
LNLS 2022

The First Workshop on Learning with Natural Language
Supervision

Proceedings of the Workshop

May 26, 2022

The LNLS organizers gratefully acknowledge the support from the following
sponsors.

Gold

ii

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-45-2

iii

Introduction

To a growing extent, advances across machine learning application domains are driven by advances in
NLP. In computer vision, image captions are used to shape learned representations of images [Frome et
al., 2013, Mu et al., 2020, Radford et al., 2021, Desai and Johnson 2021]. In programming languages,
textual code comments are used to guide and constrain models for example-based program synthesis
[Yaghmazadeh et al., 2017, Austin et al., 2021, Wong et al., 2021]. In robotics and more general policy
learning settings, rules and instructions are used to enable generalization to new environments and goals
[Zhong et al., 2020, Narasimhan et al., 2018, Sharma et al., 2020]. Within NLP, rich natural-language
annotations and task descriptions are used to improve the performance and interpretability of models for
text categorization and question answering [Hancock et al., 2018, Weller et al., 2020, Efrat et al., 2020].
And in cognitive science, experimental evidence suggests that language shapes many other aspects of
human cognition (e.g. Jones et al., 1991).
At present, however, most research on learning from language takes place within individual application
domains (and mostly outside of the NLP community). While many approaches to language supervision
are domain-general, and closely connected to “core” NLP research, there are currently no venues where
researchers from across the field can meet to share ideas and draw connections between their dispara-
te lines of research. Our workshop will offer a central meeting point for research on language-based
supervision, enabling researchers within and beyond NLP to discuss how language processing models
and algorithms can be brought to bear on problems beyond the textual realm (e.g. visual recognition,
robotics, program synthesis, sequential decision making). Existing workshops like RoboNLP, SPLU,
and ViGiL focus on models for multi-modality; inspired by the relationship between language and hu-
man cognitive development, our workshop will emphasize broader use of language not just as an input
modality but a fundamental source of information about the structure of tasks and problem domains.
In keeping with this interdisciplinary focus, our workshop format differs in two ways from a standard
NLP workshop: first, with a special emphasis on speakers and attendees who would not typically attend
NLP conferences; second, by replacing the standard panel discussion with a series of workshop-wide
breakout sessions aimed at seeding cross-institutional collaborations around new tasks, datasets, and
models.

iv

Organizing Committee

Organizing Committee

Jacob Andreas, MIT, USA
Karthik Narasimhan, Princeton University, USA
Aida Nematzadeh, DeepMind, UK

v

Program Committee

Program Chairs

Jacob Andreas, Massachusetts Institute of Technology and Microsoft
Karthik R Narasimhan, Princeton University
Aida Nematzadeh, Deepmind

Reviewers

Siddharth Karamcheti, Stanford University
Theodore Sumers, Princeton University
Afra Feyza Akyürek, Boston University
Bishan Yang, Carnegie Melon University
Jesse Mu, Stanford University
Catherine Wong, Massachusetts Institute of Technology
Erin Grant, University of California Berkeley
Ekin Akyürek, Massachusetts Institute of Technology
Pratyusha Sharma, Massachusetts Institute of Technology
Ameet Deshpande, Princeton University
Evan Hernandez, Massachusetts Institute of Technology
Olivia Watkins, University of California, Berkeley
Robert D. Hawkins, Princeton University
Shunyu Yao, Princeton University
Rakesh R Menon, Department of Computer Science, University of North Carolina, Chapel Hill

vi

Table of Contents

Finding Sub-task Structure with Natural Language Instruction
Ryokan Ri, Yufang Hou, Radu Marinescu and Akihiro Kishimoto . 1

GrammarSHAP: An Efficient Model-Agnostic and Structure-Aware NLP Explainer
Edoardo Mosca, Defne Demirtürk, Luca Mülln, Fabio Raffagnato and Georg Groh 10

Single-Turn Debate Does Not Help Humans Answer Hard Reading-Comprehension Questions
Alicia Parrish, Harsh Trivedi, Ethan Perez, Angelica Chen, Nikita Nangia, Jason Phang and

Samuel R. Bowman . 17

When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of
Explanation Data

Peter Hase and Mohit Bansal . 29

A survey on improving NLP models with human explanations
Mareike Hartmann and Daniel Sonntag . 40

vii

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 1 - 9
May 26, 2022 ©2022 Association for Computational Linguistics

Finding Sub-task Structure with Natural Language Instruction

Ryokan Ri1
li0123@logos.t.u-tokyo.ac.jp∗

Yufang Hou2

YHou@ie.ibm.com

Radu Marinescu2

radu.marinescu@ie.ibm.com

Akihiro Kishimoto2

Akihiro.Kishimoto@ibm.com

1The University of Tokyo 2IBM Research

Abstract

When mapping a natural language instruction
to a sequence of actions, it is often useful to
identify sub-tasks in the instruction. Such sub-
task segmentation, however, is not necessarily
provided in the training data. We present the
A2LCTC (Action-to-Language Connectionist
Temporal Classification) algorithm to automat-
ically discover a sub-task segmentation of an
action sequence. A2LCTC does not require
annotations of correct sub-task segments and
learns to find them from pairs of instruction and
action sequence in a weakly-supervised man-
ner. We experiment with the ALFRED dataset
and show that A2LCTC accurately finds the
sub-task structures. With the discovered sub-
tasks segments, we also train agents that work
on the downstream task and empirically show
that our algorithm improves the performance.

1 Introduction

Building computational agents that execute actions
given natural language instruction has a great deal
of potential in real-world applications. One com-
mon approach is to cast the problem as mapping
from instruction text into action sequence, and
train an agent with supervised learning (Chen and
Mooney, 2011; Mei et al., 2016). A challenge
on effective machine learning stems from a long
horizon of the tasks. Typical navigation tasks of-
ten involve more than a paragraph of instructions
(Chen and Mooney, 2011; Misra et al., 2017; Shrid-
har et al., 2020). In such cases, many existing
approaches exploit the task hierarchy, e.g., decom-
pose one episode of the task into sub-tasks and
treat them as separate training instances (Mei et al.,
2016), incorporate the hierarchical information into
the model (Zhu et al., 2020), or aid the learning
process with progress monitoring (Ma et al., 2019).

However, annotations for such a decomposition
are not necessarily available in training data. In

∗ Work done as an intern at IBM Research.

Figure 1: Example illustrating a mapping from each
action to a corresponding fine-grained instruction

this case, previous work has attempted to perform
sub-task segmentation by augmenting data through
crowdsourcing (Hong et al., 2020), or developing a
heuristic algorithm (Zhu et al., 2020).

In this paper, we present A2LCTC (Action-to-
Language Connectionist Temporal Classification),
an unsupervised algorithm that automatically dis-
covers a sub-task segmentation of an action se-
quence. Given pairs of a natural language instruc-
tion and action sequence, A2LCTC maps each ac-
tion to a fine-grained instruction (Figure 1).

We formulate the problem of sub-task segmen-
tation as classification of each action into a fine-
grained instruction. Inspired by the connection-
ist temporal classification algorithm (Graves et al.,
2006), we consider an objective function that max-
imizes the log-likelihood of the coarsely aligned
data. This formulation allows us to learn the clas-
sification in a weakly-supervised manner without
any need of the ground truth mapping.

We experiment with the ALFRED dataset which
involves navigating a robot to perform household
task (Shridhar et al., 2020). A2LCTC successfully
discovers the sub-task information in the unseg-
mented training data (§3), which are shown to be
useful for the downstream task (§4).

1

2 Learning Sub-task Segmentation

Given a training instance of a navigation task
which consists of language instruction X and ac-
tion sequence A = [a1, ..., aT], we aim at find-
ing a decomposition of the instance (X,A) =
[(X1, A1), ..., (XL, AL)], which is semantically
plausible and useful for learning the task.

Our approach starts with dividing the instruction
into fine-grained segments. In the experiment, the
segment Xi corresponds to a verbal phrase (e.g.,
“go to the desk”) extracted from the instruction us-
ing a simple rule-based algorithm (Appendix A.1).

2.1 Formulating the Task as Temporal
Classification

We formulate the decomposition task as classi-
fication of actions into one of the fine-grained
instructions: our algorithm predicts a mapping
π = [π1, ..., πT] where πt ∈ [1, L].

We assume that the alignment is monotonic, i.e.,
the actions and instructions are both arranged in a
chronological order, which typically holds for step-
by-step instruction text1. This formulation allows
us to develop an unsupervised learning method
to effectively solve the task without ground-truth
label mappings. We introduce A2LCTC (Action-to-
Language Connectionist Temporal Classification),
which is based on the CTC algorithm originally
used for speech recognition (Graves et al., 2006) or
action labeling in video (Huang et al., 2016).

Our model attempts to maximize the following
likelihood for each training instance:

∑

{π|B(π)=[1,2,..,L]}
P (π|X,A) (1)

where B is the operator to remove repeated labels,
e.g.,, B([1, 1, 2, 2, 2, 3]) = [1, 2, 3]. That is, the
objective is the sum of the probabilities over all
the possible assignments under the monotonic con-
straint. Under the conditional independence as-
sumption, we further decompose the likelihood
into P (π|X,A) =

∏T
t P (πt|X,A).

With this decomposition, we employ the forward
algorithm (Stratonovich, 1965) to efficiently calcu-
late the sum over all possible paths.

1In case that the monotonic assumption does not hold,
we could reorder instructions with some sentence-ordering
algorithm such as (Ghosal et al., 2021) as preprocessing.

2.2 Modeling with Neural Network
We model the probability computation using neural
networks. In our approach, each fine-grained in-
struction and action are represented as feature vec-
tors. We then define the probability P (πt|X,A) as
the softmax of the dot product of the feature vectors
of the action at and the instruction [x1, ...,xL]:

P (πt = i|X,A) =
exp(at · xi)∑L
j=1 exp(at · xj)

. (2)

In our implementation, a fine-grained instruction
Xi is tokenized into words and xi is computed as
the average of the word embeddings followed by
a linear layer. The action feature vectors are com-
puted by feeding action embeddings [â1, ..., âT]
into a one-layer bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to capture the semantics
of actions in the context.

At inference time, the model induces the best
mapping π that maximize P (π|X,A) with the
viterbi algorithm to form decomposed instances
(Xi, Ai).

2.3 Stabilization of Unsupervised Learning
Optimizing the aforementioned objective function
with neural networks turns out to be highly unsta-
ble. Therefore, we further employ the following
techniques to better guide the training process.
Length-based curriculum learning. The training
objective (1) is defined as the sum of the proba-
bilities over all possible assignments, whose size
grows at the speed of O(LT). When L and T are
large, too many degenerated assignments take up
a large part of the probability mass, which hinders
the training especially at the beginning of training.

To address this problem, we adopt the curricu-
lum learning framework (Bengio et al., 2009). At
the beginning of training, we restrict the train-
ing instances with a shorter action sequence and
gradually expose the model to longer instances
(Spitkovsky et al., 2010). Details are shown in
Appendix A.4.
Initializing with pre-trained word embeddings.
We initialize the word embeddings w with the
Glove embeddings (Pennington et al., 2014) to in-
ject a model with the prior knowledge of words.
Initializing with pre-trained action embeddings.
We also initialize the action embeddings â with pre-
trained embeddings. We obtain action embeddings
from the action sequences in the training data with
Skip-gram (Mikolov et al., 2013).

2

3 Experiments

We test A2LCTC with the ALFRED dataset (Shrid-
har et al., 2020) 2, where the agent performs house-
hold tasks in a simulated indoor environment given
English instruction. We choose this dataset because
(1) the data involves relatively long sequence of ac-
tions (over 100); (2) it offers ground-truth sub-task
segmentation data which allows the evaluation of
our algorithm. Although the ALFRED task itself
involves understanding visual inputs, which is cur-
rently beyond the scope of A2LCTC, the action set
defined in the dataset is semantically rich enough
for A2LCTC to solve the segmentation problem.

3.1 Experimental Setups

Training and Evaluation Data. The dataset con-
tains expert demonstrations, which are split into
the training set and two validation sets: valid_seen
and valid_unseen. In valid_seen, the ALFRED
tasks are given in the same set of environments as
the training data, while unseen environments are
used for valid_unseen. We use valid_seen as the
validation set during training and report the results
evaluated with both of them.

The task defines 12 types of actions: five
for navigation (e.g., LookUp, MoveForward,
RotateRight) and seven for interaction (e.g.,
Pickup, Slice). To simplify training and eval-
uation, we preprocess data by merging the same
consecutive navigation actions into a single action
(see Appendix B for detailed statistics on the data).
Evaluation Metrics. Each training instance in the
ALFRED dataset contains ground-truth sub-goal
segments for instructions and actions. We use them
to evaluate the learned sub-task segments.

Note that our algorithm operates on finer-grained
instructions segmented into verbal phrases, while
the ground-truth segments are coarser; some sen-
tences contain a couple of verbal phrases (e.g.,
“Rinse the sponge out in the sink, and pick it up
again”). In our evaluation, we first merge the fine-
grained instructions into their corresponding sub-
goal instruction, together with the mapped actions,
and then compare the overlap with the gold sub-
goal segments of actions.

We report the sub-goal exact match (EM) score
defined as the percentage of the sub-goal segments
perfectly reconstructed. We also report the sub-
goal F1 score defined as the macro average of the

2https://askforalfred.com/, MIT License

F1 scores calculated by taking the overlap between
the predicted and ground-truth segment.

3.2 Baselines
Under our task formulation, A2LCTC offers an
advantage that it can take into account the tem-
poral constraint and the semantics of instructions.
However, many existing unsupervised sequence
alignment algorithms (e.g., IBM models) operate
only between discrete symbols and are not directly
applicable in this situation where we need to align
actions to text (or a bag of words in our model).
Thus, we compare A2LCTC with two baselines
that do not consider the textual information.
Uniform. The uniform baseline assigns an equal
number of actions to each of the fine-grained in-
structions.
Byte-pair Encoding. The byte-pair encoding
(BPE) baseline is based on a data compression al-
gorithm that finds repeated patterns in the data and
merges them into chunks (Gage, 1994; Sennrich
et al., 2016). Concretely, we repeat the following
two steps until each action sequence is split into the
number of the corresponding fine-grained instruc-
tions: (1) count bigrams in the action sequences;
(2) merge the most frequent bigrams.

3.3 Results
Table 1 shows that A2LCTC significantly out-
performs the baselines, which indicates that our
model successfully leverages textual information
and learns meaningful alignments between the fine-
grained instructions and actions.

Although the BPE baseline does not use textual
information, it exhibits reasonable F1 scores (61.9
points in valid_unseen and much higher EM scores
than UNIFORM (27.1 vs. 9.3 points). This reflects
the characteristics of the ALFRED dataset. As
each episode in the dataset is generated from spe-
cific templates, the actions follow specific patterns,
which enable the BPE to learn correct segmenta-
tion to some extent.

3.4 Ablation Study
In A2LCTC, we utilize several techniques to stabi-
lize the training process. Table 2 shows the effects
of ablating one stabilization method from the full
A2LCTC model. Our results indicate that curricu-
lum learning is most essential to successful train-
ing. Without curriculum learning, A2LCTC suffers
from significant performance degradation (41.2 →
14.6 in EM and 78.2 → 36.7 in F1 score).

3

valid_seen valid_unseen
EM F1 EM F1

UNIFORM 8.8 54.4 9.3 55.5
BPE 22.8 61.9 27.1 65.9
A2LCTC 61.2 85.3 58.5 85.1

Table 1: Performance for sub-task segmentation. The
value of A2LCTC is the best among 10 runs with differ-
ent random seeds.

EM F1

Full 41.2± 10.2 78.2± 10.8
- pre. language 33.5± 14.1 70.2± 18.0
- pre. action 41.1± 13.4 76.9± 18.2
- curriculum 14.6± 5.7 36.7± 8.0

Table 2: Ablation model performance (valid_seen). The
values show the mean and standard deviation of 10 runs.

Ablating pre-training language or action embed-
dings still obtains mean values comparable to the
full A2LCTC but yields much larger standard devi-
ations. This indicates that these two stabilization
methods are also beneficial for A2LCTC.

4 Evaluation with the Downstream Task
We evaluate the effectiveness of sub-task segments
induced by A2LCTC on the downstream ALFRED
task.
Models. Our baseline agent (BASELINE) is based
on the CNN-LSTM sequence-to-sequence archi-
tecture in Shridhar et al. (2020), which takes the
whole instruction and current state as input and
then predicts an action at each time step. Unless
specified, we use the same hyperparameters as the
original implementation.

To incorporate the sub-task information, we ex-
tend the baseline with the progress monitoring mod-
ule (Ma et al., 2019). We use two progress moni-
toring schemes from Shridhar et al. (2020), which
estimate the current time step and the completed
sub-tasks. Specifically, the modules are trained to
predict the proportion of elapsed steps or completed
sub-tasks to the total numbers.

We evaluate the segmentation of A2LCTC as
well as the two baseline methods (UNIFORM and
BPE). Those algorithms are applied on the training
data and the agents are trained with the progress
monitoring according to the segmentation.
Metric. We evaluate the agents with the subgoal
sequence accuracy. The agent predicts the next

valid_seen valid_unseen

BASELINE 57.6± 2.0 29.6± 1.5
UNIFORM 63.6± 2.5 38.8± 1.4
BPE 66.0± 2.0 39.1± 0.4
A2LCTC 69.7± 1.4 41.4± 0.8

Table 3: Performance on the ALFRED task measured
by the subgoal sequence accuracy. The values show the
mean and standard deviation of 5 runs.

action given the history from an expert trajectory.
The metric measures how many subgoal chunks of
actions, which is defined by the ground-truth seg-
mentation of the dataset, are successfully predicted
in the evaluation data. Note that this metric sim-
plifies the original task in that it ignores the object
interactions and focuses on action prediction3.
Results. Table 3 summarizes the result. On
both valid_seen and valid_unseen splits, the agents
trained with fine-grained instruction (UNIFORM,
BPE and A2LCTC) significantly outperform
BASELINE. The fact that UNIFORM achieves im-
provement indicates that keeping track of detailed
progress is helpful even if it inaccurately performs
the fine-grained task segmentation (see Section 3.3).
A2LCTC performs best because of the better ac-
curacy of the segmentation than the others. This
demonstrates that A2LCTC successfully provides
more informative instructions for the agent in solv-
ing the downstream task.

5 Conclusion
We presented A2LCTC, which finds a hierarchical
structure of an action sequence by mapping each
action to fine-grained natural language instructions
without ground-truth mapping data. We demon-
strated that A2LCTC successfully learns meaning-
ful segments and training the ALFRED agents with
these segments leads to improved performance.

