = {wc
1, ..., w

c
m} as input, the model aims to pre-

dict if the given checklist item is included in the
given patient note.
Medical Entity Extraction. The first step con-
verts the text of the checklists items and patient
notes into the medical entities object format used
by Amazon Comprehend Medical. The purpose
is to then easily establish matching between medi-
cal entities extracted from checklist items and the
medical entities extracted from patient notes.
Medical Entity Match. In the second step, we
run a match-detection function based on each med-
ical entity extracted from the checklist item and
the medical entities extracted from the patient note.
The match-detection function first filters the list
of medical entities in the patient note by category.
Comprehend Medical has six different entity cate-
gories, hence, if we are trying to find a match for
a medical condition entity, then only medical con-
dition entities are processed as potential candidate
matches. This reduces the search space in the pa-
tient note based on medical entity categories. Once
we obtain candidate matches by filtering based
on these categories, we compare the similarity be-
tween the checklist item entity and the candidate
entity from the patient note. If there is a surface
level similarity (character-by-character equality),
then we have found a match. If not, we compute
a similarity score between the checklist item and
the patient note medical entity using BioWordVec
(Zhang et al., 2019). If the similarity score is be-
yond a certain threshold empirically chosen to be
0.8, only then we characterize the pair of entities
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as a match. A checklist item is considered entailed
by the patient note if all of the medical entities in
the checklist item have a match in the patient note.

5 Weakly Supervised Method

In this section, we provide the details of our pro-
posed weakly supervised method. In our work,
the first task of judging checklist items’ entailment
by the patient note is formulated as a natural lan-
guage inference task. The second task of identify-
ing phrases that correspond to a checklist item can
be treated as labeling the span of corresponding
phrases, which is similar to named entity recogni-
tion. Therefore, we refer to it as the NER-related
task. These two tasks are mutually beneficial in
our setting; identification of corresponding phrases
directly means the checklist item is entailed by
the patient note and the entailment of checklist
item indicates that the corresponding phrases are
in the patient note. In order to harness this mutual
benefit, we propose a multi-task transfer learning
setting with a mutual feedback mechanism. Us-
ing this method, data from different clinical cases
could help the model to learn the basic concepts
of our tasks and build appropriate representation
for underlying medical concepts. Therefore, we
also utilize data from different clinical cases for
transferring common medical and task knowledge.
Finally, we propose a multi-level transfer learning
method including task-level and data-level transfer
learning which removes the need for large-scale
annotated corpora and is thus weakly supervised.

5.1 Model Architecture

Here we describe the architecture of our model,
which is related to the task-level transfer learn-
ing. Figure 3 shows the architecture of our multi-
level transfer learning model. Taking the patient
note p = {wp

1, ..., w
p
n} and the checklist item

c = {wc
1, ..., w

c
m} as input, the model aims to pre-

dict if the given checklist item is entailed by the
given patient note and also identifies the span of the
expressions corresponding to the given checklist
item. BIO labels are used to label the span of the
target phrases. In our model, the lower encoder
layers are used for extracting the hidden represen-
tations of the input text and are shared across all
tasks and data while the top task-specific layers
with a mutual feedback mechanism are used for
different tasks. The mutual feedback mechanism is
used for sharing knowledge across different tasks

via outputs of different task-specific layers. The
architecture details are as follows:
Encoder Layers. The encoder layers are used
to extract contextual embeddings for input text.
We use BERT model as our encoder shared
across different tasks. For BERT model, [CLS]
is used at the start of the input and [SEP]
is used to separate patient note and checklist
item. Therefore, the final input to the encoder is
{[CLS], wp

1, ..., w
p
n, [SEP], wc

1, ..., w
c
m, [SEP]}.

The output contextual embeddings would be X =
{x[CLS], x

p
1, ..., x

p
n, x[SEP], x

c
1, ..., x

c
m, x[SEP]}.

