
Insights 2022

The Third Workshop on Insights from Negative Results in
NLP

Proceedings of the Workshop

May 26, 2022



The Insights organizers gratefully acknowledge the support from the following
sponsors.

Silver

ii



©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-40-7

iii



Introduction

Publication of negative results is difficult in most fields, and the current focus on benchmark-driven per-
formance improvement exacerbates this situation and implicitly discourages hypothesis-driven research.
As a result, the development of NLP models often devolves into a product of tinkering and tweaking,
rather than science. Furthermore, it increases the time, effort, and carbon emissions spent on developing
and tuning models, as the researchers have little opportunity to learn from what has already been tried
and failed.
Historically, this tendency is hard to combat. ACL 2010 invited negative results as a special type of
research paper submissions1, but received too few submissions and did not continue with it. The Journal
for Interesting Negative Results in NLP and ML2 has only produced one issue in 2008.
However, the tide may be turning. Despite the pandemic, the third iteration of the Workshop on Insights
from Negative Results attracted 43 submissions and 1 from ACL Rolling Reviews.
The workshop maintained roughly the same focus, welcoming many kinds of negative results with the
hope that they could yield useful insights and provide a much-needed reality check on the successes of
deep learning models in NLP. In particular, we solicited the following types of contributions:

• broadly applicable recommendations for training/fine-tuning, especially if X that didn’t work is
something that many practitioners would think reasonable to try, and if the demonstration of X’s
failure is accompanied by some explanation/hypothesis;

• ablation studies of components in previously proposed models, showing that their contributions
are different from what was initially reported;

• datasets or probing tasks showing that previous approaches do not generalize to other domains or
language phenomena;

• trivial baselines that work suspiciously well for a given task/dataset;

• cross-lingual studies showing that a technique X is only successful for a certain language or
language family;

• experiments on (in)stability of the previously published results due to hardware, random initiali-
zations, preprocessing pipeline components, etc;

• theoretical arguments and/or proofs for why X should not be expected to work.

In terms of topics/themes, 16 papers from our accepted proceedings discussed “lessons learned in pre-
training/training neural architectures/large language models”; 10 discussed “great ideas that didn’t wo-
rk”; 10 papers performed probing tasks and datasets to draw deeper insights or understand reasons for
success/failure; 9 dealt with issues of robustness, generalizability, compositionality, and few-shot perfor-
mance; 2 were on the topic of “analyzing biases, errors, spurious correlations in data/model”; 1 paper
focused on issues in replication of research results and 1 paper on the impact of data augmentation. Some
submissions fit in more than one category.
We accepted 24 short papers (55.8% acceptance rate) and one paper from ACL Rolling Reviews.
We hope the workshop will continue to contribute to the many reality-check discussions on progress in
NLP. If we do not talk about things that do not work, it is harder to see what the biggest problems are
and where the community effort is the most needed.

1https://mirror.aclweb.org/acl2010/papers.html
2http://jinr.site.uottawa.ca/
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Abstract

Different studies of the embedding space of
transformer models suggest that the distribu-
tion of contextual representations is highly
anisotropic — the embeddings are distributed
in a narrow cone. Meanwhile, static word rep-
resentations (e.g., Word2Vec or GloVe) have
been shown to benefit from isotropic spaces.
Therefore, previous work has developed meth-
ods to calibrate the embedding space of trans-
formers in order to ensure isotropy. However,
a recent study (Cai et al., 2021) shows that
the embedding space of transformers is locally
isotropic, which suggests that these models
are already capable of exploiting the expres-
sive capacity of their embedding space. In
this work, we conduct an empirical evaluation
of state-of-the-art methods for isotropy calibra-
tion on transformers and find that they do not
provide consistent improvements across mod-
els and tasks. These results support the the-
sis that, given the local isotropy, transformers
do not benefit from additional isotropy calibra-
tion.

1 Introduction

The impressive performance of transformer mod-
els (Vaswani et al., 2017) across almost all areas of
Natural Language Processing (NLP) has sparked in-
depth investigations of these models. A remarkable
finding is that the contextual representations com-
puted by transformers are strongly anistropic (Etha-
yarajh, 2019), i.e., they are unevenly distributed
and localized in a narrow cone of the embedding
space. This discovery, labeled as the representa-
tion degeneration problem by Gao et al. (2019) is
surprising since it suggests that most of the expres-
sive capacity of these high-dimensional spaces is
neglected by transformers.

Furthermore, previous work on static word repre-
sentations, e.g., GloVE (Pennington et al., 2014) or
Word2Vec (Mikolov et al., 2013), established that

∗First three authors in alphabetic order

isotropy is a desirable property in non-contextual
embedding spaces (Mu and Viswanath, 2018). In-
deed, Mu and Viswanath (2018) and Liu et al.
(2019a) showed that post-processing static word
embeddings in order to increase isotropy improves
their performance in downstream tasks. Based on
these results, recent work has developed methods
to correct the anisotropy of the contextual represen-
tations generated by transformers (Gao et al., 2019;
Wang et al., 2019b; Li et al., 2020). These isotropy
calibration methods have been reported to produce
small gains in performance on some NLP tasks.

However, in a recent study, Cai et al. (2021)
show that the space of contextual embeddings of
transformers is locally isotropic. By analyzing low
dimensional sub-spaces the authors identify iso-
lated clusters and manifolds and argue that isotropy
does exist in these manifolds. In the same line,
Luo et al. (2021) and Kovaleva et al. (2021) find
that in BERT (Devlin et al., 2019) almost all of
the embeddings present large values in the same
two components of the embedding vector. These
large components distort our understanding of the
embedding spaces by making all the representa-
tions have high cosine similarity. In this work,
we perform an extensive empirical evaluation of
isotropy calibration methods across different tasks
and models to determine if they provide consistent
improvements. Our results question the utility of
isotropy calibration in transformers, implicitly sup-
porting the argument that transformers do already
benefit from local isotropy (Cai et al., 2021).

2 Related Work

Since the appearance of the transformer architec-
ture and its multiple variants, of which BERT (De-
vlin et al., 2019) stands out as the most researched
model, a lot of effort has been devoted to under-
standing their inner workings (Rogers et al., 2020).
Unlike static word embeddings such as GloVE or
Word2Vec, transformers build contextual embed-

1



dings, i.e., dynamic representations that aggregate
information from other context words. These rep-
resentations have sparked a lot of research interest.
Wu et al. (2020) showed that different transformer
architectures produce similar contextual representa-
tions. Chronis and Erk (2020) studied the similarity
and relatedness of contextual representations in the
embedding spaces of BERT, while Brunner et al.
(2019) studied how identifiable the intermediate
representations of BERT are with respect to the
input. Zhao et al. (2020) quantified the contextual
knowledge of BERT and Zhao et al. (2021) ana-
lyzed the embedding spaces of BERT in order to
quantify the non-linearity of its layers.

Following the discovery of anisotropy in trans-
formers (Gao et al., 2019; Ethayarajh, 2019), dif-
ferent isotropy calibration methods have been de-
veloped to correct this phenomenon. Gao et al.
(2019) and Zhang et al. (2020) introduced reg-
ularization objectives that affect the embedding
distances. Zhou et al. (2021) presented a module
inspired by batch-norm that regularizes the embed-
dings towards isotropic representations. Wang et al.
(2019b) proposed to control the singular value de-
cay of the output layer of transformers and Li et al.
(2020) used normalizing flows to map transformer
embeddings to an isotropic space. However, Cai
et al. (2021) show that contextual representations
are locally isotropic and suggest that this property
allows transformers to exploit their full expressive
capacity, questioning the utility of isotropy calibra-
tion.

3 Isotropy Calibration Methods

The output distribution of transformers is typically
parameterized as a softmax function:

P (Yi = yi|hi) =
exp(hTi WI(yi))∑N
j=1 exp(hTi Wj)

,

where W ∈ RN×d is the output weight matrix,
d is the embedding dimension, N is the output
size, yi is the i-th output, I(yi) is the index of yi
and h is the contextual embedding produced by
the model. Since this constitutes a shared space
between model embeddings h ∈ H and output
embeddings, isotropy at the output distribution can
be enforced by calibrating either H or W .

We experiment with three prominent methods
for isotropy calibration on transformers:

Cosine Regularization. Gao et al. (2019) intro-
duce a simple regularization term that minimizes
the cosine similarity between any two output em-
beddings in order to increase the aperture of the
cone that contains the embeddings. This regular-
ization term is given by:

Rcos = λc
1

|V|2
n∑

i

n∑

j 6=i
ŵT
i ŵj ,

where wi is the embedding of the i-th token in the
vocabulary V , ŵ = w

||w|| and λc is the regulariza-
tion constant.

Spectrum Control. Wang et al. (2019b) increase
isotropy by mitigating the fast decay of the sin-
gular value distribution of the output matrix W .
They decompose W using Singular Value Decom-
position (SVD), such that W = UΣV T , where
Σ ∈ Rd×d is the diagonal matrix of singular
values. Then, they add a regularization term to
guide the singular value distribution towards a pre-
specified slow-decaying prior distribution. This
term spreads the variance away from the first few
dominating singular values, increasing the isotropy
of the space. They propose the following two regu-
larization terms:

Rpol(Σ) = λp

d∑

k=1

(σk − c1kγ)2 ,

for polynomial singular value decay; and

Rexp(Σ) = λe

d∑

k=1

(σk − c1 exp(−c2kγ))2 ,

for exponential decay, where λe, λp, c1 and c2
are regularization constants, σk is the k-th largest
singular value and γ is a parameter which controls
the rate of singular value decay.

Flow Model. Li et al. (2020) propose a method
that leverages normalizing flows to learn an invert-
ible mapping f−1φ between the embedding space of
the transformer model and an isotropic (Gaussian)
space Z . First, an invertible flow model (Kingma
and Dhariwal, 2018) fφ is trained to generate trans-
former embedding vectors h from Gaussian noise
z:

z ∼ pZ(z), h = fφ(z) .

Then, the model fφ is inverted to map transformer
embeddings h to the new (and isotropic) output
embedding space Z .
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SST-2 MRPC CoLA RTE WNLI STS-B QNLI MNLI QQP

Model Accuracy F1 Mat. corr. Accuracy Accuracy Pearson corr. Accuracy Match acc. Mismatch acc. Accuracy

BERT 91.44 ±0.52 88.80±0.99 53.16±1.82 58.97±1.82 53.52±4.88 80.86 ±2.11 88.78±0.57 81.02±0.17 81.78±0.40 89.31±0.06
+Cosreg 90.71 ±1.00 88.17 ±0.38 46.94 ±4.29 56.43 ±5.16 50.23 ±4.95 78.23 ±2.19 89.58 ±0.19 81.20 ±0.41 82.04 ±0.21 89.26 ±0.10
+Spectrum-Pol 90.86 ±1.35 81.22 ±0 0 49.58 ±3.62 56.34 ±0 NaN 81.24 ±4.45 64.33 ±27.80 64.76 ±27.48 87.15 ±2.23
+Spectrum-Exp 91.21 ±0.37 81.22 ±0 0 50.90 ±3.45 56.34 ±0 NaN 86.42 ±0.42 62.43 ±24.97 63.12 ±25.20 89.16 ±0.45
+Flow 91.09 ±0.54 86.99 ±0.89 51.19 ±1.81 54.27 ±1.46 48.36 ±5.86 78.88 ±3.46 86.21 ±3.38 80.65 ±0.46 81.15 ±0.21 89.36 ±0.10

RoBERTa 92.97 ±0.63 85.35 ±8.52 53.67 ±3.32 53.19 ±0.55 54.46 ±0.81 83.10 ±2.87 91.00 ±0.46 85.16 ±0.28 85.19 ±0.15 89.85 ±0.13
+Cosreg 92.66 ±0.23 89.17 ±2.28 48.99 ±5.61 53.67 ±1.16 53.52 ±1.41 28.44 ±44.84 90.89 ±0.19 85.41 ±0.09 85.64 ±0.22 * 89.87 ±0.12
+Spectrum-Pol 88.08 ±0.99 81.22 ±0 0 52.71 ±0 57.28 ±1.62 * NaN 83.89 ±2.46 50.63 ±29.72 51.14 ±29.29 81.76 ±12.76
+Spectrum-Exp 90.71 ±1.09 81.22 ±0 0 52.95 ±0.42 56.34 ±0 NaN 82.25 ±3.14 84.46 ±0.51 84.77 0.41 80.95 ±13.89

DistilBERT 88.23 ±1.79 87.97 ±1.02 44.11 ±2.09 56.68 ±0.62 51.17 ±5.69 23.63 ±41.08 87.53 ±0.13 78.84 ±0.27 79.50 ±0.32 88.28 ±0.25
+Cosreg 88.53 ±1.55 87.88 ±1.36 43.13 ±0.85 58.24 ±1.78 52.11 ±2.44 -0.50 ±2.08 87.15 ±0.84 78.69 ±0.17 79.42 ±0.28 88.38 ±0.05
+Spectrum-Pol 88.80 ±0.37 81.22 ±0 0 54.15 ±2.50 55.87 ±0.81 NaN 85.47 ±0.96 78.39 ±0.17 79.13 ±0.05 88.41 ±0.43
+Spectrum-Exp 88.92 ±0.67 81.22 ±0 0 54.27 ±2.71 55.87 ±0.81 NaN 86.25 ±0.80 78.38 ±1.34 79.03 ±0.34 88.12 ±0.58

Table 1: Performance for different models and calibration methods on GLUE; * denotes significantly better perfor-
mance than the corresponding uncalibrated model (p < 0.05, two-sample t-test). The NaN and 0 scores are caused
by the model always predicting the same class.

4 Experiments

We evaluate the impact of each of these calibration
methods on state-of-the-art transformer models in
three prominent areas of Natural Language Pro-
cessing: language understanding, machine trans-
lation, and summarization. For all of the models,
we use the implementation and fine-tuning param-
eters from HuggingFace (Wolf et al., 2020) (cf.
Appendix B). We run each experiment three times
and report the mean and standard deviation. Fine-
tuning time is reported on a Nvidia Titan RTX
GPU.

To characterize the isotropy of the output embed-
ding space we adopt the I1 and I2 isotropy mea-
sures from (Wang et al., 2019b), with I1(W ) ∈
[0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller
I2(W ) indicate more isotropic embeddings (cf.
App. A for details).

4.1 Language Understanding

We consider three representative transformer mod-
els with different sizes, BERT-base (Devlin et al.,
2019), RoBERTa (Liu et al., 2019b), and Distil-
BERT (Sanh et al., 2020). We evaluate these mod-
els on the development set of GLUE (Wang et al.,
2019a), a well-known benchmark for language un-
derstanding that consists of nine different tasks.
Due to the high computational cost of flow calibra-
tion and the large number of tasks, we apply this
method only on BERT to save resources.

In Table 1 we report the performance per task
of the calibrated and uncalibrated models. We ob-
serve the same pattern for all three models. In
the overwhelming majority of cases, the calibrated
models perform comparably to or worse than the

uncalibrated ones, with calibration improving per-
formance with statistical significance (p < 0.05,
two-sample t-test) only in RoBERTa for WNLI
with exponential decay and MNLI mismatched
with cosine regularization. More specifically, co-
sine regularization and flow calibration (in BERT)
do not affect performance much, while spectrum
control in some cases produces severe performance
degradation or even prevents learning, e.g., CoLA
and STS-B. Furthermore, flow calibration adds a
large training overhead, requiring on average 4.2
times more time per training epoch.

These results reveal that no isotropy calibration
method yields consistently better performance than
the uncalibrated models in language understanding
tasks.

4.2 Machine Translation

We test multilingual BART (M-BART) (Liu et al.,
2020) on English-Romanian and German-English
WMT16 (Bojar et al., 2016) translation datasets.
In Table 2 we report BLUE scores, compute time,
and the isotropy metrics, for the uncalibrated and
calibrated models. To reduce the high compu-
tational cost of flow calibration, we apply this
method only on a reduced version of 50 000 sam-
ples for both tasks, English-Romanian and German-
English translation. As a reference, we also provide
the scores of the uncalibrated model on the small
datasets. We find, that while cosine regularization
does not significantly affect either BLEU scores or
isotropy metrics, both variants of spectrum control
improve isotropy but produce a performance degra-
dation of over 3 and 5 BLEU points in the English-
Romanian and German-English tasks respectively,
while requiring 25% to 50% more computation
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EN-RO DE-EN

Model BLEU (↑) I1(↑) I2(↓) Time (min) BLEU (↑) I1(↑) I2(↓) Time (min)

M-BART 26.15 ±0.08 0.88 ±0.01 0.60 ±0 108 ±0 22.81 ±0.35 0.89 ±0.01 0.60 ±0 176 ±0
+Cosreg 26.07 ±0.10 0.88 ±0.01 0.60 ±0 110 ±0 23.03 ±0.27 0.89 ±0.01 0.60 ±0 188 ±1
+Spectrum-Pol 22.94 ±0.18 1.00 ±0 0.02 ±0 176 ±2 16.27 ±0.06 1.00 ±0 0.02 ±0 265 ±0
+Spectrum-Exp 22.92 ±0.05 1.00 ±0 0.02 ±0 170 ±1 16.24 ±0.12 1.00 ±0 0.02 ±0 230 ±18

M-BART (small dataset) 9.09 ±1.02 0.88 ±0 0.60 ±0 9 ±0 11.61 ±2.25 0.88 ±0 0.60 ±0 9 ±0
+Flow 8.57 ±2.52 0.89 ±0 0.60 ±0 95 ±0 10.93 ±0.70 0.88 ±0 0.60 ±0 96 ±1

Table 2: Multilingual BART performance, isotropy (I1 and I2) and fine-tuning time per epoch with different
calibration methods for English - Romanian and German - English translation. Due to computational cost, the flow
method was tested only on a smaller version of the EN-RO dataset with 50 000 sentences.

time. On the other hand, flow calibration yields
comparable BLEU score to the uncalibrated model
but requires on average 10.5 times more computa-
tion per epoch. These results suggest a negative
and counter-intuitive relation between isotropy and
downstream performance: when isotropy increases,
performance decreases. We observe a similar trend
for language understanding in Appendix C.

Overall, and in line with the results in the previ-
ous section, isotropy calibration in machine trans-
lation tends to degrade performance and increase
the computational budget.

4.3 Summarization
We evaluate BART (Lewis et al., 2020) on the
CNN/DM summarization task (Hermann et al.,
2015); again we use a reduced dataset (20 000 ar-
ticles) for flow calibration. The results in Table 3
show that none of the calibrated models performs
significantly better than their uncalibrated counter-
parts in terms of ROUGE score (Lin, 2004) (cf.
Appendix D). Cosine regularization does not af-
fect performance nor isotropy, while spectrum con-
trol improves isotropy (I1 and I2) at the cost of a
small performance drop. The flow model performs
comparably to uncalibrated BART but requires 5.5
times more computation. Overall, we find no ev-
idence that isotropy calibration provides gains in
summarization.

5 Discussion

Our extensive evaluation shows that none of the
considered isotropy calibration methods produce
consistent improvements over the uncalibrated
models across tasks, domains and architectures.
In fact, we observe a negative relation between
isotropy calibration and downstream performance.
The most aggressive method, i.e., spectrum con-
trol, produces the largest improvement in isotropy

CNN / Daily Mail

Model R-1 (↑) I1(↑) I2(↓) Time (min)

BART 38.21 ±0.05 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 0.99 ±0 0.04 ±0 230 ±18

BART (small d.) 36.56 ±0.25 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 0.94 ±0 0.25 ±0 95 ±2

Table 3: ROUGE-1 score, isotropy (I1 and I2), and
fine-tuning time per epoch with different calibration
methods on BART for summarization. Due to compu-
tational cost, the flow calibration method was tested on
a smaller version of the dataset.

metrics as well as the most significant performance
drop. On the other hand, the effect of cosine reg-
ularization and flow calibration is small in both,
isotropy and performance.

According to Cai et al. (2021), the local isotropy
of the embedding space of transformers may enable
them to exploit their full expressive capacity. Fur-
thermore, concurrent findings by Luo et al. (2021)
and Kovaleva et al. (2021) reveal that certain com-
ponents of the contextual embeddings consistently
present very large magnitudes, which distort the
cosine distances in the embedding space and ques-
tions their anisotropy. This could explain why ad-
ditional isotropy calibration does not consistently
improve the performance of transformers in down-
stream tasks.

In light of our results, we discourage isotropy
calibration of transformers as a means of improving
downstream performance. However, we believe
that further investigation of the embedding space
of transformers may be beneficial to increase our
ability to interpret these models and improve their
architecture.
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A Isotropy Metrics

To characterize the isotropy of the output embedding space we adopt the I1 and I2 isotropy measures
from (Wang et al., 2019b).

I1(W ) =
minv∈V Z(v)

maxv∈V Z(v)
,

is based on the observation by (Arora et al., 2016), that the partition function Z(v) =
∑n

i=1 exp(vTwi)
should be close to a constant for any unit vector v if the embedding matrix W is isotropic. Here, we
abuse notation and wi ∈W is the i-th row of the embedding matrix W . Following (Mu and Viswanath,
2018) we use the set of eigenvectors of W TW as V . The second measure

I2(W ) =

√∑
v∈V (Z(v)− Z̄(v))2

|V |Z̄(v)2
,

is the sample standard deviation of the partition function Z(v) normalized by its average Z̄(v). This way,
I1(W ) ∈ [0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller I2(W ) indicate more isotropic embeddings.

B Model Hyperparameter Configuration

For all the models used in his work we use the implementation from HuggingFace and follow their
instructions for the hyperparameters. In particular, we use the following configurations:

BERT and DistilBERT. Learning rate 2e−5 without scheduling, batch size 32, 3 training epochs for all
GLUE tasks except for MRPC and WNLI, for which we train during 5 epochs.

RoBERTa. Learning rate of 1e−5 for all GLUE tasks except for SST-2 and STS-B, for which the
learning rate is set to 1e−5, same number of epochs as for BERT and DistilBERT, batch size of 32.

M-BART and BART. Learning rate of 3e−5 with polynomial decay, batch size 48, and 5 training
epochs.

C Isotropy Scores on GLUE

Here, in Table 4, we present the isotropy scores obtained in our evaluation of GLUE with BERT, RoBERTa,
and DistilBERT, which were not included in the main text due to lack of space.

The isotropy metrics I1 and I2 show the opposite trend to the performance metrics. An improvement
in isotropy reflects a decrease in downstream performance. This way, we see that across models and
tasks, cosine regularization and flow calibration (for BERT) have a small impact on isotropy and that the
performance of the models calibrated with these techniques is close to the that of the uncalibrated models.
On the other hand, spectrum control produces a very significant increase in isotropy, with many tasks
reaching a I1 of 1.00; while in Table 1 we see how it produces strong performance degradation. This,
further suggests a negative relation between isotropy and the downstream performance of transformers.
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SST-2 MRPC CoLA

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.91 ±0.01 0.4 ±0 0.91 ±0.01 0.38 ±0.01 0.91 ±0.01 0.39 ±0.01
+Cosreg 0.91 ±0.2 0.39 ±0.02 0.92 ±0.01 0.39 ±0.2 0.91 ±0.01 0.39 ±0.01
+Spectrum-Pol 1.00 ±0 0.007 ±0.003 1.00 ±0 7e−4 ±3e−4 1.00 ±0 6e−4 ±1e−4
+Spectrum-Exp 0.99 ±0.01 0.02 ±0.02 1.00 ±0 6e−4 ±2e−4 1.00 ±0 7e−4 ±3e−4

+Flow 0.92 ±0.01 0.40 ±0 0.91 ±0.01 0.40 ±0 0.91 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Spectrum-Pol 1.00 ±0 0.008 ±0.002 1.00 ±0 5e−4 ±4e−4 1.00 ±0 5e−4 ±2e−4
+Spectrum-Exp 1.00 ±0 0.005 ±0.004 1.00 ±0 1e−4 ±2e−4 1.00 ±0 6e−4 ±4e−4

DistilBERT 0.91 ±0.01 0.38 ±0.01 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01
+Cosreg 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01
+Spectrum-Pol 1.00 ±0.01 0.012 ±0.016 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4
+Spectrum-Exp 1.00 ±0.01 0.009 ±0.010 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4

RTE WNLI STS-B

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.92 ±0.01 0.39 ±0.02 0.91 ±0.01 0.39 ±0.02 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.03 0.91 ±0.01 0.40 ±0.01 0.95 ±0.01 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±1e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 0.002 ±0
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 2e−4 ±3e−4 1.00 ±0 13e−4 ±6e−4
+Flow 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.02 0.95 ±0.01 0.23 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.95 ±0.01 0.23 ±0.01
+Cosreg 0.91 ±0 0.41 ±0 0.91 ±0.01 0.40 ±0.01 0.95 ±0 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 7e−4 ±3e−4
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 15e−4 ±13e−4

DistilBERT 0.92 ±0.01 0.38 ±0.01 0.92 ±0 0.39 ±0.01 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01 0.95 ±0 0.22 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4
+Spectrum-Exp 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4

QNLI MNLI QQP

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0.01 0.9 ±0 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.06 ±0.02 0.95 ±0.01 0.21 ±0.04 0.92 ±0.02 0.39 ±0.06
+Spectrum-Exp 1.00 ±0 5e−4 ±1e−4 0.98 ±0.01 0.08 ±0.03 0.97 ±0.03 0.12 ±0.12
+Flow 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.31 ±0 0.92 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.93 ±0.01 0.93 ±0.01 0.32 ±0.01 0.39 ±0
+Spectrum-Pol 1.00 ±0 0.005 ±0.003 0.96 ±0.03 0.15 ±0.13 0.99 ±0.2 0.04 ±0.07
+Spectrum-Exp 1.0 ±0.01 0.012 ±0.015 0.98 ±0.01 0.10 ±0.04 0.99 ±0.01 0.04 ±0.06

DistilBERT 0.92 ±0 0.38 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.1 0.38 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.32 ±0 0.992 ±0.01 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.03 ±0.04 0.93 ±0.01 0.29 ±0.01 0.93 ±0.03 0.36 ±0.17
+Spectrum-Exp 1.00 ±0.01 0.02 ±0.03 0.97 ±0.1 0.13 ±0.01 0.95 ±0.01 0.25 ±0.01

Table 4: Isotropy of the embedding space of the different transformer model and calibration method combinations
on GLUE tasks.
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D Complete Summarization Results

Here we report the complete summarization results, including the ROUGE-2 and ROUGE-L metrics,
omitted in the main text.

CNN / Daily Mail

Model R-1 (↑) R-2 (↑) R-L (↑) I2(↑) I2(↓) Time (min)

BART 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 16.60 ±0.08 25.26 ±0.09 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 16.62 ±0.01 26.30 ±0.05 0.99 ±0 0.04 ±0 230 ±18

BART (small dataset) 36.56 ±0.25 15.62 ±0.07 25.05 ±0.07 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 15.40 ±0.23 24.79 ±0.19 0.94 ±0 0.25 ±0 95 ±2

Table 5: Complete BART summariation performance, embedding space isotropy and fine-tuning time per epoch
using different calibration methods on the CNN / DailyMail dataset. Due to computational cost, the flow calibration
method was tested on a smaller version of the dataset with 20 000 articles.

The performance in terms of ROUGE-2 and ROUGE-L scores follows the same patterns as ROUGE-
1. Similar to language understanding and machine translation, increasing isotropy does not improve
performance.
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Abstract

In this paper we present a set of multilingual ex-
periments tackling the task of Stance Detection
in five different languages: English, Spanish,
Catalan, French and Italian. Furthermore, we
study the phenomenon of stance with respect
to six different targets – one per language, and
two different for Italian – employing a variety
of machine learning algorithms that primarily
exploit morphological and syntactic knowledge
as features, represented throughout the format
of Universal Dependencies. Results seem to
suggest that the methodology employed is not
beneficial per se, but might be useful to exploit
the same features with a different methodology.

1 Introduction and Related Work

The task of monitoring people’s opinion towards
particular targets in political topics or public life
debates has grown in the last decade, thus leading
to the creation of a specific area of investigation
in NLP named Stance Detection (SD). Research
on this topic, indeed, might have an impact on
different aspects of everyone’s life such as pub-
lic administration, policy-making, advertisement,
marketing strategies and security. In fact, through
the constant monitoring of people’s opinion, de-
sires, complaints and beliefs on political agenda or
public services, administrators could better meet
population’s needs (Küçük and Can, 2020).

SD, as a task, shares various similarities with
Sentiment Analysis (SA), and, exactly like Senti-
ment Analysis, also SD has been applied in several
domains. For instance, to discover the reputation of
an enterprise, what is the general public thought re-
garding a political reform, if costumers of a fashion
brand are happy about the customer service, etc...
Nevertheless, whereas the aim of SA is categoriz-
ing texts according to a notion of polarity (positive,
negative or neutral), the aim of SD consists in clas-
sifying texts according to the attitude they express

towards a given target of interest (Mohammad et al.,
2017).

The first shared task entirely dedicated to SD
was held for English at SemEval in 2016, i.e., Task
6 “Detecting Stance in Tweets” (Mohammad et al.,
2016). In the following years, many more shared
tasks followed tackling the same issue in different
languages and regarding different targets: Chinese
(Xu et al., 2016), Spanish and Catalan (Taulé et al.,
2017, 2018), Italian (Cignarella et al., 2020b), and
lastly Spanish and Basque (Agerri et al., 2021).

Provided that several approaches based on differ-
ent types of linguistic knowledge have been applied
to address the SD task, in this paper we investigate
the contribution of syntactic information and in
particular that provided by dependency relations.
Therefore, we exploit some of the datasets made
available in the above-mentioned evaluation cam-
paigns in different languages. In particular, we
aimed at answering the following research ques-
tion:
RQ: Do features derived from morphology and syn-
tax help automatic systems to address the task of
stance detection?

Indeed, some research already explored differ-
ent kinds of syntactic features and their interac-
tion in several NLP tasks, showing their effective-
ness. For example, Sidorov et al. (2012) exploited
syntactic dependency-based n-grams for general-
purpose classification tasks, Socher et al. (2013)
investigated sentiment and syntax with to the de-
velopment of a sentiment treebank, and Kanayama
and Iwamoto (2020) showed a pipeline method
that makes the most of syntactic structures based
on Universal Dependencies (UD1), achieving high
precision in sentiment analysis for 17 languages.
Morphology and syntax have also been proved use-
ful in a number of other tasks, such as rumour
detection (Ghanem et al., 2019), authorship attri-
bution (Posadas-Duran et al., 2014; Sidorov et al.,

1https://universaldependencies.org/.
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language target and source train test
AGAINST FAVOUR NONE TOTAL AGAINST FAVOUR NONE TOTAL

English Hillary Clinton (Mohammad et al., 2016) 393 118 178 689 172 45 78 295

Spanish
Independence Referendum (Taulé et al., 2017)

335 1,446 2,538 4,319 84 361 636 1,081
Catalan 131 2,648 1,540 4,319 32 663 386 1,081

French Emmanuel Macron (Lai et al., 2020) 244 71 109 424 64 20 22 106

Italian
Constitutional Referendum (Lai et al., 2020) 389 129 148 666 97 34 36 167
Sardines Movement (Cignarella et al., 2020b) 1,028 589 515 2,132 742 196 172 1,110

Table 1: Benchmark datasets used for target-specific SD.

2014) and humor recognition (Liu et al., 2018). To
the best of our knowledge there is no prior work
exploiting dependency-based syntactic features for
addressing the task of Stance Detection.

2 Methodology

The main goal of the experiments presented in
this work consists in evaluating the contribution of
syntax-based linguistic features extracted from the
datasets described above to the task of SD. There-
fore, we performed a set of experiments where sev-
eral models were implemented exploiting classical
machine learning algorithms and state-of-the-art
language models implemented with the Python li-
braries scikit-learn and keras. The methodology
we propose here, in which a multilingual setting is
proposed and neural models are evaluated together
with dependency-based features, recalls the idea
that dependency based syntax might be useful in a
variety of language scenarios for the task of SD and
with a manifold of algorithms and architectures.

2.1 Datasets and pre-processing

Mirroring our previous work regarding irony de-
tection in (Cignarella et al., 2020a), from which
we replicate the methods and techniques used, we
propose here to address SD as a multi-class classifi-
cation task, testing an automatic system on five lan-
guages: English, Spanish, Catalan, French and Ital-
ian. Furthermore, with respect to Italian, we were
able to test the approach on two different datasets
with two different targets of interest, namely: the
Constitutional Referendum (Lai et al., 2020) and
the Sardines Movement (Cignarella et al., 2020b).
In the multilingual experimental setting, we took
advantage of three benchmark datasets made avail-
able during the last few years within evaluation
campaigns, i.e., SemEval 2016 - Task 6 (Moham-
mad et al., 2016), StanceCat at IberEval 2017
(Taulé et al., 2017) and SardiStance at EVALITA
2020 (Cignarella et al., 2020b), and two datasets

created ad hoc in the research group where we
work, for previous studies on SD (with target Em-
manuel Macron and Constitutional Referendum
(Lai et al., 2020) and are freely available online.2

In Table 1, for each dataset, we report the lan-
guage, the target of interest, the name of the shared
task (or research) in which it was released through
their paper reference, the number of tweets for
each class (AGAINST, FAVOUR, NONE) and the to-
tal number of instances, for both training set and
test set. The aim of our task is, thus, to determine
the stance expressed by the user with respect to a
given target.

In order to extract the information that is cru-
cial for performing the experiments, we needed
to apply also a layer of morpho-syntactic annota-
tion to the corpora that are annotated only for SD.
For this purpose, we selected the standard de facto
Universal Dependencies and we benefited from the
UDPipe3 tool. Considering that all the datasets
used consist of Twitter data, whenever possible,
we used resources where this genre, or at least
user-generated content of some kind was included
as training data for parsing. More precisely, the
model for English has been trained on the EWT
treebank (Silveira et al., 2014), that for Spanish on
both GSD-Spanish corpus (McDonald et al., 2013)
and the ANCORA corpus (Taulé et al., 2008). Also
the model for Catalan was trained on the ANCORA
corpus, while that for French on the GSD-French
corpus (McDonald et al., 2013). Finally, the model
for Italian was trained on the POSTWITA-UD cor-
pus (Sanguinetti et al., 2018), on the ISTD treebank
(Simi et al., 2014) and on the TWITTIRÒ-UD cor-
pus (Cignarella et al., 2019).

The precision in this phase of the work can be a
bottleneck for what concerns the accuracy of the

2https://github.com/mirkolai/
MultilingualStanceDetection/tree/master/
dataset.

3https://ufal.mff.cuni.cz/udpipe.
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experiments that we will describe in the following
sections. In fact, the approach is entirely based on
dependency syntax and the results strictly depend
upon the quality of parsed data. The performance
of UDpipe’s parsing is close to the state-of-the-
art ones, therefore, we considered the annotation
obtained automatically reasonably acceptable for
the present study. However there always is margin
for some error, we assumed precision and error
were similarly distributed in each language setting.

2.2 Features and Models

Firstly, tweets were stripped from URLs and char-
acters were normalized to lowercase. Later, thanks
to the application of the UDPipe pipeline we were
able to generate dependency-based syntactic trees
for all the tweets taken into consideration in each
language (e.g., Figure 1).

I love the Sardines Movement .
PRON VERB DET NOUN NOUN .

root

nsubj

obj

compound

det

punct

Figure 1: Example of a dependency tree in UD format.

On the basis of texts encoded in UD format, we
engineered and tested the following features:

• ngrams,
chargrams;

• deprelneg,
deprel;

• relationformVERB,
relationformNOUN,
relationformADJ;

• Sidorovbigramsform,
Sidorovbigramsupostag,
Sidorovbigramsdeprel.

A detailed description for each feature is available
in the Appendix and is inspired by our previous
work (Cignarella et al., 2020a; Cignarella, 2021).

Having as primary goal the exploration of the
features listed in the previous paragraph and testing
their effectiveness in the task of SD, we fed them
into a variety of models, including the following:
Support Vector Machine (SVM), Logistic Regres-
sion (LR), Random Forest (RF), Multilayer Percep-
tron (MLP) an Multilingual BERT (M-BERT). The
results obtained by combining all the features with

all the models listed above resulted in a very big
amount of numbers, which most of the time were
neither informative nor conclusive. Because of this
we reported only the best scoring models in the
section below.

3 Experiments and Results

We propose two different experimental settings.
The first one aims at exploring the dependency-
based features listed above paired with classical
machine learning (ML) algorithms, in order to per-
form a feature selection and discover the best com-
bination. In the second setting, we experiment with
the Multilingual Bidirectional Encoder Representa-
tions from Transformers (M-BERT) and different
additions of the features explored in the first set-
ting.

3.1 Selection of best features

In order to identify the most relevant features, we
tested different combinations of features and the
models mentioned in Section 2.2 and we evaluated
them according to the averaged macro F1-score.4

From the observation of Table 2 a vastly het-
erogeneous scenario emerges. There seems not to
be any regular pattern among language scenarios,
regarding the same features exploited for SD. On
the contrary, the Multilayer Perceptron is proven
to be the best performing classical ML algorithm
across all languages, aside from the setting regard-
ing the Constitutional Referendum in Italian. This
has an explanation, that was already found out in
precedent work (Lai et al., 2020) and a special clar-
ification regarding the nature of the dataset is due.
Indeed, the Italian dataset on the Constitutional
Referendum seems to be particularly sui generis
when compared with the other five. Within the
dataset the exploitation of hashtags is wide and
coherent in the whole corpus. For instance the
hashtags #iovotosì (#Ivoteyes) and #iovotono (#Iv-
oteno) have been exploited almost in each tweet
that we took into consideration, and we believe
that just their presence (as boolean value) already
is a clear manifestation of stance. For this reason,
only two features are already sufficient to reach
an extremely high F1-score (0.967): ngrams and
Sidorovbigramsupostag. The same reasoning applies
to Support Vector Machines as they are sufficiently

4The average value obtained between the F1-score of the
AGAINST class and the F1-score of the FAVOUR class as it was
done in (Mohammad et al., 2016).
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features English French Spanish Catalan Italian
Clinton Macron Independencia Referendum Sardines

model MLP MLP MLP MLP SVM MLP
macro F1-score .673 .596 .493 .497 .967 .651

ngrams ✓ ✓ ✓
chargrams ✓ ✓ ✓ ✓ ✓
deprel ✓ ✓ ✓ ✓
deprelneg ✓ ✓ ✓
relationformVERB ✓ ✓ ✓
relationformNOUN ✓
relationformADJ ✓
Sidorovbigramsform ✓ ✓
Sidorovbigramsdeprel ✓ ✓ ✓
Sidorovbigramsupostag ✓ ✓ ✓ ✓

Table 2: Features exploited in the best runs with classical ML algorithms in each language scenario.

language target best run (report and score) SVM M-BERT

+unigrams — –+syntax– +best_feats
English H. Clinton Zarrella and Marsh (2016) .671 .570 .650 .562 (↓ .088) .636 (↓ .014)

French E. Macron Lai et al. (2020) .687 .526 .511 .511 (= .000) .533 (↑ .022)

Spanish Independencia Lai et al. (2017) .489 .420 .467 .443 (↓ .024) .463 (↓ .004)
Catalan Lai et al. (2017) .490 .468 .478 .462 (↓ .016) .476 (↓ .002)

Italian Referendum Lai et al. (2020) .971 .951 .959 .960 (↑ .001) .960 (↑ .001)
Sardines Giorgioni et al. (2020) .685 .578 .586 .599 (↑ .013) .563 (↓ .023)

Table 3: Results obtained combining M-BERT and dependency-based syntactic features. Green values and arrows
pointing up show an increment in performance with respect to results obtained by the bare architecture. Red values
and arrows pointing down indicate a performance reduction, with respect to results obtained by the bare architecture.
Orange values show no change.

good to perform textual classification where the
only presence such a textual feature (a polarized
hashtag) is so blatant in indicating stance.

From Table 2 it also emerges how in all the con-
figurations used for achieving the best score at least
one dependency-based syntactic feature was ex-
ploited and in particular those based on Sidorov
et al.’s work, i.e., the last three rows of the table.
This provides evidence for giving a partial answer
to our research question (Do features derived from
morphology and syntax help automatic systems ad-
dress the task of stance detection?), since those
are the features where the structure from root to
branches of syntactic trees is encoded.

3.2 Syntactically-informed M-BERT

In the second setting, we performed experiments
where, for each language scenario, we ran the
straightforward M-BERT model. We also im-
plemented the base architecture by adding the
dependency-based syntactic features detailed in
previous sections in two different ways, in order to
have a clear-cut evidence on the actual contribution
derived from dependency syntax to SD.

In Table 3 we report the results of the best system
exploiting these datasets. Furthermore, we added
the baseline results achieved with a SVM and a bag
of words of unigrams, as it is the most common
baseline proposed in most SD shared tasks. Each of
the experiments with M-BERT has been performed
5 times with fixed hyper-parameters5 in order to
take into account the differences of random initial-
ization, and the average macro F1 score of such
number of runs is reported.

Firstly, it is interesting to see how, the M-BERT
base architecture never surpasses the results ob-
tained with more complex architectures such as
those proposed by the participants of shared tasks,
confirming the complexity of the task.

Moreover, by having a look at the colorful right-
hand side of Table 3, it can be seen how the addition
of syntactic knowledge (M-BERT+syntax) deter-
mined a widely varied spectrum of outcomes. By
the predominance of the colours orange and red
(indicating stasis or loss in terms of performance),
it is obvious to state that morphosyntactic informa-
tion, taken alone and encoded into the M-BERT

5BatchSize = 8, LearningRate = 1e− 5, EarlyStop = 5.

13



architecture does not provide strong nor consistent
beneficial contribution to the task of SD. Not only
the results obtained by the models M-BERT+syntax
and M-BERT+best_feats obtain results lower than
the state of the art approaches, but in most cases,
they result in being also lower than the results ob-
tained with the base architecture (M-BERT). Lastly,
it is furthermore arguable that results show low
(almost to none) statistical significance. In order
to verify that, we applied the t-test with the Bon-
ferroni correction and the outcomes have shown
indeed not to be statistically significant. It might be
worth it to explore new ways of encoding such fea-
tures and integrating them into BERT, and also to
perform new experiments with other BERT-based
architectures that are language specific, rather than
using the multilingual version (AlBERTo for Ital-
ian (Polignano et al., 2019), BETO for Spanish
(Cañete et al., 2020), CamemBERT for French
(Martin et al., 2019), etc...).

4 Discussion and insights

The outcomes obtained in the investigation are
slightly disappointing, but they do not come as
a total surprise. When we were formulating the
research question regarding SD, we had anticipated
that there were no linguistic theories nor research
work pointing towards the fact that morphosyntax
might prove useful in this task. Furthermore, a clear
explanation could be seen by observing how two
simple sentences having opposite stance, present
identical syntactic structure:

Ex.1 I love the Sardines Movement.

Ex.2 I hate the Sardines Movement.

we had already anticipated that taking morphology
and syntax as only features to detect stance might
indeed be calling a long shot.

With the experience matured with this research,
we can state that – even if we are not obtaining
the new state-of-the-art results – the outcomes lead
in the direction of further investigation, pointing
mainly towards a better understanding of features’
behaviour when stacked in a pre-trained language
model such as M-BERT.

Finally, even though the results obtained with
M-BERT turned out to be not statistically signifi-
cant, this research was oriented in studying whether
some features derived from morphology and syntax
could help automatic systems to address the task

I love the Sardines Movement .

root

nsubj

obj

compound

det

punct

I hate the Sardines Movement .

root

nsubj

obj

compound

det

punct

Figure 2: Dependency trees of Ex.1 and Ex.2.

of stance detection. It would be unfair not mention-
ing the fact that in the first experimental setting,
that was mainly dedicated to the selection of the
best features to be later fed as linguistic input into
M-BERT, we actually obtained better results with
respect to state-of-the-art models in four languages
out of six and in the remaining two we obtained
close results that are definitely comparable (see the
macro F1-score of the best ML systems in Table
2 and compare it with the best results from shared
tasks reported in Table 3).

5 Conclusion

The lesson learned form this work suggests that
morphosyntactic cues combine well as features in
classical machine learning algorithms, but they do
not seem to provide an increment in terms of per-
formance in the neural architecture of M-BERT
in the case study of multilingual Stance Detection.
Indeed, as shown in linguistics, the expression of
one’s stance is frequently a phenomenon that seems
to depend more often on semantics rather than on
syntactic patterns or constructions.
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If you are reading this right now you are not blind ... lol
SCONJ PRON AUX VERB PRON ADV ADV PRON AUX PART ADJ PUNCT INTJ

mark

nsubj

aux

advcl

obj advmod

advmod

cop

nsubj

advmod punct

discourse

root

Figure 3: Dependency-based syntactic tree of an English tweet.

Appendix

The description of features as well as the content of
the vectors for the syntactic features we developed,
referring to the tweet in Figure 3, are as follows:

• n-grams: We extracted unigrams, bigrams and
trigrams of tokens; e.g., [If, you, are, reading, ..., If
you, you are, are reading, ..., If you are, you are
reading, are reading this, ...];

• char-grams: We considered the sequence of
char-grams in a range from 2 to 5 characters; eg [If,
fy, yo, ou, ..., Ifyou, fyoua, youar, ouare, uarer, ...];

• deprelneg: We considered the presence of nega-
tion in the text, relying on the morphosyntactic
cues present in the UD format. When a negation
was present, we appended the correspondent
dependency relation in the feature vector. For
instance in Figure 3, we spot a negation in [... are
not blind ...], the dependency relation of “not” is
advmod, therefore, we append it in the feature
vector;

• deprel: We built a bag of words of 5-grams,
6-grams and 7-grams of dependency relations as
occurring in the linear order of the sentence from
left to right; e.g., [mark nsubj aux obj advmod,
nsubj aux obj advmod advmod, ..., advmod advmod
nsubj cop advmod root punct, advmod nsubj cop
advmod root punct discourse];

• relationformVERB: We create a feature vector with
all the tuples of tokens that are connected with a
dependency distance = 1, by starting from a verb
and at the same time we blank the verb itself. For
instance, in the example the first verb is “reading”
and some of the tuples of tokens connected through
this verb are, e.g., [IfVERBthis, youVERBthis,
areVERBthis, IfVERBnow, youVERBnow, ...];

• relationformNOUN: We applied the same procedure
of the feature above but considering nouns as
starting points for collecting tuples;

• relationformADJ: in the same fashion of the two
features above, we repeated the same procedure
for adjectives too;

• Sidorovbigramsform: We created a bag of word-
forms (tokens), considering the bigrams that can
be collected following the syntactic tree structure
(rather than the bigrams that can be collected
reading the sentence from left to right).6 Such that:
e.g., [blind reading, blind you, blind are, blind not,
reading if, reading you, ...];

• Sidorovbigramsupostag: as the feature above, we
created a bag of part-of-speech tags;

• Sidorovbigramsdeprel: as the two features above,
we created a bag of words based on dependency
relations (deprels).

6Please refer to (Sidorov et al., 2013) and (Sidorov, 2014)
for more details on this regard.

17



Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 18 - 23
May 26, 2022 ©2022 Association for Computational Linguistics

Evaluating the Practical Utility of Confidence-score based Techniques for
Unsupervised Open-world Intent Classification

Sopan Khosla
AWS AI Labs, Amazon

sopankh@amazon.com

Rashmi Gangadharaiah
AWS AI Labs, Amazon

rgangad@amazon.com

Abstract

Open-world classification in dialog systems re-
quire models to detect open intents, while en-
suring the quality of in-domain (ID) intent clas-
sification. In this work, we revisit methods
that leverage distance-based statistics for unsu-
pervised out-of-domain (OOD) detection. We
show that despite their superior performance
on threshold-independent metrics like AUROC
on test-set, threshold values chosen based on
the performance on a validation-set do not gen-
eralize well to the test-set, thus resulting in
substantially lower performance on ID or OOD
detection accuracy and F1-scores. Our analysis
shows that this lack of generalizability can be
successfully mitigated by setting aside a hold-
out set from validation data for threshold se-
lection (sometimes achieving relative gains as
high as 100%). Extensive experiments on seven
benchmark datasets show that this fix puts the
performance of these methods at par with, or
sometimes even better than, the current state-
of-the-art OOD detection techniques.

1 Introduction

Open intent detection is of significant importance
in practical dialog systems. Prior art (Zhang et al.,
2021a) has shown that an intent classifier’s perfor-
mance degrades when it encounters examples of
an unseen intent. Open-world classification (Fei
and Liu, 2016) tries to mitigate this by not only
correctly classifying data that appeared in training
(ID), but also detecting examples that are not a part
of any existing class (OOD). Schölkopf et al. (2001)
and Tax and Duin (2004) use SVMs to find the deci-
sion boundary of each positive class (ID). Bendale
and Boult (2016) leverage deep neural networks to
learn representations that capture high-level seman-
tic concepts. To detect OOD samples, Hendrycks
and Gimpel (2017) use the softmax probability as
the confidence score, where some negative samples
are used for confidence threshold discovery. Other
works (Zhou et al., 2021; Ren et al., 2021; Podol-

skiy et al., 2021; Zhan et al., 2021) use the distance
between a new sample and the ID distributions to
define their confidence scores. Whereas, Zhang
et al. (2021a) learn an adaptive decision boundary
(ADB) of each positive class by only using ID data
and thus removing the dependence on a confidence-
score completely.

Threshold-based OOD detection allows for more
control, especially in scenarios where correctly pre-
dicting ID intents takes priority over detecting nega-
tives or vice-versa. This has motivated researchers
to evaluate confidence-based methods on threshold-
independent metrics like Area Under ROC curve
(AUROC) or Area Under PR curve (AUPR) on
test-sets for an unbiased comparison. This is espe-
cially true for works on distance-based (e.g. Ma-
halanobis distance, Cosine similarity) confidence-
scores (Zhan et al., 2021; Ren et al., 2021; Zhou
et al., 2021), which seldom comment on the thresh-
old selection criteria or the threshold-dependent
performance of the underlying method and thus
fail to reveal much about their practical utility.

In this work, we evaluate state-of-the-art ap-
proaches that use distance-based statistics (DBS) to
arrive at confidence-scores for Open-World Clas-
sification. Unlike previous works, we specifically
focus on their performance on threshold-dependent
metrics. We show that threshold values (δ) cho-
sen based on the performance on the validation-set,
used to tune the classifier, do not generalize well
on the test-set. This results in poor test-set ID/OOD

Accuracy and F1-scores as compared to confidence-
score-independent techniques like ADB on multi-
ple benchmark datasets. We analyse this lack of
generalizability and propose the use of a hold-out
set of ID samples from validation data for thresh-
old selection. This fix improves the threshold-
dependent performance of DBS approaches putting
their test accuracy and F1-scores on ID/OOD detec-
tion at par with, or sometimes even better, than pre-
viously proposed open-classification techniques.
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2 Methodology

We explore multiple state-of-the-art strategies for
unsupervised open-world intent classification. The
term unsupervised here refers to the absence of
open-intent samples during training. We con-
sider two approaches that leverage logit-based
statistics (LBS) as their confidence-score (i.e. Max-
imum Softmax Probability and Energy), two DBS

approaches (i.e. Mahalanobis distance and Co-
sine similarity), and Adaptive Decision Boundary
(ADB) that does not rely on confidence-scores.

Maximum Softmax Probability (MSP). Several
prior works adopt this method as a baseline for
OOD detection (Hendrycks and Gimpel, 2017; Hsu
et al., 2020; Hendrycks et al., 2020). MSP uses
the maximum class probability 1 − maxCj=1(pj)
among C training classes as its OOD indicator. pj
denotes the probability of jth class.

Energy. Liu et al. (2020) show that energy scores
not only better distinguish ID and OOD samples
than softmax scores, but also align with the proba-
bility density of the inputs. A higher energy score
indicates a higher likelihood of OODness.

Mahalanobis Distance (Maha) can be used to
calculate the distance of an input sample to a dis-
tribution of samples from class c. We follow (Lee
et al., 2018; Zhou et al., 2021) to compute the Ma-
halanobis distance from the penultimate layer of
the transformer model by fitting a class-conditional
multivariate Gaussian distribution. Finally, the
OOD score for an instance is calculated as the mini-
mum Mahalanobis distance among the C classes.

Cosine Similarity (Zhou et al., 2021). The OOD

score is calculated as the negative of the maximum
cosine similarity between an instance at inference
time and samples in the validation set.

Adaptive Decision Boundary (ADB) (Zhang et al.,
2021a) does not rely on an OOD score for open-
world classification. This approach aims to learn
the euclidean distance decision boundaries for
every seen class using the representations ex-
tracted from the pre-trained multi-class classifi-
cation model trained on labeled ID training data.
These spherical decision boundaries act as the dis-
tinction between ID and OOD samples.

Dataset TRAIN-ID VAL-ID VAL-OOD TEST-ID TEST-OOD

CLINC 15,000 3,000 100 4,500 1,000
ROSTD 30,000 4,000 1,500 8,600 3,000
BANK77OOS 5,905 1,506 730 2,000 2,080
OOSBANK 500 500 600 500 1,350
OOSCREDIT 500 500 600 500 1,350
BANK 9,003 1,000 - 3,080 -
SO 12,000 2,000 - 6,000 -

Table 1: Data Statistics (SO = STACKOVERFLOW). -ID and
-OOD refer to the in-domain and out-of-domain utterances
present in each split.

3 Experimental Setup

3.1 Data
We evaluate the open-world intent classification
strategies on six challenging benchmark datasets.
Table 1 provides details on dataset statistics.

CLINC contains 150 intents, 22,500 ID queries and
1,200 OOD queries (Larson et al., 2019).

BANK includes 13,083 customer service queries
across 77 intents in the banking domain (Casanueva
et al., 2020).

STACKOVERFLOW (Xu et al., 2015) contains 20
different classes of technical question titles. BANK

and STACKOVERFLOW do not contain explicit OOD

utterances, so we follow (Shu et al., 2017; Zhang
et al., 2021a) and only consider 75% samples from
all the classes as seen classes.

ROSTD extends the English part of multilingual
dialog dataset (Schuster et al., 2019) with OOD

utterances. Following Gangal et al. (2020), we
evaluate the different techniques on the variant with
12 fine-grained ID classes.

Zhang et al. (2021b) proposed two datasets. The
first contains utterances from two domains, i.e., the
"Banking” (OOSBANK) and "Credit cards” domain
(OOSCREDIT) with both (1) out-of-domain and
out-of-scope (OOD-OOS) queries and (2) in-domain
but out-of-scope (ID-OOS) queries. The second
dataset (BANK77OOS) extends BANK to include
ID-OOS queries based on 27 held-out semantically
similar in-scope intents. We combine both OOD-
OOS and ID-OOS into a common OOD class.

