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Abstract
To investigate the role of linguistic knowl-
edge in data augmentation (DA) for Natu-
ral Language Processing (NLP), we designed
two adapted DA programs and applied them
to LCQMC (a Large-scale Chinese Question
Matching Corpus) for a binary Chinese ques-
tion matching classification task. The two DA
programs produce augmented texts by five sim-
ple text editing operations (or DA techniques),
largely irrespective of language generation
rules, but one is enhanced with a pre-trained
n-gram language model to fuse it with prior
linguistic knowledge. We then trained four neu-
ral network models (BOW, CNN, LSTM, and
GRU) and a pre-trained model (ERNIE-Gram)
on the LCQMC’s train sets of varying size as
well as the related augmented train sets pro-
duced by the two DA programs. The results
show that there are no significant performance
differences between the models trained on the
two types of augmented train sets, both when
the five DA techniques are applied together or
separately. Moreover, due to the inability of
the five DA techniques to make strictly para-
phrastic augmented texts, the results indicate
the need of sufficient amounts of training ex-
amples for the classification models trained on
them to mediate the negative impact of false
matching augmented text pairs and improve per-
formance, a limitation of random text editing
perturbations used as a DA approach. Similar
results were also obtained for English.

1 Introduction
Data augmentation (DA) is a common solution to the
problems of limited and imbalanced data. It works by
generating novel and label-preserving data from the ex-
isting data (Xie et al., 2020), which would otherwise
be unavailable or expensive to collect. Owing to the in-
creasing popularity of supervised deep learning models
that demand large-scale labeled data as well as more
studies on understudied/under-resourced language and
text domains, the Natural Language Processing (NLP)
community has seen a growing interest in DA in re-
cent years (Feng et al., 2021; Liu et al., 2020; Shorten

et al., 2021). However, unlike image and speech, whose
physical features can be relatively easily manipulated
without deviating from the original labels, text aug-
mentation poses a bigger challenge. This is simply
because there is no easy and automatic way to para-
phrase a randomly given piece of text while preserv-
ing its linguistic integrity and, above all, meaning. As
such, while there are well established and widely ap-
plied DA techniques as well as frameworks in image and
speech recognition research1 with noteworthy success
(Iwana and Uchida, 2021; Park et al., 2019; Shorten and
Khoshgoftaar, 2019), DA for NLP as a whole remains
underexplored (Feng et al., 2021).

The main purpose of this paper is to investigate a fun-
damental question we found unanswered to the best of
our knowledge: the role of linguistic knowledge in DA
for NLP; in particular, whether more linguistic knowl-
edge leads to a better DA approach. By a better DA
approach, we mean one that can lead to superior trained
models’ performance on a given NLP task. Intuitively,
with more linguistic knowledge instilled, a DA approach
is expected to augment text of higher-quality or more
grammatical and thus to be presumably better. We be-
lieve a deeper understanding of what counts as a better
DA approach and the role of linguistic knowledge will
trigger more in-depth experiments and discussions and
advance this research area to the next stage. Eventually,
these efforts will turn into potential great benefits, both
academically and commercially, helping train robust
NLP models with small data.

To conduct our research, we present two DA pro-
grams and train five supervised classification models on
the augmented train sets for a binary Chinese question
matching classification task. For simplicity and inter-
pretability concerns, the DA programs used in this study
are adapted from the Easy Data Augmentation (EDA)
program (Wei and Zou, 2019), which augments text by
four naïve text editing operations, largely irrespective of
language generation rules. The only difference between
the two adapted programs is whether they have a pre-
trained statistical n-gram language model (LM) to select
the most linguistically likely outputs, an effective mech-

1Although there is certain overlap between speech recogni-
tion and NLP, they are two independent fields with divergent
concerns and specializations (Manning and Schütze, 1999).
Typically, NLP is about text processing only.



anism to fuse a program with probabilistic linguistic
knowledge. We choose n-gram LM over neural LMs be-
cause it is more efficient to train, and most importantly,
more interpretable for its straightforward frequency-
based approach. As the EDA approach has shown suc-
cess (Wei and Zou, 2019) in various sentiment-related
and sentence type classification tasks with small datasets
(e.g., mostly around 10k examples), we choose LCQMC
(a Large-scale Chinese Question Matching Corpus) com-
piled by Liu et al. (2018) to compare the goodness of
the two adapted programs, a large labeled corpus with
over 260k examples. Since our corpus is much larger
and the question matching task involves comparing a
pair of text, instead of one, for label prediction, it is a
more reliable way to test the capacity and generalizabil-
ity of a DA approach. In principle, if a DA approach
can work well for the question matching task, it should
also show promise for those simpler and related NLP
tasks, as question matching, or text matching, is one of
the most basic tasks for NLP.

