
Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) @LREC 2022, pages 79–84
Marseille, 24 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

79

Introducing StarDust: A UD-based Dependency Annotation Tool

Arife Betül Yenice♥, Neslihan Cesur♥, Aslı Kuzgun♥, Olcay Taner Yıldız♦
Starlang Yazılım Danışmanlık♥, Özyeğin University♦

Istanbul, Turkey
{arife, neslihan, asli}@starlangyazilim.com, olcay.yildiz@ozyegin.edu.tr

Abstract
This paper aims to introduce StarDust, a new, open-source annotation tool designed for NLP studies. StarDust is designed
specifically to be intuitive and simple for the annotators while also supporting the annotation of multiple languages with different
morphological typologies, e.g. Turkish and English. This demonstration will mainly focus on our UD-based annotation tool
for dependency syntax. Linked to a morphological analyzer, the tool can detect certain annotator mistakes and limit undesired
dependency relations as well as offering annotators a quick and effective annotation process thanks to its new simple interface.
Our tool can be downloaded from the Github.
Keywords: Dependency parsing, Annotation tool, Turkish

1. Introduction
With recent developments in Natural Language Pro-
cessing (NLP) studies and tools such as parsers, the de-
mand for datasets is constantly increasing. The quality
of these corpora, which are used to train and evaluate
parsers, mostly lies in an efficient annotation process.
User-friendly and effective annotation tools enable hu-
man annotators to have a better and easier experience.
Our aim in creating StarDust is to develop a simple and
easy-to-learn interface, which can be used by anyone
with minimal instruction and regardless of prior ex-
perience. Our interface offers a multi-layered struc-
ture with many different tools for different purposes.
These include tools for semantic and morphological
analysis, dependency annotation and verb frame anno-
tation.We also seek to minimize annotator errors and
increase inter-annotator agreement by embedding the
rules of Universal Dependencies (UD) (Nivre et al.,
2016) annotation scheme as a restriction for possible
head-dependent relations. In this paper we will firstly
introduce related work and our motivation for a new
tool and elaborate on the features of our interface and
how it is used. Then, we will briefly talk about its im-
plementation and some technical details. Finally, we
will refer to the treebanks annotated using this tool.

2. Related Work and Motivation
There are currently several annotation tools for depen-
dency annotation, all of which promise different advan-
tages for different tasks. Before introducing StarDust,
it is useful to give an overview of some of these tools
and explain why they did not suffice to use for our goals
personally. The one which is used for the UD doc-
umentation system is BRAT (Stenetorp et al., 2012),
which is a web-based tool that requires user log in to do
annotations. It has a good range of features; however,
it was not ideal for us to opt for a web-based tool and
it does not support word tokenization. The most recent
one is Palmyra (Habash and D.Taji, 2020). It is suitable

for morphologically rich languages and its ability to an-
notate various linguistic features are attractive. How-
ever, its dependency tree representation is not ideal for
our purposes. Other annotation tools include Prodigy
(Montani and Honnibal, 2018) which is a great tool for
those who are experienced in the field and it is a desk-
top tool which is what we desire; however our aim in
creating a new tool was to provide a beginner friendly,
easy annotation process, therefore it did not suit our
needs. ConlluEditor (Heinecke, 2019), WebAnno (de
Castilho et al., 2016) , UD Annotatrix (Tyers et al.,
2017), and Arborator (Gerdes, 2013) are some of the
other tools used for annotations. WebAnno, UD Anno-
tatrix and Arborator permit collaborative work and they
are web-based tools. A full list of tools can be found
on UD’s website. 1 For the functions we needed and
our desire for simplicity, we needed another tool.
We need an annotation tool that is both multifaceted
and user-friendly for precise annotations in languages
of different typologies such as Turkish, an agglutinative
language with rich morphology and free word order.
For this reason, we present StarDust, an open source
annotation tool that aims to simplify the main editing
window while only keeping the main information such
as POS-tags and dependency relations. In doing so, we
still made sure to offer some crucial functions such as
editing and deleting tokens, finding and grouping to-
kens based on their initializer tags, and preventing in-
valid tags or tree structures. We have opted for a lin-
ear representation of the sentences instead of using tree
representations to make the annotation more intuitive
for inexperienced or first-time annotators. By linking a
semi-automatic disambiguation tool to our dependency
annotator, we wanted to make sure that human annota-
tors can immediately correct the morphological analy-
sis of tokens. Overall, this has increased the accuracy
of the annotations and reduced the time spent for cor-