3.2 Evaluation Metrics
We evaluate the performance of different open-
world classification techniques on threshold-
independent metrics like AUROC and AUPRout.
Following previous work (Shu et al., 2017; Lin
and Xu, 2019), we also evaluate the overall perfor-
mance on accuracy (Acc) and macro F1-score on
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Performance on VAL (Pipeline 1) / VAL-HOLD (Pipeline 2) Performance on TEST set (Pipeline 1 / Pipeline 2)

AUROC ↑ AUPRout ↑ F1All ↑ F1In ↑ F1Out ↑ Acc ↑ AUROC ↑ AUPRout ↑ F1All ↑ F1In ↑ F1Out ↑ Acc ↑

CLINC

MSP 96.2 / 96.4 62.2 / 82.6 96.4 / 95.0 96.7 / 95.2 60.7 / 74.5 95.4 / 93.6 96.5 / 96.7 87.4 / 87.8 93.0 / 93.6 93.2 / 93.7 75.3 / 77.6 90.1 / 90.9
Energy 96.8 / 97.1 68.9 / 87.3 96.5 / 95.4 96.7 / 95.5 66.3 / 79.5 95.8 / 94.2 97.0 / 97.1 89.8 / 90.2 93.2 / 94.0 93.3 / 94.1 77.5 / 80.9 90.6 / 91.8
Cosine 100.0 / 98.1 100.0 / 88.7 97.2 / 95.4 97.2 / 95.5 100.0 / 80.9 97.0 / 94.5 97.4 / 97.4 90.1 / 90.1 53.8 / 94.1 53.9 / 94.2 43.9 / 81.5 52.3 / 91.8
Maha 99.7 / 98.3 98.2 / 89.6 97.4 / 95.6 97.6 / 95.7 80.8 / 83.3 97.0 / 94.8 97.6 / 97.6 90.9 / 90.8 87.9 / 94.2 88.0 / 94.3 69.2 / 82.1 83.7 / 92.1

ROSTD

MSP 89.8 / 91.1 82.0 / 92.5 91.4 / 88.7 93.2 / 89.9 69.9 / 73.6 87.1 / 78.0 89.1 / 90.2 81.6 / 82.4 91.1 / 90.5 93.0 / 92.2 68.7 / 69.8 87.0 / 87.1
Energy 89.7 / 91.5 83.9 / 93.4 92.2 / 89.0 94.0 / 90.4 69.8 / 72.9 87.4 / 77.9 89.0 / 90.7 83.1 / 85.0 91.9 / 91.3 93.8 / 93.1 68.7 / 69.7 87.2 / 87.3
Cosine 100.0 / 99.5 100.0 / 99.6 97.8 / 96.7 97.6 / 96.7 100.0 / 96.7 99.0 / 96.5 99.5 / 99.4 98.5 / 98.4 59.2 / 95.6 58.7 / 95.7 64.4 / 94.2 69.3 / 96.8
Maha 99.9 / 99.6 99.8 / 99.6 97.8 / 97.1 97.7 / 97.1 99.5 / 97.1 99.0 / 96.9 99.6 / 99.5 98.8 / 98.7 86.7 / 95.7 86.4 / 95.8 90.1 / 94.8 94.2 / 96.9

BANK77OOS

MSP 87.9 / 87.6 79.8 / 91.5 82.2 / 74.4 82.4 / 74.3 72.1 / 80.7 79.0 / 76.8 90.6 / 89.8 91.6 / 91.2 78.3 / 77.8 78.3 / 77.7 82.1 / 82.1 79.7 / 79.5
Energy 90.0 / 89.8 84.0 / 93.3 83.1 / 76.1 83.2 / 75.9 75.6 / 84.2 80.5 / 79.9 92.3 / 91.7 93.5 / 93.1 79.5 / 79.5 79.4 / 79.4 84.5 / 85.0 81.5 / 82.0
Cosine 100.0 / 91.8 100.0 / 94.2 89.9 / 77.5 89.7 / 77.3 100.0 / 86.7 93.0 / 82.3 93.5 / 93.6 94.1 / 94.1 7.3 / 80.0 6.0 / 79.9 68.3 / 86.7 52.5 / 83.1
Maha 99.3 / 92.3 99.3 / 94.7 89.5 / 77.7 89.4 / 77.5 96.5 / 87.4 91.6 / 82.9 94.2 / 94.1 94.9 / 94.7 57.8 / 80.1 57.4 / 79.9 78.7 / 87.3 71.6 / 83.4

OOSBANK

MSP 90.0 / 90.0 92.3 / 95.6 85.9 / 81.9 86.5 / 81.6 80.4 / 84.8 81.0 / 80.8 93.5 / 93.8 97.2 / 97.3 83.3 / 83.5 82.6 / 82.7 90.6 / 91.9 86.8 / 88.2
Energy 88.6 / 88.8 92.0 / 95.4 85.7 / 79.5 86.4 / 79.2 78.9 / 82.7 80.1 / 78.5 93.3 / 93.9 97.5 / 97.7 83.4 / 82.0 82.7 / 81.1 90.3 / 91.2 86.4 / 87.5
Cosine 100.0 / 94.4 100.0 / 97.2 99.1 / 84.0 99.0 / 83.4 100.0 / 90.3 99.7 / 86.8 96.0 / 96.2 98.3 / 98.3 31.5 / 84.2 25.9 / 83.2 86.8 / 93.7 77.7 / 90.7
Maha 100.0 / 94.6 100.0 / 97.4 99.1 / 84.7 99.0 / 84.1 100.0 / 91.0 99.7 / 87.8 96.6 / 96.6 98.6 / 98.6 20.7 / 84.2 14.3 / 83.2 85.6 / 93.9 75.4 / 91.0

OOSCREDIT

softmax 89.1 / 90.8 90.6 / 95.4 83.1 / 80.3 83.4 / 79.7 80.4 / 86.3 80.9 / 82.3 93.4 / 94.1 97.0 / 97.2 81.2 / 82.7 80.3 / 81.8 90.0 / 91.9 86.4 / 88.7
energy 87.9 / 89.6 90.7 / 95.2 82.2 / 77.5 82.7 / 77.1 76.8 / 81.7 78.5 / 77.6 93.2 / 93.9 97.2 / 97.5 80.5 / 81.5 79.7 / 80.6 88.4 / 90.2 84.6 / 86.7
cosine 100.0 / 94.9 100.0 / 97.0 98.4 / 86.7 98.3 / 86.2 100.0 / 92.5 99.1 / 89.7 96.4 / 96.5 98.2 / 98.2 44.3 / 88.4 39.8 / 87.7 88.7 / 95.4 81.3 / 93.2
maha 100.0 / 95.4 100.0 / 97.4 98.4 / 87.6 98.3 / 87.0 100.0 / 93.3 99.1 / 90.7 97.2 / 97.1 98.7 / 98.7 61.1 / 88.8 58.1 / 88.1 91.1 / 95.6 85.6 / 93.7

BANK-75%

MSP 88.2 / 89.2 71.3 / 74.8 88.6 / 88.0 89.0 / 88.3 66.0 / 66.0 83.1 / 83.1 86.7 / 87.1 69.7 / 69.9 87.8 / 87.5 88.2 / 87.9 64.5 / 63.1 82.2 / 81.6
Energy 88.2 / 89.4 73.5 / 78.0 88.9 / 88.1 89.3 / 88.5 66.5 / 69.6 83.4 / 84.0 86.5 / 86.8 71.5 / 71.5 87.9 / 87.2 88.3 / 87.6 65.8 / 66.7 82.5 / 82.4
Cosine 100.0 / 91.7 100.0 / 79.4 95.6 / 89.0 95.5 / 89.3 100.0 / 73.4 96.6 / 85.6 89.9 / 89.5 74.8 / 74.2 23.7 / 88.4 23.3 / 88.7 43.6 / 69.9 36.3 / 83.6
Maha 100.0 / 92.2 100.0 / 80.1 95.6 / 89.4 95.5 / 89.6 100.0 / 77.3 96.6 / 86.5 90.6 / 90.4 74.8 / 74.9 37.8 / 87.9 37.7 / 88.2 47.1 / 72.1 44.3 / 83.7

STACKOVERFLOW-75%

MSP 90.0 / 90.1 68.5 / 68.3 86.7 / 85.9 87.7 / 86.8 71.8 / 71.3 83.1 / 82.8 90.0 / 90.5 68.5 / 69.3 86.7 / 86.8 87.7 / 87.8 71.5 / 71.8 83.1 / 83.4
Energy 90.7 / 90.8 69.6 / 69.2 87.3 / 86.5 88.2 / 87.4 73.4 / 72.8 84.0 / 83.5 90.6 / 91.2 69.6 / 70.4 87.1 / 87.2 88.1 / 88.2 72.9 / 73.3 83.7 / 84.0
Cosine 100.0 / 91.5 100.0 / 69.2 91.4 / 87.0 90.8 / 87.8 100.0 / 75.0 93.1 / 84.4 91.9 / 92.0 70.6 / 71.6 28.2 / 87.9 27.1 / 88.7 45.9 / 75.7 39.9 / 84.9
Maha 99.7 / 91.6 99.6 / 69.7 91.3 / 87.1 91.0 / 87.9 96.0 / 75.4 92.4 / 84.4 91.9 / 92.2 69.7 / 71.5 74.7 / 87.8 75.4 / 88.6 63.9 / 75.7 71.8 / 84.9

Table 2: OOD detection performance of confidence-score based techniques on different benchmark datasets (↑: higher is better).
Test F1All and Acc scores for the best performing pipeline are underlined. Highest scores on the datasets are in bold.1,2 Models
that leverage distance-based scores (DBS; Maha and Cosine) and are trained using Pipeline 1 consistently perform poorly on
threshold-depenedent metrics on the test-set. Furthermore DBS models that use Pipeline 2 substantially outperform their Pipeline
1 counterparts on all datasets (Columns 10-13; green ).

known classes (F1In), open class (F1Out), and all
classes combined (F1All). The latter four metrics
can only be calculated once a threshold is chosen.

3.3 Hyperparameters

We leverage the RoBERTa-base model imple-
mented in the HuggingFace library for classifi-
cation and use most of the default hyperparam-
eters.3 We experiment with training batch sizes
{32, 64, 128}. Model with batch size 64 performs
the best across all datasets. The learning rate for
ID classifier training is set to 2e-5. 4

3.4 Holdout set for threshold selection
Prior open-world classification research (Lin and
Xu, 2019; Zhang et al., 2021a,b) uses the ID (VAL-

1Each result is an average of 10 runs with different seeds.
2Scores on VAL cannot be compared to VAL-HOLD

(columns 2-7).
3https://huggingface.co/roberta-base
4All experiments are run on a Tesla V100 16GB GPU.

ID) and OOD (VAL-OOD) samples in the validation
data for threshold (δ) selection (Pipeline 1). We
also experiment with a second setup that splits VAL-
ID into two parts. VAL-TUNE-ID is used to tune
the in-domain classifier, whereas the other (VAL-
HOLD-ID), along with VAL-OOD5, helps in decid-
ing δ (Pipeline 2). For each dataset, we randomly
sample one-third of VAL-ID as our VAL-HOLD-ID.

Following prior art (Zhang et al., 2020, 2021b),
we tune δ to maximize (Ain + Roos). Ain and
Roos represent the ID accuracy and the out-of-scope
recall respectively on VAL / VAL-HOLD set.

4 Results and Analysis

Table 2 shows the performance of all compared
methods on both pipelines. We report the averaged
scores on 10 random seeds.6

5VAL-HOLD = VAL-HOLD-ID + VAL-OOD
6We exclude the std. dev. values due to lack of space.
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Figure 1: Maha distance (score) density plots for ID and OOD samples in CLINC
dataset (VAL-OOD = VAL-HOLD-OOD). Top two charts show the density distribution
for the model trained using Pipeline 1, whereas the bottom two focus on the model
that uses Pipeline 2. We note that for Pipeline 1, the curve for VAL-ID looks
substantially different from TEST-ID (top-left), suggesting that the thresholds selected
using VAL-ID (Pipeline 1) might not generalize to the test set. Compare this to
Pipeline 2 in-scope curve (bottom-left), where VAL-HOLD-ID almost exactly mimics
the distribution of TEST-ID scores.

Dataset F1All F1In F1Out Acc

CLINC Maha 94.2 94.3 82.1 92.1
ADB 93.3 93.4 79.3 90.6
ADB-R 94.3 94.4 81.7 92.0

ROSTD Maha 95.7 95.8 94.8 96.9
ADB 95.0 95.7 86.5 93.3
ADB-R 95.1 95.8 86.3 93.3

BANK77OOS Maha 80.1 79.9 87.3 83.4
ADB 78.6 78.5 84.7 81.6
ADB-R 81.1 81.0 87.1 83.9

OOSBANK Maha 84.2 83.2 93.9 91.0
ADB 81.4 80.5 90.0 86.0
ADB-R 81.9 81.1 89.5 85.5

OOSCREDIT Maha 88.8 88.1 95.6 93.7
ADB 82.8 82.0 90.8 87.2
ADB-R 79.4 78.7 86.8 82.8

BANK-75% Maha 87.9 88.2 72.1 83.7
ADB* 86.0 86.3 66.5 81.1
ADB-R 88.4 88.7 69.5 83.4

SO-75% Maha 87.8 88.6 75.7 84.9
ADB* 86.0 86.8 73.9 82.8
ADB-R 87.6 88.5 74.5 84.3

Table 3: Test-set OOD detection perfor-
mance of Cosine and Maha (Pipeline
2), and ADB variants on Accuracy and
different F1-measures. ADB* denotes
the official scores from (Zhang et al.,
2021a). Maha (Pipeline 2) significantly
outperforms (p < 0.01) ADB variants
on ROSTD, OOSBANK, OOSCREDIT, and
STACKOVERFLOW-75% datasets.

Models trained using Pipeline 1. In line with
prior work (Zhou et al., 2021; Podolskiy et al.,
2021), we find that Maha and Cosine perform better
on the threshold-independent metrics (AUROC and
AUPRout) across all datasets. This suggests that
they are better at distinguishing ID instances from
those considered to be OOD.7

Evaluation on threshold-dependent metrics (Acc
and F1 scores) shows that the results obtained by
MSP and Energy (LBS) on the test set do not differ
much from the valid set, suggesting that the chosen
δ generalizes well to unseen data. Compare this to
Cosine and Maha (DBS) whose performance sees
a drastic drop on the test set, despite achieving
better scores on the valid set. This suggests that
thresholds selected using Pipeline 1 for DBS might
not transfer well to data in the wild, making them
less useful in practice for OOD detection.

Models trained using Pipeline 2. On most
datasets, the performance of these models on the
test set mirrors that on the VAL-HOLD set. Further-
more, we see a consistent improvement in test Acc
and F1 scores of all confidence-score methods as
compared to their Pipeline 1 counterparts. Cosine
and Maha see the highest gains, witnessing relative
boosts as high as 100% on BANK-75% and STACK-

7Threshold-independent metrics cannot be calculated for
ADB as it does not use a confidence-score for OOD detection.

OVERFLOW-75%. Overall, thresholds chosen using
Pipeline 2 seem to hold up better on unseen sam-
ples across the board, with Maha outperforming all
other strategies on most datasets.

The top two plots in Figure 1 show the density
plot of Mahalanobis distance values over CLINC ID

and OOD data on VAL and test sets. We observe
that although the distributions of TEST-OOD and
VAL-OOD are quite similar, there are significant
differences between the graphs for ID data (VAL-ID

vs TEST-ID). There seem to be no VAL-ID samples
with Maha score below -3000, whereas for TEST-ID,
a substantial number of instances lie below -3000.
This discrepancy might be a result of the slight
overfitting of the trained ID classifier on VAL-ID

samples as it leverages them for tuning. Compare
this to the bottom two curves (in Figure 2) which
plot Test vs VAL-HOLD instances. The density plots
for both ID and OOD samples are almost identical.
8 Therefore, thresholds selected using VAL-HOLD

are more likely to generalize to the unseen test set.

Comparison against ADB. ADB is the current
state-of-the-art approach for unsupervised OOD de-
tection. In Table 3, we report the performance of
ADB (Zhang et al., 2021a)9 and ADB-R where
we replace the BERT encoder with RoBERTa-base

8We see similar patterns across all datasets, but leave those
figures out for brevity.

9https://github.com/thuiar/Adaptive-Decision-Boundary
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and train the entire encoder during training. Maha
(Pipeline 2) significantly outperforms (p < 0.01)10

ADB and ADB-R on ROSTD, OOSBANK, OOS-
CREDIT, and STACKOVERFLOW-75% while being
competitive with the best performing ADB variant
on the other three datasets.

5 Discussion and Conclusion

In this work, evaluate four confidence-score based
unsupervised OOD detection techniques on seven
state-of-the-art datasets. Most prior research (Zhou
et al., 2021; Podolskiy et al., 2021) on methods that
leverage distance-based statistics like Mahalanobis
distance (Maha) or Cosine similarity (Cosine) only
reports results on threshold-independent metrics
like AUROC or AUPR. However, we show that de-
spite their superior performance on AUROC, these
techniques observe substantially lower scores on
test ID and OOD detection Accuracy and F1-scores,
when the entire validation-set (used to tune the ID

classifier) is leveraged for threshold selection. This
severely limits their practical utility.

Our analysis suggests that this discrepancy might
be a result of the inadvertent overfitting of the
trained classifier on VAL-ID samples. We show
that this issue can be mitigated by leveraging a dif-
ferent evaluation setup that sets aside a hold-out set
(not used during ID classifier tuning) from valida-
tion data for threshold selection. We observe that
this new setup yields generalizable threshold val-
ues thus substantially improving the performance
of Maha and Cosine on threshold-dependent met-
rics and making them more useful in real-world
applications. Going forward, based on these find-
ings, we would like to implore other researchers
to also report the performance of their open-world
classification approaches on threshold-dependent
evaluation metrics, if applicable.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45.

10We performed a one-tailed t-test to evaluate significance.

Geli Fei and Bing Liu. 2016. Breaking the closed world
assumption in text classification. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 506–514.

Varun Gangal, Abhinav Arora, Arash Einolghozati, and
Sonal Gupta. 2020. Likelihood ratios and genera-
tive classifiers for unsupervised out-of-domain de-
tection in task oriented dialog. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7764–7771.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. Proceedings of ICLR.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt
Kira. 2020. Generalized odin: Detecting out-of-
distribution image without learning from out-of-
distribution data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 10951–10960.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
2018. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Ad-
vances in neural information processing systems, 31.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5491–5496.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. 2020. Energy-based out-of-distribution detection.
Advances in Neural Information Processing Systems,
33:21464–21475.

Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka-
terina Artemova, and Irina Piontkovskaya. 2021. Re-
visiting mahalanobis distance for transformer-based
out-of-domain detection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 13675–13682.

22



Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy,
Shreyas Padhy, and Balaji Lakshminarayanan. 2021.
A simple fix to mahalanobis distance for improving
near-ood detection. Proceedings of ICML.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor,
Alex J Smola, and Robert C Williamson. 2001. Esti-
mating the support of a high-dimensional distribution.
Neural computation, 13(7):1443–1471.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3795–3805.

Lei Shu, Hu Xu, and Bing Liu. 2017. Doc: Deep open
classification of text documents. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2911–2916.

David MJ Tax and Robert PW Duin. 2004. Support
vector data description. Machine learning, 54(1):45–
66.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
pages 62–69.

Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-
Ming Wu, and Albert YS Lam. 2021. Out-of-scope
intent detection with self-supervision and discrimi-
native training. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3521–3532.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep
open intent classification with adaptive decision
boundary. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14374–
14382.

Jian-Guo Zhang, Kazuma Hashimoto, Yao Wan, Ye Liu,
Caiming Xiong, and Philip S Yu. 2021b. Are pre-
trained transformers robust in intent classification?
a missing ingredient in evaluation of out-of-scope
intent detection. arXiv preprint arXiv:2106.04564.

Jianguo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, S Yu Philip, Richard
Socher, and Caiming Xiong. 2020. Discriminative
nearest neighbor few-shot intent detection by trans-
ferring natural language inference. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 5064–
5082.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. 2021.
Contrastive out-of-distribution detection for pre-
trained transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1100–1111.

23



Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 24 - 37
May 26, 2022 ©2022 Association for Computational Linguistics

Extending the Scope of Out-of-Domain: Examining QA models in multiple
subdomains

Chenyang Lyu† Jennifer Foster† Yvette Graham¶
† School of Computing, Dublin City University, Dublin, Ireland

¶ School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
chenyang.lyu2@mail.dcu.ie, jennifer.foster@dcu.ie, ygraham@tcd.ie

Abstract

Past work that investigates out-of-domain per-
formance of QA systems has mainly focused on
general domains (e.g. news domain, wikipedia
domain), underestimating the importance of
subdomains defined by the internal characteris-
tics of QA datasets. In this paper, we extend the
scope of “out-of-domain” by splitting QA ex-
amples into different subdomains according to
their internal characteristics including question
type, text length, answer position. We then ex-
amine the performance of QA systems trained
on the data from different subdomains. Exper-
imental results show that the performance of
QA systems can be significantly reduced when
the train data and test data come from different
subdomains. These results question the gener-
alizability of current QA systems in multiple
subdomains, suggesting the need to combat the
bias introduced by the internal characteristics
of QA datasets.

1 Introduction

Examining the out-of-domain performance of QA
systems is an important focus of the research com-
munity due to its direct connection to the general-
izability and robustness of QA systems especially
in production environments (Jia and Liang, 2017;
Chen et al., 2017; Talmor and Berant, 2019; Fisch
et al., 2019; Shakeri et al., 2020). Even though
previous studies mostly focus on coarse-grained
general domains (Ruder and Sil, 2021), the impor-
tance of finer-grained subdomains defined by the
internal characteristics of QA datasets cannot be
neglected. For example, several studies exploring
specific internal characteristics of QA datasets have
been carried out, including Ko et al. (2020), who
reveal that the sentence-level answer position is a
source of bias for QA models, and Sen and Saf-
fari (2020) who investigate the effect of word-level
question-context overlap. Building on this prior
work as well as the definition and discussion of sub-
domain in Plank and Sima’an (2008); Plank (2016);
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Figure 1: We train QA systems on each subdomain and
evaluate each system on all subdomains

Varis and Bojar (2021), we extend the scope of out-
of-domain with a view to assessing the generaliz-
ability and robustness of QA systems by investigat-
ing their out-of-subdomain performance. As shown
in Figure 1, we split the QA dataset into different
subdomains based on its internal characteristics.
Then we use the QA examples in each subdomain
to train corresponding QA systems and evaluate
their performance on all subdomains.

We focus on extractive QA as it is not only an
important task in itself (Zhang et al., 2020) but also
the crucial reader component in the retriever-reader
model for Open-domain QA (Chen et al., 2017;
Chen and Yih, 2020). In experiments with SQuAD
1.1 (Rajpurkar et al., 2016) and NewsQA (Trischler
et al., 2017), we split the data into subdomains
based on question type, text length (context, ques-
tion and answer) and answer position. We then
train QA systems on each subdomain and exam-
ine their performance on each subdomain. Results
show that QA systems tend to perform worse when
train and test data come from different subdomains,
particularly those defined by question type, answer
length and answer position.
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2 Experiments

We employ the QA datasets, SQuAD1.1 (Rajpurkar
et al., 2016) and NewsQA (Trischler et al., 2017).
For SQuAD1.1 we use the official dataset released
by Rajpurkar et al. (2016) and for NewsQA we
use the data from MRQA (Fisch et al., 2019). For
question classification, we use the dataset from Li
and Roth (2002). We use the BERT-base-uncased
model from Huggingface (Wolf et al., 2019) for
both question classification and QA.1

We adopt the following setup for training and
evaluation: We split the original training set D
into several disjoint subdomains Da, Db, Dc, . . .;
Then we sample subsets from each subdomain
using sample sizes n1, n2, n3, . . . in ascend-
ing order. The resulting subsets are denoted
Dn1

a , Dn2
a , . . . , Dn1

b , Dn2
b , . . .. We train QA sys-

tems on each subset Dn1
a , Dn2

a , . . .. The QA sys-
tem trained on Dn1

a is denoted QAn1
a . We evaluate

each QA system on the test data T which is also
split into disjoint subdomains Ta, Tb, Tc, . . . similar
to the training data D.

2.1 Question Type
In this experiment we investigate how QA models
learn from QA examples with different question
types. We adopt question classification data (Li and
Roth, 2002) to train a question classifier that cat-
egorizes questions into the following five classes:
HUM, LOC, ENTY, DESC, NUM (Zhang and Lee,
2003). The definitions and examples of each ques-
tion type are shown in Table 1.

The training data is then partitioned into five cat-
egories according to their question type. Question
type proportions for SQuAD1.1 and NewsQA are
shown in Table 2, with a high proportion of ENTY
and NUM questions in SQuAD1.1, while NewsQA
has more HUM and DESC questions. We use QA
examples of each question type to train a QA sys-
tem, increasing the training set size in intervals
of 500 from 500 to 8000. We evaluate it on the
test data, which is also divided into five categories
according to question type.

The F-1 scores of the QA systems trained on
each question type subdomain are shown in Fig-
ure 2, for both SQuAD1.1 and NewsQA. The x-
axis represents the training set size, the y-axis is
the F-1 score. The results show that a QA sys-
tem learns to answer a certain type of question
mainly from the examples of the same question

1Hyperparameter settings are provided in Appendix A.1.
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Figure 2: Visualization of F-1 learning curves for the
QA systems trained on the subdomains of five ques-
tion types (HUM,LOC,ENTY,DESC,NUM), tested on
the subdomains for each question type and the original
dev set of SQuAD1.1 (top) and NewsQA (bottom).

type – this is particularly true for HUM and NUM
questions in SQuAD1.1 and HUM, LOC and NUM
questions in NewsQA. Taking NUM questions as
an example, the rightmost plots in Figure 2 show
that performance on other question types results in
only minor improvements as the training set size
increases compared to the improvements on the
NUM question type. The QA system gets most of
the knowledge it needs to answer NUM questions
from the NUM training examples and a similar pat-
tern is present for other question types.

The results in Figure 2 show that the subdomain
defined by question type is a source of bias when
training and employing QA systems. We suspect
that word use and narrative style vary over ques-
tion types, injecting bias into QA systems when
learning from QA examples with different question
types. Therefore, we need to improve the diversity
of question types when constructing and organising
QA data.

2.2 Text Length

The effect of text length on the performance and
generalizability of neural models has been dis-
cussed in text classification and machine transla-
tion (Amplayo et al., 2019; Varis and Bojar, 2021).
As for QA, there are three components in a QA
example: context, question, answer. The length of
each component could potentially introduce addi-
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Question type Definition Examples
HUM people, individual, group,

title
What contemptible scoundrel stole the cork from my
lunch ?
Which professor sent the first wireless message in the
USA ?
Who was sentenced to death in February ?

LOC location, city, country,
mountain, state

Where is the Kalahari desert ?
Where is the theology library at Notre Dame ?
Where was Cretan when he heard screams ?

ENTY animal, body, color,
creation, currency, dis-
ease/medical, event, food,
instrument, language,
plant, product, religion,
sport, symbol, technique,
term, vehicle

What relative of the racoon is sometimes known as
the cat-bear ?
What is the world’s oldest monographic music com-
petition ?
What was the name of the film about Jack Kevorkian
?

DESC definition, description,
manner, reason

What is Eagle ’s syndrome styloid process ?
How did Beyonce describe herself as a feminist ?
What are suspects blamed for ?

NUM code, count, date, distance,
money, order, other, per-
cent, period, speed, tem-
perature, size, weight

How many calories are there in a Big Mac ?
What year did Nintendo announce a new Legend of
Zelda was in the works for Gamecube ?
How many tons of cereal did Kelloggs donate ?

Table 1: Definition of each question type and corresponding examples in SQuAD1.1 and NewsQA.

LOC ENTY HUM NUM DESC

SQuAD1.1 Train set 11.4 27.6 20.7 24.5 15.5
Dev set 10.5 27.6 21.0 23.0 17.4

NewsQA Train set 11.4 16.9 30.0 18.8 22.6
Dev set 12.3 16.9 32.2 17.8 20.5

Table 2: The percentage (%) of question types in the
SQuAD1.1 and NewsQA train and dev sets.

tional bias and affect how QA systems learn from
QA data. For example, a short context could be
easy since a shorter context could reduce the search
space for QA models to locate the answer; on the
other hand, a short context could be hard as it could
contain less information Therefore, the following
question arises naturally: are short and long con-
texts/questions/answers equivalent?

To answer this question, we split the QA
datasets into short and long groups accord-
ing to the median of the length of con-
texts/questions/answers.2 Then we train QA sys-
tems on the QA examples sampled from short
(QAS,context, QAS,question, QAS,answer) and long
(QAL,context, QAL,question, QAL,answer) groups

2See the Appendix for more statistics.

respectively, increasing the training set size in in-
tervals of 500 from 500 to 25000.

The results are shown in Figure 3, where the x-
axis is the training set size and the y-axis is the ratio
of the performance (EM and F-1 score) of the QAS

and corresponding QAL systems on the text length
subdomains of context/question/answer. If QAL

and QAS have no obvious difference in terms of
performance on long and short groups respectively,
the ratio of their performance should be close to 1.

The results show that the performance of QAL

and QAS trained on the subdomains of context and
question length have no obvious difference as all
the three curves converge to 1, although there are
fluctuations when the sample sizes are small. In
contrast, QAL and QAS trained on the subdomain
of answer length behave differently – see the sub-
plots in the two rightmost columns of Figure 3.
QAL performs much better than QAS on the test
examples with long answers and much worse than
QAS on the test examples with short answers.

The results in Figure 3 show that the length of
the answer introduces strong bias to QA systems.
We think this stems from the fact that QAL tends to
predict longer answers, whereas QAS tends to pre-
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Figure 3: Visualization of performance (EM and F-1 score) ratio curves over long and short context, question and
answer (from left to right) on SQuAD1.1 (top) and NewsQA (bottom). The green, red lines represent the ratio of
the performance on the long and short groups. The dashed line is 1, indicating that two QA systems have the same
performance. When the sample size increases, curves in context and question length converge to the dashed line,
whereas there are substantial differences in the performance of QAL and QAS on the answer length subdomain.

Context Question Answer

Long Short Long Short Long Short

SQuAD1.1 4.03 4.13 4.00 4.23 6.41 2.78
NewsQA 5.46 5.33 5.16 5.87 9.57 3.51

Table 3: The average length of predicted answers of QA
systems trained on long and short subdomains of context,
question and answer on SQuAD1.1 and NewsQA.

dict shorter answers, and they thus underperform in
the counterpart subdomain. We show the average
length of the predicted answers of QAL and QAS

in Table 3. Therefore, it is important to control the
length distribution of answers when constructing
and organising QA datasets, especially using NER
tools in the answer extraction phase since they tend
to find shorter answers.

2.3 Answer Position

Ko et al. (2020) study the effect of sentence-
level answer position. Building on their anal-
ysis, we study the effect of two more types
of answer position: character-level position and
word-level position. We split the training set
into front and back groups based on the me-
dian of the answer start positions at the charac-
ter, word and sentence level.3 Then we train

3See the Appendix for more statistics.

QA systems on the examples sampled from the
front (QAF,char, QAF,word, QAF,sent) and back
(QAB,char, QAB,word, QAB,sent) groups respec-
tively, increasing the training set size in intervals
of 500 from 500 to 25000.

The results are shown in Figure 4, where the x-
axis is the training set size and the y-axis is the ratio
of the performance (EM and F-1 score) of QAF

and QAB on the answer position subdomains at
the character, word and sentence level. The results
show that answer position is a source of bias at all
three levels. QAF performs much better than QAB

on test instances with answer positions in the front,
whereas QAB performs much better than QAF on
test instances with answer positions at the back.
The effect of bias is more serious at the character
and word level. We think this answer position bias
is happening because words in different positions
have different position embeddings, which could
also affect word semantics in transformer archi-
tectures (Vaswani et al., 2017; Wang et al., 2020).
This suggests the need to make sure answer posi-
tion distribution is balanced as well as the need to
develop QA systems that are more robust to answer
position variation.

3 Conclusion

We presented a series of experiments investigating
the out-of-subdomain performance of QA systems
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Figure 4: Visualization of performance (EM and F-1 score) ratio curves over front and back answer positions
(char-level, word-level and sentence-level from left to right) on SQuAD1.1 (top) and NewsQA (bottom). The green,
red lines represent the ratio of the performance on the front and back groups. The dashed line is 1, indicating that two
QA systems have the same performance. The curves show that there are substantial differences in the performance
of QAF and QAB in answer position subdomains, especially for character-level and word-level answer positions.

on two popular English extractive QA datasets:
SQuAD1.1 and NewsQA. The experimental results
show that the subdomains defined by question type,
answer length and answer position inject strong
bias into QA systems, with the result that the per-
formance of QA systems is negatively impacted
when train and test data come from different subdo-
mains. The experiments provide useful information
on how to control question diversity, answer length
distribution as well as answer positions when con-
structing QA datasets and employing QA systems.
In future work, we aim to apply our analysis to mul-
tilingual data to explore how QA models behave
across different languages and we plan to investi-
gate other types of QA beyond extractive.
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A Appendix

A.1 Experimental Setup

We use bert-based-uncased as our QA model. The
learning rate is set to 3e-5, the maximum sequence
length is set to 384, and the doc stride length is set
to 128. We run the training process for 2 epochs.
The training batch size is 48. The training was
conducted on one GeForce GTX 3090 GPU.

A.2 Average Text Length and Answer Position
for All Question Types

We show the average text length of context, ques-
tion and answer as well as the average answer po-
sition on character-level, word-level and sentence-
level for QA examples in all question types in
SQuAD1.1 and NewsQA in Table 4 and Table 5.

A.3 Question Type Proportions, Average Text
Length and Average Answer Position for
Long and Short Text Length

The median of the context, question, answer is
shown in Table 6. We show the question type pro-
portion, average text length for context, question
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Context Question Answer

SQuAD1.1

HUM 123.20 9.79 2.82
LOC 117.18 9.62 2.78

DESC 119.32 9.91 5.82
ENTY 117.43 10.54 3.04
NUM 121.09 10.11 2.08

NewsQA

HUM 495.79 6.55 2.82
LOC 478.84 6.34 2.87

DESC 513.00 6.25 7.62
ENTY 505.94 6.76 4.27
NUM 476.23 7.20 2.07

Table 4: The average text length of context, question
and answer in QA examples of each question type in
the SQuAD1.1 and NewsQA training data.

Char-Level Word-Level Sent-Level

SQuAD1.1

HUM 317.85 54.90 1.61
LOC 308.81 53.71 1.53

DESC 342.97 60.00 1.79
ENTY 317.75 55.16 1.63
NUM 315.78 56.19 1.67

NewsQA

HUM 532.11 101.02 3.71
LOC 566.02 107.99 3.95

DESC 844.13 160.05 5.98
ENTY 751.48 143.90 5.49
NUM 763.73 145.26 5.47

Table 5: The average answer position of character-level,
word-level and sentence-level in QA examples of each
question type in the SQuAD1.1 and NewsQA training
data.

Context Question Answer

SQuAD1.1 110 10 2
NewsQA 534 6 2

Table 6: The median of the context, question, answer
length used to partition long and short subdomains.

LOC ENTY HUM NUM DESC

SQuAD1.1 Long 11.11 26.68 21.65 24.8 15.43
Short 11.73 28.42 19.68 24.2 15.52

NewsQA Long 10.4 18.08 29.94 16.81 24.71
Short 12.38 15.86 30.24 20.9 20.55

Table 7: The percentage of each question type in long
context and short context groups.

LOC ENTY HUM NUM DESC

SQuAD1.1 Long 10.36 28.59 20.37 24.73 15.63
Short 12.11 26.90 20.84 24.35 15.37

NewsQA Long 9.45 18.29 29.70 23.66 18.90
Short 12.96 15.91 30.40 14.98 25.63

Table 8: The percentage of each question type in long
question and short question groups.

LOC ENTY HUM NUM DESC

SQuAD1.1 Long 10.87 27.32 19.69 21.8 19.86
Short 11.79 27.72 21.29 26.29 12.55

NewsQA Long 9.37 19.87 23.16 9.31 38.17
Short 13.13 14.48 36.03 27.05 9.29

Table 9: The percentage of each question type in long
answer and short answer groups.

Context Question Answer

SQuAD1.1 Long 84.53 9.99 3.09
Short 155.88 10.14 3.23

NewsQA Long 350.44 6.54 3.79
Short 641.35 6.69 4.25

Table 10: The average answer position on character-
level, word-level and sentence-level in QA examples of
long context and short context groups.

Context Question Answer

SQuAD1.1 Long 119.12 7.8 3.25
Short 120.76 13.57 3.03

NewsQA Long 491.15 4.96 4.45
Short 501.55 8.66 3.49

Table 11: The average answer position on character-
level, word-level and sentence-level in QA examples of
long question and short question groups.

Context Question Answer

SQuAD1.1 Long 119.08 10.18 1.42
Short 120.79 9.88 5.77

NewsQA Long 489.32 6.82 1.5
Short 503.34 6.37 6.95

Table 12: The average answer position on character-
level, word-level and sentence-level in QA examples of
long answer and short answer groups.

Char Word Sent

SQuAD1.1 Long 402.02 70.36 2.14
Short 239.75 41.78 1.17

NewsQA Long 864.85 165.73 6.40
Short 510.58 95.94 3.37

Table 13: The average answer position on character-
level, word-level and sentence-level in QA examples of
long context and short context groups.

Char Word Sent

SQuAD1.1 Long 342.02 59.70 1.74
Short 305.65 53.45 1.58

NewsQA Long 726.78 138.64 5.22
Short 655.98 124.50 4.61

Table 14: The average answer position on character-
level, word-level and sentence-level in QA examples of
long question and short question groups.
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Char Word Sent

SQuAD1.1 Long 324.65 57.77 1.71
Short 316.70 54.65 1.60

NewsQA Long 795.46 150.20 5.61
Short 595.00 114.17 4.26

Table 15: The average answer position on character-
level, word-level and sentence-level in QA examples of
long answer and short answer groups.

Char Word Sent

SQuAD1.1 262 46 1
NewsQA 358 67 2

Table 16: The median of the answer position on
character-level, word-level and sentence-level used to
partition front and back subdomains.

and answer as well as the average answer position
on character-level, word-level and sentence-level
for QA examples in long and short groups of con-
text, question, answer in SQuAD1.1 and NewsQA
in Table 7, Table 8, Table 9, Table 10 Table 11,
Table 12, Table 13, Table 14, Table 15.

A.4 Question Type Proportions, Average Text
Length and Average Answer Position for
QA examples with Front and Back
Answer Positions

The median of the answer position at the charac-
ter, word and sentence levels is shown in Table 16.
We show the question type proportion, average text
length for context, question and answer as well as
the average answer position at the character, word
and sentence levels for QA examples in the front
and back groups of answer positions at the charac-
ter, word and sentence levels for SQuAD1.1 and
NewsQA in Table 17, Table 18, Table 19, Table 20,
Table 21, Table 22, Table 23, Table 24, Table 25.

A.5 QA examples with long and short answers

We give some QA examples with long and short
answers in Table 26 and Table 27.

LOC ENTY HUM NUM DESC

SQuAD1.1 Front 11.74 27.8 20.25 24.97 14.81
Back 11.11 27.32 21.06 24.02 16.14

NewsQA Front 13.07 15.59 37.2 15.61 18.46
Back 9.71 18.36 22.97 22.1 26.8

Table 17: The percentage of each question type in front
and back groups on character-level answer position

LOC ENTY HUM NUM DESC

SQuAD1.1 Front 11.76 28.05 20.28 24.49 14.99
Back 11.16 27.08 21.00 24.45 15.94

NewsQA Front 13.02 15.59 37.20 15.64 18.48
Back 9.74 18.43 22.85 22.11 26.81

Table 18: The percentage of each question type in front
and back groups on word-level answer position

LOC ENTY HUM NUM DESC

SQuAD1.1 Front 11.72 27.83 20.60 24.48 14.95
Back 11.04 27.18 20.71 24.56 16.15

NewsQA Front 13.19 15.76 36.08 16.36 18.54
Back 9.56 18.54 23.11 22.06 26.67

Table 19: The percentage of each question type in front
and back groups on sentence-level answer position

Char Word Sent

SQuAD1.1 Front 116.25 20.6 0.44
Back 524.15 91.3 2.85

NewsQA Front 145.24 28.72 0.61
Back 1230.24 232.96 9.15

Table 20: The average answer position on character-
level, word-level and sentence-level in QA examples of
front and back groups of character-level answer position.

Char Word Sent

SQuAD1.1 Front 127.4 19.34 0.44
Back 515.71 93.09 2.88

NewsQA Front 151.46 28.04 0.65
Back 1229.77 234.74 9.17

Table 21: The average answer position on character-
level, word-level and sentence-level in QA examples of
front and back groups of word-level answer position.

Char Word Sent

SQuAD1.1 Front 158.46 26.12 0.4
Back 532.52 95.11 3.28

NewsQA Front 183.56 35.56 0.63
Back 1280.56 242.86 9.89

Table 22: The average answer position on character-
level, word-level and sentence-level in QA examples of
front and back groups of sentence-level answer position.

Context Question Answer

SQuAD1.1 Front 108.80 9.83 3.06
Back 130.77 10.30 3.26

NewsQA Front 473.52 6.50 3.28
Back 518.08 6.72 4.75

Table 23: The average text length of context, question
and answer in QA examples of front and back groups of
character-level answer position
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Figure 5: Visualization of performance (EM and F-1 score) difference curves over short and long context, question
and answer (from left to right) on SQuAD1.1 (top) and NewsQA (bottom). The green, red lines represent the
difference of the performance on the long and short groups. The dashed line is 0, indicating that two QA systems
have the same performance. When the sample size increases, curves in context and question length converge to the
dashed line, whereas there are substantial differences in the performance of QAL and QAS in the answer length
subdomain.
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Figure 6: Visualization of performance (EM and F-1 score) difference curves over front and back answer positions
(char-level, word-level and sentence-level from left to right) on SQuAD1.1 (top) and NewsQA (bottom). The green,
red lines represent the difference of the performance on the front and back groups. The dashed line is 0, indicating
that two QA systems have the same performance. The curves show that there are substantial differences in the
performance of QAF and QAB in answer position subdomains especially for character-level and word-level answer
positions.
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Context Question Answer

SQuAD1.1 Front 109.21 9.84 3.03
Back 130.50 10.28 3.30

NewsQA Front 473.13 6.50 3.32
Back 518.72 6.72 4.72

Table 24: The average text length of context, question
and answer in QA examples of front and back groups of
word-level answer position

Context Question Answer

SQuAD1.1 Front 110.14 9.93 3.04
Back 132.44 10.23 3.33

NewsQA Front 474.28 6.52 3.58
Back 521.11 6.73 4.54

Table 25: The average text length of context, question
and answer in QA examples of front and back groups of
sentence-level answer position

A.6 QA examples with front and back answers
We give some QA examples with character-level
answer positions in the front and back groups in
Table 28 and Table 29.

A.7 Performance Difference for Text Length
and Answer Position Experiments

We also show the difference in performance (EM
and F-1 score) between QA systems (QAL−QAS

and QAF − QAB) on subdomains of text length
and answer position in Figure 5 and Figure 6.
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Answer Length Question Context
Long Where was the main focus

of Pan-Slavism?
Pan-Slavism, a movement which came into promi-
nence in the mid-19th century, emphasized the com-
mon heritage and unity of all the Slavic peoples. The
main focus was in the Balkans where the South Slavs
had been ruled for centuries by other empires: the
Byzantine Empire, Austria-Hungary, the Ottoman
Empire, and Venice. The Russian Empire used Pan-
Slavism as a political tool; as did the Soviet Union,
which gained political-military influence and control
over most Slavic-majority nations between 1945 and
1948 and retained a hegemonic role until the period
1989–1991.

Long What is one reason for ho-
mologs to appear?

Genes with a most recent common ancestor, and
thus a shared evolutionary ancestry, are known as
homologs. These genes appear either from gene
duplication within an organism’s genome, where
they are known as paralogous genes, or are the result
of divergence of the genes after a speciation event,
where they are known as orthologous genes,:7.6 and
often perform the same or similar functions in related
organisms. It is often assumed that the functions
of orthologous genes are more similar than those of
paralogous genes, although the difference is minimal.

Long How does the water vapor
that rises in warm air turn
into clouds?

Solar radiation is absorbed by the Earth’s land sur-
face, oceans – which cover about 71% of the globe
– and atmosphere. Warm air containing evaporated
water from the oceans rises, causing atmospheric cir-
culation or convection. When the air reaches a high
altitude, where the temperature is low, water vapor
condenses into clouds, which rain onto the Earth’s
surface, completing the water cycle. The latent heat
of water condensation amplifies convection, produc-
ing atmospheric phenomena such as wind, cyclones
and anti-cyclones. Sunlight absorbed by the oceans
and land masses keeps the surface at an average tem-
perature of 14 °C. By photosynthesis green plants
convert solar energy into chemically stored energy,
which produces food, wood and the biomass from
which fossil fuels are derived.

Table 26: Examples of QA examples with long answers where answers are highlighted.
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Answer Length Question Context
Short Who led the Exodus? According to the Hebrew Bible narrative, Jewish an-

cestry is traced back to the Biblical patriarchs such
as Abraham, Isaac and Jacob, and the Biblical matri-
archs Sarah, Rebecca, Leah, and Rachel, who lived in
Canaan around the 18th century BCE. Jacob and his
family migrated to Ancient Egypt after being invited
to live with Jacob’s son Joseph by the Pharaoh him-
self. The patriarchs’ descendants were later enslaved
until the Exodus led by Moses, traditionally dated
to the 13th century BCE, after which the Israelites
conquered Canaan.

Short When did the Duke of
Kent die?

Victoria was the daughter of Prince Edward, Duke of
Kent and Strathearn, the fourth son of King George
III. Both the Duke of Kent and King George III died
in 1820, and Victoria was raised under close supervi-
sion by her German-born mother Princess Victoria of
Saxe-Coburg-Saalfeld. She inherited the throne aged
18, after her father’s three elder brothers had all died,
leaving no surviving legitimate children. The United
Kingdom was already an established constitutional
monarchy, in which the sovereign held relatively little
direct political power. Privately, Victoria attempted
to influence government policy and ministerial ap-
pointments; publicly, she became a national icon who
was identified with strict standards of personal moral-
ity.

Short What is the evaluator
called in a breed show?

In conformation shows, also referred to as breed
shows, a judge familiar with the specific dog breed
evaluates individual purebred dogs for conformity
with their established breed type as described in the
breed standard. As the breed standard only deals
with the externally observable qualities of the dog
(such as appearance, movement, and temperament),
separately tested qualities (such as ability or health)
are not part of the judging in conformation shows.

Table 27: Examples of QA examples with short answers where answers are highlighted.

35



Answer Position Question Context
Front What are the first names

of the men that invented
youtube?

According to a story that has often been repeated in
the media, Hurley and Chen developed the idea for
YouTube during the early months of 2005, after they
had experienced difficulty sharing videos that had
been shot at a dinner party at Chen’s apartment in
San Francisco. Karim did not attend the party and
denied that it had occurred, but Chen commented
that the idea that YouTube was founded after a dinner
party ẅas probably very strengthened by marketing
ideas around creating a story that was very digestible.̈

Front Who became Chairman of
the Council of Ministers in
1985?

In the fall of 1985, Gorbachev continued to bring
younger and more energetic men into government.
On September 27, Nikolai Ryzhkov replaced 79-year-
old Nikolai Tikhonov as Chairman of the Council
of Ministers, effectively the Soviet prime minister,
and on October 14, Nikolai Talyzin replaced Nikolai
Baibakov as chairman of the State Planning Com-
mittee (GOSPLAN). At the next Central Committee
meeting on October 15, Tikhonov retired from the
Politburo and Talyzin became a candidate. Finally,
on December 23, 1985, Gorbachev appointed Yeltsin
First Secretary of the Moscow Communist Party re-
placing Viktor Grishin.

Front During what seasons is
fog common in Boston?

Fog is fairly common, particularly in spring and
early summer, and the occasional tropical storm or
hurricane can threaten the region, especially in late
summer and early autumn. Due to its situation along
the North Atlantic, the city often receives sea breezes,
especially in the late spring, when water temperatures
are still quite cold and temperatures at the coast can
be more than 20 °F (11 °C) colder than a few miles
inland, sometimes dropping by that amount near mid-
day. Thunderstorms occur from May to September,
that are occasionally severe with large hail, damaging
winds and heavy downpours. Although downtown
Boston has never been struck by a violent tornado,
the city itself has experienced many tornado warn-
ings. Damaging storms are more common to areas
north, west, and northwest of the city. Boston has a
relatively sunny climate for a coastal city at its lat-
itude, averaging over 2,600 hours of sunshine per
annum.

Table 28: Examples of QA examples with answers in front group where answers are highlighted.
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Answer Position Question Context
Back How many murders did

Detroit have in 2015?
Detroit has struggled with high crime for decades.
Detroit held the title of murder capital between 1985-
1987 with a murder rate around 58 per 100,000.
Crime has since decreased and, in 2014, the murder
rate was 43.4 per 100,000, lower than in St. Louis,
Missouri. Although the murder rate increased by 6%
during the first half of 2015, it was surpassed by St
Louis and Baltimore which saw much greater spikes
in violence. At year-end 2015, Detroit had 295 crim-
inal homicides, down slightly from 299 in 2014.

Back Who was leading the Con-
servatives at this time?

Despite being a persistent critic of some of the
government’s policies, the paper supported Labour
in both subsequent elections the party won. For
the 2005 general election, The Sun backed Blair
and Labour for a third consecutive election win
and vowed to give him öne last chanceẗo fulfil his
promises, despite berating him for several weak-
nesses including a failure to control immigration.
However, it did speak of its hope that the Conser-
vatives (led by Michael Howard) would one day be
fit for a return to government. This election (Blair
had declared it would be his last as prime minister)
resulted in Labour’s third successive win but with a
much reduced majority.

Back Who lost the 2015 Nige-
rian presidential election?

Nigeria is a Federal Republic modelled after the
United States, with executive power exercised by
the president. It is influenced by the Westminster
System model[citation needed] in the composition
and management of the upper and lower houses of
the bicameral legislature. The president presides as
both Head of State and head of the national executive;
the leader is elected by popular vote to a maximum of
two 4-year terms. In the March 28, 2015 presidential
election, General Muhammadu Buhari emerged vic-
torious to become the Federal President of Nigeria,
defeating then incumbent Goodluck Jonathan.

Table 29: Examples of QA examples with answers in back group where answers are highlighted.
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Abstract

We combine beam search with the probabilis-
tic pruning technique of nucleus sampling to
create two deterministic nucleus search algo-
rithms for natural language generation. The
first algorithm, p-exact search, locally prunes
the next-token distribution and performs an ex-
act search over the remaining space. The sec-
ond algorithm, dynamic beam search, shrinks
and expands the beam size according to the
entropy of the candidate’s probability distribu-
tion. Despite the probabilistic intuition behind
nucleus search, experiments on machine trans-
lation and summarization benchmarks show
that both algorithms reach the same perfor-
mance levels as standard beam search.

1 Introduction

The standard approach to natural language genera-
tion uses a search algorithm, guided by an autore-
gressive (conditional) language model, to search
through the space of possible strings. Since this
search space is immense, pruning techniques have
been introduced to facilitate tractable text genera-
tion. Beam search (Reddy, 1977) is a deterministic
algorithm that prunes the search space according
to the relative rank of each prefix, keeping only the
top b prefixes at every step. Although rank-based
pruning has no probabilistic justification – it is
mainly motivated by its ability to limit memory con-
sumption – beam search is an effective approach for
generation tasks such as machine translation and
summarization. Nucleus sampling (Holtzman et al.,
2020), on the other hand, is a stochastic algorithm,
which prunes the bottom percentile of the model’s
next-token distribution, thus eliminating bad candi-
dates while retaining some degree of randomness,
which is important for free-form generation. What
if we were to replace beam search’s rank-based
pruning mechanism (top k) with the probabilistic
mechanism of nucleus sampling (top p)?

We experiment with two variants of this hypo-
thetical nucleus search. The first algorithm, p-exact
search, locally prunes the search space by retaining
only the top p of every next-token distribution that
the underlying language model produces. It then
performs an exact search over the remaining space,
guaranteeing the most probable sequence under the
local pruning assumption. The second algorithm,
dynamic beam search, selects the top p beams at
each step, according to their normalized probabili-
ties (rather than top k, by rank). This method can
shrink or enhance the number of beams to match
the current step’s low or high entropy, respectively.

We evaluate both algorithms on three conditional
generation benchmarks: subword-level transla-
tion (WMT’14 EN-FR), character-level translation
(IWSLT’14 DE-EN), and summarization (XSUM).
While we observe that both nucleus search algo-
rithms produce competitive results with standard
beam search, we do not find any empirical advan-
tage to our probabilistically-motivated approach.

We further analyze the algorithms by isolating
the impact of dynamically expanding or shrinking
the number of candidates. Experiments show that
expanding the beam, even when entropy is high,
tends to decrease performance. Pruning candidates,
on the other hand, appears to have no adverse ef-
fects, and may even have a marginal positive effect
in certain cases, which possibly cancels out with
the negative effects of beam expansion.

2 Background

Natural language generation can be defined as a
search problem in the space of possible sequences
over a token vocabulary V , where the goal is to
find an optimal sequence Y = (y1, ..., yn) ∈ V ∗

according to some cost function. Typical search
algorithms explore this infinite space via sequence
prefixes, starting with the empty sequence, and
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appending one potential token yt at a time. Search
terminates by returning a sequence (or a sequences
set) that ends with a special token that indicates the
end of the sequence (EOS).

The cost function is based on an underlying lan-
guage model that, given a prefix Y<t, induces a
probability distribution over V , which we denote
P (yt|Y<t).1 The probability of a sequence (or pre-
fix) Y is computed as the product of its tokens
probabilities:

P (Y ) =
∏

t

P (yt|Y<t) (1)

In practice, it is common to use the negative log
probability instead:

− logP (Y ) =
∑

t

− logP (yt|Y<t) (2)

This defines a monotonic additive cost function,
where appending each token yt adds a positive cost
− logP (yt|Y<t) to the total cost of the sequence.

2.1 Beam Search

In many natural language generation tasks, beam
search (Reddy, 1977) is the algorithm of choice. It
extends the simple greedy algorithm by consider-
ing k possible prefixes {Y i

≤t}ki=1 at each timestep.
The beam size k is constant throughout the search,
guaranteeing a limit on memory consumption.

At every step t, beam search ranks all the pos-
sible single-token extensions of the current k pre-
fixes, and then keeps only the best k extensions
according to their total cost (Equation 2). Once
a prefix is appended with EOS, it is considered a
complete sequence, and remains fixed as long as
its cost is among the best k prefixes; if k (or more)
better prefixes are found, it is discarded. The algo-
rithm terminates when either the final token of all
top k sequences is EOS, or when t exceeds the pre-
defined maximum number of steps. In both cases,
it returns all sequences in the beam that end with
EOS.2

Assuming the models are tuned, results should
improve as the beam size k increases. However,
this assumption does not hold for contemporary

1The underlying model is often a conditional language
model P (yt|Y<t, X), which takes an additional sequence X
as part of its input. For brevity, we omit X from our notation.

2Typically, the system selects the top sequence in the set, or
chooses an alternative sequence via some reranking criterion.

models; in practice, text quality deteriorates when
using large values of k (Koehn and Knowles, 2017).
Furthermore, decoding with exact search (Dijkstra,
1959) reveals that translation models often rank
the empty string as the most probable sequence
(Stahlberg and Byrne, 2019). Perhaps unintention-
ally, searching with small beam sizes mitigates this
flaw.3

2.2 Nucleus Sampling

Deterministic search algorithms, such as beam
search, try to generate the most probable sequence.
This is a desirable property when we have many
constraints regarding the target output, as in trans-
lation or question answering. However, tasks that
require more creativity and diversity in language
may benefit from stochastic algorithms.

Holtzman et al. (2020) show that sampling from
a language model’s raw distribution P produces
degenerate text, and instead, suggest to sample
only from the nucleus, Sp: the smallest set of to-
kens whose sum of probabilities is larger than some
hyperparameter p. Specifically, nucleus sampling
prunes P by assigning zero probability to every
token outside of Sp, and renormalizes the probabil-
ities to get a new distribution Pp:

Pp(y|Y<t) =

{ P (y|Y<t)∑
y′∈Sp

P (y′|Y<t)
y ∈ Sp

0 y /∈ Sp

Here, we refer to this mechanism as tail pruning.
Sampling from Pp results in less degenerate and
more human-like text than both full-distribution
sampling and top-k sampling (Fan et al., 2018),
which do not account for the distribution’s entropy.

3 Nucleus Search

We combine beam search with tail pruning, produc-
ing two variants of nucleus search: p-exact search
and dynamic beam search.

3.1 p-Exact Search

Stahlberg and Byrne (2019) show that exact search
(Dijkstra, 1959) often produces extremely short
and even empty sequences because the underlying
model assigns a non-zero probability to the EOS to-
ken at each step. We use tail pruning (Section 2.2)

3a.k.a. the “blessing” of beam search (Meister et al., 2020).
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to round all near-zero probabilities (whether be-
longing to EOS or any other token) to zero. We
apply exact search over the pruned space, guaran-
teeing the most probable sequence that contains
only top-p tokens at each step.

Given a hyperparameter p, we apply tail prun-
ing to the model’s predicted token distribution
P (yt|Y<t). The pruned distribution Pp(yt|Y<t) as-
signs zero probability to all tokens in the bottom
1− p of the original distribution, and remonrmal-
ized probabilities for the rest. This procedure
prunes the EOS token when it is unlikely, prevent-
ing empty sequences and reducing the brevity bias.

3.2 Dynamic Beam Search

Beam search keeps a fixed number (k) of prefixes
according to their rank. When entropy is high,
the difference between the k-th most probable pre-
fix and the one ranked k + 1 might be minuscule,
and we may want the search algorithm to consider
such candidate prefixes as well. Conversely, when
entropy is low, the best prefix dominates the alter-
natives, making them redundant.

Dynamic beam search provides a mechanism for
increasing the beam size when entropy is high, and
pruning the number of prefixes when entropy is
low. Let kt be the number of viable prefixes at step
t. The model predicts the next-token distribution
for each prefix, creating kt · |V | candidates. Each
candidate Y i is scored according to its cumulative
probability P (Y i) (Equation 1). To determine the
beam size, we first normalize the probability scores
within the set of candidates, and then apply tail
pruning on the normalized probability:

P̂ (Y i) =
P (Y i)

∑kt·|V |
j=1 P (Y j)

As in p-exact search (Section 3.1), we use a hy-
perparameter p to determine the nucleus of P̂ , and
thus the size of the next step’s beam kt+1. The nor-
malized probability P̂ (Y i) is only used to compute
the dynamic beam; we keep the original probability
P (Y i) as each prefix’s cumulative score.

4 Experiments

We compare our search algorithms to beam search
on a variety of tasks, and use the same model across
all settings, for each task.

4.1 Tasks

Machine Translation We evaluate on the
WMT’14 EN-FR dataset (Bojar et al., 2014), us-
ing the model of Ott et al. (2018), a large Trans-
former (Vaswani et al., 2017) with 6 encoder and
decoder layers, trained on 36M bilingual sentences,
tokenized with BPE. We evaluate the generated
sequences using SacreBLEU (Post, 2018), case-
sensitive, with the 13a tokenizer.

Character-Level Machine Translation We
train a character-level model on the IWSLT’14
DE-EN dataset (Cettolo et al., 2014), which
contains approximately 172k bilingual sentences in
its training set. We use the recommended settings
in Fairseq (Ott et al., 2019) for a 6-layer encoder-
decoder transformer. As with the subword-level
dataset, performance is measured via SacreBLEU.

Summarization We evaluate on the XSUM
dataset (Narayan et al., 2018). To alleviate memory
issues and improve data quality, we remove ex-
amples where the source document is longer than
800 tokens (1,663 examples), or when the target
is longer than one quarter of the source document
(698 examples). Our cleaned version of the XSUM
test set contains 8,972 document-summarization
pairs. We use the large fine-tuned BART model
(Lewis et al., 2020), and compute ROUGE-L (Lin
and Hovy, 2003) via compare-mt (Neubig et al.,
2019).

4.2 Implementation

Although both nucleus search algorithms can theo-
retically consume an unbounded amount of mem-
ory, our implementation caps the number of candi-
date prefixes by a large constant: 320 for WMT’14
and XSUM, and 160 for character-level translation.

We explore p in increments of 0.1 for both nu-
cleus search algorithms. For beam search, we ex-
periment with all beam sizes from 1 to 5, as well as
exponentially increasing beam sizes from 5 to 320.
To present a complete picture of the algorithms’
behaviors, we report results for all hyperparameter
settings, rather than selecting the best configuration
according to the validation set. This experiment
design limits our ability to claim the superiority
of one algorithm over another, but as we show in
Section 5, the performance differences are so small
that no such claim will be made.
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Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.7 33.6 36.2
3 40.8 33.6 36.4
4 40.8 33.6 36.5
5 40.6 33.5 36.5

10 40.5 33.5 36.6
20 40.2 33.1 36.4
40 39.6 27.4 36.1
80 38.7 18.1 35.7

160 32.2 5.3 34.3
320 11.8 5.3 28.1

p-Exact

0.1 40.3 33.3 35.5
0.2 40.3 33.3 35.7
0.3 40.5 33.3 36.1
0.4 40.5 33.4 36.5
0.5 40.6 33.5 36.6
0.6 40.6 33.5 36.6
0.7 40.2 33.6 36.3
0.8 39.2 33.6 35.9
0.9 27.8 33.2 33.1

Dynamic

0.1 40.2 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.6 33.4 36.5
0.6 40.6 33.7 36.5
0.7 40.0 33.7 36.0
0.8 38.9 33.6 35.4
0.9 18.1 33.1 31.5

Table 1: Scores of different algorithms and settings on
various generation tasks. Bold numbers indicate the
highest result on the task, and underlined numbers indi-
cate that the result is within 0.2 points of the top score.

