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Abstract
Topic modeling has emerged as a dominant
method for exploring large document collec-
tions. Recent approaches to topic modeling use
large contextualized language models and vari-
ational autoencoders. In this paper, we propose
a negative sampling mechanism for a contextu-
alized topic model to improve the quality of the
generated topics. In particular, during model
training, we perturb the generated document-
topic vector and use a triplet loss to encourage
the document reconstructed from the correct
document-topic vector to be similar to the in-
put document and dissimilar to the document
reconstructed from the perturbed vector. Exper-
iments for different topic counts on three pub-
licly available benchmark datasets show that in
most cases, our approach leads to an increase in
topic coherence over that of the baselines. Our
model also achieves very high topic diversity.

1 Introduction

The modern world is witnessing tremendous
growth in digital documents. It is often necessary
to organize them into semantic categories to make
the content more easily accessible to users. The
assignment of domain tags through manual inter-
vention can be quite cumbersome and very expen-
sive to maintain, mainly due to the enormity and
diversity of the available data. The use of topic
modelling techniques can be of huge significance
in this area because of their ability to automatically
learn the overarching themes or topics from a col-
lection of documents in an unsupervised way and
tag the documents with their dominant topics (New-
man et al., 2010; Boyd-Graber et al., 2017; Adhya
and Sanyal, 2022). Informally, a topic is a group
of extremely related words. While latent Dirichlet
allocation (LDA) (Blei et al., 2003) is the classi-
cal topic modeling approach, recently neural topic
models have become popular as they decouple the
inference mechanism from the underlying mod-
eling assumptions (e.g., the topic prior), thereby

simplifying the design of new topic models. Neural
topic models are based on variational autoencoders
(VAEs) (Kingma and Welling, 2014) and allow us
to leverage the progress in deep learning in mod-
eling text (Zhao et al., 2021). The recently pro-
posed contextualized topic model (CTM) (Bianchi
et al., 2021), which is a neural topic model, rep-
resents each document in the collection both as
a bag-of-words (BoW) vector as well as a dense
vector produced by a pre-trained transformer like
sentence-BERT (SBERT) (Reimers and Gurevych,
2019), thus combining a classical representation
with a contextualized representation that captures
the semantics of the text better. CTM produces
state-of-the-art performance on many benchmark
datasets (Bianchi et al., 2021).

A neural topic model is trained to maximize the
log-likelihood of the reconstruction of the input
document and minimize the KL-divergence of the
learned distribution of the latent (topic) space from
a known prior distribution of the latent space. If
the topics in a document are perturbed, that is, say,
the top topic in a document is deleted, the docu-
ment should display a marked change in its word
distribution. Such an objective is not explicitly
modeled above. In this paper, we train CTM to in-
fer topics from a document in such a way that while
the inferred topics should aid in reconstructing the
document (as in any topic modeling algorithm),
when the top topics are perturbed it should fail to
reconstruct the original document. This is done
by treating the document reconstructed from the
correct topic vector as an anchor that is encour-
aged to be similar to the original input document
but dissimilar to the document reconstructed from
the perturbed topics. Our proposed model, CTM-
Neg, achieves higher average topic coherence, mea-
sured by NPMI score, than that of other competing
topic models, and very high topic diversity on three
datasets. We have made our code publicly avail-
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able1.
Thus, our primary contributions are:

1. We propose a simple but effective negative
sampling technique for neural topic models.
Negative samples are produced automatically
in an unsupervised way.

2. We perform extensive experiments on three
publicly available datasets. In particular, we
compare the proposed model with four other
topic models for eight different topic counts
on each dataset. We observe that the proposed
strategy leads to an increase in topic coher-
ence over the baselines in most of the cases.
Averaged over different topic counts, CTM-
Neg achieves the highest mean NPMI score
on all three datasets, and highest mean CV on
two datasets, and the second highest mean CV
on the third. CTM-Neg also attains the best or
the second best mean topic diversity scores on
the three datasets though all the topic models
except one (which underperforms) produce
similar high topic diversity.

