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Abstract

BPE tokenization merges characters into longer
tokens by finding frequently occurring contigu-
ous patterns within the word boundary. An in-
tuitive relaxation would be to extend a BPE vo-
cabulary with multi-word expressions (MWEs):
bigrams (in_a), trigrams (out_of_the), and
skip-grams (he·his). In the context of Neu-
ral Machine Translation (NMT), we replace
the least frequent subword/whole-word tokens
with the most frequent MWEs. We find that
these modifications to BPE end up hurting the
model, resulting in a net drop of BLEU and
chrF scores across two language pairs. We
observe that naively extending BPE beyond
word boundaries results in incoherent tokens
which are themselves better represented as in-
dividual words. Moreover, we find that Point-
wise Mutual Information (PMI) instead of fre-
quency finds better MWEs (e.g., New_Y ork,
Statue_of_Liberty, neither·nor) which
consistently improves translation performance.
We release all code at https://github.
com/pegasus-lynx/mwe-bpe.

1 Introduction

Subword tokenization algorithms like Byte Pair En-
coding (BPE) (Sennrich et al., 2016) group together
frequently occurring patterns, such as -ing or -ly,
into individual tokens. The success of subword to-
kenization points to the benefit in modeling longer
patterns, even though any given text can be repre-
sented simply as a sequence of characters. This
paper stretches the motivation further by allowing
BPE to cross word boundaries. In the context of
NMT, we find that the straightforward way to find
MWEs by BPE (sorted by frequency) hurts perfor-
mance whereas sorting by PMI scores improves
scores. We hypothesize and discuss a reason for
these observations and provide further recommen-
dations on using MWEs with BPE.

N-gram tokens have been used in traditional
NLP for a long time and with much success. For

example (Table 1), the bigram New York can be a
concise yet useful feature in a Named Entity Recog-
nition task. Similarly, a Spanish-English Machine
Translation (MT) model might benefit from having
the bigram te amo or its trigram translation I love
you in its vocabulary. Finally, a model’s vocabu-
lary could even extend to non-contiguous tokens or
k-skip-n-grams such as neither · nor. This token
reappears in several contexts e.g. neither tea nor
coffee and neither here nor there (underlined words
replace the · skip).

Raw He lives in New York .
Tok He_ lives_ in_ New_York_ ._

Raw I love the Statue of Liberty!
Tok I_ love_ the_ Statue_of_Liberty_ !_

Raw She lost her bag .
Tok She_ · her_ lost_ <SKIP> bag_ ._

Table 1: Example tokenizations of MWEs (bigrams,
trigrams, skip-grams) in our implementation. Raw =
original sentence, Tok = tokenized form. Typical BPE
tokens are colored yellow and MWEs are colored green.

This paper experiments with two ways to expand
BPE with MWEs for the task of NMT. Concretely,
we promise the following contributions:

1. We find, counter-intuitively, that the straight-
forward frequency-based BPE, when applied
beyond words, performs worse than baseline
on NMT across two language pairs (§3).

2. We hypothesize that this negative result is
caused by the constituents of such high fre-
quency MWEs (e.g. in_the) combining in
many diverse ways, rendering such tokens in-
coherent (§4.1).

3. We show that PMI-based BPE for MWEs re-
verses the drop and improves BLEU scores.
We offer more recommendations on where
and how to use MWEs with BPE (§4.2).

* Equal Contribution.
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Lang. Pair Hi → En De → En
Split Dev Test Dev Test

sacre chrF sacre chrF sacre chrF sacre chrF
Metric BLEU β = 2 BLEU β = 2 BLEU β = 2 BLEU β = 2

Baseline 20.8 49.5 22.0 52.3 39.1 62.4 35.6 59.1
Unigram 19.5 49.0 21.2 51.5 36.5 60.3 32.4 56.8

BPE+ngms 19.5 49.0 21.2 51.6 38.7 62.2 35.3 58.9
BPE+n/sgms 18.4 48.1 20.7 51.3 38.4 62.1 35.2 58.9

PMI methods
Bigrams 20.6 49.2 22.2 52.6 39.1 62.4 35.8 59.3
Trigrams 20.7 49.5 22.0 52.3 39.0 62.2 35.7 59.0
N-grams 21.2 50.0 22.1 52.6 38.9 62.3 35.8 59.1
Skip-grams 20.6 49.9 22.1 52.4 38.7 62.1 35.9 59.2

Table 2: Different methods of adding MWEs to a BPE vocabulary on NMT across two language pairs.