5 Results

Main Result Table 1 shows the performance of
each search algorithm across the different tasks.4

In line with previously reported trends (Koehn and
Knowles, 2017), we observe that increasing the
beam size beyond k = 10 can severely degrade
performance. On the other hand, the probabilistic
search algorithms appear to be more stable, with
most hyperparameter settings achieving relatively
high performance metrics until p = 0.9, where
substantial performance degradation is evident.

Despite their increased stability, there appears
to be no significant advantage to either p-exact
search or dynamic beam search over the original
beam search. In fact, the performance differences
between the best settings of each algorithm are
always under 0.2 BLEU/ROUGE, and often zero.

4This table shows performance without reranking (length
normalization), to study the core algorithm. Appendix A
contains the results with reranking, showing similar trends.

Search Algorithm max(i) ≤ 5 max(i) > 5

Beam k = 5 42.2 32.9
Dynamic Beam p = 0.6 42.3 32.2

#Examples 2618 385

Table 2: Performance on two subsets of WMT’14 EN-
FR: (1) examples where dynamic beam search only se-
lects prefixes from the top-5 options (max(i) ≤ 5),
and (2) examples where the output of dynamic beam
search contains at least one prefix that ranked 6 or
worse (max(i) > 5).

We find this trend counter-intuitive, since we orig-
inally assumed that expanding and trimming the
beam based on entropy would benefit language
generation. We further test these assumptions indi-
vidually.

Expanded Beams We compare the performance
of static beam search (k = 5) and dynamic beam
search (p = 0.6) on two subsets of the translation
task’s test set:5 (1) examples where dynamic beam
search always selects from its top 5 prefixes, and
(2) the complement, where every generated output
contains at least one prefix that was ranked 6th or
worse. Table 2 shows that in those cases where
dynamic beam search actually uses the expanded
beam, i.e. it chooses prefixes that rank lower than 5,
it performs worse than static top-5 beam search by
0.7 BLEU. This subset accounts for only 13% of ex-
amples – which are probably harder for the model,
given the 10-point difference in BLEU – while the
majority 87% of cases are always composed from
the top 5 (or less) prefixes.

Trimmed Beams We isolate the effect of proba-
bilistic trimming by applying a k = 5 cap on the
number of active beams, for both nucleus search
variations. Table 3 shows that p-exact and dynamic
beam trimming strategies have no negative effects,
and may have a marginal positive effect.

6 Related Work

As a standard decoding strategy, there is a signifi-
cant body of literature on beam search. Recently,
there has been more focus on the empty string prob-
lem (Stahlberg and Byrne, 2019), and the fact that
increasing the beam size beyond a small constant
typically hurts performance. Meister et al. (2020)
show that beam search optimize for sequences that

5We select p = 0.6 since it is the maximal value that
achieved the top score on the WMT’14 EN-FR benchmark.
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Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.7 33.6 36.2
3 40.8 33.6 36.4
4 40.8 33.6 36.5
5 40.6 33.5 36.5

p-Exact

0.1 40.3 33.3 35.5

(k = 5)

0.2 40.3 33.3 35.7
0.3 40.5 33.3 36.1
0.4 40.6 33.4 36.4
0.5 40.8 33.5 36.6
0.6 41.0 33.6 36.6
0.7 40.9 33.7 36.6
0.8 40.9 33.8 36.5
0.9 40.8 33.8 36.5

Dynamic

0.1 40.2 33.3 35.5

(k = 5)

0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.6 33.4 36.4
0.6 40.8 33.7 36.5
0.7 40.7 33.7 36.6
0.8 40.7 33.6 36.6
0.9 40.6 33.5 36.5

Table 3: Scores of different algorithms and settings on
various generation tasks, when limiting the beam size
to a maximum of 5. Bold numbers indicate the highest
result on the task, and underlined numbers indicate that
the result is within 0.2 points of the top score.

distribute information uniformly, and therefore, us-
ing small beam sizes allows it to overcome the
empty string problem. Shi et al. (2020) train mod-
els with multiple different EOS tokens based on
their positions, instead of a single universal EOS to-
ken. Peters and Martins (2021) replace the softmax
function with the sparse entmax transformation
(Peters et al., 2019) that can assign absolute zero
probability to tokens. This method has a similar
effect to our p-exact search, but requires training
the model with entmax, while our contribution only
modifies the search algorithm.

Massarelli et al. (2020) also propose a combi-
nation of beam search and sampling methods, but
with a different method and a different goal. They
focus on free-form text generation, addressing two
problems – repetition and halucination – by sam-
pling the first few tokens, and then switching over
to beam search. Freitag and Al-Onaizan (2017)
explore how using a small fixed beam size, pruned
further according to the relative or absolute dis-
tance from the top scored candidate, can increase
decoding speed. In this work, we focus on the
quality of the generated text, comparing the use

of a fixed beam size to tail pruning, an established
method that keeps candidates according to the nu-
cleus of the distribution.

7 Conclusion

Language models predict a distribution over their
vocabulary, yet beam search only utilizes the rank
of different candidates, not their actual probabil-
ity scores. A natural assumption is that searching
the space of prefixes with a constant number of
options is not optimal. We hypothesize that using
the probability scores to dynamically determine the
number of candidates may benefit natural language
generation. We test our hypothesis by introducing
two nucleus search algorithms, which incorporate
probabilistic tail pruning (Holtzman et al., 2020)
with beam search, but find that they perform on par
with the baseline beam search algorithm when its
beam size is restricted to a small constant.
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A Results with Reranking

When presenting our main results (Section 5), we
follow related work (Peters and Martins, 2021)
and focus on the outputs generated using the al-
gorithms themselves, without reranking. For com-
pleteness, we also present the results of applying
length normalization (Jean et al., 2015; Murray and
Chiang, 2018), i.e. reranking the set of sequences
produced by beam search according to their aver-
age log-probability, rather than their cumulative
log-probability:

score(Y ) =
1

n

n∑

t=1

− logP (yt|Y<t)

Table 4 shows that length normalization improves
stability, and slightly increases performance overall.
However, it does not increase the performance gap
between the different algorithms, with respect to
the results in Section 5 (without reranking); all
three variants produce text that scores within 0.2
BLEU/ROUGE from the best performing setting
in every task.

Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.8 33.8 36.3
3 41.1 34.0 36.4
4 41.1 34.1 36.5
5 41.0 34.1 36.6
10 41.0 34.2 36.6
20 41.0 34.2 36.5
40 40.6 34.2 36.4
80 40.1 34.2 36.3

160 39.4 34.2 36.2
320 38.3 34.2 36.2

p-Exact

0.1 40.3 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.7 33.4 36.2
0.5 41.0 33.6 36.4
0.6 41.1 33.7 36.3
0.7 41.0 34.0 36.3
0.8 40.3 34.1 36.2
0.9 38.8 34.1 36.1

Dynamic

0.1 40.2 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.8 33.4 36.4
0.6 41.0 33.8 36.5
0.7 41.0 34.0 36.3
0.8 40.6 34.1 36.2
0.9 38.6 34.2 36.2

Table 4: The performance of different decoding al-
gorithms and hyperparameter settings on various con-
ditional generation tasks with length normalization
(reranking). Bold numbers indicate the highest result
on the task, and underlined numbers indicate that the
result is within 0.2 points of the top score.
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Abstract

Recent progress in large pretrained language
models (LMs) has led to a growth of analy-
ses examining what kinds of linguistic knowl-
edge are encoded by these models. Due to
computational constraints, existing analyses
are mostly conducted on publicly-released LM
checkpoints, which makes it difficult to study
how various factors during training affect the
models’ acquisition of linguistic knowledge.
In this paper, we train a suite of small-scale
Transformer LMs that differ from each other
with respect to architectural decisions (e.g.,
self-attention configuration) or training objec-
tives (e.g., multi-tasking, focal loss). We eval-
uate these LMs on BLiMP, a targeted evalu-
ation benchmark of multiple English linguis-
tic phenomena. Our experiments show that
while none of these modifications yields sig-
nificant improvements on aggregate, changes
to the loss function result in promising im-
provements on several subcategories (e.g., de-
tecting adjunct islands, correctly scoping neg-
ative polarity items). We hope our work of-
fers useful insights for future research into
designing Transformer LMs that more effec-
tively learn linguistic knowledge.

1 Introduction

At the core of many natural language process-
ing tasks are language models (LMs), which com-
pute the probability distribution of the next token
that follows a given input context. The Trans-
former (Vaswani et al., 2017), as one of the most
popular architectures for language modeling, has
been widely adopted for large-scale pre-training,
such as in BERT (Devlin et al., 2019), GPT-
2 (Radford et al., 2019) and GPT-3 (Brown et al.,
2020). The success of large-scale LM pretraining
has propelled a surge of analysis on the linguistic
knowledge encoded by language models.

While prior works have uncovered many ex-
citing facts regarding the linguistic capability of

those pretrained LMs (Hewitt and Manning, 2019;
Liu et al., 2019; Jawahar et al., 2019), most of
these analyses are conducted on publicly-released
model checkpoints, and thus the impact of var-
ious LM training configurations remains rela-
tively unexplored, limited to LSTM LM config-
urations (Linzen et al., 2016) or varying training
data size (Zhang et al., 2021).

In this work, we focus on Transformer
LMs (Vaswani et al., 2017) instead of LSTMs, and
we investigate two aspects of LM training distinct
from previous works – (1) the LM training objec-
tive, for which we experiment with the focal loss
and multi-task training; and (2) the Transformer’s
self-attention mechanism, which we restrict to a
local window of tokens. We train a suite of Trans-
former LMs that minimally differ from each other
in one of these two aspects, and evaluate the effect
of these changes via non-parametric probing on
BLiMP (Warstadt et al., 2020a), a targeted eval-
uation benchmark of multiple English linguistic
phenomena (e.g., island effects, anaphor agree-
ment). Experimental results demonstrate that none
of these modifications yields significant gains on
BLiMP in aggregate. However, we do observe
that modified training objectives (e.g, using fo-
cal loss instead of standard cross entropy loss) re-
sult in improvements to specific subtypes of lin-
guistic phenomena. Overall, our experiments sug-
gest that it could be promising to scale up Trans-
former LMs with modified training objectives, as
they may help improve syntactic generalization.

2 Method

Language models compute p(wi | w<i), the prob-
ability distribution of the next token wi given the
preceding context w<i. The conventional training
objective of an LM is to minimize the surprisal of
tokens in a training set. The surprisal of a single
token can be expressed as the negative log prob-
ability of that token given the preceding context
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(prefix):
li = − log p(wi | w<i)

While many models were proposed to compute
p(wi | w<i), we focus on the Transformer archi-
tecture (Vaswani et al., 2017), which consists of a
stack of alternated self-attention and feed-forward
blocks and has become the mainstream architec-
ture for large-scale LM pretraining.

Unlike prior work, which has focused on fixed
Transformer language model checkpoints, we are
curious to see how intervening in the training pro-
cess would impact the resulting models. Specifi-
cally, we ask: are there any training objectives
or model design choices that would improve the
models’ acquisition of linguistic knowledge?

2.1 Altered training process

To understand how varying training configurations
affect the linguistic capacities of the final models,
we narrow our focus to the LM training objective
and the self-attention mechanism. We train a set of
Transformer LMs, each differing from each other
in only the changes described below:

Focal loss (FL) As shown by Zhang et al.
(2021), language models learn different linguis-
tic phenomena at different speeds and require dif-
ferent amounts of data. For instance, the learn-
ing curve for subject-verb agreement phenomena
plateaus after training on more than 10M tokens,
whereas filler gap dependencies display steadily
increasing performance even up to 30B tokens of
training data. This suggests that each phenomenon
has an inherent “difficulty”, with some requiring
more data for an LM to master. In such a sce-
nario, can we improve the acquisition of linguistic
knowledge by forcing the model to pay more at-
tention to the “difficult” tokens? To achieve this,
one potential alternative to the standard log loss
training objective is focal loss (Lin et al., 2018),
which can be intuitively explained as reducing the
penalty on “easy” well-predicted tokens and in-
creasing the penalty on the “hard” tokens. For-
mally, the surprisal of each target token is nega-
tively scaled by the predicted probability:

lFL
i = −(1− p(wi | w<i))

γ log(p(wi | w<i))

Here, γ is a hyper-parameter controlling the
relative importance between poorly-predicted and
well-predicted tokens. Larger values of γ allocate
more weight to tokens with high surprisal.

Masked loss (ML) In the focal loss set-
ting, well-predicted tokens still receive a certain
amount of penalty. As an extreme version of
the focal loss setting, we simply zero out the
loss (masked loss) for the tokens whose predicted
probability exceeds a given threshold. Formally,
given a threshold t, the masked loss is thus:

lML
i = −

(
1− I(p(wi | w<i) ≥ t)

)
log

(
p(wi | w<i)

)

Auxiliary loss (AL) Multitask training is com-
monly adopted to provide extra supervision sig-
nals to the language model (Winata et al., 2018;
Zhou et al., 2019). To explicitly endow an LM
with better understanding of syntactic knowledge,
we add an auxiliary task where the model is
trained to predict labels derived from an external
constituency parser using the final layer’s token-
level representations. The loss of this prediction
task is added to the original loss, weighted by a
hyper-parameter α.

lAL
i = −α log p(wi | w<i)−(1−α) log p(ci | w<i)

ci denotes the linguistic label for each token,
which we obtain by associating a token with both
the the smallest non-terminal constituent type con-
taining that token and the depth of that constituent
in the parse tree. For example, a noun phrase “red
apple” having depth 3 in the parse tree will have
“NP3 NP3” as the labels for the auxiliary task.

Local attention (LA) Besides the training ob-
jective, modifying the architecture is another way
to change the inductive biases of the model. As
there is a huge number of potential architectural
modifications, we constrain our changes to only
the attention mechanism as it does not change
the total number of parameters and is thus eas-
ier to perform a fair comparison. Instead of us-
ing the standard self-attention, we adopt local at-
tention, where the attention window is limited to
only k tokens immediately preceding the target to-
ken (Child et al., 2019; Roy et al., 2021; Sun and
Iyyer, 2021). We hope that these local attention
variants can more easily pick up a recency bias
previously shown to exist in RNN language mod-
els (Kuncoro et al., 2018). However, note that al-
though the model only attends to the previous k
tokens in each layer, the effective receptive field
can still be large as the information is propagated
through the stacked Transformer layers.
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2.2 Evaluation on BLiMP

To measure the amount of linguistic knowledge
captured by each language model variant, we use
BLiMP (Warstadt et al., 2020a), a benchmark of
English linguistic minimal pairs. It contains pairs
of grammatical and ungrammatical sentences, the
latter of which is minimally edited from the gram-
matical one. The sentence pairs fall into 67
paradigms spanning 12 common English grammar
phenomena1. A language model makes the correct
prediction on this task when it assigns the gram-
matical sentence higher probability than the un-
grammatical one. Each paradigm contains 1K ex-
amples, and the accuracy of each paradigm can be
treated as a proxy of the amount of specific lin-
guistic knowledge encoded by the LM.

3 Experiments

Data: We use the same English Wikipedia data
used by Gulordava et al. (2018) for our LM pre-
training corpus. This corpus contains around
100M tokens in total (80M for training). The vo-
cabulary includes 50K words and a special <unk>
token substituted for infrequent words.

Models: We present four models each trained
with slightly different setting. (1) Focal Loss
(FL): This model is trained with focal loss, the γ
is set to 2.2 (2) Masked Loss (ML): This model is
trained with masked loss, with the masking thresh-
old set to 0.9.3 (3) Auxiliary Loss (AL): This
model is trained with auxiliary task of predicting
the constituent label, where α is set to 0.5. (4)
Local Attention (LA): This is the Transformer in
which all self-attentions are replaced with local at-
tention on the preceding 5 tokens.4

Training: Following prior work on this
dataset (Dai et al., 2019; Sun and Iyyer, 2021),
we train 16-layer Transformer language models
with embedding dimension size 410, hidden
dimension 2100, and 10 attention heads per layer.
The models are trained with the Adam optimizer
β1 = 0.9, β2 = 0.999, learning rate 0.00025, and
2000 warmup steps for max 150K steps. Training

1We refer the readers to (Warstadt et al., 2020a) for
detailed description and the construction process of each
paradigm.

2γ is picked from tuning validation perplexity over
{0.5, 1, 2}

3t is picked from tuning over {0.85, 0.9, 0.95, 0.999}
4We tried local {2, 3, 5, 10}, and 5 yielded the lowest

validation perplexity.

Phenomena BASE FL ML AL LA

island 0.52 0.55 0.55 0.50 0.53
anaphor_agree 0.97 0.96 0.94 0.97 0.96
arg_struct 0.64 0.62 0.63 0.64 0.63
det_noun 0.84 0.87 0.85 0.85 0.86
subj_verb 0.86 0.85 0.85 0.85 0.84
ellipsis 0.76 0.79 0.77 0.76 0.81
ctrl_raising 0.72 0.74 0.71 0.72 0.72
quant 0.70 0.69 0.68 0.64 0.71
irregular_form 0.91 0.93 0.92 0.95 0.92
npi 0.64 0.66 0.67 0.63 0.68
binding 0.75 0.76 0.75 0.77 0.76
filler_gap 0.73 0.72 0.72 0.71 0.74

Average 0.75 0.76 0.75 0.75 0.76

Table 1: Performance of each LM variant on BLIMP,
each phenomenon is averaged over subcategories
within. BASE stands for baseline model, FL stands for
the model trained with focal loss (γ = 2), ML stands
for the model trained with masked loss (t = 0.9), AL
stands for model trained with auxiliary loss, LA stands
for the model trained with local attention.

is performed on GeForce GTX 1080 Ti GPUs
and early stopped (average 26h training) when the
validation loss stops decreasing for consecutive
10 checkpoints. All evaluations were conducted
on model checkpoints with the lowest validation
loss.

4 Results & Analysis

Overall, we did not find a significant improve-
ment on BLiMP after applying the aforementioned
modifications. Table 1 contains the averaged score
of each model evaluated on BLiMP. However,
zooming in on each category, we notice signifi-
cant changes in a subset of paradigms. We ob-
serve similar aggregate scores because better per-
formance on certain paradigms are canceled out by
worse performance on other paradigms within the
same phenomena.5 In this section, we delineate
paradigms showing notable gains compared to the
baseline model as shown in Table 2. While we
present descriptive observations from the experi-
mental results, more ideal analysis should include
mechanistic explanation linking the modifications
and the resulting inductive biases, such as those
in (Lakretz et al., 2019), which we leave as future
work.

5Table 3 in Appendix contains results of all 67 paradigms
of each model evaluated on BLiMP.
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Paradigms BASE FL ML AL LA

Adjunct island 0.69 0.81 0.89 0.85 0.69
Complex NP island 0.50 0.46 0.48 0.50 0.55
Complext left branch 0.42 0.39 0.38 0.33 0.33
Object extraction 0.74 0.78 0.77 0.67 0.80
Echo question 0.48 0.49 0.46 0.42 0.40
Simple question 0.34 0.41 0.37 0.31 0.41
Subject island 0.31 0.41 0.40 0.39 0.37
Wh. island 0.66 0.63 0.62 0.55 0.71

Det. noun agr. 1 0.93 0.93 0.94 0.94 0.93
Det. noun agr. 2 0.94 0.95 0.94 0.93 0.95
Det. noun agr. irregular 1 0.84 0.83 0.84 0.84 0.83
Det. noun agr. irregular 2 0.87 0.88 0.86 0.86 0.87
Det. noun agr. w/ adj. 2 0.81 0.88 0.84 0.84 0.86
Det. noun agr. w/ adj. 1 0.84 0.88 0.85 0.84 0.86
Det. noun agr. w/ adj. irregular 1 0.73 0.76 0.75 0.75 0.76
Det. noun agr. w/ adj. irregular 2 0.77 0.82 0.79 0.79 0.84

Ellipsis 1 0.70 0.73 0.75 0.69 0.78
Ellipsis 2 0.82 0.84 0.79 0.82 0.84

Matrix q. npi 0.14 0.17 0.26 0.15 0.22
NPI present 1 0.58 0.53 0.54 0.47 0.59
NPI present 2 0.69 0.60 0.63 0.57 0.61
Only NPI licensor present 0.88 0.91 0.87 0.94 0.90
Only NPI scope 0.66 0.79 0.82 0.77 0.84
Sent. neg. NPI 1.00 1.00 0.99 1.00 1.00
Sent. neg. NPI scope 0.50 0.60 0.56 0.49 0.58

Object gap 0.73 0.72 0.75 0.70 0.79
Subject gap 0.88 0.87 0.89 0.84 0.91
Subject gap long dist. 0.92 0.88 0.84 0.87 0.88
No gap vs. that 0.94 0.95 0.94 0.95 0.96
No gap long dist. vs. that 0.97 0.98 0.98 0.98 0.96
Gap vs. that 0.49 0.50 0.46 0.48 0.45
Gap long dist. vs. that 0.17 0.15 0.18 0.15 0.20

Table 2: Model performance on subset of BLiMP
paradigms, each group of paradigms from top to bot-
tom corresponds to island effect, determiner noun
agreement, ellipsis, negative polarity item, and filler
gap, respectively1. Those values below the baseline ac-
curacy are marked in orange, those above in blue.

Island Effects An island is a constituent from
which a word cannot be moved, e.g., in "What was
Bill thinking while arguing about news?", it is ille-
gal to move news out of the island: "What was Bill
thinking news while arguing about?". The BLiMP
benchmark breaks down island effects to eight
paradigms based on the type of islands, and we
find all our proposed modifications to the training
objective lead to much better accuracy on the tar-
geted pairs of adjunct island and sentential subject
island. The model trained with masked loss im-
proves identification accuracy of wrong adjunct is-
land sentences from 0.69 (BASE) to 0.89. Smaller
improvements are also observed for multiple other
island effects when the model is trained with focal
loss. Surprisingly, the model forced to predict the
constituent labels does not perform well on island
effects examples and the model trained with local
attention outperforms the baseline by large margin
on complex NP island and Wh island.

Determiner Noun Agreement Another notable
change is within determiner noun agreement. This
phenomenon tests whether a model recognizes in-

correct noun after a determiner (e.g., "that tables"
is unacceptable). The model trained with focal
loss is better than the baseline model on multiple
paradigms by large margins, especially on cases
where adjective is inserted between the determiner
and the noun. The accuracy of baseline model
is improved from 81% to 88%. The second best
modification is when the Transformer is trained
with local attention, which consistently outper-
forms the baseline for all but two paradigms.

Ellipsis and Irregular Forms The model
trained with local attention outperforms all other
models on ellipsis, showing better ability to dis-
tinguish incorrectly omitted nouns (e.g. "She took
four heavy bags and he took five big" has incor-
rectly omitted nouns at the end). Another con-
sistent pattern arises in the irregular forms phe-
nomenon, the model trained with auxiliary loss is
better at recognizing incorrect past participle ad-
jectives, suggesting the model assigns low prob-
ability to verbs when expecting a noun phrase,
which could be a benefit from learning to predict
the constituent labels.

Negative Polarity Item The last phenomenon
we focus on is negative polarity items. We find
that models trained with modified loss function
outperform the baseline on identifying the correct
scope of polarity item “ever” in the presence of the
focus operator “only”(e.g., "Those students who
only Tim teaches ever pass the exam." is incor-
rect as ever needs to be licensed by the word only,
which should be in the main clause). The improve-
ment is especially significant (∼ 20 points) when
evaluating the model trained with local attention.
However, the baseline model is better at two other
paradigms in the same phenomenon.

5 Related Work

Our work is closely related to recent analyses on
the linguistic knowledge encoded within large pre-
trained LMs. One typical approach to probing
the ingrained linguistic knowledge is through di-
agnostic classifiers, or probes (Alain and Bengio,
2017; Belinkov et al., 2017; Hewitt and Liang,
2019; Voita and Titov, 2020; Pimentel et al.,
2020), a classifier trained with the intermediate
representations of an LM. Previous works tend
to evaluate the language models on set of mul-
tiple probing tasks (Liu et al., 2019; Conneau
et al., 2018), each capturing a distinct linguistic
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phenomenon. Another type of probing relies on
datasets constructed via linguistic rules that are
specific to targeted linguistic phenomena (Jumelet
and Hupkes, 2018; Marvin and Linzen, 2018;
Warstadt et al., 2020b,a). Previous works have
intervened at least two aspects of LM training:
(1) the size of training data (van Schijndel et al.,
2019; Zhang et al., 2021) and (2) the training
task (Linzen et al., 2016; Ravfogel et al., 2019).

6 Conclusion

To complement recent analyses on the linguistic
knowledge encoded by released Transformer LM
checkpoints, we investigate four Transformer lan-
guage models, each trained with slightly different
settings. We evaluate these variants on BLiMP, a
targeted evaluation set to probe the language mod-
els’ capability of various linguistic phenomena.
Our results show that although the averaged per-
formance is similar after applying those changes,
there are promising gains on local paradigms. We
hope our work could shed light on future research
into more effective learning of syntactic knowl-
edge by Transformer language models.
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Phenomena Paradigms BASE FL ML AL LA

adjunct_island 0.69 0.81 0.89 0.85 0.69
complex_NP_island 0.50 0.46 0.48 0.50 0.55
coordinate_structure_constraint_complex_left_branch 0.42 0.39 0.38 0.33 0.33
coordinate_structure_constraint_object_extraction 0.74 0.78 0.77 0.67 0.80
left_branch_island_echo_question 0.48 0.49 0.46 0.42 0.40
left_branch_island_simple_question 0.34 0.41 0.37 0.31 0.41
sentential_subject_island 0.31 0.41 0.40 0.39 0.37

Island Effects wh_island 0.66 0.63 0.62 0.55 0.71

anaphor_gender_agreement 0.96 0.95 0.91 0.96 0.95
Anaphor Agreement anaphor_number_agreement 0.98 0.98 0.96 0.98 0.97

animate_subject_passive 0.69 0.67 0.67 0.69 0.68
animate_subject_trans 0.48 0.46 0.45 0.48 0.47
causative 0.68 0.66 0.65 0.71 0.67
drop_argument 0.52 0.49 0.51 0.48 0.51
inchoative 0.64 0.64 0.64 0.62 0.66
intransitive 0.57 0.57 0.58 0.58 0.57
passive_1 0.72 0.71 0.72 0.73 0.74
passive_2 0.72 0.72 0.71 0.72 0.70

Argument Structure transitive 0.70 0.70 0.70 0.71 0.69

determiner_noun_agreement_1 0.93 0.93 0.94 0.94 0.93
determiner_noun_agreement_2 0.94 0.95 0.94 0.93 0.95
determiner_noun_agreement_irregular_1 0.84 0.83 0.84 0.84 0.83
determiner_noun_agreement_irregular_2 0.87 0.88 0.86 0.86 0.87
determiner_noun_agreement_with_adj_2 0.81 0.88 0.84 0.84 0.86
determiner_noun_agreement_with_adjective_1 0.84 0.88 0.85 0.84 0.86
determiner_noun_agreement_with_adj_irregular_1 0.73 0.76 0.75 0.75 0.76

Determiner Noun Agreement determiner_noun_agreement_with_adj_irregular_2 0.77 0.82 0.79 0.79 0.84

distractor_agreement_relational_noun 0.85 0.82 0.81 0.86 0.82
distractor_agreement_relative_clause 0.72 0.73 0.76 0.72 0.73
irregular_plural_subject_verb_agreement_1 0.83 0.82 0.82 0.82 0.82
irregular_plural_subject_verb_agreement_2 0.93 0.91 0.92 0.92 0.89
regular_plural_subject_verb_agreement_1 0.93 0.92 0.92 0.92 0.91

Subject Verb Agreement regular_plural_subject_verb_agreement_2 0.89 0.88 0.88 0.87 0.86

ellipsis_n_bar_1 0.70 0.73 0.75 0.69 0.78
Ellipsis ellipsis_n_bar_2 0.82 0.84 0.79 0.82 0.84

existential_there_object_raising 0.75 0.72 0.69 0.72 0.68
existential_there_subject_raising 0.82 0.85 0.81 0.81 0.84
expletive_it_object_raising 0.74 0.78 0.69 0.75 0.70
tough_vs_raising_1 0.44 0.45 0.49 0.43 0.53

Control & Raising tough_vs_raising_2 0.87 0.91 0.86 0.89 0.86

existential_there_quantifiers_1 0.97 0.97 0.95 0.96 0.95
existential_there_quantifiers_2 0.16 0.24 0.12 0.16 0.16
superlative_quantifiers_1 0.89 0.85 0.86 0.71 0.92

Quantifiers superlative_quantifiers_2 0.80 0.71 0.78 0.74 0.80

irregular_past_participle_adjectives 0.88 0.93 0.91 0.94 0.90
Irregular Forms irregular_past_participle_verbs 0.94 0.93 0.93 0.95 0.93

matrix_question_npi_licensor_present 0.14 0.17 0.26 0.15 0.22
npi_present_1 0.58 0.53 0.54 0.47 0.59
npi_present_2 0.69 0.60 0.63 0.57 0.61
only_npi_licensor_present 0.88 0.91 0.87 0.94 0.90
only_npi_scope 0.66 0.79 0.82 0.77 0.84
sentential_negation_npi_licensor_present 1.00 1.00 0.99 1.00 1.00

NPI sentential_negation_npi_scope 0.50 0.60 0.56 0.49 0.58

principle_A_case_1 1.00 1.00 1.00 1.00 1.00
principle_A_case_2 0.88 0.88 0.88 0.90 0.90
principle_A_c_command 0.61 0.64 0.62 0.65 0.63
principle_A_domain_1 0.98 0.99 0.98 0.98 0.98
principle_A_domain_2 0.69 0.71 0.77 0.70 0.75
principle_A_domain_3 0.60 0.57 0.56 0.60 0.63

Binding principle_A_reconstruction 0.49 0.51 0.45 0.53 0.41

wh_questions_object_gap 0.73 0.72 0.75 0.70 0.79
wh_questions_subject_gap 0.88 0.87 0.89 0.84 0.91
wh_questions_subject_gap_long_distance 0.92 0.88 0.84 0.87 0.88
wh_vs_that_no_gap 0.94 0.95 0.94 0.95 0.96
wh_vs_that_no_gap_long_distance 0.97 0.98 0.98 0.98 0.96
wh_vs_that_with_gap 0.49 0.50 0.46 0.48 0.45

Filler Gap wh_vs_that_with_gap_long_distance 0.17 0.15 0.18 0.15 0.20

Table 3: BASE stands for baseline model, FL stands for the model trained with focal loss (γ = 2), ML stands for
the model trained with masked loss, the threshold t = 0.9, AL stands for model trained with auxiliary loss, the
auxiliary task is to predict corresponding constituent label, LA stands for the model trained with local attention.
The values below the baseline accuracy is marked in orange, above in blue.
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Abstract

We propose a morphology-based method for
low-resource (LR) dependency parsing. We
train a morphological inflector for target LR
languages, and apply it to related rich-resource
(RR) treebanks to create cross-lingual (x-
inflected) treebanks that resemble the target
LR language. We use such inflected treebanks
to train parsers in zero- (training on x-inflected
treebanks) and few-shot (training on x-inflected
and target language treebanks) setups. The re-
sults show that the method sometimes improves
the baselines, but not consistently.

1 Introduction

Dependency parsers (Dozat et al., 2017; Ma et al.,
2018; Strzyz et al., 2019) already achieve accurate
results for certain setups (Berzak et al., 2016). Yet,
they require large amounts of data to work, which
hurts low-resource (LR) scenarios. In this line, au-
thors have studied how to overcome this problem.

On data augmentation, recent approaches have
replaced subtrees of sentences to generate new
ones (Vania et al., 2019; Dehouck and Gómez-
Rodríguez, 2020). On cross-lingual learning, au-
thors have explored delexicalized approaches from
rich-resource (RR) treebanks. (McDonald et al.,
2011; Falenska and Çetinoğlu, 2017). Wang and
Eisner (2018) permuted constituents of distant tree-
banks to generate synthetic ones that resembled
the target language. Vilares et al. (2016); Ammar
et al. (2016) merged treebanks to train multilin-
gual parsers that sometimes could outperform the
equivalent monolingual version, which has applica-
tions for less-resourced parsing. In the context of
multilingual representations, Mulcaire et al. (2019)
trained a zero-shot parser on top of a polyglot lan-
guage model, relying on merged RR treebanks too.

In other matters, morphological inflection (Cot-
terell et al., 2016; Pimentel et al., 2021) generates
words from lemmas and morphological feats (e.g.

Train
emerxer

V.CVB;PRS
emerxendo

1. Build inflectioner for the LR target language

Inflector

Convert
emerger

VerbForm=Ger
emergiendo

2. Build x-inflected TB 

emerger
V.CVB;PRS
emergiendo

emerger
V.CVB;PRS
emergiendo

Inflector emergendo

3. Train x-inflected parser

TrainX-inflected treebank Parser

Figure 1: X-inflection process for a target LR language
(Galician) using a source RR treebank (Spanish).

look → looking). Also, it is known that morphol-
ogy helps parsing and that morphological complex-
ity relates to the magnitude of the improvements
(Dehouck and Denis, 2018). Yet, as far as we know,
there is no work on cross-lingual morphological in-
flection as a data augmentation method for parsing.
Here, we propose a technique that lies in the inter-
section between data augmentation, cross-lingual
learning, and morphological inflection.

Contribution We introduce a method that uses
cross-lingual morphological inflection to gener-
ate ‘synthetic creole’ treebanks, which we call
x-inflected treebanks. To do so, we require a
source language treebank from a closely-related
language (for which lemmas and morphological
feats are available), and a morphological inflection
system trained for the target language. This way,
we expect to generate x-inflected treebanks that
should resemble to a certain extent the target lan-
guage (see Figure 1). The goal is to improve the
parser’s performance for languages for which little
or no annotated data are available, but for which
we can train an accurate morphological inflection
system that can be later applied to a related RR
treebank and resemble the target language. The
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code is available at https://github.com/
amunozo/x-inflection.

2 Preliminaries

We now describe the basics of our work:

Datasets We use UniMorph (UM; McCarthy
et al., 2020) for morphology and Universal De-
pendencies (UD; Zeman et al., 2020)

Key concepts We call inflector a morphological
system that produces a word form from an input
lemma and a set of morphological feats in a given
language. We call target UD treebank each of the
LR treebanks where we test our approach. We call
source UD treebanks the RR treebanks related to a
target LR treebank, used to create a cross-lingual
inflected treebank, aka x-inflected treebank, which
results from applying an inflector over the lemmas
and feats of a source UD treebank.

3 X-inflection as data augmentation

Character-level models, such as the ones used
for morphological inflection, identify shared mor-
phemes across languages with overlapping alpha-
bets (Lee et al., 2017; Vania, 2020). Thus, if two
languages share a significant amount of lemmas,
n-grams or inflections, an inflector for the first lan-
guage could maybe produce noisy-but-useful in-
flected forms for lemmas and feats available for
the second language. We hypothesize that this idea
can be used for syntactic data augmentation in LR
scenarios. Under the assumption that an inflec-
tor is available for our target LR language (easier
than annotating syntactic data), we could use it to
transform a related RR treebank, obtaining silver
syntactic data that, despite lexical and grammatical
imperfections, could help boost performance.

Our method consists of three steps: (i, §3.1)
training an inflector for a given target language
using UM data, (ii, §3.2) x-inflecting the source
UD treebank, cross-lingually applying the inflector
trained in (i), and (iii, §3.3) training the x-inflected
parsers. We summarized the process in Figure 1.

3.1 Building the inflectors
We train the inflectors using the Wu et al. (2018)
model, and leave all the hyperparameters at their
default value. It is a seq2seq model that uses a hard
monotonic attention mechanism to identify what
parts of the input the model should focus on to
generate the correct output string. It offers a good

trade-off between speed and accuracy, compared
with other alternatives that we tested in early ex-
periments (Wu et al., 2021). We train the models
on UM data, and for each language, we shuffle and
split it 80-10-10 for the training, development and
test sets (so lemmas are distributed)1.

3.2 Building the x-inflected treebanks

This step requires to: (i) transform the feats column
of the source UD treebank into a readable format
by the inflector (i.e., UM format), to then (ii) ap-
ply the inflector to generate the x-inflected word
forms, and (iii) format the output into an x-inflected
treebank (i.e., going back to the UD format).

Transform UD feats into UM feats To x-inflect
the source treebank, we first need to convert the
morphological feats of the UD treebanks to the
UM schema, using the converter by McCarthy et al.
(2018).

In early experiments, we also trained inflectors
directly on UD feats (following §3.1), but the re-
sults showed that x-inflected parsers trained this
way performed worse, so we discarded it.

More specifically, the selected converter creates
a mapping between both schemata. Yet, annota-
tion errors and missing values in both schemata,
together with disagreements between them, makes
the process non-trivial. To counteract this, the
approach introduces a language-dependent post-
editing process, which consists in an iterative pro-
cess that analyzes those forms and lemmas present
both in UD and UM, comparing their annotations,
and creating rules to refine the mappings between
schemata. However, this extra refinement process
is only available for some languages.

X-inflecting treebanks The lemmas and UM-
transformed feats of the source UD treebank are
sent to the target LR language inflector. The x-
inflection is not applied to all elements, only to
those lemmas of the source UD treebank whose
part-of-speech is contained in the UM data of our
target language (e.g., verbs or nouns, see details in
Appendix A). Then, these x-inflected forms replace
the original forms in the source UD treebank.

3.3 Training the x-inflected parsers

We train the parsers with a graph-based (GB) model
(Dozat et al., 2017). It contextualizes words with

1For languages containing files for different dialects (e.g.
Livvi), we concatenated all the forms prior to splitting.
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Group LR ISO RR
Iberian Galician glg Spanish, Catalan, Portuguese
N. Germanic Faroese fao Norwegian (nb), Norwegian (nn),

Swedish, Icelandic, Danish
Finno-Ugric Hungarian hun Finnish, Estonian
West Slavic Czech ces Polish, Slovak
South Slavic Slovenian slv Bulgarian, Croatian, Serbian
Romance Latin lat Spanish, Romanian, French, Catalan, Italian
Baltic Lithuanian lit Latvian
Celtic Welsh cym Irish, Scottish Gaelic
Finnic Livvi olo Finnish, Estonian
Finno-Permic North Sami sme Finnish, Estonian

Table 1: LR and RR languages used in our experiments.
Some LR treebanks come from RR languages (Czech,
Latin) to have more samples.

bidirectional LSTMs (Hochreiter and Schmidhuber,
1997) and computes head and dependent represen-
tations for each word. Then, a biaffine transfor-
mation of such vectors is used to find the highest
scoring parse tree. We also study a sequence la-
beling (SL) parser (Strzyz et al., 2019) as a lower
bound. This parser can be seen as a vanilla biL-
STM that only needs softmaxes (instead of a bi-
affine attention module) to predict syntactic labels,
using 2-planar encodings (Strzyz et al., 2020), that
are naturally decoded into to a dependency tree
and work more robustly on low-resource setups
(Muñoz-Ortiz et al., 2021).

4 Experiments

We test both (i, §4.1) zero-shot and (ii, §4.2) few-
shot setups. For evaluation, we use unlabeled
(UAS) and labeled attachment scores (LAS). Ap-
pendix E reports the hardware and costs.

Data We use 10 LR and 21 RR treebanks. Al-
though our method can be applied to any pair of
treebanks, the availability of UM and UD resources
(in the sense of having LR languages in UM and
related RR languages in UD) restricts our empiri-
cal analysis to Indo-European and Uralic languages
(see Table 1). Yet, we have reasonable diversity and
degrees of morphological inflection. For our em-
pirical analysis, we use a relaxed definition of the
concept LR for Czech and Latin (as the treebanks
used are LR but there are RR treebanks for them in
UD), and of the concept RR for Scottish Gaelic (as
the treebank used is larger than the Welsh one but
not RR). See Appendix B for the details.

4.1 Experiment 1: Zero-shot setup
We test if our method improves parsing accuracy
under the assumption that there is no available train-
ing data in the target language, but there is an UD
treebank for a related language, and enough UM
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Figure 2: Score differences between x-inflected versions
using different source treebanks and the baseline, for
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Figure 3: ∆UAS/LAS between the x-inflected models
and the baseline for the sequence labeling (SL) and the
graph-based (GB) parser.

data to train an inflector for the target language.
Although the selected LR treebanks have a training
set, we here do not use them, but we will in §4.2.

Setup For each target LR treebank, we first pair
them with related source UD treebanks (from 1 to
5)2, such that they all belong to the most restricted
phylogenetic group for which UD data is available.
We then train our x-inflected parsers and evaluate
them on the corresponding target LR treebank. We
compare the results against a baseline consisting in
models trained on the source RR treebanks.

Results Figure 2 shows the results for the zero-
shot setup (full results in Appendix C). The differ-
ences in performance are inconsistent: for some
target LR treebanks the x-inflected models always
obtain improvements, e.g. Livvi, for some others
the models only obtain decreases, e.g. Slovenian,
and for some others there is a mix, e.g. Faroese.

Figure 3 shows the distributions of LAS and
UAS differences (∆) against the baseline versions.
For the SL parser, the distribution is centered in 0,

2Depending on the resource availability in UM and UD.
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with the occurrence of some extreme results. For
the GB parser, we see less extreme results and a dis-
tribution centered slightly above 0. This suggests
that our method could be more effective for the GB
approach, but we do not have clear evidence.

To shed light on what factors might affect the
results, Table 2 shows the Pearson correlation co-
efficient (PCC) of the LAS and UAS differences
between the x-inflected models and the baselines;
with respect to features such as the number of forms
and lemmas seen in UM training data, feature and
lemma overlap between the target and source UD
treebanks, or the number of UD training sentences.
Although small, the results show some correlations
e.g. for the number of forms and lemmas of the
UM data (0.3− 0.5).

GB SL
UAS LAS UAS LAS

# UM target language forms 0.31 0.34 0.49 0.47
# UM target language lemmas 0.32 0.32 0.50 0.42
# UD source treebank training sents. 0.30 0.17 0.27 0.22
% Morph. feats shared between treebanks -0.24 -0.24 -0.14 -0.06
% Lemmas shared between treebanks -0.35 -0.32 -0.20 -0.18

Table 2: PCC of ∆LAS/UAS between the x-inflected
models and the baselines vs different dimensions. Bold
numbers represents p-values < 0.05.

4.2 Experiment 2: Few-shot setup
Experiment 1 did not show consistent improve-
ments. However, we question whether the reason
for our x-inflected models not consistently improv-
ing over the baseline could be that having some
annotated data in the target language would help
better guide the learning process, or that we are
simply not taking advantage of x-inflecting more
than one language treebank. In this line, previous
studies have shown that training on harmonized
treebanks, i.e. treebanks with the same annotation
guidelines but coming from different languages,
could improve performance over the corresponding
monolingual model (Vilares et al., 2016), which
has applications to less-resourced languages (Am-
mar et al., 2016).

Setup To test this, we train models on many x-
inflected treebanks and evaluate them on the corre-
sponding target LR test sets. Here, we also consider
merging the available training data for the target
LR language, to have a better understanding of how
our approach behaves in few-shot setups. Particu-
larly, we combine all the x-inflected treebanks from
the phylogenetic groups described for the previous
experiment (see again Table 1), instead of training
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Figure 4: ∆LAS between the models trained on the
original and x-inflected groups with respect to the model
trained on the LR treebank, for both parsers. UAS shows
the same tendency as seen in Appendix D.

separate models for each one. We compare the per-
formance against two baselines: (i) models trained
on the target LR language training set, and (ii) mod-
els trained on a merged training treebank composed
of the training set of the target LR treebank and the
original training sets of the source treebanks of the
related languages (but without x-inflecting them).

Results Figure 4 shows the LAS differences be-
tween the merged original and x-inflected models
with respect to the models that are only trained on
data coming from the target LR language (UAS
results in Appendix D). For the GB parser, all mod-
els trained on merged (original or x-inflected) tree-
banks perform better than their counterparts trained
only on the LR treebank, suggesting that adding
data from similar languages helps the parsers. How-
ever, merging non-x-inflected treebanks sometimes
outperforms merging x-inflected treebanks (e.g.
Livvi, Lithuanian, and Latin). For the SL parser
merging treebanks is not always beneficial com-
pared to training only on the LR training set. We
see that the models trained on harmonized (original
or x-inflected) treebanks improve only half of the
times. Yet, we see some interesting patterns. For
instance, when the x-inflection benefits a sequence-
labeling model, it also benefits the graph-based
one for the same merged treebank, and vice versa.
Overall, merging x-inflected treebanks is the best
option for 6 out of 10 models, although in many
cases the differences are small.

5 Discussion

The results show that the proposed method is able
to improve parsing results for some treebank pairs
under both zero- and few-shot setups, but it also ob-
tains decreases for other pairs. Due to the high num-
ber of factors involved, we were unable to clearly
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isolate those that are beneficial and those that are
harmful. However, we identified some reasons that
could partially explain the behaviour of the method:

• PCCs from Table 2 show that having more
UM data is beneficial to obtain better parsing
performance, so better inflectors create better
x-inflected treebanks.

• Conversion between UM and UD schemata
is non-trivial and dependent on the language
pair (see McCarthy et al. (2018) for a detailed
analysis), and thus incorrect feature conver-
sions could express different morphological
information and mislead the parser.

• Although both UD and UM aim to follow a
universal annotation schema, not all languages
are annotated exactly in the same way, ex-
pressing similar morphological phenomena
with slightly different features or omitting
some of them. Therefore, even when the con-
version between schemata is correct, the anno-
tation discrepancies between languages may
confuse the inflector, which again, would out-
put a word whose form would express differ-
ent morphological information than the origi-
nal form.

6 Conclusion

By cross-inflecting a rich-resource UD treebank
using an inflector from a low-resource related lan-
guage, we can obtain silver, syntactically annotated
data to train dependency parsers. Although con-
taining noise and grammatical imperfections, we
aimed to test whether the approach could boost per-
formance. The results show that it is possible to
obtain improvements (but also decreases) both for
zero- and few-shot setups.

About this, we could not clearly identify what as-
pects make the approach succeed or fail. Although
we identified moderate correlations between scores
and the amount of available UM data for the target
language, we hypothesize that other aspects that
are hard to measure could be playing a role: (i)
incorrect/incomplete feature conversion from UM
to UD schemata that might make the cross-lingual
inflections carry different information that the in-
flections in the original language, or (ii) unknown
input features for a given inflector due to differ-
ences in exhaustiveness between the UM and UD
annotations.
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naldi, Laura Rituma, Luisa Rocha, Eiríkur Rögnvalds-
son, Mykhailo Romanenko, Rudolf Rosa, Valentin
Ros, ca, Davide Rovati, Olga Rudina, Jack Rueter,
Kristján Rúnarsson, Shoval Sadde, Pegah Safari,
Benoît Sagot, Aleksi Sahala, Shadi Saleh, Alessio
Salomoni, Tanja Samardžić, Stephanie Samson,
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Abstract
Incorrect labels in training data occur when hu-
man annotators make mistakes or when the data
is generated via weak or distant supervision. It
has been shown that complex noise-handling
techniques - by modeling, cleaning or filtering
the noisy instances - are required to prevent
models from fitting this label noise. However,
we show in this work that, for text classifica-
tion tasks with modern NLP models like BERT,
over a variety of noise types, existing noise-
handling methods do not always improve its
performance, and may even deteriorate it, sug-
gesting the need for further investigation. We
also back our observations with a comprehen-
sive analysis.

1 Introduction

For many languages, domains and tasks, large
datasets with high-quality labels are not available.
To tackle this issue, cheaper data acquisition meth-
ods have been suggested, such as crowdsourcing
or automatic annotation methods like weak and
distant supervision. Unfortunately, compared to
gold-standard data, these approaches come with
more labeling mistakes, which are known as noisy
labels. Noise-handling has become an established
approach to mitigate the negative impact of learn-
ing with noisy labels. A variety of methods have
been proposed that model the noise, or clean and
filter the noisy instances (Hedderich et al., 2021;
Algan and Ulusoy, 2021). Jindal et al. (2019) show
e.g. a 30% boost in performance after applying
noise-handling techniques on a CNN-based text
classifier.

In a recent work, Tänzer et al. (2021) showed
that BERT (Devlin et al., 2019) has an inherent
robustness against noisy labels. The generalization
performance on the clean distribution drops only
slowly with the increase of the mislabeled samples.
Also, they show that early-stopping is crucial for
learning with noisy labels as BERT will eventu-
ally memorize all wrong labels when trained long
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Figure 1: A typical training curve when learning with noise.
Learning without noise-handling (blue) will reach a peak accu-
racy before memorizing the noise. Early-stopping on a noisy
validation set (vertical grey line) is often sufficient to find such
a peak. Injected uniform noise of 40% on AG-News dataset.

enough. However, their experiments only focus on
a single type of noise and a limited range of noise
levels. It remains unclear if BERT still performs ro-
bustly under a wider range of noise types and with
higher fractions of mislabeled samples. Moreover,
they perform early-stopping on a clean validation
set, which may not be available under low resource
settings. Last but not least, they do not compare to
any noise-handling methods.

In this work, we investigate the behaviors of
BERT on tasks with different noise types and noise
levels. We also study the effect of noise-handling
methods under these settings. Our main results
include (1) BERT is robust against injected noise,
but could be vulnerable to noise from weak super-
vision. In fact, the latter, even at a low level, can
be more challenging than high injected noise. (2)
Existing noise-handling methods do not improve
the peak performance of BERT under any noise
settings we investigated; as is shown with further
analysis, noise-handling methods rarely render the
correct labels more distinguishable from the incor-
rect ones. 1

1Our implementation is available on: https://
github.com/uds-lsv/BERT-LNL.
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2 Learning with Noisy Labels

Problem Settings We consider a k-class classi-
fication problem. Let D denote the true data gen-
eration distribution over X × Y where X is the
feature space and Y = {1, ..., k} is the label space.
In a typical classification task, we are provided
with a training dataset S = {(xi, yi)ni=1} sampled
from D. In learning with noisy labels, however, we
have no access to D. Instead, a noisy training set
Ŝ = {(xi, ŷi)ni=1} sampled from a label-corrupted
data distribution D̂. The goal is to learn a classifier
that generalizes well on the clean distribution by
only exploiting Ŝ.

Injected Label Noise To rigorously evaluate
noise-handling methods at different noise levels, re-
searchers in this area often construct noisy datasets
from clean ones by injecting noise. This can, e.g.,
reflect annotation scenarios such as crowdsourcing,
where some annotators answer randomly or pre-
fer an early entry in a list of options. Modeling
such noise is achieved by flipping the labels of the
clean instances according to a pre-defined noise
level ε ∈ [0, 1) and a noise type. There are two
commonly used noise types: the single-flip noise
(Reed et al., 2015):

psflip(ŷ = j|y = i) =





1− ε, for i = j
ε, for one i ̸= j
0, else

and uniform-flip (van Rooyen et al., 2015) noise

puni(ŷ = j|y = i) =

{
1− ε, for i = j

ε
k−1

, for i ̸= j .

These noise generation processes are feature-
independent, i.e. p(·|y = i, x) = p(·|y = i).
Therefore, they can be described by a noise tran-
sition matrix T with Tij := p(ŷ = j|y = i). It
is usually assumed that the noise is diagonally-
dominant when generating the noisy labels, i.e.
∀i, Tii > maxj ̸=iTij .

Label Noise from Weak Supervision Distant
and weak supervision (Mintz et al., 2009; Rat-
ner et al., 2016) have become essential methods
to acquire labeled data in low-resource scenarios.
The resulting noise, unlike injected noise, is often
feature-dependent (Lange et al., 2019). We eval-
uate our methods on two real-world datasets in
Hausa and Yorùbá to cover this type of noise.

Dataset Classes Average
Lengths

Train
Samples

Validation
Samples

Test
Samples

Train
Noise Level

IMDB 2 292 21246 3754 25000 various
AG-News 4 44 108000 12000 7600 various

Yorùbá 7 13 1340 189 379 33.28%
Hausa 5 10 2045 290 582 50.37%

Table 1: Statistics of the text classification datasets. The train
noise level is the false discovery rate (i.e. 1-precision) of
the noisy labels in the training set. The original AG-News
has 120k training instances and no validation instances. We
therefore held-out 10% of the training samples for validation.

3 Early-Stopping on Noisy Validation Set

When trainied on noisy data without noise-
handling, BERT reaches a high generalization per-
formance before it starts fitting the noise. Then it
memorizes the noise and the performance on clean
distribution drops dramatically (the blue curve
in Figure 1). Hence, for models without noise-
handling, it is crucial to stop training when the
generalization performance reaches its maximum.

Tänzer et al. (2021) use a clean validation set
to find this point. However, a clean validation set
is often unavailable in realistic low-resource sce-
narios as it requires manual annotation. Therefore,
we use a noisy validation set for early-stopping in
all of our experiments and we attain models that
generalize well on the clean distribution.

In our example in Figure 1, we see that while
most noise-handling methods prevent BERT from
fitting the noise in the long run, their peak per-
formance is not significantly higher than a vanilla
model without noise-handling.

4 Experiments

Dataset Construction We experiment with four
text classification datasets: two benchmarks, AG-
News (Zhang et al., 2015) and IMDB (Maas et al.,
2011), injected with different levels of single-flip or
uniform noise; for the weakly supervised noise, we
make use of two news topics datasets in two low-
resource languages: Hausa and Yorùbá (Hedderich
et al., 2020). Hausa and Yorùbá are the second
and the third most spoken indigenous language
in Africa, with 40 and 35 million native speakers,
respectively (Eberhard et al., 2019). The noisy
labels were gazetteered. For example, to identify
texts for the class “Africa”, a labeling rule based
on a list of African countries and their capitals is
used. Note that while we can vary the noise levels
of injected noise, the amount of weak supervision
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noise in Hausa and Yorùbá is fixed2. We summarize
some basic statistics of the datasets in Table 1.

Implementation We use of-the-shelf BERT mod-
els for our tasks. Specifically, we apply the BERT-
base model for AG-News and IMDB, and the
mBERT-base for Yorùbá and Hausa. The fine-
tuning approach follows (Devlin et al., 2019). In
all settings, we apply early-stopping on a noisy
validation set to mimic the realistic low-resource
settings, while the test set remains clean. For more
implementation details and a discussion on clean
and noisy validation sets, see Appendix B and E.

4.1 Baselines

We compare learning without noise-handling with
four popular noise-handling methods.3

Without Noise-handling Train BERT on the
noisy training set as it was clean. A noisy vali-
dation set is used for early-stopping.

No Validation For the sake of comparison, we
train the model without noise-handling and until
the training loss converges.

Noise Matrix A noise transition matrix is ap-
pended after BERT’s prediction to transform the
clean label distribution to the noisy one. A va-
riety of methods exists for estimating the noise
matrix, i.e. Sukhbaatar et al. (2015); Bekker and
Goldberger (2016); Patrini et al. (2017); Hendrycks
et al. (2018); Yao et al. (2020). To exclude the ef-
fects of estimation errors in the evaluation, we use
the ground truth transition matrix as it is the best
possible estimation. This matrix is fixed after ini-
tialization.

Noise Matrix with Regularization The previ-
ous state-of-the-art for text classification with noisy
labels (Jindal et al., 2019). Similar to Noise Ma-
trix, it appends a noise matrix after BERT’s output.
During training, the matrix is learned with an l2
regularization and is not necessarily normalized to
be a probability matrix. In the original implementa-
tion they use CNN-based models as backbone, we
switch it to BERT for fair comparison.

Co-teaching Han et al. (2018) Train two net-
works to pick cleaner training subsets for each other.
The Co-teaching framework requires an estimation

2refer to Appendix A for detailed noise distribution.
3For a fair comparison, early-stopping on a noisy valida-

tion set is applied to all four noise-handling methods.

of the noise level. Similarly to NMat, we use the
ground truth noise level to exclude the performance
drop caused by estimation error.

Label Smoothing Label smoothing (Szegedy
et al., 2016) is a commonly used method to im-
prove model’s generalization and calibration. It
mixes the one-hot label with a uniform vector, pre-
venting the model from getting overconfident on
the samples. Lukasik et al. (2020) further shows
that it improves noise robustness.

4.2 Experimental Results

We evaluate our baselines on both injected noise
(on AG-News and IMDB) and weak supervision
noise (on Hausa and Yorùbá). The test accuracy
is presented Figure 2. On injected noise, our re-
sults match and extend the findings by Tänzer et al.
(2021) that BERT is noise robust. For example,
the test accuracy drops only about 10% after in-
jecting 70% wrong labels (Figure 2(a)). However,
we find that BERT is vulnerable under weak su-
pervision noise. The performance can drop up to
35% in a dataset like Hausa with 50% weak super-
vision noise compared to training with clean labels
(Figure 2(c)). This indicates that the experience
on injected noise may not be transferable to weak
supervision noise.

We also observe that noise-handling methods are
not always helpful. For injected noise, the benefits
from noise-handling become obvious only under
high noise levels. But even then, there is no clear
winner, meaning that it is hard to decide beforehand
which noise method to apply - with the risk that
they may even perform worse than BERT without
noise-handling. The same applies to weak supervi-
sion noise. The maximal performance gap between
the best model and BERT without noise-handling
is less than 4% and 1.5% under injected noise and
weak supervision noise, respectively.

4.3 Analysis of Loss Distributions

To shed some light on why BERT is robust against
injected noise but not weak supervision noise, we
track the losses on correctly and wrongly labeled
samples during training. Figure 4 depicts typical
distributions of losses associated with correctly
and incorrectly labeled samples, respectively, when
early-stopping is triggered. We see that they have
minimal overlap, thus different behaviors through-
out the training, potentially allowing the model to
distinguish correctly and incorrectly labeled sam-
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Figure 2: Test accuracy in different noise settings. a) & b) injected noise with different noise levels c) weak supervision noise, at
noise levels of 33.28% and 50.37% in Yorùbá and Hausa, respectively. Noise-handling methods do not always improve peak
performances. Further plots in Appendix C.
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Figure 3: ROC curves on wrong label detection (binary classification) using the losses. The losses are recorded at the training
step when early-stopping is triggered. Noise-handling methods do not make the losses of correct and incorrect labels more
distinguishable. Further plots in Appendix D.
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Figure 4: Loss histogram at the training iteration when the
early-stopping is triggered. AG-News dataset with 70% uni-
form noise.

ples from each other. We could further quantify the
difference by their separability. Figure 3 presents
the receiver operating characteristic (ROC) curves
of a thresholds-based classifier. We observe that (1)
under injected noise, an area under curve (AUC) of
more than 90 can be easily achieved without noise-
handling (Figure 3(a)), supporting our observation
that injected noise has rather a low impact on BERT.
(2) Under weak-supervision noise, the AUC score
is significantly lower, which means the correct and
incorrect labels are less distinguishable. Therefore,
BERT fits both labels at similar rates. One reason

could be that the noise in weak supervision is of-
ten feature-dependent, it might become easier for
BERT to fit them, which in turn deteriorates the
generalization. (3) We do not observe a raise in
AUC scores when applying noise-handling meth-
ods, indicating that noise-handling methods rarely
enhance BERT’s ability to further avoid the nega-
tive impact of wrong labels. This is consistent with
the observation in Section 4.2 that noise-handling
methods have little impact on BERT’s generaliza-
tion performance.