1https://universaldependencies.org/
tools.html

https://universaldependencies.org/tools.html
https://universaldependencies.org/tools.html


80

Figure 1: A screenshot of the StarDust’s morphological disambiguation layer

rection considerably. StarDust is efficient in annotating
compounding languages like English as well as mor-
phologically rich languages like Turkish. It can also be
adapted to annotate other languages, if there is a mor-
phological analyzer for the language we can intergrate.

3. Features
StarDust is a desktop annotation tool which can be used
offline. To keep the interface clean, we have opted for
a linear representation and used a layered architecture
where only two layers are necessary for dependency
annotation purposes. Nonetheless, extra layers could
be implemented for more in-depth annotations. For de-
pendency annotations, the first layer of the tool is for
the morphological disambiguation layer and the second
layer is dependency annotation layer .
The annotators navigate between layers freely during
the annotation process while keeping both layers un-
cluttered yet functional. Even though morphological
features cannot be edited in dependency annotation
layer, switching back to morphological disambiguation
layer to fix the errors is possible. This prevents any
errors from accumulating and yield higher accuracy in
annotations. Opting for a desktop tool rather than a web
based tool comes with a few challenges such as col-
laboration issues and ensuring inter-annotator agree-
ment. These can be easily overcome if the annotators
are working online. They can easily see other anno-
tators working on the data and check with their anno-
tations. However, when working offline, the annotator
can only see the last synchronised version, which can
still be helpful with their decisions but it would require
them to check their annotations when everything is syn-
chronised. In the future versions, we can optimize it for
web platforms to make collaborative work easier.
Changes are saved automatically for each token; how-
ever, the change history can be seen in Dropbox and the
token can be reverted back to its original form. This
might be useful for those who wish to see the original
token for any reason. A change history feature that is
internal to the tool might be added in the future. If there
are changes made to a specific word form - POS tag
combination at any level, you can go back to morpho-
logical analyzer and list all the annotations from View
Annotations tab (See Figure 2 ) to apply the changes
to all of the same word form - POS Tag combination
in the dataset consistently. The features of both layers

will be demonstrated in the following sections.

4. Pos Tagging
Typically, the burden of annotating each word, its root,
its features, and its POS-tag and falls on the depen-
dency annotator. Thanks to our multi-layered interface,
all this information is provided by the morphological
analyzer. All words are parsed automatically, and to
enable alternations, all possible features that might
constitute their internal morphology are listed for
annotators to choose from. It uses a rule-based method
to parse the words and their features.

Figure 1 shows a screenshot of our interface. The au-
tomatic annotation checkbox on the top of the pro-
gram automatically parses the word in all possible
derivations. The annotators can also select the rele-
vant derivation manually. This configuration leads to
a consistent annotation for the morphological analyses
and saves time. For the morphological annotation, our
current editor makes use of the format introduced by
(Oflazer, 1994). However, we are working on convert-
ing this format into the CoNLL-U format. Each sen-
tence is stored as a different file, therefore, the anno-
tators can work on different files simultaneously. The
arrows on the control panel allows the annotators to go
back and forth between files in different distances.
Our morphological analyzer tool is suited for the anal-
ysis of languages with different morphological typolo-
gies such as English, an analytic language, and Turkish,
an agglutinative language. Agglutinative languages
need more in-depth analyses in morphology for de-
pendency parsing because the grammar of such lan-
guages is encoded at the word level rather than at sen-
tence level. Also, in agglutinating derivation systems
the same word forms can have multiple different mean-
ings depending on their internal morphology. Previ-
ous dependency tools developed for agglutinative lan-
guages such as Hungarian and Turkish address this fact
(Zsibrita et al., 2013); (Türk et al., 2020). At this layer
of StarDust, morphological disambiguation for Turkish
and Pos tagging for English are automatically derived.