The contributions of this paper are threefold. First,
we present the first study on the role of linguistic knowl-
edge in DA for NLP with a special focus on the effects
of probabilistic linguistic knowledge on a DA approach
or technique. Second, we propose two DA programs
adapted from the EDA program. Although the adapted
programs are for augmenting Chinese, several changes
we made, including a new DA technique and the added
n-gram LM, can be universal for tailoring the EDA pro-
gram to other languages. Third, we also fill the research
gaps in two understudied areas: DA for question match-
ing classification task and DA for Chinese NLP.

The code, data, and results for this study are avail-
able at https://github.com/jaaack-wang/
linguistic-knowledge-in-DA-for-NLP.

2 Related Works

Thus far, various DA techniques has been employed in
NLP research, such as thesaurus-based (Zhang et al.,
2015) and embedding-based (Wang and Yang, 2015)
word replacement, random text-editing perturbation
(Wei and Zou, 2019), rule-specific generation (Asai and
Hajishirzi, 2020; Kang et al., 2018), back translation
(Sennrich et al., 2016; Singh et al., 2019), and neural-
model-based predictive text transformation (Hou et al.,
2018; Kobayashi, 2018; Kurata et al., 2016) etc. Most
of these studies find slight but stable performance gains
for training models with augmented data for given NLP
tasks, such as text classification, question answering,
machine translation, for a common reason that the aug-
mented data introduces noise to the original train set
and prevents the trained models from overfitting, which
improves the models’ generalizability on the test set.

As the NLP community is more engaged in exploring
the usefulness of DA for specific NLP tasks, we have
not been able to find any focused studies from the exist-
ing literature related to the subject matter of this study,
i.e., the role of linguistic knowledge in DA for NLP.

However, some indirect evidence seems to be affirma-
tive. For example, Kobayashi (2018) trained a recurrent
neural network (RNN) LM, which replaces words with
paradigmatic relations predicted by the RNN LM to
generate new examples. Since this approach ignores the
semantic association between the replaced words and
the corresponding labels, he also constrained the LM to
predict words more compatible with the given labels by
probability. By so doing, he found about 0.2% overall
improvements in accuracy for 5 sentiment-related and
one question type classification tasks. According to the
results reported by Kang et al. (2018), we also find that
while not consistently, a sequence to sequence (seq2seq)
DA model blended with a few hand-crafted rules in-
creases more test set accuracy than the base seq2seq
DA model when certain ratios of two textual inference
datasets were augmented. However, since these neural
DA models already encode and learn implicit linguistic
knowledge through complex representation learning, it
is not possible to fully recognize the effects of those
added linguistic knowledge, either implicit or explicit,
in them.

Relevant to our hypothesis on what counts as a better
DA approach, we can find strong supports by thinking
in reverse. That is, although text augmentation helps in-
crease the size of the training texts, which then improves
the performance of the trained models through regular-
ization, it is still incomparable to the human-produced-
and-annotated training texts of a same size, which by
default we assume to be superior in quality as well as
more diverse. For example, in Wei and Zou (2019), they
augmented the original training examples by a factor of
9, giving them 5,000 training examples when 500 were
given. Although the augmented train set shows average
3% performance gains in accuracy on the test set for 5
classification tasks, compared to that without augmenta-
tion, this is still significantly lower than the average 10%
performance improvements when the models are trained
on 5,000 of the original training examples2. Therefore,
we expect that coupled with a n-gram LM, the adapted
EDA program that utilizes random text-editing perturba-
tions, will augment higher-quality text, and thus achieve
better trained models’ performance.