5 Conclusion

On several text classification datasets and for dif-
ferent noise types, we showed that BERT is noise
resistant under injected noise, but not necessarily
under weak supervision noise. In both cases, the
improvement obtained by applying noise-handling
methods are limited. Our analysis on the separabil-
ity of losses corresponding to correct and incorrect
labeled samples provides evidence to this argument.
Our analysis offers both motivation and insights to
further improve label noise-handling methods and
make them useful on more realistic types of noise.
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6 Broader Impact Statement and Ethics

Noisy labels are a cheaper source of supervision.
This could make it easier to use machine learning
for improper use cases. However, it also opens
up NLP methods for low-resource settings such as
under-resourced languages or applications devel-
oped by individuals or small organizations. It can,
therefore, be a step towards the democratization of
AI.
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Abstract
We aim to learn language models for Creole
languages for which large volumes of data are
not readily available, and therefore explore the
potential transfer from ancestor languages (the
‘Ancestry Transfer Hypothesis’). We find that
standard transfer methods do not facilitate an-
cestry transfer. Surprisingly, different from
other non-Creole languages, a very distinct two-
phase pattern emerges for Creoles: As our train-
ing losses plateau, and language models begin
to overfit on their source languages, perplexity
on the Creoles drop. We explore if this com-
pression phase can lead to practically useful
language models (the ‘Ancestry Bottleneck Hy-
pothesis’), but also falsify this. Moreover, we
show that Creoles even exhibit this two-phase
pattern even when training on random, unre-
lated languages. Thus Creoles seem to be typo-
logical outliers and we speculate whether there
is a link between the two observations.

1 Introduction

Creole languages refer to vernacular languages,
many of which developed in colonial plantation
settlements in the 17th and 18th centuries. Creoles
most often emerged as a result of contact between
social groups that spoke mutually unintelligible
languages, i.e., from the interactions of speakers
of nonstandard varieties of European languages
and speakers of non-European languages (Lent
et al., 2021). Some argue these languages have
an exceptional status among the world’s languages
(McWhorter, 1998), while others counter that Cre-
oles are not unique, and evolve in the typical man-
ner as other languages (Aboh and DeGraff, 2016).
In this paper, we will present experiments in evalu-
ating language models trained on non-Creole lan-
guages for Creoles, as well as in various control
settings. We first explore the following hypothesis:

R1: Language models trained on ancestor lan-
guages should transfer well to Creole lan-
guages.

Figure 1: Does the Information Bottleneck principle
capture some of the dynamics of Creole formation?

We call R1 the ‘Ancestry Transfer Hypothesis.’ Our
experiments, however, suggest that R1 is not easily
validated. We note, though, that ancestor-to-Creole
training exhibits divergent behavior when training
for long, leading to the following hypothesis:

R2: Language models trained on ancestor lan-
guages can, after a compression phase, trans-
fer well to Creole languages.

We call R2 the ‘Ancestry Bottleneck Hypothesis.’
While compression benefits transfer, performance
never seems to reach useful levels. Furthermore,
similar effects are observed with Creoles when
training on non-ancestor languages. Our findings
here are not relevant to applied NLP, but they shed
light on cross-lingual training dynamics (Singh
et al., 2019; Deshpande et al., 2021), and we believe
they have potential implications for the linguistic
study of Creoles (DeGraff, 2005b), as well as for
information bottleneck theory (Tishby et al., 1999).

Our contributions We conduct a large set of ex-
periments on cross-lingual zero-shot applications
of language models to Creoles, primarily to test
whether ancestor languages provide useful training
data for Creoles (the ‘Ancestry Transfer Hypoth-
esis;’ R1). Our results are a mix of negative and
positive results: First Negative Result: Ordinary
transfer methods do not enable ancestor-to-Creole
transfer. First Positive Result: Regardless of the
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Creole Ancestors Random Controls

Nigerian Pidgin English, Hausa, Yoruba, Portuguese Afrikaans, Cherokee, Hungarian, Quechua
Jamaican Patois English, Hausa, Spanish, Igbo Afrikaans, Cherokee, Hungarian, Quechua
Saint Lucian Creole French, Hausa, Yoruba, Igbo Afrikaans, Cherokee, Hungarian, Quechua
Haitian Creole French, Fon, Spanish, Igbo Afrikaans, Cherokee, Hungarian, Quechua

Non-Creole Relatives Random Controls

Spanish French, Italian, Portuguese, Romanian Afrikaans, Cherokee, Hungarian, Quechua
Danish Norweigan, Icelandic, Swedish, German Afrikaans, Cherokee, Hungarian, Quechua

Table 1: Transfer setups in our study. We aim to learn target Creoles and Non-Creoles by training on 1) their
Ancestors or Relatives, respectively; and 2) languages unrelated to the target ones as a control (Random Controls).

source languages, when training for long periods of
time, a compression phase takes places for Creoles:
as the models overfit their training data, perplex-
ity on Creoles begin to decrease. This pattern is
unique to Creoles as it does not emerge for tar-
get non-Creole languages. Second Negative Re-
sult: The compression phase does not lead to better
representations for downstream tasks in the target
Creoles.

2 Background

Cross-lingual training dynamics Several multi-
lingual language models have been presented and
evaluated in recent years. Since Singh et al. (2019)
showed that mBERT (Devlin et al., 2019) gener-
alizes well across related languages, but compart-
mentalizes language families, several researchers
have explored the training dynamics of training
multilingual language models across related or dis-
tant language sets (Lauscher et al., 2020; Keung
et al., 2020; Deshpande et al., 2021). Unlike most
previous work on cross-lingual training, we focus
on evaluation on unseen (Creole) languages. This
set-up is also explored in previous work focusing
on generalization to unseen scripts (Muller et al.,
2021; Pfeiffer et al., 2021). Muller et al. (2021)
argue that generalization to unseen languages is
possible for seen scripts, but hard or impossible
for unseen scripts, but this paper identifies a third
category of unseen languages with seen scripts,
which exhibit non-traditional learning curves in the
zero-shot pre-training regime.

Linguistic theories of Creole Creolists have
long debated whether Creole languages have an
exceptional status among the world’s languages
(DeGraff, 2005a). McWhorter (1998) argue that
Creoles are simpler than other languages, and de-
fined by minimal usage of inflectional morphology,
little or no use of tone encoding lexical or syntactic
contrasts, and generally semantically transparent

derivation. Others have argued that Creoles can-
not be be unambiguously distinguished from non-
Creoles on strictly structural, synchronic grounds
(DeGraff, 2005a). On this view Creole grammars
do not form a separate typological class, but exhibit
many similarities with the grammars of their par-
ent languages, e.g., the similarities in lexical case
morphology between French and Haitian Creole.
We do not take sides in this debate, but observe
that the exceptionalist position would explain our
results that zero-shot transfer to Creole languages
is particularly difficult. Exceptionalism also aligns
well with the heatmaps presented in §5.

Information Bottleneck The Information Bot-
tleneck principle (Tishby et al., 1999) is an
information-theoretic framework for extracting
output-relevant representations of inputs, i.e., com-
pressed, non-parametric and model-independent
representations that are as informative as possi-
ble about the output. Compression is formalized
by mutual information with input. A Lagrange
multiplier controls the trade-off between these two
quantities (informativity and compression). Being
able to compute this trade-off assumes the joint
input–output distribution is accessible. The trade-
off is found by ignoring task-irrelevant factors and
learning an invariant representation. The intuition
behind the ‘Ancestry Bottleneck Hypothesis’ (R2)
is that invariant representations are particularly use-
ful for Creoles (see Figure 1 for an illustration).

3 Multilingual Training

This section sets out to evaluate the ‘Ancestry
Transfer Hypothesis’ (R1). To this end, we eval-
uate multilingual language models – trained with
a BERT architecture from scratch, but of smaller
size and with less data (Dufter and Schütze, 2020) –
on Creoles such as Nigerian Pidgin or Haitian Cre-
ole. We compare two scenarios: 1) a scenario in
which the training languages are languages that are
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Figure 2: Four zero-shot transfer experiments for Creole
languages. The left-hand side plot shows the (zero-shot)
validation curve for checkpoints on Creole data; the
small plots show the learning curves for the training lan-
guages. We see an initial increase in perplexity (disprov-
ing R1). The yellow vertical line denotes 100 epochs.
We also see a subsequent decrease in perplexity.

said to be parent or ancestor languages of the Cre-
ole, such as French to Haitian, and 2) a scenario in
which random, unrelated training languages were
selected. To compare against Creoles, we also ex-
plore these transfer scenarios for two target non-
Creoles – Spanish and Danish – training on lan-
guages closely related to them (i.e., as typically
done in cross-lingual learning). Table 1 lists all the
transfer scenarios that we investigated. Our experi-
mental protocol follows Dufter and Schütze (2020),
and it is described in detail below.

We aim to learn language models for Creole lan-
guages for which large volumes of data are not
readily available, and therefore explore the poten-

Figure 3: Learning curves for Nigerian Pidgin English
when training on ancestor languages (top) and when
training on random languages (bottom). No significant
differences are observed. This disproves R2.

tial transfer from ancestor languages (the ‘Ances-
try Transfer Hypothesis’). We find that standard
transfer methods do not facilitate ancestry transfer.
Surprisingly, different from other non-Creole lan-
guages, a very distinct two-phase pattern emerges
for Creoles: As our training losses plateau, and
language models begin to overfit on their source
languages, perplexity on the Creoles drop. We
explore if this compression phase can lead to practi-
cally useful language models (the ‘Ancestry Bottle-
neck Hypothesis’), but also falsify this. Moreover,
we show that Creoles even exhibit this two-phase
pattern even when training on random, unrelated
languages. Thus Creoles seem to be typological
outliers and we speculate whether there is a link
between the two observations.

Experimental protocol We train BERT-smaller
models (Dufter et al., 2020), consisting of a single
attention head (shown to be sufficient for achiev-
ing multilinguality by K et al. 2020). Although
training smaller models means our results are not
directly comparable to larger models like mBERT
or XLM-R (Conneau et al., 2019), there is evidence
to support that smaller transformers can work better
for smaller datasets (Susanto et al., 2019), and that
the typical transformer architecture would likely be
overparameterized for our small data (Kaplan et al.,
2020). Thus, the BERT-smaller models appear to
be the most appropriate match for our very small
datasets. The models are trained on a multilingual
dataset, consisting of an equal parts of each source
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Hyperparameter Creole Non-Creole

Vocabulary size 10,240 10,240
Learning rate 1.00E-04 5.00E-05
Weight decay 1.00E-03 1.00E-03
Dropout 1.00E-01 1.00E-01
Batch size 256 256

Table 2: The hyperparameters used for target Creole and
Non-Creole experiments. Vocab size, weight decay, and
dropout were the same across Creole and Non-Creole ex-
periments, however the Non-Creoles required a smaller
learning rate, in order to successfully learn. All experi-
ments were run on a TitanRTX GPU.

language, taken from the Bible Corpus (Mayer and
Cysouw, 2014). We chose Bible data to train our
models as it facilitates a controlled setup with par-
allel data in many languages whilst including our
low-resource Creoles and ancestors. For each ex-
periment, we learn a custom BERT tokenizer on
source and target languages, with a vocabulary size
of 10,240 word pieces (Wu et al., 2016).1 Each
model is trained for 100 epochs (see Table 2).

We also follow Dufter and Schütze (2020)’s ap-
proach of calculating the perplexity on 15% of ran-
domly masked tokens (w), with probabilities (p), as
exp(�1/n

Pn
k=1 log(pwk

)). We calculate perplex-
ity on held out development data for both source
and target languages. Our code is available online.2

Results In Figure 2, by 100 epochs (indicated by
a yellow vertical line), we observe two different
patterns for Creoles and non-Creoles. For target
Creole languages, the models are able to learn the
ancestor languages, but perplexity on the held out
Creoles consistently climbs. On the other hand,
for target non-Creoles, we observe a slight initial
drop in perplexity before it starts to increase as the
models overfit the source languages.

4 Training For Longer

It seems linguistically plausible that training for
longer on ancestor languages to learn more invari-
ant representations should better facilitate zero-shot
transfer to Creole languages. This is the essence of
the ‘Ancestry Bottleneck Hypothesis’ (R2), which
we explore in this section.

1We explored different vocabulary sizes (1,024, 2,048 and
10,240) as well as other tokenization techniques (grapheme-
to-phoneme and byte-pair encodings Sennrich et al. 2016),
which did not affect the overall findings discussed below.

2https://github.com/hclent/
ancestor-to-creole

Figure 4: Results for downstream performance on Nige-
rian Pidgin NER, across 3 random seeds. The top row
shows our model trained on ancestor of Nigerian Pidgin
(pcm), while the bottom one shows results for mBERT.
Step 0 in the legend refers to the pre-trained mBERT,
without any further training on ancestor languages.

Creole compression We continue training our
models for 5 days, for each Creole and non-Creole
target language – which typically results in 300k–
500k steps of training (and thus, extremely over-
fit). As the models overfit to the source languages,
we observe a notable drop in perplexity for Cre-
oles, which is true regardless of the training data
(ancestors versus random controls), as shown in
Figure 2 and Figure 3. On the other hand, these
plots show that this compression does not emerge
for non-Creole target languages, as their complex-
ity steadily increases as the models overfit their
training data more and more.

Downstream performance Next, in order to de-
termine if this compression present for Creoles can
be beneficial, we used MACHAMP (van der Goot
et al., 2021) to check the ability of our Nigerian Pid-
gin models to fine-tune for downstream NER (Ade-
lani et al., 2021). We evaluate the representations
learned at different stages of pre-training by fine-
tuning our checkpoints corresponding to early stage
(10,000 steps), maximum perplexity, and post-
compression (last checkpoint). Each model is fine-
tuned for 10 epochs. Figure 4 shows that, across
three random seeds, post-compression checkpoints
consistently perform worse than pre-compression
or max-complexity checkpoints. The results negate
R2, i.e., that the compression effect observed dur-
ing training would be useful for Creoles.3

Few-shot learning Finally, we assess the ability
of our models to learn Creoles from few examples

3We also compared the results of a pre-trained mBERT,
which, unsurprisingly, outperformed all of our checkpoints
(corresponding to smaller models learned from tiny data).
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Figure 5: Heatmaps of WALS cosine distances between
Nigerian Pidgin (Naija) and its parent and random train-
ing languages. We observe that Nigerian Pidgin is less
related to any of these languages, than any of them in-
ternally (except Quechua and Cherokee).

(n=10, ..., 100) at different training stages. Once
again, few-shot learning from post-compression
checkpoints led to higher perplexity than training
from maximum perplexity or early checkpoints.

5 Creoles through the Lens of WALS

We have observed unique patterns for Creoles.
Namely, multilingual learning of the related lan-
guages did not lead to successful transfer to Cre-
oles; and that Creoles exhibit a unique compres-
sion effect. Here, we speculate whether there is
a link between these observations, and investigate
whether typological features can shed lights into
our results. To that effect, we use The World Atlas
of Language Structures (WALS)4, which has been
used to study Creoles before (Daval-Markussen
and Bakker, 2012). Here, we use the cosine dis-
tance between the normalized (full) WALS feature
vectors as our distance metric.5

In Figure 5, we present an example heatmap for
4wals.info.
5https://github.com/mayhewsw/wals.

Nigerian Pidgin, which shows that Nigerian Pidgin
is less related to ancestor and random languages
than any of them internally (except Quechua and
Cherokee). We found this pattern present for each
of the Creoles. Thus, it would seem that Creoles’
relatively large distance6 from other languages may
make cross-lingual transfer a particular challenge
for learning Creoles.7

6 Conclusion

We have presented two hypotheses (R1 and R2)
about the possibility of zero-shot transfer to Cre-
oles, both built on the idea that Creoles share char-
acteristics with their ancestor languages. This is
not exactly equivalent to the so-called superstratist
view of Creole genesis, which maintains that Cre-
oles are essentially regional varieties of their Eu-
ropean ancestor languages, but if the superstratist
view was correct, R1 would very likely be easily
validated (Singh et al., 2019). Our results show
the opposite trend, however. Zero-shot transfer to
Creole languages from their ancestor languages
is hard. We do not claim that our results favor
an exceptionalist position on Creoles. While we
performed a first analysis of several segmentation
approaches (i.e., BERT word piece, grapheme-to-
phoneme, and byte-pair encodings) – which did
not change the training dynamics – we believe that
a rigorous comparison would be beneficial for fu-
ture work in ancestor-to-Creole transfer. We hope
that continued investigation in this direction can
shed more light on cross-lingual transfer, especially
with regards to Creoles, and that this work has
demonstrated that not all transfer between related
languages is trivial.
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Abstract

Coreference resolution – which is a crucial task
for understanding discourse and language at
large – has yet to witness widespread benefits
from large language models (LLMs). More-
over, coreference resolution systems largely
rely on supervised labels, which are highly ex-
pensive and difficult to annotate, thus making
it ripe for prompt engineering. In this paper,
we introduce a QA-based prompt-engineering
method and discern generative, pre-trained
LLMs’ abilities and limitations toward the task
of coreference resolution. Our experiments
show that GPT-2 and GPT-Neo can return valid
answers, but that their capabilities to identify
coreferent mentions are limited and prompt-
sensitive, leading to inconsistent results.

1 Introduction

Coreference resolution (CR) aims to identify and
cluster all words (i.e., mentions) that refer to the
same entity or event. Solving this task is essential
for natural language understanding, as mismatched
references will lead to bias. Recent improvements
in CR have been incremental (Lee et al., 2017;
Joshi et al., 2020; Cattan et al., 2020), compared
to other NLP tasks that have demonstrated more
real-world impact. One reason is the limited train-
ing corpora. For example, one of the primary
datasets, ECB+ (Cybulska and Vossen, 2014), con-
tains only 984 documents, including 6,833 men-
tions and 2,741 clusters. Moreover, this dataset
was built around 43 news topics ten years ago, po-
tentially leading to generalization problems for the
state-of-the-art (SOTA) models.

When dealing with low-resource tasks, there is
an emerging trend to perform prompt engineering
with pre-trained LMs. Unlike fine-tuning (Brown
et al., 2020; Wei et al., 2021), prompt engineering
does not update the pre-trained model’s weights
when completing the downstream task. Instead,
one transforms the downstream task to match the

original task of the pre-trained model (Liu et al.,
2021). For example, for machine translation, one
can create prompts such as “English: I love bread.
French:” and input them to a generative LM (e.g.,
GPT-2). If the pre-trained model encountered sim-
ilar patterns during training, it should be able to
generate the translated French sentence. Neverthe-
less, to the best of our knowledge, there is scarce
research on applying this approach to coreference
resolution (Sanh et al., 2021).

To better understand if pre-trained LMs can help
resolve coreferences, we construct a QA-based
prompting method and experiment with both GPT-
2 (Radford et al., 2019) and GPT-Neo (Gao et al.,
2020). By using this prompting methodology, we
measure if these models can predict whether two
mentions are coreferent. For evaluation, we use
the ECB+ dataset, which provides gold mentions
and clustering labels. We compare the results with
unsupervised and supervised coreference resolu-
tion models, including a classic rule-based system
(Lee et al., 2011), the seminal end-to-end neural
model (Lee et al., 2017), and a recent SOTA model
(Cattan et al., 2020).

2 Related Work

Prompt-based learning Prompt-based learning
is a fast-growing area in NLP, as it can reduce
the need to fine-tune models and rely on super-
vised labels. According to the survey by Liu et al.,
over 120 papers have been published since 2019,
which collectively demonstrates effectiveness to-
ward many different tasks: text classification (Tam
et al., 2021; Holtzman et al., 2021), factual prob-
ing (Perez et al., 2021), question-answering (Tsim-
poukelli et al., 2021), and more. Nevertheless, to
the best of our knowledge, only one prompt-based
learning paper concerned CR. Specifically, Sanh
et al. introduces T0, a zero-shot generalization of
T5 (Raffel et al., 2019). The authors convert vari-
ous supervised datasets into task-specific prompts,
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Figure 1: An example of prompt-based learning for CR. The green block represents the prefix, which serves as the
description of the CR task and remains unchanged throughout an experiment for all inputs x. The purple block
is the unfilled prompt, which changes for each input x and serves as the prediction. Moreover, in each block, the
yellow part is the prompting function while the blue and red parts are the original data x and y, respectively.

including CR. Using the WSC dataset (Levesque
et al., 2012), they achieve over 60% accuracy. Al-
though this result is not comparable with super-
vised state-of-the-art (SOTA) models, it still offers
compelling results and suggests the model might
contain CR knowledge without requiring super-
vised training on the task. However, since the
WSC dataset only focuses on highly ambiguous
pronouns, it is not as complete as the standard CR
task that involves named and nominal mentions.

Traditional CR Models Similar to other NLP
tasks, most CR models can be categorized as being
either unsupervised or supervised. A commonly
used unsupervised model is the Multi-Pass Sieve
model (Lee et al., 2011). This rule-based system
extracts entity mentions and clusters them by ap-
plying 13 “filters” in successive manner. Amongst
supervised models, e2e-coref (Lee et al., 2017) is
the seminal end-to-end neural model. This model
performs within-document CR and was trained on
the OntoNotes (CoNLL-2012) dataset. Building
on this architecture, Cattan et al. (2020) performs
cross-document CR for entities and events by train-
ing on the ECB+ dataset and using RoBERTa (Liu
et al., 2019) as an encoder. Although supervised
models offer significant improvements over unsu-
pervised models, they are expensive to train; most
SOTA models have O(n4) complexity, where n is
the length of each document.

3 Methodology

This section introduces our prompt-based learn-
ing method for CR. Typically, CR models can be
broken down into three sub-tasks: (1) detecting
mentions; (2) predicting whether two given men-
tions are coreferent or not; (3) and clustering men-
tions accordingly. The crux of CR research centers

around the second part, which is also our focus.
Building on the approach introduced by

Sanh et al. (2021), we define our input x as
[text,m1,m2] and output y as a binary label.
Specifically, m1 and m2 are a pair of gold men-
tions in a document, and the text are the sentences
containing those mentions. For example, in Fig-
ure 1, within each green box, the successive blue
parts are text, m1, m2, respectively. We define
a prompting function f , which takes x as input
and produces a question prompt qx (Equation 1).
Further details about f are in Appendix A.

qx = f(x) (1)

Moreover, to allow the model to understand the
task, we use few-shot learning (Triantafillou et al.,
2017) by constructing a filled prefix. In particular,
we select k examples, A, from the training dataset
and feed these examples into the same prompting
function f . Then, we append the true label (‘Yes’
or ‘No’) to the outputs, yielding the filled prefix qA
(Equation 2). To be clear, each individual prefix
qi∈k constitutes a single green box in Figure 1.

qA = f(A) (2)

Last, adding the unfilled prompt qx to the filled
prefix qA will give us the full prompt for data point
x. This allows us to get a prediction z without
updating any parameters θ in the pre-trained LM.

z = P (qA + qx; θ) (3)

Since we use pre-trained LMs directly, without
fine-tuning, we do not have control over its output;
the model can generate invalid answers beyond
our desired outputs, ‘Yes’ or ‘No’. Therefore, we
repeat the process m times to get a more robust
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prediction z̄. To mitigate the bias of one specific
f , we average the output of n different prompt
formulas to get the final prediction (Equation 4).

y =

∑n
i=1 z̄i
n

(4)

4 Experimental Setup

Datasets We use the ECB+ dataset (Cybulska
and Vossen, 2014) as our input source, which con-
tains both within- and cross-document coreference
information for both event and entity mentions.
This dataset consists of 984 documents around 43
news topics, among which 196 documents are in
the development set. After preprocessing the data,
as described in Appendix B, our development set
consists of 172 documents.

To generate a prefix x0, we experiment with
three data sources: the training sets of WSC
(Levesque et al., 2012) and ECB+ (Cybulska and
Vossen, 2014), and a simple dataset that we man-
ually generated. The WSC dataset was used in
the research most similar to ours, T0 (Sanh et al.,
2021), which we compare against while using
much smaller pretrained LMs (i.e., GPT-2 and GPT-
Neo). As mentioned, ECB+ provides more natu-
ral and comprehensive references than WSC. Our
manually generated dataset uses 10 very simple
examples – allowing one to discern the impact on
performance.

When using the ECB+ dataset, we only consid-
ered pairs of mentions that are within the same
or successive sentences. When evaluating our
model, we considered all mention-pair combina-
tions, [m1,m2], within said sentences. Relying on
the gold mentions, we obtain a dataset with 17832
candidate mention pairs, among which 7.86% are
positive samples. Finally, we apply 5 prompt func-
tions from Sanh et al. to generate the full prompts.

Models We used three traditional CR models as
baselines: Multi-Pass Sieve (Lee et al., 2011), the
seminal end-to-end neural model (e2e-coref ) (Lee
et al., 2017), and a SOTA extension (the Stream-
lining model) (Cattan et al., 2020). Respectively,
these models represent three categories: a rules-
based model, a supervised model trained on a dif-
ferent dataset, and a supervised model trained on
the same dataset. In terms of implementations, we
use the CoreNLP toolkit for the Multi-Pass Sieve
model (Manning et al., 2014) and AllenNLP (Gard-
ner et al., 2018) for e2e-coref. Since there is no

publicly available pre-trained Streamlining model
(Cattan et al., 2020), we fully train the model from
scratch using a V100 GPU on Google Colab. To
fairly compare with other models, we set a 0.5
threshold for the pairwise scorer in the Streamlin-
ing model. We evaluate all models by their mention
pairwise scorers, not their clustering decisions.

Limited by our computational resources, we
choose GPT-2 and GPT-Neo-125M as our pre-
trained LMs 1. During inference, the output token
length is set to 1, since our expected output is one
word (i.e., ‘Yes’ or ‘No’). To generate more ro-
bust results, the repetition parameter m is set to 5.
We ran our text generative models with multiple
temperature settings ranging from 0 to 1, none of
which produced significant changes. We settled on
using a value of 0.7, to limit the greediness of the
generated responses. In terms of few-shot learning,
we experimented with k ∈ {0, 2, 4, 10} and display
the results from the 4-shot setting since it produces
the best accuracy. To reduce bias introduced by pre-
fixes, we ensure each prefix has equally-balanced
samples. For example, for the 4-shot setting, the
filled prefix will have 2 positive examples and 2
negative examples.

5 Results and Analysis

Yes/No Predictions
0-shot 5%
2-shot 93.7%
4-shot 96.2%
10-shot 98%

Table 1: Percentage of Yes/No predictions by GPT-2

We first question if GPT-based models can pro-
duce valid answers. In Figure 1, we observe that
GPT-2 predicts ‘Yes’ or ‘No’ for over 93.7% sam-
ples when at least 2 filled prefixes are provided.

However, although the answers are valid, they
are inaccurate. In Figure 2, we plot the distribution
of predicted labels for each model, where the red
bars denote the distribution of positive examples
(ground truth), and the blue bars denote negative
ones (ground truth). Traditional CR models gen-
erally predict low values for negative examples,
indicated by blue bars being concentrated at 0. As
for positive examples, e2e-coref shows better pre-
cision since more positive examples are classified

1Our code can be found at https://github.com/
AwesomeCoref/prompt-coref
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Figure 2: Distribution of predicted values

correctly at 1. Yet, GPT-2 seems to be both sensi-
tive to prompts and unstable over the repetitions of
each prompt. Furthermore, GPT-Neo’s predictions
are inaccurate and no better than random, even
though it predicts consistent results for multiple
runs with the same prompt.

Similar conclusions can be drawn from Table 2,
where GPT-based models have the lowest AUC and
F1 scores. Specifically, the extremely low precision
causes the bad results. Since the ECB+ dataset is
highly imbalanced, random predictions from GPT-
based models will lead to a low precision, reflecting
the proportion of positive samples. For complete-
ness, we also perform an experiment on the WSC
dataset (see GPT-2wsc), which is a test dataset used
by Sanh et al. (2021). GPT-2 also fails on this task,
as its mean prediction averaged across different
prompts is always “Yes” .

Acc Prec Rec F1 AUC
Multi Sieve 0.93 0.39 0.20 0.27 0.59
e2e-coref 0.95 0.62 0.46 0.53 0.72
Streamline 0.93 0.87 0.19 0.31 0.59
GPT-2 0.50 0.08 0.53 0.14 0.51
GPT-NEO 0.38 0.08 0.68 0.15 0.52
GPT-2wsc 0.37 0.37 1.00 0.54 0.50

Table 2: Performance of different models.

POS and Entity Types While the overall perfor-
mance indicates that GPT models are comparable
to a random model, we hypothesize that for some
subset of mention pairs, GPT might perform better.
To investigate, we conducted experiments based on
part-of-speech (POS) tags and named-entity types.
Figure 3 shows that both GPT-2 and GPT-Neo can
capture coreferent relationships relatively better
when the second mention is a pronoun. Moreover,

this trend is stronger when the first mention is a
pronoun or a proper noun. Nonetheless, e2e-coref
performs better than both GPT models across all
POS tags, and the gap is widest when the second
mention is a nominal noun phrase.

Figure 3: Model’s precision over various types of noun
phrases, including pronouns, proper nouns and nominal
nouns. Each bar’s hue intensity denotes the data density.

As for named entities, Figure 4 shows that both
GPT-2 and GPT-Neo perform better in precision
when one mention is of type PERSON. More-
over, GPT-Neo can identify coreferent relation-
ships more precisely if the second mention is Non-
GPE locations (i.e., LOC). However, their precision
scores are far lower than the scores from classical
CR models. In particular, both the multi-pass sieve
model and e2e-coref model reach the highest preci-
sion when a mention is a PRODUCT object (e.g.,
vehicle, food) or a NORP object (e.g., nationality,
religious or political group).

(a) GPT-2 (b) GPT-Neo

(c) Multi-pass Sieve (d) e2e-coref

Figure 4: GPT-2’s performance on different named-
entity types. We use colors to denote performance and
the text to show data density in each category.
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Figure 5: Different models’ F1 score over various level
of mention similarities based on BERT embedding.

Mention Similarity In addition to inspecting
how performance varies with mention types, we
also considered how performance is affected by
mentions’ similarity. Using pre-trained BERT (De-
vlin et al., 2018), we encode each mention into
span representations by averaging its tokens’ last
hidden states. Then, we measure cosine similarity
between mention pairs.

Figure 5 shows that F1 scores generally improve
as the semantic similarity increases. Although, the
multi-pass sieve model maintains a low F1 because
it is a rule-based model that tends to predict False
for most samples – which yields a high accuracy
for unbalanced datasets. The e2e-coref model per-
forms well on mentions that are not so similar,
while the performance of Streamlining model im-
proves drastically as similarity is greater than 50%.
However, both GPT-2 and GPT-NEO yield low
F1 (approximately 0.2) for mention pairs with less
than 70% similarity. When considering mentions
of higher similarity, GPT-based models can achieve
over 0.4 F1 score.

6 Conclusion

In this paper, we rely on prompt-based learning to
analyze how much GPT-like models know about
coreference resolution. Despite the popularity of
prompting in recent NLP research, we find that
LLMs perform poorly on this task without fine-
tuning. Nonetheless, these models achieve rela-
tively better performance for specific types of men-
tions, including pronouns and person objects, and
mention pairs with high similarity.
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A Prompt formulas

Figure 6: Prompt Formulas. We experiment with these 5
prompt formulas mentioned in Sanh et al. (2021). Here,
each block is one formula and the parts highlighted in
blue are [text,m1,m2] respectively.

B Data Preprocessing

The original ECB+ dataset is in XML format,
where everything is tokenized. Moreover, the
information about gold mentions and gold clusters
is related to token ids. However, we cannot easily
get the plain text by joining tokens with a space
character. If we do so, we will get strange looking
text as shown below.

http : / / www . accesshollywood . com / lindsay -
lohan - leaves - betty - ford - checks - into - malibu -
rehab article 80744 Lindsay Lohan Leaves Betty
Ford , Checks Into Malibu Rehab First Published :
June 13 , 2013 4 : 59 PM EDT Lindsay Lohan has
left the Betty Ford Center and is moving to a rehab
facility in Malibu , Calif . , Access Hollywood has
confirmed .

In this example, we can see objects like urls,
datetime and punctuation are not in the right
format. Since we are using the text as an input to
the prompt function, we need to properly format
them to align with normal text that GPTs are
trained on. Moreover, as gold mention and gold
clusters are based on original token ids in ECB+,
when we parsed and re-formatted the data, we
could match these ids again. Continuing with the
previous example, our parsing algorithm cleans up
the previous text to be something as follows.

http://www.accesshollywood.com/lindsay-
lohan-leaves-betty-ford-checks-into-malibu-
rehab article 80744 [EOS] Lindsay Lohan Leaves
Betty Ford, Checks Into Malibu Rehab First
Published: June 13, 2013 4: 59 PM EDT [EOS]
Lindsay Lohan has left the Betty Ford Center and
is moving to a rehab facility in Malibu, Calif.,
Access Hollywood has confirmed. [EOS]

C Additional Results

Here are additional results for our experiments.

Experiments on Prefix The aggregate results
from few shot learning are displayed in Table 3.
Our results show that 4-shots learning performs
the best for both GPT-2 and GPT-NEO in terms of
accuracy. Unexpectedly, as we increase the size of
examples, the result does not improve accordingly.
Given 10 examples in prefix, the model tend to pre-
dict “yes” more easily. One possible explanation
might be that we have balanced examples in prefix
while the actual querying data only have around
8% positive samples.

Acc Prec Recall F1 AUC
2-shots 0.39 0.08 0.64 0.14 0.50
4-shots 0.51 0.08 0.51 0.14 0.51
10-shots 0.19 0.08 0.90 0.15 0.51

Table 3: n-shot performance from the text generative
models

Acc Prec Recall F1 AUC
simple 0.61 0.08 0.36 0.13 0.50
WSC 0.08 0.08 1.00 0.15 0.50
ecb+ 0.54 0.08 0.48 0.14 0.51

Table 4: Average results from each dataset that is used
for the experiments

Moreover, we experiment with various datasets
for prefix as discussed in section 4. The results
in Table 4 shows that prefix does have an impact
on the results. The prefix generated from ECB+
dataset performs slightly better than others regard-
ing to AUC. This is understandable because we
evaluate on the ECB+ development set. Beyond
our expectation, WSC-prefix result in a perfect re-
call and a super bad accuracy, which means that
this prefix lead models to generate “yes” regard-
less of the context. This result further proves that
GPT-2 is very sensitive to prompts.
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Abstract

Recent work uses a Siamese Network, ini-
tialized with BioWordVec embeddings (dis-
tributed word embeddings), for predicting
synonymy among biomedical terms to auto-
mate a part of the UMLS (Unified Medical
Language System) Metathesaurus construc-
tion process. We evaluate the use of con-
textualized word embeddings extracted from
nine different biomedical BERT-based mod-
els for synonymy prediction in the UMLS
by replacing BioWordVec embeddings with
embeddings extracted from each biomedical
BERT model using different feature extraction
methods. Surprisingly, we find that Siamese
Networks initialized with BioWordVec em-
beddings still outperform the Siamese Net-
works initialized with embedding extracted
from biomedical BERT model.

1 Introduction

The UMLS (Bodenreider, 2004) is a biomedical termi-
nology integration system that includes over 200 source
vocabularies1. The UMLS Metathesaurus construction
process organizes synonymous terms from these source
vocabularies into concepts. The current Metathesaurus
construction process uses a lexical similarity model and
semantic preprocessing to determine synonymy, fol-
lowed by a human review. The large scale and diver-
sity of the Metathesaurus make the construction pro-
cess very challenging, tedious, and error-prone. There-
fore, to assist the UMLS Metathesaurus construction
process, Nguyen et al. introduced the UMLS Vocab-
ulary Alignment (UVA) task, or synonymy prediction
task (Nguyen et al., 2021). They designed and train a
Siamese Network to predict if two UMLS atoms are
synonymous. The Siamese Network is initialized us-
ing BioWordVec embeddings, learned using fastText
(Bojanowski et al., 2017). Given the recent successful
use of contextualized word embeddings, extracted from
Transformer models, for different downstream NLP
tasks (Devlin et al., 2019; Vaswani et al., 2017; Pe-
ters et al., 2019), we explore the use of contextualized

1https://uts.nlm.nih.gov/uts/

embeddings extracted from several distinct biomedical
BERT-based language models.
Objectives. 1) Find which type of word embeddings,
including contextualized embeddings, achieves the best
performance when used with the Siamese Network for
the synonymy prediction (or UVA) task. 2) Find which
feature extraction method works best to extract word
embeddings from the biomedical BERT models for op-
timal performance. 3) Find the best hyperparameters
and optimization of the prediction task to train the
Siamese Networks for the UVA task.
Approach. 1) We analyze the performance of the
Siamese Networks initialized with embeddings from
nine different biomedical BERT models for synonymy
prediction. 2) We explore different feature extraction
techniques to extract BERT embeddings. 3) We con-
duct a grid search and optimization of the prediction
task to train the Siamese Networks.
Contributions. 1) We conduct an extensive analysis
to extract embeddings from nine different biomedical
BERT models using four feature extraction techniques.
2) Somewhat surprisingly, we find that Siamese Net-
works still achieve the highest performance for syn-
onymy prediction when initialized with BioWordVec
embeddings. 3) We find that no single feature extrac-
tion method works well across the different biomedical
BERT models. 4) With a thorough grid search, we find
substantial increases in F1-Score (e.g., 2.43%), when
compared to the default hyperparameters. 5) Overall,
our work contributes to defining best practices for the
use of embeddings in Siamese Networks. See https:
//arxiv.org/abs/2109.13348 for an extension of this pa-
per as it presents an extended analysis of the experi-
ments and additional results.

2 UMLS - Knowledge Representation

The UMLS Metathesaurus links terms and codes be-
tween health records, pharmacy documents, and insur-
ance documents (Bodenreider, 2004). The Metathe-
saurus consists of several building blocks, including
atoms and concepts. All atoms in the UMLS Metathe-
saurus are assigned a unique identifier (AUI). Atoms
that are synonymous are grouped into a single con-
cept identified with a concept unique identifier (CUI).
Table 1 contains examples of synonymous atoms and
the identifiers assigned to each respective atom for a
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Tuple Atom String Source AUI CUI

t1 Headache MSH A0066000 C0018681
t2 Headaches MSH A0066008 C0018681
t3 Cephalodynia MSH A26628141 C0018681
t4 Cephalodynia SNOMEDCT US A2957278 C0018681

Table 1: Examples tuples from UMLS consisting of
an atom string, its source vocabulary name, its unique
atom identifier (AUI), and its concept unique identifier
(CUI). All tuples in the example table are synonymous
and, hence, have the same CUI.

particular concept. For example, the term “Cephalo-
dynia” appearing in both MSH and SNOMEDCT US
has different AUIs as shown in Table 1. Additionally,
the strings “Headache” and “Headaches” have differ-
ent AUIs because of the lexical variation (see Table 1).
We use the 2020AA version of the UMLS, which con-
tains 15.5 million atoms from 214 source vocabularies
grouped into 4.28 million concepts.

3 Problem Formulation

An essential part of the UMLS construction process
is identifying similar atoms across source vocabular-
ies to integrate knowledge from different sources ac-
curately. The UMLS Vocabulary Alignment (UVA) –
or synonymy prediction – task is to identify synony-
mous atoms by measuring the similarity among pairs
of atoms. A machine learning model should be able to
identify the synonymous atoms are that lexically: simi-
lar but are not synonymous and dissimilar but are syn-
onymous. Let (ti, tj) be a pair of input tuples, where
i ̸= j. Each tuple is initialized from a different source
vocabulary in the form of (str, src, aui), where str is
the atom string, src is the source vocabulary, and aui is
the atom unique identifier (AUI). Let f : T ×T → 0, 1
be a prediction function that maps a pair of input tuples
to either 0 or 1. If f(ti, tj) = 1, then the atom strings
(stri, strj) from ti and tj are synonymous and belong
to the same concept (and hence, share same the CUI).

4 Dataset

We thank Nguyen et al. for sharing the dataset used
in their work (Nguyen et al., 2021; Nguyen and Bo-
denreider, 2021). The dataset is created using the
2020AA release of the UMLS Metathesaurus. We use
the ALL dataset for our study. The training and valida-
tion dataset contains a total of 192,400,462 examples,
where 88.4% of the examples are negative examples.
The testing dataset set contains a total of 173,035,862
examples, where 96.8% of the examples are nega-
tive examples. We refer the readers to Section 4.2 of
(Nguyen et al., 2021) for a detailed description.

5 Related Work

We first describe the Siamese Networks for the UVA
then describe the biomedical BERT variants.

Figure 1: Siamese Network used for Synonymy Pre-
diction. Nguyen et al. use BioWordVec embeddings,
whereas we use contextualized word embeddings. “*”
indicates optional attention layer.

Siamese Networks for the UVA Task

Nguyen et al. assess the similarity of atoms using lex-
ical features of the atom strings (str). The authors de-
sign a Siamese Network that inputs a pair of atom
strings, and outputs a similarity score between 0 and 1,
sim(stri, strj) ∈ [0, 1] (see Figure 1). The inputs are
preprocessed, tokenized, and then sent through an ini-
tial embedding layer initialized with BioWordVec em-
beddings (Zhang et al., 2019). The word embeddings
are then fed into Bidirectional Long Short Term Mem-
ory (Bi-LSTM) layers, followed by two dense layers.
All atom pairs with a similarity > 0.5 are considered
synonyms (using the Manhattan distance). Their deep
learning model has a precision of 94.64%, recall of
94.96% and an F1-Score of 94.8% and outperforms a
rule-based approach for synonymy prediction by 23%
in recall, 2.4% in precision, and 14.1% in F1-Score. In
their follow-up work, Nguyen et al. add an attention
layer after the Bi-LSTM layers that improves the pre-
cision by +3.63% but decreases recall by 1.42%.

Biomedical BERT Models

In this section, we summarize the specific biomedical
BERT variants used in this study. For brevity, we fo-
cus on biomedical BERT variants and omit the general
presentation of BERT. We refer the interested reader to
(Devlin et al., 2019) for details.

Table 2 compares the different biomedical BERT
models used in this benchmarking study. To limit the
scope of the biomedical BERT models, we only in-
clude models that have been pretrained with data from
biomedical sources, such as biomedical terminologies
(e.g., UMLS vocabularies), biomedical literature (e.g.,
PubMed), and clinical notes (e.g., MIMIC-III).
BioBERT: BioBERT is initialized from BERT and
then pretrained on PubMed abstracts and PubMed Cen-
tral (PMC) full-text articles (Lee et al., 2020). We use
both BioBERT-Base and BioBERT-Large.
BlueBERT: BlueBERT is initialized with BERT
weights provided by (Devlin et al., 2019) and further
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Model Type Embed. Dim. Vocab Size Token Size

BioWordVec 200 268,158,600 -
BioBERT (+ SapBERT) 768 28,996 13,230,336
BioBERT-Large (Cased) 1024 58,996 28,530,688
BlueBERT 1024 30,522 25,358,336
SapBERT 768 30,522 21,035,520
UMLSBERT (+ SapBERT) 768 28,996 13,230,336
BlueBERT+ SapBERT 768 30,522 19,018,752
VanillaBERT + SapBERT 768 30,522 19,018,752

Table 2: Comparison of different biomedical word em-
beddings in terms of the embedding dimension, vocab-
ulary size, and the number of tokens.

pretrained with the PubMed Abstract and MIMIC-III
datasets. We use BlueBERT-Large in our work.
SapBERT: SapBERT provides the current state-of-the-
art (SOTA) results for six medical entity linking bench-
marking datasets (Liu et al., 2021). SapBERT is trained
on the UMLS with 4M+ concepts and 10M+ synonyms
from over 150 vocabularies.
UMLSBERT: UMLSBERT is initialized with the pre-
trained Bio ClinicalBERT model (Alsentzer et al.,
2019) and pretrained with the MLM task on the
MIMIC-III dataset with additional modifications.
{BioBERT, BlueBERT, UMLSBERT, Vanill-
aBERT} + SapBERT: The SapBERT authors pretrain
additional variants of SapBERT that are initialized
using different BERT variants. We refer the reader to
(Liu et al., 2021) for a detailed description.

6 Approach

To analyze the performance of the different em-
beddings extracted from the various BERT models,
we train the Siamese Network end to end, similar
to (Nguyen et al., 2021; Nguyen and Bodenreider,
2021). We investigate the use of the nine biomed-
ical BERT models (mentioned in Section 5) as a
source of word embeddings. Our experimental setup
of consists of two primary steps for each of the
Siamese Networks (with and without attention): 1) Fea-
ture extraction of word embeddings from biomedical
BERT Models. 2) Grid search of optimal hyperpa-
rameters and optimization. Our code will be available
at https://anonymous.4open.science/r/uva embedding
benchmarking-8124/. For the training and testing data,
we recommend reaching out to Nguyen et al. (Nguyen
et al., 2021; Nguyen and Bodenreider, 2021).

Feature Extraction for the Siamese Network

BioWordVec has a fixed word embedding for each
word or term (e.g., UMLS atom). For transformer mod-
els, word embedding extraction is not as straightfor-
ward because different layers of BERT capture differ-
ent types of features (Jawahar et al., 2019; Liu et al.,
2019; Reimers and Gurevych, 2017; Peters et al., 2018;
van Aken et al., 2019; Devlin et al., 2019). We ini-
tialize Siamese Networks with token embeddings in-
stead of word embeddings to use BERT models for
the UVA task. To extract token embeddings for UMLS

atoms from each BERT model, we: 1) Tokenize the
atom strings using the model-specific vocabulary. 2)
Create a token id tensor by mapping the token strings to
their vocabulary indices. 3) Create a segment id tensor.
4) Feed the token id and segment id tensors in to the
BERT model (in eval mode). 5) Create a separate token
embedding matrix to initialize the Siamese Networks
using each of the following methods:

• 1st token embedding and last layer
• 1st token embed. and avg. of last 4 layers
• Last token embedding and last layer
• Last token embed. and avg. of last 4 layers
• Avg. token embedding and last layer
• Avg. token embed. and avg. of last 4 layers
Of note, we do not use the “CLS” sentence represen-

tation as the word embedding for UMLS atoms because
the Bi-LSTMs layers require a sequence as input. We
only use the atom string to extract token embeddings
because all vocabularies in the UMLS have this char-
acteristic in common. In summary, we extract two sets
of embeddings from each model (the 12th layer and av-
erage of the 9th to 12th layers) and use three different
types of token embeddings (the first and last occurrence
of the token in the dataset and the average embedding
of each occurrence of the token in the dataset).
Grid Search and Optimization
The performance of deep learning models highly de-
pends on the selection of hyperparameters (Hutter
et al., 2014; Bergstra and Bengio, 2012; Reimers and
Gurevych, 2017). Prior work by Nguyen et al. uses
a fixed set of hyperparameters. Therefore, we con-
duct a grid search for the best-performing models to
thoroughly investigate the performance of the Siamese
Networks. Hyperparameters used in our experiment
include optimizer (SGD, Adam) and learning rate
(0.00001, 0.0001, 0.001, 0.01, 0.1). To limit computa-
tional cost, we conduct a grid search for the following
Siamese Networks: BioWordVec (BWV), BioWordVec
+ Attention (BWV + Att.), SapBERT avg. token em-
bedding extracted by averaging the last 4 layers (SB
Avg Token + Avg Last 4), SapBERT avg. token em-
bedding extracted from the last layer + Attention (SB
Avg Token + Last Lay + Att.). Additionally, Nguyen
et al. provide no rationale for the similarity threshold of
0.5 between the learned representations of two atoms.
Therefore, we search for the best threshold for predic-
tion based on the precision-recall curve to find a thresh-
old that maximizes the F1-Score.

7 Results and Discussion
Table 3 presents the synonymy prediction results us-
ing embeddings extracted from BERT models and
BioWordVec embeddings. The Token Type and Extrac-
tion Method columns indicate the feature extraction
method that was used to initialize the model.
Performance with BERT Embeddings: We find that
Siamese Networks initialized with BioWordVec still
outperform all models initialized with embeddings ex-
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Siamese Network without Attention (Nguyen et al., 2021) Siamese Network with Attention (Nguyen and Bodenreider, 2021)

Embedding Type Token
Type

Extraction
Method

Threshold Accuracy Precision Recall F1-Score AUC Token
Type

Extraction
Method

Threshold Accuracy Precision Recall F1-Score AUC

BioWordVec - - 0.5612 0.9941 0.9075 0.9127 0.9101 0.9909 - - 0.5490 0.9939 0.9056 0.9067 0.9061 0.9907

BioWordVec w. SGD, lr = 0.001 - - 0.5587 0.9942 0.9087 0.9146 0.9116 0.9913 - - 0.5507 0.9941 0.9078 0.9102 0.9090 0.9910

SapBERT Avg. Avg. Last 4 0.5802 0.9892 0.8496 0.8092 0.8289 0.9848 Avg. Last Layer 0.5607 0.9902 0.8682 0.8247 0.8459 0.9855

SapBERT w. SGD, lr = 0.0001 - - - - - - - - Avg. Last Layer 0.5979 0.9913 0.8824 0.8459 0.8638 0.9830

SapBERT w. Adam, lr = 0.0001 - - - - - - - - Avg. Avg. Last 4 0.59 0.9912 0.8840 0.8372 0.8600 0.9830

BioBERT First Last Layer 0.5643 0.9853 0.7955 0.7380 0.7657 0.9758 Avg. Avg. Last 4 0.5481 0.9862 0.81 0.7504 0.779 0.9774

BioBERT Large Avg. Last Layer 0.5438 0.9881 0.8400 0.7810 0.8095 0.9807 Avg. Last Layer 0.5438 0.9881 0.84 0.781 0.8095 0.9807

BlueBERT First Last Layer 0.5680 0.9859 0.8066 0.7424 0.7732 0.9765 Avg. Last Layer 0.5500 0.9872 0.8247 0.7677 0.7952 0.9792

UMLSBERT Avg. Avg. Last 4 0.5755 0.9852 0.7921 0.7371 0.7636 0.9754 Avg. Avg. Last 4 0.5501 0.9862 0.8151 0.7415 0.7765 0.9764

UMLSBERT + SapBERT Avg. Avg. Last 4 0.5543 0.9854 0.7948 0.7432 0.7681 0.9769 Avg. Avg. Last 4 0.5452 0.9857 0.7992 0.7485 0.773 0.9771

BlueBERT + SapBERT Avg. Avg. Last 4 0.5810 0.9868 0.8154 0.7651 0.7895 0.9798 Avg. Avg. Last 4 0.5596 0.9875 0.831 0.7701 0.7994 0.9797

BioBERT + SapBERT Avg. Avg. Last 4 0.5756 0.9851 0.7904 0.7348 0.7616 0.9756 Avg. Avg. Last 4 0.5511 0.9861 0.81 0.7465 0.7769 0.9769

VanillaBERT + SapBERT Avg. Avg. Last 4 0.5614 0.9866 0.8125 0.7633 0.7872 0.9791 Avg. Avg. Last 4 0.5467 0.9874 0.8268 0.772 0.7984 0.9801

Table 3: Results for Siamese Networks trained for 100 iterations initialized using different embeddings using the
best prediction threshold (single run point estimates). Rows marked with “w.” contain the performance of the
models after grid search.

tracted from biomedical BERT models. Though sur-
prising, Schulz and Juric also find that current em-
beddings are limited in their ability to adequately en-
code medical terms when tested on large-scale datasets
(Schulz and Juric, 2020).

Moreover, using a BERT model trained on more rel-
evant domain-specific data and the right task yields
more substantial gains. In particular, the SapBERT
model, whose embeddings achieve the highest perfor-
mance, is trained on PubMed and incorporates knowl-
edge from the UMLS Metathesaurus by using seman-
tic type embeddings and modifying the MLM task to
indicate if which words belong to the same concept.
These changes likely indicate why it outperforms the
other biomedical BERT models for our task.
Feature Extraction for Biomedical BERT Models:
Based on our experiments, no single feature extrac-
tion method provides the most useful embedding for all
BERT models. However, results indicate that averaging
all token embeddings and using the average of the last
four hidden layers seems to work well for many of the
models. The Siamese Network + Attention initialized
with the average token embedding extracted from the
last layer of SapBERT achieves the best F1-Score.
Performance after Grid Search: As mentioned in
Section 6, we limit the grid search to the four best per-
forming models: BWV, BWV + Att., SB Avg Token
+ Avg Last 4, and SB Avg Token + Last Lay + Att.
Our grid search results indicate that the Siamese Net-
work without attention outperforms the Siamese Net-
work with attention when initialized with BioWordVec
embeddings. Additionally, there is a 2.43% increase in
F1-Score for the Siamese Network with attention and
a 3.11% increase in F1-Score for the Siamese Network
w.o. attention. Reducing the batch size leads to early
stopping for all models but at the cost of performance
(e.g, 4.67% drop in F1-Score for BWV + Att. w. SGD).
Optimizer. For the four best performing models, we
see that SGD works better in three of the cases. For
only one model, Adam performs similarly to SGD with
a higher F1-Score by 0.16%. There is a 1% increase in
F-1 Score for the Siamese Network with Attention ini-

tialized with SB + Avg Token + Last Lay embeddings.
Using the SGD optimizer leads to earlier convergence
for when using biomedical BERT embeddings.
Learning Rate. Regardless of the optimizer, increas-
ing the learning rate (LR) to 0.01 and 0.1 leads to early
stopping and results in poor F1-Scores. With a LR of
0.0001, the performance for the Siamese Networks ini-
tialized with SapBERT embeddings extracted using the
average token and the last layer of the SapBERT model,
F1-Score increases by about 0.6% for the model with
attention and a 3.11% increase for the model without
attention. Reducing the LR further decreases perfor-
mance for Siamese Networks using BWV embeddings.
Threshold. The best performing thresholds range from
0.5438 to 0.581. On average using the best thresh-
olds results in 0.0086% increase in F1-Score for the
Siamese Networks without attention (results omitted
due to space). Hence, 0.5 is an acceptable threshold.

8 Conclusion
We investigate if contextualized embeddings extracted
from biomedical BERT-based language models can im-
prove the performance of Siamese Networks, intro-
duced by (Nguyen et al., 2021; Nguyen and Bodenrei-
der, 2021), to predict synonymy in the UMLS Metathe-
saurus. Despite the excellent performance of BERT
models on biomedical NLP tasks, BioWordVec em-
beddings still remain competitive for the UVA task.
This confirms the importance of investigating the use
of traditional distributed word embeddings. Among the
biomedical BERT models, SapBERT trained on UMLS
data performs best, suggesting the importance of using
a model trained on datasets directly relevant to the task
at hand. Finally, we demonstrate the importance of ex-
ploring different feature extraction methods and hyper-
parameter tuning for deep learning models.
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A Dataset
We thank Nguyen et al. for sharing the dataset used in
their work (Nguyen et al., 2021; Nguyen and Boden-
reider, 2021). To get a copy of the dataset, please sign
the UMLS License Agreement and email Nguyen to
receive the dataset.

B Experimental Details
We first train both Siamese Networks (with attention
(Nguyen and Bodenreider, 2021) and without attention
(Nguyen et al., 2021)) with the default hyperparame-
ters for each biomedical BERT model with each of the
different embedding extraction methods. The default
hyperparameters rely on Adam as the optimizer with
a learning rate of 0.001 and 8192 examples in batch.
This results in 20 different Siamese Networks, each
trained for 100 epochs. Next, we take the best perform-
ing Siamese models initialized with BERT embeddings
and the two Siamese models initialized with BioWord-
Vec embeddings and conduct a grid search to find the
optimal hyperparameters. We conduct a grid search for
a total of 4 Siamese Networks and evaluate each model
using the following metrics: Accuracy, Precision, Re-
call, F1-Score, and AUC.

All experiments are run using a High Performance
Computing cluster. The typical run time for a Siamese
Network with BioWordVec embeddings is 48 hours
for 100 iterations using a v100x NVIDIA GPU and
requires about 220 GB of memory. A Siamese Net-
work trained with BERT embeddings takes about 72
hours for 100 iterations using a v100x NVIDIA GPU
and requires about 220 GB of memory. The training
time is further increased to 88 hours for Siamese Net-
works trained with embeddings of dimensions 1024
(i.e., BioBERT-Large and BlueBERT embeddings).

C Limitations
Our work evaluates biomedical word embeddings ex-
tracted from BERT-based models for the Siamese Net-
works introduced by (Nguyen et al., 2021; Nguyen and
Bodenreider, 2021). Our list of biomedical BERT mod-
els does not include all models; we consider the most
recent biomedical BERT models that have achieved
SOTA performance on NLP tasks. The narrow focus of
our work allows us to conduct a thorough analysis of
the embedding extraction methods and hyperparame-
ters using nine different BERT models for two variants
of the Siamese Network. However, our experimental
setup is reproducible for similar NLP tasks.

As an additional exercise to test the usability of
transformer based embeddings, we attempt to use the
“CLS” sentence representation of the UMLS atoms.
For a pair of UMLS atoms, we extract the “CLS” sen-
tence representation of each UMLS atom and compute
the similarity of the representation using both the Co-
sine and Manhattan distance functions. We find that
this approach does not work well (< 30% accuracy). As

future work, we can investigate if adding a deep neural
net (different from a Siamese Network) can improve
the performance.
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Abstract

With in the broader scope of machine learning,
data augmentation is a common strategy to im-
prove generalization and robustness of machine
learning models. While data augmentation has
been widely used within computer vision, its
use in the NLP has been comparably rather lim-
ited. The reason for this is that within NLP, the
impact of proposed data augmentation meth-
ods on performance has not been evaluated in
a unified manner, and effective data augmen-
tation methods are unclear. In this paper, we
look to tackle this by evaluating the impact
of 12 data augmentation methods on multiple
datasets when finetuning pre-trained language
models. We find minimal improvements when
data sizes are constrained to a few thousand,
with performance degradation when data size
is increased. We also use various methods to
quantify the strength of data augmentations,
and find that these values, though weakly cor-
relate with downstream performance, correlate
negatively or positively depending on the task.
Furthermore, we find a glaring lack of consis-
tently performant data augmentations. This all
alludes to the difficulty of data augmentations
for NLP tasks and we are inclined to believe
that static data augmentations are not broadly
applicable given these properties.