Task-Specific Layers. For task-specific layers, dif-
ferent layers take different outputs of encoder lay-
ers as input. For NLI task, the contextual embed-
ding x[CLS] is used as input because the whole
sequence information are encoded into this em-
bedding (Devlin et al., 2019). For NER task, the
contextual embeddings of each token in the patient
note {xp1, ..., xpn} are used:

[ps, pns] = NLI(x[CLS])

[piB, p
i
I , p

i
O] = NER(xpi )

where NLI(·) represents the NLI task layer and
[ps, pns] is the output distribution with ps as the
probability of checklist item is stated and pns as the
probability of checklist item is not stated. NER(·)
represents the NER task layer and [piB, p

i
I , p

i
O] is

the output distribution with piB as the probability
of token i is predicted as the beginning of the target
phrase, piI as the probability of token i is predicted
as inside the target phrase and piO as the probability
of token i is predicted as outside the target phrase.
Mutual Feedback Mechanism As stated before,
the NLI task and NER task can actually benefit
each other. Therefore, the output of one task could
be used to enhance the input of another task. Then
the enhanced inputs would be fed into two new
task-specific layers for these two tasks. For the
NLI task, the output from the previous NER task
layer is used to enhance the input as follows:

[paveB , paveI , paveO ] = [
1

n

n∑

i=1

piB,
1

n

n∑

i=1

piI ,
1

n

n∑

i=1

piO]

x̂[CLS] = cat(x[CLS], [p
ave
B , paveI , paveO ])

[p̂s, p̂ns] = NLInew(x̂[CLS])

where [p̂s, p̂ns] is the final output distribution for
the whole sequence. The average of the output
distribution over all the tokens in the patient note
is used to enhance the input. Therefore, if the
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Checklist ItemPatient Note

Figure 3: Architecture of our weakly supervised method. Dashed arrows represent outputs from NLI and NER task
layers that are used to enhance the input to the new task layers. New NLI and NER task layers take outputs from
NLI and NER task layers and outputs from the BERT encoder layers as input and generate the final outputs.

target phrase corresponding to the checklist item is
identified, paveB and paveI would be non-zero, which
could be used to guide the new NLI layer. Similarly,
for the NER task, the output from previous NLI
task layer is used to enhance the input:

x̂pi = cat(xpi , [ps, pns])

[p̂iB, p̂
i
I , p̂

i
O] = NERnew(x̂

p
i )

where [p̂iB, p̂
i
I , p̂

i
O] is the final output distribution

for token i. The output distribution from previous
NLI layer is used to enhance the input. If the check-
list item is found to be stated in the patient note,
ps would be much larger than pns which could be
used as a guidance for new NER layer. Finally, the
enhanced input x̂pi is fed into the new NER layer.

5.2 Training Protocol
We use a simple joint training objective for our
model, which is the sum of the sequence classifica-
tion loss and the token classification loss, each of
which is given by the corresponding cross-entropy
loss. This training allows the task-level transfer as
shown in Section 8.2.

The model is first trained with the generic dataset
to learn the basic concept pertaining to the two
tasks and the common medical/clinical knowledge.
Then for new clinical cases with a few annotated
instances, the model is fine-tuned with the case-
specific data. Our hypothesis is that with the
knowledge of the two tasks and the common medi-
cal knowledge learned during training, the model
should be able to transfer to new clinical cases
without the need for a large scale annotated dataset.
In addition, for new clinical cases without any an-
notated data, our model can still be used because

the knowledge of the two tasks and the common
medical knowledge learned during training can be
transferred to new clinical cases. The ability of
data-level transfer is presented in Section 8.1.

6 Experiments

6.1 Baselines

Due to the fact that related prior works did not re-
lease their codes and did not provide enough details
for reproduction, we only test one baseline model
for comparison with our proposed unsupervised
and weakly supervised methods on the NLI-related
task. Besides, we also use one baseline model for
comparison on the NER-related task.

• NLI model: For the NLI-related task of judg-
ing if the given checklist item is stated in the
patient note, a simple BERT sentence pair
classification model is used as the baseline
with only the sequence classification loss as
the training objective.