3 Experimental Setup
3.1 LCQMC
LCQMC contains over 260k question pairs, extracted
from BaiduKnows, a Quora-like online Q&A platform.
Each question pair is manually annotated by three exter-
nal professional annotators with a label, 1 or 0, to repre-
sent whether a question pair matches or not in terms of
the expressed intents. As judgements vary from person

2Wei and Zou (2019) claims that with the augmented texts,
their classification models achieve higher average accuracy
using only 50% of the train set than when the models are
trained on the entire train set without augmentation. This
is misleading since the performance of their models starts
plateauing when the models see 20% of the train set.

https://github.com/jaaack-wang/linguistic-knowledge-in-DA-for-NLP
https://github.com/jaaack-wang/linguistic-knowledge-in-DA-for-NLP


Dataset Total Pairs Matched Mismatched
Train 238,766 138,574 100,192
Dev 8,802 4,402 4,400
Test 12,500 6,250 6,250

Table 1: The basic statistics of LCQMC data sets.

to person and the interpretation of some question pairs
is bound to contexts, there are about 15% annotation in-
consistency and 20% annotation uncertainty (Liu et al.,
2018). In this study, we keep the original separation of
the train set, the development set, and the test set as is
in LCQMC, whose basic statistics are shown in Table 1.

3.2 Two adapted DA programs
The base DA program developed in this study is adapted
from the EDA program3 (Wei and Zou, 2019) and the
control DA program is the base program combined with
a pre-trained statistical n-gram LM (refer to the next sec-
tion). We name these two programs as the REDA pro-
gram and the REDA+NG program respectively, where
REDA stands for Revised Easy Data Augmentation.

Like the EDA program, the REDA program also has
four text editing operations, i.e., Synonym Replacement
(SR), Random Swap (RS), Random Insertion (RI), and
Random Deletion (RD). Their functions are as follows:
SR works by randomly replacing synonyms for eligi-
ble words based on a given dictionary, while RS works
by randomly swapping word pairs. RI inserts random
synonyms, if any, instead of random words, to avoid un-
controlled label change. In contrast, RD deletes words
at random. We used jieba4, a popular Chinese text seg-
mentation tool, to tokenize Chinese text throughout this
research.

To further diversify the augmented texts, we also cre-
ated a new text editing operation called Random Mix
(RM), which randomly selects 2-4 of the other four op-
erations to produce novel texts. Besides, a few major
changes were also made to fix few bugs we found on the
EDA program and to better serve our needs of augment-
ing Chinese and conducting this research, including:

1. We rewrote the entire program to ensure that there
are no duplicates in the augmented texts, includ-
ing one for the original text. Duplicates can occur
when there are no synonyms to replace (SR) or
insert (RS) for words in the original texts, or when
the same words are replaced or swapped back dur-
ing SR and RS operations.

2. The REDA program does not preprocess the input
text by removing punctuations or by introducing
stop words. We did not find this type of preprocess-
ing helpful and necessary in general or makes sense
for the basic idea of random text editing behind the
EDA program.

3https://github.com/jasonwei20/eda_
nlp/tree/master/code.

4https://github.com/fxsjy/jieba.

3. Instead of using WordNet for SR, we compiled a
preprocessed Chinese synonym dictionary leverag-
ing multiple reputational sources5, including Chi-
nese Open Wordnet6. Moreover, unlike the EDA
program, the REDA program only replaces one
word at a given position at a time, instead of re-
placing all its occurrences, which we see as extra
edits.

The REDA+NG program inherits the base REDA
program but additionally utilizes the n-gram LM pre-
trained to select the most likely augmented text(s) for
each text editing operation from a variety of possible
outputs. We have open-sourced two separate versions of
code for these two DA programs, but during this study,
we always combined them together in one working pro-
cedure so that the augmented texts outputted by these
two programs are selected from the same pool. The
implementation of this combination is also available at
the open-sourced GitHub repository.

3.3 N-gram LM
To train the n-gram LM, we first compiled an indepen-
dent corpus of BaiduKnows Q&A texts based on an
existing project found on GitHub, which scrapes over 9
million question-answer pairs from BaiduKnows plat-
form7. This compiled corpus contains over 654 million
words (or over 1.1 billion Chinese characters). Then,
the relative frequency of unigram, bigram, trigram, and
4-gram for this corpus was calculated based on words
and line by line with the results saved in four separate
json dictionaries as the pre-trained parameters. When
counting these n-grams, we added two special tokens,
<START> and <END>, in the beginning and end of each
line, to keep track of their tendency to stay ahead or at
the end of a line. For efficiency concerns, we adjusted
the relative frequency for the unigrams simply by assign-
ing unseen vocabulary the same frequency with those
one-off unigrams and employed stupid backoff without
discounting unseen non-unigrams (Brants et al., 2007).
Finally, the n-gram LM takes the relative frequency of
the n-grams as an estimation to their true probability of
occurrence and calculates the maximum log probabil-
ity of input text based on the chain rule of probability
(Jurafsky and Martin, 2009) as follows:

logP (NG1 : NGn) = log

n∏
i=1

P (NGi) =

n∑
i=1

logP (NGi)

where NG represents n-gram that is automatically gener-
ated by our n-gram LM. The n-gram starts with 4-gram,
if any, and keeps backing off into low-order n-gram
combination, if a higher-order n-gram is not available
in the pre-made json dictionaries.