2 Methods

MWEs have been commonly used in traditional
NLP but rarely in the age of transformers and sub-
word vocabularies. Here we describe two kinds of
ways to add MWEs to a BPE vocabulary.

2.1 BPE beyond words

Our baseline is the vanilla BPE tokenization
scheme which starts from characters and iteratively
adds the most frequent subwords to vocabulary.
An intuitive extension to BPE is BPE+ngms, i.e.,
allowing BPE to choose between not just adding
subwords but also frequently occurring n-grams
(e.g., of_the appears at 163rd position in vocabu-
lary). This paper limits n-grams to bigrams and
trigrams.

Besides continuous multi-word expressions, we
also experiment with discontinuous MWEs, i.e., k-
skip-n-grams, which we refer to concisely as skip-
grams. In particular, we focus on 1-skip-3-grams,
e.g., neither · nor, I · you. We replace a 1-skip-3-
gram (w1 · w2) occurrence with (w12 · <SKIP>)
where w12 is a new token representing the occur-
rence of this specific 1-skip-3-gram, and <SKIP>
is another new token but shared by all skip-grams
to indicate that the skip-gram ends here. The last
row of Table 1 shows an example tokenization with
skip-grams. In BPE+n/sgms, we allow frequent
skip-grams (e.g., ( · ); neither · nor ) to also be part
of the vocabulary.

2.2 Adding MWEs with PMI

As hinted in Section 1, the intuitive extension to
BPE does not work well in practice. Instead of raw

frequency, here we find MWEs using a common
technique of finding word collocations: Pointwise
Mutual Information (PMI), which is a measure of
the association between two word types in text. We
calculate PMI of n-grams as:

PMI(a1, ..., an) = log(
P (a1, ..., an)∏n

i=1 P (ai)
)

where ai are unigrams (words) from the corpus;

P (ai) denote their independent probabilities; and
P (ai, ...an) denotes joint probability of n-grams.
In this paper, we report experiments with only Bi-
grams (n = 2), Trigrams (n = 3), and their
combination N-grams.

We also experiment with Skip-grams or 1-skip-
3-grams (w1 ·w2) from our corpus in the same way
as bigrams (w1w2), ordered by PMI. We identify
candidate word pairs separated by one word (which
we depict by · ) and sort them based on PMI scores,
some of which are deemed good enough to replace
the least frequent subwords in the BPE vocabulary.

We find that the skip-grams obtained by simply
ordering by PMI are often better suited to be tri-
grams, e.g., the · in Statue · Liberty, a high-ranked
candidate skip-gram, is almost always of. To dis-
entangle such skip-grams, we filter out candidates
where the middle (skipped) word has a spread-out
distribution: the skipped word in I · you could be
replaced with several words like love, hate, or miss.
In practice, we filter these by enforcing (1) a lower
limit (15) on the number of unique words which
replace the · token, and (2) an upper limit on the
probability (10%) of the most frequently occurring
skipped token for the particular skip-gram.
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3 Datasets

We use the IIT Bombay Hindi-English parallel cor-
pus v3.0 (Kunchukuttan et al., 2018), tokenized
using IndicNLPLibrary (Kunchukuttan, 2020) and
Moses Tokenizer (Koehn et al., 2007) respectively.
The Train : Dev : Test splits have 1.6M : 0.5K :
2.3K sentences respectively.

For German-English, the datasets are retreived
from the News Translation task of WMT2019 (Bar-
rault et al., 2019). The Train : Dev : Test splits
have 4.5M : 3K : 2K sentences respectively.

While we use the originally mentioned training
set for our main results in Table 2, we found several
noisy sentence pairs in the training dataset (the dev
and test set were clean). Some such sentences had
English characters (latin alphabet) in the source
(Hindi) side and others had non-English characters
on the target (English) side. We filtered out 250K
sentence pairs where either the source side had
non-Hindi characters or the target side had non-
English characters, wherein we count the following
near-universal symbols as part of either language:
., ()[]! : −”′;<>?&˘@

4 Experiments

While MWEs can augment the subword vocabulary
of any NLP model, this short paper focuses on the
task of NMT. Following Gowda and May (2020),
we fix the transformer architecture (Vaswani et al.,
2017) and train models with different vocabularies
from scratch.

