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Abstract
Current state-of-the-art NLP systems use large
neural networks that require extensive computa-
tional resources for training. Inspired by human
knowledge acquisition, researchers have pro-
posed curriculum learning - sequencing tasks
(task-based curricula) or ordering and sampling
the datasets (data-based curricula) that facilitate
training. This work investigates the benefits of
data-based curriculum learning for large lan-
guage models such as BERT and T5. We exper-
iment with various curricula based on complex-
ity measures and different sampling strategies.
Extensive experiments on several NLP tasks
show that curricula based on various complex-
ity measures rarely have any benefits, while
random sampling performs either as well or
better than curricula.

1 Introduction

In the last years state-of-art results in natural lan-
guage processing (NLP) are often obtained with
Transformer-like architectures based on the self-
attention mechanism (Vaswani et al., 2017) such as
BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020), which could have
billions of parameters. Due to many parameters,
these architectures require lots of time and hard-
ware resources to be trained.

Curriculum learning (CL) is one of the popular
methods to reduce training time and increase the
resulting quality of the model. Inspired by the im-
portance of adequately ordering information when
teaching humans (Avrahami et al., 1997), curricu-
lum learning increases the difficulty of training
samples shown to the model over time (Elman,
1993). Previous studies have demonstrated that
curriculum learning significantly impacts training
time and quality in different machine learning do-
mains, such as computer vision (Soviany, 2020)
and reinforcement learning (Narvekar et al., 2020).
In NLP, some results hint that CL might be benefi-
cial (Platanios et al., 2019; Xu et al., 2020; Kocmi

and Bojar, 2017); however, these results are not as
optimistic as in reinforcement learning setup.

We suggest dividing recent research in curricu-
lum learning into two main categories: task-driven
curriculum and data-driven curriculum. The idea
of the task-driven curriculum was inspired by hu-
man behavior. First, the model learns how to solve
a simple task, and then the difficulty is gradually
increased. This type of curriculum proposed by
Bengio et al. (2009) is considered to be classical,
and a majority of curriculum-related results are ob-
tained in this framework. Alternatively to the task-
driven curriculum, some curricula try to use some
form of filtering or sorting of training data that
could facilitate learning a model on a given task.
We suggest calling these curricula data-driven and
distinguishing them from the classical task-based
approach.

This paper attempts to understand when data-
driven curriculum learning works for transformer-
based language models. Generally, data-driven
curriculum learning is organized in two steps: first,
estimating the complexity for the elements that
comprise the dataset; second, designing a sampling
strategy, thus forming a curriculum. In the first
part of the paper, we list potentially useful natural
language processing complexity measures. The
second part discusses possible sampling strategies
that might apply to corresponding complexity mea-
sures. We run extensive experiments with different
metrics and sampling strategies on three classes of
NLP tasks: unsupervised learning with masked lan-
guage modeling, text classification, and machine
translation. Our experiments show that data-driven
curriculum learning does not give quality increase
or time reduction on all metric-sampling strategy
setups and often makes results even worse.

2 Metrics

The first important part of the curriculum learning
pipeline is measuring the complexity of samples
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(a) Sentiment140 with sort-merge sampler for all
complexity measures.

(b) Sentiment140 with max word rank complexity
measure for all samplers.

(c) Hyperpartisan News with sort-shuffle samples
for all complexity measures

(d) Hyperpartisan News with max word rank com-
plexity measure for all samplers.

Figure 1: Pre-trained BERT fine-tuned on Sentiment140 and Hyperpartisan News Detection datasets. Accuracy of
the classifier as a function of the number of training steps.

for a given dataset. Texts could have a complex
structure, and one can measure their complexity in
different ways. A variety of heuristically motivated
methods is accompanied by several metrics based
on specific aspects of information theory. For a
review of heuristic text complexity measures such
as length of TF-IDF (Aizawa, 2003) we address
the reader to Appendix A. In this paper, we also
explore the metrics initially proposed by Ay et al.
(2006) to measure the complexity of finite systems
and try to see if one could apply these metrics to
NLP tasks.