5https://github.com/jaaack-wang/
Chinese-Synonyms.

6http://compling.hss.ntu.edu.sg/cow/.
7https://github.com/liuhuanyong/

MiningZhiDaoQACorpus.

https://github.com/jasonwei20/eda_nlp/tree/master/code
https://github.com/jasonwei20/eda_nlp/tree/master/code
https://github.com/fxsjy/jieba
https://github.com/jaaack-wang/Chinese-Synonyms
https://github.com/jaaack-wang/Chinese-Synonyms
http://compling.hss.ntu.edu.sg/cow/
https://github.com/liuhuanyong/MiningZhiDaoQACorpus
https://github.com/liuhuanyong/MiningZhiDaoQACorpus


3.4 Classification models

We chose four neural network (NN) models and one
transformer-based pre-trained model as the classifi-
cation models. The NN models include the Bag of
Words (BOW) model, the Convolutional Neural Net-
work (CNN) model, and two RNN models: Long Short-
Term Memory (LSTM) and Gated Recurrent Units
(GRU). BOW model is a conventional technique to
represent a text by summing up the embeddings of its
words, and the similarity between texts is then often
measured by Euclidean distance or cosine distance of
the texts’ embeddings. Since Kim (2014), CNN has
been proven to be effective in various text classification
tasks, including text pairing (Severyn and Moschitti,
2015). LSTM and GRU are two popular sequence mod-
els that consider word orders and have also been ap-
plied to semantic similarity tasks (Tai et al., 2015; Tien
et al., 2019), which we think may be especially useful
for distinguishing the augmented texts from the natural
texts, and more importantly, distinguishing the casu-
ally augmented texts by the REDA program from the
conditionally augmented texts by the REDA+NG pro-
gram in terms of the test set performance. Finally, the
pre-trained model ERNIE-Gram (Xiao et al., 2020) was
also chosen for its state-of-the-art performance on the
LCQMC dataset.

The models were constructed using Baidu’s deep
learning framework Paddle8 and its NLP software Pad-
dleNLP9.

4 Results

4.1 Quality of the augmented texts

To evaluate the quality of the augmented texts generated
by the REDA and REDA+NG programs, we designed
three simple experiments to check their ability to restore
to natural texts when modified texts or a pseudo syn-
onym dictionary were given for three basic text editing
operations, i.e., SR, RS, and RD. We skipped RI and
RM because inserting random synonyms is generally
not the natural way of language use however (un)natural
the input text is and the text quality resulting from RM
can be inferred from the other basic operations directly.

The experiments went as follows. For SR, we de-
signed a pseudo synonym dictionary made up of 3855
one-word-four-synonym pairs, where every word is
mapped to four pseudo synonyms, one being the word
itself and the rest non-synonym random words. All the
words in the dictionary are those whose frequencies
rank between the 1000th and the 10000th place in the
unigram dictionary complied for the n-gram LM. For
RS and RD, we randomly reordered the natural texts
and added random words sampled from the texts respec-
tively before RS and RD were performed. 10,000 pieces

8https://github.com/PaddlePaddle/
Paddle

9https://github.com/PaddlePaddle/
PaddleNLP

One Edit Two Edits Three Edits
SR REDA 22% 6% 2%

+N-gram 88% 79% 64%
RS REDA 9% 4% 4%

+N-gram 69% 41% 34%
RD REDA 16% 5% 2%

+N-gram 39% 22% 15%

Table 2: The average accuracy scores of the two DA
programs in three text restoration tasks based on differ-
ent number of edits. SR: Synonym Replacement; RS:
Random Swap; RD: Random Deletion. Best perfor-
mance given a DA technique is highlighted in bold.

of texts were randomly sampled from the LCQMC’s
train set for 5 times for every comparison we made. The
average accuracy scores are reported in Table 2.

