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Abstract

Transformer models have achieved great suc-
cess across many NLP problems. However,
previous studies in automated ICD coding con-
cluded that these models fail to outperform
some of the earlier solutions such as CNN-
based models. In this paper we challenge this
conclusion. We present a simple and scalable
method to process long text with the existing
transformer models such as BERT. We show
that this method significantly improves the pre-
vious results reported for transformer models
in ICD coding, and is able to outperform one
of the prominent CNN-based methods.

1 Introduction

The International Classification of Diseases (ICD)
codes provide a standard way of keeping track of
diagnoses and procedures during a patient visit.
These codes are used worldwide for epidemiolog-
ical studies, billing and reimbursement, and re-
search in health care. The codes are maintained
by the World Health Organization (WHO) and are
revised and updated periodically. As of 2022 the
ICD codes are in the 11th revision.

Assigning ICD codes to a clinical note, such
as a discharge summary, is done by professional
medical coders. Human coders require extensive
training, and the process of coding is often time-
consuming, costly, and error-prone. Due to these
challenges there is an incentive to automate the
coding process. Therefore in recent years this prob-
lem has gained interest among machine learning
researchers in health care (See, Mullenbach et al.
(2018); Li and Yu (2020); Zhang et al. (2020) and
references therein). On the surface, the problem
can be considered as a multi-label document clas-
sification problem. However, there are aspects of
the problem that make it particularly challenging.
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The primary challenge is that there are tens of thou-
sands of classes. For instance, billable ICD-10-CM
codes consist of approximately 73,000 codes. In ad-
dition, the distribution of the codes is not uniform.
Many of the codes are related to rare conditions and
are mentioned infrequently in text, which makes it
difficult to train a reliable classifier for them.

Transformer-based language models developed
based on self attention (Vaswani et al., 2017) have
become the state-of-the-art across many NLP prob-
lems by outperforming previous solutions that were
mostly based on recurrent neural networks (RNN)
and convolutional neural networks (CNN). So one
would expect that they perform well in ICD coding
too. However, examining the literature of ICD cod-
ing methods reveals that transformer-based solu-
tions fail to outperform CNN-based models. Many
studies have applied the BERT language model
(Devlin et al., 2018) to this task, for example Pas-
cual et al. (2021); Singh et al. (2020); Biseda et al.
(2020); Amin et al. (2019). More recently, Ji
et al. (2021) performed a comprehensive quanti-
tative study to compare BERT and some of its
variants pre-trained on medical text against CNN-
based models such as Mullenbach et al. (2018)
and Cao et al. (2020) to answer the question of
whether the magic of BERT (as observed across
many NLP problems) also applies to automated
ICD coding. They concluded that BERT cannot out-
perform CNN-based models in the full ICD code
case.

Unlike RNN or CNN models, which in theory
can process sequences of arbitrary length, trans-
formers’ computational complexity scales quadrat-
ically with sequence length. This means that most
of these models can handle limited size sequences.
For instance, BERT models usually are pre-trained
and fine-tuned on sequences with at most 512 to-
kens. Clinical notes normally contain long snippets
of text beyond the sequence limit of transformers.
We hypothesize that this constraint could explain
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the poor performance of transformers in this task,
and will present empirical evidence for that.

We emphasize that we do not claim to achieve
state-of-the-art performance in ICD coding, or that
our design is the most efficient transformer archi-
tecture for processing long text. For a review of
efficient transformers see Tay et al. (2020) and ref-
erences therein. Our goal is to provide new empir-
ical evidence that shows even the standard trans-
former models can outperform some of the previ-
ous prominent methods and are a viable solution
for ICD coding.

2 Related work

Medori and Fairon (2010) applied a rule-based
method to extract important snippets of text and
encode them with ICD codes. Perotte et al. (2014)
proposed SVM classification with bag-of-words
features. They experimented with both flat SVM
(i.e. one classifier per code) and a hierarchical
classifier.

With the success of deep learning in NLP tasks,
many researchers focused on using RNN and CNN
models for ICD coding. CNN models provide a
convenient way to learn a contextual representa-
tion of text in NLP problems (Chen, 2015). For
example, Mullenbach et al. (2018) proposed the
CAML model: a convolutional layer on word2vec
embedding vectors to learn a contextual represen-
tation for each word. The word representations are
combined into a class-specific document represen-
tation using the attention mechanism. They also
suggested a method to leverage code descriptions
via a regularization term. Li and Yu (2020) pro-
posed Multi-filter Residual CNN (MultiResCNN)
that uses convolutional layers with different kernel
sizes to capture patterns with different lengths. Ad-
ditionally, they used residual blocks on top of the
convolutional layer. Similar to Mullenbach et al.
(2018) they employed a per-class attention mecha-
nism to make the document representation attend
to different parts of the input for each code.

