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Abstract

Recent work uses a Siamese Network, ini-
tialized with BioWordVec embeddings (dis-
tributed word embeddings), for predicting
synonymy among biomedical terms to auto-
mate a part of the UMLS (Unified Medical
Language System) Metathesaurus construc-
tion process. We evaluate the use of con-
textualized word embeddings extracted from
nine different biomedical BERT-based mod-
els for synonymy prediction in the UMLS
by replacing BioWordVec embeddings with
embeddings extracted from each biomedical
BERT model using different feature extraction
methods. Surprisingly, we find that Siamese
Networks initialized with BioWordVec em-
beddings still outperform the Siamese Net-
works initialized with embedding extracted
from biomedical BERT model.

1 Introduction

The UMLS (Bodenreider, 2004) is a biomedical termi-
nology integration system that includes over 200 source
vocabularies1. The UMLS Metathesaurus construction
process organizes synonymous terms from these source
vocabularies into concepts. The current Metathesaurus
construction process uses a lexical similarity model and
semantic preprocessing to determine synonymy, fol-
lowed by a human review. The large scale and diver-
sity of the Metathesaurus make the construction pro-
cess very challenging, tedious, and error-prone. There-
fore, to assist the UMLS Metathesaurus construction
process, Nguyen et al. introduced the UMLS Vocab-
ulary Alignment (UVA) task, or synonymy prediction
task (Nguyen et al., 2021). They designed and train a
Siamese Network to predict if two UMLS atoms are
synonymous. The Siamese Network is initialized us-
ing BioWordVec embeddings, learned using fastText
(Bojanowski et al., 2017). Given the recent successful
use of contextualized word embeddings, extracted from
Transformer models, for different downstream NLP
tasks (Devlin et al., 2019; Vaswani et al., 2017; Pe-
ters et al., 2019), we explore the use of contextualized

1https://uts.nlm.nih.gov/uts/

embeddings extracted from several distinct biomedical
BERT-based language models.
Objectives. 1) Find which type of word embeddings,
including contextualized embeddings, achieves the best
performance when used with the Siamese Network for
the synonymy prediction (or UVA) task. 2) Find which
feature extraction method works best to extract word
embeddings from the biomedical BERT models for op-
timal performance. 3) Find the best hyperparameters
and optimization of the prediction task to train the
Siamese Networks for the UVA task.
Approach. 1) We analyze the performance of the
Siamese Networks initialized with embeddings from
nine different biomedical BERT models for synonymy
prediction. 2) We explore different feature extraction
techniques to extract BERT embeddings. 3) We con-
duct a grid search and optimization of the prediction
task to train the Siamese Networks.
Contributions. 1) We conduct an extensive analysis
to extract embeddings from nine different biomedical
BERT models using four feature extraction techniques.
2) Somewhat surprisingly, we find that Siamese Net-
works still achieve the highest performance for syn-
onymy prediction when initialized with BioWordVec
embeddings. 3) We find that no single feature extrac-
tion method works well across the different biomedical
BERT models. 4) With a thorough grid search, we find
substantial increases in F1-Score (e.g., 2.43%), when
compared to the default hyperparameters. 5) Overall,
our work contributes to defining best practices for the
use of embeddings in Siamese Networks. See https:
//arxiv.org/abs/2109.13348 for an extension of this pa-
per as it presents an extended analysis of the experi-
ments and additional results.

2 UMLS - Knowledge Representation

The UMLS Metathesaurus links terms and codes be-
tween health records, pharmacy documents, and insur-
ance documents (Bodenreider, 2004). The Metathe-
saurus consists of several building blocks, including
atoms and concepts. All atoms in the UMLS Metathe-
saurus are assigned a unique identifier (AUI). Atoms
that are synonymous are grouped into a single con-
cept identified with a concept unique identifier (CUI).
Table 1 contains examples of synonymous atoms and
the identifiers assigned to each respective atom for a
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Tuple Atom String Source AUI CUI

t1 Headache MSH A0066000 C0018681
t2 Headaches MSH A0066008 C0018681
t3 Cephalodynia MSH A26628141 C0018681
t4 Cephalodynia SNOMEDCT US A2957278 C0018681