1 Introduction

Data augmentation may be useful in situations
where the data size is insufficient for the number
of parameters in the model, resulting in overtrain-
ing (Perez and Wang, 2017). It has been pointed
out that data augmentation does not degrade the
expressive power of the model and achieves an
improvement in the generalization performance of
the model without adjusting the hyperparameters
(Hernández-García and König, 2018). While data
augmentation is standard in the field of computer
vision, it is not fully used in natural language pro-
cessing. Two factors can be cited for this. The

first reason is that there has been insufficient uni-
fied validation of data augmentation methods for
a wide range of datasets and data sizes. Another
reason is that it is still unclear what kind of data
augmentation is effective for learning. In natural
language processing, it is difficult to judge whether
a data augmentation method is good or bad with-
out relying on experiments, and it is necessary to
search for effective data augmentations by trial and
error (Feng et al., 2021). If it is possible to predict
whether a data augmentation is effective for learn-
ing before training, it would be possible to search
for data augmentations more efficiently.

This paper examines the performance impact
of data augmentation methods that have been pro-
posed for natural language processing on various
datasets. Through this experiment, we will verify
whether the data augmentation method can con-
tribute to the improvement of performance on mul-
tiple datasets and problem settings. We also use
various measures of the strength of a given data
augmentation, and investigate its relationship with
performance after learning. We find that although
data augmentation strength (i.e. how significantly
it perturbs the input) is correlated with the change
in downstream performance to a given degree, its
sign and degree often varies significantly. Based on
this, we believe that static data augmentations are
not a wise choice for NLP tasks with a reasonable
amount of data, and may need to be combined with
data-dependent modeling innovations to be broadly
applicable to future work.

2 Related Work

Data Augmentation for NLP Data augmenta-
tion has been explored in NLP recently with EDA
(Wei and Zou, 2019), as well as NL-augmenter
(Dhole et al., 2021). Masked language modeling
can be considered to be data augmentation (Devlin
et al., 2019), while dictionary-derived augmenta-
tion methods have been employed recently for aug-
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menting multilingual language models with large
improvements (Chaudhary et al., 2020; Reid et al.,
2021; Reid and Artetxe, 2022). However, Longpre
et al. (2020) showed that two data augmentation
methods in natural language processing had small
effects on pre-trained language models. We further
expand the scope of this study to examine the per-
formance impact of 12 different data augmentation
methods.

Evaluating Data Augmentation In the field of
computer vision, researchers have been studying
what kind of data augmentation contributes to the
performance (Taylor and Nitschke, 2018; Perez and
Wang, 2017). And some studies have been done to
create metrics on data augmentation and evaluate
the relationship with the performance of the model
after training. Gontijo-Lopes et al. (2020) proposed
two indices, affinity and diversity, to quantify how
data augmentation improves the generalization of
the model, and pointed out that data augmentation
methods that are evaluated as having high affinity
and diversity will lead to better performance in
computer vision. Meanwhile, it is still unclear what
characteristics of data augmentation methods are
effective in the field of natural language processing.

3 Evaluation Metrics and Training
Strategies

In this section, we briefly go over metrics we use to
evaluate the strength of our data augmentations of
a given task as well as strategies for training using
data augmentations.

3.1 Training Strategy
In this subsection, we briefly discuss our two
training strategies for incorporating data aug-
mentation. Given an i.i.d. dataset D =
{(x1, y1), (x2, y2), . . . , (xN , yN )} containing N
examples where each xi represents an input, and yi
represents the assigned label corresponding to xi.

Oftentimes, we simply fit a given model on
this dataset. However, given a data augmentation
function f(xi) = x̂i, where x̂i represents an aug-
mented input, we can also augment this dataset to
improve the diversity of inputs which should hope-
fully lead to better model generalization and ro-
bustness. That is, we now have augmented dataset
D̂ = {(x̂1, y1), . . . , (x̂N , ŷN )}.
We now explain the following finetuning methods:
Normal training Finetuning our models on D
1-step training Finetuning our models jointly on

augmented dataset D̂ and original dataset D—this
method is commonly employed in computer vision.
2-step training To mitigate the distribution shift
introduced by the augmentation, but still allowing
the model to learn from the augmented dataset, we
look at two-step finetuning where we first finetune
on D̂ and then finetune on D.

3.2 Data Augmentation Strength

We also look to analyse whether there are certain
trends among the strength of augmentation meth-
ods and their impact on downstream performance.
To do this, we measure the strength of augmenta-
tion methods using the following metrics:

Semantic Similarity We use semantic similarity
(Cer et al., 2017) as a measure of strength of data
augmentation. For example, if a given example is
perturbed in a more significant manner, we assume
that it’s semantic similarity will decrease, therefore
indicating a “stronger” data augmentation. We use
SentenceBERT (Reimers and Gurevych, 2019) to
measure the cosine similarity between sentence rep-
resentation of the original example xi and sentence
representation of augmented example x̂i.

BLEU We use BLEU (Papineni et al., 2002; Post,
2018) as a metric that works on discrete tokens
(therefore more sensitive to exact token matches),
that is not model dependent as our semantic sim-
ilarity measure is. That is, a lower BLEU score
represents a stronger data augmentation.

BERTScore We also use text generation metric
BERTScore (Zhang* et al., 2020), which measures
cosine-similarity at a token-level, rather than
on a sequence-level like our semantic similarity
measure.

In our analyses (Sec. 5), we measure the
correlation between these measures and the ±
change in performance.

4 Experimental Setup

4.1 Data Augmentation Methods

In our experiments, we compared the performance
of the model when trained with 12 typical data aug-
mentation methods with that of the model trained
without data augmentation. Our data augmenta-
tions methods are sourced from NL-Augmenter1

1https://github.com/GEM-benchmark/
NL-Augmenter
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(Dhole et al., 2021) and nlpaug2 (Ma, 2019). We
provide additional details in Appendix B.

4.2 Datasets

In experiments, we use three datasets for different
language tasks, MRPC (Dolan and Brockett, 2005),
SICK (Marelli et al., 2014), and SST-2 (Socher
et al., 2013). MRPC is a dataset in which the task
is to predict whether a sentence-pair is semantically
equivalent. SICK is a dataset that contains a task
to infer the connotation between a given premise
and an explanation. In this experiment, it is a bi-
nary classification problem whether the meaning of
the explanatory sentence is contained in the mean-
ing of the premise sentence or not. SST-2 is a
binary classification problem in which a dataset
for sentiment analysis of sentences is created from
movie reviews, are classified as positive or negative.
For MRPC and SICK, we extended the data to the
second sentence in the experiment, and the com-
bination of the first sentence, the extended second
sentence pair, and the original label was used as the
augmented data set. For SST-2, the combination of
the augmented sentence and the original label was
used as the augmented data set.

4.3 Models

In this experiment, we used the GPT-2 (345M)
(Radford et al., 2019) and BERT-large (Devlin et al.,
2018) as pre-trained language models. We train
models on a single NVIDIA V100 16GB GPU.
We measured the performance of training on the
original dataset as a baseline, and compared the
performance of fine-tuning on the training dataset
with the augmented data. We train models until
convergence, and perform early stopping where we
use a patience of 3 epochs for all models.

5 Results

Performance Changes Due to Data Augmenta-
tion Table 1 shows the scores for single-step and
2-step training on the data set with data augmenta-
tion (see Appendix D for per-task results). For both
training strategies, we also measure the impact of
data size, experimenting with various data sizes
(10%, 50%, and 100% of the full dataset). When
all data was used for training, we found that no
data augmentation that improved scores on average
for both the language model and the masked lan-
guage model, except for the 2-step training with

2https://github.com/makcedward/nlpaug

BERT with synonym substitution. This indicates
that although data-augmentation has the tendency
to help at a smaller scale, perhaps mitigating ef-
fects of (lack of) data diversity, as the data scale
grows we notice that performance degrades where
the augmentations most likely add more noise to
the dataset.

Relationship between Data Augmentation Inten-
sity and Post-training Performance The corre-
lation coefficients measured by the difference in
F1 scores between the data augmentation intensity
obtained by the language model and the masked
language model and the baseline for each model
and learning method are shown in Table2. A posi-
tive value indicates that a weaker (i.e. more similar)
data augmentation results in better performance.
When we use 1-step training, this correlation is
generally positive — this indicates that when using
naive data combination, then a more similar (i.e.
weaker augmentation) is generally more effective.
This supports our hypothesis about distribution
shift negatively impact augmentation. However,
this finding varies significantly when switching to
2-step training depending on model and dataset.
Given the relatively strong performance of 2-step
training, this indicates that strength of data augmen-
tation can have varying effects when using various
training schedules/models.

6 Discussion

When all the original training data was used for
training in the three datasets tested in this study,
the effect of data augmentation on performance
improvement was small, and the performance on
the test data deteriorated in many cases. There
are two possible reasons for this. The first is that
the augmented data may have become noise. It is
almost inevitable that data augmentation will re-
sult in the augmentation of sentences whose labels
cannot be preserved. If some of the augmented
sentences are incorrectly labeled, the quality of
the dataset will deteriorate to some extent. There-
fore, in a setting where a relatively large number
of data can be prepared, such as using all the train-
ing data, the negative impact of the decrease in
data quality is stronger than the positive impact of
the increase in the number of data. The second
reason is that the knowledge that can be obtained
by data augmentation may have already been ac-
quired through prior learning. This is also pointed
out by Longpre et al. (2020). Therefore, for data
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1- step GPT2 1-step BERT 2-step GPT-2 2-step BERT
100% 50% 10% 100% 50% 10% 100% 50% 10% 100% 50% 10%

baseline 0.8997 0.8795 0.8567 0.9028 0.8866 0.8461 0.8997 0.8795 0.8567 0.9028 0.8866 0.8461
character substitution 0.8929 0.8836 0.8356 0.8982 0.8735 0.8517 0.8959 0.8768 0.8483 0.8954 0.8846 0.8494
W2V substitution 0.8902 0.8765 0.8311 0.8939 0.8595 0.8457 0.8886 0.8779 0.8501 0.9027 0.8862 0.8406
BERT-based substitution 0.8804 0.8728 0.8452 0.8780 0.8592 0.8462 0.8906 0.8790 0.8304 0.8957 0.8825 0.8292
synonym substitution 0.8946 0.8846 0.8338 0.8971 0.8710 0.8535 0.8920 0.8772 0.8585 0.9032 0.8826 0.8462
word paraphrase 0.8916 0.8799 0.8509 0.8980 0.8799 0.8518 0.8981 0.8820 0.8475 0.8972 0.8871 0.8424
LM-based substitution 0.8910 0.8745 0.8416 0.8928 0.8654 0.8368 0.8918 0.8740 0.8564 0.8941 0.8858 0.8420
subject-object switching 0.8958 0.8875 0.8362 0.8963 0.8780 0.8451 0.8932 0.8875 0.8615 0.8968 0.8889 0.8476
random word deletion 0.8889 0.8857 0.8544 0.8924 0.8782 0.8568 0.8910 0.8765 0.8606 0.8891 0.8873 0.8443
stammering insertion 0.8899 0.8799 0.8401 0.8990 0.8795 0.8557 0.8920 0.8836 0.8604 0.8974 0.8902 0.8496
EDA 0.8958 0.8774 0.8226 0.8995 0.8770 0.8529 0.8927 0.8860 0.8571 0.8967 0.8835 0.8514
back translation 0.8965 0.8809 0.8318 0.9003 0.8786 0.8557 0.8968 0.8795 0.8607 0.8924 0.8867 0.8483
summarization 0.8905 0.8770 0.8490 0.8901 0.8599 0.8501 0.8917 0.8864 0.8600 0.8896 0.8789 0.8471

Table 1: Table of average F1 scores in 1-step and 2-step training for each percentage of data used for training when
data augmentation is used for MRPC, SICK and SST-2.

Sentence similarity BLEU BERTScore
GPT-2 BERT GPT-2 BERT GPT-2 BERT
1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step

MRPC 0.2478 0.5813 0.5540 0.2011 0.3782 0.5150 0.6574 0.2712 0.2406 0.6119 0.4879 0.2064
SICK 0.5138 -0.1941 0.4790 -0.5216 0.2424 0.4192 0.0392 -0.5645 0.1085 0.1314 0.0483 -0.2592
SST-2 0.3251 0.3216 0.5897 -0.4152 0.2226 0.4876 0.2015 -0.2712 0.1686 0.3699 0.4524 -0.4342

Table 2: Correlation coefficient between data augmentation strength and difference in F1 score from baseline.

augmentation in a specific domain, it is possible
that data augmentation based on knowledge about
the domain, such as substitution based on a list of
words that can be substituted in the domain, which
cannot be obtained by pre-training with a general
corpus, may be effective. On the other hand, when
the number of data used for training was limited,
we observed some cases where the performance
improved even when using a pre-training model.
Therefore, in domains where only a few hundred
examples are available, performance improvement
can be expected by augmenting the existing data.

In addition, in 1-step learning, the weaker the
data augmentation, the better the performance.
However, in 2-step learning, the relationship be-
tween the strength of consistent data augmentation
and performance depended on the type of data set.
This suggests that in 2-step learning, the effective
strength of data augmentation may differ depending
on the characteristics of the data set. For example,
in MRPC, the difference between the data augmen-
tation intensity and the F1 score of the baseline was
negatively correlated because even trivial changes
are likely to produce data that become noise in
learning. In SICK and SST-2, even if some of the
content changes, the labels of the sentences are
retained as long as the words indicating relevance
and emotion remain the same. In this case, the vari-
ous sentences created by strong data reinforcement
in two-stage learning contribute to the learning pro-

cess, allowing clean data to be learned in the second
half. This may be why the difference between the
strength of the data reinforcement and the F1 score
from the baseline may have been positively cor-
related in some cases. Therefore, by comparing
the augmentation intensity determined by the pro-
posed index, it may be possible to efficiently search
for promising data augmentation methods before
actual training. However, more work needs to be
done to effectively use these methods in a practical
setting.

7 Conclusion

In this paper, we observed that most of the data aug-
mentation methods did not improve performance
when training on datasets with thousands of ex-
amples, but some of them improved performance
when training on datasets with hundreds of exam-
ples. This suggests that, depending on the task and
the data size, data augmentation may be effective
even when a pre-trained language model is used for
training. We also defined data augmentation inten-
sity, a measure to evaluate whether data augmenta-
tion produces sentences that are different from the
original sentences, and evaluated the relationship
between this measure and the performance after
training. As a result, the data augmentation inten-
sity showed different correlations with the change
in performance after training depending on the tar-
get dataset. For tasks with enough data, this indi-
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cates the limited applicability and predictability of
static data augmentations. In future work, we be-
lieve the NLP community should look at modeling
or adaptive learning methods (Dery et al., 2022) to
account for these differences in data.
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Abstract

Question rewriting (QR) is a subtask of conver-
sational question answering (CQA) aiming to
ease the challenges of understanding dependen-
cies among dialogue history by reformulating
questions in a self-contained form. Despite
seeming plausible, little evidence is available
to justify QR as a mitigation method for CQA.
To verify the effectiveness of QR in CQA, we
investigate a reinforcement learning approach
that integrates QR and CQA tasks and does not
require corresponding QR datasets for targeted
CQA. We find, however, that the RL method is
on par with the end-to-end baseline. We pro-
vide an analysis of the failure and describe the
difficulty of exploiting QR for CQA.

1 Introduction

The question rewriting (QR) task has been intro-
duced as a mitigation method for conversational
question answering (CQA). CQA asks a machine
to answer a question based on the provided passage
and a multi-turn dialogue (Reddy et al., 2019; Choi
et al., 2018), which poses an additional challenge
to comprehend the dialogue history. To ease the
challenge, QR aims to teach a model to paraphrase
a question into a self-contained format using its
dialogue history (Elgohary et al., 2019a; Anantha
et al., 2021a). Except for Kim et al. (2021), how-
ever, no one has provided evidence that QR is ef-
fective for CQA in practice. Existing works on QR
often (i) depend on the existence of a QR dataset
for every target CQA dataset, and (ii) focus more
on generating high-quality rewrites than improving
CQA performance, making them unsatisfactory for
the justification of QR.

To verify the effectiveness of QR, we explore
a reinforcement learning (RL) approach that inte-
grates QR and CQA tasks without corresponding
labeled QR datasets. In the RL framework, a QR
model plays the role of “the agent” that receives

∗ Equal Contribution

Q t-1 : Who is Cary Grant?
A t-1 : He is an actor 
Q t    : What was his legacy? 
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Figure 1: Overview of the RL approach. The current
question Qt and its dialogue history are reformulated
into a self-contained question Q́t by the QR model.
Then, Q́t is passed to the QA model to extract an answer
span Ãt from the evidence document. We train the QR
model by maximizing the reward obtained by comparing
the predicted answer span Ãt with the gold span At.

rewards from a QA model that acts as “the envi-
ronment.” During training, the QR model aims to
maximize the performance on the CQA task by
generating better rewrites of the questions.

Despite the potential and plausibility of the RL
approach, our experimental results suggest an up-
per bound of the performance, and it is on par with
the baselines without QR. In this paper, we provide
analysis to (i) understand the reason for the failure
of the RL approach and (ii) reveal that QR can-
not improve CQA performance even with the non-
RL approaches. The code is available at https:
//github.com/HLTCHKUST/cqr4cqa.

2 Related Work

The CQA task aims to assist users in seeking in-
formation (Reddy et al., 2019; Choi et al., 2018;
Campos et al., 2020). The key challenge is to re-
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Models CoQA QuAC

Overall F1 Child. Liter. M&H News Wiki. F1 HEQ-Q HEQ-D

end-to-end 84.5 84.4 82.4 82.9 86.0 86.9 67.8 63.5 7.9

QReCC
pipeline 82.9 82.9 80.9 81.5 84.4 84.8 66.3 62.0 6.6
ours 84.7 84.3 83.1 82.7 86.3 86.8 67.6 63.2 7.8

CANARD
pipeline 82.8 83.4 80.1 80.8 84.4 85.6 66.5 62.5 7.4
EXCORD† 83.4 (+0.6) 84.4 (1.9) 81.2 (+1.0) 79.8 (-0.3) 84.6 (+0.3) 87 (0.0) 67.7 (+1.2) 64.0 (+1.6) 9.3 (+2.1)
ours 84.4 84.1 82.7 82.6 86.0 86.7 67.4 62.7 8.1

Table 1: Evaluation results of our approach and baselines on the test set. EXCORD† follows the results reported
by Kim et al. (2021) and (±x.x) indicate the improvement compared to their original baseline. Bold are the best
results amongst all. Underlined represents the best score on each combination of the CQA and QR datasets.

solve the conversation history and understand a
highly-contextualized question. Most prior works
focus on model structures (Zhu et al., 2018; Yeh
and Chen, 2019; Zhang et al., 2021b; Zhao et al.,
2021) or training techniques (Ju et al., 2019; Xu
et al., 2021) to improve the performance. QR tasks
have been proposed to further improve CQA sys-
tems by paraphrase a question into a self-contained
styles (Elgohary et al., 2019a; Petrén Bach Hansen
and Søgaard, 2020; Anantha et al., 2021a). While
many of the existing works on QR put more effort
toward generating high-quality rewrites (Lin et al.,
2020; Vakulenko et al., 2021), Kim et al. (2021)
introduced a framework to leverage QR to finetune
CQA models with a consistency-based regulariza-
tion. QR has also been studied in single-turn QA
and other information-seeking tasks (Nogueira and
Cho, 2017; Buck et al., 2018).

3 Methodology

We denote a CQA dataset as {Dn}Nn=1 and the di-
alogue history at turn t as Dt = {(Qi, Ai)}ti=1,
where Qt is the question and At is the answer.
Along with the QA pairs, the corresponding ev-
idence documents Yt are also given.

As depicted in Figure 1, our proposed RL frame-
work involves a QA model as an environment and
a QR model as an agent. Let Q́t = {q́l}Ll=1 de-
note a generated rewritten question sequence of
Qt. The objective of the QR model is to rewrite
the question Qt at turn t into a self-contained ver-
sion, based on the current question and the dia-
logue history Dt−1. The agent takes an input state
Xt = (Dt−1, Qt) and generates a paraphrase Q́t.
Then, X́t = (Dt−1, Q́t) and an evidence docu-
ment Yt are provided to an environment, namely,
the QA model fϕ, which extracts an answer span
Ãt = fϕ(X́t, Yt). We aim for the agent, a QR
model πθ, to learn to generate a high-quality para-

phrase of the given question based on the reward
received from the environment.

The policy, in our case the QR model, assigns
probability

πθ(Q́t|Xt) =
L∏

l=1

p(q́l|q́1, . . . , q́l−1, Xt). (1)

Our goal is to maximize the expected reward of the
answer returned under the policy, namely,

Eq́t∼πθ(·|qt)[r(fϕ(X́t))], (2)

where r is a reward function. We apply the token-
level F1-score between the predicted answer span
Ãt and the gold span At as the reward r. We can
directly optimize the expected reward in Eq. 2 using
RL algorithms.

Prior to the training process, the QA model fϕ
is fine-tuned on {Dn} and the QR model is ini-
tialized with πθ = πθ0 , where πθ0 is a pretrained
language model. We apply Proximal Policy Op-
timization (PPO) (Schulman et al., 2017; Ziegler
et al., 2019) to train πθ. PPO is a policy gradient
method which alternates between sampling data
through interaction with the environment and opti-
mizing a surrogate objective function via stochastic
gradient ascent. Following Ziegler et al. (2019), we
apply a KL-penalty to the reward r so as to prevent
the policy πθ from drifting too far away from πθ0 :

Rt = R(X́t) = r(fϕ(X́t))− βKL(πθ, πθ0),

where β represents a weight factor and Rt is the
modified reward of r.

4 Experiments

4.1 Setup
We use a pretrained RoBERTa (Liu et al., 2019)
model as the initial QA model and adapt it to the
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Question F1 Score Question F1 Score

Qt What is the Vat the library of? 1.0 Qt Where did the band The Smashing Pumpkins put on display? 1.0
Q́t What is the Vat the Library of? 0.22 Q́t Where was the band The Smashing Pumpkins put on display? 0.0

Qt What was everybody doing? 0.91 Qt Which company produced the movie Island of Misfit Toys? 1.0
Q́t What was everyone doing? 0.0 Q́t Which company produced the movie, The Island of Misfit Toys? 0.0

Table 2: Minor modification of questions may cause a drastic change in CQA performance.

CQA tasks. For the QR models, we leverage pre-
trained GPT-2 (Radford et al., 2019) and first fine-
tune them with QR datasets for better initialization.
We attempt three settings: (a) directly fine-tune the
QA model on the CQA datasets (end-to-end), (b)
fine-tune the QA model with questions rewritten
by the QR model (pipeline), and (c) train the QR
model based on the reward obtained from the QA
model. More details of the experiments can be
found in Appendix A.

Datasets We conduct our experiments on two
crowd-sourced CQA datasets, CoQA (Reddy et al.,
2019) and QuAC (Choi et al., 2018). Since the test
set is not publicly available for both CoQA and
QuAC, following Kim et al. (2021), we randomly
sample 5% of dialogues in the training set and
adopt them as our validation set and report the
test results on the original development set for the
CoQA experiments. We apply the same split as
Kim et al. (2021) for the QuAC experiments.

For the QR model pre-training, we use two QR
datasets: QReCC (Anantha et al., 2021b) and CA-
NARD (Elgohary et al., 2019b). CANARD is gen-
erated by rewriting a subset of the original ques-
tions in the QuAC datasets, and contains 40K ques-
tions in total. QReCC is built upon three publicly
available datasets: QuAC, TREC Conversational
Assistant Track (CAsT) (Dalton et al., 2020) and
Natural Questions (NQ) (Kwiatkowski et al., 2019).
QReCC contains 14K dialogues with 80K ques-
tions, and 9.3K dialogues are from QuAC.

Evaluation Metrics Following the leaderboards,
we utilize the unigram F1 score to evaluate the
QA performance. In CoQA evaluation, the QA
models are also evaluated with the domain-wise
F1 score. In QuAC evaluation, we incorporate the
human equivalence score HEQ-Q and HEQ-D as
well. HEQ-Q indicates the percentage of questions
on which the model outperforms human beings and
HEQ-D represents the percentage of dialogues on
which the model outperforms human beings for all
questions in the dialogue.

4.2 Results

We report our experimental results in Table 1. We
see that our RL approach yields 0.9–1.6 F1 im-
provement over the pipeline setting regardless of
the dataset combinations and performs almost as
well as the end-to-end setting. This partially sup-
ports our expectation that RL lifts the CQA perfor-
mance. However, we find it almost impossible to
bring significant improvement over the end-to-end
baseline despite our extensive trials. One reason
why we cannot provide as much improvement as
reported in Kim et al. (2021) would be related to
the inputs of the QA model. Their EXCORD feeds
the original questions together with the rewritten
questions, whereas we only use the rewritten ques-
tions. It is also noteworthy that their results are
consistently lower than ours, even lower than our
end-to-end settings.

Our inspection of the questions generated by the
QR models reveals that the models learn to copy
the original questions by PPO training, and this is
the direct reason that our method cannot outper-
form the end-to-end baselines. Indeed, on average,
89.6% of the questions are the same as the original
questions after PPO training, although this value
is 34.5% in the pipeline settings. We also discover
a significant correlation between the performance
and how much the QR models copy the original
question (the correlation coefficient is 0.984 for
CoQA and 0.967 for QuAC) and the edit distance
from the original question (the correlation coeffi-
cient is -0.996 for CoQA and -0.989 for QuAC).

5 Discussion

In this section, we provide an analysis to (i) raise a
sensitivity problem of the QA model to explain the
failure of RL and (ii) disclose that there is no justi-
fication for QR, even in the non-RL approaches.

5.1 Sensitivity of the QA model

It appears that the QA models are more sensitive to
trivial changes than the reward models in other suc-
cessful language generation tasks, and this could
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Perturb Sentiment Analysis CQA

Amazon Yelp CoQA QuAC

Original 95.8 98.2 84.5 67.8
UPC 95.8 (-) 96.7 (-1.5) 74.8 (-9.8) 57.4 (-10.5)
SLW 91.9 (-3.9) 97.0 (-1.1) 83.0 (-1.6) 66.7 (-1.1)
WIF 94.3 (-1.5) 97.7 (-0.5) 82.6 (-2.0) 65.6 (-2.2)
SPP 94.8 (-1.0) 97.7 (-0.5) 78.3 (-6.2) 65.5 (-2.4)

Table 3: Robustness test on Sentiment Analysis and
CQA tasks. We apply four perturbations: UPC (upper
casing), SLW (slang word), WIF (word inflection), and
SPP (sentence paraphrasing).

Datasets
QuAC Model CANARD Model

F1 EM F1 EM

QuAC 67.7 51.5 62.9 46.8
CANARD 65.1 49.9 63.3 46.9

Table 4: Results of the supervised learning approach.
“XX Model” denotes the QA model trained on XX, and
EM the percentage of the predictions the same as the
gold.

account for our lower performance on CQA. As
can be seen from the examples in Table 2, a subtle
alteration such as uppercasing or replacement with
synonyms can significantly change F1 scores.

To quantify the sensitivity of the reward mod-
els, we compare model robustness between our QA
models and sentiment analysis models that have
been reported in Ziegler et al. (2019) to be effec-
tive for stylistic language generation. We adopt
publicly available models that are fine-tuned sen-
timent analysis datasets: BERT-based trained on
Amazon polarity (McAuley and Leskovec, 2013)1

and RoBERTa-base trained on Yelp polarity (Zhang
et al., 2015)2. To test the robustness of the models,
we introduce small perturbations to the samples in
the test set using the NL-Augmenter toolkit (Dhole
et al., 2021), and compare F1 scores on each task
(experimental details in Appendix B).

Based on the robustness test given in Table 3,
the QA models are shown to be significantly less
robust against most perturbations compared to the
sentiment analysis models. It is conceivable that
this sensitivity of the QA model leads to a sparse
reward problem for the agent, which causes insta-
bility for the model learning the optimal policy. An
important direction for future studies is to ease the
sparse reward problem by, for example, enhancing
the robustness of the QA models.

1https://huggingface.co/fabriceyhc/
bert-base-uncased-amazon_polarity

2https://huggingface.co/VictorSanh/
roberta-base-finetuned-yelp-polarity

Datasets
CoQA QuAC

F1 EM F1 EM

end-to-end 84.5 76.4 67.83 51.47

QReCC 84.1 76.0 67.83 51.48
CANARD 83.7 75.8 67.81 51.50

Table 5: Results of the data augmentation approach. EM
denotes the percentage of the predictions the same as
the gold.

5.2 Can QR Help in Non-RL Approaches?

First, we evaluate with a simple supervised learn-
ing approach using rewrites provided by CANARD.
Extracting the QuAC samples that have a CA-
NARD annotation, we (i) evaluate the CANARD
annotations with the QA model trained on QuAC
(the model used in the main experiments) and (ii)
train another QA model with the CANARD anno-
tations. Training is under the same conditions of
the QA model initialization as in the main exper-
iments. As the results in Table 4 show, we can
hardly observe the effectiveness of the CANARD
annotations. This supports the claim in Buck et al.
(2018) that better rewrites in the human eye are
not necessarily better for machines and implies the
difficulty of exploiting QR for CQA.

Moreover, we explore a data-augmentation ap-
proach to integrate QR and CQA. First, we generate
ten possible rewrites using top-k sampling (Zhang
et al., 2021a) for all the questions of the CQA
datasets. To guarantee the quality of the rewrites,
we select the best F1 scoring ones from every ten
candidates and use them to teach another QR model
how to reformulate questions (experimental details
in Appendix C). As the results in Table 5 show,
we consistently get worse scores compared to the
end-to-end settings in CoQA, and almost the same
scores for QuAC, not finding justification to ap-
ply QR in the manner of the data augmentation
approach.

6 Conclusion

In this paper, we explore the RL approach to verify
the effectiveness of QR in CQA, and report that
the RL approach is on par with simple end-to-end
baselines. We find the sensitivity of the QA models
would disadvantage the RL training. Future work is
needed to verify that QR is a promising mitigation
method for CQA since even the non-RL approaches
perform unsatisfactorily.
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Abstract
In natural language processing, multi-dataset
benchmarks for common tasks (e.g., Su-
perGLUE for natural language inference and
MRQA for question answering) have risen in im-
portance. Invariably, tasks and individual exam-
ples vary in difficulty. Recent analysis methods
infer properties of examples such as difficulty.
In particular, Item Response Theory (IRT)
jointly infers example and model properties
from the output of benchmark tasks (i.e., scores
for each model-example pair). Therefore, it
seems sensible that methods like IRT should be
able to detect differences between datasets in a
task. This work shows that current IRT models
are not as good at identifying differences as we
would expect, explain why this is difficult, and
outline future directions that incorporate more
(textual) signal from examples.

1 Introduction

Understanding and describing the data in natu-
ral language processing (NLP) benchmarks is cru-
cial to ensuring their validity and reliability (Fer-
raro et al., 2015; Gebru et al., 2018; Bender and
Friedman, 2018). This is even more important
as multi-dataset task benchmarks have—for bet-
ter or worse—become the norm (Raji et al., 2021).
For example, SuperGLUE incorporates eight natu-
ral language inference (NLI) datasets (Wang et al.,
2019), and MRQA incorporates twelve question
answering (QA) datasets (Fisch et al., 2019). To
better understand benchmark data, there are meth-
ods for analyzing examples in isolation (Lalor
et al., 2018), characterizing a dataset’s data distri-
bution (Swayamdipta et al., 2020), using individual
models to glean insight about datasets and exam-
ples (Feng et al., 2018), and using many models to
do the same (Rodriguez et al., 2021; Vania et al.,
2021). This paper investigates how effectively one
method—Item Response Theory (IRT)—gives in-
sight into multi-dataset benchmarks.

Outside of NLP, IRT provides insight into educa-
tional test questions (Lord et al., 1968; Baker, 2001)
and political ideologies of legislators (Poole and
Rosenthal, 2017). In NLP, IRT is used to identify
helpful training examples (Lalor and Yu, 2020), de-
tect errors in evaluation examples (Rodriguez et al.,
2021), and estimate the future utility of examples
in benchmarks (Vania et al., 2021). The goal of
this paper is to identify the characteristics of multi-
dataset benchmarks that IRT methods focus on. Are
certain datasets easier than others? Can clustering
highlight dataset or example properties?

We hypothesize that examples from similar
datasets will cluster together as they should have
similar IRT characteristics (such as difficulty level)
compared to examples from other datasets. How-
ever, we do not see any distinct dataset-based clus-
ters in our results. Instead, we find that IRT char-
acteristics tend to group the examples of similar
labels in the same clusters, suggesting that some la-
bel types are more difficult or more discriminating
regardless of the datasets they belong to. In the rest
of this paper, we describe IRT methods for bench-
mark analysis (§2), our clustering methods (§3),
and our experimental results (§4).1

2 IRT for Benchmark Analysis

In this paper, we adapt IRT methods to explain
why benchmarks examples are difficult, rather than
solely assigning them difficulty values. This sec-
tion describes the IRT models in our experiments
and the test-bed we use in our experiments.

2.1 Item Response Theory Models

IRT is a probabilistic framework that models the
likelihood that subject j (e.g., a model) answers test
item i (e.g., a sentiment prediction) correctly.

1Code and data at www.pedro.ai/multidim-irt.
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Task N Datasets

Sentiment 24,620 Amazon reviews (Zhang et al., 2015), Yelp reviews,∗ SST-3 (Socher et al., 2013), and Dynasent
Rounds 1 & 2 (Potts et al., 2021)

NLI 63,018 ANLI rounds one through three (Nie et al., 2020), HANS (McCoy et al., 2019), MNLI matched
& MNLI mismatched (Williams et al., 2018), SNLI (Bowman et al., 2015), and Winogen-
der (Rudinger et al., 2018)

∗https://www.yelp.com/dataset

Table 1: Details of the datasets used in our experiments.

Likelihood of correct answer
for subject j on item i.⏟ ⏞⏞ ⏟

p(yij = 1| γi , βi , λi , θj ) =

λi

1 + e
− γi ( θj − βi )

(1)

Discriminability of item i

Ability of subject j
Difficulty of item i

The likelihood of a correct response (Equation 1)
is modeled as a relationship between the difficulty
(βi) of an item, its discriminability (γi), its feasibil-
ity (λi), and the subject’s ability (θj). Typically, θj
and βi are unconstrained, λi is between zero and
one, and γi is non-negative.

This model is a four parameter (4PL) IRT

model (Equation 1) and while complex, easily sim-
plifies to simpler models.2 For example, when
λi = 1 and γi = 1 this is a 1PL model. In this
case, the difference between subject ability and
item difficulty (θj − βi) determines the likelihood
of a correct answer: as subject ability increases, the
likelihood of a correct response increases. When
only λi = 1, this is a 2PL model as in topic model-
ing experiments (§4.2). IRT parameters can also be
multidimensional. In two experimental setups (§4.1
and §A), we use a 2PL model (λi = 1) where γi,
βi, and θj are multidimensional. We fit all models
with py-irt (Lalor and Rodriguez, 2022).

2.2 Benchmark Data
Ideally, IRT methods should generalize across mul-
tiple datasets, tasks, and models. To accomplish
this while minimizing engineering overhead, we
use data from dynabench.org (Kiela et al.,
2021)—a dynamic benchmark of multiple tasks,
datasets, and model submissions (Table 1).3 For

24PL models usually include a guessing parameter that
indicates the likelihood of answering the item correctly by
random guess. The guessing parameter is set to zero in our
experiments.

3To avoid test set leakage, we use development set data.

each task, there are seven models: a majority base-
line (always positive), ALBERT (Lan et al., 2020),
BERT (Devlin et al., 2019), DeBERTa (He et al.,
2020), FastText (Bojanowski et al., 2017; Joulin
et al., 2017), RoBERTa (Liu et al., 2019), and
T5 (Raffel et al., 2020). In experiments, IRT in-
fers parameters from the subject-item (i.e., model-
example) matrix where entries are one if the subject
answered the item correctly and zero otherwise.

IRT analysis offers a way to assign properties
like difficulty and discriminability to examples, but
does little to explain why a particular example may
be hard or easy. Next, we identify interpretable
features that might explain IRT parameter values
(e.g., label, topics, and embeddings).

3 Interpreting IRT Parameters

This section explains the methods that our experi-
ments (§4) use to interpret IRT parameters. These
methods fall into two categories: (1) methods that
correlate examples’ IRT parameters with dataset
or label features and (2) methods that correlate de-
rived textual information with IRT parameters (e.g.,
topic models or embeddings).

3.1 Multidimensional IRT Clustering

Intuitively, test instances—be they NLI examples
or SAT questions—can be difficult along more than
one dimension. An example might focus on testing
commonsense reasoning instead of testing back-
ground knowledge. Therefore, it is sensible for IRT

models to learn multidimensional parameters, but
do different difficulty dimensions align with our
intuitions on what might make examples easier or
harder? To interpret evaluation data with multi-
dimensional IRT, we: (1) train multidimensional
IRT models,4 (2) use t-SNE for dimensionality re-
duction (Poličar et al., 2019), (3) plot the resulting
points in 2D space, and (4) color the points by

4We set the dimension of the IRT model to the number
of datasets per task (5 for sentiment and 8 for NLI), and the
number of labels in each task (3 for both sentiment and NLI).
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characteristics of each example such as the classifi-
cation label or source dataset (§4.1).

3.2 Topic Models

Our next method is based on the intuition
that textual information—in particular topical
associations—affects example difficulty. If true,
topical associations should correlate with IRT pa-
rameters. To test this, we fit a topic model to the
five datasets in the Dynabench sentiment task (Ta-
ble 1). To avoid having too many topics to interpret,
we fit the model with five topics using the mallet
software package (McCallum, 2002).5 We obtain
IRT parameters from a one dimensional, 2PL IRT

model (Equation 1). As with multidimensional IRT,
we jointly visualize an interpretable feature (topic
assignment) and IRT parameter values (§4.2).

3.3 Using BERT to Predict IRT Parameters

If textual information is correlated item difficulty,
then transformer models like BERT should also be
able to predict IRT parameters given the item text.
We test this idea by fine-tuning a BERT model (De-
vlin et al., 2019) with regression heads to predict
the difficulty and discriminability parameters of a
4PL IRT model (Equation 1). As with the multi-
dimensional clustering method, we also visualize
embeddings from BERT-base (§4.3). The goal of
our visualizations is to test: (1) how BERT embed-
dings change with IRT fine-tuning and (2) whether
clusters correspond to interpretable instance fea-
tures (e.g., label or source dataset).

4 Experiments

Next, we discuss what each interpretation
method (§3) tells us about IRT parameter values.

4.1 Multidimensional IRT Clustering

Using the subject-item response matrix from Dyn-
abench, we fit a multidimensional 2PL model, clus-
ter with t-SNE, and color the datapoints by either
dataset name or the example label.

When we run t-SNE on the difficulty parame-
ters of a 5-dimensional 2PL model for sentiment
datasets and color-code by dataset, we do not ob-
serve any distinct dataset-based clusters (Figure 1a).
However, when we color-code by label, we observe
more well-defined clusters, especially for the pos-
itive and negative labels (Figure 1b). This result

5For model training, we use an optimization interval of 10
with 3,000 iterations.

suggests that some label types are more difficult
for models to learn or more discriminating among
the models regardless of which dataset they belong
to. While the lack of dataset-based clustering is
a negative result, label-based trends indicate con-
sistency among items with the same label in terms
of learned IRT parameters. However, the lack of
breadth within a label suggests that each label can
only accurately estimate a narrow range of ability
levels in models.6

4.2 How Do Topics Relate to Item Difficulty?
We first validate that the topics inferred by the topic
model (Table 2) are reasonable through manual in-
spection. The topic model successfully identifies
at least five distinct review themes: media (e.g.,
movies, music), hotels, books, products, and food.
Having verified that the topic model is at least rea-
sonable, we next inspect the relationship between
the highest scoring topic per example and its dif-
ficulty (Figure 3). We see that certain topics are
more prevalent at different levels of difficulty; how-
ever, there is no clear delineation between topics
and difficulties. This suggests that at least this topic
model alone does not fully explain difficulty.7

4.3 How Does IRT Difficulty Influence BERT?
Figure 2 compares t-SNE visualizations of embed-
dings from a normal BERT model as opposed to a
BERT model that is fine-tuned to predict 4PL dif-
ficulty and discriminability parameters from the
sentiment task. When points are color coded by
label, the embeddings of the IRT fine-tuned BERT

model clearly form label-based clusters. In contrast,
we do not observe clear patterns or clusters for the
embeddings of the vanilla BERT model. This indi-
cates separation of labels by IRT parameters.8 This
suggests that IRT parameters are correlated with
dataset labels, and the BERT embeddings learned
on IRT parameters encode label properties.

4.4 Discussion
It is generally agreed that some datasets are more
challenging than others. Therefore, items in the

6We performed additional clustering analyses on the sen-
timent and NLI datasets, varying the IRT models learned and
the IRT parameters used for clustering (Appendix A). In all
cases we observed more well-defined label-based clusters than
dataset-based clusters.

7We also replicate the plot with discriminability, but do
not observe any visually discernible patterns.

8IRT-based distributions of examples (Figure 8 in the ap-
pendices) show that there are clearer patterns with respect to
IRT when we group the examples by their dataset labels.
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Figure 1: t-SNE visualization of sentiment datasets on the 5-dimensional 2PL IRT difficulty parameter, colored
by dataset (a) and by label (b). Coloring by dataset does not result in easily discernable clusters; coloring by
label produces well separated clusters for positive and neutral labels. The negation cluster is distinct but has more
intruders than other labels. This suggests example label is more correlated with difficulty than source dataset.

Topic ID Topic Words in Dynabench Sentiment Datasets

0 movie num good album music great film songs love time
1 num place time room back service people hotel didn good
2 book read story good books num reading great time characters
3 num product great good bought work time buy back price
4 num food good place great service ordered back time restaurant

Table 2: We train a five-topic, topic model on the Dynabench sentiment data (Table 1). Topics correspond to five
review themes: media, hotel, book, product, and food. Topic IDs and colors correspond to Figure 3.

same dataset should have similar IRT characteris-
tics. However, our results indicate that benchmark
datasets display more depth than breadth in terms
of example IRT parameters. For a multi-dataset
task such as NLI, examples clustered by IRT param-
eters group according to shared labels, not shared
datasets. While learned latent topics show some
variation across IRT difficulty, it is not clearly evi-
dent that certain topics are more difficult than oth-
ers. While we cannot conclude that certain topics
or datasets are more difficult than others, our results
suggest that certain labels are.

5 Conclusion and Future Work

In this work, our expectation was that datasets
would be separable by IRT-learned parameters.
However, we found that clustering was more in-
terpretable at the label level than the dataset level.

Future work in IRT should better jointly model
the characteristics of NLP data as opposed to our

methods that train these components in isolation.
For example, it may be that the signal provided
by dataset properties is second order to labels and
our methods may not effectively model this (po-
tential) multi-level relationship. Multidimensional
IRT models that encode relationships between diffi-
culty dimensions ought to better fit the data (e.g.,
predicting sentiment of restaurant reviews should
overlap with hotel reviews, as they both involve
service). If these models succeed, they should aid
the interpretation of benchmarks. Lastly, as mod-
els provide more information through initiatives
like Model Cards (Mitchell et al., 2019), IRT could
jointly model these properties with latent ability
parameters to glean insights into which differences
in models yield empirical impacts.
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Figure 2: Clustering results for the Dynasent datasets using a BERT embeddings from a BERT model used to predict
IRT parameters. 2a: Cluster by labels using untrained BERT. 2b: Cluster by labels using trained BERT. Without
fine-tuning, there are no clear patterns between BERT embeddings and label. However, fine-tuning to predict IRT
parameters shows clear clustering patterns between embeddings and labels. This suggests that embeddings learned
to predict IRT parameters can encode the properties of dataset labels.
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A Additional Visualizations

A.1 Dataset Based Clustering
In Figure 4a, we run t-SNE on the discriminability
parameters of a 5-dimensional 2PL model learned
for the Dynasent datasets and color-code by data
set. We do not observe any distinct dataset-based
clusters. We repeat the same visualizations us-
ing difficulty and discriminability parameters of
a 3-dimensional 2PL model learned on Dynasent
datasest (Figure 5a and 5c), a 3-dimensional 2PL
model learned on NLI datasets (Figure 7a and 7c),
and an 8-dimensional 2PL model learned on NLI
datasets (Figure 6a and 6c). In all these experi-
ments, we do not observe any distinct dataset-based
cluster.

A.2 Label Based Clustering
In Figure 4b, we run t-SNE on the discriminability
parameters of a 5-dimensional 2PL model learned
for the Dynasent datasets and color-code by dataset
labels. We repeat the same visualizations us-
ing difficulty and discriminability parameters of
a 3-dimensional 2PL model learned on Dynasent
datasest (Figure 5b and 5d), a 3-dimensional 2PL
model learned on NLI datasets (Figure 7b and 7d),
and an 8-dimensional 2PL model learned on NLI
datasets (Figure 6b and 6d). In all these exper-
iments, we observe clearer clusters compared to
Section A.1.
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Figure 4: T-SNE visualisation of the Dynasent datasets on the discriminability parameter of a 5-dimensional 2PL
model: (a) marked by dataset, (b) marked by label.
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Figure 5: T-SNE visualisation of the Dynasent datasets on the parameters of a 3-dimensional 2PL model: (a) Diffi-
culty marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 6: T-SNE visualisation of the NLI datasets on the parameters of a 8-dimensional 2PL model: (a) Difficulty
marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 7: T-SNE visualisation of the NLI datasets on the parameters of a 3-dimensional 2PL model: (a) Difficulty
marked by dataset, (b) Difficulty marked by label, (c) Discriminability marked by dataset, (d) Discriminability
marked by label.
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Figure 8: Distributions of examples for the sentiment datasets (3PL model): (a) Diff by dataset, (b) Disc by dataset,
(c) Diff by label, (b) Disc by label.
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Abstract

Natural language guided embodied task com-
pletion is a challenging problem since it re-
quires understanding natural language instruc-
tions, aligning them with egocentric visual ob-
servations, and choosing appropriate actions to
execute in the environment to produce desired
changes. We experiment with augmenting a
transformer model for this task with modules
that effectively utilize a wider field of view and
learn to choose whether the next step requires
a navigation or manipulation action. We ob-
served that the proposed modules resulted in
improved, and in fact state-of-the-art perfor-
mance on an unseen validation set of a pop-
ular benchmark dataset, ALFRED. However,
our best model selected using the unseen val-
idation set underperforms on the unseen test
split of ALFRED, indicating that performance
on the unseen validation set may not in itself
be a sufficient indicator of whether model im-
provements generalize to unseen test sets. We
highlight this result as we believe it may be a
wider phenomenon in machine learning tasks
but primarily noticeable only in benchmarks
that limit evaluations on test splits, and high-
lights the need to modify benchmark design
to better account for variance in model perfor-
mance.

1 Introduction

Language guided embodied task completion is an
important skill for embodied agents requiring them
to follow natural language instructions to navigate
in their environment and manipulate objects to com-
plete tasks. Natural language is an easy medium for
users to interact with embodied agents and effec-
tive use of natural language instructions can enable
agents to navigate more easily in previously unex-
plored environments, and complete tasks involv-
ing novel combinations of object manipulations.
Vision and language navigation benchmarks (An-
derson et al., 2018; Thomason et al., 2019; Ku
et al., 2020) provide an agent with natural language

route instructions and evaluate their ability to fol-
low these to navigate to a target location. It requires
agents to have a deep understanding of natural
language instructions, ground these in egocentric
image observations and predict a sequence of ac-
tions in the environment. Other benchmarks study
the manipulation and arrangement of objects (Bisk
et al., 2016; Wang et al., 2016; Li et al., 2016; Bisk
et al., 2018) - another crucial skill to complete many
tasks that users may desire embodied agents to be
able to complete. These tasks additionally require
agents to reason about the states of objects and re-
lations between them. Language guided embodied
task completion benchmarks (Shridhar et al., 2020;
Kim et al., 2020; Padmakumar et al., 2022) com-
bine these skills – requiring agents to perform both
navigation and object manipulation/arrangement
following natural language instructions.

In this paper, we explore a challenging
navigation and manipulation benchmark, AL-
FRED (Shridhar et al., 2020), where an agent has
to learn to follow complex hierarchical natural lan-
guage instructions to complete tasks by navigating
in a virtual environment and manipulating objects
to produce desired state changes. The ALFRED
benchmark provides a training dataset of action tra-
jectories taken by an embodied agent in a variety
of simulated indoor rooms paired with hierarchical
natural language instructions describing the task to
be accomplished and the steps to be taken to do
so. For validation and testing of models, there are
two splits each - seen and unseen splits. The seen
validation and testing splits consist of instructions
set in the same rooms as those in the training set,
while the unseen splits consist of instructions set in
rooms the agent has never seen before, with rooms
in the unseen test set being different from those in
the train and unseen validation set. Performance on
the unseen validation and test sets are considered
to be the best indicators of whether a model can
really solve the task as the agent must operate in
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a completely novel floorplan, and cannot rely for
example on memorized locations of large objects
such as a fridge or a sink. Additionally, the ground
truth action sequences are not publicly available
for the seen and unseen test sets, and participants
must submit prediction acted sequences on the test
sets to an evaluation server where they are privately
evaluated to obtain test performance. The evalua-
tion server limits the number of submissions that
can be made from an account to one per week to
discourage directly tuning hyperparameters of a
model on the test set. It is expected that following
standard procedure in training machine learning
models, one may use the validation sets to evalu-
ate models trained with different hyperparameters,
or ablating different components on the validation
sets and only evaluate the best model on the test
sets. Since ideally we would want a model to per-
form well on the unseen test set, it is reasonable to
use success rate on the unseen validation set as a
metric to choose which model is to be submitted
for evaluation on the unseen test set.

One technique previously demonstrated to im-
prove performance on ALFRED is the use of a
multi-view setup (Nguyen et al., 2021; Kim et al.,
2021) where an agent turns or moves its head in
place at every time step to obtain additional views
before deciding what action to take. In contrast
to current models that simply concatenate features
from each view, we use view-action matching - ex-
plicitly aligning embeddings of actions with embed-
dings of corresponding views - and using a score
from fusing these aligned embeddings to select
the next action to be taken. This is inspired by a
dominant paradigm for modeling visual navigation
tasks called viewpoint selection (Fried et al., 2018)
where an agent predicts the next action by examin-
ing the resultant views each of those would produce
and selecting the desired future view. Viewpoint
selection is possible in some simulators such as
R2R where the environment does not get altered
by the agent’s actions and the agent’s movement is
confined to a fixed grid. The ALFRED dataset uses
the AI2-THOR simulator which supports a wider
action space, physics modeling for movement and
a more dynamic environment including irreversible
actions. Hence, it is not possible to obtain the view
that would result from an action without taking it,
preventing direct application of viewpoint selec-
tion. Additionally, the agent must decide at each
time step whether to perform navigation or manip-

ulation actions. In contrast to prior work that uses
a single classifier layer over all possible actions
treating them equally, we propose a gate module
which gives a higher weight to actions of a more
relevant action type.

We follow standard experimental procedure
training our modified models on the train split and
using success rate on the unseen validation split
to compare to baselines and perform ablation stud-
ies. On this set, the proposed model equipped with
the aforementioned modules outperforms the state-
of-the-art multi-view setup approaches and the ab-
lation study shows each proposed module helps
improve the model’s performance.

However, we observe an unexpected and large
performance gap between the unseen validation
and test data splits. Our model outperforms state-
of-the-art baseline models on the unseen validation
split, but performs worse than them on the unseen
test split. We hypothesize that it may be possible to
overfit hyperparameters and design choices to one
set of unseen environments (the unseen validation)
and hence success on one such set of unseen envi-
ronments is insufficient to guarantee that a model
will generalize to another set of unseen environ-
ments (the unseen test). We report this finding as
we believe this situation is likely more common
during development on machine learning bench-
marks, but such intermediate results are unlikely
to be published. Instead after a poor result on a
test set, it is likely that researchers continue fur-
ther model modifications until a model setting is
obtained that performs well on the test set. We be-
lieve that such models are likely overfitting to the
test set of the benchmark and may not generalize
well to a new test set.

2 Dataset & Environment

In this paper, we focus on improving models for
the ALFRED (Shridhar et al., 2020) benchmark.
ALFRED is built using the AI2-THOR simula-
tor (Kolve et al., 2017) which consists of 120 indoor
scenes across 4 types of rooms. Scenes also con-
tain a diverse set of objects that are rearranged in
different configurations for each trajectory in the
dataset. In ALFRED, a agent is given a high level
natural language goal statement (“Put a chilled pan
on the counter”) as well as step by step natural lan-
guage instructions corresponding to subgoals to be
completed in order for achieving the goal (“Turn
around and cross the room and then go right and
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turn to the left to face the stove ... Put the pan
down on the counter to the right of the toaster”).
An agent has access to all these instructions at the
start of the task and then has to iteratively predict
navigation and manipulation actions in the environ-
ment based on egocentric image observations to
complete subgoals in order. An agent must predict
between a discrete set of possible navigation and
manipulation actions, and predict a segmentation
mask for the object to be manipulated if a manip-
ulation action is predicted. The performance for
an agent is evaluated by comparing the final states
of the objects at the end of the action trajectory
executed by the agent to the states of the objects at
the end of the ground truth trajectory.

3 Model

We employ a vision-language transformer,
LXMERT (Tan and Bansal, 2019) as the base
architecture for our model. We encode the
language input using a learned word embedding
and transformer layer, and action history using a
linear layer. Following Pashevich et al. (2021), we
extract image features using a faster R-CNN (Ren
et al., 2015) pretrained on images from the
AI2-THOR simulator, and average-pool features of
regions into a single vector. The visual and action
features are first combined via a liner layer, and
then fused with language features through a cross
modal transformer layer.

View-Action Matching. We collect the multiple
views (front, left, right, up, down) and go through
the aforementioned process to obtain a feature Vi

from the cross modal transformer for each view,
and compute its matching score Mi with the corre-
sponding action embedding Ai using a feedforward
network.

Action-Type Gate. We additionally learn a gate
vector using a linear layer over features of all views
at the current time step to better distinguish be-
tween navigation and non-navigation actions. This
layer is trained to predict high weights for actions
of the same type as the ground truth action and
low weights otherwise. The predicted weights are
multiplied pointwise with match scores Mi and the
action with the highest resultant score is selected.
For example, if the ground truth action at a partic-
ular time step is Move forward, the gate will
ensure that a prediction of ToggleOff which is
a non-navigation action will receive a higher loss
than a prediction of Turn Right, which is also

Model
Wide View-Act Act-Type Success
View Matching Gate Rate (%)

1 Base LXMERT Architecture ✗ ✗ ✗ 4.7
2 VAM (Ours) ✓ ✗ ✗ 9.3
3 VAM (Ours) ✓ ✓ ✗ 11.8
4 VAM (Ours) ✓ ✓ ✓ 13.8

Table 1: Performance improvement from wide view,
view-action matching and action type gate modules on
the ALFRED validation unseen split.

an incorrect action but of the same type as the
ground truth action (navigation).

Loss. The model is trained via cross-entropy
losses for action (teacher-forcing) and object type.

4 Experiments

Implementation & Training Details. We use 2
language and 2 cross-modal LXMERT layers for
the model, and use 768 as the hidden size. We
use AdamW (Loshchilov and Hutter, 2018) as the
optimizer with the learning rate 1 × 10−5. All
of the experiments are run on AWS ‘p3.16xlarge’
EC2 instances running Ubuntu 18.04. We employ
PyTorch (Paszke et al., 2017) to build our models.

Data Splits. Following Shridhar et al. (2020), we
train our models on the train split and use suc-
cess rate on the unseen validation split to perform
model selection, and determine whether our model
changes are likely to improve over existing state
of the art models. We used the validation splits
to evaluate the efficacy of variants of the trans-
former architecture, number of layers and number
of epochs of training to use. We then submitted
predictions from the best performing model on the
unseen validation split to the evaluation server to
obtain scores on the test sets.

Evaluation Metrics. We report two evaluation
metrics from Shridhar et al. (2020) on validation
and test splits. Success rate (SR) measures the frac-
tion of episodes whether the predicted model trajec-
tory results in all object state changes produced by
the ground truth action trajectory. Goal Condition
Success Rate (GC) measures the fraction of such
desired state changes across all episodes that were
accomplished by model-predicted trajectories.

Model Comparison. Recently, the best perform-
ing models on the ALFRED benchmark make use
of semantic map representations of the environ-
ment (Blukis et al., 2021). However, these rely on
pre-exploration of the environment to build a se-
mantic map, rather than utilizing language instruc-
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Subgoals
Wide (+) View-Act (+) Act-Type
View Matching Gate

CleanObject 81.4 89.4 91.2
CoolObject 100.0 100.0 100.0
GotoLocation 62.0 66.2 67.1
HeatObject 100.0 100.0 98.5
PickupObject 69.2 68.5 68.5
PutObject 66.6 71.2 68.3

SliceObject 62.2 61.3 69.4
ToggleObject 51.4 42.2 41.6

Table 2: Success rate (%) of the sub-goal tasks on the
ALFRED validation unseen split.

tions to directly navigate to target objects. There-
fore, we focus on comparing our model with other
multi-view setup models that are the state-of-the-
art among non-SLAM models. LWIT (Nguyen
et al., 2021) predicts an initial actions from an se-
lected instruction alone and integrates the actions
sequence with visual information to generate final
actions to take. ABP (Kim et al., 2021) factorizes
the model into interactive perception and action pol-
icy modules for adapting to two different tasks (the
former needs a pixel-level and the latter requires a
global information). However, although they em-
ploy multi-view setup, the information from each
view collapses into one integrated feature. On the
other hand, our model exploit each view directly to
keep the useful clues without any loss.

5 Results

We first evaluate the utility of each modeling
change on the unseen validation set of ALFRED.
As shown Table 1, we gain 4.6% on success rate
from adding a wider field of view, an additional
2.5% from view-action matching and a further 2%
from action type gating. We observe a variance
of 3% in success rate of the same type of model
trained with different random seeds so we consider
a 4.6% improvement to be sufficiently large to be
unlikely from pure variance.