A2LCTC currently relies only on semantic cor-
respondence between actions and text. Applying
A2LCTC to the tasks with low-level actions is an
important extension, e.g., actions specifying the di-
rection to move. Furthermore, the instruction may
often describe the visual input whose information
is not encoded in the actions. Another important fu-
ture direction is to incorporate visual or additional
information to tackle a broader range of domains.

3We find the original navigation task is too difficult for
the baseline model: the success rate is very low with high
variance, which prevents meaningful comparison among the
variants of the model (Appendix D).

4

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
ICML, volume 382 of ACM International Conference
Proceeding Series, pages 41–48. ACM.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In AAAI.

P. Gage. 1994. A new algorithm for data compression.
The C Users Journal archive, 12:23–38.

Deepanway Ghosal, Navonil Majumder, Rada Mihalcea,
and Soujanya Poria. 2021. Stack: Sentence ordering
with temporal commonsense knowledge. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In ICML, vol-
ume 148 of ACM International Conference Proceed-
ing Series, pages 369–376. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Yicong Hong, Cristian Rodriguez, Qi Wu, and Stephen
Gould. 2020. Sub-instruction aware vision-and-
language navigation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3360–3376, On-
line. Association for Computational Linguistics.

De-An Huang, Li Fei-Fei, and Juan Carlos Niebles.
2016. Connectionist temporal modeling for weakly
supervised action labeling. In Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings,
Part IV, volume 9908 of Lecture Notes in Computer
Science, pages 137–153. Springer.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, G. Al-Regib,
Z. Kira, R. Socher, and Caiming Xiong. 2019. Self-
monitoring navigation agent via auxiliary progress
estimation. ArXiv, abs/1901.03035.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
AAAI.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1004–1015, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
751–759, Los Angeles, California. Association for
Computational Linguistics.

Ruslan Leont’evich Stratonovich. 1965. Conditional
markov processes. In Non-linear transformations of
stochastic processes, pages 427–453. Elsevier.

Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng,
Vihan Jain, Eugene Ie, and Fei Sha. 2020. BabyWalk:
Going farther in vision-and-language navigation by
taking baby steps. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2539–2556, Online. Association for
Computational Linguistics.

5

A Implementation details of A2LCTC

A.1 Instruction Decomposition
We split a whole instruction into fine-grained instructions each of which is a verbal phrase. Our current
implementation employs a simple rule-based algorithm, which segments a whole instruction at periods,
commas, phrases such as and or then. For example, “Turn around and go back to the table” will
be segmented into [“Turn around”, “go back to the table”], while we also write few rules to handle
erroneous splits such as conjunctions between nouns ([“take the apple”, “(and) banana”]), commas before
a prepositional phrase ([“Put the bowl”, “(,) on the coffee table to the left of the statue”]), or verbal phrases
that cannot be instruction by itself ([“go to the left”, “(and) face the bathtub”]).

A.2 Neural Network Architecture
Instruction Feature Vectors
The feature vector of a fine-grained instruction Xl is simply modeled by taking the average of the word
embeddings [w1, ...,wN] followed by a linear layer (the results from different encoding strategies are
shown in Appendix C).

x = tanh(Linear(
1

N

N∑

i

wi)). (3)

In our experiment, the dimension of word embeddings, the input and output size of the linear layer is
all set to 50. The total number of parameters of A2LCTC is about 44K. The training takes approximately
one hour with a single GPU.

Action Feature Vectors
The action feature vectors are computed through feeding embeddings for primitive actions [â1, ..., âT] to
a one-layer bidirectional LSTM.

a1, ...,aT = LSTM(â1, ..., âT) (4)

where [â1, ..., âT] are embeddings for primitive actions.
The size of the action embeddings and the hidden size of the LSTM are set to 50. The outputs of LSTM

in the forward and backward directions are summed to merged into one single feature vector.

A.3 Hyperparameters for training

optimizer Adam
learning rate 0.001
batch size 128
validation metric the sub-goal F1 score
patience 5

A.4 Stabilization of Unsupervised Learning
Length-based curriculum learning
We set the maximum length of training instances for each training epoch according to a schedule. In our
experiment, the maximum length starts at 20, and linearly increases to 60 with 30 steps.

Initializing with pre-trained action embeddings
We use the gensim library4 to train action embeddings. We use the Skip-gram algorithm and the
hyperparameters are shown in Table 4

4https://radimrehurek.com/gensim/

6

embedding size 50
window size 1
of iterations 15
of negative samples 5

Table 4: The hyperparameters for training action embeddings

B Data Statistics

Our experiments are based on the expert demonstration data in the ALFRED dataset (Table 5).

training data valid_seen valid_unseen

21,023 820 821

Table 5: The number of expert demonstrations in the ALFRED dataset.

After the instruction decomposition, the instructions contain 10 fine-grained instructions on average.
The entire distribution is shown in Figure2.

Figure 2: The distribution of the number of fine-grained instructions in the training split

To simplify training and evaluation, we preprocess data by merging the same consecutive actions into
one single action. This results in the average sequence length of 25. The entire distribution before and
after the merge preprocessing is shown in Figure3 and 4.

7

Figure 3: The distribution of action sequence length in the training split.

Figure 4: The distribution of action sequence length in the training split after the merge preprocessing.

C Additional Results for the Segmentation Task

Here we compare different strategies for encoding instruction segments. Besides the mean pooling of
word embeddings followed by a linear layer in A2LCTC (MEAN), we also tried the summation of word
embeddings (SUM), the mean pooling of one-layer Bi-LSTM outputs LSTM. The hidden size of LSTM
is set to 50, which is the same as the word embeddings, and the vectors of the forward and backward
directions were summed to form the output vectors. The result is shown in Table 6.

valid_seen valid_unseen
EM F1 EM F1

MEAN 41.2± 10.2 78.2± 10.8 44.5± 12.1 79.0± 11.5
SUM 34.5± 13.8 70.7± 15.2 36.8± 8.4 73.3± 12.1
LSTM 18.9± 10.8 51.8± 20.3 33.8± 18.2 65.1± 20.6

Table 6: Performance for sub-task segmentation. The value of A2LCTC is the best among 10 runs with different
random seeds.
We find that MEAN gives the most stable result. LSTM exhibits the worst performance, indicating that it
is hard to optimize the unsupervised objective in A2LCTC with an overly complex architecture.

8

D Additional Results for the Downstream Task

D.1 Results with the ground-truth sub-goal annotation
In section 4, we compared the models trained with automatically generated fine-grained sub-task segments.
Here we provide the results from the model trained with the ground-truth sub-goal segments (SUBGOAL)
in Table 7. Note that the granularity of SUBGOAL is coarser than the other models.

valid_seen valid_unseen

BASELINE 57.6± 2.0 29.6± 1.5
SUBGOAL 59.5± 2.1 31.4± 1.4

UNIFORM 63.6± 2.5 38.8± 1.4
BPE 66.0± 2.0 39.1± 0.4
A2LCTC 69.7± 1.4 41.4± 0.8

Table 7: Performance on the ALFRED task measured by the subgoal sequence accuracy. The values show the mean
and standard deviation of 5 runs.

SUBGOAL provides better results than BASELINE, which demonstrates the benefit of the ground-truth
sub-gold segmentation in the dataset. However, the improvement is limited compared to the UNIFORM

segmentation, which segments an action sequence into the chunks of the same size. The model benefits
from inaccurate but finer-grained segmentation more than accurate but coarse segmentation.

We hypothesize that this reflects the characteristics of the dataset. The ALFRED dataset is created by
generating expert trajectories from task templates. As a result, the type of actions are somewhat correlated
with the time step within an episode. For example, navigation actions such as MoveForward are more
likely to be executed at the beginning of the episode, whereas interactive actions such as PutObject are
at the end. Adding finer-grained progress monitoring supervision at training time can help the agent learn
the correlation between time steps and actions better than coarser progress monitoring.

D.2 Success Rates of the Downstream Task
In our preliminary experiments, we find the original navigation task is too difficult for the baseline model:
the success rate is very low with high variance, which prevents meaningful comparison among the variants
of the model. The success rate (SC) and goal condition success rate (GC) are provided on Table 8. With
multiple runs, we did not observe any significant difference (p > 0.05 in the Welch’s t-test) among the
models.

SC GC
valid_seen valid_unseen valid_seen valid_unseen

Baseline 2.4± 0.9 0.0± 0.0 9.5± 0.5 6.7± 0.3
SUBGOAL 2.6± 0.5 0.0± 0.0 8.9± 0.8 6.6± 0.4
A2LCTC 2.3± 0.7 0.0± 0.0 9.4± 0.8 6.7± 0.3

Table 8: Performance on the ALFRED task measured by the task success rate (SC) and goal condition success rate
(GC). The values show the mean and standard deviation of 5 runs.

9

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 10 - 16
May 26, 2022 ©2022 Association for Computational Linguistics

GrammarSHAP: An Efficient Model-Agnostic and Structure-Aware NLP
Explainer

Edoardo Mosca
TU Munich,

Department of Informatics,
Germany

edoardo.mosca@tum.de

Defne Demitürk
TU Munich,

Department of Informatics,
Germany

ge75yod@mytum.de

Luca Mülln
TU Munich,

Department of Informatics,
Germany

luca.muelln@tum.de

Fabio Raffagnato
TU Munich,

Department of Informatics,
Germany

ga24giv@mytum.de

Georg Groh
TU Munich,

Department of Informatics,
Germany

grohg@in.tum.de

Abstract

Interpreting NLP models is fundamental for
their development as it can shed light on
hidden properties and unexpected behaviors.
However, while transformer architectures ex-
ploit contextual information to enhance their
predictive capabilities, most of the available
methods to explain such predictions only pro-
vide importance scores at the word level. This
work addresses the lack of feature attribution
approaches that also take into account the sen-
tence structure. We extend the SHAP frame-
work by proposing GrammarSHAP—a model-
agnostic explainer leveraging the sentence’s
constituency parsing to generate hierarchical
importance scores.

1 Introduction

Deep learning models have raised the bar in terms
of performance in a variety of Natural Language
Processing (NLP) tasks (Vaswani et al., 2017; De-
vlin et al., 2019). However, also model complexity
has been steadily increasing, which in turn hin-
ders the interpretability of their predictions. This
is particularly true for transformer architectures,
currently established as the state of the art in var-
ious applications but at the same time containing
billions of parameters (Brown et al., 2020).

Local explanations have become a popular tool
to understand and interpret models’ decisions
(Madsen et al., 2021; Arrieta et al., 2020). These—
besides increasing the public’s trust in machine
learning systems—can uncover unwanted behav-
iors such as unintended bias (Madsen et al., 2021;
Dixon et al., 2018).

Feature attribution explanations are the most
commonly used and can highlight parts of the in-
put text that are relevant for the obtained outcome
(Lundberg and Lee, 2017; Ribeiro et al., 2016).
Almost all available methods, however, can only
attribute a relevance score to single words. This
is highly unintuitive as natural language in human
communication can be very articulated and context-
dependent. Indeed, a word’s neighborhood can
drastically alter its intended message and senti-
ment.

Our work focuses on generating explanations
that account for the language structure. More
specifically, we build hierarchical explanations that
attribute relevance scores to sentence constituents
at multiple levels. In contrast to previous work ad-
dressing the same issue (Chen et al., 2020; Chen
and Jordan, 2020), we build our approach as an
extension of SHAP (Lundberg and Lee, 2017)—a
local explainability framework renowned for its
solid theoretical background. Our contribution can
be summarized as follows:

(1) We design GrammarSHAP, a model-agnostic
approach for generating multi-level explanations
that consider the text’s structure and its constituents.
More specifically, a constituency parsing layer for
multi-word tokens selection is added before an
adapted KernelSHAP explainer.

(2) We propose to drop the SHAP standard back-
ground dataset and use masking tokens instead.
This reduces unwanted artifacts in the generated ex-
planations and speeds up the approach’s run time.

10

(3) We qualitatively compare our method to ex-
isting ones in terms of explanation quality and nec-
essary computational effort.

2 Related Work

Several local explainability techniques exist to in-
terpret predictions produced by NLP models (Arri-
eta et al., 2020). Among them, features attribution
(or feature relevance) approaches quantify each
input component’s contribution to the model’s out-
put, i.e. how each feature affects the observed
prediction. Methods in this category are avail-
able in a large variety: gradient-based (Simonyan
et al., 2014; Sundararajan et al., 2017), neural-
network specific e.g. LRP (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017), and model-
agnostic e.g. LIME (Ribeiro et al., 2016). SHAP
(Lundberg and Lee, 2017)—particularly relevant
for our methodology—is by many considered to be
a gold standard thanks to its solid theoretical back-
ground and broad applicability. This framework
builds a unified view of methods like LIME, LRP,
and DeepLIFT and the game-theoretic concept of
Shapley values (Shapley, 1953).

More recent works address the limitations of
word-level relevance scores by focusing on phrase-
level and hierarchical explanations. The proposed
approaches analyze and quantify words’ interac-
tions through exhaustive search (Tsang et al., 2018),
combining their contextual decomposition scores
(Singh et al., 2018), or via measuring SHAP in-
teraction values along a predefined tree structure
(Lundberg et al., 2018). Chen and Jordan (2020)
combines a linguistic parse tree with Banzhaf val-
ues (Banzhaf III, 1964) to capture meaningful inter-
actions in text inputs. (Chen et al., 2020), instead,
propose to detect directly feature interaction with-
out resorting to external structures. They propose
a hierarchical explainability method that, in a top-
down fashion, breaks down text components in
shorter phrases and words based on the weakest
detected interactions.

3 Methodology

We extend the SHAP framework (Lundberg and
Lee, 2017) by proposing a model-agnostic ex-
plainer that considers the text’s structural depen-
dencies to generate importance scores at multiple
levels. In particular, we couple a constituency
parsing layer to hierarchically select multi-word
tokens with a custom version of KernelSHAP

Input: e.g. review on IMDB
This movie was ok. The storytelling was

amazing and the plot was really intense...

Preprocessing

Black Box Model:
e.g. DistilBERT

....

....

....

....

....

....

....

....

Prediction: e.g.
"Negative Sentiment"

Constituency
Parsing

This movie was ok. The storytelling was amazing...

Multi-level Explanation

This movie was ok. The storytelling was amazing...

This movie was ok. The storytelling was amazing...

Figure 1: Overview of the proposed methodology.

adapted for improved efficiency and run-time. Fig-
ure 1 presents an overview of the methodological
pipeline proposed in this work.

3.1 Token Selection via Constituency Parsing

To hierarchically construct multi-word tokens in a
way that reflects the sentence structure, we leverage
constituency parsing to group together tokens based
on their grammatical interactions. To this end, we
choose a state-of-the-art constituency parser: the
Berkeley Neural Parser (Kitaev and Klein, 2018).

We iterate over parsed sentences from the single-
word level (depth = 0) until the complete sen-
tences are grouped up as a single token (depth =
N). Additionally, we provide a library to re-
trieve groups of words at any depth, constituents,
and combinations thereof. Our implementation
also handles inconsistencies between the word-
tokenization of the constituency parser and BERT.
This is necessary as BERT’s tokenizer uses sub-
word tokens to represent OOV words and the
Berkley Neural Parser1 only allows full words as
input.

3.2 Efficient Multi-Token Explainer

Our GrammarSHAP explainer directly extends
the KernelSHAP method from Lundberg and Lee
(2017). As parsed sentences already provide a
hierarchical structure of grammatically coherent
tokens, our extension is not required to compute
tokens interaction to construct importance scores
for multi-word tokens.

1spacy.io/universe/project/self-attentive-parser

11

Figure 2: Example of sentence parsed with the Berke-
ley Neural Parser (Kitaev and Klein, 2018). Tokens
are hierarchically grouped from single words (bottom
level) to the whole sentence (top level)

KernelSHAP takes an input sample x, a predict-
ing model f , and a background set of samples to
be used when replacing tokens to compute feature
importance. Tokens belonging to the background
dataset are fed to the explainer during initializa-
tion. At explanation time, a linear system of all
perturbed sentences and their corresponding model
predictions is solved to determine the effect of each
single feature.

The extension to multi-word tokens consists in
feeding the explainer—i.e. KernelSHAP—with the
indices corresponding to the features to be grouped.
In the case of constituency parsed sentences, in-
dices representing multi-token groups are always
adjacent in the input sentence. However, this is
not a strict requirement for the following steps of
our extension. To obtain group-level feature im-
portance, we constrain the extended explainer to
always replace a complete group of words with
elements of the background dataset. Analogous to
KernelSHAP, the expected effect of each feature
group—i.e. its (multi-token) SHAP value—is cal-
culated by solving the linear system of all perturbed
sentences with their corresponding outcomes. In
summary, our extension behaves like KernelSHAP
but treats groups of tokens as single features.

While the calculation of SHAP values on multi-
words tokens is a straightforward extension, it leads
to several issues:

• Computationally Expensive: Computing
importance scores for multiple levels fur-
ther slows down the already inefficient Ker-

nelSHAP.

• Unidirectional: The explainer only high-
lights groups with the same sentiment as the
overall sentence.

• High Attribution for [SEP]: The separation
token changes the sentence length when used
as replacement from the background data.
This causes it to have high relevance for the
classifier.

We address these limitation by replacing the
background data with [MASK] tokens. This leads
to a 60-folds speed up of the explainer that is not
required to iterate over the background data. More-
over, [SEP] does causes explanation artifacts as it
is excluded from the background data.

4 Empirical Findings

4.1 Data and Model to be Explained
To test and compare our method in practice, we
pick a DistilBERT model (Sanh et al., 2019). Our
choice is motivated by transformer architectures
being established as the current state of the art in a
variety of NLP applications.

Concerning the data, we pick the IMDb movie
reviews (Maas et al., 2011) and the SST-2 datasets
(Socher et al., 2013). For both, the Hugging
Face2 library provides a version of DistilBERT
pre-trained on the task of binary sentiment anal-
ysis. The accuracy achieved is 93.7% and 91.3%
respectively.

4.2 Existing SHAP Baselines
We compare explanations generated with Grammar-
SHAP with two existing baselines from the SHAP
framework (Lundberg and Lee, 2017):

(1) PartitionSHAP, i.e. the library’s current rec-
ommended method for sentiment analisys on text
data. Similarly to our method, it also utilizes
[MASK] tokens for efficient word removal. How-
ever, features are only grouped via a binary tree
and thus only token pairs are considered at a given
hierarchical level.