Recurrent neural networks (RNN) are also stud-
ied extensively for ICD coding. Shi et al. (2017)
applied LSTM at character and word level to en-
code both the clinical note and the code description.
Baumel et al. (2018) employs a two-layer bidirec-
tional Gated Recurrent Unit (GRU) model, where
the first layer encodes individual sentences, and the
second layer encodes the document.

With the success of transformer architectures

f1 fc fK……

Linear classifiers

de1,...,e512 e513,...,e1024 e(τ-1)×512,...,eτ×512
…

BERT Encoder

1x1,...,x512 x513,...,x1024 … x(τ-1)×512,...,xτ×512

Attention

z1 zc zK……

w1 wc wK

Figure 1: Model architecture proposed for handling
long text inputs.

across many NLP tasks, researchers focused their
attention to designing such models for ICD coding.
BERT-XML (Zhang et al., 2020) with access to a
large corpus of private data managed to pre-train
the model with sequence length of 1024. Most
of the work in this area, however, considered the
standard BERT model and its variants pre-trained
on medical text to encode the document (Pascual
et al., 2021; Singh et al., 2020; Biseda et al., 2020;
Amin et al., 2019). One observation with these
models was that they were unable to outperform
CNN-based models. Ji et al. (2021) performed
a comprehensive study to answer a few research
questions on the suitability of BERT models for
ICD coding. They studied and compared different
variants of BERT pre-training. They also proposed
a hierarchical attention method so that long clinical
notes can be processed with a BERT model with a
limit of 512 tokens. Most importantly, they com-
pared different BERT variants against traditional
CNN-based models, and through extensive exper-
iments showed that BERT-based models are not
capable of outperforming CNN-based models in
ICD coding. In the next sections we show that a
simple method that enables processing of long text
with transformers will attain results that contradict
the findings of Ji et al. (2021).
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3 Method

In this section we explain our method for building
a model to predict medical codes. As illustrated
in Figure 1, our model consists of an encoder that
calculates token-level representation of the input
text. This can be done in various ways, e.g. Mul-
lenbach et al. (2018) used word2vec and a CNN
layer to calculate word-level representations. We
choose the BERT language model for this purpose.
A class-specific representation of the document is
then calculated using class-specific attention vec-
tors, similar to Mullenbach et al. (2018). For d-
dimensional token representations and K classes,
this layer requires d × K parameters. Linear bi-
nary classifiers are built on top of the document
representation to produce the probability that the
document belongs to any of the K classes. This
layer requires (d+ 1)×K parameters (one scalar
for the offset).

LetX = [x1, . . . , xs] denote the tokenized input
sequence with s tokens. Let e1(X), . . . , es(X) de-
note the representation of tokens 1, . . . , s obtained
from an encoder. That is,

ei(X) = φ(xi|X), i ∈ {1, . . . , s},

where φ is an encoder, such as BERT, that returns
a context-dependent representation for each token.
For each class c, token-level representations are
combined into a single vector that represents the
entire document using the attention mechanism:

zc(X) =
s∑

i=1

αc,i(X)ei(X),

where

αc,i(X) =
exp (〈ei(X), qc〉)∑s
j=1 exp (〈ej(X), qc〉)

, (1)

i ∈ {1, . . . , s},

are the normalized attention coefficients and 〈·, ·〉
denotes inner product, and qc is the d-dimensional
attention vector for class c. The predicted probabil-
ity of the model for class c is calculated by

fc(X) = σ (〈zc(X), wc〉+ bc) ,

where wc is the weight vector for class c, bc is
the scalar offset for class c, and σ is the sigmoid
function.

3.1 Handling long text

Language models such as BERT can handle input
text up to a certain length. For example, BERT
can take input of at most 512 tokens. While it is
possible to pre-train the model on longer sequences
(mostly to learn useful positional embedding vec-
tors), memory requirement grows quadratically
with input size. So pre-training a BERT model
on longer text is not scalable.

There are transformer-based models that can
handle long sequences, such as BigBird (Zaheer
et al., 2020), ETC (Ainslie et al., 2020), Long-
former (Beltagy et al., 2020), and LongT5 (Guo
et al., 2021). There are a few factors that limit
their usability in the medical coding task. For ex-
ample, these models are usually designed to train
on TPU, so training on GPU is often a slow pro-
cess, if feasible, especially for longer sequences.
Also, pre-trained checkpoints of these models are
limited, unlike the BERT models that have many
pre-trained variants including those pre-trained on
medical text.