Table 1: Examples tuples from UMLS consisting of
an atom string, its source vocabulary name, its unique
atom identifier (AUI), and its concept unique identifier
(CUI). All tuples in the example table are synonymous
and, hence, have the same CUI.

particular concept. For example, the term “Cephalo-
dynia” appearing in both MSH and SNOMEDCT US
has different AUIs as shown in Table 1. Additionally,
the strings “Headache” and “Headaches” have differ-
ent AUIs because of the lexical variation (see Table 1).
We use the 2020AA version of the UMLS, which con-
tains 15.5 million atoms from 214 source vocabularies
grouped into 4.28 million concepts.

3 Problem Formulation

An essential part of the UMLS construction process
is identifying similar atoms across source vocabular-
ies to integrate knowledge from different sources ac-
curately. The UMLS Vocabulary Alignment (UVA) –
or synonymy prediction – task is to identify synony-
mous atoms by measuring the similarity among pairs
of atoms. A machine learning model should be able to
identify the synonymous atoms are that lexically: simi-
lar but are not synonymous and dissimilar but are syn-
onymous. Let (ti, tj) be a pair of input tuples, where
i ̸= j. Each tuple is initialized from a different source
vocabulary in the form of (str, src, aui), where str is
the atom string, src is the source vocabulary, and aui is
the atom unique identifier (AUI). Let f : T ×T → 0, 1
be a prediction function that maps a pair of input tuples
to either 0 or 1. If f(ti, tj) = 1, then the atom strings
(stri, strj) from ti and tj are synonymous and belong
to the same concept (and hence, share same the CUI).

4 Dataset

We thank Nguyen et al. for sharing the dataset used
in their work (Nguyen et al., 2021; Nguyen and Bo-
denreider, 2021). The dataset is created using the
2020AA release of the UMLS Metathesaurus. We use
the ALL dataset for our study. The training and valida-
tion dataset contains a total of 192,400,462 examples,
where 88.4% of the examples are negative examples.
The testing dataset set contains a total of 173,035,862
examples, where 96.8% of the examples are nega-
tive examples. We refer the readers to Section 4.2 of
(Nguyen et al., 2021) for a detailed description.

5 Related Work

We first describe the Siamese Networks for the UVA
then describe the biomedical BERT variants.

Figure 1: Siamese Network used for Synonymy Pre-
diction. Nguyen et al. use BioWordVec embeddings,
whereas we use contextualized word embeddings. “*”
indicates optional attention layer.

Siamese Networks for the UVA Task

Nguyen et al. assess the similarity of atoms using lex-
ical features of the atom strings (str). The authors de-
sign a Siamese Network that inputs a pair of atom
strings, and outputs a similarity score between 0 and 1,
sim(stri, strj) ∈ [0, 1] (see Figure 1). The inputs are
preprocessed, tokenized, and then sent through an ini-
tial embedding layer initialized with BioWordVec em-
beddings (Zhang et al., 2019). The word embeddings
are then fed into Bidirectional Long Short Term Mem-
ory (Bi-LSTM) layers, followed by two dense layers.
All atom pairs with a similarity > 0.5 are considered
synonyms (using the Manhattan distance). Their deep
learning model has a precision of 94.64%, recall of
94.96% and an F1-Score of 94.8% and outperforms a
rule-based approach for synonymy prediction by 23%
in recall, 2.4% in precision, and 14.1% in F1-Score. In
their follow-up work, Nguyen et al. add an attention
layer after the Bi-LSTM layers that improves the pre-
cision by +3.63% but decreases recall by 1.42%.

Biomedical BERT Models

In this section, we summarize the specific biomedical
BERT variants used in this study. For brevity, we fo-
cus on biomedical BERT variants and omit the general
presentation of BERT. We refer the interested reader to
(Devlin et al., 2019) for details.