As can be seen, while both programs’ performance de-
clines as the number of edits increase, the REDA+NG

program always outperform the REDA program in
restoring to the natural texts. In fact, for the REDA
program, restoring the modified texts to the original
ones is a matter of chance equal to the inverse of the
number of possible outputs available. However, the
REDA+NG program augments texts of maximum like-
lihood, which tends to be closer to the natural texts
expected. This is also true when natural texts are given
as inputs. For example, through manual inspections,
we found the REDA+NG program does much better
in selecting the appropriate synonyms according to the
linguistic contexts, which is a problem for the REDA
program due to the ubiquitous existence of polysemy.
By measuring the bigram overlap rate and edit distances
of output texts randomly swapped twice from the natu-
ral texts, we found that the average overlap rate for the
REDA program is much lower (i.e., 0.29 versus 0.77)
and the average edit distances are much larger (i.e., 3.0
versus 1.4) than the REDA+NG program, meaning
the latter preserves more collocational features of the
natural texts and thus augments higher-quality texts.

Nevertheless, the REDA+NG program is also not
free of considerable text quality decrease when more
text edits are performed. This is largely due to the
drastic increase of possible output texts as well as the
more likely semantic shift of the original texts with large
proportion of the input texts changed. Therefore, to
conduct our research, the number of text edits performed
is set proportional to the number of words of the input
texts, so that a large quality difference of the augmented
texts by the two programs can be maintained. More
concretely, in the study, we set the SR and SR rate at 0.2
and the RI and the RD rate at 0.1 and applied Python
rounding rules10. RM will only randomly select two
of the other four text editing operations with one text
edit each for every input text to make the study more
controlled.

10When an even number ends with “.5”, it will be rounded
down; otherwise, rounded up.

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/PaddleNLP
https://github.com/PaddlePaddle/PaddleNLP


LCQMC 5,000 10,000 50,000 100,000 238,766
REDA 66,267 132,513 563,228 929,176 2,218,512

+N-gram 64,358 128,649 544,583 893,779 2,133,163

Table 3: The train set size for the corresponding REDA and REDA+NG augmented train sets.

Models 5k 10k 50k 100k Full Set Average
BOW 59.4% 60.4% 65.4% 67.8% 73.8% 65.4%
+REDA 58.1% 60.9% 68.2% 72.2% 76.4% 67.2%
+REDA+NG 58.8% 59.6% 68.1% 71.2% 76.0% 66.7%
CNN 59.3% 63.4% 67.2% 69.0% 72.9% 66.4%
+REDA 59.8% 62.6% 66.8% 69.8% 74.9% 66.8%
+REDA+NG 60.3% 62.0% 67.9% 69.1% 74.0% 66.7%
LSTM 60.0% 62.1% 66.2% 69.6% 74.8% 66.5%
+REDA 58.9% 61.5% 67.7% 71.8% 76.4% 67.3%
+REDA+NG 57.7% 60.9% 67.7% 71.7% 75.9% 66.8%
GRU 59.8% 61.9% 68.1% 70.3% 76.8% 67.4%
+REDA 58.7% 61.3% 68.7% 72.7% 76.8% 67.6%
+REDA+NG 58.8% 60.0% 67.8% 72.5% 76.6% 67.1%
ERINE-Gram 78.7% 81.7% 85.9% 87.1% 87.4% 84.2%
+REDA 77.5% 80.3% 84.1% 85.0% 85.7% 82.5%
+REDA+NG 78.6% 80.1% 83.8% 84.6% 85.8% 82.6%
Average 63.5% 65.9% 70.6% 72.8% 77.1% 70.0%
+REDA 62.6% 65.3% 71.1% 74.3% 78.0% 70.3%
+REDA+NG 62.8% 64.5% 71.1% 73.8% 77.7% 70.0%

Table 4: Test set accuracy of the five classification models trained on the three types of train sets of varying size.
Best performance given a train set size (of original training examples) is highlighted in bold.

4.2 Effects of the two DA programs
We trained the five classification models in Baidu Ma-
chine Learning (BML) CodeLab on its AI Studio11 with
Tesla V100 GPU and 32GB RAM. The models were
trained with 64 mini batches, a fixed 5e-4 learning rate
(5e-5 for ERNIE-Gram model), and constantly 3 epochs.
We used Adaptive Moment Estimation (Adam) opti-
mizer and cross entropy loss function. We kept the
original development set for validation purposes.