Sub-Goal Performance. Considering the propor-
tion of GotoLocation to the total number of
sub-goal tasks (i.e., 48%) and its role of bridg-
ing other sub-goal tasks, navigation is very crucial
ability for a agent to successfully perform this chal-
lenging ALFRED task. As shown in Table 2, our
full view-action matching (VAM) model improves
the performance of GotoLocation task by 5.1%
while also improves performance for some of other
sub-goal tasks. This performance boost could at-
tribute to the agent’s ability to figure out where to
go (View-Action Matching) and what to do (Action-

Type Gate).

Validation-Test Performance Gap. When we
compare to other baselines in Table 3, although
our model outperforms other state-of-the-art mod-
els on the unseen validation split by a large margin,
its performance on the unseen test split is poorer,
whereas the reverse trend is seen with ABP (Kim
et al., 2021). This suggests that good performance
from a model on an unseen validation set may not
be a good method to determine whether model
changes are likely to generalize to another unseen
test set.

This lack of generalization is more likely in cur-
rent embodied learning tasks such as vision-and-
language navigation or embodied task completion
in comparison to other machine learning tasks due
to the way unseen test sets are defined in embod-
ied learning tasks. While ALFRED in particular
does not introduce new object categories at test
time, both validation and test unseen environments
are visually different, by design from the training
environment and from each other. When we com-
pare models on the validation set, we hope that an
increase in performance denotes a model that is
more capable of generalizing to any unseen envi-
ronment. However, it may only be the case that
the model only generalizes better to the particular
visual differences present in the unseen validation
environment.

When the benchmark limits access to the test set,
as in ALFRED, when dealing with a model that
demonstrates variance when trained with different
random seeds, hyperparameters and across training
epochs, it is natural to choose the setting that results
in the highest performance on the unseen validation
set. However, a different setting may in fact be opti-
mal for the unseen test set due to visual differences.
While such a design is likely significantly more
computationally expensive, it may be necessary to
redesign benchmarks to take an average of perfor-
mance from a few different variants of a model to
reliably rank different modelling methods, instead
of using scores from individual runs. We may also
want to re-evaluate the value of keeping a test set
private, as in the case of ALFRED that avoids pre-
vents allowing models to overfit on the test set, but
also makes it difficult to analyze the robustness of
model performance between the validation and test
sets. We would also like to encourage the reviewing
community to enable the publication of modelling
techniques whose performance is in the same ball-
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Split Model
Seen Unseen

SR GC SR GC

Val
LWIT 33.70 43.10 9.70 23.10
ABP 42.93 50.45 12.55 25.19

VAM (Ours) 40.9 47.9 13.8 28.1

Test
LWIT 29.16 38.82 8.37 19.13
ABP 44.55 51.13 15.43 24.76

VAM (Ours) 35.42 43.98 8.57 20.69

Table 3: Success rate (%) on the ALFRED evaluation
splits (GC: Goal-Condition). Our model outperforms
the state-of-the-art multi-view setup models on valida-
tion splits but not test splits.

park as existing state-of-the-art models, but novel
in some way, as opposed to solely relying on a
model achieving a top score on a leaderboard as
a criterion for publication, as this limits the devel-
opment that could be made using these alternative
modeling approaches.

6 Conclusion

We attempted to improve a transformer model for
embodied task completion by enabling it to effec-
tively uses multiple views via view-action matching
and action-type gating. Our view-action matching
module computes a matching score between each a
view and the embedding of the action used to gen-
erate it, and the gate module gives a higher weight
to a more appropriate action type. While our model
outperformed relevant baselines on the ALFRED
unseen validation split, the trend was reversed on
the unseen test split, suggesting that it may not
be possible to over-utilize a validation split when
making model selection choices so that the resul-
tant model does not perform well on the test split.
We choose to publish this result as we believe this
phenomenon is likely more common than reported
with machine learning benchmarks, but only notice-
able to researchers when working on a benchmark
with limited access to the test set. We additionally
hope that our work encourages the publication of
promising modelling approaches that do not work
as reliably as expected, so that these can act as a
guide to researchers to better inform their future
directions.
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Do Data-based Curricula Work?
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Abstract
Current state-of-the-art NLP systems use large
neural networks that require extensive computa-
tional resources for training. Inspired by human
knowledge acquisition, researchers have pro-
posed curriculum learning - sequencing tasks
(task-based curricula) or ordering and sampling
the datasets (data-based curricula) that facilitate
training. This work investigates the benefits of
data-based curriculum learning for large lan-
guage models such as BERT and T5. We exper-
iment with various curricula based on complex-
ity measures and different sampling strategies.
Extensive experiments on several NLP tasks
show that curricula based on various complex-
ity measures rarely have any benefits, while
random sampling performs either as well or
better than curricula.

1 Introduction

In the last years state-of-art results in natural lan-
guage processing (NLP) are often obtained with
Transformer-like architectures based on the self-
attention mechanism (Vaswani et al., 2017) such as
BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020), which could have
billions of parameters. Due to many parameters,
these architectures require lots of time and hard-
ware resources to be trained.

Curriculum learning (CL) is one of the popular
methods to reduce training time and increase the
resulting quality of the model. Inspired by the im-
portance of adequately ordering information when
teaching humans (Avrahami et al., 1997), curricu-
lum learning increases the difficulty of training
samples shown to the model over time (Elman,
1993). Previous studies have demonstrated that
curriculum learning significantly impacts training
time and quality in different machine learning do-
mains, such as computer vision (Soviany, 2020)
and reinforcement learning (Narvekar et al., 2020).
In NLP, some results hint that CL might be benefi-
cial (Platanios et al., 2019; Xu et al., 2020; Kocmi

and Bojar, 2017); however, these results are not as
optimistic as in reinforcement learning setup.

We suggest dividing recent research in curricu-
lum learning into two main categories: task-driven
curriculum and data-driven curriculum. The idea
of the task-driven curriculum was inspired by hu-
man behavior. First, the model learns how to solve
a simple task, and then the difficulty is gradually
increased. This type of curriculum proposed by
Bengio et al. (2009) is considered to be classical,
and a majority of curriculum-related results are ob-
tained in this framework. Alternatively to the task-
driven curriculum, some curricula try to use some
form of filtering or sorting of training data that
could facilitate learning a model on a given task.
We suggest calling these curricula data-driven and
distinguishing them from the classical task-based
approach.

This paper attempts to understand when data-
driven curriculum learning works for transformer-
based language models. Generally, data-driven
curriculum learning is organized in two steps: first,
estimating the complexity for the elements that
comprise the dataset; second, designing a sampling
strategy, thus forming a curriculum. In the first
part of the paper, we list potentially useful natural
language processing complexity measures. The
second part discusses possible sampling strategies
that might apply to corresponding complexity mea-
sures. We run extensive experiments with different
metrics and sampling strategies on three classes of
NLP tasks: unsupervised learning with masked lan-
guage modeling, text classification, and machine
translation. Our experiments show that data-driven
curriculum learning does not give quality increase
or time reduction on all metric-sampling strategy
setups and often makes results even worse.

2 Metrics

The first important part of the curriculum learning
pipeline is measuring the complexity of samples
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(a) Sentiment140 with sort-merge sampler for all
complexity measures.

(b) Sentiment140 with max word rank complexity
measure for all samplers.

(c) Hyperpartisan News with sort-shuffle samples
for all complexity measures

(d) Hyperpartisan News with max word rank com-
plexity measure for all samplers.

Figure 1: Pre-trained BERT fine-tuned on Sentiment140 and Hyperpartisan News Detection datasets. Accuracy of
the classifier as a function of the number of training steps.

for a given dataset. Texts could have a complex
structure, and one can measure their complexity in
different ways. A variety of heuristically motivated
methods is accompanied by several metrics based
on specific aspects of information theory. For a
review of heuristic text complexity measures such
as length of TF-IDF (Aizawa, 2003) we address
the reader to Appendix A. In this paper, we also
explore the metrics initially proposed by Ay et al.
(2006) to measure the complexity of finite systems
and try to see if one could apply these metrics to
NLP tasks.

Ay et al. (2006) observes that for finite systems,
a set of parts impacts the complexity of the sys-
tem as well as inter-dependencies of the parts. In
the context of NLP, this means that text is more
than just a bag of words. The authors propose
four different metrics to estimate the complexity
of a system. However, one of these metrics maxi-
mizes on single-letter texts, such as "Aaaaaaaaa,"
while the second was created to measure cyclic

sequences and does not apply to texts. Thus we
experiment with two other metrics, namely, Tononi,
Sporns, and Edelman (TSE) (Tononi et al., 1994)
and excess entropy (EE), and adapt them to the
complexity of texts. For the calculation of TSE and
EE for NLP we address the reader to Appendix B.

3 Samplers

The second important part of curriculum learning is
the sampling strategy (or sampler) - the algorithm
deciding which samples should be shown to the
model at which moment. Let us observe existing
curricula and suggest some new ones.

Competence-based. CB
A competence-based curriculum, offered by Platan-
ios et al. (2019), uniformly samples data from in-
creasing dataset’s prefix. Competence is a function
c(t), which defines the size of the dataset prefix.

c(t) = min


1,

√

t
1− c20
T

+ c20
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Where T - total number of steps, t - current step,
c0 - hyperparameter set to 0.01.

Hyperbolic. HYP
The main idea of this sampler is to increase average
batch complexity through time. All samples are
split by complexity into N sequential buckets with
equal size. Training time is divided into N epochs
and the probability of sampling the element from
the j-th bucket on the i-th epoch is proportional to
the distance between j and i.

Pri(j) =
c

|j − i|0.5

Where Pri(j) - probability to sample from j-th
bucket on the i-th epoch, c - constant to guarantee
that sum of all probabilities equals to 1.

Difficulty-based. DB
This sampler is a reversed version of the
competence-based one. A difficulty-based sampler
takes elements from a linearly decreasing suffix
instead of sampling from a gradually increasing
prefix.

Sort-shuffle. SS
All previously described samplers do not guarantee
that the model would see each element in the train-
ing data. Sort-shuffle samples each element exactly
once, randomly splitting the data into batches and
sorting by average complexity.

Sort-merge. SM
Many complexity estimates correlate with the
length of the text. The main idea of a sort-merge
sampler is to remove this correlation and train the
model on stable length distribution. This algorithm
consists of four main steps: sort dataset by length;
sequentially split into buckets; sort each bucket by
a complexity metric; form i-th batch from i-th el-
ements from each bucket. Like a sequential one,
the sort-merge sampler shows each element to the
model exactly once.

Equipped with the list of metrics and curriculum
samplers, we can discuss our experimental results.

4 Experiments

We perform our experiments on three NLP tasks:
text classification, machine translation (NMT), and
masked language modeling (MLM). Here we dis-
cuss the first task of classification in detail. The
extensive results of the experiments are available
in Appendix C. All the experiments are performed
with the HuggingFace library (Wolf et al., 2020),
which provides the models with their setups, such

as hyperparameters and tokenizers. We did not
change default parameters in our experiment un-
less specifically stated otherwise. Thus, the dataset
and the model specify every experiment. We use
the base version of the BERT model (Devlin et al.,
2019) for MLM and classification, and the small
version of the T5 model (Raffel et al., 2020) for ma-
chine translation. Experiments were performed on
BooksCorpus1 dataset for MLM, Sentiment1402

and Hyperpartisan News Detection3 for classifica-
tion, and WMT16-en-de4 for machine translation.
To estimate the curriculum’s convergence speed,
we calculate the average number of steps to reach
a threshold that is 10% lower than the resulting
saturation quality metric for every problem.

4.1 Text Classification

Figure 1 summarizes the experiments with BERT
for text classification. Neither different samplers
nor complexity measures improve a BERT-based
classifier’s resulting accuracy.

4.2 Masked Language Modelling

Figure 2 shows the results of MLM pretraining of
BERT on BooksCorpus. Irrespective of sampling,
the complexity measures have similar ranking in
terms of their performance on MLM: length, like-
lihood, TSE, EE, TF-IDF, maximum word rank.
Since sorted sampler takes length into account by
design, it is not included in the corresponding plots.
Data-based curricula show inferior results in com-
parison with the baseline.

4.3 Neural Machine Translation

Table 1 shows the experiments with T5 model (Raf-
fel et al., 2020) for machine translation and various
curricula. We use the BLEU metric to estimate the
quality of the resulting models. We calculate the
average BLEU score over ten validations at satu-
ration. Once again, curriculum learning does not
give any notable benefits.

5 Discussion

We try to interpret obtained results cautiously.
Though Platanios et al. (2019) report that

1https://huggingface.co/datasets/
bookcorpus

2https://www.kaggle.com/kazanova/
sentiment140

3https://huggingface.co/datasets/
hyperpartisan_news_detection

4https://huggingface.co/datasets/wmt16
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(a) Competence-based (b) Difficulty-based (c) Hyperbolic

(d) Sort-shuffle (e) Sort-merge

Figure 2: Loss function dependency on the number of training steps on MLM for BooksCorpus dataset during the
first 40k steps of training. Every plot depicts results for six different complexity estimates combined with a specific
sampler.

Table 1: The average BLEU score from 50k to 100k
steps on WMT16 dataset. Results better than the base-
line are highlighted. ’-’ denotes the cases when com-
plexity measure and sampler are not compatible.

Metrics Samplers
CB DB Hyp SS SM

baseline 18.3
length 10.1 17.4 16.3 - -
TSE 10.3 18.4 16.8 13.8 14.8
EE 10.2 18.2 16.9 13.3 15.0

competence-based sampling is beneficial for re-
current neural networks, we could not reproduce
this result in transformer-based architectures. We
also run experiments to check whether data-based
curricula could work on non-transformer architec-
tures. The results do not look encouraging; see
Appendix C.2.

Curriculum learning depends on subtle factors,
for example, a correct choice of hyperparameters.
It is hard to check all possible values of hyperpa-

rameters, yet to the best of our capabilities, we
address this issue in Appendix C.3. The results do
not seem to depend on the learning rate, and once
again, curriculum learning shows no benefits.

At this point, we can only conclusively say two
things: (1) a deeper investigation of the underlying
information theoretic principles that stand behind
curriculum learning is badly needed; (2) until we
better understand these principles, data-based cur-
riculum learning is a gamble with very low odds to
gain either speed or resulting performance.

6 Conclusion

In this work, we ran extensive experiments with
curriculum learning for transformer-based architec-
tures on three NLP tasks: masked language model-
ing, text classification, and machine translation. We
demonstrate that curricula do not help in the stan-
dard training setting and sometimes even worsen
results.
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A Heuristic Approaches to Text
Complexity

The first idea is to determine the complexity of
the text as its length. Despite its simplicity, this
method is used in different works (Platanios et al.,
2019; Kocmi and Bojar, 2017). The next family of
approaches boils down to phonological, morpho-
logical, lexical, or syntactic metrics derived with
some form of expert linguistic knowledge. How-
ever, van der Sluis and van den Broek (2010) used
Wikipedia and Simple Wikipedia corpora to demon-
strate that language-based metrics do not correlate
with the common sense text complexity. The third
class of methods treats text as a bag of words and
builds metrics based on the frequency analysis. For
example, every word gets a rank equal to its posi-
tion in the dictionary sorted by the number of word
appearances in a corpus. In this case, complexity
may be measured as a maximum rank among the
words in a bag (Kocmi and Bojar, 2017). This met-
ric is called max frequency rank. Another possible
metric is called likelihood. The metric calculates
the probability of the text under the assumption
that all tokens are independent, just by multiply-
ing probabilities of all tokens in the text (Platanios
et al., 2019). Another metric from this group is
TF-IDF (Aizawa, 2003), which is widely used in
search systems. Finally, the last array of methods
is based on using different neural network losses
as a complexity measure of a sample.

B Using Information Theory for Text
Complexity

Let XV = (Xv1, Xv2, . . .) be a sequence of ran-
dom variables from set V = (v1, v2, . . .), and A
is a subset of V , then XA is a subsequence of XV

with elements from A. Let’s determine H(XA) as
entropy of sequence XA. However, texts consist of
words or tokens, not random variables. We propose
the following procedure of transforming texts into
random variable sequences. For each token in posi-
tion i we compute the percentage of texts with this
token on the same position and replace the original
token with binary distribution with a probability of
one equal to the calculated percentage. After trans-
forming text into a sequence of random variables,
we can compute its entropy.

H(XV ) = H(Xv1) +H(Xv2|Xv1)

+ H(Xv3|Xv2, Xv1) + . . .

If one wants to apply this formula, one must
compute entropy for many different conditional
distributions while these distributions depend on
the order of tokens in a text. First, direct appli-
cation of the formula would overfit a specific text
since all texts are different in a corpus. Second,
such computation could not be carried out in a rea-
sonable time. The limit context for conditional
distributions to the nearest neighbors one obtains
the following formula

H(XV ) = H(Xv1) +
#V∑

i=2

H(Xvi |Xvi−1)

Using this approximation for entropy one can
compute excess entropy (EE) and the complex-
ity measure Tononi, Sporns and Edelman (TSE),
(Tononi et al., 1994) as they are formulated by Ay
et al. (2006)

EE(XV ) =

[∑

v∈V
H(XV \v)

]
− (n− 1)H(XV ),

(1)

TSE(XV ) =
n−1∑

k=1

k

n
C(k)(XV ), (2)

where n is a size of set V and

C(k)(XV ) =
n

k
(n
k

)
∑

A⊆V,|A|=k

H(XA)−H(XV ).

C Additional Experiments

C.1 Convergence Speed
Curriculum learning is often apprised for the speed-
up of the model’s convergence. The intuition
here is to provide a curriculum that would help to
achieve the same result faster, yet without a signifi-
cant loss in quality. We carried out several experi-
ments to see if data-based curricula could speed up
the learning in transformer-based language models.
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C.1.1 Classification
Tables 2 3 show average number of training steps
needed to reach 90% of the resulting accuracy for
the corresponding classification task. On Senti-
ment140 TF-IDF, TSE, and maximum word rank
speed the convergence up to 3% with some sam-
plers. However, other metrics or sampling strate-
gies slow down the model’s convergence speed,
while on a bigger HND dataset, other curricula
show results better than the baseline. One could
conclusively say that length is the worse metric
to organize curriculum in all experiment config-
urations. The one more important conclusion is
that the model can not always estimate the com-
plexity of the sample concerning its’ internal state
(MLM-loss does not speed up the training speed
and drawdown the final model quality on the Sen-
timent140 dataset). This happens when the model
is expressive enough, and all samples have equal
complexity in model-based metrics.

C.1.2 Pretraining MLM
Figure 2 shows a significant slowdown in model
convergence speed can be seen for all curricula
compared to the baseline learning regime. One
can also divide all metrics into two distinct groups.
The first one consists of maximum word rank and
TF-IDF. The second group includes EE, TSE, like-
lihood, and length. The metrics in the first group
allow the model to converge to a lower loss value.
However, the second group’s metrics hinder the
convergence and seem to have higher saturation
loss. Hence, it isn’t easy to find a universal thresh-
old to reasonably compare all metrics and samplers.
One should also note that only maximum word
rank does not degrade the model quality compared
to the baseline, while other curricula cause severe
deterioration. Finally, the last main observation is
that curriculum learning, unfortunately, does not
allow us to run MLM faster. Moreover, the number
of training steps needed to reach a given threshold
could be several times higher in comparison with
the baseline approach. Table 4 illustrates this fact.

C.2 Data-based Curricula for Other
Architectures

It seems that data-based curriculum learning can-
not increase quality or reduce training time for
transformer-based models. Though Platanios et al.
(2019) report that competence-based sampling is
beneficial for recurrent neural networks, we could
not reproduce this result in transformer-based ar-

chitectures. While some curricula might be use-
ful for smaller architectures on some tasks, they
have no significant benefits for larger architectures.
Let us double-check that with the recurrent neural
network architecture to see if the negative result
obtained above is associated with certain properties
of attention-based architectures or could be repro-
duced with various artificial neural networks. We
run our experiments on Sentiment 140 with 90%
train and 10% test split. The curricula include Hy-
perbole, Difficulty-Based and Competence-Based
samplers, and TSE and length difficulty metrics.
Figure 3 shows that data-driven curricula do not
have a significant influence on the results.

Comparing Figure 3 with Tables 3 – 2 one could
see that data-based curricula are hardly beneficial
even for smaller architectures. Rather, under cer-
tain conditions, one could get some improvement
of convergence, yet on a different task, the same
choice of complexity measure and sampling strat-
egy would be on par with the baseline.

C.3 Data-based curricula and
Hyperparameters

Extensive experiments on different NLP tasks show
that data-based curriculum learning does not help
to increase quality with default hyperparameters.
Hyperparameters’ importance for the curriculum
is an open question. Some papers state that hy-
perparameters, especially learning rate, are essen-
tial for curriculum (Zhang et al., 2018). On the
other hand, some papers propose methods that are
not highly sensitive to hyperparameters (Platanios
et al., 2019). It seems that hyperparameters choice
is discussed mainly in the works addressing NMT,
so we run additional experiments with our curric-
ula and three different learning rates (10−3, 10−4,
10−5) on NMT as well. Results demonstrate that
models’ behavior does not depend on the learning
rate much, and for every learning rate, curricula do
not give a significant quality increase. Results for
excess entropy are presented in Figure 6.
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Table 2: The average number of steps needed to reach given threshold for all configurations metric-sampler on text
classification task on Hyperpartisan News Detections dataset. Maximal deviation for 3 runs is less than 3k steps.
Results better than the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes the
cases when complexity measure and sampler are not compatible.

Metrics Threshold Accuracy Samplers
CB DB Hyp SS SM

baseline 92.9% 93.8% 22k
length 92.9% 93.7% 55k 23k 22.5k - -
TF-IDF 92.9% 93.5% ∞ 19.5k 24k 23.5k 33k
TSE 92.9% 93.8% 56.5k 21k 23k 22k 31k
EE 92.9% 93.8% 71.5k 25.5k 22.5k 19.5k 32.5k
max wr 92.9% 93.6% ∞ 22k 20.5k 22.5k 39k
likelihood 92.9% 93.8% ∞ 20k 24k 20k 30k
MLM-loss 92.9% 93.9% 23.5k 18k 23k 24k 20k

Table 3: The average number of steps needed to reach given threshold for all configurations metric-sampler on text
classification task on sentiment140 dataset. Maximal deviation for 3 runs is less than 3k steps. Results better than
the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes the cases when complexity
measure and sampler are not compatible.

Metrics Threshold Accuracy Samplers
CB DB Hyp SS SM

baseline 85.5% 87% 17.5k
length 85.5% 86.2% 112.5k 20k 19k - -
TF-IDF 85.5% 86.7% 115.5k 21.5k 19.5k 16.5k 22k
TSE 85.5% 86.8% 95.5k 16.5k 20.5k 21.5k 18k
EE 85.5% 86.7% 59k 19.3k 23k 20k 19k
max wr 85.5% 86.7% 70k 18.5k 19.5k 17k 19k
likelihood 85.5% 86.7% 112k 17.5k 21.5k 17.5k 21.5k
MLM-loss 85.5% 86.1% 59.5k 21k 23.5k 19.5k 20k

(a) Sentiment140 with length as complexity metric
and three samplers.

(b) Sentiment140 with TSE as complexity metric
and three samplers.

Figure 3: Test results with LSTM on Sentiment140 dataset. Accuracy of the classifier as a function of the number of
training steps.

126



Table 4: The average number of steps needed to reach given threshold for all configurations metric-sampler on
pretraining on BooksCorpus dataset. Maximal deviation for 3 runs is less than 3k steps. All complexity measures
based curricula reach saturation at higher losses than the baseline thus we used an arbitrary threshold of 3.5 for
them. Results better than the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes
the cases when complexity measure and sampler are not compatible.

Metrics Threshold Saturation Samplers
Loss Loss CB DB Hyp SS SM

baseline 2.00 1.58 9.5k
max wr 2.00 1.58 ∞ 17.5k 16.5k 16.5k 27k
TF-IDF 2.00 1.84 ∞ 34k 35k 37.5k ∞
EE 3.50 2.25 ∞ 4k 3.5k 4.5k 9.5k
TSE 3.50 2.60 ∞ 9k 9k 8.5k 18k
likelihood 3.50 2.83 ∞ 13.5k 13.5k 15.5k 50k
length 3.50 3.45 ∞ 50.5k ∞ - -

(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−5

Figure 4: Test results for NMT on WMT16 with different learning rates with excess entropy as a complexity measure

(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−5

Figure 5: Test results for NMT on WMT16 with different learning rates with TSE as a complexity measure
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(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−3

Figure 6: Test results for NMT on WMT16 with different learning rates with length complexity measure
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Abstract

The current state-of-the-art test accuracy
(97.42%) on the IMDB movie reviews dataset
was reported by Thongtan and Phienthrakul
(2019) and achieved by the logistic regres-
sion classifier trained on the Document Vectors
using Cosine Similarity (DV-ngrams-cosine)
proposed in their paper and the Bag-of-N-
grams (BON) vectors scaled by Naive Bayesian
weights. While large pre-trained Transformer-
based models have shown SOTA results across
many datasets and tasks, the aforementioned
model has not been surpassed by them, de-
spite being much simpler and pre-trained on
the IMDB dataset only.

In this paper, we describe an error in the evalua-
tion procedure of this model, which was found
when we were trying to analyze its excellent
performance on the IMDB dataset. We further
show that the previously reported test accuracy
of 97.42% is invalid and should be corrected
to 93.68%. We also analyze the model perfor-
mance with different amounts of training data
(subsets of the IMDB dataset) and compare it to
the Transformer-based RoBERTa model. The
results show that while RoBERTa has a clear ad-
vantage for larger training sets, the DV-ngrams-
cosine performs better than RoBERTa when the
labelled training set is very small (10 or 20 doc-
uments). Finally, we introduce a sub-sampling
scheme based on Naive Bayesian weights for
the training process of the DV-ngrams-cosine,
which leads to faster training and better quality.

1 Introduction

The word2vec algorithm originally published by
Mikolov et al. (2013) is among the most famous
methods to train vector representations of words.
Soon after the emergence of word2vec, a similar
method to build vector representations of docu-
ments was originally proposed by Le and Mikolov
(2014) and further studied by Mesnil et al. (2015).
It is known under different names, including Para-
graph Vectors, Sentence Vectors, doc2vec, etc.

This method jointly learns word embeddings and
document embeddings such that a binary classifier
can predict if a given word occurs in a particular
document given only the corresponding embed-
dings. More formally, the following objective is
minimized:
∑

d∈D

∑

w∈Wd

[− log σ(vTd vw)−
∑

w′∼V

log σ(−vTd vw′)]

(1)
Here D denotes the set of documents, Wd is the list
of words that make up the document d, w′ is a word
randomly sampled from the full vocabulary V , also
known as a negative sample (Goldberg and Levy,
2014). Finally, vd and vw are the learnt embed-
dings of d and w. Intuitively, for each document,
an embedding is learnt that has high similarity to
the embeddings of those words that occur in this
document and low similarity to the embeddings of
some random words.

Later Li et al. (2015) switched from single words
to n-grams and observed significant improvements.
Building on that, Thongtan and Phienthrakul (2019)
studied different objective functions. They have
found that the cosine similarity outperforms the
dot product, which led to a modified model called
the Document Vectors using Cosine Similarity (we
will call it DV-ngrams-cosine for short). The new
objective is:

∑

d∈D

∑

u∈Ud

[− log σ(αcos(vd, vu))

−
∑

u′∼V

log σ(−αcos(vd, vu′))],
(2)

where Ud denotes the set of all n-grams in d, vu is
the embedding of the n-gram u from d, vu′ is the
embedding of a randomly sampled n-gram, and α
is a hyperparameter.

In the same paper, the authors proposed an en-
semble consisting of the document embeddings
from DV-ngrams-cosine and the Bag-of-N-grams
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vectors scaled by Naive Bayesian weights (NB-
weighted BON for short). They concatenated these
two representations and trained the logistic regres-
sion classifier on top. The ensemble was reported
to have very high test accuracy (97.42%) on the
IMDB movie reviews dataset (Maas et al. (2011)).
To the best of our knowledge, this accuracy remains
the SOTA result on IMDB. Even large Transformer-
based models pre-trained on a huge amount of texts,
both in-domain and out-of-domain, have shown
lower accuracy on this dataset (Yang et al., 2019;
Suchin et al., 2020; Arefyev et al., 2021).

This extraordinary performance of such a simple
model motivated us to thoroughly study the model
and its implementation trying to understand the
reasons behind its success. Unfortunately, during
this study, we found a bug in the implementation
of the evaluation procedure of the ensemble, which
had made the estimation of the accuracy incorrect.

In our paper, we re-evaluate the ensemble as
well as its individual components. We show that
the originally reported test accuracy of the ensem-
ble (97.42%) is incorrect and shall be corrected
to 93.68%, which is only 0.55% higher than the
accuracy on pure DV-ngrams-cosine embeddings.

Additionally, we analyze how the amount of
training data affects the performance of the ensem-
ble, as well as its individual components, and also
the Transformer-based RoBERTa model (Liu et al.,
2020), which has recently shown SOTA or near-
SOTA results over a variety of tasks and datasets.
Surprisingly, we have observed that DV-ngrams-
cosine outperforms RoBERTa when the number of
labelled training examples is small (10 or 20). We
also ensemble RoBERTa with DV-ngrams-cosine,
but only have achieved a marginal improvement.
Finally, we propose a modification for the training
process of DV-ngrams-cosine that results in faster
training and better accuracy. The code reproducing
our experiments is publicly available 1.

2 Re-evaluation of the ensemble

In the aforementioned ensemble proposed by
Thongtan and Phienthrakul (2019), the NB-
weighted BON and the DV-ngrams-cosine are con-
catenated and fed into the logistic regression clas-
sifier. However, we have found that in the original
implementation the two vectors concatenated to
obtain a single training or test example usually cor-
respond to two different documents of the same

1https://github.com/Bgzh/dv_cosine_revisited

class (see details in Appendix A). Specifically, the
DV-ngrams-cosine vectors and the BON vectors are
built from two different files having different orders
of examples. As a result, after the concatenation,
each input to the logistic regression corresponds to
a combination of two examples. Due to the special
structure of the files, those examples are guaranteed
to belong to the same class and the same subset.
For instance, a positive example from the test set is
concatenated with another positive example from
the test set.

In Appendix B.3 we provide an analysis that
shows the reasons of high performance of this con-
catenation of two representations. From this analy-
sis it follows that most examples from IMDB are
correctly classified with high confidence (a large
logit) using any of two representations, i.e. they
are easy examples. Less than 10% of examples are
classified incorrectly by each representation (hard
examples), but they often obtain low confidence
(a logit near zero). Hard examples are more often
combined with easy examples just because of their
dominance. In these cases, the logit from the easy
example often outweigh the logit from the hard one
resulting in the correct final prediction.

Thus, in both the training and the test sets, hard
examples are often combined with simpler exam-
ples, making the classification task easier. In this
process, the knowledge of the true labels is implic-
itly exploited to combine the examples this way, in
both training and testing. This leads to an incorrect
estimation of the classification accuracy for future
examples.

After fixing this issue, we have observed that
the combination of different representations
of the same document leads to the test accu-
racy of 93.68% instead of 97.42% originally
reported. Compared to the pure DV-ngrams-cosine
embeddings, the ensemble improves the test
accuracy by 0.55%, not 4.29% reported previously.
This improvement also better agrees with the
improvements of less than 1% observed by Li et al.
(2015) for similar ensembles with the predecessor
model DV-ngram. As a sanity check, Appendix B
additionally reports the accuracy for different
schemes of combining the two representations,
showing that higher accuracy can be achieved only
by those schemes that exploit the knowledge of the
test labels.
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3 Further analysis of performance

In his section we further analyze the performance
of the ensemble described above, comparing it to its
individual components as well as to the recently in-
troduced Transformer-based RoBERTa model (Liu
et al., 2020). We study the performance of these
models depending on the number of labelled exam-
ples in the training set.

Figure 1: The performance of different models on train-
ing sets of different sizes. The mean values and standard
deviations were calculated over 10 random subsets for
RoBERTa and 30 random subsets for other models for
each training set size. BON in the legend implies NB-
weighted BON.

For a more fair comparison, the most important
hyperparameters of each model were tuned on the
validation set, employing the train/validation/test
split of the IMDB dataset provided by (Suchin et al.,
2020). Subsets of different sizes from 10 to 20000
examples were randomly sampled from the training
set. The logistic regression classifier was trained
on these subsets using the DV-ngram-cosine em-
beddings, the NB-weighted BON vectors, or their
concatenation as its input representation.

We tuned the L2-regularization strength C of the
classifier individually for each subset of the training
set. Additionally, we multiplied the DV-ngram-
cosine embeddings before concatenating them to
the BON vectors in order to balance the magnitudes
of the two representations, which may help the
classifier to benefit from both representations. The
scaling factor was also selected on the validation
set.

The pre-trained RoBERTa base model2 was fine-
tuned on a part (10 out of 30) of the same sub-
sets of the training set, using the validation set for

2https://pytorch.org/hub/huggingface_
pytorch-transformers/

early stopping. We used a batch size of 32, with a
maximum learning rate of 1e-5, recommended by
fairseq3.

As shown in Fig. 1, the fine-tuned RoBERTa
model usually achieves higher test accuracy. But
when the number of labelled training examples is
very small (10 or 20), the logistic regression on the
DV-ngrams-cosine embeddings shows higher mean
test accuracy and lower standard deviation. This
result corroborated the notion that small models
can be a better choice when the data are scarce.

On the other hand, logistic regression on the
BON vectors performs significantly worse than all
other models across all training set sizes. Finally,
we don’t observe any significant improvements
from the ensembling when the training set size
is less than 20k, as the difference is within one
standard deviation.

It is important to notice that the DV-ngrams-
cosine embeddings were pre-trained on the in-
domain examples from the whole IMDB dataset,
while RoBERTa was pre-trained on a huge but
general-domain corpus. It is likely that the do-
main adaptation techniques (Suchin et al., 2020)
will help RoBERTa when the number of labelled
examples is small. However, for our study, we de-
cided to compare the most standard approaches to
training the corresponding models.

4 NB Sub-Sampling

In this section, we improve the training procedure
of DV-ngrams-cosine by applying a sub-sampling
procedure based on the Naive Bayesian weights
of ngrams (NB Sub-Sampling) in order to make
the model focus more on sentiment-related ngrams
while building the document embeddings.

Inspired by the previous works (Wang and Man-
ning (2012), Arefyev et al. (2021)), we trained
a multinomial Naive Bayesian Classifier and ex-
ploited its weights to calculate the importance of
each ngram fi for the final classification task:

hi = | log p(fi|y = 1)− log p(fi|y = 0)| (3)

In each epoch we put an ngram into training with
the probability

p(fi) = min(exp(hi/na)/nb, 1), (4)

3https://github.com/pytorch/fairseq/
blob/main/examples/roberta/README.
custom_classification.md
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Model Test Accuracy %
Models trained on the original training set of IMDB (25K)
NB-weighted BON 91.29
DV-ngrams-cosine 93.13
DV-ngrams-cosine + NB-weighted BON (Thongtan and Phienthrakul, 2019) #97.42
DV-ngrams-cosine + NB-weighted BON (re-evaluated) 93.68
Models trained using the train/dev split from (Suchin et al., 2020) (20K/5K)
DV-ngrams-cosine with NB sub-sampling 93.36
RoBERTa 95.79
DV-ngrams-cosine + RoBERTa 95.92
DV-ngrams-cosine with NB sub-sampling + RoBERTa 95.94

Table 1: Test results on the IMDB dataset. # indicates incorrect previously reported results.

Figure 2: Training process with and without NB sub-
sampling. The test accuracy of the logistic regression
built on top of the document vectors is plotted. The
mean values and standard deviations were calculated
over 3 runs for each type.

where na and nb are the hyperparameters. The
choices are purely empirical. We tried different
combinations of na and nb and found 2 and 3 (re-
spectively) to be the best in them.

The comparison of the training process with and
without NB sub-sampling is shown in Fig. 2 (refer
to Appendix C for details of the experiments and
the accuracy on the validation set).

The runs with NB sub-sampling progress faster
and show a distinct advantage after 2500 steps. Af-
ter 30k steps, the runs with NB sub-sampling stag-
nated and kept fluctuating in a small region; the
vanilla runs stagnated after 50k steps, in a lower
area. It is also worth noticing that although the la-
bels of the training set are used during pre-training
for sub-sampling, we did not observe any signifi-
cant overfitting due to that. Neither the validation
score nor the test score showed a tendency to decay
long after reaching the plateau, indicating that this

sub-sampling scheme can be used as an add-on to
the original model, boosting its performance while
not creating additional overfitting trouble.

5 Ensemble DV-ngrams-cosine and
RoBERTa

The ensemble proposed in (Thongtan and Phien-
thrakul (2019)) and described in Section 2 com-
bines two different representations of documents,
which are the DV-ngrams-cosine embeddings and
the NB-weighted BON vectors. However, we have
observed in Section 3 that the BON vectors are
quite weak on their own, while RoBERTa outper-
forms all other models unless the number of ex-
amples is very small. Thus, it is interesting if DV-
ngram-cosine can help RoBERTa. In this section,
we combine the DV-ngrams-cosine (with or with-
out NB sub-sampling) with the output of the last
hidden layer of RoBERTa, and test on the IMDB
dataset. Again, the train/validation/test splits by
Suchin et al. (2020) were used. A scaling factor on
the DV-ngrams-cosine and the hyperparameter C
in the logistic regression were tuned on the valida-
tion set.
The results are shown in Table 1. Although
RoBERTa is a much stronger model than DV-
ngram-cosine, combining them has shown a small
improvement of 0.13-0.15%.

6 Conclusion

The ensemble featuring the DV-ngrams-cosine re-
ported by Thongtan and Phienthrakul (2019) was
re-evaluated. The test accuracy of this ensemble on
the IMDB dataset was corrected from 97.42% to
93.68%. The DV-ngrams-cosine embeddings with
the logistic regression on top were compared with
RoBERTa using different amounts of training data.
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In this comparison, the DV-ngrams-cosine has sur-
prisingly outperformed RoBERTa for a small num-
ber of training examples (10 or 20 documents). A
sub-sampling scheme based on the Naive Bayesian
weights was introduced to the training process of
the DV-ngrams-cosine, resulting in faster training
and better quality.
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Swabha, Lo Kyle, Beltagy Iz, Downey Doug, and
Noah Smith A. 2020. Don’t stop pretraining: Adapt

language models to domains and tasks. ACL, pages
8342–8360.

Tan Thongtan and Tanasanee Phienthrakul. 2019. Sen-
timent classification using document embeddings
trained with cosine similarity. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 407–414, Florence, Italy. Association for Com-
putational Linguistics.

Sida Wang and Christopher Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic clas-
sification. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 90–94, Jeju Island,
Korea. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, G. Jaime Car-
bonell, Ruslan Salakhutdinov, and V. Quoc Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. ADVANCES IN NEURAL IN-
FORMATION PROCESSING SYSTEMS 32 (NIPS
2019), pages 5754–5764.

133



Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 134 - 138
May 26, 2022 ©2022 Association for Computational Linguistics

Challenges in including extra-linguistic context in pre-trained language
models

Ionut-Teodor Sorodoc∗ Laura Aina∗ Gemma Boleda∗ †

∗Universitat Pompeu Fabra
†ICREA

Barcelona, Spain
{firstname.lastname}@upf.edu

Abstract

To successfully account for language, computa-
tional models need to take into account both the
linguistic context (the content of the utterances)
and the extra-linguistic context (for instance,
the participants in a dialogue). We focus on a
referential task that asks models to link entity
mentions in a TV show to the corresponding
characters, and design an architecture that at-
tempts to account for both kinds of context.
In particular, our architecture combines a pre-
viously proposed specialized module (an “en-
tity library”) for character representation with
transfer learning from a pre-trained language
model. We find that, although the model does
improve linguistic contextualization, it fails to
successfully integrate extra-linguistic informa-
tion about the participants in the dialogue. Our
work shows that it is very challenging to in-
corporate extra-linguistic information into pre-
trained language models.

1 Introduction

Identifying the real-world entity an expression
refers to is crucial for Natural Language Process-
ing, since humans use language to talk about the
world. This, however, requires models that repre-
sent the real world such that linguistic expressions
can be mapped to them. For instance, in Figure
1, which is a snippet of a dialogue from the TV
show Friends, we need to know that it is Joey Trib-
biani who is speaking to be able to interpret the
pronoun “I”. State-of-the-art NLP models typically
focus on linguistic context, not on extra-linguistic
context such as who is speaking to whom. We aim
at integrating extra-linguistic context, in particular
information about participants in a dialogue; also,
we aim at combining it with information coming
from the linguistic context.

We focus on the character identification task of
SemEval 2018 (Choi and Chen, 2018), aimed at
classifying mentions from the dialogue scripts of
the TV show Friends (see Figure 1). The model that

JOEY TRIBBIANI (183):
". . . see Ross, because I think you love her ."

335 183 335 306

Figure 1: Example of the dataset. It shows the speaker
(first line) of the utterance (second line) and the ids of
the entities to which the target mentions (underlined)
refer (last line).

won the SemEval competition (Aina et al., 2018)
proposed an external module to encode entity in-
formation in a structured way (henceforth, “entity
library”). This approach enabled the incorpora-
tion of extra-linguistic information, in particular
speaker information, which allowed the model to
learn patterns such as “I refers to the character that
is speaking"; and, as a result, it worked compara-
tively well on rare entities. However, Aina et al.
(2019) showed that the model’s good performance
was not correlated with meaningful entity represen-
tations. Moreover, the model performed poorly in
expressions that require a good grasp of the linguis-
tic context, like 3rd person pronouns and common
nouns.

Aina et al.’s base model was an LSTM
trained from scratch on the character identifica-
tion task (with the exception of pre-trained non-
contextualized word embeddings). We propose
to instead add the entity library to a pre-trained
language model: BERT (Devlin et al., 2019). Pre-
trained language models (Peters et al., 2018; De-
vlin et al., 2019) have been shown to provide
good contextual representations (Bai et al., 2021),
and they have enabled advances also in referen-
tial tasks (Joshi et al., 2020; Zhou and Choi, 2018;
Yang and Choi, 2019). We expected that combining
BERT with the entity library would synthesize the
benefits of both, encoding and exploiting both the
extra-linguistic and linguistic information in the
context. We also expected that, as a result of these
improvements, this model would yield better entity
representations.

Contrary to expectation, however, we do not
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improve on the state-of-the-art model of Aina
et al. (2019). Through analysis, we show that our
model does improve the performance for context-
dependent expressions, such as third-person pro-
nouns, suggesting that it is better at handling the
linguistic context; however, it performs worse on
expressions that depend on the extra-linguistic con-
text, such as first- and second-person pronouns,
which are much more frequent in the data. More-
over, the entity representations are only marginally
improved. The problem, we argue, comes from the
fact that integrating extra-linguistic information in
pre-trained language models is far from trivial.

2 Method and main results

Task In order to have a comparable setup to pre-
vious studies, the dataset and the task are the same
as the ones described in Choi and Chen (2018). The
training and test data span the first two seasons of
the sitcom Friends, and the task is to predict which
character is referred to by each referring expression
(see Figure 1).

Model In our model, the input tokens go through
a pre-trained BERT. Then the speaker information
(i.e., an embedding identifying the character who
produced the utterance) is concatenated to the to-
ken representation. This representation is fed to a
multi-layer perceptron (MLP). The output of this
step is compared to the entity library (EntLib) pro-
posed in Aina et al. (2018), via dot products with
each character embedding in the EntLib, in order to
produce the final prediction (softmax over the dot
products). The entity library is a learnable matrix
where each row is associated with one of the 401
characters from the dataset. As in the version in
Aina et al. (2019), the parameters of the speaker em-
bedding matrix and of the entity library are shared.
The weights of BERT are tuned to the character
identification task. Section A.2 in the Appendix
reports model details.

The most notable differences of our architec-
ture with that of Aina et al. (2018) and Aina et al.
(2019) are the following: 1) We run the input text
through a pre-trained language model; 2) our model
processes the input token with its textual context
before accessing the speaker information. By con-
trast, Aina et al.’s architecture directly passes the
input token to the LSTM jointly with the speaker.
This latter difference will be crucial in explaining
the results, as we will see in the next section.

all (78) main (7)
models F1 Acc F1 Acc

random -EntLib 40.4 63.6 70.6 69.4
+EntLib 43.8 64.4 71.2 70.4

BERT

frozen-EntLib 31.6 64 72.5 72.8
frozen+EntLib 35.3 63.8 70.9 71.1
finet.-EntLib 38.6 62.2 68.9 69.1
finet.+EntLib 51.4 70.5 76.9 77.6

LSTMEnt +EntLib 49.6 77.6 84.9 84.2

Table 1: Model parameters and results on the character
identification task. finet: fine-tuned.

We conduct ablation experiments to investigate
the benefits of different components of our model:

• random embeddings: the BERT component
is substituted by randomly initialized embed-
dings. Each token is linearly mapped to a
vector, with no representation of sequences.

• frozen BERT: the BERT component of the
model is not fine-tuned on the character iden-
tification task, and only the other components
are updated during training.

• -EntLib: the model does not include the entity
library. The output of the MLP is directly
mapped to 401 dimensions to predict an entity.

Results The main results are presented in Ta-
ble 1.1 The newly proposed model does not im-
prove over the best performing model from Aina
et al. (2019): it is better on F1 score for all entities,
and worse for the other three metrics. However,
while Aina et al.’s model (henceforth, LSTMEnt)
has the best overall results, it outperforms the pro-
posed model (fine-tuned BERT +EntLib, hence-
forth BERTEnt) only on a few kinds of expressions,
as shown in the analyses in Section 3.

Table 1 also shows that the entity library im-
proves over all 3 model variations, confirming that
dedicating a specialized component to entity repre-
sentation is helpful for referential tasks. Among our
variants, the complete model (BERTEnt) is the best,
showing that all the components are beneficial for
the task. The models initialized with random em-
beddings are comparable to the models with frozen
BERT embeddings. This suggests that BERT repre-
sentations are not directly applicable to the current
task, without being adjusted through fine-tuning;
that may be due to the differences between the data

1While the prediction is over 401 entities, “all entities”
in Table 1 are only 78 because this is the number of entities
appearing in the test data.
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Figure 2: F1-score by type of referring expression
(setup: all entities).

BERT was trained on (mostly narrative text) and
the data we are deploying it on (dialogues from TV
sitcoms).

3 Why does BertEnt not improve results?

Figure 2 presents the F1-score for the analyzed
models for different types of referring expressions:
first/second/third-person pronouns, proper nouns
and common nouns. The graph shows results cor-
responding to all entities (column ‘all’ in Table 1).
A graph focusing on the main entities is included
in the Appendix.

As for first-person pronouns, recall that their
interpretation depends on extra-linguistic informa-
tion (who is speaking). Our models have speaker
embeddings; to learn the right generalization, they
should map the “I” token to the relevant speaker
embedding. The entity library facilitates this pro-
cess, and, accordingly, it is a beneficial component
for first-person pronouns across all models.

Moreover, this is a type of referring expression
that is easy for the models. The best strategy is
actually to learn to treat the token representation
for a first-person pronoun as a constant that func-
tions simply as a prompt for the speaker embedding.
This explains why the best results are actually ob-
tained with random embeddings and entity library:
The other models (including LSTMEnt) contextual-
ize tokens, changing them depending on the content
of the message. Since first-person pronouns do not
depend on the linguistic context, but only on the
extra-linguistic context, the other models have a
harder time learning the right mechanism.

Second- and third-person pronouns are remark-
ably difficult for all models, and we find con-
trasting results between BERTEnt and LSTMEnt.
BERTEnt is much worse than LSTMEnt at second-

person pronouns, which again need extra-linguistic
information (who the addresse is). As we explain
in more detail later, in this case the problem is that
in the current architecture speaker information is
not contextualized together with the linguistic con-
text. Instead, BERTEnt is better than LSTMEnt for
third-person pronouns. This behaviour is expected
given that third-person pronouns are tokens that re-
quire contextualization in the linguistic context (not
the dialogue participants), and BERT specializes in
contextualized representations.

Proper nouns are rigid designators, such that no
contextual information is needed to predict which
character “Ross” refers to (at least in the context of
the sitcom) – neither linguistic nor extra-linguistic
information. What is needed is to map the proper
nouns to the corresponding characters, something
that again is facilitated by the entity library. Most
models are able to learn this mapping, with the
exception of models with frozen BERT, which can-
not adapt their proper noun representations to the
context of the sitcom. BERTEnt is instead the most
successful model for proper nouns, surpassing even
LSTMEnt.

And the performance of BERTEnt is similar to
that of LSTMEnt. This result is unexpected be-
cause common nouns bear resemblances to third-
person pronouns (requiring contextualization, e.g.
in the case of “woman”) and to proper nouns (with
some being more associated to a given character,
like “paleontologist” with Ross), and BERTEnt
outperforms LSTMEnt in both. However, common
nouns are difficult for all the models. This can
be traced back to two factors: 1) common nouns
are rare in the training data; 2) the models are not
learning good entity representations, which is nec-
essary to learn the associations between nouns and
characters (such as “paleontologist” with Ross).
See Appendix A.5 for model biases that depend on
training data distribution, and A.6 for the quality
of entity representations.

Overall, the results show that BERTEnt and LST-
MEnt have complementary strenghts: BERTEnt is
better at accounting for linguistic context (with best
results in third-person pronouns and proper nouns),
and LSTMEnt at extra-linguistic context (with best
results in first- an second-person pronouns). How-
ever, LSTMEnt achieves the best overall accuracy
(Table 1) because of the data distribution: 44.4% of
the datapoints are first-person pronouns, and 27.9%
are second-person pronouns.
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Thus, our proposed model succeeded in achiev-
ing better linguistic contextualization, but failed in
incorporating extra-linguistic information, in par-
ticular information about the participants in the di-
alogue. We believe that the issue is that pre-trained
language models like BERT do not have a “space”
for extra-linguistic information; thus it is difficult
to add it to current architectures. In particular, re-
call that, in our model, the speaker embedding is
added at the output level: each token is processed
by BERT, and then the speaker embedding is con-
catenated to the token. This means that the speaker
embedding is not contextualized in the linguistic
input, except via the MLP that further maps the
concatenated token+speaker embeddings to the fi-
nal decision. In LSTMEnt, instead, the token and
the speaker embedding are processed jointly by the
language model.

To understand the implications of this, consider
the case of second-person pronouns: the entity we
refer to when we use “you” is most probably an
interlocutor who is the speaker of previous or future
utterances. The current architecture doesn’t have a
straightforward way to access this information.

The way to go would be to include speaker infor-
mation directly in the architecture of BERT. Since
this entails all kinds of technical and conceptual is-
sues, and in the spirit of “recycling” language mod-
els for referential tasks, we tried a middle-ground
solution. We added a self-attention layer on top
of the concatenation of the token and speaker in-
formation.2 The self-attention layer operates on
the whole sequence given as input: it compares the
hidden representation at time step t with the hidden
representations at all the other time steps. These
comparisons are used to create a weighted repre-
sentation. This layer should lead to incorporation
of interlocutor information into the current repre-
sentation. It however didn’t work as expected: in
our hyperparameter search, the best models did not
use this component. This could be due to the com-
ponent lacking a recency feature that encourages
the model to focus more on the speakers surround-
ing the current token. For instance, for expressions
like “you”, the referent is usually a participant in
the vicinity of the current utterance, such that it
is harmful to consider all the spans considered in
the BERT processing layer (more than 100 in the
best instantiations of the model). Even though posi-
tional embeddings offer the possibility of focusing

2We tried 1/2/4 attention heads and 1/2 layers of attention.

on more recent tokens, this information might not
reach the output of BERT; thus the issue here could
again be the fact that we include speaker informa-
tion after BERT processing.

4 Conclusion

Our initial hypothesis was that the proposed model,
BERTEnt, would attain the same performance as
the previous state-of-the-art model (LSTMEnt) on
mentions requiring extra-linguistic information,
while improving linguistic contextualization and
possibly the encoding of entity information. We
instead find that the model does improve in lin-
guistic contextualization (cf. higher performance
in third-person pronouns), but instead fails to inte-
grate extra-linguistic information about the partici-
pants in the dialogue (cf. lower performance in first-
and second-person pronouns). Also, BERTEnt only
slightly improves over LSTMEnt on entity repre-
sentations (see Appendix A.6). The entity library
does continue to be a valuable module, as in previ-
ous work (Aina et al., 2018, 2019), boosting perfor-
mance across the board. Future work can focus on
studying the benefits of the entity library in other
pretrained models.

These results highlight requirements for success-
ful architectures in situated Natural Language Pro-
cessing. A model should be able to dynamically
switch, depending on the input, between a strong
sensitivity to the linguistic context and to the extra-
linguistic context, to capture, e.g., that “I” points
to the speaker, while “she” is to be disambiguated
using the discourse context. This requires mod-
els to integrate the extra-linguistic context in their
representations, a capacity that is severely under-
developed at the moment. We have tackled the spe-
cific case of the participants in a dialogue, and have
shown that it is very challenging to incorporate this
kind of information in pre-trained language models.
In order to address this issue, a possible approach
for future research would be to develop a model
which extends BERT to a multi-modal two-stream
model, specialized on dialogue.

The Friends data that we have used is small for
deep learning standards; one obvious way to go
is to use more task-specific training data. Also,
future work needs to conduct experiments on other
dialogue-oriented tasks, in order to confirm our
conclusion.

However, training data on any given “world”,
such as that of a particular TV show, or the envi-
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ronment in which an artificial assistant is typically
deployed (think Siri or Alexa), is inherently lim-
ited, such that newer models will need to be able
to do more with less.
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Abstract
We investigate potential label errors present in
the popular BANKING77 dataset and the asso-
ciated negative impacts on intent classification
methods. Motivated by our own negative re-
sults when constructing an intent classifier, we
applied two automated approaches to identify
potential label errors in the dataset. We found
that over 1,400 (14%) of the 10,003 training
utterances may have been incorrectly labelled.
In a simple experiment, we found that by re-
moving the utterances with potential errors, our
intent classifier saw an increase of 4.5% and
8% for the F1-Score and Adjusted Rand Index,
respectively, in supervised and unsupervised
classification. This paper serves as a warning
of the potential of noisy labels in popular NLP
datasets. Further study is needed to fully iden-
tify the breadth and depth of label errors in
BANKING77 and other datasets.

1 Introduction

NLP researchers and practitioners use standard
benchmark datasets in the selection, development,
and comparison of advanced NLP methods. The
use of standard benchmarks enables an apples-to-
apples comparison of competing methods, as well
as an evaluation of a method under different busi-
ness scenarios.

Recently, researchers have proposed three
promising intent classification benchmark datasets
that are large (>10,000 instances) and include
more than 50 unique intents: BANKING77 (cas),
HWU64 (Liu et al., 2019), and CLINC150 (lar).

The aforementioned datasets have been used
to evaluate pretrained transformers (Zhang et al.,
2021b), density-based models (gon), few-shot
learning (luo), open intent detection (Zhang et al.,
2021a), and intent discovery (cha).

These benchmark datasets are hand-labelled by
humans and their categorization can be subjective
in nature. In addition, humans may make mis-
takes in the labelling process. As such, it is im-

portant to assess the accuracy of the human-given
labels (Northcutt et al., 2021a).

Our recent experience with BANKING77 sug-
gested that several labeling errors were present
in the dataset. Using confident learning (North-
cutt et al., 2021b) and our own cosine similarity
methodology (Section 3.2), we found that over
1,400 (14%) of the 10,003 training samples may
have been incorrectly labelled. Table 1 shows rep-
resentative examples.

Using noisy labels to train and evaluate an intent
classifier could have disastrous consequences. First,
the classifier could incorrectly classify new utter-
ances. Second, any performance measures would
be based on mislabelled truth and therefore be inac-
curate. Finally, researchers and practitioners may
make an incorrect recommendation or conclusion
for the downstream task-oriented conversational
system.

In this paper, we investigate the potential label
errors present in BANKING77. First, we provide
background on BANKING77 in Section 2. In
Section 3, we describe our methodology for de-
termining potential label errors. We first use Confi-
dent Learning (Northcutt et al., 2021a) and identify
over 900 potential label errors. Next, we design a
methodology based on cosine similarity and iden-
tify an additional 500 potential label errors. In Sec-
tion 4, we quantify the potential impacts of errors
on a downstream NLP task. Finally, in Section 5
we conclude and outline future work.

2 Background

BANKING77 was created in 2020 by researchers
at PolyAI1 as part of their study on a new intent
classifier using pretrained dual sentence encoders
based on fixed Universal Sentence Encoders (Cer
et al., 2018) and ConveRT (Henderson et al., 2020).
The dataset is a single-domain intent detection

1github.com/PolyAI-LDN/task-specific-
datasets/tree/master/banking_data
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Similar utterances with different labels
Utterance Label
"How long will it take for me to get my card?" card_arrival
"Can you tell me how long it takes for a new card to come?" card_delivery_estimate
"Can you tell me the status of my new card?" lost_or_stolen_card
"how many days processing new card?" contactless_not_working
"Can you tell me when my money transfer will go through" pending_transfer
"How long am I to wait before the transfer gets to my account?" transfer_timing
"How long before a bank transfer shows up in the account?" balance_not_updated_after_bank_transfer

Dissimilar utterances with the same label
Utterance Label
"How do I check security settings using the app?" card_not_working
"I cannot seem to use my card." card_not_working
"Can I use app to reset PIN attempts?" card_not_working
"How do I check security settings on my card?" card_not_working
"HOW LONG TO TAKE THE TIME TO SOLVE" card_not_working

Table 1: Examples of potential label errors. The top portion shows utterances with similar intents assigned to
different labels. The bottom portion shows examples of utterances with different intents assigned to the same label.

dataset, containing 10,003 annotated customer ser-
vice queries over 77 intents related only to banking.

Many of the previously available datasets only
included a small number of labels and contained
a small number of utterances from many distinct
domains. The authors believe that BANKING77—
given its single-domain focus yet large number of
intents—makes the intent detection task more real-
istic and challenging.

The authors also acknowledged that there are
partially overlapping intent categories, and there-
fore, the intent detection system cannot rely only
on the semantics of individual words to correctly
categorize the utterance. However, they did not pro-
vide any specifics regarding the extent and impact
of such overlaps.