Our baseline vocabulary is BPE with 8K sub-
word tokens for Hi-En and 16K for De-En. Each of
our methods maintains the same vocabulary size,
replacing the least frequently occurring subwords
with corresponding n-grams or skip-grams. We
show representative MWEs learned from corpora
in Table 4 alongside the coverage of (PMI) MWEs
across language pairs.

We also compare with a Unigram (Kudo, 2018)
SentencePiece vocabulary of 8K tokens each on
source and target sides, with split_by_whitespace
flag set to false (Kudo and Richardson, 2018).
This allows the Unigram method to go beyond the
word boundary and add n-grams to its vocabulary.

Our NMT model is a 6 layer transformer
encoder-decoder (Vaswani et al., 2017) that has
8 attention heads, 512 hidden vector units, and a
feed forward intermediate size of 2048, with GELU
activation. We use label smoothing at 0.1, and a
dropout rate of 0.1. We use the Adam optimizer

with a controlled learning rate that warms up for
16K steps followed by a decay rate recommended
for training transformer models. We trim longer
sequences to a maximum of 512 tokens after BPE.
Each model is trained from scratch, and the hyper-
parameters (per language pair) are chosen by grid
search to optimize the baseline validation BLEU.

We train all models for up to 100K steps (batch
size = 24K tokens) and report sacreBLEU (Post,
2018) and chrF (β = 2) scores (Popović, 2015).

The number of tokens replaced in the original
BPE vocabulary with a corresponding MWE or-
dered by PMI, is also a hyperparameter optimized
by grid search between 1.25% to 10% of the vo-
cabulary size (Hi-En models performing best when
1.25% tokens were replaced and De-En models per-
forming best at 2.5% for Bigrams/Trigrams and 5%
for Skipgrams). We make sure to not replace any
rare base characters like Q or @.

For ablations (Section 5.2) with limited com-
pute budget, we train Hi-En models for up to 200K
steps.We apply a patience of 10 validations, each
1000 update steps apart. To decode, we average the
best 3 checkpoints, and use a beam size of 4 with
length penalty of 0.6. We use NLCodec and RTG
libraries (Gowda et al., 2021) and contribute our
extensions to them as well.

5 Results and Discussion

Table 2 shows our main results. We find that naively
extending BPE beyond words harms the model, and
Unigram likewise fails to consistently outperform
the baseline. On the other hand, adding MWEs
using PMI gives the best performance across lan-
guage pairs and metrics.

Moreover, since the methods of extracting
MWEs is purely emprirical and is language agnos-
tic, the results and observations can be extended
for different language pairs.

We now attempt to reason why BPE fails be-
yond word boundaries in its vanilla form, and why
switching to PMI solves the problem. We also
study where does it help the most to add MWEs.
Unless noted otherwise, the analysis is reported on
the Hi-En dataset.

5.1 Words combine in Diverse ways

Empirically, we observe (Table 2) that BPE with
high frequency MWE tokens sees a drop in perfor-
mance whereas the PMI counterpart as well as the
original baseline (within word boundary) performs
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Train Dev Test

Hi-En IITB-Training (1.3M) IITB-Dev (0.5K) IITB-Test (2.5K)

Europarl v10 (1.8M)
De-En WMT13CommonCrawl (2.4M) NewsTest18 (3K) NewsTest19 (2K)

NewsCommentary v14 (0.3M)

Table 3: Training, validation and testing datasets along with sentence count in each set.

from Hi-En from De-En
to De-En to Hi-En

Bi 1.55% 1.30%
Tri 0.30% 0.40%
Skip 13.34% 13.45%

Bigrams Trigrams Skip-Grams Freq

per cent New York City the · of of the
New York European Central Bank a · of do not

Prime Minister Italian Prime Minister ( · ) they are
Middle East behind closed doors was · to as well as

United Nations former Prime Minister not · to one of the

Table 4: Left: Coverage of the top 5 most frequent English MWEs (PMI-based), extracted from the first language
pair and (coverage) evaluated over the second. Coverage of a token is defined as the fraction of target (English)
sentences containing the token. Right: The top five MWEs of each type (PMI except when labelled Freq).

well. What then happens at the word boundary that
the BPE algorithm stops working? We hypothesize
that this is the result of words combining in more
diverse ways than subwords.