The following training sizes were experimented: 5k,
10k, 50k, 100k, and full size, approximately equal to
2%, 4%, 21%, 42%, and 100% of the LCQMC’s train
set respectively. When the train set size is 5k and 10k,
we augmented two new texts for SR and RS, and one
new text for RI, RD, and RM, because the last three
text editing operations show smaller differences for the
REDA and REDA+NG programs in terms of text qual-
ity (refer to the last section), which we want to hold
as large as possible for the sake of this research. That
translates into maximum 7 new texts for every text and
up to 14 new texts for every text pair due to deduplica-
tion. Every augmented text was crossed paired with the
other text that was a pair to the text being augmented
with the original label kept for the newly made text
pair. To make the training more manageable, we only
augmented 5 new texts for every text with one output
for every text editing operation, meaning a maximum
tenfold increase in size when the associated train set
size is 50k and more. The corresponding augmented
train set size is given in Table 3.

11https://aistudio.baidu.com/aistudio/
index

The accuracy scores as well as the average preci-
sion, recall, and F1 scores on the test set are presented
in Table 4 and Table 5, respectively. Contrary to our
expectation, we do not find that the REDA+NG aug-
mented train sets lead to better test set performance
than the REDA augmented train sets, when it comes
to the four metrics used in this study. According to
the pairwise Mann-Whitney U tests we ran, there is
no statistically significant difference across the four
metrics among each type of models trained on the two
types of augmented train sets, as the p-values were con-
stantly far greater than .05. Although the former pro-
gram does produce higher-quality augmented texts from
a linguistic perspective as discussed above, evidence
shows that models trained on the REDA augmented
train sets outperform those trained on the REDA+NG

augmented train sets by an average 0.3% both in the ac-
curacy and F1 scores. As can be seen from Table 4, the
REDA+NG-led models only outperform the REDA-
led ones in terms of the test set accuracy when the
train set size is 5k for four models except the LSTM
model and when the ERNIE-Gram models were fine-
tuned on the full augmented train sets. Moreover, for any
classification model trained on the REDA augmented
train sets, in most cases, it achieves a slightly better
score for the four metrics than the model trained on the
REDA+NG augmented counterparts. It follows that
the role of probabilistic linguistic knowledge instilled in
the REDA+NG program is overall minimal and some-
times harmful to DA applied to the binary question
matching task.

Also noticeable from Table 4 is that 50k training ex-

https://aistudio.baidu.com/aistudio/index
https://aistudio.baidu.com/aistudio/index


Models Baseline REDA REDA+NG

Precision Recall F1 Precision Recall F1 Precision Recall F1
BOW 61.5% 82.5% 70.4% 63.3% 81.7% 71.3% 62.9% 81.8% 71.1%
CNN 62.8% 80.5% 70.5% 63.6% 78.1% 70.0% 63.8% 76.2% 69.3%
LSTM 62.5% 82.7% 71.2% 63.4% 81.4% 71.3% 63.0% 82.1% 71.3%
GRU 63.4% 82.4% 71.7% 63.8% 81.9% 71.7% 63.3% 81.7% 71.4%
ERINE-Gram 78.0% 95.8% 85.9% 75.8% 95.9% 84.6% 76.0% 95.3% 84.6%
Average 65.6% 84.8% 73.9% 66.0% 83.8% 73.8% 65.8% 83.4% 73.5%

Table 5: Average test set precision, recall, and F1 scores for the five classification models trained on the three types
of train sets. Best performance given a metric (precision, recall, or F1) is highlighted in bold.

amples appear to be the threshold where the two DA
programs start bringing gains to the related test set ac-
curacy scores compared to the baselines, except for the
finetuned ERNIE-Gram models. However, as shown
in Table 5, there is also a gap in the recall scores in
favor of the baseline models, which may be attributed
to the false matching text pairs produced by the two DA
programs due to the inability of the underlying text edit-
ing operations to make strictly paraphrastic augmented
texts. But these noisy augmented texts in return enable
the classification models to generalize better on those
matching text pairs judged to be non-matching by the
baseline models, as indicated by the average larger preci-
sion scores. In addition, the advantage of the pre-trained
model over the traditional NN models is significant: the
ERNIE-Gram models, finetuned on all the three types of
train sets, show about 12% to 17% average gains across
the four metrics in relation to the other four trained
models. This shows the promise of applying transfer
learning to DA for NLP, which may be worth further
studying in the future.