Table 2 compares the different biomedical BERT
models used in this benchmarking study. To limit the
scope of the biomedical BERT models, we only in-
clude models that have been pretrained with data from
biomedical sources, such as biomedical terminologies
(e.g., UMLS vocabularies), biomedical literature (e.g.,
PubMed), and clinical notes (e.g., MIMIC-III).
BioBERT: BioBERT is initialized from BERT and
then pretrained on PubMed abstracts and PubMed Cen-
tral (PMC) full-text articles (Lee et al., 2020). We use
both BioBERT-Base and BioBERT-Large.
BlueBERT: BlueBERT is initialized with BERT
weights provided by (Devlin et al., 2019) and further
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Model Type Embed. Dim. Vocab Size Token Size

BioWordVec 200 268,158,600 -
BioBERT (+ SapBERT) 768 28,996 13,230,336
BioBERT-Large (Cased) 1024 58,996 28,530,688
BlueBERT 1024 30,522 25,358,336
SapBERT 768 30,522 21,035,520
UMLSBERT (+ SapBERT) 768 28,996 13,230,336
BlueBERT+ SapBERT 768 30,522 19,018,752
VanillaBERT + SapBERT 768 30,522 19,018,752

Table 2: Comparison of different biomedical word em-
beddings in terms of the embedding dimension, vocab-
ulary size, and the number of tokens.

pretrained with the PubMed Abstract and MIMIC-III
datasets. We use BlueBERT-Large in our work.
SapBERT: SapBERT provides the current state-of-the-
art (SOTA) results for six medical entity linking bench-
marking datasets (Liu et al., 2021). SapBERT is trained
on the UMLS with 4M+ concepts and 10M+ synonyms
from over 150 vocabularies.
UMLSBERT: UMLSBERT is initialized with the pre-
trained Bio ClinicalBERT model (Alsentzer et al.,
2019) and pretrained with the MLM task on the
MIMIC-III dataset with additional modifications.
{BioBERT, BlueBERT, UMLSBERT, Vanill-
aBERT} + SapBERT: The SapBERT authors pretrain
additional variants of SapBERT that are initialized
using different BERT variants. We refer the reader to
(Liu et al., 2021) for a detailed description.

6 Approach

To analyze the performance of the different em-
beddings extracted from the various BERT models,
we train the Siamese Network end to end, similar
to (Nguyen et al., 2021; Nguyen and Bodenreider,
2021). We investigate the use of the nine biomed-
ical BERT models (mentioned in Section 5) as a
source of word embeddings. Our experimental setup
of consists of two primary steps for each of the
Siamese Networks (with and without attention): 1) Fea-
ture extraction of word embeddings from biomedical
BERT Models. 2) Grid search of optimal hyperpa-
rameters and optimization. Our code will be available
at https://anonymous.4open.science/r/uva embedding
benchmarking-8124/. For the training and testing data,
we recommend reaching out to Nguyen et al. (Nguyen
et al., 2021; Nguyen and Bodenreider, 2021).

Feature Extraction for the Siamese Network

BioWordVec has a fixed word embedding for each
word or term (e.g., UMLS atom). For transformer mod-
els, word embedding extraction is not as straightfor-
ward because different layers of BERT capture differ-
ent types of features (Jawahar et al., 2019; Liu et al.,
2019; Reimers and Gurevych, 2017; Peters et al., 2018;
van Aken et al., 2019; Devlin et al., 2019). We ini-
tialize Siamese Networks with token embeddings in-
stead of word embeddings to use BERT models for
the UVA task. To extract token embeddings for UMLS

atoms from each BERT model, we: 1) Tokenize the
atom strings using the model-specific vocabulary. 2)
Create a token id tensor by mapping the token strings to
their vocabulary indices. 3) Create a segment id tensor.
4) Feed the token id and segment id tensors in to the
BERT model (in eval mode). 5) Create a separate token
embedding matrix to initialize the Siamese Networks
using each of the following methods:

• 1st token embedding and last layer
• 1st token embed. and avg. of last 4 layers
• Last token embedding and last layer
• Last token embed. and avg. of last 4 layers
• Avg. token embedding and last layer
• Avg. token embed. and avg. of last 4 layers
Of note, we do not use the “CLS” sentence represen-

tation as the word embedding for UMLS atoms because
the Bi-LSTMs layers require a sequence as input. We
only use the atom string to extract token embeddings
because all vocabularies in the UMLS have this char-
acteristic in common. In summary, we extract two sets
of embeddings from each model (the 12th layer and av-
erage of the 9th to 12th layers) and use three different
types of token embeddings (the first and last occurrence
of the token in the dataset and the average embedding
of each occurrence of the token in the dataset).
Grid Search and Optimization
The performance of deep learning models highly de-
pends on the selection of hyperparameters (Hutter
et al., 2014; Bergstra and Bengio, 2012; Reimers and
Gurevych, 2017). Prior work by Nguyen et al. uses
a fixed set of hyperparameters. Therefore, we con-
duct a grid search for the best-performing models to
thoroughly investigate the performance of the Siamese
Networks. Hyperparameters used in our experiment
include optimizer (SGD, Adam) and learning rate
(0.00001, 0.0001, 0.001, 0.01, 0.1). To limit computa-
tional cost, we conduct a grid search for the following
Siamese Networks: BioWordVec (BWV), BioWordVec
+ Attention (BWV + Att.), SapBERT avg. token em-
bedding extracted by averaging the last 4 layers (SB
Avg Token + Avg Last 4), SapBERT avg. token em-
bedding extracted from the last layer + Attention (SB
Avg Token + Last Lay + Att.). Additionally, Nguyen
et al. provide no rationale for the similarity threshold of
0.5 between the learned representations of two atoms.
Therefore, we search for the best threshold for predic-
tion based on the precision-recall curve to find a thresh-
old that maximizes the F1-Score.

7 Results and Discussion
Table 3 presents the synonymy prediction results us-
ing embeddings extracted from BERT models and
BioWordVec embeddings. The Token Type and Extrac-
tion Method columns indicate the feature extraction
method that was used to initialize the model.
Performance with BERT Embeddings: We find that
Siamese Networks initialized with BioWordVec still
outperform all models initialized with embeddings ex-
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Siamese Network without Attention (Nguyen et al., 2021) Siamese Network with Attention (Nguyen and Bodenreider, 2021)

Embedding Type Token
Type

Extraction
Method

Threshold Accuracy Precision Recall F1-Score AUC Token
Type

Extraction
Method

Threshold Accuracy Precision Recall F1-Score AUC

BioWordVec - - 0.5612 0.9941 0.9075 0.9127 0.9101 0.9909 - - 0.5490 0.9939 0.9056 0.9067 0.9061 0.9907

BioWordVec w. SGD, lr = 0.001 - - 0.5587 0.9942 0.9087 0.9146 0.9116 0.9913 - - 0.5507 0.9941 0.9078 0.9102 0.9090 0.9910

SapBERT Avg. Avg. Last 4 0.5802 0.9892 0.8496 0.8092 0.8289 0.9848 Avg. Last Layer 0.5607 0.9902 0.8682 0.8247 0.8459 0.9855

SapBERT w. SGD, lr = 0.0001 - - - - - - - - Avg. Last Layer 0.5979 0.9913 0.8824 0.8459 0.8638 0.9830

SapBERT w. Adam, lr = 0.0001 - - - - - - - - Avg. Avg. Last 4 0.59 0.9912 0.8840 0.8372 0.8600 0.9830

BioBERT First Last Layer 0.5643 0.9853 0.7955 0.7380 0.7657 0.9758 Avg. Avg. Last 4 0.5481 0.9862 0.81 0.7504 0.779 0.9774

BioBERT Large Avg. Last Layer 0.5438 0.9881 0.8400 0.7810 0.8095 0.9807 Avg. Last Layer 0.5438 0.9881 0.84 0.781 0.8095 0.9807