2 Related Work

Latent Dirichlet allocation (LDA) (Blei et al., 2003)
models every document in a given corpus as a
mixture of topics, where each topic is a probabil-
ity distribution over the vocabulary. Among the
modern neural alternatives to LDA, a pioneering
approach is the ProdLDA model (Srivastava and
Sutton, 2017). It is a VAE-based topic model that
uses an approximate Dirichlet prior (more precisely,
Laplace approximation to the Dirichlet prior in the
softmax basis), instead of a standard Gaussian prior
(Miao et al., 2016). The VAE takes a bag-of-words
(BoW) representation of a document, maps it to
a latent vector using an encoder or inference net-
work, and then maps the vector back to a discrete
distribution over words using a decoder or genera-
tor network. CTM (Bianchi et al., 2021) augments
ProdLDA by allowing in its input a contextualized
representation (SBERT) of the documents. Em-
bedded topic model (ETM) (Dieng et al., 2020)
is a VAE-based topic model that uses distributed
representations of both words and topics.

Negative sampling in NLP-based tasks was pop-
ularized after its use in the word embedding model,
word2vec (Mikolov et al., 2013). The idea of
negative sampling is to ‘sample’ examples from

1https://github.com/AdhyaSuman/CTMNeg

a noise distribution and ensure that the model be-
ing trained can distinguish between the positive
and negative examples. It can be used to reduce
the computational cost of training, help identify
out-of-distribution examples, or to make the model
more robust to adversarial attacks (Xu et al., 2022).
A few works have recently applied it to topic
modeling. For example, (Wu et al., 2020) pro-
posed a negative sampling and quantization model
(NQTM) with a modified cross-entropy loss to gen-
erate sharper topic distributions from short texts.
Some researchers have applied generative adversar-
ial networks to design topic models (Wang et al.,
2019; Hu et al., 2020; Wang et al., 2020), but since
the negative examples are generated from an as-
sumed fake distribution, they bear little similarity
to real documents. In (Nguyen and Luu, 2021), a
negative document sample is created by replacing
the weights of the words having the highest tf-idf
scores in the input document with the weights of
the same words in the reconstructed document. Our
method follows a different strategy: it generates
a perturbed document-topic vector (instead of an
explicit negative document) and uses triplet loss to
push the BoW vector reconstructed from the cor-
rect topic vector closer to the input BoW vector and
farther from the BoW vector generated from the
perturbed topics. Unlike the present work, none of
the other adversarial topic models use contextual
embeddings as input.

3 Proposed Method

3.1 Baseline Architecture

Our proposed model is based on a VAE architec-
ture. In particular, we build upon CTM (Bianchi
et al., 2021). We assume that the vocabulary size is
V and a document is represented as a normalized
bag-of-words vector xBoW as well as a contextual-
ized embedding vector xc. A linear layer converts
xc to a V -dimensional vector. The encoder of the
VAE concatenates these two vectors into a single
2V -dimensional vector x and outputs the param-
eters of the posterior

(
µT×1,ΣT×1

)
where T is

the number of topics, µT×1 denotes the mean, and
ΣT×1 represents the diagonal covariance matrix.
Note that it is standard in the VAE literature to as-
sume a diagonal covariance matrix instead of a full
covariance matrix (Srivastava and Sutton, 2017).
In the decoder, using the reparameterization trick
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Figure 1: Framework for the contextualized topic model with negative sampling (CTM-Neg).

the latent representation (zT×1) is generated:

zT×1 = µT×1 +Σ
1/2
T×1 ⊙ ϵT×1 (1)

where ϵT×1 ∼ N (0, I) and ⊙ denotes Hadamard
product. This hidden representation z is then
used as a logit of a softmax function (σ(·)) to
generate the document-topic distribution θT×1 (=
σ(zT×1)). The decoder has an unnormalized topic-
word matrix βT×V , which is used to reconstruct
the word distribution in the following manner:

x̂V×1 = σ(β⊤
T×V θT×1) (2)

To formulate the loss function, note that the en-
coder learns the posterior distribution qϕ(z|x). We
assume that the prior is p(z). The decoder is the
generative model pθ(xBoW|z). The loss function
to be minimized is given by

LCTM = LRL + LKL

≡ −Ez∼qϕ(z|x)pθ(xBoW|z)
+ DKL (qϕ(z|x)||p(z)) (3)

here, the first term (LRL) is the reconstruction
loss (measured by the cross-entropy between the
predicted output distribution x̂ and the input vec-
tor xBoW) while the second term LKL is the KL-
divergence of the learned latent space distribution
qϕ(z|x) from the prior p(z) of the latent space.