In this paper, we propose a simple idea, which
enables us to use a vanilla BERT model on
long sequences. Inspired by the local attention
feature of CNN models, we propose to split
the input text into (optionally overlapping)
segments of 512 tokens. These segments are
passed sequentially to a BERT model, and the
token representations are concatenated to form
[e1(X), ..., e512(X), e513(X), ..., e1024(X), ...].
One may argue that a limitation of this approach is
that the token representations are calculated with
a 512-token attention span. However, we have
observed that in practice this method performs
well. In fact, we conjecture that in many cases
short snippets of text (as evidence) are sufficient
for assigning the correct ICD codes to the input
document. Algorithm 1 shows the training
procedure.

4 Evaluation

We evaluate the accuracy of the proposed method
with several sequence lengths and compare it
against the CAML method (Mullenbach et al.,
2018), which is one of the prominent CNN-based
methods for ICD coding.

4.1 Data sets

For this task we chose the publicly-available
MIMIC-III (Johnson et al., 2016) and MIMIC-IV
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Algorithm 1 Training on a single example.

1: Input: tokenized input text of length s: X = [x1, . . . , xs], sparse binary label vector Y =
[y1, . . . , yK ] for K classes, where yc = 1 if the example belongs to class c, and 0 otherwise.

2: Pad input text X = [x1, . . . , xs] to length τ × 512 to obtain X ′ = [x1, . . . , xs, . . . , xτ×512], where
τ = ds/512e.

3: Split X ′ into segments of 512 tokens: S1 = [x1, . . . , x512], S2 = [x513, . . . , x1024], . . . , Sτ .
4: Pass Si’s, i ∈ {1, . . . , τ} sequentially to the BERT module and obtain the corresponding token

representations.
5: Concatenate token representations from all sequences to obtain [e1, . . . , es, . . . , eτ×512].
6: Calculate class-specific document representations by zc(X) =

∑s
i=1 αc,i(X)ei(X), with αc,i from

Eq. 2.
7: Calculate model predictions for all classes: fc(X) = σ (〈zc(X), wc〉+ bc) , c ∈ 1, . . . ,K.
8: Calculate and apply gradient updates for loss function

∑K
c=1 `(yc, fc(X)), where ` is binary cross-

entropy.

(Johnson et al., 2020) data sets. MIMIC-III is
a large de-identified data set of over 40,000 pa-
tients admitted to intensive care units at the Beth
Israel Deaconess Medical Center. The data set con-
tains structured and unstructured data, including
lab measurements, vital signs, medications, clin-
ical notes, etc. Following previous studies, we
focus on predicting ICD codes for discharge sum-
maries where each note corresponds to a hospital
stay event. MIMIC-IV is an update to MIMIC-
III, which incorporates contemporary data. It is
sourced from two in-hospital database systems: a
custom hospital wide EHR and an ICU specific
clinical information system.

Each discharge summary in MIMIC-III is man-
ually coded by human coders with one or more
ICD-9 codes that specify diagnoses and procedures
of that particular stay. The data set contains 8,921
unique ICD-9 codes, including 6,918 diagnosis and
2,003 procedure codes. There are patients with mul-
tiple admissions and therefore multiple discharge
summaries. To be consistent with the previous stud-
ies and to ensure that all of the notes of a patient
are assigned to one of train/validation/test sets we
use the data split provided by Mullenbach et al.
(2018). This results in 47,724 discharge summaries
for training, 1,632 summaries and 3,372 summaries
for validation and test sets respectively.

The discharge summaries in MIMIC-IV are addi-
tionally labeled with ICD-10 codes. At the time of
writing this paper the MIMIC-Note module, which
contains the discharge summaries, is not yet pub-
licly available. In our experiments we only consider
the ICD-10 diagnosis set, which contains 72,748
codes in the data set.

For tokenizing text we used the standard BERT
vocabulary and tokenizer (Devlin et al., 2018). Fig-
ure 2 shows the cumulative distribution function of
the number of tokens per note for MIMIC-III and
MIMIC-IV.