Ay et al. (2006) observes that for finite systems,
a set of parts impacts the complexity of the sys-
tem as well as inter-dependencies of the parts. In
the context of NLP, this means that text is more
than just a bag of words. The authors propose
four different metrics to estimate the complexity
of a system. However, one of these metrics maxi-
mizes on single-letter texts, such as "Aaaaaaaaa,"
while the second was created to measure cyclic

sequences and does not apply to texts. Thus we
experiment with two other metrics, namely, Tononi,
Sporns, and Edelman (TSE) (Tononi et al., 1994)
and excess entropy (EE), and adapt them to the
complexity of texts. For the calculation of TSE and
EE for NLP we address the reader to Appendix B.

3 Samplers

The second important part of curriculum learning is
the sampling strategy (or sampler) - the algorithm
deciding which samples should be shown to the
model at which moment. Let us observe existing
curricula and suggest some new ones.

Competence-based. CB
A competence-based curriculum, offered by Platan-
ios et al. (2019), uniformly samples data from in-
creasing dataset’s prefix. Competence is a function
c(t), which defines the size of the dataset prefix.

c(t) = min


1,

√

t
1− c20
T

+ c20
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Where T - total number of steps, t - current step,
c0 - hyperparameter set to 0.01.

Hyperbolic. HYP
The main idea of this sampler is to increase average
batch complexity through time. All samples are
split by complexity into N sequential buckets with
equal size. Training time is divided into N epochs
and the probability of sampling the element from
the j-th bucket on the i-th epoch is proportional to
the distance between j and i.

Pri(j) =
c

|j − i|0.5

Where Pri(j) - probability to sample from j-th
bucket on the i-th epoch, c - constant to guarantee
that sum of all probabilities equals to 1.

Difficulty-based. DB
This sampler is a reversed version of the
competence-based one. A difficulty-based sampler
takes elements from a linearly decreasing suffix
instead of sampling from a gradually increasing
prefix.

Sort-shuffle. SS
All previously described samplers do not guarantee
that the model would see each element in the train-
ing data. Sort-shuffle samples each element exactly
once, randomly splitting the data into batches and
sorting by average complexity.

Sort-merge. SM
Many complexity estimates correlate with the
length of the text. The main idea of a sort-merge
sampler is to remove this correlation and train the
model on stable length distribution. This algorithm
consists of four main steps: sort dataset by length;
sequentially split into buckets; sort each bucket by
a complexity metric; form i-th batch from i-th el-
ements from each bucket. Like a sequential one,
the sort-merge sampler shows each element to the
model exactly once.

Equipped with the list of metrics and curriculum
samplers, we can discuss our experimental results.

4 Experiments

We perform our experiments on three NLP tasks:
text classification, machine translation (NMT), and
masked language modeling (MLM). Here we dis-
cuss the first task of classification in detail. The
extensive results of the experiments are available
in Appendix C. All the experiments are performed
with the HuggingFace library (Wolf et al., 2020),
which provides the models with their setups, such

as hyperparameters and tokenizers. We did not
change default parameters in our experiment un-
less specifically stated otherwise. Thus, the dataset
and the model specify every experiment. We use
the base version of the BERT model (Devlin et al.,
2019) for MLM and classification, and the small
version of the T5 model (Raffel et al., 2020) for ma-
chine translation. Experiments were performed on
BooksCorpus1 dataset for MLM, Sentiment1402

and Hyperpartisan News Detection3 for classifica-
tion, and WMT16-en-de4 for machine translation.
To estimate the curriculum’s convergence speed,
we calculate the average number of steps to reach
a threshold that is 10% lower than the resulting
saturation quality metric for every problem.

4.1 Text Classification

Figure 1 summarizes the experiments with BERT
for text classification. Neither different samplers
nor complexity measures improve a BERT-based
classifier’s resulting accuracy.

4.2 Masked Language Modelling

Figure 2 shows the results of MLM pretraining of
BERT on BooksCorpus. Irrespective of sampling,
the complexity measures have similar ranking in
terms of their performance on MLM: length, like-
lihood, TSE, EE, TF-IDF, maximum word rank.
Since sorted sampler takes length into account by
design, it is not included in the corresponding plots.
Data-based curricula show inferior results in com-
parison with the baseline.

4.3 Neural Machine Translation

Table 1 shows the experiments with T5 model (Raf-
fel et al., 2020) for machine translation and various
curricula. We use the BLEU metric to estimate the
quality of the resulting models. We calculate the
average BLEU score over ten validations at satu-
ration. Once again, curriculum learning does not
give any notable benefits.