3.2 Proposed Negative Sampling Mechanism
To improve the topic quality, we train the above
model with negative samples as follows. For every
input document, after a topic vector θ is sampled,
a perturbed vector θ̃neg is generated from it by
setting the entries for the top S topics (i.e., the
S positions in θ corresponding to the S largest
values in θ) to zero. θ̃neg is then normalized so
that the resulting vector θneg is a probability vector.

The normalization is done simply by dividing the
values in θ̃neg by their sum, as all values, in θ̃neg

are already non-negative (since θ is obtained by
applying softmax). Mathematically,

θneg =
θ̃neg∑T

i=1 θ̃neg[i]
(4)

where, θ̃neg[i] =

{
0 if i ∈ argmax(θ, S)

θ[i] otherwise

The function argmax(θ, S) returns the indices of
the S largest values in θ. We treat S as a hyper-
parameter. Like θ, the perturbed topic vector θneg

is passed through the decoder network. The latter
generates x̂neg = σ(β⊤θneg). We introduce a new
term, triplet loss LTL, in Eq. (3) assuming the an-
chor is x̂, the positive sample is xBoW (the original
input document), and the negative sample is x̂neg:

LTL = max(||x̂−xBoW||2−||x̂− x̂neg||2+m, 0)
(5)

where m is the margin. Therefore, the modified
loss function to be minimized is given by:

L = (LRL + LKL) + λLTL (6)

where λ is a hyperparameter. Fig. 1 depicts the pro-
posed model. The model is trained in an end-to-end
manner using Adam optimizer and backpropaga-
tion.

4 Experimental Setup

We perform all experiments in OCTIS (Terragni
et al., 2021), which is an integrated framework for
topic modeling.

4.1 Datasets

We use the following three datasets:
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Dataset #Topics
10 20 30 40 50 60 90 120

GN (2, 0.7) (2, 0.58) (2, 0.59) (2, 0.59) (3, 0.82) (3, 0.94) (1, 0.68) (3, 0.82)
20NG (3, 0.78) (3, 0.83) (3, 0.86) (1, 0.74) (1, 0.12) (3, 0.27) (1, 0.84) (1, 0.90)
M10 (3, 0.9) (3, 0.49) (1, 0.82) (1, 0.59) (3, 0.82) (3, 0.58) (3, 0.93) (3, 0.27)

Table 1: Each paired entry shows the best hyperparameters (S, λ) in CTM-Neg as discovered by OCTIS for a given
(Dataset, #Topics) combination.

1. GoogleNews (GN): It consists of 11, 109
news articles, titles, and snippets collected
from the Google News website in November
2013 (Qiang et al., 2020).

2. 20NewsGroups (20NG): It comprises 16, 309
newsgroup documents partitioned (nearly)
evenly across 20 different newsgroups (Ter-
ragni et al., 2021).

3. M10: It is a subset of CiteSeerX data com-
prising 8355 scientific publications from 10
distinct research areas (Pan et al., 2016).

The last two datasets are available in OCTIS while
we added the first one.

4.2 Evaluation Metrics
Coherence measures help to assess the relatedness
between the top words of a topic. Informally, a
topic is said to be coherent if it contains words that,
when viewed together, help humans to recognize
it as a distinct category (Hoyle et al., 2021). We
use Normalized Pointwise Mutual Information
(NPMI) and (Lau et al., 2014) and Coherence
Value (CV) (Röder et al., 2015) to measure topic
coherence. NPMI is widely adopted as a proxy
for human judgement of topic coherence though
some researchers also use CV (but CV has some
known issues). NPMI calculates topic coherence
by measuring how likely the topic words are to
co-occur. If p(wi, wj) represents the probability
of two words wi and wj co-occurring in a boolean
sliding context window, and p(wi) is the marginal
probability of word wi, then the NPMI score is
given by (Lau et al., 2014),

NPMI(wi, wj) =


 log

p(wi,wj)+ϵ
p(wi).p(wj)

− log(p(wi, wj) + ϵ)


 (7)

where ϵ is a small positive constant used to avoid
zero. NPMI(wi, wj) lies in [−1, +1] where −1
indicates the words never co-occur and +1 indi-
cates they always co-occur. CV is calculated using

an indirect cosine measure along with the NPMI
score over a boolean sliding window (Röder et al.,
2015; Krasnashchok and Jouili, 2018). OCTIS uses
the CoherenceModel of gensim where NPMI
is referred to as c_npmi and CV as c_v.