• NER model: For the NER-related task of
identifying corresponding phrases in the pa-
tient note given checklist items, a simple
BERT token classification model is used as
baseline, which generates BIO labels to label
the span of the target phrases. For this NER
model, only the token classification loss is
used as the training objective.

For both the baselines, the experimental settings
and the parameters are set to be the same as those
in our weakly supervised method. In addition, the
baseline models and our weakly supervised model
are trained on the same data but with different la-
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Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

Unsupervised 0.72 0.30 0.87 0.63 0.68 0.58 0.93 0.73
NLI baseline 0.83 0.88 0.89 0.87 0.88 0.70 0.89 0.82

Weakly Supervised 0.91 0.94 0.94 0.93 0.91 0.90 0.93 0.91

Table 2: Performance of different methods on NLI-related task. Accuracy is used for evaluation. History,
PEXAM and DDX represents the accuracy averaged on History, Physical Examination and Diagnose checklist
items respectively. Total represents the accuracy averaged on all checklist items

Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

NER baseline 0.56 0.54 0.49 0.53 0.57 0.55 0.53 0.55
Weakly Supervised 0.60 0.59 0.63 0.61 0.61 0.62 0.63 0.62

Table 3: Performance of different methods on NER-related task. F1 score is used for evaluation.

bels. That is, for the NLI model, only the sequence-
level labels indicating if the given checklist item
is entailed or not are used. For the NER model,
only the token-level labels indicating if each token
belongs to the target phrase are used for training.

6.2 Evaluation Metrics
For the different tasks, different evaluation
metrics are used. Accuracy defined as
Num of Correct Predictions

Num of All Predictions is used for NLI-related
task, whereas the NER-related task, we use the F1
score, which is widely used for NER.

7 Results

The performances of the different models on the
NLI task of judging if the checklist item is entailed
by the patient note are summarized in Table 2. We
find that our proposed unsupervised framework
achieves an average accuracy of 0.63 across all
the checklist items on the headache dataset and an
average accuracy of 0.73 on the abdominal pain
dataset. Compared with the unsupervised method,
our weakly supervised method achieves a much
better performance showing an average accuracy
of 0.93 on the headache dataset and 0.91 on the ab-
dominal pain dataset. As shown in Table 2, our pro-
posed weakly supervised method outperforms the
baseline NLI model and the unsupervised method
across all the sections (checklist items averaged
by section—history, physical exam and diagnosis)
by a large margin. Looking at the accuracy values
averaged across each section, we notice that our
proposed weakly supervised method performs con-
sistently well on all the checklist types whereas the
baseline NLI model and the unsupervised method

Number Headache Case Abdominal Pain
NLI NER NLI NER

0 0.89 0.32 0.82 0.42
1 0.90 0.41 0.87 0.50
5 0.92 0.54 0.89 0.56

10 0.93 0.60 0.90 0.60
15 0.93 0.61 0.91 0.62
20 0.93 0.60 0.90 0.62
25 0.93 0.61 0.91 0.62

Table 4: Performance of weakly supervised method.
The weakly supervised method is fine-tuned on different
number of in-domain data. NLI refers to NLI-related
task that is evaluated by accuracy. NER represents NER-
related task that is evaluated by F1 score5.

only perform well on specific sections.

For the NER task of identifying the corre-
sponding phrases, our weakly supervised method
achieves an F1 score of 0.61 on the headache
dataset and 0.62 on abdominal pain dataset, which
is better than the performance of the baseline NER
model as shown in Table 3. This demonstrates that
our proposed weakly supervised method utilizing
multi-level transfer learning achieves the SOTA
performance in both tasks when compared to all
the baselines and our unsupervised method.

8 Analysis

In this section, we provide some ablation studies to
analyze the contribution of data and the different
modules used in our weakly supervised method.