4.1. Turkish Morphological Disambiguation
Due to its high reliance on affixation, Turkish word
forms bear great complexity; thus, Turkish morphol-
ogy needs to be analyzed and disambiguated before



81

Figure 2: Viewing All Annotations in Morphological Analyzer

Figure 3: A screenshot of the StarDust’s Pos-tagging layer for English

Figure 4: Dependency Layer of StarDust’s Interface

dependency relations can be established. Our method
for automatic annotation of words finds the roots of the
words and annotates their POS-tags and features. For
each word, it takes the word with its annotation lay-
ers and sets the corresponding morphological layers.
For each annotation layer, the method divides the lay-
ers and derives all possible internal morphologies layer
by layer. If the language is Turkish, it directly calls
Universal Dependency POS tags of the parse. Next, it
returns the features of the Universal Dependency rela-
tions of the word. For instance all possible derivations
of ”kalemi” are shown in Figure 1. As can be seen, the
internal morphology of Turkish is so complicated that
one word form with minimal affixation can have three

different meanings encoded in it, and our method can
derive them automatically and successfully.

4.2. English Pos Tagging

English is an analytical language; therefore, internal
morphologies of the words in English are simpler. En-
glish mostly depends on functional words instead of
multiple suffixes on words. Thus, our method follows
different rules for English words. Our method takes
the word and returns its annotation layers and sets cor-
responding layers. When setting the dependency layer
of the word, If the language is English, it returns Uni-
versal Dependency POS tags based on the Penn tag of
the word from Penn Treebank Project. For instance, if



82

the Penn tag of the word is “VB”, “VBD” or “VBN”,
it returns the POS tag “VERB”. There is not always a
one-to-one mapping between POS tags and Penn tags,
in these cases, extended versions of POS tags are used.
Then, it returns the features of the UD relations of the
word. After this, dependency features are established
based on the Penn tag of the word (Figure 3)

5. The Dependency Annotation Layer
The front-end of our dependency editor helps the an-
notators to visualize the head-dependent relationships
between the words. Its simplistic structure has enabled
some untrained annotators to make annotations by only
watching basic annotation videos 2 created by our team.
Figure 4 shows our interface. The buttons on the top
left corner in here make it possible to browse the data
by skipping different amounts of files. The most em-
bedded arrows skip one file, the two headed arrows
skip 10 files, and the ones with a vertical stroke skip
100 files at once. Each word token has its POS tag
shown below. This information comes from the pre-
vious layer. The annotators click on a word and drag
the cursor from the dependent to its head. Upon this,
a box pops up displaying all possible dependency tags
between those two words based on the UD annotation
framework. Possible dependency tags are listed for an-
notators to choose according to the frequency rate of
their use with the chosen dependent and head. Another
feature is displaying examples for each dependency tag
listed. (See Figure 5 ) When the annotator holds the
cursor on the tag, a few example sentences highlighting
the words between which the tag is used appear. These
features are available for both Turkish and English tags.
Once the relevant dependency tag is chosen, the rela-
tion is shown with arrows. The little circle on the tail of
the arrow marks the head word of the constituent while
the head of the arrow indicates the dependent word.
The Automatic Dependency Annotation checkbox au-
tomatically annotates some certain structures by using
the information that comes from the previous layer. In
the most basic two layered structure, nominal modi-
fiers, punctuations, and the root nodes can be annotated
automatically with the information provided from the
morphological analyzer. It is possible to edit the word
tokens during the annotation. Ctrl+click to the word
token enables the annotators to edit or delete the words
individually. Whenever a change is made for a token
during the dependency annotation, the changed token
is also updated on the other levels of the editor. How-
ever, the annotator should make sure to check and if
needed update the morphological analysis of the token.
Since the tool was designed to be used with a translated
corpus, the annotators are able to see the original sen-
tence that corresponds to the sentence being annotated
as represented in the bottom left corner of the Figure
4 . StarDust allows the users to see all the annotations

2The videos are available here (in Turkish): https://
tinyurl.com/y2jq5lrw

sorted as in Figure 7. The annotations can be sorted
according to the alphabetical order of the word tokens,
or they can be sorted according to the number of the
data types. This function mainly helps the annotators
to check the annotations. Another feature of the Star-
Dust is the error warnings. It has been mentioned that
this editor is designed for UD style annotations. The
editor prevents the annotators from doing any annota-
tion that conflicts with the UD annotation framework
by giving an error as shown in Figure 6. In Figure 6 the
black cautions shows the earlier mistakes made in the
annotation by stating which node causes the error.