4.2 Models

Our classification model uses a BERT language
model with the method described in Section 3.
We dub this model LongBERT below. The BERT
checkpoint we use in the experiments is a model
with 2 transformer blocks and 256-dimensional
embedding vectors. The checkpoint can be down-
loaded from TensorFlow Hub.1

The baseline model (BERT-baseline) was trained
and evaluated on the first 512 tokens of in-
put text. To measure the impact of sequence
length we trained and evaluated similar models
on the first s tokens of each note, with s ∈
{1024, 2048, 4096, 8192}. All BERT parameters
and the additional attention and classification pa-
rameters were fine-tuned during training. We used
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 2e-4. The batch size was set to 4 in
all experiments, except for the models trained with
the sequence length of 8192 which were trained
with the batch size of 2 to avoid running out of
memory. The models were trained for 1 million
steps (each step is one batch). No hyper-parameter
tuning was performed except for the number of
training steps. The best model corresponds to the
training step that achieves the highest validation
micro F1 score.

1 https://tfhub.dev/tensorflow/small_bert/bert_
en_uncased_L-2_H-256_A-4/2
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Figure 2: Cumulative distribution function (CDF) of the number of tokens per note for MIMIC-III (left) and
MIMIC-IV (right) data sets.

We compare these models against a CAML
model trained on sequences of 2500 words fol-
lowing Mullenbach et al. (2018). The hyper-
parameters were set according to the optimal val-
ues obtained in Mullenbach et al. (2018). Training
was performed for 1 million steps, and the best
model was selected according to validation micro
F1 score.

Following previous work, in the MIMIC-III ex-
periments, training and evaluation was performed
on the full ICD-9 label set as well as the 50 most
frequent codes. In the MIMIC-IV experiment, we
consider only the ICD-10 diagnosis codes. Each
ICD code has its own attention and classification
weight vectors in the models. Table 1 breaks down
the number of parameters of the models in the ex-
periments.

4.3 Evaluation metrics

Our primary evaluation metric is micro-averaged
F1 (micro F1 for short). Micro-averaged values are
calculated by treating each code as a (binary) label
for each note. That is, each (note, code) pair is
counted as one instance for calculating the metrics.
Let,

micro precision =

∑
x,c TP (x, c)∑

x,c TP (x, c) + FP (x, c)
,

micro recall =

∑
x,c TP (x, c)∑

x,c TP (x, c) + FN(x, c)
,

where TP (x, c) = 1 if class c is a true positive pre-
diction for note x and 0 otherwise. FP (x, c) (false
positive) and FN(x, c) (false negative) are defined
analogously. Finally, micro F1 is the harmonic

mean of micro precision and micro recall:

micro F1 = 2
micro precision×micro recall
micro precision + micro recall

.

The optimal threshold on model predictions, which
is used to calculate TP/FP/FN counts, is ob-
tained by a grid search to maximize the validation
set F1 score.

Additionally we report precision-recall AUC
(PR-AUC), and ROC-AUC. In contrast to F1 score,
these metrics are independent of a specific operat-
ing point and provide an aggregated view of model
accuracy.

4.4 Results

Table 2 shows the results of the LongBERT and
CAML models on the MIMIC-III full-code test
set. Table 3 shows accuracy metrics obtained on
the MIMIC-IV diagnosis code data set. Bold num-
bers represent the best value of each metric. A
clear trend observed in both data sets is that as
the sequence length of LongBERT increases, the
accuracy of the model improves. These results
demonstrate that the capability to process long text
is critical in achieving high accuracy.

The LongBERT models with sequence lengths of
4096 and 8192 both outperform the CAML model.
This finding contradicts the previous finding of Ji
et al. (2021). While their hierarchical attention
proposal and our method both handle long text by
breaking it into segments of 512 tokens, one key
difference is that they use the CLS token representa-
tion from each segment, whereas we use individual
token representations. The best MIMIC-III full-
code performance reported in Ji et al. (2021) was
F1 = 0.47 with BioBERT full-text (Lee et al., 2020)
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MIMIC-III full MIMIC-III top 50 MIMIC-IV diagnosis
Language model 9,591,040 9,591,040 9,591,040
Attention layer 2,283,776 12,800 18,623,488
Classification layer 2,292,697 12,850 18,696,236

Total 14,167,513 9,616,690 46,910,764

Table 1: Breakdown of the number of parameters of BERT-baseline and LongBERT with 2 transformer blocks and
256-dimensional embedding vectors. MIMIC-III full contains 8,921 classes, and MIMIC-IV diagnosis contains
72,748 classes.

checkpoint and hierarchical attention, while our
small vanilla BERT model with sequence length
of 8192 achieves F1 = 0.5680. These results show
that with a proper modeling approach transformer-
based models are indeed capable of outperforming
CNN-based models in ICD coding.

MIMIC-III top 50. Following previous work,
we also trained and evaluated the models on the
MIMIC-III 50 most frequent codes. Table 4 shows
the results. Similar to the full-code case we observe
that processing longer segments results in higher
accuracy.