We measure the diversity of topics using In-
versed Rank-Biased Overlap (IRBO) (Bianchi
et al., 2021). It gives 0 for identical topics and 1
for completely dissimilar topics. Suppose we are
given a collection ℵ of T topics where each topic is
a list of words such that the words at the beginning
of the list have a higher probability of occurrence
(i.e., are more important or more highly ranked) in
the topic. Then, the IRBO score of the topics is
defined as

IRBO(ℵ) = 1−
∑T

i=2

∑i−1
j=1RBO(li, lj)

n
(8)

where n =
(
T
2

)
is the number of pairs of lists,

and RBO(li, lj) denotes the standard Rank-Biased
Overlap between two ranked lists li and lj (Web-
ber et al., 2010). IRBO allows the comparison of
lists that may not contain the same items, and in
particular, may not cover all items in the domain.
Two lists (topics) with overlapping words receive
a smaller IRBO score when the overlap occurs at
the highest ranks of the lists than when they occur
at lower ranks. IRBO is implemented in OCTIS.
Higher values of NPMI, CV, and IRBO are better
than lower values.

In our experiments, for evaluation using the
above metrics in OCTIS, we use the top-10 words
from every topic and the default values for all the
other parameters.

4.3 Baselines and Configuration
We denote our proposed topic model by CTM-Neg.
As baselines we use the following topic models,
which are already implemented in OCTIS:

1. CTM (Bianchi et al., 2021).

2. ProdLDA (Srivastava and Sutton, 2017).
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3. ETM (Dieng et al., 2020).

4. LDA (Blei et al., 2003).

In CTM-Neg, CTM, and Prod-LDA, the
encoder is a fully-connected feedforward
neural network (FFNN) with two hidden
layers with 100 neurons each, and the
decoder is a single-layer FFNN. We use
paraphrase-distilroberta-base-v2
(which is an SBERT model) to obtain the contextu-
alized representations of the input documents in
CTM and CTM-Neg.

In CTM-Neg, we set m = 1 in Eq. (5) as is
the default in PyTorch. We have optimized the
hyperparameters S and λ using the Bayesian opti-
mization framework of OCTIS to maximize NPMI.
Table 1 shows the optimal values discovered when
S ∈ {1, 2, 3} and λ ∈ [0, 1]. In LDA, we use 5
passes over the input corpus as the default single
pass produces too poor topics. Other hyperparam-
eters are set to their default values in OCTIS. For
all datasets, the vocabulary is set to the most com-
mon 2K words in the corpus. Experiments for each
topic model are done for all topic counts in the set
{10, 20, 30, 40, 50, 60, 90, 120}. We have trained
all models for 50 epochs.

5 Results

5.1 Quantitative Evaluation
Given a dataset and a topic model, we recorded
the median values of NPMI, CV, and IRBO over 5
independent runs for each topic count. We choose
median instead of mean as the former is more ro-
bust to outliers. Then for the same dataset and
topic model, we compute the average of these val-
ues so that we can get an idea of the performance
of the topic model without coupling it to a specific
topic count. Table 2 shows the corresponding val-
ues where we mention the median along with the
mean.

We observe that CTM-Neg achieves the highest
average NPMI on all datasets. CTM-Neg also pro-
duces the highest average CV on all datasets except
M10 where CTM performs slightly better. In the
case of IRBO, while CTM-Neg gives the highest
scores on GN and 20NG, it ranks as the second best
on M10. It is also observed that the IRBO values
for all models except ETM are very close to each
other.

In order to afford a more fine-grained view of
the performance of the topic models, Fig. 2 de-

picts how the scores vary with topic count for all
topic models and on all datasets. CTM-Neg always
achieves the highest NPMI and CV scores on GN
and 20NG datasets. On the M10 corpus, CTM
scores slightly better than CTM-Neg in NPMI and
CV for some topic counts. The IRBO plots in Fig.
2 show that on a given dataset, all topic models,
except ETM, achieve very similar IRBO scores for
every topic count. ETM is always found to produce
significantly lower IRBO values. CTM-Neg does
not always produce the highest IRBO. For example,
on the M10 corpus, the IRBO score of CTM-Neg is
the highest till T = 20 after which LDA dominates
and CTM-Neg is relegated to the second position.
A closer look at Fig. 2 reveals that this gain in topic
diversity for LDA comes at the expense of reduced
NPMI.