5Due to the space limitation, the analysis on the number
of in-domain data is provided in the appendix.
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Methods Headache Abdominal Pain
History PEXAM DDX Total History PEXAM DDX Total

Unsupervised 0.72 0.30 0.87 0.63 0.68 0.58 0.93 0.73
Weakly Supervised wo Fine-tuning 0.83 0.88 0.89 0.87 0.88 0.70 0.89 0.82

Weakly Supervised + Out-of-domain Data 0.83 0.94 0.89 0.89 0.87 0.81 0.90 0.86
Weakly Supervised + In-domain Data 0.91 0.94 0.94 0.93 0.91 0.90 0.93 0.91

Table 5: Performance of our methods on the NLI-related task. Our weakly supervised method is fine-tuned using
different data sizes to show the ability of data-level transfer learning. Accuracy is used as the evaluation metric.

Tasks Methods Headache Abdominal Pain
No Fine-tune Out-of-domain In-domain No Fine-tune Out-of-domain In-domain

NLI NLI baseline 0.82 0.84 0.87 0.77 0.80 0.82
Ours 0.87 0.89 0.93 0.82 0.86 0.91

NER NER baseline 0.08 0.36 0.53 0.08 0.40 0.55
Ours 0.32 0.47 0.61 0.42 0.51 0.62

Table 6: Comparison between baseline models with single-task training and our weakly supervised model with
multi-task training. For the NLI task, accuracy is used for evaluation, and for the NER task, F1 score is used.

8.1 Data-Level Transfer

Here we explore our method’s data-level transfer
learning ability, which is reflected in the perfor-
mance of the model with the out-of-domain data.
Two settings are used for our experiments. In
the first setting we train our weakly supervised
model with the generic dataset and then directly
test the model on the case-specific dataset with no
fine-tuning. In the second setting, we train our
weakly supervised model with the generic dataset
and then fine-tune it on the case-specific dataset on
one of the two clinical cases. After training and
fine-tuning, we test our model on the case-specific
dataset related to another clinical case (e.g., fine-
tuning on abdominal pain and testing on headache).

From the results in Table 5, for the first setting,
we see that our model outperforms the other mod-
els even when trained on the generic dataset alone.
For the second setting, when fine-tuned on the ab-
dominal pain dataset and tested on the headache
case-specific dataset, our model’s performance im-
proved from 0.87 to 0.89. Similarly, when fine-
tuned on the headache dataset and tested on the
abdominal pain dataset, our model’s performance
improved from 0.82 to 0.86. This shows that even
the out-of-domain data can aid the performance
of our weakly supervised method, suggesting that
our method can transfer knowledge learned from
out-of-domain data to new cases.

In addition, we also provide an analysis on the
influence of training data amount on the perfor-
mance in the Appendix. It is concluded that our
weakly supervised method only requires a small
number of in-domain data for fine-tuning to achieve

a satisfactory performance for both tasks.

8.2 Task-Level Transfer

In this part we show our weakly supervised
method’s ability of task-level transfer learning via
comparison between our model with multi-task
training and the baseline models with single-task
training. Our model and the baseline models are
trained on the same datasets for a fair comparison.

Results are presented in Table 6. When only
trained on the generic data and tested on the
NLI-related task (corresponding to No Fine-tune
columns), our model with multi-task training has
an averaged accuracy of 0.87 on the headache case
and 0.82 on the abdominal pain case whereas the
NLI baseline model has an accuracy of only 0.82
on headache case and 0.77 on abdominal pain case.
For the NER-related task, when only trained on the
data from kaggle dataset, our model has an aver-
aged F1 score of 0.32 on the headache case and
0.42 on the abdominal pain case whereas the NLI
baseline model has an averaged F1 score of only
0.08 on headache and 0.08 on abdominal pain.