5 Discussion

We try to interpret obtained results cautiously.
Though Platanios et al. (2019) report that

1https://huggingface.co/datasets/
bookcorpus

2https://www.kaggle.com/kazanova/
sentiment140

3https://huggingface.co/datasets/
hyperpartisan_news_detection

4https://huggingface.co/datasets/wmt16
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(a) Competence-based (b) Difficulty-based (c) Hyperbolic

(d) Sort-shuffle (e) Sort-merge

Figure 2: Loss function dependency on the number of training steps on MLM for BooksCorpus dataset during the
first 40k steps of training. Every plot depicts results for six different complexity estimates combined with a specific
sampler.

Table 1: The average BLEU score from 50k to 100k
steps on WMT16 dataset. Results better than the base-
line are highlighted. ’-’ denotes the cases when com-
plexity measure and sampler are not compatible.

Metrics Samplers
CB DB Hyp SS SM

baseline 18.3
length 10.1 17.4 16.3 - -
TSE 10.3 18.4 16.8 13.8 14.8
EE 10.2 18.2 16.9 13.3 15.0

competence-based sampling is beneficial for re-
current neural networks, we could not reproduce
this result in transformer-based architectures. We
also run experiments to check whether data-based
curricula could work on non-transformer architec-
tures. The results do not look encouraging; see
Appendix C.2.

Curriculum learning depends on subtle factors,
for example, a correct choice of hyperparameters.
It is hard to check all possible values of hyperpa-

rameters, yet to the best of our capabilities, we
address this issue in Appendix C.3. The results do
not seem to depend on the learning rate, and once
again, curriculum learning shows no benefits.

At this point, we can only conclusively say two
things: (1) a deeper investigation of the underlying
information theoretic principles that stand behind
curriculum learning is badly needed; (2) until we
better understand these principles, data-based cur-
riculum learning is a gamble with very low odds to
gain either speed or resulting performance.

6 Conclusion

In this work, we ran extensive experiments with
curriculum learning for transformer-based architec-
tures on three NLP tasks: masked language model-
ing, text classification, and machine translation. We
demonstrate that curricula do not help in the stan-
dard training setting and sometimes even worsen
results.
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A Heuristic Approaches to Text
Complexity

The first idea is to determine the complexity of
the text as its length. Despite its simplicity, this
method is used in different works (Platanios et al.,
2019; Kocmi and Bojar, 2017). The next family of
approaches boils down to phonological, morpho-
logical, lexical, or syntactic metrics derived with
some form of expert linguistic knowledge. How-
ever, van der Sluis and van den Broek (2010) used
Wikipedia and Simple Wikipedia corpora to demon-
strate that language-based metrics do not correlate
with the common sense text complexity. The third
class of methods treats text as a bag of words and
builds metrics based on the frequency analysis. For
example, every word gets a rank equal to its posi-
tion in the dictionary sorted by the number of word
appearances in a corpus. In this case, complexity
may be measured as a maximum rank among the
words in a bag (Kocmi and Bojar, 2017). This met-
ric is called max frequency rank. Another possible
metric is called likelihood. The metric calculates
the probability of the text under the assumption
that all tokens are independent, just by multiply-
ing probabilities of all tokens in the text (Platanios
et al., 2019). Another metric from this group is
TF-IDF (Aizawa, 2003), which is widely used in
search systems. Finally, the last array of methods
is based on using different neural network losses
as a complexity measure of a sample.

B Using Information Theory for Text
Complexity

Let XV = (Xv1, Xv2, . . .) be a sequence of ran-
dom variables from set V = (v1, v2, . . .), and A
is a subset of V , then XA is a subsequence of XV

with elements from A. Let’s determine H(XA) as
entropy of sequence XA. However, texts consist of
words or tokens, not random variables. We propose
the following procedure of transforming texts into
random variable sequences. For each token in posi-
tion i we compute the percentage of texts with this
token on the same position and replace the original
token with binary distribution with a probability of
one equal to the calculated percentage. After trans-
forming text into a sequence of random variables,
we can compute its entropy.

H(XV ) = H(Xv1) +H(Xv2|Xv1)

+ H(Xv3|Xv2, Xv1) + . . .