(2) KernelSHAP, i.e. the library’s standard for
model-agnostic explanations. KernelSHAP only
produces word-level explanations by default. But
thanks to the additive nature of Shapley values,

2https://huggingface.co/textattack/distilbert-base-
uncased-imdb

12

these can be added together according to the con-
stituency parsing tree. We will refer to this custom
hierarchical version of KernelSHAP as Additive
KernelSHAP.

4.3 Comparison

The three methods substantially differ both in terms
of generation times and explanation quality. Table
1 reports the average running time to produce an ex-
planation. Figures 3 and 4 show—starting from the
same input text—the explanations generated with
each method. The text sample is particularly in-
structive as it contains both positive- and negative-
sentiment sentences.

Method Running Time
PartitionSHAP 2

Add. KernelSHAP 3554 (∼1h)
GrammarSHAP 183 (∼3min)

Table 1: Average running time (in seconds) for Gram-
marSHAP compared to the existing SHAP baselines.
The running time has been measured on 20 randomly
selected samples (10 from IMDb and 10 from SST-2).
Results were measured on a laptop machine: AMD
Ryzen 5 CPU, Nvidia GPU GeForce GTX 1650, 16
GB DDR4 RAM.

PartitionSHAP is very efficient and the fastest
method among the compared ones. However, it
is quite coarse in grouping together tokens and
fails to identify fine-grained contributions at the
sub-sentence level. Additive KernelSHAP has an
extremely long execution time and is the slowest of
the three approaches. Moreover, it does not iden-
tify contributions opposite to the sample’s over-
all sentiment. In contrast, GrammarSHAP is able
to identify both negative and positive sentiments
at different (hierarchical) levels of granularity. In
terms of efficiency, GrammarSHAP does not match
the performance of PartitionSHAP. However, its
running time is still reasonable and does not raise
issues for most applications.

More examples of hierarchical GrammarSHAP
explanation on (long) texts are provided in the ap-
pendix (see A). There, we also focus on presenting
the explanations at different levels of granularity.

5 Limitations and Future Work

GrammarSHAP meaningfully extends the SHAP
framework by providing efficient hierarchical ex-
planations that reflect the sentence structure. How-
ever, limitations of our methodology and experi-

Figure 3: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 79.5%
confidence.

Figure 4: Comparison of three explanation methods for
grouped features relevance (5th level). DistilBERT pre-
dicted the sample’s sentiment as negative with a 81.8%
confidence.

mentation need to be acknowledged and motivate
our future work.

Regarding the explanation quality, our evalua-
tion process is based on the introduced methodolog-
ical improvements and on a qualitative analysis
of the produced explanations. Although evalua-
tion metrics for explanations are complex to define
and have not been standardized yet, our compari-
son would considerably benefit from the usage of
quantitative diagnostic properties (Atanasova et al.,
2020) and word-level level metrics (Nguyen, 2018;
Samek et al., 2016).

In terms of execution time, our method is still
reasonable considering the granularity of contri-
butions that it can detect. However, the necessity
for further improvements in terms of efficiency
becomes apparent when producing real-time expla-
nations on the large scale.

6 Conclusion

In this work we proposed GrammarSHAP: a model-
agnostic explainer for text data that accounts for the
sentence structure and the existing grammatical re-
lationships between the text tokens. Our approach

13

leverages constituency parsing to extend the SHAP
framework by providing hierarchical explanations
that go beyond word-level attribution scores.

Our qualitative analysis of the produced expla-
nation yields promising results as GrammarSHAP
appears to identify more fine-grained contribution
in structured text than its existing SHAP counter-
parts. At the same time, the usage of masking to-
kens instead of a background dataset considerably
speeds up its execution in comparison with Kernal-
SHAP. These properties make GrammarSHAP also
suitable for long texts, especially if they contain
sentences carrying different types of sentiment. As
a first priority for our future work, we will focus
on the quantitative evaluation the produced expla-
nation.

References

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador García, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. 2020. Ex-
plainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward re-
sponsible ai. Information Fusion, 58:82–115.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256–3274.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):130–140.

John F Banzhaf III. 1964. Weighted voting doesn’t
work: A mathematical analysis. Rutgers L. Rev.,
19:317.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5578–5593.

Jianbo Chen and Michael Jordan. 2020. Ls-tree:
Model interpretation when the data are linguistic. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 3454–3461.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. 2018. Measuring and mitigat-
ing unintended bias in text classification. In Pro-
ceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 67–73.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Scott M Lundberg, Gabriel G Erion, and Su-In
Lee. 2018. Consistent individualized feature at-
tribution for tree ensembles. arXiv preprint
arXiv:1802.03888.

Scott M. Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. NeurIPS
2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Andreas Madsen, Siva Reddy, and Sarath Chandar.
2021. Post-hoc interpretability for neural nlp: A sur-
vey. arXiv preprint arXiv:2108.04840.

Dong Nguyen. 2018. Comparing automatic and human
evaluation of local explanations for text classifica-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1069–1078.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

14

Wojciech Samek, Alexander Binder, Grégoire Mon-
tavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. 2016. Evaluating the visualization of what
a deep neural network has learned. IEEE trans-
actions on neural networks and learning systems,
28(11):2660–2673.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. NeurIPS
2017.

Lloyd S Shapley. 1953. A value for n-person games.
Contributions to the Theory of Games 2.28, page
307–317.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 3145–3153.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In 2nd International Conference on Learning
Representations, ICLR 2014.

Chandan Singh, W James Murdoch, and Bin Yu. 2018.
Hierarchical interpretations for neural network pre-
dictions. In International Conference on Learning
Representations.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3319–3328.
JMLR. org.

Michael Tsang, Youbang Sun, Dongxu Ren, and
Yan Liu. 2018. Can i trust you more? model-
agnostic hierarchical explanations. arXiv preprint
arXiv:1812.04801.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS 2017.

A Explanations Examples

Figure 5 shows an example of hierarchical Gram-
marSHAP explanation on a long text while 6 rather
focuses on a shorter text. More examples can be
found in the code repository attached to our sub-
mission. These are in the Graphics Interchange

Format (GIF) format to visualize the transforma-
tion of the relevance scores through the various
hierarchical levels.

15

Figure 5: Explanation generated with GrammarSHAP on a long IMDB review with negative-sentiment prediction
of 91.7%. From top to bottom, relevance scores at the 1st, 5th and 8th hierarchical level.

Figure 6: Explanation generated with GrammarSHAP on a short SST-2 review with negative-sentiment prediction
of 91.6%. From top to bottom, relevance scores at the 2nd, 4th and 8th hierarchical level.

16

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 17 - 28
May 26, 2022 ©2022 Association for Computational Linguistics

1

Single-Turn Debate Does Not Help Humans Answer Hard
Reading-Comprehension Questions

Alicia Parrish,1* Harsh Trivedi,2* Ethan Perez,1* Angelica Chen,1

Nikita Nangia,1 Jason Phang,1 Samuel R. Bowman1

1New York University 2Stony Brook University

Correspondence: alicia.v.parrish@nyu.edu, bowman@nyu.edu

Abstract
Current QA systems can generate reasonable-
sounding yet false answers without explana-
tion or evidence for the generated answer,
which is especially problematic when humans
cannot readily check the model’s answers.
This presents a challenge for building trust in
machine learning systems. We take inspiration
from real-world situations where diffcult ques-
tions are answered by considering opposing
sides (see Irving et al., 2018). For multiple-
choice QA examples, we build a dataset of
single arguments for both a correct and incor-
rect answer option in a debate-style set-up as
an initial step in training models to produce
explanations for two candidate answers. We
use long contexts—humans familiar with the
context write convincing explanations for pre-
selected correct and incorrect answers, and we
test if those explanations allow humans who
have not read the full context to more accu-
rately determine the correct answer. We do
not fnd that explanations in our set-up im-
prove human accuracy, but a baseline condi-
tion shows that providing human-selected text
snippets does improve accuracy. We use these
fndings to suggest ways of improving the de-
bate set up for future data collection efforts.

Introduction

Challenging questions that humans cannot easily
determine a correct answer for (e.g., in political
debates or courtrooms) often require people to
consider opposing viewpoints and weigh multiple
pieces of evidence to determine the most appropri-
ate answer. We take inspiration from this to explore
whether debate-style explanations can improve how
reliably humans can use NLP or question answer-
ing (QA) systems to answer questions they cannot
readily determine the ground-truth answer for.

As QA models improve, we have the opportu-
nity to use them to aid humans, but current models

* Equal contribution.

do not reliably provide correct answers and, in-
stead, often provide believable yet false responses
(Nakano et al., 2021, i.a.). Without access to the
ground truth, humans cannot directly determine if
an answer is false, especially if that answer comes
with a convincing-sounding explanation. A solu-
tion could be for QA systems to generate expla-
nations with evidence alongside different answer
options, allowing humans to serve as judges and
assess the validity of the model’s competing expla-
nations (Irving et al., 2018). This approach may
be most useful when humans cannot readily deter-
mine the ground truth. This is the case for dense
technical text requiring expert knowledge and for
long texts where the answer is retrievable, but it
would take signifcant time; we consider the latter
as a case study.

We create a dataset of answer explanations to
long-context multiple choice questions from QuAL-
ITY (Pang et al., 2021) as an initial step in this
direction. The explanations are arguments for pre-
determined answer options; crucially, we collect
explanations for both a correct and incorrect option,
each with supporting evidence from the passage,
to create debate-style explanations. To assess the
viability of this data format, we test if humans can
more accurately determine the correct answer when
provided with debate-style explanations.

We fnd that the explanations do not improve
human accuracy compared to baseline conditions
without those explanations. This negative result
may be specifc to the chosen task set-up, so we
report the results and release the current dataset
as a tool for future research on generating and
evaluating QA explanations. We offer concrete
suggestions for future work that builds on the cur-
rent dataset and alters the task set up in a way that
allows humans to more accurately determine the
correct answer. The ultimate goal is to develop a
fne-tuning dataset for models that can both explain
why a potential answer option is correct and cite

17

the evidence that is the basis for that explanation in
a way that humans fnd understandable and helpful,
even in the context of an unreliable system.

2 Related Work

Prior work has explored using models to generate
explanations (Camburu et al., 2018; Rajani et al.,
2019; Zellers et al., 2019), but there is limited work
on using those explanations to verify the model’s
prediction, particularly when a human cannot per-
form the task directly. Such a dataset would be
useful, as model explanations can aid humans in
tasks such as medical diagnosis (Cai et al., 2019;
Lundberg et al., 2018), data annotation (Schmidt
and Biessmann, 2019) and deception detection (Lai
and Tan, 2019). However, Bansal et al. (2021)
highlight that these studies use models that outper-
form humans at the task in question, undermining
the motivation for providing a model’s explanation
alongside its prediction. When the performance
of models and humans is similar, current expla-
nation methods do not signifcantly help humans
perform tasks more accurately (Bansal et al., 2021).
However, explanations based on a mental model of
the human’s predicted actions and goals can reduce
task completion time (Gao et al., 2020). We address
these shortcomings by collecting data for training
models to provide explanations on tasks that would
otherwise be time-consuming for humans.

In addition to task characteristics, several quali-
ties of the model explanation affect the helpfulness
of human-AI collaboration: Machine-generated ex-
planations only improve human performance when
the explanations are not too complex (Ai et al.,
2021; Narayanan et al., 2018). And though users
want explanations of how models mark answers
incorrect, most explanations that models output fo-
cus on the option selected (Liao et al., 2020). Our
dataset addresses this by including evidence and
explanations for both correct and incorrect options
to each question, enabling models trained on it to
present arguments for more than one answer.

3 Argument Writing Protocol

We build a dataset of QA (counter-)explanations
by having human writers read a long passage and
construct arguments with supporting evidence for
one of two answer options. We then present the ex-
planations side-by-side to a human judge working
under a strict time constraint, who selects which
answer is correct given the two explanations.

Passage and Question Selection We use pas-
sages and questions from a draft version of the re-
cent long-document QA dataset, QuALITY (Pang
et al., 2021). In QuALITY, most passages are sci-
ence fction stories of about 5k words with 20 four-
option multiple-choice questions. We determine
which of the three incorrect options is best suited
to have a convincing argument by identifying cases
where (i) humans in a time-limited setting incor-
rectly selected that choice at least 3/5 times, and/or
(ii) humans who read the entire passage selected
that choice as the best distractor item more than
half the time. We discard questions without an
incorrect answer option meeting either criteria.

Writing Task We recruit 14 experienced writers
via the freelancing platform Upwork (writer selec-
tion details are in Appendix A). We assign each
writer up to 26 passages. Each passage has 7–15
2-option multiple choice questions (avg. of 13.3).
We have writers construct an argument (max 500
characters) and select 1–3 supporting text snippets
(max 250 characters) for one of those two options
(Table 1), with the rate of correct and incorrect
options assigned to each writer roughly equal.

We encourage writing effective arguments by
awarding writers a bonus each time a worker in
the judging task selects the answer they wrote an
argument for. Including bonuses, workers average
$21.04/hr, after taking Upwork fees into account.
Further details are in Appendix A, and a description
of the writing interface is in Appendix B.

Final Dataset We release a dataset of both cor-
rect and incorrect arguments with selected text snip-
pets and the results of the judgment experiment as
a tool for researchers. These datasets are available
at github.com/nyu-mll/single_turn_debate. As we
use passages from a draft version of QuALITY, we
do not release arguments from passages in their
non-public test set. The fnal dataset that we re-
lease contains 2944 arguments (50% correct) from
112 unique passages, each with an average of 2.4
text snippets.

4 Judging Protocol

We test the effectiveness of the arguments by hav-
ing human judges answer the multiple-choice ques-
tion. To ensure that the judges cannot simply read
the passage to fnd the answer themselves, we give
them only 90 seconds of access to the passage along
with the arguments and text snippets. To determine

18

Question: What clearly showed a sense humbleness presented by Si?
Correct option: His lack of awareness that he would be Incorrect option: His quaint behavior at the banquet
considered a celebrity at the Kudos Room. where he was presented with a gold watch.

Argument
Si clearly puts the Ku-
dos Room on a pedestal
as a place for the top
echelons of society and
feels humbled to be sit-
ting there, even thinking
back to how he dreamed
about it while sitting in
his space craft (#1). He
seems taken aback when
Natalie recognises him as
the famous space pilot and
even seems to downplay
his status and accomplish-
ments (#2). While Natalie
seems star-struck by his
presence, he seems equally
star-stuck by her beauty,
showing how humble he is
despite being famous (#3).

Text snippets
(1) Well, this was something
like it. This was the sort of
thing he’d dreamed about, out
there in the great alone, seated
in the confning conning tower
of his space craft. He sipped
at the drink, fnding it up to his
highest expectations
(2) The girl, her voice sud-
denly subtly changed, said,
"Why, isn’t that a space pin?"
Si, disconcerted by the sudden
reversal, said, "Yeah ... sure."
(3) Imagine meeting Seymour
Pond. Just sitting down next
to him at a bar. Just like that.
"Si," Si said, gratifed. Holy
Zoroaster, he’d never seen any-
thing like this rarifed pulchri-
tude. Maybe on teevee

Argument
It’s clear from #1 and #2
that in the professional
world in which Si moved,
a high standard of living
was expected. Symbols of
prestige were also consid-
ered desirable in this social
world, refected by him be-
ing awarded a gold watch
(see #3). However, it’s
clear that Si doesn’t care
for symbols of prestige like
gold watches, prefer more
practical items instead Nor
is he desirous of a higher
standard of living. He only
wants enough money to
meet life’s necessities.

Text Snippets
(1) They hadn’t fgured he
had enough shares of Basic
to see him through decently.
Well, possibly he didn’t, given
their standards. But Space Pi-
lot Seymour Pond didn’t have
their standards.
(2) He’d had plenty of time to
think it over. It was better to re-
tire on a limited crediting, on
a confoundedly limited cred-
iting, than to take the two or
three more trips in hopes of at-
taining a higher standard.
(3) In common with recipients
of gold watches of a score
of generations before him, Si
Pond would have preferred
something a bit more tangible
in the way of reward

Table 1: Example of opposing arguments, with extracted evidence, for two options to a question from QuALITY
about a science-fction story. The full passage for this example is at gutenberg.org/ebooks/52995.

whether the arguments affect human accuracy, we
compare the performance of workers who see those
arguments and snippets to the performance of work-
ers who do not see the arguments and workers who
see neither the arguments nor the text snippets.

Judging Task Protocol We recruit 194 workers
via Amazon Mechanical Turk (MTurk; recruitment
details are in Appendix C). Each worker judges
which of two answer options is correct, given just
90 seconds. The worker has unlimited time to read
the question and answer options before starting
a 90-second timer. Once the timer is started, the
worker can view the entire passage, as well as the
arguments and text snippets for each answer option.
Clicking on the snippets scrolls to and highlights
the relevant section of the passage so that the snip-
pet can be viewed in context. Once the timer runs
out, the worker has 30 seconds to fnalize their an-
swer before the task auto-submits, though workers
can submit their answer at any time. After submit-
ting, workers see immediate feedback about their
accuracy to help them improve over time and to
increase engagement. Each question is judged by
three unique workers, and we ensure workers are
paying attention with catch trials (Appendix E).
Details on the judging interface are in Appendix D.

Payment and Bonus Structure Workers receive
$0.15 per task and a bonus of $0.40 for each correct

answer. We aim for the low base pay and gener-
ous bonuses to disincentivize guessing. Assuming
workers spend 90 seconds per task, including read-
ing the question and answer options,2 a worker
with an accuracy of 65% earns $16.40/hr.

Baselines We include two additional conditions
to better understand the effects of arguments in this
time-limited setting. The main protocol is the pas-
sage+snippet+argument condition (PSA). The
baselines present just the passage+snippet (PS) or
just the passage with no supporting evidence (P).
All other details of the protocol remain the same.
Each worker only sees tasks in one condition at a
time, but through three rounds of data collection,
they alternate through the conditions in a random
and counterbalanced way. No worker judges the
same question in multiple conditions.

Pilot Judges During the writing phase, we use a
smaller pool of workers who we qualify as an initial
group of judges to gather feedback for the writers
and determine their bonuses. In this group, fve
judges rate each question, and we test the effects of
different time limits, which vary in different rounds
between 60, 90, or 120 seconds. These pilot results
are not part of our main results, but we include the
pilot results and details about the pilot judges in

2Median completion times after starting the timer were
about 60s, so total completion times were likely <90s.

19

5

Catch Test

p ps psa p ps psa
0.00

0.25

0.50

0.75

1.00
P

ro
po

rt
io

n Number
 correct

0/3
1/3
2/3
3/3

Figure 1: Proportion of workers who answered each
question correctly in each condition. P is passage; S is
snippets; A is arguments

Appendix F. All other task details are the same as
for the main judges.