6. Implementation
Our tool is compatible with all platforms on Desktop
(Windows, OS, Linux) with its implementation in Java.
We have not opted for a browser-based system to en-
sure that annotators can work offline, when needed. For
the projects which were carried out so far, the edited
files and .jar editors were all kept in Dropbox, ensuring
immediate synchronization of the data. The back-end
is supported in many other languages such as Python,
Cython, C#, Swift, Javascript, and C++. The back-
end of the morphological analyzer has been discussed
briefly in Section 4. Our morphological analyzer fol-
lows different methods for Turkish and English. It cre-
ates the roots, the features and POS tags of each token
following from rules written specific for the specific
language. There are rules and methods for the mor-
phological analysis; for example, methods for poss-
esives, plurality etc. For inter-annotator agreement and
gold standard annotations, we implemented rule-based
methods of restrictions and controls that are indepen-
dent of the language and follow rules of Universal De-
pendencies (UD). These controls can check the depen-
dency relations and rule out the impossible ones.
The front-end is currently only available in Java but it
can be adapted to any desired language. Before depen-
dency annotations are done, all other annotated layers
are stored on each token within a .txt file. Each text
file contains one sentence or phrase. In order to store
dependency annotations, these .txt files are processed
by Annotated Sentence Library and transformed into
CoNLL-u format. This library also contains informa-
tion from Turkish WordNet and FrameNet, which can
provide automatic annotation for certain compounds.

7. Annotated Corpora
So far, our tool has been used in five different Turk-
ish Treebanks, and one English Treebank project. The
annotated sentences of the Turkish FrameNet Project
are already available on Github.3 English Atis : This
treebank is taken from English ATIS corpus4. It con-

3https://github.com/
UniversalDependencies/UD_
Turkish-FrameNet

4https://github.com/howl-anderson/
ATIS_dataset/blob/master/README.en-US.md

https://tinyurl.com/y2jq5lrw
https://tinyurl.com/y2jq5lrw
https://github.com/UniversalDependencies/UD_Turkish-FrameNet
https://github.com/UniversalDependencies/UD_Turkish-FrameNet
https://github.com/UniversalDependencies/UD_Turkish-FrameNet
https://github.com/howl-anderson/ATIS_dataset/blob/master/README.en-US.md
https://github.com/howl-anderson/ATIS_dataset/blob/master/README.en-US.md


83

Figure 5: Example sentences feature in dependency layer

Figure 6: UD-based errors and limitations

Figure 7: Show Annotations feature of dependency layer

sists of 5,432 sentences5. Turkish Atis : This treebank
is a translation of English ATIS corpus. It consists of
5,432 sentences6. Turkish FrameNet Project: In this
project, about 2,500 example sentences were manually
annotated with the help of our annotation tool (Marsan
et al., 2021). Turkish WordNet : This project contains
18,700 example sentences from the Turkish Wordnet
(Bakay et al., 2021). Turkish Penn TreeBank : The
Turkish version of Penn Treebank (Kuzgun et al., 2020)
includes the translation of 17,000 sentences retrieved
from the original Penn Treebank (Marcus et al., 1993).
Tourism : This is a domain-specific corpus that con-
tains around 20,000 sentences. (Arıcan et al., 2021).

5https://github.com/
UniversalDependencies/UD_English-Atis

6https://github.com/
UniversalDependencies/UD_Turkish-Atis

8. Conclusion and Future Work
Overall, the convenience of our annotation tool lies in
its approachable interface with the basic functions. Its
easy-to-learn and easy-to-use interface makes it usable
by anyone without lengthy instructions or learning pe-
riods. The tool could be improved by embedding the
morphological layer into the dependency annotator to
facilitate any necessary changes in POS tags, without
navigating back to morphological analyzer. Currently,
any mistake done during the annotation process can
be arranged simply by rearranging the arrows. So far,
there has been no reported problems about this but an
“undo” button could also be implemented in the fu-
ture. For more feedback from the annotators, we plan
to conduct user studies in the future. Moreover, even
though we have used a linear representation for the sen-
tences to make the annotation more intuitive, an option
to view the sentences as tree representations could be
added. This would allow different annotators with dif-
ferent preferences to choose the view that suits them.

https://github.com/UniversalDependencies/UD_English-Atis
https://github.com/UniversalDependencies/UD_English-Atis
https://github.com/UniversalDependencies/UD_Turkish-Atis
https://github.com/UniversalDependencies/UD_Turkish-Atis


84

9. Bibliographical References
Arıcan, B. N., Ozçelik, M., Aslan, D. B., Sarmıs, E.,

Parlar, S., and Yıldız, O. T. (2021). Creating domain
dependent turkish wordnet and sentinet.