In this case, however, there is no clear win-
ner between LongBERT and CAML. While Long-
BERT achieves a higher micro F1 score, the CAML
model has a higher PR-AUC. We conjecture that
the smaller performance difference between the
two models in this experiment compared to the
full-code experiment is due to the amount of in-
formation in the data sets. By removing many of
the labels in the top-50 experiment we essentially
remove information. This information is more help-
ful to larger models (i.e. transformers) than smaller
models, such as CAML. As a result, we observe a
larger performance gap in the full-code experiment
between LongBERT and CAML.

We also note that the accuracy numbers of the
CAML model in this experiment are higher than
those reported in Mullenbach et al. (2018). One
difference here is that we do not discard notes that
aren’t assigned any of the top 50 codes as was
done in the original paper. Such notes are used as
negative examples for the top 50 codes. Therefore
our data set contains more negative examples than
the data set used in Mullenbach et al. (2018).

5 Discussion

Most of the existing BERT models pre-trained on
generic or medical text can take input segments
of up to 512 tokens. Clinical notes, however, are

much longer than this limit. To deal with this lim-
itation, much of the existing works in automated
ICD coding that use BERT limit the input to the
model by truncating the text or selecting specific
spans of text. This results in loss of information
and poor performance.

In this paper we proposed a simple method to ap-
ply BERT models to sequences longer than 512 to-
kens. Our method is simple and consists of two key
components: (i) apply BERT sequentially to (op-
tionally overlapping) segments of 512 tokens, and
(ii) concatenate token-level representations from all
segments, and combine them using a class-specific
attention layer.

We demonstrated that processing long text se-
quences minimizes information loss and is critical
for achieving high performance in automated ICD
coding. We also showed that contrary to previ-
ous findings, this method with even a small vanilla
BERT model outperforms CNN-based methods,
and achieves competitive performance.

Future steps include evaluating medical variants
of BERT, and exploring other transformer-based
architectures that were designed to handle long
sequences.

Limitations

While our method enables the processing of text
longer than 512 tokens, one of the limitations of
this approach is that context-dependent token rep-
resentations are still calculated using a window
of 512 tokens. Despite good performance of this
method in practice, there could be cases where a
context window of longer than 512 must be used
to make accurate predictions.

Furthermore, while our method reduces compu-
tational complexity from quadratic (in sequence
length) to linear, the memory requirement of the
model could still be prohibitive in certain cases.
For instance, for sequence length of 8192, and a
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Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.5465 0.5973 0.5036 0.5361 0.9831
BioBERT full-
text (Ji et al.,
2021)

entire note 0.470 N/A N/A N/A 0.974

BERT-
baseline

512 0.4149 0.4769 0.3672 0.3793 0.9745

LongBERT 1024 0.4697 0.5421 0.4144 0.4309 0.9766
LongBERT 2048 0.5036 0.5777 0.4463 0.4703 0.9794
LongBERT 4096 0.5514 0.6038 0.5074 0.5305 0.9820
LongBERT 8192 0.5680 0.6148 0.5278 0.5402 0.9827

Table 2: Accuracy metrics in the MIMIC-III full-code experiment.

Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.5439 0.5739 0.5169 0.5313 0.9889

BERT-baseline 512 0.4010 0.4298 0.3757 0.3580 0.9883
LongBERT 1024 0.4607 0.5094 0.4205 0.4254 0.9839
LongBERT 2048 0.4852 0.5268 0.4497 0.4559 0.9852
LongBERT 4096 0.5635 0.5925 0.5371 0.5450 0.9850
LongBERT 8192 0.5703 0.6046 0.5397 0.5517 0.9871

Table 3: Accuracy metrics in the MIMIC-IV diagnosis experiment.

Seq. length Micro F1 Precision Recall PR-AUC ROC-AUC

CAML 2500 (words) 0.6390 0.6506 0.6278 0.6410 0.9102

BERT-baseline 512 0.5027 0.5367 0.4727 0.5117 0.8360
LongBERT 1024 0.5568 0.5923 0.5252 0.5406 0.8560
LongBERT 2048 0.5908 0.5987 0.5832 0.5604 0.8834
LongBERT 4096 0.6375 0.6157 0.6609 0.6229 0.9115
LongBERT 8192 0.6522 0.6417 0.6629 0.6303 0.9181

Table 4: Accuracy metrics in the MIMIC-III top-50 experiment.

small BERT checkpoint with only two transformer
blocks we had to reduce batch size to 2 in order
to train the models. Using a larger BERT check-
point for long sequences requires more memory
and multiple GPUs, which increases the cost of
compute.
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