Results

In addition to the primary comparison across con-
ditions, we conduct exploratory analyses to better
understand effects of the task set-up on workers’ re-
sponse behavior. Results on features of arguments
and text snippets are in Appendix I.

Comparison Across Conditions Workers are
more accurate when they have access to text snip-
pets, and they are the most accurate in the PS con-
dition, indicating no clear effect of the arguments.
Figure 1 shows the accuracy rates by question in
each of the conditions. Both unanimous agreement
(3/3 workers correct) and majority vote agreement
(≥2/3 workers correct) show that workers are most
accurate in PS and least accurate in P.

Effects of Time We investigate if workers get
more accurate at this task over time to see if they
are learning task-specifc strategies. Workers’ ac-
curacy does improve slightly over time, by about
4 percentage points in each condition between the
frst 10 tasks and fnal 10 (Appendix I, Figure 8).
The accuracy increase is small and could be ac-
counted for by workers becoming more familiar
with the task format or by fguring out a moder-
ately effective strategy.

Most workers submit an answer before the 90s
timer ends. Median completion times are longest
in P (69s) and similar between PS (54s) and PSA

(57s). The average time spent varies by worker,
so we check if spending more time leads to higher
accuracy. However, there is no correlation between
workers’ average task time and average accuracy
(Appendix I, Figure 9).

Follow-up Survey We release a paid survey to
workers who completed at least 10 tasks in each
condition to ask about what strategies they used
and to better understand their reactions to the argu-
ments. 102 workers qualifed for the survey, and
91 completed it. Workers who reported reading
the snippets had signifcantly higher accuracy in PS

and PSA compared to workers who did not report
reading them. However, there are no signifcant
differences in PSA accuracy based on whether the
workers reported reading the arguments or ignoring
them. A quarter of workers reported mistrusting
the arguments; though mistrust does not correlate
with performance, see Appendix I for discussion.

6 Discussion

We fnd it likely that explanations will be benefcial
to users in some tasks under some conditions. The
prevalence of a debate-style set up in real-world
settings (e.g., courtrooms3) makes this an a pri-
ori reasonable area for systematic exploration, but
the current study is limited in its scope and is not
strong evidence against the broad potential useful-
ness of such a set-up. The current experiments are
a case study in creating a scenario where humans
are unable to be sure about their answer, but they
have access to evidence to help identify the correct
response. The fnding that a quarter of workers mis-
trusted the arguments raises the issue of whether an
approach that gives users misleading information
from the outset is on the wrong track. However,
we already know QA models provide false and
misleading information; this behavior has the po-
tential to be more harmful when it is not explicit
that generated explanations may be wrong.

One reason that the arguments were more mis-
leading than helpful to some workers could be that
the correct and incorrect arguments were indepen-
dent of each other. The strength of debate for de-
termining the true answer could rely on counter-
arguments that explicitly reference defciencies of
the other argument. It is therefore possible that a
multi-turn setting is needed for debate to be helpful,
but we leave this as a question for future research.

The time limit that we use makes the task more
artifcial than we’d like. However, pilot results
(Appendix F) show that variations between 60 and
120 seconds make virtually no difference in perfor-
mance. It is possible that 120s is still too short, and
so workers rushed through the task as much as they

3We are not suggesting this be used in actual courtrooms.

20

7

did with 60s, but we would have expected this to
vary more by worker, and the general trend is that
people are slightly less accurate at 120s than at 90s.

Conclusion

We set out to test whether providing users with
arguments for opposing answer options in a mul-
tiple choice QA task could help humans be more
accurate, even when they haven’t read the passage.
The results indicate that the task set up had little
to no effect on accuracy, but it raises new ques-
tions and possible future directions for when such
explanations may be useful.

Acknowledgements

This project has benefted from fnancial support
to SB by Eric and Wendy Schmidt (made by rec-
ommendation of the Schmidt Futures program),
Samsung Research (under the project Improving
Deep Learning using Latent Structure) and Apple.
This material is based upon work supported by
the National Science Foundation under Grant Nos.
1922658 and 2046556. Any opinions, fndings, and
conclusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily refect the views of the National Science
Foundation.

References

Lun Ai, Stephen H Muggleton, Céline Hocquette,
Mark Gromowski, and Ute Schmid. 2021. Benef-
cial and harmful explanatory machine learning. Ma-
chine Learning, 110(4):695–721.

Gagan Bansal, Tongshuang Wu, Joyce Zhou, Ray-
mond Fok, Besmira Nushi, Ece Kamar, Marco Tulio
Ribeiro, and Daniel Weld. 2021. Does the whole ex-
ceed its parts? the effect of ai explanations on com-
plementary team performance. CHI ’21, New York,
NY, USA. Association for Computing Machinery.

Carrie J. Cai, Samantha Winter, David Steiner, Lau-
ren Wilcox, and Michael Terry. 2019. "Hello AI":
Uncovering the onboarding needs of medical practi-
tioners for human-AI collaborative decision-making.
Proc. ACM Hum.-Comput. Interact., 3(CSCW).

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-SNLI: Nat-
ural language inference with natural language expla-
nations. In Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.

Xiaofeng Gao, Ran Gong, Yizhou Zhao, Shu Wang,
Tianmin Shu, and Song-Chun Zhu. 2020. Joint

mind modeling for explanation generation in com-
plex human-robot collaborative tasks. In 2020 29th
IEEE International Conference on Robot and Hu-
man Interactive Communication (RO-MAN), pages
1119–1126.

Geoffrey Irving, Paul Christiano, and Dario Amodei.
2018. AI safety via debate. arXiv preprint
arXiv:1805.00899.

Vivian Lai and Chenhao Tan. 2019. On human predic-
tions with explanations and predictions of machine
learning models: A case study on deception detec-
tion. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* ’19, page
29–38, New York, NY, USA. Association for Com-
puting Machinery.

Q. Vera Liao, Daniel Gruen, and Sarah Miller. 2020.
Questioning the AI: Informing Design Practices for
Explainable AI User Experiences, page 1–15. Asso-
ciation for Computing Machinery, New York, NY,
USA.

Scott M. Lundberg, B. Nair, M. Vavilala, M. Horibe,
M. Eisses, Trevor Adams, D. Liston, Daniel King-
Wai Low, Shu-Fang Newman, J. Kim, and Su-In Lee.
2018. Explainable machine-learning predictions for
the prevention of hypoxaemia during surgery. Na-
ture biomedical engineering, 2:749 – 760.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. WebGPT: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Menaka Narayanan, Emily Chen, Jeffrey He, Been
Kim, Sam Gershman, and Finale Doshi-Velez. 2018.
How do humans understand explanations from ma-
chine learning systems? An evaluation of the human-
interpretability of explanation. arXiv preprint
arXiv:1802.00682.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson,
He He, et al. 2021. QuALITY: Question Answer-
ing with Long Input Texts, Yes! arXiv preprint
arXiv:2112.08608.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain yourself!
Leveraging language models for commonsense rea-
soning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4932–4942, Florence, Italy. Association
for Computational Linguistics.

Philipp Schmidt and Felix Biessmann. 2019. Quanti-
fying interpretability and trust in machine learning
systems. arXiv preprint arXiv:1901.08558.

21

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Visual
commonsense reasoning. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6713–6724.

A Writing Task Details

Writer Recruitment We list our task on the free-
lancing platform Upwork as a writing job open
to all workers. We received 112 applications and
selected 26 of the most qualifed writers to com-
plete a qualifcation task (2 chose not to complete
the qualifcation). The 24 writers who fnish the
qualifcation task are paid $36.00 to complete (i) a
tutorial task that consists of a full passage and 10
example arguments with supporting text snippets
and explanations about how each argument is con-
structed, followed by (ii) a qualifcation task that
consists of reading a new passage and constructing
10 arguments with supporting text snippets. Each
submission is evaluated on a numeric scale by two
of the authors and rated for how convincing the
argument is, how useful the snippets are, and how
closely the argument needs to be read to select that
answer or exclude the other answer option (in or-
der to make sure the writers can construct clear and
concise arguments). We aggregate these results for
each writer by z-scoring the ratings by each evalu-
ator’s scores, and then averaging across questions
for each metric. We select the top-performing 14
writers to continue on to the main writing task.

Pay and Bonus Structure We pay writers a base
rate of $18 per passage. As it is more diffcult
to write a convincing explanation for an incorrect
answer compared to a correct one, we award writers
a bonus of $0.10 for each time a judge selects their
argument for a correct answer and $0.50 for each
time a judge selects their argument for an incorrect
answer option. Which answer option is correct
and which one is incorrect is not revealed to the
writers during the writing task; they only see this
information once they receive feedback about how
the judges performed, at which point they fnd out
how much of a bonus they earned.

As stated in the main text, each passage in our f-
nal dataset has 7–15 2-option multiple choice ques-
tions (avg. of 13.3). However, in the full task given
to writers, they constructed arguments for 11-15
questions per passage (average 14.2), but we later
determined from metadata in QuALITY that some
questions were ambiguous, and we removed those
questions from the dataset.

Each multiple choice question is judged by 5
different crowdworkers (see Appendix F for infor-
mation on these judges), and the average bonus
rate per passage is $7.43 (range $2.90 - $15.30),
for an effective average hourly rate4 of $21.04/hr
after taking into account Upwork fees.5

B Writer Interface

The interface for writers includes a dashboard
where the writer can view the passages that we as-
sign them, along with a progress bar for that batch
of work. Each passage contains a pane with the full
passage and another pane with the questions with
both answer options. Writers select text snippets
by highlighting the relevant portion of the passage
and clicking an ’add snippet’ button. Writers are
restricted from writing arguments longer than 500
characters or text snippets longer than 250 charac-
ters to encourage conciseness and to ensure that
judges will be able to read the arguments within the
time limit. The writer must both write an argument
and select at least one text snippet for each answer.
In order to keep the method of referencing text
snippets as consistent as possible across different
writers with the ultimate goal of being able to train
an LM to generate similar arguments, we instruct
the writers that they should reference the snippets
they select in a uniform way, by either referring to
the argument as ‘#1’ or by placing the argument
number in parentheses after the relevant part of the
argument, as if it were a citation.

Once all the arguments have gone through the
judging phase, the writers can view the feedback
via their dashboard to see how each of their argu-
ments performed. This dashboard lists how many
judges from the PSA condition chose their argu-
ment, along with how much of a bonus they earned.
This feedback remains available to the writers as
they write the next round of arguments.

C Judging Task Crowdworker
Recruitment

We recruit judges via Amazon Mechanical Turk
(MTurk) using a question-answering qualifcation
task that is open to workers with at least a 98% HIT
approval rating and at least 5000 HITs completed;
this task pays $2, with a bonus of $1 for anyone

4We estimate it takes one hour to complete each passage
based on pilot runs and discussion with the writers

5Unlike other crowdsourcing platforms like MTurk, Up-
work charges fees on the worker’s end, and these fees change
depending on how much has already been paid to that worker.

22

Figure 2: Argument writing interface. In this example, two text snippets have been selected for Question 1.

who passes, and takes approximately 8-10 minutes
to complete. In this task, workers read 5 passages
of 105–184 words and then answer 2 four-option
multiple choice questions about each. A total of
400 workers complete this task, and 249 of them
achieve an accuracy above the threshold of 90%.
Of these qualifed workers, 194 of them end up
completing the main task.

D Judging Interface

Judging interfaces are mostly the same in each
condition, and only vary in what information is
revealed when a worker hits the ’start timer’ but-
ton (in addition to corresponding changes in the
instructions). Figure 3 shows the state of the UI
before a worker starts the timer. At this point, the
worker only has access to the question and the two
answer options. The worker is unable to select
either option before starting the timer.

Figure 4 shows an example from PSA where af-
ter clicking ’start timer,’ the passage, text snippets,
and arguments for each of the two answer options
is revealed. As the worker scrolls down, the timer
remains visible at the top of the screen. Clicking
on any of the text snippets auto-scrolls to the rele-

vant portion of the passage and shows color-coded
highlights from the text that match the text snippets
under each argument. After selecting an answer,
the worker scrolls to the bottom of the screen to hit
the ’submit’ button.

If the timer runs out and the worker still has not
hit the ’submit’ button, all the information that was
presented when they hit ’start timer’ disappears and
the worker has 30 additional seconds to select one
of the two options and click ’submit,’ as shown in
Figure 5. If this fnal timer runs out, the task auto-
submits and the response is recorded as having no
selection, which we mark as an incorrect response.

E Catch Trials

We use catch trials, tasks that look like the test
trials but are specifcally constructed to be able to
be correctly answered given a short time limit, to
assess if workers are paying attention and mak-
ing an effort in the task. In the P condition, the
catch trials are taken from the ones used in QuAL-
ITY that were constructed to be answerable within
one minute by skimming the passage or using a
search function (e.g., they include a direct quote
that can be searched for with an in-browser search

23

Figure 3: Judging UI before starting the 90s timer.

function like ctrl+F). In the PS and PSA conditions,
we construct catch trials by mismatching the argu-
ment and/or snippet from another question in that
passage onto the incorrect answer option. In this
way, it should be obvious to any worker making a
faithful attempt at the task which answer option is
correct, as one of them is paired with an unrelated
argument and/or set of text snippets.

Throughout data collection, we mix approxi-
mately 10% of the tasks with catch trials. In order
to determine which workers maintain the qualifca-
tion to complete more tasks, we continuously mon-
itor accuracy on these catch trials. Once workers
have completed at least fve catch trials in a given
condition, if their accuracy on these falls below
60%, we prevent them from completing any more
tasks. Although this method relies on workers hav-
ing already completed a signifcant number of tasks
before we have enough data to dynamically restrict
them, this does not seem to be a major concern in
data quality because (i) very few workers (6.2%)
end up losing the qualifcation for the task because
of low catch trial accuracy, and (ii) aggregation
metrics minimize the effect of a few workers not

completing the task felicitously. Among workers
who completed at least fve catch trials in a given
condition, median accuracy on the catch trials is
88.9%, indicating that the catch trials can generally
be answered given the strict time limit, and that
most participants consistently put an honest effort
towards the task.

F Initial Group of Judges

During the writing rounds, we use a smaller set of
workers as judges and collect fve annotations per
example. The responses from these judges are used
to calculate the writers’ bonuses, and this set-up
allows us to test out different time limits.

Crowdworker Recruitment We recruit judges
via MTurk in two phases. First, we release a
reading-comprehension-based qualifcation task
open to workers with at least a 98% HIT approval
rating and at least 5000 HITs completed; this task
pays $5, with a $3 bonus for passing the quali-
fcation. In this task, workers read a 3500 word
passage and then answer 15 four-option multiple
choice questions about that passage. A total of

24

Figure 4: Judging UI after starting the 90s timer. This view shows what happens after someone clicks on one of the
text snippets for argument 2 and gets taken to the relevant portion of the text, with that part of the text highlighted.

Figure 5: Judging UI after the 90s timer has run out. The arguments, snippets, and text have disappeared, and the
judge has only 30 seconds to select a fnal answer.

25

60s 90s 120s

p ps psa p ps psa p ps psa
0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

Number
 correct

0/5
1/5
2/5
3/5
4/5
5/5

Figure 6: Proportion of pilot judges who answered the
question correctly for items within different time limits.

140 workers completed this task, and 77 of them
achieved an accuracy above the threshold of 85%.

For the second phase of the qualifcation, work-
ers complete a timed judging tasks with an up-
sampled number of catch trials. Sixty-eight of the
qualifed workers completed at least 24 HITs in
this second qualifcation and were considered for
inclusion in the main protocol. In order to pass
this second qualifcation, workers need to achieve
above chance accuracy on the test trials in at least
two of the three protocols, and they need to answer
no more than one catch trial incorrectly. Based on
these cutoffs, we qualify 57 crowdworkers to move
on to the main judging task, and we pay them an
additional $3 bonus. A total of 55 of these workers
chose to then take part in the main task, and 42
completed tasks in all three rounds of data collec-
tion.

Results with Different Time Limits During the
frst round of data collection, we use a 60-second
time limit, but we raise this limit to 90 seconds for
half of the examples in the second round after feed-
back from workers indicated that several people in
the PSA condition did not feel they had suffcient
time to read the arguments. This change resulted
in only a very small accuracy increase (see Figure
6), so in the third round, we further raise the time
limit for half of the questions to 120 seconds, and
keep the 90-second limit for the other half of the
questions. However, the accuracy increase with
longer time limits is most pronounced in P, and so
we conclude that performance in PSA in particu-
lar is likely not strongly driven by how much time
workers have to read the arguments.

Condition Incorrect Accuracy
selection (%)

P both 68.0
P time-limited only 70.2
P untimed only 62.5
PS both 73.3
PS time-limited only 74.0
PS untimed only 72.3
PSA both 71.7
PSA time-limited only 71.2
PSA untimed only 67.7

Table 2: Accuracy split by the way the incorrect answer
option was selected from among three possible options.

G Effect of Question Selection Method

As the incorrect answer option was selected based
on whether that option was a good distractor in the
time-limited validation used by Pang et al. (2021)
or based on whether validators who had read the
entire passage found that option to be the best dis-
tractor, we examine the effect of these two different
ways of selecting the incorrect answer option. In
about half of the examples, the incorrect option
matched both of these criteria. Table 2 shows that
workers are slightly less accurate on questions that
were selected as the best distractor by the untimed
validators (the ones who had read the entire pas-
sage). As this difference in accuracy is present in
all three conditions and is not more pronounced in
PSA compared to the other conditions, it is unlikely
that this difference is due to the writers being able
to construct a better argument for these questions.

It’s worth noting that we would expect the op-
posite effect of what we observe for P, as this con-
dition is identical to the time-limited task used by
Pang et al. (2021), with the caveat that they showed
workers four answer options and those workers
had even less time to search the passage. We do
not have a compelling explanation for this result,
though it may be that having given workers more
time and fewer options to select from allowed them
to more accurately identify the answer in these
cases because they had more time to search for the
answer and had two fewer answer options, which
reduced the number of words to use as search terms
and made the task substantially easier. However,
this explanation does not account for why accuracy
on the questions selected based on QuALITY’s
time-limited task is the highest.

26

I

0

25

50

75

100

p ps psa
Condition

A
cc

ur
ac

y
(%

)

Trial type

Catch

Test

Figure 7: Accuracy of each worker who completed at
least 10 tasks in each of the three conditions.