If one wants to apply this formula, one must
compute entropy for many different conditional
distributions while these distributions depend on
the order of tokens in a text. First, direct appli-
cation of the formula would overfit a specific text
since all texts are different in a corpus. Second,
such computation could not be carried out in a rea-
sonable time. The limit context for conditional
distributions to the nearest neighbors one obtains
the following formula

H(XV ) = H(Xv1) +
#V∑

i=2

H(Xvi |Xvi−1)

Using this approximation for entropy one can
compute excess entropy (EE) and the complex-
ity measure Tononi, Sporns and Edelman (TSE),
(Tononi et al., 1994) as they are formulated by Ay
et al. (2006)

EE(XV ) =

[∑

v∈V
H(XV \v)

]
− (n− 1)H(XV ),

(1)

TSE(XV ) =
n−1∑

k=1

k

n
C(k)(XV ), (2)

where n is a size of set V and

C(k)(XV ) =
n

k
(n
k

)
∑

A⊆V,|A|=k

H(XA)−H(XV ).

C Additional Experiments

C.1 Convergence Speed
Curriculum learning is often apprised for the speed-
up of the model’s convergence. The intuition
here is to provide a curriculum that would help to
achieve the same result faster, yet without a signifi-
cant loss in quality. We carried out several experi-
ments to see if data-based curricula could speed up
the learning in transformer-based language models.
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C.1.1 Classification
Tables 2 3 show average number of training steps
needed to reach 90% of the resulting accuracy for
the corresponding classification task. On Senti-
ment140 TF-IDF, TSE, and maximum word rank
speed the convergence up to 3% with some sam-
plers. However, other metrics or sampling strate-
gies slow down the model’s convergence speed,
while on a bigger HND dataset, other curricula
show results better than the baseline. One could
conclusively say that length is the worse metric
to organize curriculum in all experiment config-
urations. The one more important conclusion is
that the model can not always estimate the com-
plexity of the sample concerning its’ internal state
(MLM-loss does not speed up the training speed
and drawdown the final model quality on the Sen-
timent140 dataset). This happens when the model
is expressive enough, and all samples have equal
complexity in model-based metrics.

C.1.2 Pretraining MLM
Figure 2 shows a significant slowdown in model
convergence speed can be seen for all curricula
compared to the baseline learning regime. One
can also divide all metrics into two distinct groups.
The first one consists of maximum word rank and
TF-IDF. The second group includes EE, TSE, like-
lihood, and length. The metrics in the first group
allow the model to converge to a lower loss value.
However, the second group’s metrics hinder the
convergence and seem to have higher saturation
loss. Hence, it isn’t easy to find a universal thresh-
old to reasonably compare all metrics and samplers.
One should also note that only maximum word
rank does not degrade the model quality compared
to the baseline, while other curricula cause severe
deterioration. Finally, the last main observation is
that curriculum learning, unfortunately, does not
allow us to run MLM faster. Moreover, the number
of training steps needed to reach a given threshold
could be several times higher in comparison with
the baseline approach. Table 4 illustrates this fact.

C.2 Data-based Curricula for Other
Architectures

It seems that data-based curriculum learning can-
not increase quality or reduce training time for
transformer-based models. Though Platanios et al.
(2019) report that competence-based sampling is
beneficial for recurrent neural networks, we could
not reproduce this result in transformer-based ar-

chitectures. While some curricula might be use-
ful for smaller architectures on some tasks, they
have no significant benefits for larger architectures.
Let us double-check that with the recurrent neural
network architecture to see if the negative result
obtained above is associated with certain properties
of attention-based architectures or could be repro-
duced with various artificial neural networks. We
run our experiments on Sentiment 140 with 90%
train and 10% test split. The curricula include Hy-
perbole, Difficulty-Based and Competence-Based
samplers, and TSE and length difficulty metrics.
Figure 3 shows that data-driven curricula do not
have a significant influence on the results.

Comparing Figure 3 with Tables 3 – 2 one could
see that data-based curricula are hardly beneficial
even for smaller architectures. Rather, under cer-
tain conditions, one could get some improvement
of convergence, yet on a different task, the same
choice of complexity measure and sampling strat-
egy would be on par with the baseline.