4.3 Ablation study: each DA technique

To gain a more nuanced understanding of the role of
linguistic knowledge in each one of the DA techniques
performed by the two DA programs, we conducted an
ablation study where we trained models on train sets
augmented by only one DA technique. That means, for
a train set of given size randomly sampled from the
LCQMC’s train set, there are five types of correspond-
ing augmented train sets. Our analyses are based on
comparing the average test set performance of the five
models trained on the three types of train sets for the
five augmentation scenarios. We also excluded ERNIE-
Gram models, which are revealed to be distinct from the
rest models across the four metrics in the last section, to
see if there is a noticeable difference.

As the training sizes are shown to have an effect on
whether the DA-led models outperform the baseline
models, to further validate that, we chose 11 training
sizes for this ablation study, namely, 5k, 10k, 25k, 50k,
75k, 100k, 125k, 150k, 175k, 200k, and full set, roughly
equal to 2%, 4%, 10%, 21%, 31%, 42%, 52%, 63%,
73%, 84%, and 100% of the LCQMC’s train set respec-
tively. The basic hyperparameters are same with the
previous section. However, to make the training more
manageable, we only trained 2 epochs when the base-

line training size is 50k or 100k and 1 epoch when the
baseline training size is over 100k for the three types of
train sets. Since it is evident from Table 4 that a larger
training size under the same condition always leads to
a higher test set performance, spending extra time in
training a total of 605 models12 with fixed 3 epochs
may thus not be worthwhile to re-verify. Moreover, we
only augmented 2 texts per text per DA technique when
the baseline training size is no less than 50k and 1 text
when otherwise, with the cross pairing applied, similar
to what we did in the previous section. Please refer to
the Appendix for more details.

Figure 1 shows the average test set accuracy scores of
the five classification models trained on the three types
of train sets under different text editing conditions and
across different training sizes. In line with the previous
finding, the effect of probabilistic linguistic knowledge
on each one of the five DA techniques is minimal and
of no statistically significant difference, both individu-
ally and on average. Although with certain text editing
operations, such as RS, RI, and RM, there exist several
points in which there is a relatively large difference in
the accuracy scores between the two DA-led models,
these differences fluctuate along the x-axis and even-
tually get reduced to be negligible when the average
performance are concerned. This basic pattern remains
true when we plotted the average test set performance
based on any one of the four metrics with or without the
ERNIE-Gram models.

Also related to the previous finding is that there does
exist a threshold where the DA-led models outperform
the baseline models in the test set accuracy scores,
which appears to be the 100k training size or so, in-
stead of 50k as in Table 4. The discrepancy may be
explained by the different epoch numbers (e.g., 2 vs 3
for 50k) and possibly more importantly the separation
of the DA techniques, which, however, are beyond the
scope of this study. We also examined plots based on the
other three metrics with or without the ERNIE-Gram
models to explore the cause of such phenomenon. Fig-
ures 2 and 3 present the average test set precision and

12Since there are 11 training sizes and 5 classification mod-
els, that translates into 55 models for the baseline train sets.
As there are 5 DA techniques applied in 2 different ways (with
or without n-gram LM), that translates into 550 (55 * 5 * 2)
models for the augmented train sets. Hence, we have 605
models to train in total.



Figure 1: Average test set accuracy scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC’s train sets. The sixth plot
averages the statistics of the previous five plots.

recall scores of the five classification models trained on
the three types of train sets respectively. As can be seen,
there is no general trend in which the baseline models
surpass the DA-led counterparts in the test set recall
scores, but a similar pattern that resembles that of Fig-
ure 1 also exists in Figure 2. That means, the increase
in the precision scores, after certain amounts of training
examples are trained, are the main driver that makes the
baseline models outperformed by the DA-led ones in
terms of test set accuracy scores as well as the F1 scores,
which are not shown here to save space. Moreover, this
conclusion also largely holds when the ERNIE-Gram
models are excluded.

Figure 2: Average test set precision scores of the five classifi-
cation models.

Figure 3: Average test set recall scores of the five classification
models.