H Per-Worker Results

We observe a great deal of individual variation
among workers. It is likely that some people are
better at fguring out what words they need to
search for to determine the answer, and there is
likely variation in how much workers were able to
pick up on patterns that would help them answer
correctly. This variation seems tied to individual
variation more than noise from easier vs. harder
questions, as we fnd that an individual’s perfor-
mance in each condition is signifcantly predictive
of their performance in the other conditions, indi-
cating the workers who did well in, for example, P,
were also likely to do well in PS and PSA (P-PS: r
= 0.3; P-PSA: r = 0.43; PS-PSA: r = 0.15).

Additional Results

Improvements Over Time Figure 8 shows the
workers’ accuracy as they complete more tasks
within each condition. We analyze results for work-
ers who did at least 50 tasks in a given condition.
As workers get more familiar with each condition,
their accuracy improves by a total of about four
percentage points. The effect is similar across con-
ditions, and most of the accuracy gains occur after
the frst 20 tasks completed.

Accuracy by Time Spent on Tasks Figure 9
shows the relationship between how long each
worker spent, on average, completing each task and
how accurate the worker was. Though there is a
very slight positive correlation between time spent
and accuracy in PSA, the effect is not statistically
signifcant.

66

70

74

0 20 40 60
Tasks Completed

A
cc

ur
ac

y Condition
p
ps
psa

Figure 8: Binned accuracy within each condition,
sorted by the order in which each worker completed
the tasks. Accuracy improves slightly over time within
each condition.

25

50

75

100

30 60 90
Average Time Spent (seconds)

A
ve

ra
ge

 A
cc

ur
ac

y
(%

)

Condition

p

ps

psa

Figure 9: Each worker’s average accuracy in each con-
dition, plotted by the average time they spent on each
task in that condition. There is no clear advantage to
spending more time on the task

27

Length of Arguments and Snippets Workers
are slightly more likely to choose a longer argu-
ment. We ft a linear model to predict the rate at
which workers choose an answer option from the
length of the argument associated with that option
in each condition. The effect is small, only about a
1.2 percentage point increase in the rate of choos-
ing that option for every 10 additional words in the
argument in PSA relative to the rate of choosing the
same option in P, but the effect is signifcant (p =
0.001).6 Workers are also more likely to choose
an answer option supported by more snippets. For
each additional snippet, there is an increase of 4.2
percentage points in the rate at which workers in
PSA choose that option, and an increase of 2.8
points in PS (both effects are signifcantly different
from the analogous answer selection rates in P, p <
0.001 and p = 0.01, respectively).

Effective Argument Words We check the most
common unigrams within correct arguments, and
we fnd no difference between arguments that were
chosen 0, 1, 2, or 3 times by the judges. In each
case, the four most common words are from within
the following set of fve words: earth, time, people,
ship, planet.7 Similarly, the most common bigrams
are not frequent enough to be informative, and are
often phrases like time travel or main character.
We also calculate the pointwise mutual information
(PMI) of each word within correct and incorrect
arguments and within effective and ineffective ar-
guments in order to determine if there are likely to
be any lexical regularities workers can pick up on,
but no clear trend emerges, and there are numerous
ties for words with the highest PMI in each group,
even after applying a frequency threshold.

Survey Results Discussion: Mistrust Workers
are fairly split in whether they found the arguments
helpful or generally mistrusted them. Though the
responses in this survey about the arguments are
not predictive of accuracy in any of the three con-
ditions, the responses are useful for considering
the more psychological effects of presenting peo-
ple with arguments we know to be false. Having
been misled by a convincing-sounding explanation
could cause workers to second guess their intuitions
and to only rely on information that is grounded

6There’s no signifcant difference in argument length based
on whether it’s arguing for a correct or incorrect answer option.

7The majority of the context passages were science fction
stories, so these words are expected to come up quite often,
relative to their use in other contexts.

in the passage (i.e., the text snippets). In the sur-
vey, nearly a quarter of workers explicitly report
mistrusting and then choosing to ignore the argu-
ments (51 report choosing to use them, 21 say they
either chose not to use the arguments from the be-
ginning or changed tactics halfway through after
fnding the arguments too misleading, and 19 give
responses that can’t be coded as either generally
trustful/mistrustful). Although adopting a stance of
general mistrust for the arguments is a logical (and
perhaps desirable) strategy, the subsequent decision
to ignore the arguments entirely due to this mistrust
was an unintended consequence of our design.

28

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 29 - 39
May 26, 2022 ©2022 Association for Computational Linguistics

When Can Models Learn From Explanations?
A Formal Framework for Understanding the Roles of Explanation Data

Peter Hase and Mohit Bansal
Department of Computer Science

University of North Carolina at Chapel Hill
{peter, mbansal}@cs.unc.edu

Abstract

Many methods now exist for conditioning
models on task instructions and user-provided
explanations for individual data points. These
methods show great promise for improving
task performance of language models beyond
what can be achieved by learning from indi-
vidual (x, y) pairs. In this paper, we (1) pro-
vide a formal framework for characterizing
approaches to learning from explanation data,
and (2) we propose a synthetic task for study-
ing how models learn from explanation data.
In the first direction, we give graphical mod-
els for the available modeling approaches, in
which explanation data can be used as model
inputs, as targets, or as a prior. In the second
direction, we introduce a carefully designed
synthetic task with several properties making
it useful for studying a model’s ability to learn
from explanation data. Each data point in this
binary classification task is accompanied by a
string that is essentially an answer to the why
question: “why does data point x have label
y?" (Miller, 2019). We aim to encourage re-
search into this area by identifying key consid-
erations for the modeling problem and provid-
ing an empirical test bed for theories of how
models can best learn from explanation data.1

1 Introduction

A long line of past work has sought to use free-
text explanations, rationales, and other similar data
to improve machine learning models. Proposed
methods use explanations to constrain or regularize
the learned model (Zaidan et al., 2007; Small et al.,
2011; Ba et al., 2015; Zhang et al., 2016; Srivastava
et al., 2017; Liang et al., 2020), to automatically
label data for data augmentation (Hancock et al.,
2018; Wang et al., 2019a; Awasthi et al., 2020), as
additional supervision (Narang et al., 2020; Hase

1Our code and data are publicly available at: https:
//github.com/peterbhase/ExplanationRoles.
An extended technical report on this topic is available at:
https://arxiv.org/abs/2102.02201.

Illustrative Example #2

Illustrative Example #1

When asked for travel times, give them in terms of travel by car.

How many hours does it take to travel from Addis Ababa to Dessie?

About 8 hours.

Addis Ababa and Dessie are 400km apart by road, and assuming you could
average 50kph in a car, the travel time would be about 8 hours.

What are the names of people in the text?

She was in particular interested in Babbage's work on the Analytical Engine.
Lovelace first met him in June 1833, through their mutual friend, and her
private tutor, Mary Somerville.

Babbage, Lovelace, Mary Somerville.

Names will refer to people, who can work on things, meet others, and be
tutors. Not all capitalized things are names. Engines are not people, and
here June is a date.

Figure 1: Hypothetical data and explanations. Here, x
is an input that one might expect a model to produce the
correct output for after fitting to (x, y) pairs. For some
models, x may be sufficient, while others may benefit
from additional information provided by e.

et al., 2020; Pruthi et al., 2021) or intermediate
structured variables (Camburu et al., 2018; Rajani
et al., 2019; Wiegreffe et al., 2020), and simply as
model inputs (Rupprecht et al., 2018; Co-Reyes
et al., 2019; Zhou et al., 2020).

However, there are many tasks in NLP where
improvements in performance prove elusive even
when using thousands of explanations as additional
data (Narang et al., 2020; Hase et al., 2020). A
few observations could explain this situation: (1)
the modeling space has not been fully explored for
these tasks, but improvements are possible; (2) pre-
trained language models already store the knowl-
edge that the explanations would have provided, so
they do not need them; (3) the language models do
not need any information that is not already learn-
able from the task’s input-output pairs. We do not
yet know which explanation is best, and therefore
it would be helpful to more deeply understand the
motivations behind existing modeling approaches.

In this paper, we (1) present a formal framework
for characterizing approaches to learning from ex-
planation data, and (2) we propose a synthetic task
for studying how models learn from natural lan-
guage data. Specifically, we first present graphical

29

models for various approaches where explanation
data is used either as model inputs, targets, or pri-
ors, and we characterize existing methods accord-
ing to these graphical models. Then, based on past
results, we suggest which models might be most
appropriate for explanation data. Next, we present
a synthetic task which shares important properties
with NLP tasks involving explanation data. Con-
structing this task helps us carefully specify the
manner in which we expect explanations to be use-
ful to models. We provide simple experimental
verification that the task is solvable by existing
Transformer models when using explanations as
additional data but very difficult to solve without
them. Our aim is to outline promising approaches
in the area and contribute a concrete test bed to
assist others in developing new models for learning
from natural language explanations.

2 Formalizing the Roles of Explanations

In what follows, we discuss our framework for
modeling with explanations and relevant work
(Sec. 2.1), as well as promising approaches for
learning from explanations (Sec. 2.2).

What Is an Explanation? We use the term “ex-
planation” to refer to the data one might collect if
asking a person to answer the question, “Why does
data point x have label y?” This is a formulation of
the explanation as an answer to a why-question of
the kind discussed in Miller (2019). Rather than try
to give a formal definition of the kind of data gen-
erated from this question, we proceed with some
illustrative examples, shown in Fig. 1.

2.1 Formal Framework and Relevant Work
In this section, we lay out our theory of how ex-
planations may be used in modeling a task, in a
standard supervised learning setup for obtaining a
MAP estimate of model parameters:

θ̂ = argmax
θ

p(θ|X,Y)

p(θ|X,Y) ∝ p(Y |X, θ)p(θ)

where Y is a set of labels for inputs X . We refer
to the role of Y in this probabilistic model as the
target, X as an input, and p(θ) as a prior. Below
we describe existing approaches to adding expla-
nations into this framework. An overview of the
corresponding graphical models is shown in Fig. 2.
Using Explanations as Targets. Explanations
are often used as additional supervision (shown

Multi-Task

Structured Variable

Global Set

Per Label
Structured Variable

Per Data Point InputRetrieval

Explanation as Input

Explanation as Target Explanation as Prior

Data Augmentation
Regularizer

or Hypernetwork

Few-shot
In-context Learning

Figure 2: Graphical models for several approaches to
using explanations as targets, as inputs, and as priors.
Typically past works do not condition on human-given
explanations at test time, unless they are designed to
not leak the data point label.

as Multi-Task in Fig. 2). For instance, Pruthi
et al. (2021) consider using attention weight ex-
planations (from a model) as targets in a multi-
task framework, and they observe accuracy im-
provements in what is essentially model distillation.
Meanwhile, natural language explanations appear
as targets in a multi-task framework, using datasets
with explanations for each data point (Camburu
et al., 2018; Narang et al., 2020; Hase et al., 2020;
Wiegreffe et al., 2020). None of these works find
improvements in task performance from incorpo-
rating explanations. It is perhaps even concern-
ing that a model could learn to generate coherent
“explanations” without the learning of this ability
influencing the models that are found for the task.

Using Explanations as Inputs. Additional inputs
may be valuable for solving some tasks. One fam-
ily of approaches uses explanations as model in-
puts for each data point (Per Data Point Input in
Fig. 2). Talmor et al. (2020) systematically study
RoBERTa’s ability to combine pieces of knowledge
for a task by including relevant factoids in the text
input. Co-Reyes et al. (2019) provide online natu-
ral language feedback to RL agents, and Rupprecht
et al. (2018) take a similar approach to interactive

30

image segmentation with language feedback.

More commonly, approaches do not use human
explanations at test time. In ExpBERT (Murty
et al., 2020), a model conditions on vector represen-
tations of an input x and a single “global” set of ex-
planations in order to make each prediction (Global
Set in Fig. 2). This approach may not scale well to
large numbers of explanations, however. Zhou et al.
(2020) treat explanations as latent variables, and
at inference time they retrieve explanations from
the training data (Retrieval in Fig. 2). A number of
works condition on explanations generated at test
time using generative models learned with human
explanations as supervision, which are represented
as Structured Variable and Per-Label Structured
Variable in Fig. 2 (Camburu et al., 2018; Rajani
et al., 2019; Kumar and Talukdar, 2020; Hase et al.,
2020; Wiegreffe et al., 2020; Zhao and Vydiswaran,
2021). While such structured variables could be
useful in principle, these methods have not pro-
duced sustained improvements in model accuracy.

Lastly, large language models have recently
opened the door for using explanations in few-shot
in-context learning (Brown et al., 2020). We repre-
sent this approach as Few-shot In-context Learning
in Fig. 2. We do not draw the dependencies be-
tween distinct data points in the context that would
be implied by the attention graph of Transformers,
but instead represent the dependence of each data
point on the unknown task τ , which models evi-
dently do inference over at test time. Initial work in
this direction suggests that models of a sufficiently
large size (280B parameters) can learn from expla-
nations provided in a few-shot in-context learning
setting (Lampinen et al., 2022).

Using Explanations as Priors. We group together
approaches to defining a distribution over model
parameters, including those conditioning on data,
p(θ|data). This is a prior over model weights not
in the sense that the distribution is independent of
data (which it is not), but rather that the posterior
parameters are conditioned on the prior. Expla-
nations have been used to constrain the learned
model (Srivastava et al., 2017, 2018) or to place
priors over how features are weighted or extracted
(Zaidan et al., 2007; Small et al., 2011; Zhang et al.,
2016; Ross et al., 2017; Bao et al., 2018; Selvaraju
et al., 2019; Liang et al., 2020; Stammer et al.,
2020; Pruthi et al., 2021; Stacey et al., 2022). Other
works map directly from text to model parameters
(Ba et al., 2015; Andreas et al., 2018). These meth-

ods are all effectively described by Regularizer or
Hypernetwork in Fig. 2. Lastly, a few approaches
learn to use explanations for automatically label-
ing data for data augmentation purposes (Hancock
et al., 2018; Wang et al., 2019b; Awasthi et al.,
2020), which is effectively fitting to data from a
prior distribution given by the labeling mechanism
(Data Augmentation in Fig. 2).

2.2 Promising Models

Based on our review of existing approaches, we
make a few key observations that we believe will
assist in the design of future techniques:

1. Using free-text explanations as structured vari-
ables and as targets do not appear to be promis-
ing approaches at the moment (Hase et al., 2020;
Narang et al., 2020).

2. Free-text explanations may be useful as priors
in computer vision (Liang et al., 2020), but we
know of no successful use case for tasks besides
Stacey et al. (2022), which effectively reduces
free-text explanations to a bag of words.

3. The only cases we know of where free-text ex-
planations improve model performance on NLP
tasks is when they are used as model inputs via
the Global Set model, (Murty et al., 2020) a
Retrieval model (Zhou et al., 2020), and an In-
Context Learning model using 280B parameters
(Lampinen et al., 2022).

The upshot of these results is that the most promis-
ing approaches for learning from explanation data
are likely those treating explanations as inputs (in
a manner that does not require new explanations
at test time). However, we recommend that other
graphical models not be ruled out completely, in
case there are promising methods in those families
that have yet to be explored.

3 Synthetic Task

Following recent work using synthetic data to in-
vestigate sequence modeling questions (Liu et al.,
2021; Lovering et al., 2021), we design a synthetic
dataset so that we can carefully control several
important data properties. In Fig. 3, we show an
example data point and description of how it gets
its label. The premise of our task is to classify
sequences by counting different integers in them.
Core Idea Behind Data. We wish to design a
task where, for a data point (x, y), an explanation

31

Analogous Components to Real Data

Index
An easily computable feature connecting
the input to its explanation

Indicator
A feature indicating what information from
the explanation is relevant for the input's label

An explanation that says why the input
received its label, when understood properly

Synthetic Task

Description: The sequence has label because there are more s than s.
The index maps to , and indicator says to count
rather than . If there were more s than s, the label would be .
There is a one-to-one map between index values and tuples.

Count whether there are more of integer a than integer b

Figure 3: An example of our synthetic task.

e communicates information about why input x
receives label y. The premise of the task is that
a binary label for a sequence of integers x is de-
termined by whether there are more of an integer
a in the sequence than there are of an integer b.
We refer to integers (a, b) that need to be counted
as the label reason. This label reason forms the
basis of the explanation for each data point, and
it is always exactly specified by the first two in-
tegers in x, which we term the index and indica-
tor. For every data point x, there is an explanation
e = (index,m, n, r, d) where the label reason is
given by either (m,n) or (r, d). Whether the la-
bel reason is the (m,n) integer pair or the (r, d)
pair is dictated by the indicator. As represented
in Fig. 3, (a, b) = (m,n) if the indicator is 1 and
(a, b) = (r, d) if the indicator is 2. We call the data
e an explanation because it is a direct encoding of
a natural language explanation for the data (x, y).
For the data point in Fig. 3, this natural language
explanation is “input x receives label 1 because it
contains more 80’s than 40’s, and we do not need
to count 17’s or 27’s for this sequence."

Proposed Dataset. We describe the proposed
dataset using some default data parameters for pre-
liminary experiments, but any specific numbers ap-
pearing below are easily adjusted. See Supplement
D for the full generative process.
1. Train set: 5000 sequences of 20 integers (in-

cluding index and indicator), each accompa-
nied by an explanation. There are 500 unique
values of index in the dataset drawn from
unif(1, 10000), so there are 10 points for
each index, whose values of m,n, r, and d are
drawn from unif(1, 100) while requiring that
m 6=n 6=r 6=d. The corresponding 10 values of
indicator are split between 1 and 2. Half of the
points have label y=1, i.e. either #m>#n or

#r>#d, depending on which feature is causal.
In each xi, after m,n, r, and d have been ran-
domly placed into the sequence, unfilled slots
are filled with samples from unif(1, 100).

2. Dev set: 10,000 points, none appearing in Train,
with the same 500 index values, and twice the
number of points per index as Train.

3. Test set: 50,000 points of similar construction
to the Dev set, but with five times the points per
index as Train.

Analogous Properties to Human-Curated Data.
We claim that aspects of our synthetic task are anal-
ogous to properties that natural language data might
take on, which we represent in Fig. 3. First, e is
an explanation in the sense that, when understood
properly, it is a plausible answer to the question:
“why does point x have label y?” The explanation
describes the feature that causes the label, i.e. the
integers that should be counted. We suggest that
the index in a sequence is analogous to the topic of
some text or the things it refers to: it is an easily
computable feature that connects the input to the
appropriate explanation. Meanwhile, the indica-
tor is a feature that tells how information from an
explanation is relevant to deciding the label. Simi-
larly, an explanation might only be understood in
the context of the input it explains.