C.3 Data-based curricula and
Hyperparameters

Extensive experiments on different NLP tasks show
that data-based curriculum learning does not help
to increase quality with default hyperparameters.
Hyperparameters’ importance for the curriculum
is an open question. Some papers state that hy-
perparameters, especially learning rate, are essen-
tial for curriculum (Zhang et al., 2018). On the
other hand, some papers propose methods that are
not highly sensitive to hyperparameters (Platanios
et al., 2019). It seems that hyperparameters choice
is discussed mainly in the works addressing NMT,
so we run additional experiments with our curric-
ula and three different learning rates (10−3, 10−4,
10−5) on NMT as well. Results demonstrate that
models’ behavior does not depend on the learning
rate much, and for every learning rate, curricula do
not give a significant quality increase. Results for
excess entropy are presented in Figure 6.
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Table 2: The average number of steps needed to reach given threshold for all configurations metric-sampler on text
classification task on Hyperpartisan News Detections dataset. Maximal deviation for 3 runs is less than 3k steps.
Results better than the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes the
cases when complexity measure and sampler are not compatible.

Metrics Threshold Accuracy Samplers
CB DB Hyp SS SM

baseline 92.9% 93.8% 22k
length 92.9% 93.7% 55k 23k 22.5k - -
TF-IDF 92.9% 93.5% ∞ 19.5k 24k 23.5k 33k
TSE 92.9% 93.8% 56.5k 21k 23k 22k 31k
EE 92.9% 93.8% 71.5k 25.5k 22.5k 19.5k 32.5k
max wr 92.9% 93.6% ∞ 22k 20.5k 22.5k 39k
likelihood 92.9% 93.8% ∞ 20k 24k 20k 30k
MLM-loss 92.9% 93.9% 23.5k 18k 23k 24k 20k

Table 3: The average number of steps needed to reach given threshold for all configurations metric-sampler on text
classification task on sentiment140 dataset. Maximal deviation for 3 runs is less than 3k steps. Results better than
the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes the cases when complexity
measure and sampler are not compatible.

Metrics Threshold Accuracy Samplers
CB DB Hyp SS SM

baseline 85.5% 87% 17.5k
length 85.5% 86.2% 112.5k 20k 19k - -
TF-IDF 85.5% 86.7% 115.5k 21.5k 19.5k 16.5k 22k
TSE 85.5% 86.8% 95.5k 16.5k 20.5k 21.5k 18k
EE 85.5% 86.7% 59k 19.3k 23k 20k 19k
max wr 85.5% 86.7% 70k 18.5k 19.5k 17k 19k
likelihood 85.5% 86.7% 112k 17.5k 21.5k 17.5k 21.5k
MLM-loss 85.5% 86.1% 59.5k 21k 23.5k 19.5k 20k

(a) Sentiment140 with length as complexity metric
and three samplers.

(b) Sentiment140 with TSE as complexity metric
and three samplers.

Figure 3: Test results with LSTM on Sentiment140 dataset. Accuracy of the classifier as a function of the number of
training steps.
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Table 4: The average number of steps needed to reach given threshold for all configurations metric-sampler on
pretraining on BooksCorpus dataset. Maximal deviation for 3 runs is less than 3k steps. All complexity measures
based curricula reach saturation at higher losses than the baseline thus we used an arbitrary threshold of 3.5 for
them. Results better than the baseline are highlighted. ∞ means that model did not reach the threshold, ’-’ denotes
the cases when complexity measure and sampler are not compatible.

Metrics Threshold Saturation Samplers
Loss Loss CB DB Hyp SS SM

baseline 2.00 1.58 9.5k
max wr 2.00 1.58 ∞ 17.5k 16.5k 16.5k 27k
TF-IDF 2.00 1.84 ∞ 34k 35k 37.5k ∞
EE 3.50 2.25 ∞ 4k 3.5k 4.5k 9.5k
TSE 3.50 2.60 ∞ 9k 9k 8.5k 18k
likelihood 3.50 2.83 ∞ 13.5k 13.5k 15.5k 50k
length 3.50 3.45 ∞ 50.5k ∞ - -

(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−5

Figure 4: Test results for NMT on WMT16 with different learning rates with excess entropy as a complexity measure

(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−5

Figure 5: Test results for NMT on WMT16 with different learning rates with TSE as a complexity measure
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(a) learning rate 10−3 (b) learning rate 10−4 (c) learning rate 10−3

Figure 6: Test results for NMT on WMT16 with different learning rates with length complexity measure
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