5.2 Extrinsic Evaluation
We also use an extrinsic task to evaluate the topic
models. We measure the predictive performance of
the generated topics on a document classification
task. Specifically, we use the M10 dataset from
OCTIS where each document is already marked
with one of 10 class labels as shown in Table 3.
The corpus is divided into train/dev/test subsets in
the ratio 70:15:15. Each topic model is trained on
the training subset to produce T = 10 topics and
the T -dimensional document-topic latent vector is
used as a representation of the document. Next, a
linear support vector machine is trained with these
representations of the training subset (for each topic
model), and the performance on the test subset is
recorded. Fig. 3 shows that CTM-Neg achieves the
highest accuracy.

5.3 Qualitative Evaluation
It is acknowledged in the NLP community that au-
tomatic metrics do not always accurately capture
the quality of topics produced by neural models
(Hoyle et al., 2021). So we perform manual evalua-
tion of the topics for a few selected cases. Table 4
shows some of the topics output by random runs of
the different topic models on 20NG for T = 20 top-
ics. Note that the table displays manually aligned
topics, that is, the first topic mentioned against
any of the topic models is very similar to the first
topic stated against every other topic model, and
similarly for all other topics. We observe that the
topics generated by CTM-Neg contain very specific
words in the top positions that distinguish the topics
more clearly compared to the case of other models.
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Dataset Model
Coherence Diversity

NPMI CV IRBO
Mean Median Mean Median Mean Median

GN

CTM-Neg 0.142 0.188 0.530 0.552 0.998 0.998
CTM 0.081 0.128 0.485 0.513 0.995 0.995

ProdLDA 0.056 0.076 0.471 0.476 0.996 0.996
ETM -0.263 -0.271 0.414 0.416 0.627 0.660
LDA -0.164 -0.176 0.403 0.405 0.997 0.998

20NG

CTM-Neg 0.121 0.127 0.648 0.653 0.991 0.991
CTM 0.093 0.098 0.627 0.632 0.990 0.990

ProdLDA 0.080 0.084 0.609 0.607 0.990 0.991
ETM 0.049 0.048 0.528 0.527 0.819 0.808
LDA 0.075 0.080 0.571 0.577 0.983 0.990

M10

CTM-Neg 0.052 0.056 0.462 0.461 0.986 0.985
CTM 0.048 0.047 0.466 0.461 0.980 0.979

ProdLDA 0.025 0.023 0.448 0.449 0.983 0.981
ETM -0.056 -0.062 0.345 0.350 0.502 0.484
LDA -0.192 -0.201 0.386 0.389 0.989 0.992

Table 2: Comparison of topic models on three datasets. For each metric and each topic model, we mention the mean
and the median of the scores for topic counts {10, 20, 30, 40, 50, 60, 90, 120}.
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Figure 2: Variation of topic coherence (NPMI and CV) and topic diversity (IRBO) with topic count for different
topic models on three datasets. The ordinate value of each data point reports the median over five independent runs.
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Label #Documents
Agriculture 643

Archaeology 131
Biology 1059

Computer Science 1127
Financial Economics 978

Industrial Engineering 944
Material Science 873

Petroleum Chemistry 886
Physics 717

Social Science 997

Table 3: M10 labels with corresponding document
counts.
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Figure 3: Document classification for M10 corpus with
T = 10 topics.

For example, the first topic produced by CTM-Neg
contains very focused terms like ‘turkish’, ‘israeli’,
‘genocide’, ‘war’, etc., and is easily identifiable as
‘middle-east conflict’ (corresponds to newsgroup
talk.politics.mideast of 20NG corpus).
CTM outputs a very similar topic but it seems to
focus only on the ‘Armenian genocide’ yet con-
tains more generic terms like ‘neighbor’ and ‘town’.
ProdLDA also focuses primarily on ‘Armenian
genocide’ but its last word ‘jewish’ probably refers
to the Israeli conflict. While the corresponding
topic from LDA contains some generic terms like
‘man’, ‘kill’, etc., most of the words in ETM like
‘kill’, ‘gun’, and ‘fire’ are very general. Moreover,
words like ‘leave’ and ‘start’ that occur in this topic
in ETM reduce the interpretability of the topic.