4 Initial Experiments

We include experiments below that (1) show expla-
nation data is helpful for solving our task and (2)
demonstrate why the task is hard without explana-
tion data. We make use of a retrieval-based model
similar to Zhou et al. (2020), which learns to re-
trieve explanations from the training dataset to help
with prediction at test time (details in Appendix B
and C). This model is composed of a RoBERTa-
base classifier (Liu et al., 2019) and a SentenceR-
oBERTa model used for retrieval (Reimers and
Gurevych, 2019). The baseline in our experiments
is the RoBERTa classifer on its own.

4.1 Explanation Retrieval Enables a Model
to Solve Our Task

Design. Using our default dataset containing one
explanation per training point, we measure model
accuracy with retrieval in a 3 × 2 design. There
are three conditions for the retrieval model: (1)
fixed, where the Sentence-RoBERTa retriever is
fixed and only the classifier is trained, (2) learned,
where both classifier and retriever are trained end-

32

[PLACEHOLDER RUNNING TITLE – SOME TITLES WILL BE TOO LONG TO FIT – PH]

50

60

70

80

90

100

Baseline H-Mᴇᴀɴ TᴇxᴛCᴀᴛ

Acc.

Retrieval Model
No Retrieval
No Retrieval
(10x Train)
Fixed
Learned
Optimal

Is Explanation Retrieval Helpful?

Figure 6. (RQ2) Synthetic task accuracy by the conditioning mech-
anism and retrieval model status, for data with num-tasks = 500.[
new 10x train baseline – PH]

of tasks increases (equivalent to the number of points per
task decreasing), reaching accuracies as low as 62.2% at
num-tasks= 500. Meanwhile, we observe that providing
the index does slightly ease the task inference, but the mod-
els can by no means memorize the map from index to the
task information. Regarding model capacity, we find that
using RoBERTa-large increases model accuracy when the
number of num-tasks is relatively low (less than 250), but
after this point RoBERTa-base performs better (see Fig. 13
in Appendix B). Lastly, we see that increasing the training
set size can greatly improve model performance even with
num-tasks= 500, reaching 87.11% with 50,000 training
points (trend shown in Fig. 14 in Appendix B). However,
we will see in the next section that, in terms of improving
model accuracy, even this 10x increase in training size is
less effective than using retrieved explanations with 5000
training points. [added transition off sample size point – PH
]

[roberta-large results in appendix. better at low-task regime,
worse in high-task regime – PH]

6.2. RQ2: Can retrieval of past explanations enable a
model to solve our task?

Design. Using the full-info explanations and data with
num-tasks= 500, we measure model accuracy with retrieval
in a 3⇥2 design. There are three conditions for the retrieval
model: (1) fixed, where the Sentence-RoBERTa retriever is
fixed and only the classifier is trained, (2) learned, where
both classifier and retriever are trained end-to-end, and (3)
optimal where the optimal retrieval model is used and the
classifier is trained. Note that we know the optimal retrieval
model assigns the highest probabilities to explanations with
indexe matching the query point’s indexx, so by using a re-
triever p(ei|xi) = exp ([indexe = indexx]) and a context
size lower than ntask, we can ensure the retrieved explana-
tions are always relevant. There are two conditions for the
conditioning mechanism used: (1) TEXTCAT with C=k=6,

Figure 7. (RQ3) Synthetic task accuracy with evidential and re-
composable explanations, grouped by the conditioning mechanism
and status of retrieval model. [shud we be mentioning the error
bars once somewhere in caption/main text?[added model se-
lection and hypothesis testing section in Experimental Setup –
PH] – MB]

and (2) H-MEAN with C=4 and k=4, which approximately
matches the computational cost of the TEXTCAT condition.

Results. Shown in Fig. 6, the results show that retrieval
with Sentence-BERT improves model accuracy by around
29 percentage points over a no-retrieval baseline. Each con-
ditioning mechanism sees roughly the same improvement.
Additionally, we can learn a retrieval model that does nearly
as well as the optimal retrieval model, improving over the
fixed condition by another 7 points. [should we add some
more reasons + conclusions/takeaways of these numerical re-
sults? [added a couple takeaway sentences – PH] – MB]
Thus, retrieval of explanations allows the model to per-
form much better than a no-retrieval baseline. We see a
large improvement in performance from retrieval even when
the baseline could learn to infer the task information directly
from the index value in each input. In fact, explanation re-
trieval outperforms a no-retrieval baseline with as many as
50,000 training data points (a 10x increase), which obtains
87.11% accuracy.

6.3. RQ3: Can models aggregate information across
explanations for better prediction?

Design. We run the same experiment design as for
RQ2, using evidential and recomposable explanations (see
Sec. 3.3). With evidential explanations, we shift each inte-
ger in the explanation (excluding the index) independently
by zero-mean, discrete noise ✏ ⇠ unif(�2, 2). We use the
2-piece condition for recomposable explanations, meaning
two explanations combine to give the full task information.
As in RQ1, we show results here for values of C=k=6 for
TEXTCAT and C=k=4 for H-MEAN.

Results. We display the results in Fig. 7. First, we observe
that for evidential explanations, learned retrieval is close

Figure 4: Synthetic task accuracy for our baseline and
retrieval model with two conditioning mechanisms, H-
MEAN and TEXTCAT.

to-end, and (3) optimal where the optimal retrieval
model is used and the classifier is trained. We know
the optimal retrieval model retrieves explanations
with an index matching the query point’s index.
The two conditioning mechanisms, H-MEAN and
TEXTCAT, differ in how they combine information
across multiple retrieved explanations to produce a
final prediction (see Appendix B.1).

Results. The results in Fig. 4 show that expla-
nation retrieval can reach accuracies above 98%,
improving accuracy by around 37 points over a
no-explanation baseline. We also find that the
learned retrieval model does as well as the optimal
retrieval model, improving over the fixed condition
by about 7 points. Thus, access to explanations
allows the model to perform much better than a
no-explanation baseline. In fact, the explanation
retrieval model outperforms a no-explanation base-
line with as many as 50,000 training data points (a
10x increase), which obtains 87.11% accuracy.

4.2 Why Is The Task Hard Without
Explanations?

Design. We measure test accuracy as a function
of how many unique explanations (and therefore
label reasons) there are in the data. While keep-
ing the train set size fixed at 5000 points, we
vary how many points share the same explana-
tion (index,m, n, r, d). By default there are 10
points per index, and with 5000 points this means
that there are 500 unique explanations in the data.
We use many as 2500 points per index, meaning
using two unique explanations. The experiment
conditions also vary in how task information is
available in the input: (1) for With Explanation,
each 20-integer sequence xi has its explanation ap-
pended to it; (2) for No Explanation, only xi is
given, which requires the model to learn the map

50

60

70

80

90

100

0 100 200 300 400 500
Unique Explanations

Acc.

Model Input

With Explanation
No Explanation
No Index

When Can the Label Reason Be Inferred?

Figure 5: Synthetic task accuracy as a function of the
number of unique explanations for data point labels.

index→ (m,n, r, d); (3) for No Index, the index is
omitted from the input, so the model must infer the
label reason from the sequence’s contents alone.

Results. The results are shown in Fig. 5. We see
that, when the number of unique explanations (and
therefore possible label reasons) is small, the No
Explanation model can achieve an accuracy as high
as if it had been directly given the label reason, i.e.
as high as the With Explanation condition. Yet,
No Explanation model accuracy falls off quickly
with the number of unique explanations, reaching
accuracies as low as 62.2% with 500 explanations.
Evidently, with this many unique explanations, it
is too difficult to learn the map between the index
and the latent label reason. Without the index in
the input (No Index condition), it is even harder
to infer the label reason. While accuracy does rise
significantly with the size of the training data (see
Fig. 4), even using 10x as much train data does not
close the gap with the explanation retrieval model.

5 Discussion & Conclusion

We present a synthetic dataset with key similarities
to natural language explanation data, and we show
that our explanations are highly useful for model
learning. However, we emphasize that if a model
already “knew" the information in some explana-
tions, it might not need them. This may plausibly
occur with sufficiently large pretrained models that
store a great deal of factual knowledge (Petroni
et al., 2019). Similarly, the necessary information
might be learnable from (X,Y) data alone. Fu-
ture work on modeling approaches we outline in
this paper (Fig. 2) will benefit from testing their
methods on controlled synthetic tasks as a test of
their ability to learn from explanation data. Then,
further analysis will be helpful for understanding
how explanations contain novel information that is
not learned elsewhere in pretraining or finetuning.

33

Acknowledgements

We thank Miles Turpin and Ethan Perez for help-
ful discussion of the topics represented here, as
well as Xiang Zhou, Prateek Yadav, and our
anonymous reviewers for helpful feedback on the
work. This work was supported by NSF-CAREER
Award 1846185, DARPA Machine-Commonsense
(MCS) Grant N66001-19-2-4031, a Google PhD
Fellowship, Microsoft Investigator Fellowship, and
Google and AWS cloud compute awards. The
views contained in this article are those of the au-
thors and not of the funding agency.

Ethical Considerations

There are several positive broader impacts from
designing methods for learning from human expla-
nations. Foremost among them is the promise of
better aligning learned models with human priors
on what kinds of behaviors are good, which could
be especially helpful when these priors are hard
to robustly encode in supervised learning objec-
tives or unlikely to be learned from the available
data. Explanations can also greatly improve model
sample efficiency, which is broadly beneficial for
difficult, time-consuming, or human-in-the-loop
tasks where acquiring a large amount of data is
expensive and slow.

There are still some possible risks to this method-
ology, mainly involving overconfidence in what ex-
planations can provide. For instance, just because
explanations improve a model’s performance does
not mean the model will behave exactly as a hu-
man would. We risk anthropomorphizing machine
learning models when we suppose their learned
interpretations of explanations matches our own.

References
Jacob Andreas, Dan Klein, and Sergey Levine. 2018.

Learning with latent language. In NAACL-HLT
2018.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal,
and Sunita Sarawagi. 2020. Learning from rules
generalizing labeled exemplars. In ICLR 2020.

Lei Jimmy Ba, Kevin Swersky, Sanja Fidler, and Rus-
lan Salakhutdinov. 2015. Predicting deep zero-shot
convolutional neural networks using textual descrip-
tions. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015, pages 4247–4255. IEEE Com-
puter Society.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In ACL, pages 2895–2905, Florence, Italy. As-
sociation for Computational Linguistics.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ratio-
nales. In EMNLP, pages 1903–1913, Brussels, Bel-
gium. Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In NeurIPS.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In NeurIPS 2018.

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev,
Nick Altieri, Jacob Andreas, John DeNero, Pieter
Abbeel, and Sergey Levine. 2019. Guiding policies
with language via meta-learning. In ICLR 2019.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher
Ré. 2018. Training classifiers with natural language
explanations. In ACL.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit
Bansal. 2020. Leakage-adjusted simulatability: Can
models generate non-trivial explanations of their be-
havior in natural language? In Findings of EMNLP.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP, pages
6769–6781, Online. Association for Computational
Linguistics.

Sawan Kumar and Partha Talukdar. 2020. Nile : Natu-
ral language inference with faithful natural language
explanations. In ACL 2020.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X

34

Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Weixin Liang, James Zou, and Zhou Yu. 2020. ALICE:
active learning with contrastive natural language ex-
planations. In EMNLP, pages 4380–4391. Associa-
tion for Computational Linguistics.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang.
2021. Can small and synthetic benchmarks drive
modeling innovation? a retrospective study of ques-
tion answering modeling approaches. CoRR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie
Pavlick. 2021. Predicting inductive biases of pre-
trained models.

Tim Miller. 2019. Explanation in artificial intelli-
gence: Insights from the social sciences. Artif. In-
tell., 267:1–38.

Shikhar Murty, Pang Wei Koh, and Percy Liang. 2020.
Expbert: Representation engineering with natural
language explanations. In ACL, pages 2106–2113.
Association for Computational Linguistics.

Sharan Narang, Colin Raffel, Katherine J. Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
WT5?! training text-to-text models to explain their
predictions. ArXiv, abs/2004.14546.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares,
Michael Collins, Zachary C. Lipton, Graham Neu-
big, and William W. Cohen. 2021. Evaluating expla-
nations: How much do explanations from the teacher
aid students? TACL, abs/2012.00893.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain yourself!
leveraging language models for commonsense rea-
soning. In ACL 2019.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In EMNLP-IJCNLP, pages 3982–3992,
Hong Kong, China. Association for Computational
Linguistics.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons:
Training differentiable models by constraining their
explanations. In IJCAI, pages 2662–2670.

Christian Rupprecht, Iro Laina, Nassir Navab, Gre-
gory D. Harger, and Federico Tombari. 2018. Guide
me: Interacting with deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018.

Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin
Shen, Hongxia Jin, Shalini Ghosh, Larry P. Heck,
Dhruv Batra, and Devi Parikh. 2019. Taking a
HINT: leveraging explanations to make vision and
language models more grounded. In ICCV, pages
2591–2600. IEEE.

Kevin Small, Byron C Wallace, Carla E Brodley, and
Thomas A Trikalinos. 2011. The constrained weight
space svm: learning with ranked features. In ICML,
pages 865–872.

Shashank Srivastava, I. Labutov, and T. Mitchell. 2017.
Learning classifiers from declarative language. In
NeurIPS 2017.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2018. Zero-shot learning of classifiers from natural
language quantification. In ACL 2018.

Joe Stacey, Yonatan Belinkov, and Marek Rei. 2022.
Supervising model attention with human explana-
tions for robust natural language inference. In AAAI.

Wolfgang Stammer, Patrick Schramowski, and Kristian
Kersting. 2020. Right for the right concept: Re-
vising neuro-symbolic concepts by interacting with
their explanations. CoRR, abs/2011.12854.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically rea-
son over implicit knowledge. In NeurIPS 2020.

Cunxiang Wang, Shuailong Liang, Yue Zhang, Xiao-
nan Li, and Tian Gao. 2019a. Does it make sense?
and why? a pilot study for sense making and expla-
nation. In ACL 2019.

Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi-
ang Ren. 2019b. Learning from explanations with
neural execution tree. In ICLR.

Sarah Wiegreffe, Ana Marasovic, and Noah A. Smith.
2020. Measuring association between labels and
free-text rationales. CoRR, abs/2010.12762.

35

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “Annotator Rationales” to Improve Machine
Learning for Text Categorization. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main
Conference, pages 260–267, Rochester, New York.
Association for Computational Linguistics.

Ye Zhang, Iain Marshall, and Byron C. Wallace.
2016. Rationale-Augmented Convolutional Neural
Networks for Text Classification. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 795–804, Austin,
Texas. Association for Computational Linguistics.

Xinyan Zhao and VG Vydiswaran. 2021. Lirex: Aug-
menting language inference with relevant explana-
tion. In AAAI.

Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiao-
dan Liang, Maosong Sun, Chenyan Xiong, and Jian
Tang. 2020. Towards interpretable natural language
understanding with explanations as latent variables.
In NeurIPS.

A Additional Experiments

We give additional experimental results with our
synthetic dataset in an extended technical report
on this topic, available here: https://arxiv.
org/abs/2102.02201. Additional experi-
ments are conducted to answer a research questions
including:

1. Can explanations help models learn to use
strong (causal, generalizable) features rather
than weak ones?

2. What is the best way to compute explanation
representations for prediction?

3. Can models aggregate information across sev-
eral retrieved explanations?

4. What makes an explanation relevant across data
points? What enables a retrieval model to find
relevant explanations for a new data point?

5. How does the co-dependence between classifier
and retrieval model influence the viability of
joint training?

6. Does retrieval of explanations improve model
performance on existing natural language
datasets?

B Our Model for Initial Experiments

Here, we introduce our chosen model for incorpo-
rating explanation data, which makes use of ex-
planations as model inputs after they are retrieved

from the training data (the “Retrieval” graphical
model in Fig. 2). Our approach is similar to Lewis
et al. (2020), who marginalize over latent docu-
ments retrieved from Wikipedia for question an-
swering, question generation, and fact verification.
The marginal distribution is given as:

pΘ(y|x) =
∑

e∈top-k(pη(·|x))

pθ(y|x, e)pη(e|x)

where top-k gets the top k texts as ranked by the re-
trieval model, pη(e|x). Note that we never retrieve
a data point’s own explanation when predicting its
label. We do so because explanations can leak the
label (Hase et al., 2020) and this approach matches
the test-time distribution, where we assume expla-
nations are not collected for new data points (see
discussion in Sec. 2).

Zhou et al. (2020) also propose to use explana-
tions as latent variables and retrieve explanations
at inference time, but they do not learn the retrieval
model, marginalize over the latents during infer-
ence, or prohibit data point’s own explanations
from being retrieved. In our experiments, we com-
pare with their original approach and a version
where we marginalize over the latents and learn the
retrieval model.

The form of pη(e|x) follows Lewis et al. (2020)
and Karpukhin et al. (2020). Given a query x,
unnormalized probabilities are computed as:

pη(e|x) ∝ exp (fη(e)
T fη(x))

where fη embeds each sequence into a vector.
To compute top-k(pη(·|x)), we search through
the training explanations using FAISS (Johnson
et al., 2017). We discuss methods for computing
pθ(y|x, e) and fη(e|x) in Sec. B.1. Because it may
be helpful to reason over multiple explanations
at once, we extend this model to allow for expla-
nations to be composed into a single “document.”
Assuming explanations to be conditionally inde-
pendent given x, we can compute the probability
of a set of explanations E = {ec}Cc=1 as

p(E|x) ∝ exp (
∑

e∈E
fη(e)

T fη(x)),

where (1) a context size C will control the size of
the explanation set, (2) a value of k implies that the
top Ck will be retrieved, and (3) we sort these Ck
explanations into sets in order of their probability
pη(e|x).

36

model inputs, with explanations each Marginalize over Compute classifierRetrieval given

Figure 6: A depiction of our retrieval-based method TEXTCAT. A total of Ck explanations are retrieved and
allocated into k latent variables, each a set of explanations E, which are marginalized over to produce a final
prediction.

We represent the overall approach in Fig. 6 for
one method of computing pθ(y|x,E) (described
fully in Sec. B.1), where explanations are concate-
nated with the query sequence. Flowing from left to
right, Fig. 6 shows how explanations are retrieved
from the training data conditioned on a query se-
quence x, then allocated into k classifier inputs
with C explanations each. The k classifier pre-
dictions are aggregated by marginalizing over the
latent variable, Z = E.