BlueBERT First Last Layer 0.5680 0.9859 0.8066 0.7424 0.7732 0.9765 Avg. Last Layer 0.5500 0.9872 0.8247 0.7677 0.7952 0.9792

UMLSBERT Avg. Avg. Last 4 0.5755 0.9852 0.7921 0.7371 0.7636 0.9754 Avg. Avg. Last 4 0.5501 0.9862 0.8151 0.7415 0.7765 0.9764

UMLSBERT + SapBERT Avg. Avg. Last 4 0.5543 0.9854 0.7948 0.7432 0.7681 0.9769 Avg. Avg. Last 4 0.5452 0.9857 0.7992 0.7485 0.773 0.9771

BlueBERT + SapBERT Avg. Avg. Last 4 0.5810 0.9868 0.8154 0.7651 0.7895 0.9798 Avg. Avg. Last 4 0.5596 0.9875 0.831 0.7701 0.7994 0.9797

BioBERT + SapBERT Avg. Avg. Last 4 0.5756 0.9851 0.7904 0.7348 0.7616 0.9756 Avg. Avg. Last 4 0.5511 0.9861 0.81 0.7465 0.7769 0.9769

VanillaBERT + SapBERT Avg. Avg. Last 4 0.5614 0.9866 0.8125 0.7633 0.7872 0.9791 Avg. Avg. Last 4 0.5467 0.9874 0.8268 0.772 0.7984 0.9801

Table 3: Results for Siamese Networks trained for 100 iterations initialized using different embeddings using the
best prediction threshold (single run point estimates). Rows marked with “w.” contain the performance of the
models after grid search.

tracted from biomedical BERT models. Though sur-
prising, Schulz and Juric also find that current em-
beddings are limited in their ability to adequately en-
code medical terms when tested on large-scale datasets
(Schulz and Juric, 2020).

Moreover, using a BERT model trained on more rel-
evant domain-specific data and the right task yields
more substantial gains. In particular, the SapBERT
model, whose embeddings achieve the highest perfor-
mance, is trained on PubMed and incorporates knowl-
edge from the UMLS Metathesaurus by using seman-
tic type embeddings and modifying the MLM task to
indicate if which words belong to the same concept.
These changes likely indicate why it outperforms the
other biomedical BERT models for our task.
Feature Extraction for Biomedical BERT Models:
Based on our experiments, no single feature extrac-
tion method provides the most useful embedding for all
BERT models. However, results indicate that averaging
all token embeddings and using the average of the last
four hidden layers seems to work well for many of the
models. The Siamese Network + Attention initialized
with the average token embedding extracted from the
last layer of SapBERT achieves the best F1-Score.
Performance after Grid Search: As mentioned in
Section 6, we limit the grid search to the four best per-
forming models: BWV, BWV + Att., SB Avg Token
+ Avg Last 4, and SB Avg Token + Last Lay + Att.
Our grid search results indicate that the Siamese Net-
work without attention outperforms the Siamese Net-
work with attention when initialized with BioWordVec
embeddings. Additionally, there is a 2.43% increase in
F1-Score for the Siamese Network with attention and
a 3.11% increase in F1-Score for the Siamese Network
w.o. attention. Reducing the batch size leads to early
stopping for all models but at the cost of performance
(e.g, 4.67% drop in F1-Score for BWV + Att. w. SGD).
Optimizer. For the four best performing models, we
see that SGD works better in three of the cases. For
only one model, Adam performs similarly to SGD with
a higher F1-Score by 0.16%. There is a 1% increase in
F-1 Score for the Siamese Network with Attention ini-

tialized with SB + Avg Token + Last Lay embeddings.
Using the SGD optimizer leads to earlier convergence
for when using biomedical BERT embeddings.
Learning Rate. Regardless of the optimizer, increas-
ing the learning rate (LR) to 0.01 and 0.1 leads to early
stopping and results in poor F1-Scores. With a LR of
0.0001, the performance for the Siamese Networks ini-
tialized with SapBERT embeddings extracted using the
average token and the last layer of the SapBERT model,
F1-Score increases by about 0.6% for the model with
attention and a 3.11% increase for the model without
attention. Reducing the LR further decreases perfor-
mance for Siamese Networks using BWV embeddings.
Threshold. The best performing thresholds range from
0.5438 to 0.581. On average using the best thresh-
olds results in 0.0086% increase in F1-Score for the
Siamese Networks without attention (results omitted
due to space). Hence, 0.5 is an acceptable threshold.