BPE beyond word boundary adds frequently oc-
curring n-grams to its vocabulary such as in_the
which occurs in over a tenth of all test sentences.
Despite adding it as a separate token to the vo-
cabulary, the average BLEU on this subset of test
sentences drops compared to the baseline (20.0 vs
21.8)! One factor for this result could be that the
constituents of in_the combine in more ways than
one. The word in appears as the ending of over
30 n-grams (that_in, was_in, . . . ) and the word
the appears as the beginning of 200 other n-grams
(the_people, the_first, . . . ) - all of which com-
bine to a total of over another tenth of the test set,
more than the frequency of in_the itself.

Such versatile combinatorics is rarely observed
at the subword level. Suffixes like ing almost never
appear as prefixes whereas prefixes like de almost
never appear as suffixes. When such subwords com-
bine to form longer tokens, they generally retain
a coherent meaning, unlike n-grams like in_the.
Finally, this hypothesis may explain why MWEs
ordered by PMI help improve MT scores – they are
by definition units that co-occur as a coherent unit.
Indeed, the MWEs thus found (e.g. New_Y ork,
per_cent) include constituents which exclusively
form only these tokens.

To summarize, we argue that BPE stops working
at word boundaries because word pairs rarely, un-

like subwords, combine into meaningful units that
deserve a unique representation. We find convinc-
ing arguments from sentence-level BLEU scores
and the number of different ways the constituents
of different tokens occur, more of which are re-
ported in supplementary materials.

5.2 Where do MWEs help NMT?

Here, we conduct ablations for the PMI method
(on a smaller batch size of 1K tokens, on the Hi-En
dataset) to determine whether MWEs help more
for machine translation on the source side (Hi), on
the target side (En), or both? Table 2 reports on the
‘both’ setting but here we revisit this design choice.
Table 5 reports BLEU scores with each such variant.
Bold-faced cells indicate the best performing (on
dev set) variant for every row. We observe that
continuous MWEs (bigrams and trigrams) benefit
more on the source-side whereas discontinuous
MWEs (skip-grams) help the most when applied to
both source and target side. Note that, since De-En
has been usually used in a triple shared vocabulary
setting, we followed the same and thereby it must
always follow the ‘both’ model.

Finally, we show in Figure 1 some representative
examples of sentences with MWEs (particularly,
the skip-grams) from the PMI-BPE Hi-En model’s
vocabulary. The first two rows show examples
where the skip-gram indeed occurred in the refer-
ence, hence it helped the model. The last row shows
how the model overuses the skip-gram, i.e. using
skip-gram instead of separate tokens, and gets a
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Figure 1: Qualitative error analysis over Hi-En test set, showing examples comparing the Baseline and the Skip-
Gram augmented model, where the skip-gram (This · is) occurs in the latter’s predictions.

Target (En) Source (Hi) Both

Bi 14.4 / 14.8 15.9 / 16.0 15.8 / 15.3
Tri 14.7 / 15.4 15.5 / 15.5 15.4 / 15.2
Skip 15.3 / 15.2 15.1 / 15.1 15.5 / 15.0

Table 5: Do MWEs help more when added to the source-
side, the target-side or both? Each cell reports Dev/Test
BLEU scores over Hi-En dataset only. Baseline scores
without MWEs are 15.6 / 14.4 respectively.

translation wrong thus hurting the score as the ref-
erence sentence does not use the skip-gram. We
note that BLEU itself relies only on the presence or
absence of contiguous n-grams, and may unfairly
penalize paraphrased outputs such as these.

6 Related Work

Attempts at merging NMT with MWEs typically
include pairing up the network with a phrase
based SMT system (Wang et al., 2017; Park and
Tsvetkov, 2019; Lample et al., 2018) and hier-
archical phrases are expressive enough to cover
discontinuous MWEs (Chiang, 2007). Zaninello
and Birch (2020) add manually annotated MWEs
aligned across the source and target language (En-
It). However, this might not work for low resource
languages, hence we extract MWEs automatically
with PMI. They count discontinuous MWEs, one
of our main contributions, among future work.