When in-domain data is used for fine-tuning, our
model with multi-task training still outperforms the
NLI and NER baseline models on both tasks. When
trained using the generic data, fine-tuned on the in-
domain data and tested on the NLI-related task
(corresponding to In-domain columns), our model
with multi-task training has an averaged accuracy
of 0.93 on the headache case and 0.91 on abdominal
pain case whereas the NLI baseline model has an
averaged accuracy of only 0.87 on headache case
and 0.82 on abdominal pain case. For the NER-
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related task, our model has an averaged F1 score
of 0.61 on headache case and 0.62 on abdominal
pain case whereas the NLI baseline model has an
averaged F1 score of 0.53 on headache case and
0.55 on abdominal pain case.

Similarly, when out-of-domain data is used
for fine-tuning (corresponding to Out-of-domain
columns), our model with multi-task training also
outperforms the NLI and NER baseline models on
both tasks. Therefore, as shown by the higher per-
formance compared with the NLI and NER base-
line models, our weakly supervised model benefits
from the multi-task training and shows a strong
ability of task-level transfer learning.

9 Practical Impact

Our system is currently undergoing pilot testing by
learners and faculty to assess the perceived impact
on providing more immediate and automated feed-
back. The immediacy is important so that the case
is fresh, and it will likely impact debriefing of sim-
ulation cases, potentially making debriefing more
focused on areas of learner struggles identified in
the notes. With our system grading all learners,
automated feedback could be provided to the users
and learners in time, which can be used to help
their study of patient notes writing.

10 Conclusion and Future Work

In this paper, we study the problem of automatic
written medical examination assessment. The com-
plexity and huge manual effort required make data
resources for this task very limited. Therefore,
traditional NLP systems relying on large anno-
tated corpora are impractical. With these fac-
tors in mind, we proposed a weakly supervised
method. Our weakly supervised method utilizes
multi-level transfer learning including data-level
transfer learning and task-level transfer learning to
simultaneously judge if the checklist item is stated
in the patient note and also identify spans of rel-
evant phrases. Experiments on two self-collected
datasets show that our weakly supervised method
is able to achieve the SOTA performance on both
tasks. Therefore, our weakly supervised method
can correctly judge if the checklist item is stated in
the given patient note and can also find the relevant
phrases most of the time. Our future work involves
developing more effective transfer learning mecha-
nisms to improve the performance on identifying
the relevant phrases.
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A Appendix

A.1 Training Data Amount
First, we analyze the influence of training data
amount on the performance. We use different
amounts of in-domain data to fine-tune our weakly
supervised method. As shown in Table 4, we notice
that when the data used for fine-tuning is less than
10 patient notes the amount of training data has a
big influence on the performance, with the perfor-
mance improving with the increase of training data.
When the training data is increased from 0 to 10
patient notes, the averaged accuracy increased from
0.89 to 0.93 and the F1 score increased from 0.32 to
0.6 on headache case. case of 0 training instances
corresponds to the out-of-the-box performance of
the weakly supervised model. On the abdominal
pain case, the averaged accuracy increased from
0.85 to 0.9 and the F1 score increased from 0.42 to
0.6. However, when the data used for fine-tuning is
more than 10, the performance did not change sig-
nificantly with the increase of training data. Based
on this, we note that our weakly supervised method
only requires a small number of in-domain data for
fine-tuning to achieve a satisfactory performance
for both tasks.

A.2 Limitations
Although our weakly supervised model shows a
satisfactory performance on NLI-related task af-
ter fine-tuning on in-domain data, the performance
on NER-related task is still limited. Therefore,
our weakly supervised model is limited on relating
phrases in the patient notes with the given checklist
item. Besides, without fine-tuning on in-domain
data, the performance on NLI-related task is not
good enough, which means that our weakly su-
pervised model still relies on annotated in-domain
data. In addition, it is obvious that our unsuper-
vised model has a much worse performance com-
pared with our weakly supervised model. There-
fore, one important limitation lies on the relying
of in-domain data given that unsupervised model’s
performance is unsatisfactory and weakly super-
vised model need in-domain data for fine-tuning.

Another important limitation lies in the data used
for testing. In our experiments, we only use patient
notes from 5 examinees for testing, which is not a
large test set. Therefore, future studies should con-
sider validating these results with larger samples
and wider variety of cases.
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