8 Conclusion
We investigate if contextualized embeddings extracted
from biomedical BERT-based language models can im-
prove the performance of Siamese Networks, intro-
duced by (Nguyen et al., 2021; Nguyen and Bodenrei-
der, 2021), to predict synonymy in the UMLS Metathe-
saurus. Despite the excellent performance of BERT
models on biomedical NLP tasks, BioWordVec em-
beddings still remain competitive for the UVA task.
This confirms the importance of investigating the use
of traditional distributed word embeddings. Among the
biomedical BERT models, SapBERT trained on UMLS
data performs best, suggesting the importance of using
a model trained on datasets directly relevant to the task
at hand. Finally, we demonstrate the importance of ex-
ploring different feature extraction methods and hyper-
parameter tuning for deep learning models.
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A Dataset
We thank Nguyen et al. for sharing the dataset used in
their work (Nguyen et al., 2021; Nguyen and Boden-
reider, 2021). To get a copy of the dataset, please sign
the UMLS License Agreement and email Nguyen to
receive the dataset.

B Experimental Details
We first train both Siamese Networks (with attention
(Nguyen and Bodenreider, 2021) and without attention
(Nguyen et al., 2021)) with the default hyperparame-
ters for each biomedical BERT model with each of the
different embedding extraction methods. The default
hyperparameters rely on Adam as the optimizer with
a learning rate of 0.001 and 8192 examples in batch.
This results in 20 different Siamese Networks, each
trained for 100 epochs. Next, we take the best perform-
ing Siamese models initialized with BERT embeddings
and the two Siamese models initialized with BioWord-
Vec embeddings and conduct a grid search to find the
optimal hyperparameters. We conduct a grid search for
a total of 4 Siamese Networks and evaluate each model
using the following metrics: Accuracy, Precision, Re-
call, F1-Score, and AUC.

All experiments are run using a High Performance
Computing cluster. The typical run time for a Siamese
Network with BioWordVec embeddings is 48 hours
for 100 iterations using a v100x NVIDIA GPU and
requires about 220 GB of memory. A Siamese Net-
work trained with BERT embeddings takes about 72
hours for 100 iterations using a v100x NVIDIA GPU
and requires about 220 GB of memory. The training
time is further increased to 88 hours for Siamese Net-
works trained with embeddings of dimensions 1024
(i.e., BioBERT-Large and BlueBERT embeddings).

C Limitations
Our work evaluates biomedical word embeddings ex-
tracted from BERT-based models for the Siamese Net-
works introduced by (Nguyen et al., 2021; Nguyen and
Bodenreider, 2021). Our list of biomedical BERT mod-
els does not include all models; we consider the most
recent biomedical BERT models that have achieved
SOTA performance on NLP tasks. The narrow focus of
our work allows us to conduct a thorough analysis of
the embedding extraction methods and hyperparame-
ters using nine different BERT models for two variants
of the Siamese Network. However, our experimental
setup is reproducible for similar NLP tasks.

As an additional exercise to test the usability of
transformer based embeddings, we attempt to use the
“CLS” sentence representation of the UMLS atoms.
For a pair of UMLS atoms, we extract the “CLS” sen-
tence representation of each UMLS atom and compute
the similarity of the representation using both the Co-
sine and Manhattan distance functions. We find that
this approach does not work well (< 30% accuracy). As

future work, we can investigate if adding a deep neural
net (different from a Siamese Network) can improve
the performance.
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