Similarly, the fourth topic in CTM-Neg is sports-
related and contains specific words like ‘hockey’
and ‘baseball’. While the corresponding topic from
ProdLDA mentions ‘hockey’ (but not ‘baseball’),
none of the other models produces these terms.
The ability of CTM-Neg to extract focused words
is probably a consequence of the negative sampling
algorithm that encourages a topic to capture the
most salient words of its representative documents
so that deleting the topic pushes the reconstructed
document away from the input document.

Table 5 shows the topics that are discovered in
a random run of each topic model on the M10
dataset for T = 10 topics. We show four topics –
the first is on ‘neural and evolutionary computing’
(or ‘artificial intelligence’), the second on ‘microar-
ray gene expression’, the third on ‘stock market’,
and the fourth on ‘multi-agent decision making’.
The topics generated by CTM and CTM-Neg are
very similar. However, the presence of words like
‘processing’ in the first topic, ‘work’ in the third
topic, and ‘approach’ in the fourth topic in CTM
appear less connected to the other words in the
respective topics. Such outliers are not visible in
the topics produced by CTM-Neg. Moreover, the
second topic output by CTM-Neg contains very
domain-specific terms like ‘dna’ and ‘motif’, which
are not produced by CTM. Similar issues occur
in ProdLDA and LDA. In the case of ETM, the
first topic contains words that make it a mixture of
the first two topics produced by the other models.
For example, it contains words like ‘neural’ and
‘network’ that occur in the first topic in the other
models, and also ‘gene’ and ‘expression’ which
are present in the second topic in the other models.
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Model Topics

CTM-Neg

turkish, armenian, jewish, population, muslim, village, israeli, genocide, government, war
chip, key, encryption, government, clipper, phone, security, privacy, escrow, secure

video, monitor, vga, port, modem, apple, driver, card, resolution, board
score, playoff, period, play, fan, win, hockey, game, baseball, lose

CTM

people, armenian, soldier, village, turkish, massacre, troop, neighbor, town, genocide
chip, clipper, encryption, government, encrypt, algorithm, agency, secure, phone, key

draw, mouse, advance, convert, font, screen, button, host, code, terminal
game, win, final, goal, period, cap, score, fan, lead, play

ProdLDA

genocide, armenian, turkish, greek, muslim, village, population, russian, massacre, jewish
encryption, secret, secure, chip, privacy, government, key, agency, security, encrypt

monitor, card, apple, video, sale, price, board, audio, offer, external
game, team, division, season, hockey, playoff, score, goal, player, wing

ETM

people, kill, child, gun, armenian, fire, man, time, leave, start
key, chip, encryption, clipper, bit, government, algorithm, message, law, system

drive, card, disk, system, bit, run, window, scsi, driver, monitor
game, play, win, team, player, year, good, score, hit, season

LDA

people, jewish, armenian, child, man, kill, woman, death, turkish, israeli
key, chip, encryption, government, security, clipper, bit, public, message, system

card, work, monitor, system, driver, problem, run, machine, video, memory
game, team, play, player, win, year, good, season, hit, score

Table 4: Some related topics discovered by different topic models in the 20NG corpus when run for T = 20 topics.

Model Topics

CTM-Neg

neural, network, learn, recurrent, learning, artificial, language, evolutionary, genetic, adaptive
expression, gene, datum, sequence, cluster, protein, microarray, dna, analysis, motif

stock, return, market, price, volatility, exchange, rate, interest, option, monetary
decision, make, agent, making, group, multi, uncertainty, robot, intelligent, autonomous

CTM

network, neural, learn, learning, artificial, evolutionary, language, recurrent, knowledge, processing
gene, expression, datum, model, analysis, microarray, cluster, clustering, genetic, classification

market, stock, price, return, risk, financial, rate, option, work, volatility
decision, agent, make, making, multi, human, group, uncertainty, social, approach