Multi-word tokens have a proven track record
in NLP. Skip-gram tokens, for instance, have al-
ready been used in phrase-based machine trans-
lation (Lample et al., 2018; Park and Tsvetkov,
2019; Wang et al., 2017) to tackle cases where cer-
tain phrases in a source language (duonianlai in
Chinese) are better represented as skip-grams in a
target language (over the last · years in English)
(Chiang, 2007). Our work revisits these ideas and

adapts them to a transformer-based NLP model re-
lying on subword segmentation. There also exists
prior work on defining, counting, and evaluating k-
skip-n-grams (Guthrie et al., 2006; Pickhardt et al.,
2014; Ptaszynski et al., 2014), although unrelated
to the task of NMT. Finally, readers interested in
other applications of extracting MWEs via PMI
scores may refer to Levine et al. (2021) where sim-
ilar techniques are used to efficiently mask tokens
while pretraining BERT (Devlin et al., 2019).

7 Conclusion

This paper systematically studies the impact of ex-
tending a BPE vocabulary with multi-word expres-
sions for neural machine translation. Our results
point to the vast unexplored scope of different gran-
ularities of tokenization that can be exploited by
NLP systems. Notably, our methods extend to not
only longer contiguous tokens like n-grams but also
skip-grams, which have been relatively unexplored
with transformer-based NLP.

In future work, we intend to compare our PMI-
based methods to human-annotated MWEs as well
as to recent workarounds to interfering tokenization
schemes such as subword regularization or BPE
dropout (Provilkov et al., 2020). We also wish to
extend experiments to NLP tasks beyond NMT, and
the scope of our tokens to, say, variable-skip-grams
which allow for any number of skips.
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Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,

Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-

176



ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Jan A. Botha and Phil Blunsom. 2013. Adaptor Gram-
mars for learning non-concatenative morphology. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 345–
356, Seattle, Washington, USA. Association for Com-
putational Linguistics.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Thamme Gowda, Zhao Zhang, Chris A Mattmann, and
Jonathan May. 2021. Many-to-english machine trans-
lation tools, data, and pretrained models.

David Guthrie, Ben Allison, Wei Liu, Louise Guthrie,
and Yorick Wilks. 2006. A closer look at skip-gram
modelling. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC’06), Genoa, Italy. European Language Re-
sources Association (ELRA).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A Visualizing the top-scoring MWEs

We already report highest scoring English MWEs
throughout the paper, particularly in Table 4. In
Figure 2, we enumerate similarly the highest scor-
ing bigrams, trigrams, and skip-grams from the
other two languages: German and Hindi.

B Scope of MWEs

As the name suggests, MWEs include only word
level expressions i.e., each constituent should be a
whole word. This is a less expressive but more in-
tuitive approach to going beyond word boundaries
with BPE. For example, our implementation does
not allow for tokens that combine the ending of one
word and the beginning of another.

Note that our implementation also allows for
variable length skip-grams (Ptaszynski et al., 2011),
represented as (w1 ∗ w2). Instead of skipping a
single token, we can allow skipping any number of
tokens and still map to the same skip-gram, e.g.,
neither ∗ nor → neither do I drink nor do I smoke.
Such tokens would be much more expressive but
also much computationally expensive to find, and
would require some simplifying assumptions such
as disallowing nested skip-grams. We leave such
experiments to future work.

Note that we do not merge bigrams, trigrams,
and skip-grams. PMI scores across n-grams and
skip-grams are not comparable, hence they can
not be combined in a straightforward way. Such
an amalgamation may indeed give an even bigger
boost but requires grid search over multiple hyper-
parameters corresponding to the fraction of each
kind of MWE to be included. Such experiments
warrant an extensive compute budget, so we leave
this to future work.

We wish to implement even newer forms of tok-
enization, particularly extending skip-gram tokens.

Figure 2: Top scoring multi-word expressions extracted
from the training corpora.

While this paper limits skip-grams to only act at
the word level, one could also imagine character or
subword level skip-grams, such as r-n serving as
a skip-gram common to both run and ran. Finally,
k-skip-n-gram tokens need not be limited to a fixed
k, allowing for a variable number of tokens to be
skipped, similar to a hierarchical phrase translation
system (Chiang, 2007). Such variable length skips
can also be useful at the character level, e.g., k-t-b
as a skip-gram for both kitaab and kutub (Botha
and Blunsom, 2013).
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