Bakay, O., Ergelen, O., Sarmis, E., Yildirim, S., Koca-
balcioglu, A., Arican, B., Ozcelik, M., Saniyar, E.,
Kuyrukcu, O., Avar, B., et al. (2021). Turkish word-
net kenet. In Proceedings of GWC 2021.

de Castilho, R. E., Mujdricza-Maydt, E., Yimam,
S. M., Hartmann, S., Gurevych, I., Frank, A., and
Biemann, C. (2016). A web-based tool for the in-
tegrated annotation of semantic and syntactic struc-
tures. In Proceedings of the Workshop on Language
Technology Resources and Tools for Digital Human-
ities (LT4DH), pages 76–84.

Gerdes, K. (2013). Collaborative dependency annota-
tion. In Proceedings of the second international con-
ference on dependency linguistics (DepLing 2013),
pages 88–97.

Habash, N. and D.Taji. (2020). Palmyra 2.0: A con-
figurable multilingual platform independent tool for
morphology and syntax annotation. In In Proceed-
ings of Universal Dependencies Workshop (UDW)
2020.

Heinecke, J. (2019). Conllueditor: a fully graphical
editor for universal dependencies treebank files. In
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019), pages 87–93.

Kuzgun, A., Cesur, N., Arıcan, B. N., Özçelik, M.,
Marşan, B., Kara, N., Aslan, D. B., and Yıldız,
O. T. (2020). On building the largest and cross-
linguistic turkish dependency corpus. In 2020 Inno-
vations in Intelligent Systems and Applications Con-
ference (ASYU), pages 1–6. IEEE.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of english:
The penn treebank.

Marsan, B., Kara, N., Ozcelik, M., Arican, B. N.,
Cesur, N., Kuzgun, A., Saniyar, E., Kuyrukcu, O.,
and Yıldız, O. T. (2021). Building the Turkish
FrameNet. In Proceedings of GWC 2021.

Montani, I. and Honnibal, M. (2018). Prodigy:a new
annotation tool for radically efficient machineteach-
ing. Artificial Intelligence.

Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg,
Y., Hajic, J., Manning, C. D., McDonald, R., Petrov,
S., Pyysalo, S., Silveira, N., et al. (2016). Univer-
sal dependencies v1: A multilingual treebank col-
lection. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1659–1666.

Oflazer, K. (1994). Two-level description of turk-
ish morphology. Literary and linguistic computing,
9(2):137–148.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Anani-
adou, S., and Tsujii, J. (2012). Brat: a web-based
tool for nlp-assisted text annotation. In Proceedings
of the Demonstrations at the 13th Conference of the

European Chapter of the Association for Computa-
tional Linguistics, pages 102–107.

Türk, U., Atmaca, F., Özateş, Ş. B., Berk, G., Be-
dir, S. T., Köksal, A., Başaran, B. Ö., Güngör,
T., and Özgür, A. (2020). Resources for turk-
ish dependency parsing: Introducing the boun tree-
bank and the boat annotation tool. arXiv preprint
arXiv:2002.10416.

Tyers, F., Sheyanova, M., and Washington, J. (2017).
Ud annotatrix: An annotation tool for universal de-
pendencies. In Proceedings of the 16th Interna-
tional Workshop on Treebanks and Linguistic The-
ories, pages 10–17.

Zsibrita, J., Vincze, V., and Farkas, R. (2013). mag-
yarlanc: A tool for morphological and dependency
parsing of hungarian. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Lan-
guage Processing RANLP 2013, pages 763–771.


	Introduction
	Related Work and Motivation
	Features
	Pos Tagging
	Turkish Morphological Disambiguation
	English Pos Tagging

	The Dependency Annotation Layer
	Implementation
	Annotated Corpora
	Conclusion and Future Work
	Bibliographical References