ProdLDA

network, neural, learn, recurrent, artificial, learning, evolutionary, language, knowledge, adaptive
expression, gene, datum, cluster, analysis, microarray, factor, bind, classification, site

market, stock, price, risk, financial, rate, evidence, return, exchange, work
decision, make, agent, making, group, environment, autonomous, robot, human, mobile

ETM

network, neural, gene, expression, datum, cluster, classification, recurrent, learn, genetic
-

market, gas, price, stock, financial, natural, return, work, rate, estimate
model, decision, base, analysis, method, theory, application, approach, make, dynamic

LDA

network, neural, learn, learning, recurrent, dynamic, model, artificial, sensor, bayesian
gene, expression, datum, cluster, analysis, model, microarray, feature, sequence, base

price, stock, oil, option, market, term, model, asset, return, pricing
decision, theory, model, make, base, information, making, access, agent, bioinformatic

Table 5: Some related topics discovered by different topic models in the M10 corpus when run for T = 10 topics.

Model Topics

CTM-Neg
neural, network, recurrent, language, artificial, grammatical, context, learn, symbolic, natural
classification, neural, recognition, classifier, learn, pattern, coding, feature, network, sparse

network, neural, recurrent, feedforward, artificial, genetic, bayesian, learn, knowledge, evolutionary
LDA network, neural, recurrent, learn, mechanic, adaptive, inference, compute, title, extraction

Table 6: Some AI-related topics discovered by CTM-Neg and LDA in the M10 corpus when run for T = 40 topics.
Italicized words in a topic appear less connected to the other words in the topic.
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Therefore, we have kept the second line for ETM
topics in Table 5 blank. We observed that some of
the topics produced by ETM contain many com-
mon words. In particular, we found that five topics
from ETM contain the words ‘model’, ‘decision’,
‘method’, ‘analysis’, and ‘theory’ in some order in
the top slots, thus becoming repetitive, and con-
sequently, ETM fails to discover meaningful and
diverse topics like the other models. This is indica-
tive of the component collapsing problem where all
output topics are almost identical (Srivastava and
Sutton, 2017).

We have observed earlier that on the M10 cor-
pus, for large topic counts LDA beats CTM-Neg in
IRBO but not in NPMI. We revisit this issue now
and manually analyze their topics for T = 40. We
found indeed the different topics output by LDA
hardly overlap in words (leading to larger topic
diversity) but the words do not always appear logi-
cally connected and interpretable (thus, sacrificing
coherence). On the other hand, the topics gener-
ated by CTM-Neg look more coherent although
they are not always disjoint. For example, see Ta-
ble 6 which shows the topics containing the word
‘neural’ (among the top-10 words in the topic) dis-
covered by CTM-Neg and LDA. CTM-Neg pro-
duces three topics that roughly relate to ‘natural
language processing’, ‘pattern recognition’, and
‘neural and evolutionary computing’, respectively.
But only one topic from LDA contains ‘neural’ – it
is primarily about ‘neural networks’ but contains
some very weakly related words.

6 Conclusion

We have proposed a negative sampling strategy for
a neural contextualized topic model. We evaluated
its performance on three publicly available datasets.
In most of our experiments, the augmented model
achieves higher topic coherence, as measured by
NPMI and CV, and comparable topic diversity, as
captured by IRBO, with respect to those of com-
petitive topic models in the literature. A manual
evaluation of a few selected topics shows that the
topics generated by CTM-Neg are indeed coher-
ent and diverse. In the future, we would like to
compare it with other contrastive learning-based
topic models and integrate it with other neural topic
models.
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A Appendix

A.1 Detailed Results of Quantitative
Evaluation

Table 7 shows the NPMI, CV, and IRBO scores
obtained for the different topic models on the three
datasets for different topic counts. This table has
been used to construct Table 2 and Fig. 2 in this
paper.
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Model #Topics Dataset: GN Dataset: 20NG Dataset: M10
NPMI CV IRBO NPMI CV IRBO NPMI CV IRBO