3 Identifying Potential Label Errors

While implementing our own intent classifier on
BANKING77, we noticed unexpectedly poor per-
formance in several intent categories. We found
that our classifier was confusing many of the la-
bels. For instance, we found that up to sixteen
“truth” labels were predicted as a single intent by
our classifier. Similarly, one predicted intent in-
cluded up to twelve truth labels. (Table 1 shows
examples of such confusion.) While some predic-
tion errors are expected, we were quite surprised
at the level of confusion. We performed a prelimi-
nary manual investigation of labels and found that
many utterances seemed to have the wrong truth
label assigned. Also, we found that labels related to
"card" or "top_up" have high similarities, as shown
in Figure 1, making it difficult to select a distinct

and unique label.
To further understand the extend of these poten-

tial label errors, we applied and compared two auto-
mated approaches: the Confident Learning frame-
work, and a Cosine Similarity approach.

3.1 Confident Learning Framework
We replicated the Confident Learning (CL) frame-
work (Northcutt et al., 2021b)2, which produces
a label noise estimation to find potential label er-
rors, identified through the joint distribution of the
noisy (given) labels and latent (unknown) labels to
characterize class-conditional label noise.

We trained a LightGBM classifier on SBERT
(rei) MPNet (Song et al., 2020) sentence embed-
dings. We used 10-fold cross validation to obtain
out-of-sample predictions to identify potential label
errors.

We found that 965 utterances, representing 75
of the 77 labels, may have potential label errors.
Table 2 summarizes the top five labels with the
highest number of possible errors. It is interesting
to point out that utterances related to "transfers" or
"top_up" labels appear to be most problematic.

3.2 Cosine Similarity Approach
The CL approach excelled at finding utterances
that were identified as noisy within the same label.
However, in our manual investigation, we also no-
ticed that many utterances were semantically iden-
tical (e.g., “Why hasn’t my transfer gone through”
and “Why is my transfer still pending?”) but were
assigned different labels.

2https://github.com/cleanlab/cleanlab
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Label Potential
Errors

transfer_not_received 32
_by_recipient
balance_not_updated 31
_after_bank_transfer
top_up_failed 24
top_up_reverted 24
pending_top_up 23

Table 2: The top five labels with potential errors from
the CL framework.

Label Potential
Errors

card_arrival 42
getting_virtual_card 37
declined_card_payment 33
pending_top_up 33
top_up_reverted 30

Table 3: The top five labels with potential errors from
our Cosine Similarity approach.

We created a method to find such utterances as
follows. First, we calculated the pairwise cosine
similarity (based on SBERT MPNET embeddings).
Next, we identified pair of utterances that had simi-
larity score higher than δ =0.85 but were assigned
different labels.

We found that 590 utterances, representing 49
of the 77 labels, may have potential label errors.
Table 3 summarizes the top five labels with the
most conflicting labels assigned to similar utter-
ances. Utterances related to "card_arrival" have
the largest number of label disagreements.

We also noticed that two labels related to
"top_up" have been identified by both approaches,
indicating further investigation related to these two
labels is needed. 127 of the 10,003 utterances
were identified as potential label errors by both
approaches, of which only 80 shared the same sug-
gested correct labels.

4 Experiment Results

To illustrate the negative impact of the noisy la-
bels on the performance of an intent classifier, we
designed an experiment as follows.

First, we considered two versions of the BANK-
ING77 dataset. The original, unmodified version,

Original Trimmed
Unique labels 77 77
Utterances 10,003 8,575
Terms 4,518 4,230
Tokens 119,530 103,776
Tokens per utterance 11.9 12.1
Mean term occurrence 26.5 24.5

Table 4: Statistics of the original and trimmed versions
of the BANKING77 dataset.

and a trimmed version whereby we removed all
utterances with potential label errors identified by
either the CL framework or cosine-similarity ap-
proach. Table 4 compares the statistics between the
original and the trimmed version of the dataset.

Next, we built two intent classifiers, one
supervised and one unsupervised, as follows.
We obtained sentence embeddings for each
dataset using SBERT and MPNet. We re-
duced the dimensionality of the embeddings
using Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2020)
(n_components=20, n_neighbors=40).

In the supervised approach, we used LightGBM
(n_estimators = 1000, learning_rate =
0.1, max_depth=4, num_leaves=15) to train
two models. Using 5-fold cross validation, we
measured each model’s accuracy and F1-score.

For comparison, we used Agglomerative Cluster-
ing (n_clusters=77, affinity=“euclidean”,
linkage=“ward”) as our unsupervised approach.
We then measured five common clustering met-
rics: Adjusted Rand Index (ARI); Adjusted Mu-
tual Information (AMI), Completeness, Fowlkes-
Mallows, and Homogeneity.

Table 5 shows the results. We find that by re-
moving utterances flagged as potential errors signif-
icantly improved the performance of the intent clas-
sifier according to all metrics. Notably, F1-score
increased by 4.5% in the supervised approach,
and ARI increased by 8% in the unsupervised ap-
proach.

5 Conclusion and Future Work

In this paper, we investigated potential label errors
present in the popular BANKING77 benchmark
dataset. We applied two automated techniques to
identify potential label errors. First, we used the
Confident Learning framework to find utterances
based on class-conditional noise estimates. Sec-
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Supervised Classifier
LightGBM

Metric Original Trimmed % Diff
Accuracy 0.882 0.924 +4.5%
F1-Score 0.878 0.920 +4.5%

Unsupervised Classifier
Agglomerative Clustering

Metric Original Trimmed % Diff
ARI 0.6344 0.6859 +8%
AMI 0.8333 0.8565 +3%
Completeness 0.8527 0.8735 +2%
Fowlkes-Mallows 0.6409 0.6909 +8%
Homogeneity 0.8392 0.8648 +3%

Table 5: Experiment results. We report various metrics
on the original dataset, the trimmed dataset, and the
difference between the two. ARI is the Adjusted Rand
Index and AMI is the Adjusted Mutual Information.

ond, we developed our own cosine-similarity based
technique to find utterances that are semantically
similar but labeled differently. Together, these ap-
proaches identified over 1,400 utterances with po-
tential label errors. A simple experiment showed
that an intent classifier’s performance can be im-
proved by removing such utterances. F1-score in-
creased by 4.5% for the supervised classifier, and
ARI increased by 8% for the unsupervised classi-
fier.

Given the importance of benchmark datasets in
the development, evaluation, and selection of NLP
techniques, it is important that the labels contain as
few errors as possible. We would like to extend our
work by developing an automated correction tool
that can identify and fix label errors. We will also
manually verify and correct errors in BANKING77,
and it will serve as the ground truth for evaluating
the performance of the automated correction tool.
Furthermore, we will apply the methodology on
other benchmark datasets such as CLINC150 and
HWU64.
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A Appendix - Similarities between labels

Figure 1: A heatmap of label similarities in the BANKING77 dataset, according to a simple word count. Labels are
sorted based on their word count similarities. We see clusters of highly-similar labels, such as the top left corner
with labels relating to "card", and the middle cluster with labels relating tor "top_up".

143



Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 144 - 153
May 26, 2022 ©2022 Association for Computational Linguistics

Pathologies of Pre-trained Language Models in Few-shot Fine-tuning

Hanjie Chen1, Guoqing Zheng2, Ahmed Hassan Awadallah2, Yangfeng Ji1

1Department of Computer Science, University of Virginia, Charlottesville, VA, USA
2Microsoft Research

{hc9mx, yangfeng}@virginia.edu
{zheng, hassanam}@microsoft.com

Abstract

Although adapting pre-trained language mod-
els with few examples has shown promising
performance on text classification, there is
a lack of understanding of where the perfor-
mance gain comes from. In this work, we pro-
pose to answer this question by interpreting
the adaptation behavior using post-hoc expla-
nations from model predictions. By modeling
feature statistics of explanations, we discover
that (1) without fine-tuning, pre-trained models
(e.g. BERT and RoBERTa) show strong predic-
tion bias across labels; (2) although few-shot
fine-tuning can mitigate the prediction bias and
demonstrate promising prediction performance,
our analysis shows models gain performance
improvement by capturing non-task-related fea-
tures (e.g. stop words) or shallow data patterns
(e.g. lexical overlaps). These observations alert
that pursuing model performance with fewer
examples may incur pathological prediction be-
havior, which requires further sanity check on
model predictions and careful design in model
evaluations in few-shot fine-tuning.

1 Introduction

Pre-trained language models (Brown et al., 2020;
Liu et al., 2019; Devlin et al., 2019) have shown
impressive adaptation ability to dowstream tasks,
achieving considerable performance even with
scarce task-specific training data, i.e., few-shot
adaptation (Radford et al., 2019; Schick and
Schütze, 2021a; Gao et al., 2021). Existing few-
shot adaptation techniques broadly fall in fine-
tuning and few-shot learning (Shin et al., 2020;
Schick and Schütze, 2021b; Chen et al., 2021b).
Specifically, fine-tuning includes directly tuning
pre-trained language models with few task-specific
examples or utilizing a natural-language prompt to
transform downstream tasks to masked language
modeling task for better mining knowledge from
pre-trained models (Petroni et al., 2019; Jiang et al.,
2020; Wang et al., 2021a). Few-shot learning lever-

ages unlabeled data or auxiliary tasks to provide
additional information for facilitating model train-
ing (Zheng et al., 2021; Wang et al., 2021b; Du
et al., 2021a).

Although much success has been made in adapt-
ing pre-trained language models to dowstream
tasks with few-shot examples, some issues have
been reported. Utama et al. (2021) found that
models obtained from few-shot prompt-based fine-
tuning utilize inference heuristics to make predic-
tions on sentence pair classification tasks. Zhao
et al. (2021) discovered the instability of model
performance towards different prompts in few-shot
learning. These works mainly look at prompt-based
fine-tuning and discover some problems.

This paper looks into direct fine-tuning and
provides a different perspective on understanding
model adaptation behavior via post-hoc explana-
tions (Strumbelj and Kononenko, 2010; Sundarara-
jan et al., 2017). Specifically, post-hoc explana-
tions identify the important features (tokens) con-
tribute to the model prediction per example. We
model the statistics of important features over pre-
diction labels via local mutual information (LMI)
(Schuster et al., 2019; Du et al., 2021b). We track
the change of feature statistics with the model
adapting from pre-trained to fine-tuned and com-
pare it with the statistics of few-shot training ex-
amples. This provides insights on understanding
model adaptation behavior and the effect of training
data in few-shot settings.

We evaluate two pre-trained language models,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), on three tasks, including sentiment
classification, natural language inference, and para-
phrase identification. For each task, we test on
both in-domain and out-of-domain datasets to eval-
uate the generalization of model adaptation perfor-
mance. We discover some interesting observations,
some of which may have been overlooked in prior
work: (1) without fine-tuning, pre-trained mod-

144



els show strong prediction bias across labels; (2)
fine-tuning with a few examples can mitigate the
prediction bias, but the model prediction behav-
ior may be pathological by focusing on non-task-
related features (e.g. stop words); (3) models adjust
their prediction behaviors on different labels asyn-
chronously; (4) models can capture the shallow
patterns of training data to make predictions. The
insight drawn from the above observations is that
pursuing model performance with fewer examples
is dangerous and may cause pathologies in model
prediction behavior. We argue that future research
on few-shot fine-tuning or learning should do san-
ity check on model prediction behavior and ensure
the performance gain is based on right reasons.

2 Setup

Tasks. We consider three tasks: sentiment clas-
sification, natural language inference, and para-
phrase identification. Each task contains an in-
domain/out-of-domain dataset pair: IMDB (Maas
et al., 2011)/Yelp (Zhang et al., 2015) for sentiment
classification, SNLI (Bowman et al., 2015)/MNLI
(Williams et al., 2018) for natural language infer-
ence, and QQP (Iyer et al., 2017)/TwitterPPDB
(TPPDB) (Lan et al., 2017) for paraphrase identi-
fication. The data statistics are in Table 4 in Ap-
pendix A.1.

Models. We evaluate two pre-trained language
models, BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). For each task, we train the mod-
els on the in-domain training set with different ratio
(r%, r ∈ [0, 1]) of clean examples and then test
them on in-domain and out-of-domain test sets.

Explanations. We explain model prediction be-
havior via post-hoc explanations which identify
important features (tokens) in input texts that con-
tribute to model predictions. We test four ex-
planation methods: sampling Shapley (Strumbelj
and Kononenko, 2010), integrated gradients (Sun-
dararajan et al., 2017), attentions (Mullenbach
et al., 2018), and individual word masks (Chen
et al., 2021a). For each dataset, we randomly select
1000 test examples to generate explanations due
to computational costs. We evaluate the faithful-
ness of these explanation methods via the AOPC
metric (Nguyen, 2018; Chen et al., 2020). Table 6
in Appendix A.2 shows that the sampling Shap-
ley generates more faithful explanations than other
methods. In the following experiments, we adopt it

to explain model predictions.
More details about the models, datasets and ex-

planations are in Appendix A.

3 Experiments

We report the prediction results (averaged across 5
runs) of BERT and RoBERTa trained with different
ratio (r% : 0 ∼ 1%) of in-domain training exam-
ples on both in-domain and out-of-domain test sets
in Table 2. Overall, training with more examples,
BERT and RoBERTa achieve better prediction ac-
curacy on both in-domain and out-of-domain test
sets.

We look into the predictions of models from pre-
trained to fine-tuned and analyze model prediction
behavior change during adaptation via post-hoc ex-
planations. In subsection 3.1, we observe that pre-
trained models without fine-tuning show strong pre-
diction bias across labels. The models fine-tuned
with a few examples can quickly mitigate the pre-
diction bias by capturing non-task-related features,
leading to a plausible performance gain. In subsec-
tion 3.2, we further quantify the prediction behavior
change by comparing the feature statistics of model
explanations and training data. We discover that
the models adjust their prediction behavior on mi-
nority labels first rather than learning information
from all classes synchronously and can capture the
shallow patterns of training data, which may result
in pathologies in predictions.

3.1 Prediction bias in pre-trained models

In our pilot experiments, we find the predictions of
pre-trained models without fine-tuning are biased
across labels (see an example of confusion matrix
in Figure 2 in Appendix B). Original pre-trained
models tend to predict all examples with a specific
label on each dataset. We denote the specific label
as the majority label and the rest labels as minority
labels. The results of majority labels are in Table 1.

We propose a metric, prediction bias (PB), to
quantify the bias of model predictions across labels,

PB =

∣∣∣∣
Ti1 − Ti2

Ti1 + Ti2

− Di1 −Di2

Di1 +Di2

∣∣∣∣ , (1)

i1 = argmax
i∈{1,...,C}

(Ti), i2 = argmin
i∈{1,...,C}

(Ti)

where i1 and i2 are the majority and most minority
labels respectively. Ti and Di denote the numbers
of model predictions and test examples on label i
respectively, and C is number of classes. The range
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Models IMDB SNLI QQP Yelp MNLI TPPDB

BERT Pos Neu Pa Pos Neu Pa

RoBERTa Pos Con Pa Pos Con Pa

Table 1: The majority labels of original pre-trained models on different datasets. Pos: postive, Con: contradiction,
Neu: neutral, Pa: paraphrases.

In-domain Out-of-domain

Model r IMDB SNLI QQP Yelp MNLI TPPDB

Acc PB Acc PB Acc PB Acc PB Acc PB Acc PB

BERT

0 49.73 0.97 35.30 0.65 45.10 0.46 49.86 0.98 32.95 0.95 44.44 0.85
0.01 - - 48.45 0.20 65.33 0.45 - - 34.77 0.92 80.25 0.35
0.05 60.31 0.41 63.20 0.08 69.82 0.16 61.61 0.09 37.58 0.95 86.26 0.14
0.1 70.76 0.13 69.13 0.12 73.65 0.04 67.11 0.41 38.27 0.93 86.69 0.07
0.5 84.71 0.05 77.63 0.06 79.06 0.02 88.19 0.08 55.37 0.45 87.27 0.03
1 85.46 0.05 80.33 0.06 80.16 0.05 89.09 0.03 58.81 0.34 85.22 0.07

RoBERTa

0 50.17 1.00 33.55 1.00 36.84 1.26 50.00 1.00 33.24 1.02 18.93 1.62
0.01 - - 36.27 0.61 66.26 0.54 - - 32.48 1.00 81.07 0.38
0.05 58.11 0.61 68.03 0.13 71.64 0.09 58.47 0.71 42.41 0.88 82.30 0.21
0.1 78.58 0.10 77.04 0.07 76.82 0.04 76.59 0.37 54.72 0.75 83.54 0.21
0.5 89.56 0.01 83.84 0.04 81.91 0.05 92.54 0.08 66.90 0.37 85.67 0.06
1 90.34 0.01 85.43 0.03 83.19 0.05 93.76 0.01 70.47 0.20 85.78 0.08

Table 2: Prediction accuracy and bias of BERT and RoBERTa trained with different ratio (r%) of in-domain training
examples on both in-domain and out-of-domain test sets. Acc: accuracy (%), PB: prediction bias. For PB, darker
pink color implies larger prediction bias. Note that we do not consider r = 0.01 for IMDB and Yelp datasets
because the number of training examples is too small.

of PB is [0, 2]. PB takes 0 if the label distribtion
of model predictions is consistent with that of data.
For balanced dataset, the upper bound of PB is 1,
that is all examples are predicted as one label. For
imbalanced dataset, PB takes 2 in an extreme case,
where the dataset only contains one label of ex-
amples, while the model wrongly predicts them as
another label. We consider data bias because some
datasets (e.g. QQP and TPPDB) have imbalanced
label distributions.

The results in Table 2 show that both pre-trained
BERT and RoBERTa have strong prediction bias
on all of the datasets. The prediction bias decreases
with models fine-tuned with more examples.

Models make biased predictions by focusing on
non-task-related features. To understand which
features are associated with model prediction la-
bels, we follow Schuster et al. (2019); Du et al.
(2021b) and analyze the statistics of model expla-
nations via local mutual information (LMI). Specif-
ically, we select top k important features in each
explanation and get a set of important features
(E = {e}) over all explanations. We empirically
take k = 10 for the IMDB and Yelp datasets and
k = 6 for other datasets based on their average

sentence lengths. The LMI between a feature e and
a particular label y is

LMI(e, y) = p(e, y) · log
(
p(y | e)
p(y)

)
, (2)

where p(y | e) = count(e,y)
count(e) , p(y) = count(y)

|E| ,

p(e, y) = count(e,y)
|E| , and |E| is the number of oc-

currences of all features in E. Then we can get a
distribution of LMI over all tokens in the vocabu-
lary ({w}) built upon the dataset, i.e.

PLMI(w, y) =

{
LMI(w, y) if token w ∈ E

0 else
(3)

We normalize the LMI distribution by dividing each
value with the sum of all values.

Figure 1 shows LMI distributions of BERT on
the IMDB dataset with different r, where top 5
tokens are pointed in each plot (see Table 7 in Ap-
pendix B for more results on other datasets). When
r = 0, we can see that BERT makes biased predic-
tions on the positive label (in Table 1) by focusing
on some non-task-related high-frequency tokens.
The top features associated with the negative label
include some relatively low-frequency tokens (e.g.
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Figure 1: LMI distributions based on explanation statistics of BERT on the IMDB dataset with different r. The
horizontal axis represents tokens in vocabulary in the ascending order of frequency. The upper and lower plots are
on the negative and positive labels respectively. Top 5 tokens are pointed in each plot.

In-domain Out-of-domain

Model r

IMDB SNLI QQP Yelp MNLI TPPDB

Ori Data Ori Data Ori Data Ori Data Ori Data Ori Data

Neg Pos Neg Pos En Con Neu En Con Neu NPa Pa NPa Pa Neg Pos Neg Pos En Con Neu En Con Neu NPa Pa NPa Pa

BERT

0.01 - - - - 0.71 0.43 0.33 0.70 0.42 0.51 0.67 0.32 0.93 0.45 - - - - 0.35 0.09 0.29 0.40 0.33 0.76 0.74 0.16 1.55 0.18
0.05 2.26 0.45 0.90 0.63 0.58 0.60 0.47 0.31 0.17 0.16 0.49 0.14 0.23 0.22 2.20 0.69 0.66 0.43 0.43 0.45 0.41 0.76 0.27 0.63 0.87 0.02 0.58 0.03
0.1 2.00 0.76 0.80 0.54 0.56 0.82 0.45 0.30 0.42 0.46 0.46 0.53 0.19 0.37 2.06 0.79 0.37 0.45 0.46 0.49 0.41 0.61 0.40 1.25 0.67 0.21 0.53 0.00
0.5 1.39 0.80 1.16 0.52 0.70 1.51 0.94 0.14 0.54 0.46 0.31 0.67 0.08 0.21 1.61 0.93 0.73 0.52 0.92 1.70 0.78 0.82 0.91 1.02 0.93 0.09 0.37 0.04
1 1.21 1.60 0.68 0.86 0.80 1.02 0.65 0.14 0.48 0.52 0.21 1.01 0.00 0.42 0.73 1.94 0.46 0.83 0.73 1.31 0.55 0.76 0.69 1.14 0.46 0.54 0.33 0.11

RoBERTa

0.01 - - - - - 0.96 - 0.76 0.52 0.56 - 0.08 0.54 0.36 - - - - - 0.95 - 0.33 0.84 0.95 - 0.00 1.55 0.00
0.05 - 0.66 0.17 0.72 - 0.62 - 0.50 0.32 0.67 - 0.43 0.22 0.35 - 0.38 0.14 0.62 - 0.26 - 0.89 0.22 1.07 - 0.26 1.43 0.39
0.1 - 1.03 0.69 0.71 - 1.05 - 0.22 0.57 0.45 - 1.27 0.17 0.59 - 0.96 0.30 0.47 - 0.18 - 1.05 0.10 0.62 - 0.39 0.72 0.36
0.5 - 1.33 0.81 0.42 - 2.07 - 0.21 0.60 0.55 - 1.01 0.15 0.69 - 1.70 0.66 0.43 - 0.70 - 0.87 0.70 0.79 - 0.59 0.79 0.48
1 - 1.41 0.86 0.62 - 0.30 - 0.17 0.32 0.23 - 0.42 0.27 0.23 - 1.91 0.65 0.78 - 0.18 - 0.72 0.66 0.51 - 0.64 0.95 0.47

Table 3: The KL divergence between LMI distributions. The columns of “Ori” and “Data” show the results with
original pre-trained models’ explanations or few-shot training data as the reference respectively. Neg: negative, Pos:
postive, En: entailment, Con: contradiction, Neu: neutral, NPa: nonparaphrases, Pa: paraphrases. Darker color
indicates larger KL divergence.

##men, ##zog) which may have been seen by the
model during pre-training.

Models adjust prediction bias by capturing non-
task-related features on minority labels. Fine-
tuning BERT with a few examples (r = 0.05, ex-
actly 9 examples) from IMDB can quickly mitigate
the prediction bias along with a plausible improve-
ment on prediction accuracy (in Table 2). How-
ever, Figure 1 (the middle upper plot) shows that
the model captures non-task-related high-frequency
tokens to make predictions on the minority label
(negative), implying the performance gain is not
reasonable. Only when the model is fine-tuned
with more examples (r = 0.5), it starts captur-
ing task-specific informative tokens, such as “bad”,
“good”.

3.2 Quantifying model adaptation behavior

To quantify the model prediction behavior change
(in Figure 1) during adaptation, we compute the
Kullback–Leibler divergence (KLD) between the
LMI distributions of the model without/with fine-
tuning, i.e. KLy(P

0
LMI(w, y), P

r
LMI(w, y)). The

superscripts (“0” or “r”) indicate the ratio of train-
ing examples used in fine-tuning. Besides, we also
evaluate how much the model prediction behavior
is learned from the patterns of training data. Specif-
ically, we compute the LMI distribution of few-shot
training examples via Equation 2 and Equation 3,
except that E represents the set of features appear-
ing in those examples. Then we use the LMI dis-
tribution of data as the reference and compute the
KLD between it and the LMI distribution of model
explanations.

Table 3 records the results of KLD with the LMI
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distribution of original pre-trained model explana-
tions as the reference (columns of “Ori”) or that of
training data as the reference (columns of “Data”).
Note that we do not have the results of RoBERTa
on some labels (e.g. “Neg”) in “Ori” columns be-
cause the pre-trained RoBERTa does not make any
predictions on those labels and we do not have the
reference LMI distributions.

Models adjust their prediction behaviors on dif-
ferent labels asynchronously. In “Ori” columns,
the KLDs on minority labels are larger than those
on majority labels when r is small (e.g. 0.05).
The changes of KLDs are discrepant across labels
with r increasing. The results show that the mod-
els focus on adjusting their prediction behavior on
minority labels first rather than learning from all
classes synchronously in few-shot settings.

Models can capture the shallow patterns of
training data. In “Data” columns, the KLDs on
SNLI and QQP are overall smaller than those on
IMDB, illustrating that it is easier for models to
learn the patterns of datasets on sentence-pair clas-
sification tasks. With r increasing, the KLDs on
the entailment label of SNLI are smaller than those
on other labels, which validates the observations in
previous work (Utama et al., 2021; Nie et al., 2019)
that models can capture lexical overlaps to predict
the entailment label. Another interesting observa-
tion is the KLDs on Yelp in “Data” columns are
mostly smaller than those on IMDB. This indicates
that models may rely on the shallow patterns of
in-domain datasets to make predictions on out-of-
domain datasets.

4 Conclusion

In this work, we take a closer look into the adap-
tation behavior of pre-trained language models in
few-shot fine-tuning via post-hoc explanations. We
discover many pathologies in model prediction be-
havior. The insight drawn from our observations
is that promising model performance gain in few-
shot learning could be misleading. Future research
on few-shot fine-tuning or learning requires san-
ity check on model prediction behavior and some
careful design in model evaluation and analysis.
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A Supplement of Setup

A.1 Models and Datasets
We adopt the pretrained BERT-base and RoBERTa-
base models from Hugging Face1. For sentiment
classification, we utilize movie reviews IMDB
(Maas et al., 2011) as the in-domain dataset and
Yelp reviews (Zhang et al., 2015) as the out-of-
domain dataset. For natural language inference, the
task is to predict the semantic relationship between
a premise and a hypothesis as entailment, contra-
diction, or neutral. The Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015) and
Multi-Genre Natural Language Inference (MNLI)
(Williams et al., 2018) are used as the in-domain
and out-of-domain datasets respectively. The task
of paraphrase identification is to judge whether two
input texts are semantically equivalent or not. We
adopt the Quora Question Pairs (QQP) (Iyer et al.,
2017) as the in-domain dataset, while using the
TwitterPPDB (TPPDB) (Lan et al., 2017) as the
out-of-domain dataset. Table 4 shows the statistics
of the datasets.

We implement the models in PyTorch 3.6. We
set hyperparameters as: learning rate is 1e−5, max-
imum sequence length is 256, maximum gradient
norm is 1, and batch size is 8. All experiments were
performed on a single NVidia GTX 1080 GPU. We
report the time for training each model on each
in-domain dataset (with full training examples) in
Table 5.

A.2 Explanations
We adopt four explanation methods:

• sampling Shapley (SS) (Strumbelj and
Kononenko, 2010): computing feature attribu-
tions via sampling-based Shapley value (Shap-
ley, 1953);

• integrated gradients (IG) (Sundararajan et al.,
2017): computing feature attributions by inte-
grating gradients of points along a path from
a baseline to the input;

• attentions (Attn) (Mullenbach et al., 2018):
attention weights in the last hidden layer as
feature attributions;

• individual word masks (IMASK) (Chen et al.,
2021a): learning feature attributions via varia-
tional word masks (Chen and Ji, 2020).

1https://github.com/huggingface/
pytorch-transformers

Figure 2: Confusion matrix of BERT (with different
r) on the IMDB dataset. “Neg” and “Pos” represent
negative and positive labels respectively. Vertical and
horizontal dimensions show ground-truth and predicted
labels respectively. Green and pink colors represent true
or false predictions respectively. Darker color indicates
larger number.

Explanation faithfulness. An important crite-
rion for evaluating explanations is their faithfulness
to model predictions (Jacovi and Goldberg, 2020).
We evaluate the faithfulness of the four explana-
tion methods via the AOPC metric (Nguyen, 2018;
Chen et al., 2020). AOPC calculates the average
change of prediction probability on the predicted
class over all examples by removing top 1 . . . u
words identified by explanations.

AOPC =
1

U + 1
⟨

U∑

u=1

p(y|x)− p(y|x\1...u)⟩x,

(4)
where p(y|x\1...u) is the probability for the pre-
dicted class when words 1 . . . u are removed and
⟨·⟩x denotes the average over all test examples.
Higher AOPC score indicates better explanations.

We test the BERT and RoBERTa trained with
1% in-domain training examples on each task. For
each dataset, we randomly select 1000 test exam-
ples to generate explanations due to computational
costs. We report the results of AOPC scores when
U = 10 in Table 6. Sampling Shapley consistently
outperforms other three explanation methods in ex-
plaining different models on both in-domain and
out-of-domain datasets.

B Supplement of Experiments
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Datasets C L #train #dev #test Label distribution

IMDB 2 268 19992 4997 24986 Positive: train(10036), dev(2414), test(12535)
Negative: train(9956), dev(2583), test(12451)

Yelp 2 138 500000 60000 38000 Positive: train(250169), dev(29831), test(19000)
Negative: train(249831), dev(30169), test(19000)

SNLI 3 14 549367 4921 4921 Entailment: train(183416), dev(1680), test(1649)
Contradiction: train(183187), dev(1627), test(1651)

Neutral: train(182764), dev(1614), test(1651)

MNLI 3 22 391176 4772 4907 Entailment: train(130416), dev(1736), test(1695)
Contradiction: train(130381), dev(1535), test(1631)

Neutral: train(130379), dev(1501), test(1581)

QQP 2 11 363178 20207 20215 Paraphrases: train(134141), dev(7435), test(7447)
Nonparaphrases: train(229037), dev(12772), test(12768)

TPPDB 2 15 42200 4685 4649 Paraphrases: train(11167), dev(941), test(880)
Nonparaphrases: train(31033), dev(3744), test(3769)

Table 4: Summary statistics of the datasets, where C is the number of classes, L is average sentence length, and #
counts the number of examples in the train/dev/test sets. For label distribution, the number of examples with the
same label in train/dev/test is noted in bracket.

Models IMDB SNLI QQP

BERT 856.43 25402.52 17452.12

RoBERTa 912.47 256513.98 17514.80

Table 5: The average runtime (s/epoch) of each model on each in-domain dataset.

In-domain Out-of-domain

Model r IMDB SNLI QQP Yelp MNLI TPPDB

BERT

SS 0.41 0.82 0.61 0.53 0.77 0.40
IG 0.08 0.34 0.19 0.12 0.31 0.10

Attn 0.07 0.35 0.28 0.12 0.26 0.14
IMASK 0.09 0.28 0.25 0.09 0.25 0.08

RoBERTa

SS 0.25 0.86 0.53 0.28 0.84 0.28
IG 0.02 0.36 0.21 0.04 0.38 0.09

Attn 0.02 0.33 0.26 0.03 0.23 0.09
IMASK 0.02 0.18 0.18 0.03 0.17 0.05

Table 6: AOPC scores of different explanation methods in explaining different models.
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Datasets r Labels Top Features

IMDB
0 Neg we ##zog " ##men ( ’ [SEP] capitalism lynch hell

Pos . [CLS] [SEP] s , t movie film plot )

0.5 Neg bad not no worst t off terrible nothing stupid boring

Pos [SEP] and great . good [CLS] love , film characters

Yelp
0 Neg . they majestic adds state owners loud dirty priced thai

Pos . [CLS] [SEP] , s t for i you m

0.5 Neg not no bad t worst never off rude over nothing

Pos [SEP] great and good . [CLS] amazing love friendly experience

SNLI

0
En a [SEP] man the woman dog sitting sits his fire

Con [SEP] [CLS] is the a , are in of there

Neu . people woman girl are playing looking [CLS] group boy

0.5
En [SEP] . [CLS] and is a man there woman people

Con the a in [SEP] at sitting with man on playing

Neu [SEP] are for . man [CLS] is the a girl

MNLI

0
En the [SEP] ##ists israel ’ recession ata consultants discusses

attacked

Con [SEP] [CLS] , s to of in . the not

Neu . [CLS] they we you people about it really i

0.5
En . [CLS] and is [SEP] there are , was of

Con the ’ . not no t [CLS] don to didn

Neu [SEP] [CLS] the for to all when . you it

QQP 0
NPa ? is the a ’ what india does quo why

Pa [SEP] [CLS] ? in i , of . best s

0.5 NPa ? what [CLS] is how , why a the .

Pa [SEP] quo [CLS] best trump ##ra india life your sex

TPPDB
0 NPa trump ’ the obama " we is russia a says

Pa [SEP] . [CLS] , s of in to ##t t

0.5 NPa . , [CLS] ? ’ a⃝ ; - a is

Pa [SEP] trump [CLS] inauguration obama russia repeal ##care cia
senate

Table 7: Top 10 important tokens for BERT predictions on different labels. Neg: negative, Pos: postive, En:
entailment, Con: contradiction, Neu: neutral, NPa: nonparaphrases, Pa: paraphrases.
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Abstract

In this work, we examine the problems asso-
ciated with neural dialog models under the
common theme of compositionality. Specif-
ically, we investigate three manifestations of
compositionality: (1) Productivity, (2) Substitu-
tivity, and (3) Systematicity. These manifesta-
tions shed light on the generalization, syntactic
robustness, and semantic capabilities of neu-
ral dialog models. We design probing experi-
ments by perturbing the training data to study
the above phenomenon. We make informative
observations based on automated metrics and
hope that this work increases research interest
in understanding the capacity of these models.

1 Introduction

Fully data-driven and end-to-end approaches to dia-
log response generation (Vinyals and Le, 2015; Ser-
ban et al., 2016; Bordes et al., 2016; Serban et al.,
2017; Zhao et al., 2017) within the sequence-to-
sequence (seq2seq) (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014; Bahdanau et al., 2014;
Vaswani et al., 2017) framework have become ubiq-
uitous and now produce competitive results.

Recently, there have been a few attempts to
explore the capabilities of such models. A well
known problem in seq2seq modeling is the ten-
dency to generate short and meaningless replies
in conversation (Li et al., 2015; Mou et al., 2016).
By drawing a parallel between machine translation
and dialog generation, Wei et al. (2019) suggest
that such models encounter a severe mis-alignment
problem i.e a given input utterance can have many
plausible replies.

Sankar et al. (2019) empirically investigate the
information captured in seq2seq models by syn-
thetically perturbing the test set during inference.
They demonstrate an inability of seq2seq models
to use all the information that is presented. They

⇤ equal contribution, Work done while students at CMU

also present their study as a “diagnostic tool" to
evaluate dialog models.

Although they provide useful insights, such stud-
ies fail to systematically demonstrate the composi-
tional features of seq2seq dialog models. Further,
their “diagnostic tool" is only helpful for evalu-
ating syntactic robustness of models at test time.
In this work, we carefully design experiments to
investigate and evaluate the compositional general-
izability of neural dialog models.

Compositionality has been well studied for Neu-
ral Machine Translation (Cho et al., 2014; Lake and
Baroni, 2017) as well as some other tasks. In these
works, for a system to be compositional, it should
be able to generalize beyond its observations. For
example, Kaiser and Sutskever (2015) observe
that Neural GPUs are able to generalize addition
and multiplication to larger sequences than what
they are trained on. However, one should carefully
note that such a definition of compositionality is
peripheral and represents only a part of what it truly
means.

To provide a complete picture, Hupkes et al.
(2019) collect the different manifestations of com-
positionality and translate them into a series of
theoretically-grounded tests. By adapting (and
modifying) some of these tests, the experiments
in this paper aim to quantitatively elucidate the
compositional nature of seq2seq based neural dia-
log models. Below, we provide a motivation and
description for each of the adapted tests:
Productivity - Upon taking part in a number of
reasonable length conversations, it might not be dif-
ficult for humans to carry conversations consisting
of a larger number of turns. Based on this intuition,
we test the ability of a dialog system to extend
its prediction beyond the length of the observed
conversational history.
Substitutivity - There is a many-to-many corre-
spondence between utterances and their possible
responses. Given the responses of a particular con-
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Dataset Baseline DS-0.75 DS-0.5 DS-0.25 DNS-0.75 DNS-0.5 DNS-0.25 BT-Russian
Transformer

dailydialog 33.2[0.7] 140.6[11.6] 56.3[2.0] 41.1[1.3] 131.6[2.6] 63.4[1.0] 42.9[0.4] 117.2[7.9]

MutualFriends 12.5[0.1] 30.1[3.0] 18.1[1.2] 15.0[0.3] 39.6[1.1] 21.3[0.8] 17.1[0.3] 150.8[16.8]

Babi 1.0[0.0] 19.8[0.7] 6.3[0.4] 3.5[0.2] 16.1[1.6] 3.3[0.1] 2.1[0.1] 6.4[1.2]

S2S
dailydialog 29.4[0.3] 104.8[2.4] 47.1[0.6] 35.6[0.2] 150.9[5.4] 61.9[1.3] 39.4[0.5] 192.9[14.3]

MutualFriends 13.3[0.1] 25.4[0.2] 17.2[0.2] 15.2[0.3] 50.1[2.1] 24.3[0.5] 18.3[0.3] 227.1[8.6]

Babi 1.2[0.0] 3759.0[1994.7] 52.6[13.2] 8.2[1.4] 121.0[24.4] 7.9[1.8] 3.0[0.1] 59.3[14.9]

S2SA

dailydialog 26.9[0.2] 94.7[4.0] 45.5[0.2] 32.6[0.3] 130.2[5.3] 58.6[1.1] 37.3[0.7] 173.0[16.5]

MutualFriends 10.2[0.1] 20.1[0.3] 13.6[0.1] 11.8[0.2] 40.5[1.4] 19.0[0.2] 14.1[0.2] 216.4[18.4]

Babi 1.0[0.0] 961.0[421.5] 68.2[22.5] 8.1[2.2] 118.8[43.4] 7.5[1.2] 2.8[0.2] 630.8[136.1]

Table 1: Performance of the models based on perplexity. The second column represents the baseline scores of the
models on different datasets. Columns 3-5 shows the effect of dropping stop words at a certain rate. Columns 6-8
shows the effect of dropping non stop words at a certain rate. Column 9 shows the difference in perplexity of the
model when the test set is changed by back translation and evaluated using the baseline model. All experiments are
repeated 5 times and the mean(µ) and std deviations(�) are reported in every cell. For all experiment runs and other
metrics refer to A.1.

versation, if we encounter a semantically equivalent
conversation, we can easily produce the same set
of responses to this new conversation. Based on
this, we attempt to observe if dialog models are
also capable of such reasoning. This property of
compositionality accounts for the semantic expres-
siveness of neural models.
Systematicity - Humans can understand how to fill
in missing pieces of information, or to introduce
additional words which can make an utterance in
a conversation more fluent. This makes humans
capable of recombining known fragments and rules.
Without the presence of topic-inducing words, it
might become difficult for humans to make sense
of a conversation. Based on this intuition, we test
the ability of the model to recombine known frag-
ments and rules. This property of compositionality
accounts for the syntactic robustness of neural
models.

The contributions of this paper are threefold: (i)
We observe that neural dialog models don’t gener-
alize well to dialogs with longer turns when they
are trained on dialogs with shorter number of turns.
(ii) Neural dialog models pay less attention to the
topic inducing “content words” of the dialog. In
fact, we observe that they are highly sensitive to
the stop words (a type of “function word“) present
in utterances. (iii) We also observe that the neural
dialog models don’t perform well when the same
utterance is presented to the model in a semanti-
cally similar but syntactically different fashion i.e

they are not robust to syntactic variations. The code
for reproducing results is released along with this
paper 1.

2 Datasets
Following Sankar et al. (2019), we experiment
with using an open domain, a closed domain, and a
synthetically generated dataset. The details of the
dataset are presented below:
DailyDialog: An open domain, manually labelled
dataset (Li et al., 2017) consisting of conversations
on multiple topics which can occur on a daily basis.
There are 13,118 total dialogs with an average of
7.9 turns per dialog.
Mutual Friends: A task-oriented dataset (He
et al., 2017) that encourages open-ended dialog
acts. It has a total of 11,157 dialogs with an average
length of 11.4 utterances per dialog.
Babi: A synthetic dataset created by Bordes et al.
(2016). We use task 5 of this dataset which requires
the prediction of the text of the entire dialog and
not just dialog acts. Each dialog in this task has
an average of 13 utterances and there is a total of
1,000 dialogs.

3 Experiments and Results

We investigate using Seq2Seq(S2S) (Sutskever
et al., 2014), Seq2Seq-Attention(S2SA) (Luong
et al., 2015) and Transformer models (Vaswani

1https://github.com/vinayshekharcmu/
ComposionalityOfDialogModels
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(a) Daily Dialog (b) Mutual Friends (c) Babi - Task 5

Figure 1: Results of the model on the test of productivity. We see that all the models don’t learn to generalize from
dialogs with fewer utterances to dialogs with more utterances.

et al., 2017). The behaviour of these models is ex-
amined using the three standard datasets described
in Section 2.

Both S2S and S2SA utilise a two-layer LSTM
for the encoder and the decoder. Each layer has
128 hidden units with a dropout of 0.1. On the
other hand, the transformer utilises a 300 dimen-
sional embedding with 2 layers and 2 attention
heads. Perplexity has been shown to correlate well
with human judgement for Dialog Systems (Adi-
wardana et al., 2020) making it a suitable metric
for our study. By choosing perplexity we also re-
main consistent with the previous study conducted
by Sankar et al. (2019). Note that we do not aim
to achieve state-of-the-art results, but rather, our
aim is to observe and characterize the behaviour
of the models based on different aspects of com-
positionality. Hence we pick three seminal models
that tackles the problem of language generation and
probe them to understand their manifestations.

The upcoming subsections first provides a brief
description of the experimental setup employed
for measuring the compositional capabilities of the
various models, and then later discusses the results.

3.1 Productivity

This experiment aims to test whether neural dialog
models can learn from meaningful dialogs con-
sisting of fewer utterances and then generalize to
dialogs consisting of a larger number of utterances
than what they had observed during training time.

In order to test this capability, we train the mod-
els with trimmed context. For each dialog in the
training set, we restrict the context utilised by
the models to the previous k utterances, where
k 2 {2, 4, 6, 8, 10}. However, at test time the mod-
els utilise all the available context. We compare
the performance of the models trained on different

context lengths to that of the baseline model which
is trained by utilising the entire context.

The results are displayed in Figures 1a, 1b, 1c.
These figures show the % increase in perplexity
of the models from their baseline perplexity as a
function of number of utterances in the dialog. It
is quite clear from the figures that the model are
incapable of generalizing from shorter dialogs to
longer dialogs.

The average number of utterances within the
dialogs is ⇠ 8 for all the three datasets. Based
on the results we see that even when models use
previous 8 utterances, their performance is still
significantly lower than that of the baseline. This
experiment questions the generalizing ability of
the model beyond what was observed during train
time.

3.2 Systematicity

Two different experiments were performed to un-
derstand the semantic robustness of these models.
The first experiment was done to understand the
importance of stop words. A comparison between
model’s sensitivity to dropping of stop words (DS)
and dropping of content words (DNS) sheds light
on the relevance of stop words in dialogs. We drop
stop words and content words at the rate of 0.75,
0.5 and 0.25 and observe the effect on models’ per-
formance. When the rate of stop words removal
is 1, all the stop words are removed and when it is
0.25, 25% are removed, etc.

In second experiment we drop words based on
their rank in the corpus. Six different conditions
are used in this experiment. We first drop words
from the top ranks such that only 10% of the total
number of words are removed in the corpus. We
then repeat this by using the mid ranked words.
Ideally, the models should be affected equally in
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Rank Range Transformer S2S S2SA

DailyDialog
0-1 49.4[0.6] 49.1[7.1] 42.4[1.3]

1-3 59.6[0.9] 59.5[2.1] 55.4[1.6]

0-3 92.7[1.9] 92.5[1.3] 88.7[4.2]

500-1000 52.6[1.1] 59.6[1.1] 52.3[1.2]

1000-1500 39.4[0.7] 42.0[1.1] 38.8[0.4]

500-1500 59.5[0.9] 76.3[3.6] 72.5[1.8]

MutualFriends
0-1 14.9[0.2] 16.7[0.5] 12.9[0.5]

1-3 17.6[0.4] 20.5[0.4] 15.0[0.3]

0-3 19.9[0.4] 23.0[0.5] 18.0[0.8]

300-600 13.9[0.2] 15.1[0.2] 12.0[0.8]

600-1000 14.3[0.3] 15.1[0.2] 11.8[0.3]

300-1000 16.0[0.5] 17.8[0.2] 13.8[0.2]

Babi
0-1 2.0[0.1] 3.9[0.5] 4.8[0.7]

0-2 3.7[0.2] 11.2[1.4] 11.0[1.6]

36-44 1.5[0.0] 2.1[0.1] 2.0[0.1]

36-55 1.5[0.0] 2.2[0.1] 2.1[0.1]

Table 2: The first column represents the range of ranks
based on which the words were removed from the
dataset. We chose to experiment with the top and the
mid ranking words. We dropped words from both sec-
tions such that it accounts for ⇡ 10% of the words in its
respective corpus. We see that the model is very sensi-
tive to the top ranked words (which are stop-words most
of the time). The effect of dropping 1000, 700 and 20
"content words" from the middle section is equivalent
to dropping 3,3,2 stop words for dailydialog, mutual-
friends and babi respectively.

both these settings, as, in each setting we end up
removing 10% of the words in the training data. In
fact, it should be affected more in the latter case
as the mid-rank words are majorly responsible for
inducing the topic of the dialog and it should be
difficult to continue a conversation without know-
ing the topic. Note that, for both these experiments,
we do not remove any word during test time.

Table 1 shows the result of the first experiment.
We see that each of model’s performance increases
as the rate of dropping stop words decreases. This
observation suggests the high sensitivty of the mod-
els towards stop words. Even dropping 25% of the
stop words affects the models adversely. While
dropping of the content words also affects models
performance, we observe that all the models per-
form just slightly worse when content words are
dropped as compared to stop words. However, it
is interesting to see that the transformer’s perfor-
mance is stable across different drop rates whereas

the LSTM based sequence to sequence models suf-
fer when the drop rate is high.

The results for the second experiment are pro-
vided in Table 2. It is clear that removal of higher
ranked words leads to a greater drop in the model
performance when compared to the drop caused by
the removal of middle ranked words, even though
in both the cases we remove the same percentage
of words. This provides two insights: (1) Mod-
els don’t focus on the mid ranking words (which
are mostly topic inducing) and (2) Models have
an over-reliance on top ranking words (which are
mostly stop words).

3.3 Substitutivity

Given that we (humans) know the answer to a par-
ticular question, we will not have any difficulty in
answering it even if it is asked in various different
ways. This experiment aims to test if neural dialog
models are also capable of this ability.

In order to do this, we evaluate the baseline mod-
els on the backtranslated (BT) version of the test
set. Basically, back translation provides a para-
phrased version of individual utterances (Wieting
et al., 2017), which brings in syntactic variations
while keeping the semantics intact.

We back translate the test set from both German
and Russian back into English. Since the BLEU
scores when translating from German were con-
siderably lower than that of Russian, we decided
to test the models based on Russian Backtransla-
tions. The final backtranslations have a BLEU
score of 35.91, 10.12, 43.49 on Daily Dialog, Mu-
tual Friends and Babi respectively.

The results for the experiment are provided in
Table 1. It is clear that the models are adversely
affected when presented with back translated (para-
phrased) utterances. One would expect the models
to have similar perplexities when utterances are
paraphrased, however we see that there is a sig-
nificant increase in perplexity. This observation is
consistent across the three different models. We
also observe that the transformer is slightly more
robust to syntactic variation than others.

4 Conclusion

This work interprets the behaviour of seq2seq based
Neural Dialog Models under the general umbrella
of compositionality. We observe that such models
lack the ability to reason and produce response
based on surface level information. The results
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provided in this paper motivate the need for better
modelling approaches.
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Abstract

In this paper, we introduce and justify a new
task—causal link extraction based on beliefs—
and do a qualitative analysis of the abil-
ity of a large language model—InstructGPT-
3—to generate implicit consequences of be-
liefs. With the language model-generated con-
sequences being promising, but not consis-
tent, we propose directions of future work, in-
cluding data collection, explicit consequence
extraction using rule-based and language
modeling-based approaches, and using explic-
itly stated consequences of beliefs to fine-tune
or prompt the language model to produce out-
puts suitable for the task.

1 Introduction

Natural language processing can successfully cap-
ture the causal dynamics present in many complex
systems. This type of automated extraction is par-
ticularly useful for computational modelers, who
may be faced with a large and complex domain
literature that cannot be easily summarized by hu-
mans. Information extraction systems like Eidos
(Sharp et al., 2019) can help modelers build skele-
ton models of causes and effects present in systems
by extracting causal links that exist between entities
and processes.

While many causal dynamics are mechanistic,
such as water level driving crop yield, other dy-
namics are driven by subjective factors, such as the
political beliefs of a population driving their deci-
sions to wear masks. Extracting these dynamics
comes with two challenges: Extracting the beliefs
and consequences present in the text, and inferring
implicit consequences of beliefs. For example, the
following sentence contains both a belief and an
explicit consequence:

1. Peanut and maize are generally sown after a
few big rains when farmers believe that the
rainy season has really started.

The above sentence can be represented by a binary,
directed causal link, where the first node is the be-
lief about the rainy season and the second node is
the consequence of the belief (crop sowing). How-
ever, the consequences of beliefs are frequently
implied, such as in the following sentence:

2. Also use of chemicals and machinery on their
paddy field is often considered undesirable.

To a human, the obvious consequence is that the
farmers will not use chemicals, but the text does not
explicitly state this. A modeler wants to generate
causal belief-consequence pairs from a large litera-
ture without annotating every implicit consequence;
thus, methods of automating belief extraction ought
to account for implicit consequences.

In this paper, we address the problem of extrac-
tion of beliefs and their consequences with a novel
extraction + generation approach. We first extract
beliefs using an event extraction grammar; and we
then use text generation with large language mod-
els (LM) to generate possible consequences of the
extracted beliefs when no consequence is stated in
text. We expect that given a belief and its context,
there is only a limited number of possible conse-
quences humans can infer. For the consequence
generation approach to be considered successful,
we want machine-generated consequences to match
those produced by humans—that would be an indi-
cator that generated beliefs are indeed relevant for
the model.

With this work, we make the following contribu-
tions:

• We define a new task—causal link extraction
based on beliefs—which can be used to en-
rich models with subjective beliefs of local
populations.

• We conduct a qualitative analysis of auto-
matic consequence generation. We find that
InstructGPT-3 model (Ouyang et al., 2022),
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which we use, is able to produce consequences
relevant to beliefs, but does not seem to make
consistently relevant predictions.

• We propose the next steps for this project,
which include collecting and annotating data
for the task, explicit consequence extraction,
and using explicitly stated consequences for
fine-tuning or prompting language models to
make their outputs consistently relevant for
the task.

2 Related Work

2.1 Modeling causality.

Causality modeling is a popular area of investi-
gation thanks to its usefulness for multiple ap-
plications, e.g., question answering (Sharp et al.,
2016). Both rule-based approaches (e.g., Sharp
et al., 2019) and deep learning approaches (Li et al.,
2021) have been proposed. We are not aware of
any other work that investigates causal links rooted
in beliefs.

2.2 Rule-based extraction.

Rule-based approaches have been shown to be pow-
erful and robust, e.g., by Valenzuela-Escárcega et al.
(2015) with their rule-based information extraction
framework Odin. The framework allows for both
surface and syntactic dependency-based rules and
has been successfully used for extracting informa-
tion in several projects, including protein interac-
tion extraction (Valenzuela-Escárcega et al., 2018)
and causal events extraction (Sharp et al., 2019).

2.3 Automatic text generation

Most recently, OpenAI released models that were
trained to allow for human-augmented text genera-
tion, in which the user can provide the model with
prompts either defining the task or providing ex-
amples to the model to demonstrate the task in a
few shot setting (Ouyang et al., 2022). We use this
model in our experiments.

3 Procedure

We automatically extracted beliefs from a col-
lection of documents—scientific publications and
reports—related to agriculture and social norms of
Senegal. We then double-annotated fifty of those
beliefs with whether or not their consequences were
explicitly stated in one-sentence and one-paragraph

- name: belief-rule
label: Belief
type: dependency
pattern: |
trigger = [lemma=/consider/]
believer:Agent = /nsubj/
belief:Proposition = /xcomp/

Figure 1: A sample rule for extracting beliefs imple-
mented using the Odin information extraction frame-
work (Valenzuela-Escárcega et al., 2015)

context windows. When there was no explicit con-
sequence stated, the annotators provided the con-
sequences they believed to be fitting based on the
belief and one paragraph-long context. We also
compared human-generated implicit consequences
with those generated by the InstructGPT-3 model
(text-davinci-001 in the API) (Ouyang et al., 2022).

3.1 Belief and Explicit Consequence
Extraction

For extracting beliefs, we converted PDF files to
text files using the pdfminer.six package and used
the Odin rule-based information extraction frame-
work (Valenzuela-Escárcega et al., 2015) for extrac-
tion. Using the framework, we wrote a grammar
based on a set of triggers indicating beliefs, e.g.,
think, believe, consider, etc, and extracted events
with believer (optional) and belief arguments. A
sample rule is in Figure 1. We excluded beliefs
of the author of the documents and only extracted
reported beliefs (Prabhakaran et al., 2015)—in our
case those are the beliefs of the local population.

Explicitly-stated consequences can be extracted
using a rule-based approach like we do with beliefs.
While the rule-based framework that we use sup-
ports same sentence extraction with cross-sentence
coreference resolution, to extract consequences
across sentences, the framework will need to be
expanded. We leave the task of extracting explicit
consequences to future work.

3.2 Implicit Consequence Generation

For the beliefs that are not accompanied by explicit
consequences, we generated consequences using
the InstructGPT-3 model (Ouyang et al., 2022). We
primed the model with six few-shot examples with
the following structure: "Belief: <text of belief
extraction> Consequence: <text of a possible con-
sequence>", e.g.:
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3. Belief: Rice grown in the dry season produced
higher yields and was perceived to have lower
risks.
Consequence: Farmers may not need to buy
insurance for rice grown during the dry sea-
son.

For creating the prompts, we used beliefs that
were automatically extracted from text. The conse-
quences in the prompts were either taken directly
from text or were created by the authors to match
the task. Both beliefs and consequences taken di-
rectly from text were edited slightly for clarity.
Additionally, we experimented with providing the
model with fewer examples (two and four in addi-
tion to six as discussed above) and also prompting
the model to generate a consequence by using a
discourse marker That’s why without including any
belief-consequence pairs as examples. We did not
do any prompt tuning.

3.3 Evaluation
We do a qualitative analysis of human and machine-
generated implicit consequences. For every belief,
we manually inspect the two consequences pro-
duced by the human annotators and judge them to
be the same if there is an overlap in context even
if the form—the exact wording—is different. For
automatically-generated vs. human-generated com-
parison, we consider the generation successful if at
least one out of three automatically-generated con-
sequences overlaps with at least one of the human-
generated consequences.

Additionally, we evaluate the quality of
automatically-generated consequences in terms of
their relevance to the belief prompt, regardless of
their similarity to human-generated consequences.

4 Results and Discussion

Based on the comparison of two sets of annotations,
we see that a large number of beliefs do not have
associated explicitly-stated consequences: the two
annotators judged an average of 72% of the 50 be-
liefs annotated to not have consequences explicitly
stated within the same sentence and an average of
49% to not have them within the one paragraph
context window. These results indicate that both
extraction and generation have to be included in
the approach.

Analyzing the 18 beliefs that both annotators
agreed did not have explicitly stated consequences,
we see that, as expected, annotators tend to agree

Condition Overlap
two annotators 13 (72%)
GPT-3 and one annotator 12 (66%)
GPT-3 and both annotators 9 (50%)

Table 1: Overlap in content between different conse-
quences produced (based on 18 beliefs with no conse-
quences explicitly stated in text).

on possible consequences of beliefs: for 72% of be-
liefs, human annotators produced potential conse-
quences with similar content (Table 1). We also see
that there is promise for generating consequences
using large language models: the GPT-3 model can
produce consequences that match those produced
by human annotators:

4. Belief: Planners and technicians feel that the
development of irrigation systems could offer
a solution to the crisis in food production in
Africa.
Annotator 1: Planners and officials will in-
vest more in the development of irrigation sys-
tems.
Annotator 2: They should develop irrigation
systems.
GPT-3: Planners and technicians focus on
the development of irrigation systems.

However, while producing some consequences
that overlap with those produced by human annota-
tors (Table 1), GPT-3 also generates text that, while
thematically relevant to the prompt, does not consti-
tute a successful consequence generation. To eval-
uate consequence generation independently from
that done by human annotators, we analyze 54 GPT-
3-generated consequences (three per each of the 18
beliefs with no explicit consequences) for whether
or not they are appropriate for the corresponding
beliefs. We judge 40 of the GPT-3-generated con-
sequences (74%) to be possible consequences for
the given belief prompt.

The quality of several consequences generated
for each belief is not necessarily consistent. As
seen from Table 2, for a given belief, all, some, or
none of the three generated consequences can be
appropriate. This poses a potential issue for down-
stream tasks in how there is no way to verify that a
correct prediction was generated or selected from
several generated predictions. We see several ways
in how this could be addressed. First, we believe
that with additional training using a dedicated data
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Condition Count
all correct 8
a mix of correct and incorrect 7
all incorrect 3

Table 2: Counts of beliefs for which all three generated
consequences were correct, some were correct, or none
were correct.

set, consequences of beliefs can be generated more
consistently. Second, following Lu et al. (2021),
we could apply logical or lexical constraints on the
decoding side. Third, with several consequences
generated, we may be able to assign higher weights
to consequences that overlap in content with the
other consequences generated for the same belief.
Finally, this approach can be used for augmenta-
tion, not automation of some human efforts, e.g.,
modeling, in which case the domain expert will be
able to evaluate produced belief-consequence pairs
before using them.

Some of the error types observed among the 54
consequences generated by the GPT-3 model in a
few-shot setting and example sentences to illustrate
the error types are in Table 3. The counts of the
error types are in Table 4. We note that for this
analysis, not all error types necessarily disqualify
a prediction from being a possible consequence.
For instance, in the following example, while the
specific dollar values make us judge the generated
text to be too specific, a budget increase is indeed a
possible consequence of a decision to rehabilitate
the land:

5. Belief: [...] personnel believe that up to an
additional 60,000 ha could be rehabilitated.
Consequence: They recommend an increase
in the annual budget for rehabilitating
degraded lands from $10 million to $15
million.