Modeling Assumptions. In using retrieval, we
make a few assumptions. First, since the number
of forward passes per data point scales with k, we
require a relatively small value of k, i.e. k ≤ 10,
for reasonable computational efficiency in SGD-
based training. Hence, we must assume that this
summation is sufficiently similar to the full summa-
tion over latent variables. This assumption is more
likely to hold when (1) a small number of docu-
ments account for most of the probability mass in
pη(e|x), and (2) a pretrained model pη(e|x) yields
a decent initial rank-ordering, such that some of the
best documents are in the top-k. The exact value
of k we use depends on the experiment. A second,
more basic assumption is that explanations will be
useful in predicting other data points’ labels. Such
an assumption is needed since we never condition
on a data point’s own explanation. Lastly, during
retrieval we assume that explanations are indepen-
dent given x, i.e. p(E|x) =

∏
e∈E p(e|x). This

could be a poor assumption when, for instance,
explanations each contribute one of a number of
needed facts, in which case it would be helpful
to retrieve additional explanations conditioned on
what has already been retrieved.

B.1 Conditioning Mechanisms

In this section we describe the methods used to
compute pθ(y|x,E) and pη(e|x) (see Sec. B for
the overall model description). For the classifier
pθ(y|x,E), we use two methods, TEXTCAT and

H-MEAN, which are described below. Then we
describe the retrieval model, which is based on
Sentence-BERT (Reimers and Gurevych, 2019).

TEXTCAT. Represented in Figure 6, this method
takes a straightforward approach to conditioning
on a set of explanations: concatenating C explana-
tions and the input x to form a longer sequence of
text. Each of the original sequences is separated
by a special token, e.g. [SEP] for BERT. In our
experiments, we pass this longer sequence into a
RoBERTa-base model. After pooling the output
token representations, we pass the resulting vec-
tor to a 1-layer MLP for classification. We use
mean pooling for our synthetic task and NLI; for
relation extraction tasks, we concatenate the repre-
sentations corresponding to the initial tokens in the
subject and object words, since this is an especially
effective pooling technique (Baldini Soares et al.,
2019).

This approach allows the model to reason over
all of the explanations and the input together. While
the method may be limited by the fact that some
models can face difficulties in processing long
pieces of text (Beltagy et al., 2020), this issue is
partly mitigated by marginalizing over k sets of ex-
planations. As a result of the marginalization, the
final prediction can be conditioned on a far higher
number (Ck) of individual explanations than could
fit in the context alone.

H-MEAN. By H-MEAN, we refer to the kind of
unweighted hidden representation averaging used
in Co-Reyes et al. (2019) and Zhou et al. (2020).
H-MEAN works by first obtaining representations
of the input x and a single explanation e at a time,
then passing the unweighted average of these rep-
resentations to an MLP. For a fair comparison with
TEXTCAT, we use the same token pooling and a
1-layer MLP. So with C explanations to condition
on, x′ = concatenate(x, e), and vector represen-
tations from RoBERTa(x′), H-MEAN obtains a sin-

37

gle representation as

h =
1

C

C∑

c=1

RoBERTa(x′)

which is then passed to the MLP for classification.
H-MEAN does not face the same sequence length
limitations as TEXTCAT, but by separately process-
ing of each explanations H-MEAN may fail to inte-
grate information across explanations. This method
also becomes expensive when we marginalize over
E (which is what allows retrieval to be learned), as
it requires Ck forward passes for a single predic-
tion.

B.2 Retrieval
We use a similar approach to retrieval as in Lewis
et al. (2020), namely using vector representations
of sequences from a pretrained transformer to com-
pute

pη(e|x) ∝ exp (fη(e)
T fη(x)),

which is followed by computing top-Ck(pη(·|x).
We use an approximate but sub-linear time search
method (FAISS) to find the top-Ck points (John-
son et al., 2017). In our experiments we find that it
is necessary to use Sentence-BERT (Reimers and
Gurevych, 2019) as our pretrained fη, rather than
simply a pretrained RoBERTa model. Sentence-
BERT is a network trained to produce semantic
representations of sentences that can be compared
under cosine similarity. In our experiments, we use
the Sentence-RoBERTa-base model trained on a
combination of several NLI and semantic textual
similarity tasks, with mean pooling of token repre-
sentations. We normalize the representations we
obtain from this model, so that our inner product is
equivalent to a cosine similarity.

Note that during training, we never condition on
a data point’s own explanation when predicting its
label. This is an important constraint for matching
the train and test-time distributions. At test time,
we assume we have access only to past (training)
explanations, since they can be expensive to collect
and conditioning on explanations at test time can
lead to label leakage, meaning what is essentially
the benefit of human labeling could be mistaken as
improvements in model performance.

C Training Details

C.1 Runtimes.
Regarding training times, we run most experiments
on a single NVIDIA RTX 2080 GPU, with run-

times as follows: 4.0 hours for 40 epochs of the no-
retrieval RoBERTa-base using the synthetic dataset;
5.7 hours for 40 epochs of RoBERTa-large in the
same setting; 8.6 hours for 20 epochs of learned
retrieval with RoBERTa-base models on synthetic
data.

C.2 Training Hyperparameters and Analysis

For optimization, we use AdamW with a learning
rate of 1e−5 and gradient norm clipping at norm
1. For the LR, we use a linear warmup and decay
schedule peaking at 10% of the training steps for
experiments with synthetic data and at 1% for ex-
periments with existing datasets (given the larger
training set sizes). The batch size is set to 10 across
all experiments.

We decide how often to rebuild the representa-
tions of training explanations while learning the
retrieval model by tuning across frequency values
in the range {10%, 20%, 33%, 50%, 100%} (i.e. to
rebuild at this percentage of every epoch), as well
as never rebuilding. In our synthetic setting, the
only noticeable drop in performance comes from
never rebuilding. As long as representations are
re-encoded at least as often as every epoch, we
notice no difference in final test accuracy, though
in early experiments we observed that rebuilding
more often improved training stability. To err on
the safe side of training stability, we re-encode the
representations every 20% of each epoch in all ex-
periments except e-SNLI with full data, where we
re-encode every 30% of each epoch.

Additionally, we use the stop-gradient function
when computing the gradient of pη(e|x) as follows:

∇η exp (sg[fη(e)]T fη(x)),

meaning that we do not differentiate through the ex-
planation embeddings, but only through the query
data point embeddings. In early experiments, we
found that this decision contributed to training sta-
bility, while improving computational efficiency,
and we confirm that we observe no differences in
model accuracy as a result.

C.3 Experiment Confidence Intervals

We compute confidence intervals for our synthetic
data tasks to represent seed variance around some
mean seed performance. We represent seed vari-
ance in figures rather than sample variance because
the sample variance is fairly low with 50,000 test
points and could be driven arbitrarily low with

38

more generated test points. For instance, the 95%
confidence interval for a model accuracy of 90%
would be ±0.26. To calculate seed variance, we
run 10 random seeds for our baseline condition
(no-retrieval) with the default synthetic task setup.

D Synthetic Task Generative Process

The required parameters to the data generation in-
clude: (1) a training sample size sample-size and (2)
num-tasks, the number of unique integer pairs to be
counted, or, equivalently, the number of points per
index, ntask. In all experiments, we use a maximum
integer value of 100 to appear in the sequences,
and a maximum index value of 10,000. We give
the general generative process below. Note that
the dev and test sets are constructed with the extra
constraint that sequences must not appear in the
training data. Further note that this is the generic
version of generative process, and in some experi-
ments the process is altered. For example, in RQ3,
indicator is always 1 and the construction of the
map from index values to (m,n) tuples occurs in a
special way described in the experimental design
for RQ3.

1. Sample {indext}num-tasks
τ=1 from the uniform dis-

tribution over integers {1,...,10000} without re-
placement.

2. Sample {(m,n, r, d)t}num-tasks
τ=1 from the uni-

form distribution over integers, unif([1, 100]4),
without replacement and requiring that m 6=
n 6= r 6= d.

3. Define the set {(index,m, n, r, d)index)} for in-
dex and (m,n, r, d) drawn from their respective
sets, without replacement, in an arbitrary order.

4. Compute the number of points per index,
ntask = sample-size // num-tasks.

5. For each index ∈ {indext}num-tasks
τ=1 :

(a) Sample a vector of length ntask, balanced
between 1s and 2s, that gives the values of
{indicatorp}Pp=1 for the P points with that
index.

(b) Sample a vector of length ntask, balanced
between 0s and 1s, representing whether
the features 1[#m>#n] and 1[#r>#d]
should correlate (1 implies they are equal,
and 0 unequal). This balance changes when
the strong-weak correlation is intended to
change.

(c) Sample a vector of length ntask, balanced
between 0s and 1s, representing whether
(m,n) or (r, d) should be the more numer-
ous integers in the sequence (so that there
is no bias, even randomly, between features
by size).

(d) For i ∈ 1 : ntask:
i. Place the index in the first element of

an empty array, and the indicator in the
second.

ii. Based on the ith elements of the three
vectors described above, allocate sam-
ples of the integers in (m,n, r, d)index

into the remaining 18 slots.
iii. If there are any remaining slots af-

ter these integers are randomly allo-
cated, fill them with i.i.d. samples from
unif(1, 100).

39

Proceedings of the First Workshop on Learning with Natural Language Supervision, pages 40 - 47
May 26, 2022 ©2022 Association for Computational Linguistics

A survey on improving NLP models with human explanations

Mareike Hartmann1 Daniel Sonntag1,2

1German Research Center for Artificial Intelligence (DFKI), Germany
2Applied Artifical Intelligence (AAI), Oldenburg University, Germany

{mareike.hartmann, daniel.sonntag}@dfki.de

Abstract

Training a model with access to human expla-
nations can improve data efficiency and model
performance on in- and out-of-domain data.
Adding to these empirical findings, similar-
ity with the process of human learning makes
learning from explanations a promising way
to establish a fruitful human-machine interac-
tion. Several methods have been proposed for
improving natural language processing (NLP)
models with human explanations, that rely on
different explanation types and mechanism for
integrating these explanations into the learning
process. These methods are rarely compared
with each other, making it hard for practitioners
to choose the best combination of explanation
type and integration mechanism for a specific
use-case. In this paper, we give an overview
of different methods for learning from human
explanations, and discuss different factors that
can inform the decision of which method to
choose for a specific use-case.

1 Introduction

Training machine learning models with human ex-
planations is considered a promising way for inter-
action between human and machine that can lead
to better models and happier users. If a model is
provided with information about why a specific pre-
diction should be made for an instance, it can often
learn more and faster than if just given the cor-
rect label assignment (Godbole et al., 2004; Zaidan
et al., 2007). This reduces the need for annotated
data and makes learning from explanations attrac-
tive for use-cases with little annotated data avail-
able, for example for adapting models to new do-
mains (Yao et al., 2021) or for personalizing them
(Kulesza et al., 2015). Human explanations also
push models to focus on relevant features of the
data, preventing them from fitting to spurious cor-
relations in the data (Teso and Kersting, 2019). On
top of these beneficial effects on model quality, su-
pervision in the form of explanations is in line with

E-SNLI

Premise A 2-3 year old blond child is kneeling
on a couch.

Hypothesis The child has brown hair.
Gold label Contradiction
Free-text The child would not have brown hair if

he/she was blond.

COS-E

Questions What would not be true about a basket-
ball if it had a hole in it but it did not
lose its general shape?

Answer options a) punctured, b) full of air, c) round
Gold label b)
Free-text Air cannot stay in any object that has a

hole in it.

Table 1: Examples of highlight (words marked in bold)
and free-text explanations in the E-SNLI dataset (Cam-
buru et al., 2018) for natural language inference and
COS-E dataset (Rajani et al., 2019) for multiple choice
question answering.

human preferences, as users asked to give feedback
to a model want to provide richer feedback than
just correct labels (Stumpf et al., 2007; Amershi
et al., 2014; Ghai et al., 2021).

Several approaches for learning from human ex-
planations have been proposed for different tasks
(Table 2), relying on different types of explanations
(Table 1), and different methods for integrating
them into the learning process. In this paper, we
review the literature on learning from highlight and
free-text explanations for NLP models, listing tech-
nical possibilities and identifying and describing
factors that can inform the decision for an optimal
learning approach that should optimize both model
quality and user satisfaction. Our categorization
of methods for integrating explanation information
(§ 2.1) is similar to the one provided by Hase and
Bansal (2021).1 Whereas their categorization fo-

1Their survey of methods has a broader scope than ours and
includes works that improve e.g. image processing models,
whereas we exclusively focus on improving NLP models.

40

cuses on contrasting the approaches according to
the role of explanation data in the learning process,
we focus on how different types of explanations
can be integrated with these approaches.

2 Learning from Explanations

Highlight and free-text explanations are the most
prominent explanation types used to improve NLP
models (Wiegreffe and Marasovic, 2021). High-
light explanations (HIGHLIGHT) are subsets of in-
put elements that are deemed relevant for a predic-
tion.2 For text-based NLP tasks, they correspond
to sets of words, phrases or sentences. Free-text
explanations (FREE-TEXT) are texts in natural lan-
guage that are not constrained to be grounded in
the input elements and contain implicit or explicit
information about why an instance is assigned a
specific label. Some recent works rely on semi-
structured text explanations (SEMI-STRUCTURED)
(Wiegreffe and Marasovic, 2021), which combine
properties of both highlight and free-text explana-
tions. They consist of text in natural language and
contain an explicit indication of the input elements
that the free-text applies to.3 If and how much a
model can be improved based on such explanations
depends on the amount of information contained
in the explanation (§ 2.2), and to what extent this
information can be integrated into the learning pro-
cess (§ 2.1). User satisfaction is affected by the
effort required to produce explanations and by the
difficulty of the task, that might in turn affect expla-
nation quality (§ 2.3). In the following, we discuss
these factors in detail and where possible contrast
them with respect to explanation type.

Objectives Approaches for learning from expla-
nations have been evaluated with different objec-
tives in mind, and we introduce the different moti-
vations below and link them with their respective
evaluation in Table 2 (RESULTS column). Early
works for learning from explanations were moti-
vated by making the learning process more efficient
(EFFICIENCY). Integrating human explanations
into the learning process leads to better models
trained on the same amount of examples (Zaidan
et al., 2007), and to better models trained with an-
notations collected in the same amount of time
(Wang et al., 2020), i.e. human labor can be used

2We follow Wiegreffe and Marasovic (2021); Jacovi and
Goldberg (2021) in referring to them as highlight explanations.

3An overview over NLP datasets with human explanations
is provided in Wiegreffe and Marasovic (2021).

more efficiently. This makes the paradigm useful
for use-cases that allow the collection of additional
annotations. Information contained in human ex-
planations can make the model generalize better
and lead to better predictive performance on out-
of-domain data (OUT-OF-DOMAIN), which is most
relevant if the model has to be applied under a
distribution shift without access to additional an-
notations. Even with large amounts of annotated
data available, models can fit to noise or unwanted
biases in the data (Sun et al., 2019), leading to
potentially harmful outcomes. Providing human
explanations can prevent a model from fitting to
such spurious correlations and reduce bias (BIAS

REDUCTION).4 More recently, human explanations
have been used in order to improve model explana-
tions (MODEL EXPLANATION, Strout et al. (2019))
or as targets to enable models to generate explana-
tions in the first place (Wiegreffe et al., 2021).

2.1 Integrating explanation information

We now give an overview of different methods5

that are most commonly applied for integrating the
information contained in the human explanation
into the model (METHOD column in Table 2).

Given an input sequence x = (x1, · · · , xL) of
length L, a highlight explanation a is a sequence
of attribution scores a = (a1, · · · , aL), which is of
the same length as x and assigns an importance of
ai ∈ R to input element xi. In practice, ai is often
binary. A free-text explanation e = (e1, · · · , eM)
is a sequence of words of arbitrary length.

Regularizing feature importance This is the
dominant approach for learning from highlight ex-
planations. The model is trained by minimizing an
augmented loss function L = LCLS + LEXP com-
posed of the standard cross-entropy classification
loss LCLS and an additional explanation loss LEXP.
Given a sequence â = (â1, · · · , âL) of attribution
scores extracted from the model, the explanation
loss is computed by measuring the distance be-
tween gold attributions ai and model attribution âi

according to LEXP(a, â) =
L∑
i

dist(ai, âi).

â can be extracted from the model using gradient-

4For this objective, human explanations are often used as
feedback in the explanation-based debugging setup, where a
bug is identified based on a model’s explanation for its predic-
tion and fixed by correcting the model explanation (Lertvit-
tayakumjorn and Toni, 2021).

5Hase and Bansal (2021) derive a framework in which
some of these methods can be considered as equal.

41

TASK MODEL EX. TYPE METHOD RESULTS

Authors D
O

C
.C

L
S.

SE
N

T
IM

E
N

T
A

N
A

LY
SI

S

H
A

T
E

SP
E

E
C

H

R
E

L
.E

X
T

R
A

C
T

IO
N

M
U

LT
I

C
H

O
IC

E
Q

A

N
A

T
U

R
A

L
L

A
N

G
.I

N
F

E
R

E
N

C
E

E
X

T
R

A
C

T
IV

E
Q

A

O
T

H
E

R

L
O

G
R

E
G

N
A

IV
E

B
A

Y
E

S

SV
M

C
N

N

L
ST

M

P
R

E
T

R
.T

R
A

N
SF

O
R

M
E

R

H
IG

H
L

IG
H

T

F
R

E
E

-T
E

X
T

SE
M

I-
ST

R
U

C
T

U
R

E
D

R
E

G
U

L
A

R
IZ

A
T

IO
N

D
A

TA
A

U
G

M
E

N
TA

T
IO

N

M
T

L

I→
E

X
;E

X
→

O

O
T

H
E

R

O
U

T-
O

F
-D

O
M

A
IN

E
FF

IC
IE

N
C

Y

B
IA

S
R

E
D

U
C

T
IO

N

M
O

D
E

L
E

X
P

L
A

N
A

T
IO

N

Godbole et al. (2004) ■ ■ ■ ■ ▲
Zaidan et al. (2007) ■ ■ ■ ■ ▲
Zaidan and Eisner (2008) ■ ■ ■ ▲
Druck et al. (2009) ■ ■ ■ ▲
Small et al. (2011) ■ ■ ■ ■ ▲
Settles (2011) ■ ■ ■ ▲
Kulesza et al. (2015) ■ ■ ■ ■ ▲
Zhang et al. (2016) ■ ■ ■ ■ ▲ ▲
Bao et al. (2018) ■ ■ ■ ■ ▲
Zhong et al. (2019) ■ ■ ■ ■ ▲ •
Liu and Avci (2019) ■ ■ ■ ■ ▲ ▲
Strout et al. (2019) ■ ■ ■ ■ ▲ ▲
Rieger et al. (2020) ■ ■ ■ ■ ▲
Stacey et al. (2022) ■ ■ ■ ■ ▲ ▲
Carton et al. (2021) ■ ■ ■ ■ ■ ■ ▲ ▲
Mathew et al. (2021) ■ ■ ■ ▲ •
Antognini et al. (2021) ■ □ ■ ■ ▲ ▲
Pruthi et al. (2022) ■ ■ ■ ■ ■ ■ ▲
Srivastava et al. (2017) ■ ■ ■ ■ ■ ▲
Hancock et al. (2018) ■ ■ ■ ■ ▲
Wang et al. (2020) ■ ■ ■ ■ ■ ▲
Lee et al. (2020) ■ ■ ■ ■ ■ ■ ■ ▲
Ye et al. (2020) ■ ■ ■ ■ ▲
Murty et al. (2020) ■ ■ ■ ■ ▲
Yao et al. (2021) ■ ■ ■ ■ ■ ▲ ▲ ▲
Camburu et al. (2018) ■ ■ ■ ■ ■ • • ▲
Rajani et al. (2019) ■ ■ ■ ■ • ▲ ▲
Kumar and Talukdar (2020) ■ ■ ■ ■ ▼ ▲ ▲
Zhao and Vydiswaran (2021) ■ ■ ■ ■ ■ •

Table 2: An overview over methods for learning NLP tasks from highlight (upper part) and free-text explanations
(lower part). The target task (TASK), model (MODEL), explanation type (EX. TYPE), and integration mechanism
(METHOD) used in the respective work is indicated as ■. □ indicates a transformer model without pre-training. For
results reported in the respective paper (RESULTS), we explicitly mark an observed increase (▲), decrease (▼), or
minimal change (<1%, •) in the evaluated quantity compared to a baseline without access to explanations.

based or perturbation-based attribution methods
(Atanasova et al., 2020), or attention scores (Bah-
danau et al., 2015). Intuitively, the model is forced
to pay attention to input elements that are high-
lighted in the highlight explanation. This method
is particularly suited for explanation-based debug-
ging, as a user can directly interact with a model
by modifying the highlight explanations provided
by the model.