CTM-Neg 10 -0.096 0.439 1 0.1 0.641 0.997 0.073 0.491 1
CTM-Neg 20 0.031 0.424 1 0.129 0.672 0.994 0.076 0.49 0.993
CTM-Neg 30 0.13 0.494 1 0.135 0.664 0.992 0.065 0.475 0.989
CTM-Neg 40 0.174 0.542 0.999 0.129 0.656 0.991 0.06 0.461 0.986
CTM-Neg 50 0.201 0.562 0.998 0.132 0.662 0.99 0.051 0.461 0.985
CTM-Neg 60 0.227 0.592 0.998 0.125 0.65 0.991 0.046 0.449 0.982
CTM-Neg 90 0.235 0.598 0.995 0.114 0.626 0.988 0.031 0.44 0.979
CTM-Neg 120 0.234 0.592 0.993 0.107 0.616 0.986 0.019 0.426 0.976

CTM 10 -0.144 0.391 1 0.048 0.585 0.988 0.055 0.507 0.999
CTM 20 -0.01 0.406 0.998 0.105 0.649 0.994 0.06 0.467 0.988
CTM 30 0.076 0.467 0.997 0.111 0.661 0.992 0.069 0.479 0.983
CTM 40 0.126 0.515 0.996 0.104 0.644 0.991 0.051 0.466 0.98
CTM 50 0.129 0.51 0.994 0.101 0.636 0.99 0.044 0.456 0.977
CTM 60 0.149 0.519 0.993 0.095 0.628 0.99 0.042 0.452 0.974
CTM 90 0.153 0.535 0.991 0.094 0.608 0.989 0.04 0.456 0.971
CTM 120 0.17 0.538 0.99 0.086 0.606 0.986 0.025 0.443 0.968

ProdLDA 10 -0.103 0.431 1 0.069 0.602 0.986 0.047 0.477 0.999
ProdLDA 20 -0.007 0.403 1 0.09 0.645 0.991 0.017 0.45 0.992
ProdLDA 30 0.029 0.463 0.999 0.088 0.637 0.99 0.026 0.456 0.987
ProdLDA 40 0.081 0.491 0.997 0.087 0.63 0.993 0.035 0.458 0.982
ProdLDA 50 0.071 0.47 0.996 0.083 0.607 0.993 0.013 0.426 0.981
ProdLDA 60 0.098 0.481 0.995 0.085 0.607 0.991 0.028 0.447 0.979
ProdLDA 90 0.136 0.508 0.992 0.068 0.573 0.991 0.017 0.437 0.975
ProdLDA 120 0.14 0.518 0.99 0.068 0.57 0.99 0.02 0.436 0.969

ETM 10 -0.235 0.411 0.549 0.05 0.531 0.883 -0.004 0.325 0.653
ETM 20 -0.233 0.416 0.473 0.054 0.534 0.812 -0.07 0.346 0.525
ETM 30 -0.269 0.438 0.578 0.05 0.533 0.788 -0.063 0.333 0.449
ETM 40 -0.289 0.422 0.652 0.048 0.527 0.782 -0.061 0.353 0.462
ETM 50 -0.245 0.393 0.669 0.048 0.526 0.803 -0.069 0.35 0.523
ETM 60 -0.285 0.417 0.676 0.044 0.518 0.797 -0.058 0.351 0.437
ETM 90 -0.274 0.402 0.699 0.048 0.527 0.834 -0.056 0.351 0.464
ETM 120 -0.277 0.415 0.722 0.047 0.525 0.851 -0.069 0.353 0.505
LDA 10 -0.18 0.391 0.996 0.065 0.554 0.942 -0.035 0.389 0.966
LDA 20 -0.167 0.368 0.998 0.099 0.613 0.977 -0.133 0.373 0.986
LDA 30 -0.173 0.393 0.999 0.097 0.609 0.985 -0.183 0.374 0.991
LDA 40 -0.171 0.404 0.998 0.095 0.605 0.989 -0.218 0.389 0.993
LDA 50 -0.198 0.406 0.999 0.085 0.584 0.99 -0.251 0.402 0.995
LDA 60 -0.21 0.411 0.999 0.075 0.571 0.993 -0.261 0.408 0.994
LDA 90 -0.206 0.407 0.999 0.054 0.54 0.995 -0.274 0.398 0.994
LDA 120 -0.013 0.44 0.989 0.028 0.494 0.996 -0.184 0.352 0.99

Table 7: Performance of the different topic models on GN, 20NG, and M10 datasets for different topic counts. Each
score is the median of 5 independent runs.
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