In our experiments, we also see that providing
examples to the model is crucial. In a zero-shot
setting (i.e., with no belief-consequence examples
provided to the model), the model did generate
some propositions that could be seen as appropriate
consequences for given beliefs. However, in this
setting, in most cases the model also continued gen-
erating text until the word limit was reached. This
was not the case for the majority of consequences
generated in the few-shot setting: following the for-
mat of the provided examples, the model stopped

generating after one sentence. Moreover, without
explicit examples provided to the model, the gener-
ated text tended to contain information that was too
specific to count as a successfully generated conse-
quence. This included people’s or company names,
hot political topics (see example 6), or conversation
markers (see example 7).

6. Belief with a prompt: [...] centers are often
considered the best private family planning
clinics. That’s why
Consequence: the Trump administration’s
proposed rule to cut $300 million in Title X
family planning funding is so alarming. Title
X

7. Belief with a prompt: people believe that
their hard work in the rice paddies is part of a
covenant with their supreme deity. That’s why
Consequence: they work so hard." "I see.
So their hard work is a form of worship."
"Exactly

We do not observe major differences between
providing two vs. four vs. six examples to the
model.

5 Future Work

To address the issues with GPT-3 generations dis-
cussed in the paper, in future work, we want to
explore the possibility of using explicitly stated
consequences as data to improve explicit conse-
quence generation by large language models, both
for fine-tuning and as few-shot examples.

For extracting explicit consequences, we will be
exploring expanding the current rule-based frame-
work to cross-sentence extractions as well as using
GPT-3 text generation for event extraction. With
the latter, the task can be framed in the follow-
ing way: given a belief and its context, the model
should produce the text that matches the text span
that indicates the consequence of the belief.

For both these directions, we need to have a
corpus of belief-consequence annotations, which
means we will be conducting an annotation exer-
cise. This will also help us support our findings
regarding distributions of explicit and implicit con-
sequences as well as the ability of human annota-
tors to infer implicit consequences based on the
belief and its context.
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Belief Consequence Error Type
1. women unanimously believe their

work to be profitable and well worth
pursuing.

Women continue to engage in em-
broidery work.

too specific

2. Mothers also believe that a child
does not need to eat solid food be-
fore 8 months.

Breastfeeding rates are low in the
study area.

contradiction

3. farmers strongly feel that increased
bird pressure intensity with result-
ing higher bird damages are the
main reason for these lower yields
in 2006.

Farmers stop growing rice. wrong focus

4. gifts, financial support, and physical
attention are themselves considered
important demonstrations of roman-
tic love.

Men in this culture often give gifts,
offer financial support, and provide
physical attention to more than one
woman at a time.

unsubstantiated
consequence

5. personnel believe that up to an ad-
ditional 60,000 ha could be rehabili-
tated.

The additional 60,000 ha will not be
rehabilitated.

wrong polarity

6. use of chemicals and machinery on
their paddy field is often considered
undesirable.

Use of chemicals and machinery on
their paddy field is often considered
undesirable.

restatement

Table 3: Some of the error types observed in belief consequences generated by GPT-3.

Error Type Count
too specific 9
contradiction 3
wrong focus 2
unsubstantiated consequence 1
wrong polarity 1
restatement 1

Table 4: Some of the error types and their counts ob-
served observed in the 54 consequences generated by
GPT-3 for the 18 beliefs (three consequences generated
per belief).

Finally, we want to use belief-consequence pairs
to build cognitive models of decision-making, e.g.,
modeling how a belief about rains causing crop
damage might cause the believer to harvest early.

6 Conclusion

In this paper, we introduce the task of causal link
extraction based on beliefs. We propose an ap-
proach for the task that combines extraction and
generation, and provide a small-scale, qualitative
analysis of a large language model performance
on the task. Additionally, we outline directions of
future work.
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Abstract

Replication of research results has become
more and more important in Natural Language
Processing. Nevertheless, we still rely on re-
sults reported in the literature for comparison.
Additionally, elements of an experimental setup
are not always completely reported. This in-
cludes, but is not limited to reporting specific
parameters used or omitting an implementa-
tional detail. In our experiments based on two
frequently used data sets from the domain of
automatic summarization and the seemingly
full disclosure of research artifacts, we exam-
ine how well results reported are replicable and
what elements influence the success or failure
of replication. Our results indicate that publish-
ing research artifacts is far from sufficient, and
that publishing all relevant parameters in all
possible detail is crucial, but often neglected,
making the situation in automatic summariza-
tion only near-perfect.

1 Introduction

Replicability is gaining more and more attention in
the NLP world with dedicated workshops1, replica-
tion checklists2 etc. While this improves the situa-
tion considerably, and the availability of research
artifacts is improving, there is still the question if
replicability is possible if all artifacts necessary are
available. Additionally, often results from the lit-
erature are cited, but it is far from clear whether
the reported results are obtained experimentally (by
re-implementing or re-running a particular method)
or also cited. One domain where the availability
of research artifacts is almost perfect, is Automatic
Summarization. Standard benchmark data sets pub-
lished in the course of various shared tasks are
available, the evaluation method is well known, its

1examples are https://lrec2020.lrec-conf.
org/en/reprolang2020/ and https://reprogen.
github.io

2https://2021.naacl.org/calls/
reproducibility-checklist/

implementation is available and resulting data sub-
mitted to shared tasks have also been made avail-
able by the organizers. Therefore, it should be
straightforward to replicate results reported by the
organizers of the shared task, as well as results
reported in the literature.

This would hardly be a submission to a work-
shop on insights from negative results if things
were that easy. Normally, successfully replicating
previous results would just appear as one or more
number in a table used for comparison. But our
results indicate that despite this near-perfect condi-
tions, reporting and replicating results is far from
straightforward. Based on a literature review and
experiments in replicating results we show the dis-
crepancies that occur both in cited results, as well
as when experiments are replicated.

Our contributions are therefore a closer look and
comparison of reported results from the domain
of automatic summarization and results from repli-
cated experiments and factor benefitting or hinder-
ing complete replication.

2 Replication in NLP

Experiments in reproducing results in the NLP do-
main such as those presented by Fokkens et al.
(2013) are still quite rare. One reason is, that when
undertaking such projects, “sometimes conflicting
results are obtained by repeating a study”3.

Fokkens et al. (2013) report, that their experi-
ments on two tasks in NLP are difficult to carry
out and to obtain meaningful results. Preprocess-
ing, experimental setup, versioning, system output,
and system variation cause experimental variation
according to the authors.

The 4Real workshop4 focuses on the “the topic
of the reproducibility of research results and the
citation of resources, and its impact on research

3https://sciencebasedmedicine.org/
science-based-medicine-101-/

4http://4real.di.fc.ul.pt/
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integrity”. Their call for papers asks for submis-
sions of “actual replication exercises of previous
published results” (Branco et al., 2016). Results
from this workshop suggest that reproducing exper-
iments gives additional insights, and is therefore
beneficial for the researchers as well as for the com-
munity (Cohen et al., 2016).

Horsmann and Zesch (2017) present a study on
the replication of results in the context of Part-of-
Speech tagging and whether LSTMs really work
as well as the literature suggests. The results are
mixed and show that the replicability depends on
parameters such as tagset complexity.

Crane (2018) looks into the area of Question
Answering and finds that "Source code without a
reproducible environment does not mean anything".
The author presents a set of experiments to show,
that different parameters can lead to different re-
sults, similar in magnitude to those reported in the
literature.

Dror et al. (2017) give a more general overview
on this issue, as they perform a replicability study
on various NLP tasks. They find that the increas-
ing amount of evaluation data sets is a two-edged
sword and only beneficial if the data reflects a vari-
ety of linguistic phenomena and are heterogeneous
at least with respect to language or domain. Other-
wise, showing that results are valid on one data set
is probably sufficient.

Other authors look into the availability of re-
search artifacts (i.e. (Mieskes, 2017; Wieling et al.,
2018) who found that a large proportion of research
artifacts are not available. A recent study by Belz
et al. (2021) systematically looked into the replica-
bility of various publications from the NLP domain,
finding, that only approx. 14 % of the examined
publications were replicable.

3 Automatic Summarization

Fokkens et al. (2013), Crane (2018) and others
observe that re-implementation does not guarantee
the reproducibility of the reported results, but rather
a range of parameters cause differences between
reported results and replicated results. Therefore,
we focus on available data, systems and differences
due to the evaluation method.5

The DUC 2002 data set is used for an evalua-
tion on Single-Document Summarization (SDS).
It contains over 500 documents from 59 thematic

5Please note, that we do not report all publications that cite
the same results, but rather highlight the differences.

clusters. The target length of the summaries is 100
words. The DUC 2004 data set is used for the
evaluation on the Multi-Document Summarization
(MDS) task. It contains 500 documents from 50
thematic clusters. The length restriction was set
to 665 bytes, which, for English, also results in a
length of 100 words.

For both data sets the organizers of the shared
task published reference summaries as well as sub-
mitted summaries. Furthermore, the evaluation
results are available as well. Lin (2004) intro-
duced an automatic evaluation metric, which be-
came the standard both for subsequent shared tasks,
as well as for automatic summarization in general.
ROUGE has a range of parameters, which have to
be set prior to running the evaluation. Several of
these parameters are not binary, which results in a
extensive parameter space. Graham (2015) gives
details on these parameters and the resulting issues.

Both data sets that have been widely used in the
past 15 to 20 years and therefore provide a reason-
able basis for our analysis, which contains three
parts: First, we will look into results reported in
the literature and we aim to replicate those reported
results. Second, we use available summarization
methods out of the box or retrain them and evaluate
the results. Third, we use a data set published by
Hong et al. (2014) to replicate their results.

In our experiments, we stick as close as possible
to the description offered in the cited publications
and cite the results given.

3.1 Single Document Summarization (SDS)

Table 1 lists the ranking for DUC 2002 both based
on the officially released results6, as well as three
examples from the literature: Lloret and Palomar
(2010); Mihalcea and Tarau (2004) and Barrera and
Verma (2011). Table 2 additionally shows results
reported in these three papers. We experiment with
various settings for ROUGE, relying on parameters
reported in the literature.

We specifically focus on the stopword and stem-
ming parameters, as we observe that they result
huge differences in the results – marked as "Stop-
words" and "Stemmed" in the table. "Both" indi-
cates that stopwords were filtered and stemming
was applied. Both tables (1 and 2) show that there
is quite some discrepancy between the rankings

6S19 and S27 are very close together and the error bars
as published in https://www-nlpir.nist.gov/
projects/duc/pubs/2002slides/overview.02.
pdf do not allow for an exact distinction between the two.
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reported officially and those in the literature. The
comparison between the official results and the
results in the literature might not be quite appro-
priate, as the official evaluation has not been done
using ROUGE and while ROUGE has shown high
correlation with human judgements, the ranking
does not necessarily match exactly. The situation is
somewhat different for the three reported rankings,
which have all been done using ROUGE, as can be
seen in Table 2.

Loret Barrera Mihalcea official
S28 S28 S27 S19
S21 S19 S31 S27
S19∗ S21∗ S28 S28

– S29∗ S21 S21
– S23∗ S29∗ S31

Table 1: Ranking as listed in the literature; ∗ did not
beat the baseline according to the source paper.

Some systems (i.e. S31) do not even occur in
all three reported rankings. A closer look at the
reported and replicated ROUGE-scores show that
they vary considerably. We also observe that apply-
ing stopword filtering gives the worst results, while
applying stemming gives the highest results, which
are also similar to results reported by Mihalcea and
Tarau (2004, 2005) and Barrera and Verma (2011).
Applying both stopword filtering and stemming
gives results that are in a similar range to those
reported by Lloret and Palomar (2010). It is inter-
esting to note, that in all four papers the baseline
is reported differently: 0.4779 (Barrera and Verma,
2011), 0.4599 (Mihalcea and Tarau, 2004), 0.4799
(Mihalcea and Tarau, 2005) and 0.4113 (Lloret and
Palomar, 2010). As only Lloret and Palomar (2010)
note the parameters for the evaluation7 this is the
only experiment we could replicate in detail. But
differences remain. It is interesting to see that while
Mihalcea and Tarau (2004) also experimented with
stemming and stopword filtering, they report the
best results when using the basic settings, while
our results are highest when stemming is applied,
whereas stopword filtering gives the worst results.

3.2 Multi-Document Summarization (MDS)

For the MDS scenario the situation is somewhat
better as ROUGE has been used in the official eval-
uation as well. The best system was identified as
S65 and there is no discrepancy we could find in
the literature regarding this.

7-n 2 -m 2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -l 100 -d

Citation S28 S21 S19
Mihalcea and Tarau (2004) 0.4703 0.4683 na

stemmed 0.4890 0.4869 na
stemmed/no stopwords 0.4346 0.4222 na

Mihalcea and Tarau (2005) 0.4890 0.4869 na
Lloret and Palomar (2010) 0.4278 0.4149 0.4082
Barrera and Verma (2011) 0.4781 0.4754 0.4552

Stemmed 0.473 0.467 0.452
Stopwords 0.395 0.380 0.379

Both 0.421 0.406 0.404

Table 2: Evaluation results for systems in DUC 2002
based on reports from the literature and based on our
own replication with various parameter settings.

basic Stemmed Stopwords Both
0.35909 0.38317 0.27068 0.30595

Table 3: Results for various preprocessing parameters
for the output for S65 from DUC 2004.

Table 3 presents our results for evaluating S65
with various preprocessing parameters. As with the
DUC 2002 data, stemming the resulting summaries
give the best results, while the basic parameters
only give the second best results.

Citation ROUGE-1
Original 0.38224
Yih et al. (2007)† 0.305
Alguliev et al. (2012) 0.3822
Ryang and Abekawa (2012) 0.3827
Manna et al. (2012)† 0.3913
Rioux et al. (2014)† 0.3828
Ren et al. (2016)† 0.3788
Wang et al. (2017)† 0.3762

Table 4: Results on S65 as reported by the organiz-
ers (Original) and in various publications ever since. †

indicates that parameters have been reported in the pub-
lication.

Table 3 presents the results for S65 as officially
reported and various results found in the literature,
which show a considerable range. When running
ROUGE on the available data with various param-
eter settings we observe that the results also vary
considerably, similar to the SDS scenario. Com-
paring the results in Table 3 to those officially pub-
lished and reported in the literature (Table 4) we
observe that applying stemming gives results close
to what has been officially reported. Applying both
stemming and stopword filtering our results are
close to those reported by Yih et al. (2007). As indi-
cated, most of the cited papers also report the evalu-
ation parameters. A closer look at these parameters
shows that although there are some differences, the
parameters affecting ROUGE-1 are the same, ex-
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cept for Rioux et al. (2014), where -l 250 was
used. This allows summaries to be longer than 100
words, which could have a considerable effect on
the ROUGE scores. Ren et al. (2016) do not set any
length parameter, which means that the summaries
are evaluated in their full length. Ren et al. (2016)
presents a summarization method that ensures a
final length of 100 words. And in all cases, stem-
ming was applied, but no stopword filtering. Taking
this into account, our results are similar to those
originally reported, but also to those reported by
Alguliev et al. (2012), Ryang and Abekawa (2012)
and Rioux et al. (2014), where longer summaries
were considered.

3.3 Re-run Summarization Methods

For the 2004 MDS data we perform two additional
experiments. First, we use MEAD which has suc-
cessfully participated in various shared tasks on
automatic summarization. Second, we follow in-
structions to retrain and run an SVM-based summa-
rization method and compare our evaluation with
the reported results.

MEAD can be downloaded8 and used for sum-
marization. Therefore, we use the code as is to
summarize the DUC 2004 data. Table 5 shows the
results found in the literature. Preprocessing has
a considerable influence on the results, as with no
preprocessing we only achieve R-1 = 0.31 and the
best result is R-1 = 0.349. This is still lower than
the reported results, which are considerably higher
and as with previous experiments, vary consider-
ably. Unfortunately, only Hong et al. (2014) report
the parameters used, but nevertheless, our results
are considerably different.

Citation Result
Erkan and Radev (2004a) (added features) 0.38304
Erkan and Radev (2004b) 0.3758
Alguliev et al. (2012) 0.3673
Hong et al. (2014)† 0.3641
re-run 0.3494

Table 5: Results for MEAD on DUC 2004 (MDS) data.
† indicates that parameters have been reported in the
publication.

SVM We retrain the SVM introduced by Sipos
et al. (2012), following the guidelines provided9.
This included all relevant packages and detailed
instructions on how to train the SVM model, which

8http://www.summarization.com/mead/
9Unfortunately, the link given in the original publication is

not functional anymore.

data has been used and how the resulting model
was applied to the data. Table 6 shows our results
and the result reported in the original publication.
We observe that the results are similar to each other
and the confidence interval (CI) indicates, that the
results do not significantly differ.

Sipos et al. (2012) re-train & eval (95% CI)
0.4066 0.3995 (0.3883–0.4117)

Table 6: Results for Sipos et al. (2012) re-evaluation on
DUC 2004 data.

Summary Data The final experiment builds on
data introduced by Hong et al. (2014), which con-
tains summaries for a range of methods.10 The
authors give the parameters used for evaluation and
results for R-1, but also for ROUGE-2 (R-2) and
ROUGE-4 (R-4). Table 7 shows the results as orig-
inally reported (O) and as replicated (R).11 Com-
paring the results, we can see some differences and
out of 36 values 22 do not match exactly (marked
in italics). Out of these 22 only 8 differ by more
than 0.01 points (marked in bold). For CLASSY 04
we see a difference of 0.04 in R-1 and for KL we
see a difference of 0.03 in R-2.

System R-1 R-2 R-4
LexRank (O) 35.95 7.47 0.82
LexRank (R) 35.97 7.49 0.82
Centroid (O) 36.41 7.97 1.21
Centroid (R) 36.41 7.98 1.21
FreqSum (O) 35.30 8.11 1.00
FreqSum (R) 35.30 8.10 0.99
TsSum (O) 35.88 8.15 1.03
TsSum (R) 35.89 8.15 1.03

KL (O) 37.98 8.53 1.26
KL (R) 38.00 8.56 1.26

CLASSY 04 (O) 37.62 8.96 1.51
CLASSY 04 (R) 37.66 8.97 1.51
CLASSY 11 (O) 37.22 9.20 1.48
CLASSY 11 (R) 37.20 9.21 1.48
Submodular (O) 39.18 9.35 1.39
Submodular (R) 39.17 9.34 1.38

DPP (O) 39.79 9.62 1.57
DPP (R) 39.81 9.63 1.58

RegSum (O) 38.57 9.75 1.60
RegSum (R) 38.56 9.75 1.61

OCCAMS_V (O) 38.50 9.76 1.33
OCCAMS_V (R) 38.50 9.76 1.32
ICSISumm (O) 38.41 9.78 1.73
ICSISumm (R) 38.41 9.80 1.73

Table 7: Original (O) and replicated (R) results for the
data set published by (Hong et al., 2014).

10The link given in the original publication is still func-
tional and provides the data set, as well as the recommended
evaluation settings.

11Please note that for better comparison we adopt their
notation.
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4 Discussion

We looked into the question of whether the fact
that all necessary research artifacts are available
for specific benchmark data sets in automatic sum-
marization allow for a straightforward evaluation
and replication. We also looked into results re-
ported in the literature, as often results are cited in
subsequent works as baselines or for comparison.

We observed quite severe differences not only in
the exact values obtained by running the evaluation,
but also in the conclusions drawn from these with
respect to the ranking of the system outputs.

We also observed that the results highly depend
on the parameters used for evaluation. If evalu-
ation parameters and system output results are
given, results are reproducible, as we were able to
show with the data and results presented by Hong
et al. (2014). Using their data and the evaluation pa-
rameters, our results were almost identical to those
reported in the original publication. As only some
results differed, it remains open if the observed
differences are due to changes on the hardware
and/or software level. Also, not all three evalua-
tion metrics differed. As most values were in the
range of ±0.1 one assumption is, that this is due
to differences in rounding. In order to evaluate
this, a more detailed analysis of individual results
is required. If the method used to produce the
summaries has been described in enough detail, it
is possible to achieve similar results as we did with
work by Sipos et al. (2012).

Despite the seemingly ideal circumstances, we
failed to reproduce the results for System 65 in
DUC 2004. For the DUC 2002 task we were
only partially able to replicate or reproduce results
reported in the literature, despite similar circum-
stances. We could not reproduce results reported in
the literature. Also our experiments with MEAD
were not conclusive. They showed that depend-
ing on the parameters used for evaluation, the re-
sults can vary considerably, sometimes even signif-
icantly, even though the system implementation is
available and the evaluation metric is known.

A closer look at the publications analyzed for
this study, we found that only about 40% report the
full set of evaluation parameters. Almost 50% of
the publications did not mention the evaluation pa-
rameters at all.12 Replicating or even reproducing

12A detailed analysis of this would allow a more reliable
quantification of this issue, not only in the context of automatic
summarization.

results for these publications is therefore unneces-
sarily complicated and involves testing all possible
combinations of parameters. As the correct param-
eter set is unknown in these cases, comparisons are
as not as valuable as they could be. Additionally,
re-implementations such as py-rouge13 do not of-
fer all the parameters ROUGE originally offered,
making comparisons even harder. Therefore, one
of our next steps is to re-evaluate the presented
experiments using py-rouge.

More analysis, also in other areas of NLP would
be beneficial to strengthen the results of this study.
While ROUGE has quite an extensive parameter
range, it is negligible compared to modern ma-
chine learning approaches and as has been pointed
out by Crane (2018) they "often go unreported".
Nevertheless, our results highlight a problem that
will become more severe the more complicated the
methods developed in NLP become: Disclosing all
parameters used for creating and evaluating a spe-
cific system is crucial. Publishing the algorithms
and the resulting data is not enough to ensure repli-
cable results. And even having details about the
evaluation procedure (including relevant parame-
ters) does not ensure that results can be replicated
and conclusions in line with previous work can be
drawn. While this might sound trivial, our results
indicate that this is not being done in enough de-
tail to ensure replicability and reproducibility of
results.
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Abstract

BPE tokenization merges characters into longer
tokens by finding frequently occurring contigu-
ous patterns within the word boundary. An in-
tuitive relaxation would be to extend a BPE vo-
cabulary with multi-word expressions (MWEs):
bigrams (in_a), trigrams (out_of_the), and
skip-grams (he·his). In the context of Neu-
ral Machine Translation (NMT), we replace
the least frequent subword/whole-word tokens
with the most frequent MWEs. We find that
these modifications to BPE end up hurting the
model, resulting in a net drop of BLEU and
chrF scores across two language pairs. We
observe that naively extending BPE beyond
word boundaries results in incoherent tokens
which are themselves better represented as in-
dividual words. Moreover, we find that Point-
wise Mutual Information (PMI) instead of fre-
quency finds better MWEs (e.g., New_Y ork,
Statue_of_Liberty, neither·nor) which
consistently improves translation performance.
We release all code at https://github.
com/pegasus-lynx/mwe-bpe.

1 Introduction

Subword tokenization algorithms like Byte Pair En-
coding (BPE) (Sennrich et al., 2016) group together
frequently occurring patterns, such as -ing or -ly,
into individual tokens. The success of subword to-
kenization points to the benefit in modeling longer
patterns, even though any given text can be repre-
sented simply as a sequence of characters. This
paper stretches the motivation further by allowing
BPE to cross word boundaries. In the context of
NMT, we find that the straightforward way to find
MWEs by BPE (sorted by frequency) hurts perfor-
mance whereas sorting by PMI scores improves
scores. We hypothesize and discuss a reason for
these observations and provide further recommen-
dations on using MWEs with BPE.

N-gram tokens have been used in traditional
NLP for a long time and with much success. For

example (Table 1), the bigram New York can be a
concise yet useful feature in a Named Entity Recog-
nition task. Similarly, a Spanish-English Machine
Translation (MT) model might benefit from having
the bigram te amo or its trigram translation I love
you in its vocabulary. Finally, a model’s vocabu-
lary could even extend to non-contiguous tokens or
k-skip-n-grams such as neither · nor. This token
reappears in several contexts e.g. neither tea nor
coffee and neither here nor there (underlined words
replace the · skip).

Raw He lives in New York .
Tok He_ lives_ in_ New_York_ ._

Raw I love the Statue of Liberty!
Tok I_ love_ the_ Statue_of_Liberty_ !_

Raw She lost her bag .
Tok She_ · her_ lost_ <SKIP> bag_ ._

Table 1: Example tokenizations of MWEs (bigrams,
trigrams, skip-grams) in our implementation. Raw =
original sentence, Tok = tokenized form. Typical BPE
tokens are colored yellow and MWEs are colored green.

This paper experiments with two ways to expand
BPE with MWEs for the task of NMT. Concretely,
we promise the following contributions:

1. We find, counter-intuitively, that the straight-
forward frequency-based BPE, when applied
beyond words, performs worse than baseline
on NMT across two language pairs (§3).

2. We hypothesize that this negative result is
caused by the constituents of such high fre-
quency MWEs (e.g. in_the) combining in
many diverse ways, rendering such tokens in-
coherent (§4.1).

3. We show that PMI-based BPE for MWEs re-
verses the drop and improves BLEU scores.
We offer more recommendations on where
and how to use MWEs with BPE (§4.2).

* Equal Contribution.
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Lang. Pair Hi → En De → En
Split Dev Test Dev Test

sacre chrF sacre chrF sacre chrF sacre chrF
Metric BLEU β = 2 BLEU β = 2 BLEU β = 2 BLEU β = 2

Baseline 20.8 49.5 22.0 52.3 39.1 62.4 35.6 59.1
Unigram 19.5 49.0 21.2 51.5 36.5 60.3 32.4 56.8

BPE+ngms 19.5 49.0 21.2 51.6 38.7 62.2 35.3 58.9
BPE+n/sgms 18.4 48.1 20.7 51.3 38.4 62.1 35.2 58.9

PMI methods
Bigrams 20.6 49.2 22.2 52.6 39.1 62.4 35.8 59.3
Trigrams 20.7 49.5 22.0 52.3 39.0 62.2 35.7 59.0
N-grams 21.2 50.0 22.1 52.6 38.9 62.3 35.8 59.1
Skip-grams 20.6 49.9 22.1 52.4 38.7 62.1 35.9 59.2

Table 2: Different methods of adding MWEs to a BPE vocabulary on NMT across two language pairs.

2 Methods

MWEs have been commonly used in traditional
NLP but rarely in the age of transformers and sub-
word vocabularies. Here we describe two kinds of
ways to add MWEs to a BPE vocabulary.

2.1 BPE beyond words

Our baseline is the vanilla BPE tokenization
scheme which starts from characters and iteratively
adds the most frequent subwords to vocabulary.
An intuitive extension to BPE is BPE+ngms, i.e.,
allowing BPE to choose between not just adding
subwords but also frequently occurring n-grams
(e.g., of_the appears at 163rd position in vocabu-
lary). This paper limits n-grams to bigrams and
trigrams.

Besides continuous multi-word expressions, we
also experiment with discontinuous MWEs, i.e., k-
skip-n-grams, which we refer to concisely as skip-
grams. In particular, we focus on 1-skip-3-grams,
e.g., neither · nor, I · you. We replace a 1-skip-3-
gram (w1 · w2) occurrence with (w12 · <SKIP>)
where w12 is a new token representing the occur-
rence of this specific 1-skip-3-gram, and <SKIP>
is another new token but shared by all skip-grams
to indicate that the skip-gram ends here. The last
row of Table 1 shows an example tokenization with
skip-grams. In BPE+n/sgms, we allow frequent
skip-grams (e.g., ( · ); neither · nor ) to also be part
of the vocabulary.

2.2 Adding MWEs with PMI

As hinted in Section 1, the intuitive extension to
BPE does not work well in practice. Instead of raw

frequency, here we find MWEs using a common
technique of finding word collocations: Pointwise
Mutual Information (PMI), which is a measure of
the association between two word types in text. We
calculate PMI of n-grams as:

PMI(a1, ..., an) = log(
P (a1, ..., an)∏n

i=1 P (ai)
)

where ai are unigrams (words) from the corpus;

P (ai) denote their independent probabilities; and
P (ai, ...an) denotes joint probability of n-grams.
In this paper, we report experiments with only Bi-
grams (n = 2), Trigrams (n = 3), and their
combination N-grams.

We also experiment with Skip-grams or 1-skip-
3-grams (w1 ·w2) from our corpus in the same way
as bigrams (w1w2), ordered by PMI. We identify
candidate word pairs separated by one word (which
we depict by · ) and sort them based on PMI scores,
some of which are deemed good enough to replace
the least frequent subwords in the BPE vocabulary.

We find that the skip-grams obtained by simply
ordering by PMI are often better suited to be tri-
grams, e.g., the · in Statue · Liberty, a high-ranked
candidate skip-gram, is almost always of. To dis-
entangle such skip-grams, we filter out candidates
where the middle (skipped) word has a spread-out
distribution: the skipped word in I · you could be
replaced with several words like love, hate, or miss.
In practice, we filter these by enforcing (1) a lower
limit (15) on the number of unique words which
replace the · token, and (2) an upper limit on the
probability (10%) of the most frequently occurring
skipped token for the particular skip-gram.
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3 Datasets

We use the IIT Bombay Hindi-English parallel cor-
pus v3.0 (Kunchukuttan et al., 2018), tokenized
using IndicNLPLibrary (Kunchukuttan, 2020) and
Moses Tokenizer (Koehn et al., 2007) respectively.
The Train : Dev : Test splits have 1.6M : 0.5K :
2.3K sentences respectively.

For German-English, the datasets are retreived
from the News Translation task of WMT2019 (Bar-
rault et al., 2019). The Train : Dev : Test splits
have 4.5M : 3K : 2K sentences respectively.

While we use the originally mentioned training
set for our main results in Table 2, we found several
noisy sentence pairs in the training dataset (the dev
and test set were clean). Some such sentences had
English characters (latin alphabet) in the source
(Hindi) side and others had non-English characters
on the target (English) side. We filtered out 250K
sentence pairs where either the source side had
non-Hindi characters or the target side had non-
English characters, wherein we count the following
near-universal symbols as part of either language:
., ()[]! : −”′;<>?&˘@

4 Experiments

While MWEs can augment the subword vocabulary
of any NLP model, this short paper focuses on the
task of NMT. Following Gowda and May (2020),
we fix the transformer architecture (Vaswani et al.,
2017) and train models with different vocabularies
from scratch.

Our baseline vocabulary is BPE with 8K sub-
word tokens for Hi-En and 16K for De-En. Each of
our methods maintains the same vocabulary size,
replacing the least frequently occurring subwords
with corresponding n-grams or skip-grams. We
show representative MWEs learned from corpora
in Table 4 alongside the coverage of (PMI) MWEs
across language pairs.

We also compare with a Unigram (Kudo, 2018)
SentencePiece vocabulary of 8K tokens each on
source and target sides, with split_by_whitespace
flag set to false (Kudo and Richardson, 2018).
This allows the Unigram method to go beyond the
word boundary and add n-grams to its vocabulary.

Our NMT model is a 6 layer transformer
encoder-decoder (Vaswani et al., 2017) that has
8 attention heads, 512 hidden vector units, and a
feed forward intermediate size of 2048, with GELU
activation. We use label smoothing at 0.1, and a
dropout rate of 0.1. We use the Adam optimizer

with a controlled learning rate that warms up for
16K steps followed by a decay rate recommended
for training transformer models. We trim longer
sequences to a maximum of 512 tokens after BPE.
Each model is trained from scratch, and the hyper-
parameters (per language pair) are chosen by grid
search to optimize the baseline validation BLEU.

We train all models for up to 100K steps (batch
size = 24K tokens) and report sacreBLEU (Post,
2018) and chrF (β = 2) scores (Popović, 2015).

The number of tokens replaced in the original
BPE vocabulary with a corresponding MWE or-
dered by PMI, is also a hyperparameter optimized
by grid search between 1.25% to 10% of the vo-
cabulary size (Hi-En models performing best when
1.25% tokens were replaced and De-En models per-
forming best at 2.5% for Bigrams/Trigrams and 5%
for Skipgrams). We make sure to not replace any
rare base characters like Q or @.

For ablations (Section 5.2) with limited com-
pute budget, we train Hi-En models for up to 200K
steps.We apply a patience of 10 validations, each
1000 update steps apart. To decode, we average the
best 3 checkpoints, and use a beam size of 4 with
length penalty of 0.6. We use NLCodec and RTG
libraries (Gowda et al., 2021) and contribute our
extensions to them as well.

5 Results and Discussion

Table 2 shows our main results. We find that naively
extending BPE beyond words harms the model, and
Unigram likewise fails to consistently outperform
the baseline. On the other hand, adding MWEs
using PMI gives the best performance across lan-
guage pairs and metrics.

Moreover, since the methods of extracting
MWEs is purely emprirical and is language agnos-
tic, the results and observations can be extended
for different language pairs.

We now attempt to reason why BPE fails be-
yond word boundaries in its vanilla form, and why
switching to PMI solves the problem. We also
study where does it help the most to add MWEs.
Unless noted otherwise, the analysis is reported on
the Hi-En dataset.

5.1 Words combine in Diverse ways

Empirically, we observe (Table 2) that BPE with
high frequency MWE tokens sees a drop in perfor-
mance whereas the PMI counterpart as well as the
original baseline (within word boundary) performs
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Train Dev Test

Hi-En IITB-Training (1.3M) IITB-Dev (0.5K) IITB-Test (2.5K)

Europarl v10 (1.8M)
De-En WMT13CommonCrawl (2.4M) NewsTest18 (3K) NewsTest19 (2K)

NewsCommentary v14 (0.3M)

Table 3: Training, validation and testing datasets along with sentence count in each set.

from Hi-En from De-En
to De-En to Hi-En

Bi 1.55% 1.30%
Tri 0.30% 0.40%
Skip 13.34% 13.45%

Bigrams Trigrams Skip-Grams Freq

per cent New York City the · of of the
New York European Central Bank a · of do not

Prime Minister Italian Prime Minister ( · ) they are
Middle East behind closed doors was · to as well as

United Nations former Prime Minister not · to one of the

Table 4: Left: Coverage of the top 5 most frequent English MWEs (PMI-based), extracted from the first language
pair and (coverage) evaluated over the second. Coverage of a token is defined as the fraction of target (English)
sentences containing the token. Right: The top five MWEs of each type (PMI except when labelled Freq).

well. What then happens at the word boundary that
the BPE algorithm stops working? We hypothesize
that this is the result of words combining in more
diverse ways than subwords.

BPE beyond word boundary adds frequently oc-
curring n-grams to its vocabulary such as in_the
which occurs in over a tenth of all test sentences.
Despite adding it as a separate token to the vo-
cabulary, the average BLEU on this subset of test
sentences drops compared to the baseline (20.0 vs
21.8)! One factor for this result could be that the
constituents of in_the combine in more ways than
one. The word in appears as the ending of over
30 n-grams (that_in, was_in, . . . ) and the word
the appears as the beginning of 200 other n-grams
(the_people, the_first, . . . ) - all of which com-
bine to a total of over another tenth of the test set,
more than the frequency of in_the itself.

Such versatile combinatorics is rarely observed
at the subword level. Suffixes like ing almost never
appear as prefixes whereas prefixes like de almost
never appear as suffixes. When such subwords com-
bine to form longer tokens, they generally retain
a coherent meaning, unlike n-grams like in_the.
Finally, this hypothesis may explain why MWEs
ordered by PMI help improve MT scores – they are
by definition units that co-occur as a coherent unit.
Indeed, the MWEs thus found (e.g. New_Y ork,
per_cent) include constituents which exclusively
form only these tokens.

To summarize, we argue that BPE stops working
at word boundaries because word pairs rarely, un-

like subwords, combine into meaningful units that
deserve a unique representation. We find convinc-
ing arguments from sentence-level BLEU scores
and the number of different ways the constituents
of different tokens occur, more of which are re-
ported in supplementary materials.

5.2 Where do MWEs help NMT?

Here, we conduct ablations for the PMI method
(on a smaller batch size of 1K tokens, on the Hi-En
dataset) to determine whether MWEs help more
for machine translation on the source side (Hi), on
the target side (En), or both? Table 2 reports on the
‘both’ setting but here we revisit this design choice.
Table 5 reports BLEU scores with each such variant.
Bold-faced cells indicate the best performing (on
dev set) variant for every row. We observe that
continuous MWEs (bigrams and trigrams) benefit
more on the source-side whereas discontinuous
MWEs (skip-grams) help the most when applied to
both source and target side. Note that, since De-En
has been usually used in a triple shared vocabulary
setting, we followed the same and thereby it must
always follow the ‘both’ model.

Finally, we show in Figure 1 some representative
examples of sentences with MWEs (particularly,
the skip-grams) from the PMI-BPE Hi-En model’s
vocabulary. The first two rows show examples
where the skip-gram indeed occurred in the refer-
ence, hence it helped the model. The last row shows
how the model overuses the skip-gram, i.e. using
skip-gram instead of separate tokens, and gets a
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Figure 1: Qualitative error analysis over Hi-En test set, showing examples comparing the Baseline and the Skip-
Gram augmented model, where the skip-gram (This · is) occurs in the latter’s predictions.

Target (En) Source (Hi) Both

Bi 14.4 / 14.8 15.9 / 16.0 15.8 / 15.3
Tri 14.7 / 15.4 15.5 / 15.5 15.4 / 15.2
Skip 15.3 / 15.2 15.1 / 15.1 15.5 / 15.0

Table 5: Do MWEs help more when added to the source-
side, the target-side or both? Each cell reports Dev/Test
BLEU scores over Hi-En dataset only. Baseline scores
without MWEs are 15.6 / 14.4 respectively.

translation wrong thus hurting the score as the ref-
erence sentence does not use the skip-gram. We
note that BLEU itself relies only on the presence or
absence of contiguous n-grams, and may unfairly
penalize paraphrased outputs such as these.

6 Related Work

Attempts at merging NMT with MWEs typically
include pairing up the network with a phrase
based SMT system (Wang et al., 2017; Park and
Tsvetkov, 2019; Lample et al., 2018) and hier-
archical phrases are expressive enough to cover
discontinuous MWEs (Chiang, 2007). Zaninello
and Birch (2020) add manually annotated MWEs
aligned across the source and target language (En-
It). However, this might not work for low resource
languages, hence we extract MWEs automatically
with PMI. They count discontinuous MWEs, one
of our main contributions, among future work.

Multi-word tokens have a proven track record
in NLP. Skip-gram tokens, for instance, have al-
ready been used in phrase-based machine trans-
lation (Lample et al., 2018; Park and Tsvetkov,
2019; Wang et al., 2017) to tackle cases where cer-
tain phrases in a source language (duonianlai in
Chinese) are better represented as skip-grams in a
target language (over the last · years in English)
(Chiang, 2007). Our work revisits these ideas and

adapts them to a transformer-based NLP model re-
lying on subword segmentation. There also exists
prior work on defining, counting, and evaluating k-
skip-n-grams (Guthrie et al., 2006; Pickhardt et al.,
2014; Ptaszynski et al., 2014), although unrelated
to the task of NMT. Finally, readers interested in
other applications of extracting MWEs via PMI
scores may refer to Levine et al. (2021) where sim-
ilar techniques are used to efficiently mask tokens
while pretraining BERT (Devlin et al., 2019).

7 Conclusion

This paper systematically studies the impact of ex-
tending a BPE vocabulary with multi-word expres-
sions for neural machine translation. Our results
point to the vast unexplored scope of different gran-
ularities of tokenization that can be exploited by
NLP systems. Notably, our methods extend to not
only longer contiguous tokens like n-grams but also
skip-grams, which have been relatively unexplored
with transformer-based NLP.

In future work, we intend to compare our PMI-
based methods to human-annotated MWEs as well
as to recent workarounds to interfering tokenization
schemes such as subword regularization or BPE
dropout (Provilkov et al., 2020). We also wish to
extend experiments to NLP tasks beyond NMT, and
the scope of our tokens to, say, variable-skip-grams
which allow for any number of skips.
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A Visualizing the top-scoring MWEs

We already report highest scoring English MWEs
throughout the paper, particularly in Table 4. In
Figure 2, we enumerate similarly the highest scor-
ing bigrams, trigrams, and skip-grams from the
other two languages: German and Hindi.

B Scope of MWEs

As the name suggests, MWEs include only word
level expressions i.e., each constituent should be a
whole word. This is a less expressive but more in-
tuitive approach to going beyond word boundaries
with BPE. For example, our implementation does
not allow for tokens that combine the ending of one
word and the beginning of another.

Note that our implementation also allows for
variable length skip-grams (Ptaszynski et al., 2011),
represented as (w1 ∗ w2). Instead of skipping a
single token, we can allow skipping any number of
tokens and still map to the same skip-gram, e.g.,
neither ∗ nor → neither do I drink nor do I smoke.
Such tokens would be much more expressive but
also much computationally expensive to find, and
would require some simplifying assumptions such
as disallowing nested skip-grams. We leave such
experiments to future work.

Note that we do not merge bigrams, trigrams,
and skip-grams. PMI scores across n-grams and
skip-grams are not comparable, hence they can
not be combined in a straightforward way. Such
an amalgamation may indeed give an even bigger
boost but requires grid search over multiple hyper-
parameters corresponding to the fraction of each
kind of MWE to be included. Such experiments
warrant an extensive compute budget, so we leave
this to future work.

We wish to implement even newer forms of tok-
enization, particularly extending skip-gram tokens.

Figure 2: Top scoring multi-word expressions extracted
from the training corpora.

While this paper limits skip-grams to only act at
the word level, one could also imagine character or
subword level skip-grams, such as r-n serving as
a skip-gram common to both run and ran. Finally,
k-skip-n-gram tokens need not be limited to a fixed
k, allowing for a variable number of tokens to be
skipped, similar to a hierarchical phrase translation
system (Chiang, 2007). Such variable length skips
can also be useful at the character level, e.g., k-t-b
as a skip-gram for both kitaab and kutub (Botha
and Blunsom, 2013).
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Abstract
Evaluating generated text received new atten-
tion with the introduction of model-based met-
rics in recent years. These new metrics have a
higher correlation with human judgments and
seemingly overcome many issues of previous
n-gram based metrics from the symbolic age.
In this work, we examine the recently intro-
duced metrics BERTScore, BLEURT, NUBIA,
MoverScore, and Mark-Evaluate (Petersen).
We investigate their sensitivity to different
types of semantic deterioration (part of speech
drop and negation), word order perturbations,
word drop, and the common problem of repeti-
tion. No metric showed appropriate behaviour
for negation, and further none of them was
overall sensitive to the other issues mentioned
above.

1 Introduction

Alongside with the current developments in Nat-
ural Language Generation (NLG), evaluating the
quality of artificially generated text is an equally
important (and ever harder) task in the field. N-
gram based metrics, like BLEU (Papineni et al.,
2002) or ROUGE (Lin, 2004), come with severe
drawbacks (Belz and Reiter, 2006; Reiter and Belz,
2009) and given the increasing versatility of mod-
ern NLG systems, they are assumed to struggle
even more (Zhang et al., 2020; Sellam et al., 2020).
Architectures based on the Transformer (Vaswani
et al., 2017), like BERT (Devlin et al., 2019) or the
complete GPT series (Radford et al., 2018, 2019;
Brown et al., 2020), have increased the quality of
artificially generated text to an extent that even hu-
mans tend to struggle distinguishing natural from
artificial texts (Clark et al., 2021). Based on these
models, new metrics have been introduced, such as
BERTScore (Zhang et al., 2020), BLEURT (Sellam
et al., 2020), NUBIA (Kane et al., 2020), Mover-
Score (Zhao et al., 2019), or Mark-Evaluate (Mor-
dido and Meinel, 2020), claiming to increase corre-
lation with human judgment. We examine the latter

introduced metrics using synthetic data. The ex-
amination will include several practical problems
commonly observed in NLG systems. The code to
reproduce our experiments is publicly available on
GitHub.1

2 Related work

Caglayan et al. (2020) compared different metrics,
including BERTScore, regarding their sensitivity
to specific impairments. Their experiment (related,
but not similar to ours) indicated that BERTScore
is more sensitive to the semantic integrity than n-
gram based metrics. Another analysis by Kaster
et al. (2021) provides an evaluation of model-based
metrics based on linguistic properties of their input.
They showed that even model-based metrics tend to
behave differently regarding specific modifications
to their input. Some metrics showed a higher sensi-
tivity to semantics, while others showed higher sen-
sitivity to syntactic issues. Eventually, ensembling
methods were proposed to combine the strengths of
metrics. Based on the CheckList library (Ribeiro
et al., 2020), Sai et al. (2021) introduced a library
for assessing NLG metrics via different perturba-
tions to the input data. Multiple metrics, including
model-based ones, were assessed, and neither of
them did show a proper overall sensitivity to all
modifications. The most severe issue was found in
an overall insensitivity to negation. In contrast to
Sai et al. (2021), our work focuses on examining
different degrees of perturbations and how metrics
reflect these modifications towards maximal im-
pairment. Sai et al. (2021) further underline the
criticism of evaluating metrics according to their
correlation with human judgments, which was al-
ready criticized in an in-depth analysis by Mathur
et al. (2020) about applying correlation as an eval-
uation measure. Furthermore, our work does not
focus on correlation but solely on the scores which

1https://github.com/LazerLambda/MetricsComparison
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the different metrics report when confronted with
specific impairments to various degrees, how met-
rics behave in contrast to BLEU when a particular
part of speech is dropped, and how these metrics
react to negated sentences.

3 Materials and Methods

The metrics examined in this work are BERTScore
(Zhang et al., 2020), BLEURT (Sellam et al., 2020),
NUBIA (Kane et al., 2020), Mark-Evaluate Pe-
tersen (ME-P) (Mordido and Meinel, 2020), and
MoverScore (Zhao et al., 2019). As a baseline,
the BLEU score is always computed as well. The
examined metrics can be subdivided into model-
based metrics and metrics as trained models. NU-
BIA and BLEURT are trained models for evalu-
ating generated text, while the other metrics are
computed using specific formulas incorporating
language models. Detailed descriptions of the met-
rics are provided in Appendix A. Additionally to
describing the respective metric, an exact specifi-
cation of the setup and model-specific details are
reported in Appendix B.

4 Experiments

For all our experiments we used the CNN/Daily
Mail data set (Hermann et al., 2015) from
huggingface.datasets as a reference cor-
pus. Since it represents a corpus of high-quality
news articles, it is ideally suited to use the scores of
its original sentences as an upper bound for the eval-
uated metrics. The data set is in English entirely,
i.e. all our findings do not necessarily transfer to
other languages. We randomly sampled 2000 texts
from this corpus for all of the models, except for
NUBIA and ME-P.2 Resulting scores from artificial
impairments of different degrees can subsequently
be compared to this upper bound. The modifica-
tions3 include the following different commonly
observed flaws in NLG systems and the underlying
language models:

Word Swap Random word pairs are chosen and
swapped. The higher the intensity, the more ran-
dom the sequence of tokens becomes, such that
the original sequence should not be recognizable
anymore. This approach was inspired by Mordido
and Meinel (2020) and Semeniuta et al. (2019).

2NUBIA and ME-P are not optimized for use with GPUs,
which is why we resorted to only using 50 of the 2000 texts.

3Examples for each of the different modifications are pro-
vided in Appendix C.

Word Drop A random drop of words mimics
general quality deterioration. The larger the inten-
sity, the larger the drop probability gets. At the
highest level, only a few tokens are left. Similar to
word swap, this task was inspired by Mordido and
Meinel (2020) and Semeniuta et al. (2019).

Repetition As shown by Fu et al. (2021), repeti-
tion remains a problem in text generated by NLG
systems. A sequence at the end of the sentence
is chosen and repeatedly added to the sentence to
mimic this issue. With increasing intensity, the cho-
sen sequence is repeated more often and the overall
sentence becomes longer. At the maximum degree,
the sequence is repeated as many times as there are
tokens in the reference sentence.

Negation Sentences were negated to change the
semantics severely. A simple syntactic change of
the sentence has the power to shift the semantics
in an entirely different direction. The CheckList
library’s (Ribeiro et al., 2020) experimental4 nega-
tion function was utilized to apply this change.
Specifically, the root of the dependency grammar
tree is negated. This task was also used in the work
of Sai et al. (2021).

POS-Drop Words with different part-of-speech
(POS) tags were dropped to examine how the met-
rics behave when different kinds of words are re-
moved. We assume for our experiment that some
part-of-speech units like determiners have less in-
fluence over the semantic integrity than the removal
of verbs, nouns, or adjectives. SpaCy (Honnibal
et al., 2020) and NLTK (Bird et al., 2009) were used
to execute the different POS drops. The semantic-
invariant and n-gram-based BLEU score is com-
puted for each impairment, which we then use for
displaying the changes relative to modern metrics.
(cf. Fig. 2).

5 Results

We expected to see a strict monotonous decrease for
the impairments with increasing degree of severity.
For Negation we expected a sharp drop due to the
deterioration of semantic meaning. In the case
of POS-Drop, the loss of rather unimportant POS
(DET) should intuitively not lead to more damage
to the semantic integrity than the drop of important
POS (NOUN, VERB, ADJ), which is expected to
be reported by the metrics as well. Furthermore,

4See the respective notebook on GitHub.
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Figure 1: Development of the different metrics with increasing degrees of impairment
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the loss of different words should be reasonably
comparable to BLEU.

Results for continuous impairments (word drop,
word swap and repetition) are displayed in Figure 1,
while negation and POS drop are shown in Figure
2. For each type of impairment, we will report the
most striking observations.

Word Swap While BLEU exhibits, as expected,
a steady drop to almost zero, some metrics tend
to report higher values even when all words are
swapped and the order is essentially random. NU-
BIA and BLEURT both have minimum values
above 0.4, while MoverScore and BERTScore yield
values above 0.2 for the highest degree of impair-
ment. In contrast to this behavior, ME Petersen
is most sensitive to word order perturbation and
shows a sharp decline. It already drops to 0.47 at
the first level of word order perturbation and reports
a score of 0.01 for the random permutation.

Word Drop In this task, BLEU, MoverScore,
BERTScore, and ME-P drop continuously until
they eventually all (nearly) reach zero. ME-P
again drops the fastest, similar to the Word Swap
but stops at 0.05. A different behavior, however,
can be observed for BLEURT and NUBIA, which
again exhibit higher values compared to the rest.
BLEURT eventually drops to 0.14, and NUBIA
even increases from its lowest value at the third
level of impairment of 0.24 to 0.36 at the last level.

Repetition A less uniform behavior is observed
for the repetition impairment, where the val-
ues strongly diverge at the highest level. Both
BERTScore metrics monotonically decrease un-
til they eventually reach zero, ME-P also finally
drops to a value near zero (0.06). However, it does
not monotonically decrease, but drops sharply after

the first level. BLEU and MoverScore both mono-
tonically decrease strictly but end up way above
zero at around 0.2. BLEURT and NUBIA behave
entirely different, such that BLEURT seems to con-
verge to 0.76 from the second level onward and
does not show proper sensitivity to this issue, while
NUBIA again increases after the third level from
0.5 to 0.52.

POS-Drop The most exceptional deviation from
BLEU is observed in the removal of determiners
(cf. Fig. 2). Most metrics (BERTScore, ME-P,
BLEURT, and NUBIA) deviate positively from the
reference, implying that the loss of determiner is
less critical for the score, as expected. Adjectives,
nouns, and verbs did affect metrics in different
directions. Furthermore, BERTScore consistently
reported higher values than BLEU.

Negation Since negation is a severe impairment
to semantics, a significant drop in reported values
was expected. However, the lowest reported score
was observed in NUBIA, which dropped to an av-
erage of 0.65. BLEURT scores the second-lowest
at an average of 0.77. All other metrics report an
average between 0.81 and 0.86, including BLEU.

6 Discussion

Regarding word order perturbation, repetition,
and word drop, it was expected to see a strict
monotonous decline in the reported scores, which
was not met by a single metric in every task (al-
though ME-P came close to meeting the expecta-
tions). However, at least one metric dropped to a
value of zero or close to zero for every task. A
crucial result is a metric-dependent sensitivity to
word order perturbations and repetition. Especially
for NUBIA and BLEURT, two trained metrics, the
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Figure 2: Average Deviations (incl. Standard deviations) for all metrics relative to BLEU (for POS-Drop) and
Boxplots for the impact of Negation on all metrics.
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observed behavior is alarming. A further inves-
tigation of why both architectures behave differ-
ently from other representation-only-based metrics
is thus needed in the future.

Our POS-drop task showed that some tokens
influence scores more than others. Notably, the
removal of determiners, which was expected not to
influence the semantic integrity, did not lower the
scores of most metrics compared to BLEU. How-
ever, the syntactic integrity is affected, which must
be considered when interpreting respective met-
rics. Semantic-focused behavior like this was also
shown in Kaster et al. (2021) and was indicated
by Caglayan et al. (2020) regarding BERTScore.
No uniform behavior in most metrics was seen for
removing verbs, nouns, and adjectives. However,
sensitivity to semantic integrity is bound by the
underlying model’s capabilities, as observed in our
negation task. No metric reported a proper value
for the severe semantic modification of negation,
which aligns with Sai et al. (2021). The work of
Kassner and Schütze (2020) and Ettinger (2020)
already examined BERT regarding its understand-
ing of negation, and they showed a general lack of
understanding of the concept of negation.

The most significant limitation of this work is
the lack of expected ideal behavior when metrics
are confronted with modified samples. It should
be suspected that metrics show a higher drop in
quality over more severe modifications, though it is
unclear how humans would evaluate these specific
cases. This issue is especially crucial in the task
of negation since on the one hand side, it is not
clear how severe the metrics are intended to reflect
the impaired input, and on the other hand side it
is also unclear how humans would rate negated
sentences compared to the original sample. Con-
sequently, the lack of human evaluation has to be

considered when interpreting the results of this
work. The same issue must be stated for POS-Drop
tasks, in which human evaluation also becomes cru-
cial. Further, it has to be taken into consideration
that we use a feature described as experimental
by its creators5 for negating the sentences. An-
other arising issue, in this case, might be the rather
long and detailed sentence structure of news article
sentences, where the algorithm might be prone to
negate only parts of the sentences. This issue might
also arise for the POS-Drop case, since some POS
units might occur more often in this data set than
in other text.

7 Conclusion & Future work

Our results additionally underline that model-based
metrics should be used with caution. The most se-
vere drawback is the lack of sensitivity to negation,
for which no metric reported a proper value. Hence
further research in natural language understand-
ing is necessary to overcome this issue. Further-
more, state-of-the-art metrics like BLEURT and
NUBIA lacked sensitivity to repetition, which is a
severe issue in NLG. Although many metrics devi-
ated from the expected behavior, some others did
not. Thus, we endorse the proposal of Kaster et al.
(2021) to ensemble metrics, since some showed
strengths where others showed weaknesses, and
validate against the perturbation checklist package
Sai et al. (2021).

5See the respective notebook on GitHub.
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Appendix

A Metrics

BERTScore is a cosine-similarity based metric
for which the input is encoded using RoBERTa
embeddings (Liu et al., 2019). Recall and Preci-
sion are computed by summing over tokens and
computing maximum similarity to each token from
the other sentence. The result is averaged by
the sentence length. For Precision, the sentence
summed over is the reference sentence, and vice
versa for Recall. F1 measure is the harmonic
mean of the former two. Furthermore, inverse-
document-frequency (idf) weighting can be applied
to each maximal similarity in reference and preci-
sion, which is computed from the reference corpus.
We use both a configuration without and with idf-
weighting in our experiments.

MoverScore (MS) is based on the Word Mover’s
Distance (Kusner et al., 2015), an instance of Earth
Mover’s Distance (Rubner et al., 2000). It com-
putes the minimal transportation cost necessary to
transform one sentence into the other based on the
distance between n-gram representations, addition-
ally considering relative idf-weights. Representa-
tions are extracted from the last five layers of a
DistilBERT model (Sanh et al., 2020).

Mark-Evaluate Petersen (ME-P, Mordido and
Meinel, 2020) utilizes population estimators
(Ricker, 1975) to score the quality of candidate-
reference pairs. Since the population size is known
prior to the estimate, the capture mechanism is
based on whether a vector is inside the k-nearest-
neighborhood of the opposite embedding set. The
assumption that each sample is uniformly likely to
be captured is intentionally violated. The deviation
between known and estimated population size is
computed to obtain the final score of the metric.

BLEURT (Sellam et al., 2020), in contrast to
previous models, is a BERT model (RemBERT ,
Chung et al., 2020) specifically trained for evalua-
tion. For adapting the model to the evaluation task,
an additional training step is introduced in which
artificially altered sentences are fed to the model
alongside with the original ones to augment the
evaluation process. Modification include dropping
words from sentences, back-translating them or re-
placing random words with BERT predictions. A
quality score can be computed based on different
signals stemming from these alterations. These

signals include metrics like BLEU, BERTScore
and ROUGE, back-translation likelihood, a binary
back-translation flag as well as entailment-flags.
Further, the model is also fine-tuned on human
ratings.

NUBIA (NeUral Based InterchangeAbility, Kane
et al., 2020) is an ensemble metric consisting of
three transformer-based models focussing on dif-
ferent aspects of the assessment: A pre-trained
RoBERTa model, finetuned on STS-B (Cer et al.,
2017), another pre-trained RoBERTa model, fine-
tuned on MNLI (Williams et al., 2018), and a pre-
trained GPT-2 model (Radford et al., 2019). The
results are combined in an aggregator module and
subsequently calibrated to fit in [0, 1].
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B Technical Setup

Table 1: Overview on the technical setup of the evaluated metrics.
♡ Available on GitHub
♢ As recommended in the official implementation

Metric Underlying Model Remarks
BERTScore (+ idf) microsoft/deberta-xlarge-mnli rescaled, hug_trns = 4.14.1, vers. = 0.3.11
BLEURT BLEURT-20 finetuned RemBERT
Mark-Evaluate BERT-Base-MNLI♡ k = 1 (kNN)
MoverScore distilbert-base-uncased♢ n = 1 (n-gram)

NUBIA
roberta-sts
roberta-mnli
gpt-2 sequences are clipped to max 1024 tokens

C Perturbation Examples

Table 2: Examples of the different deteriorations. All other necessary details needed to reproduce our experiments
can be found in the GitHub repository.

Output

Original He’s quick, he’s a very complete player and in
great form.

Negation He’s quick, he’s not a very complete player and in
great form.

Repetition

He ’s quick, he ’s a very complete player and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form.

Word Swap very complete a, he ’s quick He ’s and player great
in form.

Word Drop , player.
Part of Speech Drop (ADJ) He’s he’s a very player and in form.
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