Semantic parsing to obtain noisy labels This
is the dominant approach for learning from free-
text explanations. The information contained in
the free-text explanations is made accessible via a
semantic parser that maps e to one or more label-
ing functions λi: X → {0, 1} (Ratner et al., 2016).
λi is a logical expression executable on input se-

quence x and evaluates to 1 if e applies to x, and 0
otherwise. The set of all labeling functions is then
used to assign noisy labels to unlabeled sequences
for augmenting the training dataset. Existing meth-
ods differ in how the labeling functions are applied
to assign noisy labels, e.g. by aggregating scores
over multiple outputs or fuzzily matching input se-
quences. The approach hinges on the availability
of a semantic parser, but several works suggest that
using a relatively simple to adapt rule-based parser
is sufficient for obtaining decent results (Hancock
et al., 2018). Table 2 refers to this approach as
DATA AUGMENTATION.

Multi-task learning In the multi-task learning
(MTL) approach (Caruana, 1997), two models
MCLS and MEXP are trained simultaneously, one

42

for solving the target task and one for producing
explanations, with most of their parameters being
shared between them. When learning from high-
light explanations, MEXP is a token-level classifier
trained to solve a sequence labeling task to pre-
dict the sequence of attributions a. For learning
from free-text explanations, MEXP is a language
generation model trained to generate the e.

Explain and predict This method was intro-
duced explicitly to improve interpretability of the
model, rather than learning from human explana-
tions to improve the target task (Lei et al., 2016).
The idea is to first have the model produce an ex-
planation based on the input instance (I→EX), and
then predict the output from the explanation alone
(EX→O), which is meant to assure that the gener-
ated explanation is relevant to the model prediction.
The approach can be used for both learning from
highlight and free-text explanations.6 In contrast
to the other methods described previously, explain
and predict pipelines require explanations at test
time. The human explanations are used to train
the I→EX component, which provides the EX→O

component with model explanations at test time.

Comparative studies We found almost no works
that empirically compare approaches for learning
from explanations across integration methods or
explanation types. Pruthi et al. (2022) compare
MTL and REGULARIZATION methods for learn-
ing from HIGHLIGHT explanations. They find
that the former method requires more training ex-
amples and slightly underperforms regularization.
Stacey et al. (2022) evaluate their REGULARIZA-
TION method for both HIGHLIGHT and FREE-TEXT

explanations. Results are similar for both expla-
nation types, which might be due to the fact that
explanations are from the E-SNLI dataset, where
annotators were encouraged to include words con-
tained in the highlight explanation into their free-
text explanations.

2.2 Information content

Besides the choice of method for integrating expla-
nation information, another important factor affect-
ing model performance relates to the information
contained in the explanation. Ideally, we could

6Wiegreffe et al. (2021) provide a recent survey on explain
and predict pipelines. For space reasons, the I→EX;EX→O
approaches for learning from HIGHLIGHT explanations listed
in their paper are omitted from Table 2.

define specific criteria that determine if an expla-
nation is useful for solving a task, and use these
criteria for selecting or generating the most benefi-
cial explanations, e.g. as part of annotation guide-
lines for collecting explanation annotations. In the
following, we summarize findings of recent works
that provide insights for identifying such criteria.

Selecting informative explanations Based on
experiments with an artificial dataset, Hase and
Bansal (2021) conclude that a model can be im-
proved based on explanations if it can infer rele-
vant latent information better from input instance
and explanation combined, than from the input in-
stance alone. This property could be quantified
according to the metric suggested by Pruthi et al.
(2022), who quantify explanation quality as the
performance difference between a model trained
on input instances and trained with additional ex-
planation annotations. Carton et al. (2021) find
that models can profit from those highlight expla-
nations which lead to accurate model predictions
if presented to the model in isolation. Carton et al.
(2020) evaluate human highlight explanations with
respect to their comprehensiveness and sufficiency,
two metrics usually applied to evaluate the qual-
ity of model explanations (Yu et al., 2019), and
observe that it is possible to improve model perfor-
mance with ’insufficient’ highlight explanations. In
addition, they find that human explanations do not
necessarily fulfill these two criteria, indicating that
they are not suited for identifying useful human
explanations to learn from. As the criteria listed
above depend on a machine learning model, they
cannot completely disentangle the effects of infor-
mation content and how easily this content can be
accessed by a model. This issue could be alleviated
by using model-independent criteria to categorize
information content. For example, Aggarwal et al.
(2021) propose to quantify the information con-
tained in a free-text explanation by calculating the
number of distinct words (nouns, verbs, adjectives,
and adverbs) per explanation.

Explanation type The works described above
focus on identifying informative instances of expla-
nations of a given explanation type. On a broader
level, the information that can possibly be con-
tained in an explanation is constrained by its type.
Highlight explanations cannot carry information be-
yond the importance of input elements, e.g. world-
knowledge relevant to solve the target task, or

43

causal mechanisms (Tan, 2021). Hence, free-text
explanations are assumed to be more suitable for
tasks requiring complex reasoning, such as natural
language inference or commonsense question an-
swering (Wiegreffe and Marasovic, 2021). While
this assumption intuitively makes sense, it would
be useful to more formally characterize the infor-
mation conveyed in an explanation of a specific
type, in order to match it with the requirements
of a given target task. Tan (2021) define a cat-
egorization of explanations that might provide a
good starting point for characterizing information
content. They group explanations into three cate-
gories based on the conveyed information: Proxi-
mal mechanisms convey how to infer a label from
the input, evidence conveys relevant tokens in the
input (and directly maps to highlight explanations),
and procedure conveys step-by-step rules and is re-
lated to task instructions. With respect to matching
requirements of a given target task, Jansen et al.
(2016) describe a procedure for generating gold
explanations covering specific knowledge and in-
ference requirements needed to solve the target
task of science exam question answering, which
might be transferred to other tasks for generating
informative explanations.

2.3 Human factors
Providing explanations instead of just label annota-
tions requires some overhead from the user, which
might negatively affect them. Zaidan et al. (2007)
found that providing additional highlight explana-
tions took their annotators twice as long as just pro-
viding a label for a document classification task.7

They also point out the necessity to account for
human impatience and sloppiness leading to low-
quality explanations. Tan (2021) list several fac-
tors that might limit the use of human-generated
explanations, including their incompleteness and
subjectivity. Most importantly, they point out that
we cannot expect human explanations to be valid
even if the human can assign a correct label, as pro-
viding an explanation requires deeper knowledge
than label assignment.

3 Take-Aways

While many approaches for improving NLP models
based on highlight or free-text explanations have

7We hypothesize that writing a free-text explanations
might take longer than marking highlights for a given task, but
could not find any comparison between annotation times for
both explanation types.

been proposed, there is a lack of comparative stud-
ies across different explanation types and integra-
tion methods that could reveal the most promising
setup to proceed with. Initial studies on the relation
between explanation properties and effect on model
quality suggest that the explanation’s information
content plays a central role. We see a promising
avenue in developing model-independent measures
for quantifying information content, which could
be used to give annotators detailed instructions on
how to generate an informative explanation that
can benefit the model, or to filter out invalid expla-
nations that could harm model performance.

Acknowledgments

We thank the reviewers for their insightful com-
ments and suggestions. The research was funded
by the XAINES project (BMBF, 01IW20005).

References

Shourya Aggarwal, Divyanshu Mandowara, Vishwa-
jeet Agrawal, Dinesh Khandelwal, Parag Singla, and
Dinesh Garg. 2021. Explanations for Common-
senseQA: New Dataset and Models. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3050–3065, Online.
Association for Computational Linguistics.

Saleema Amershi, Maya Cakmak, William Bradley
Knox, and Todd Kulesza. 2014. Power to the people:
The role of humans in interactive machine learning.
AI Magazine, 35(4):105–120.

Diego Antognini, Claudiu Musat, and Boi Faltings.
2021. Interacting with explanations through cri-
tiquing. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21,
pages 515–521. International Joint Conferences on
Artificial Intelligence Organization.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256–3274, Online. Association for
Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

44

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ra-
tionales. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1903–1913, Brussels, Belgium. Association
for Computational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-SNLI: Natu-
ral language inference with natural language explana-
tions. In Advances in Neural Information Processing
Systems, volume 31, pages 9539–9549. Curran Asso-
ciates, Inc.

Samuel Carton, Surya Kanoria, and Chenhao Tan. 2021.
What to learn, and how: Toward effective learning
from rationales. arXiv preprint arXiv:2112.00071.

Samuel Carton, Anirudh Rathore, and Chenhao Tan.
2020. Evaluating and characterizing human ratio-
nales. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 9294–9307, Online. Association for
Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Gregory Druck, Burr Settles, and Andrew McCallum.
2009. Active learning by labeling features. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 81–90.

Bhavya Ghai, Q. Vera Liao, Yunfeng Zhang, Rachel Bel-
lamy, and Klaus Mueller. 2021. Explainable active
learning (XAL): Toward AI explanations as interfaces
for machine teachers. Proc. ACM Hum.-Comput. In-
teract., 4(CSCW3).

Shantanu Godbole, Abhay Harpale, Sunita Sarawagi,
and Soumen Chakrabarti. 2004. Document classifica-
tion through interactive supervision of document and
term labels. In European Conference on Principles
of Data Mining and Knowledge Discovery, pages
185–196. Springer.

Braden Hancock, Paroma Varma, Stephanie Wang, Mar-
tin Bringmann, Percy Liang, and Christopher Ré.
2018. Training classifiers with natural language ex-
planations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1884–1895, Mel-
bourne, Australia. Association for Computational
Linguistics.

Peter Hase and Mohit Bansal. 2021. When can models
learn from explanations? A formal framework for
understanding the roles of explanation data. arXiv
preprint arXiv:2102.02201.

Alon Jacovi and Yoav Goldberg. 2021. Aligning
Faithful Interpretations with their Social Attribution.
Transactions of the Association for Computational
Linguistics, 9:294–310.

Peter Jansen, Niranjan Balasubramanian, Mihai Sur-
deanu, and Peter Clark. 2016. What’s in an expla-
nation? characterizing knowledge and inference re-
quirements for elementary science exams. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 2956–2965, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong,
and Simone Stumpf. 2015. Principles of explana-
tory debugging to personalize interactive machine
learning. In Proceedings of the 20th International
Conference on Intelligent User Interfaces, IUI ’15,
page 126–137, New York, NY, USA. Association for
Computing Machinery.

Sawan Kumar and Partha Talukdar. 2020. NILE : Natu-
ral language inference with faithful natural language
explanations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8730–8742, Online. Association for
Computational Linguistics.

Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon
Lee, Qinyuan Ye, Elizabeth Boschee, Leonardo
Neves, and Xiang Ren. 2020. LEAN-LIFE: A label-
efficient annotation framework towards learning from
explanation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 372–379, Online. As-
sociation for Computational Linguistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Piyawat Lertvittayakumjorn and Francesca Toni. 2021.
Explanation-Based Human Debugging of NLP Mod-
els: A Survey. Transactions of the Association for
Computational Linguistics, 9:1508–1528.

Frederick Liu and Besim Avci. 2019. Incorporating
priors with feature attribution on text classification.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6274–
6283, Florence, Italy. Association for Computational
Linguistics.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam,
Chris Biemann, Pawan Goyal, and Animesh Mukher-
jee. 2021. Hatexplain: A benchmark dataset for
explainable hate speech detection. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(17):14867–14875.

Shikhar Murty, Pang Wei Koh, and Percy Liang. 2020.
ExpBERT: Representation engineering with natural
language explanations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2106–2113, Online. Association
for Computational Linguistics.

45

Danish Pruthi, Rachit Bansal, Bhuwan Dhingra,
Livio Baldini Soares, Michael Collins, Zachary C.
Lipton, Graham Neubig, and William W. Cohen.
2022. Evaluating Explanations: How Much Do Ex-
planations from the Teacher Aid Students? Transac-
tions of the Association for Computational Linguis-
tics, 10:359–375.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932–4942, Florence, Italy. Association for
Computational Linguistics.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
gramming: Creating large training sets, quickly. In
Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.

Laura Rieger, Chandan Singh, William Murdoch, and
Bin Yu. 2020. Interpretations are useful: Penaliz-
ing explanations to align neural networks with prior
knowledge. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
8116–8126. PMLR.

Burr Settles. 2011. Closing the loop: Fast, interactive
semi-supervised annotation with queries on features
and instances. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1467–1478, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Kevin Small, Byron C. Wallace, Carla E. Brodley,
and Thomas A. Trikalinos. 2011. The constrained
weight space SVM: Learning with ranked features.
In Proceedings of the 28th International Conference
on International Conference on Machine Learning,
ICML’11, page 865–872, Madison, WI, USA. Omni-
press.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing
from natural language explanations. In Proceedings
of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1527–1536, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Joe Stacey, Yonatan Belinkov, and Marek Rei. 2022.
Natural language inference with a human touch: Us-
ing human explanations to guide model attention. In
Proceedings of the Thirty-Sixth AAAI Conference on
Artificial Intelligence (AAAI 2022).

Julia Strout, Ye Zhang, and Raymond Mooney. 2019.
Do human rationales improve machine explanations?
In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 56–62, Florence, Italy. As-
sociation for Computational Linguistics.

Simone Stumpf, Vidya Rajaram, Lida Li, Margaret
Burnett, Thomas Dietterich, Erin Sullivan, Russell
Drummond, and Jonathan Herlocker. 2007. Toward
harnessing user feedback for machine learning. In
Proceedings of the 12th International Conference
on Intelligent User Interfaces, IUI ’07, page 82–91,
New York, NY, USA. Association for Computing
Machinery.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth
Belding, Kai-Wei Chang, and William Yang Wang.
2019. Mitigating gender bias in natural language
processing: Literature review. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1630–1640, Florence, Italy.
Association for Computational Linguistics.

Chenhao Tan. 2021. On the diversity and limits of hu-
man explanations. arXiv preprint arXiv:2106.11988.

Stefano Teso and Kristian Kersting. 2019. Explanatory
interactive machine learning. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, AIES ’19, page 239–245, New York, NY, USA.
Association for Computing Machinery.

Ziqi Wang, Yujia Qin, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi-
ang Ren. 2020. Learning from explanations with
neural execution tree. In International Conference
on Learning Representations.

Sarah Wiegreffe and Ana Marasovic. 2021. Teach me to
explain: A review of datasets for explainable natural
language processing. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1).

Sarah Wiegreffe, Ana Marasović, and Noah A. Smith.
2021. Measuring association between labels and
free-text rationales. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10266–10284, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Huihan Yao, Ying Chen, Qinyuan Ye, Xisen Jin, and
Xiang Ren. 2021. Refining language models with
compositional explanations. In Advances in Neural
Information Processing Systems, volume 34, pages
8954–8967. Curran Associates, Inc.

Qinyuan Ye, Xiao Huang, Elizabeth Boschee, and Xiang
Ren. 2020. Teaching machine comprehension with
compositional explanations. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1599–1615, Online. Association for Computa-
tional Linguistics.

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi Jaakkola.
2019. Rethinking cooperative rationalization: In-
trospective extraction and complement control. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

46

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4094–
4103, Hong Kong, China. Association for Computa-
tional Linguistics.

Omar Zaidan and Jason Eisner. 2008. Modeling an-
notators: A generative approach to learning from
annotator rationales. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 31–40, Honolulu, Hawaii.
Association for Computational Linguistics.

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics; Proceedings of the Main Confer-
ence, pages 260–267, Rochester, New York. Associa-
tion for Computational Linguistics.

Ye Zhang, Iain Marshall, and Byron C. Wallace. 2016.
Rationale-augmented convolutional neural networks
for text classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 795–804, Austin, Texas.
Association for Computational Linguistics.

Xinyan Zhao and V.G.Vinod Vydiswaran. 2021. Lirex:
Augmenting language inference with relevant expla-
nations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14532–
14539.

Ruiqi Zhong, Steven Shao, and Kathleen McKeown.
2019. Fine-grained sentiment analysis with faithful
attention. arXiv preprint arXiv:1908.06870.

47

Author Index

Bansal, Mohit, 29
Bowman, Samuel R., 17

Chen, Angelica, 17

Demirtürk, Defne, 10

Groh, Georg, 10

Hartmann, Mareike, 40
Hase, Peter, 29
Hou, Yufang, 1

Kishimoto, Akihiro, 1

Marinescu, Radu, 1
Mosca, Edoardo, 10

Mülln, Luca, 10

Nangia, Nikita, 17

Parrish, Alicia, 17
Perez, Ethan, 17
Phang, Jason, 17

Raffagnato, Fabio, 10
Ri, Ryokan, 1

Sonntag, Daniel, 40

Trivedi, Harsh, 17

48