5 Discussions and Conclusions
In this study, we examined the effects of linguistic
knowledge on DA for a binary Chinese question match-
ing task. We proposed two DA programs, i.e., the REDA

and REDA+NG programs, that augment text by five
random text editing operations (or DA techniques), with
the REDA+NG program combined with a n-gram LM
to fuse it with probabilistic linguistic knowledge. Sur-
prisingly, we found that the REDA+NG-led classifica-
tion models did not surpass the REDA-led counterparts
in the test set performance (i.e., accuracy, precision, re-
call, and F1 scores), which is also true when the five DA
techniques in the two programs are applied and com-
pared separately. In other words, our study indicates
strongly that instilling more linguistic knowledge into a
DA approach or technique does not necessarily make it
a better one when it comes to training a better question
matching classifier for Chinese, although doing so may
make the augmented texts higher quality from a pure
linguistic point of view.

However, since the two DA-led models achieve very
close scores in the four metrics with trivial advantages
for the REDA-led models, it is not possible for us to
explain why adding probabilistic linguistic knowledge
as a constrain does not make a meaningful difference,
positive or negative. A possible explanation might be
that as the five deep learning models compare a pair
of texts in vector space and the way how word em-
beddings encode linguistic knowledge is different from
humans, performing simple text editing operations in
two different ways (i.e., random, conditional) on a text
may result in different meanings for humans, but that
for machines nevertheless is less distinguishable in the
high dimension of vector space. Moreover, as we only
used probabilistic linguistic knowledge as a filter to se-
lect augmented texts closer to human language use, the
inherent inability of the underlying text editing opera-
tions made by the two DA programs to produce strictly
paraphrastic augmented texts means the two types of
augmented texts are to a considerable extent compara-
ble in that they are mostly not the paraphrases to the
original texts being augmented. However, such interpre-
tation cannot explain why the REDA-led models often
outperform the REDA+NG-led ones by a slight but
consistent margin.

Unlike Wei and Zou (2019) who show general suc-
cess of their EDA program in bring performance gains
for several sentiment-related and text type classification
tasks across train sets of varying sizes, we only found
such gains when the classification models were trained
with sufficient amounts of training examples. As we
expected in the beginning, question matching presents
a more difficult and fundamental classification task be-
cause it involves comparing a pair of texts, instead of
a single text, to predict the label for the given text pair.
This nature makes question matching, or text match-
ing in general, inherently much more sensitive to and
subject to some tiny semantic changes caused by text
augmentation. To further validate this hypothesis, we
adjusted the two REDA programs and ran a post hoc
experiment similar to Section 4.2 for English using the



Models 10k 50k 100k 150k Full Set (260k) Average
BOW 64.4% 69.9% 72.1% 74.2% 77.7% 71.7%
+REDA 62.5% 68.5% 71.6% 74.8% 78.0% 71.1%
+REDA+NG 62.9% 69.4% 74.0% 75.5% 78.2% 72.0%
CNN 66.1% 71.1% 72.6% 73.4% 75.9% 71.8%
+REDA 63.7% 69.9% 72.7% 75.3% 77.6% 71.8%
+REDA+NG 63.5% 69.3% 72.7% 74.7% 77.7% 71.6%
LSTM 65.7% 71.6% 72.9% 75.0% 77.9% 72.6%
+REDA 64.0% 69.8% 72.5% 75.1% 78.1% 71.9%
+REDA+NG 64.9% 70.3% 72.7% 75.0% 78.1% 72.2%
GRU 67.2% 71.0% 74.3% 74.7% 77.4% 72.9%
+REDA 63.3% 70.0% 72.8% 74.8% 78.1% 71.8%
+REDA+NG 64.0% 70.2% 73.8% 75.7% 78.9% 72.5%
Average 65.9% 70.9% 73.0% 74.3% 77.2% 72.3%
+REDA 63.4% 69.6% 72.4% 75.0% 78.0% 71.7%
+REDA+NG 63.8% 69.8% 73.3% 75.2% 78.2% 72.1%

Table 6: Test set accuracy of four classification models trained on the three types of train sets of QQQD with
varying sizes. Due to cost concerns, we did not finetune a pre-trained model, such as BERT, this time.

Models Baseline REDA REDA+NG

Precision Recall F1 Precision Recall F1 Precision Recall F1
BOW 70.9% 73.5% 72.1% 69.2% 76.1% 72.5% 71.1% 74.4% 72.7%
CNN 70.5% 75.4% 72.8% 70.7% 76.0% 73.1% 70.2% 76.5% 73.1%
LSTM 70.5% 78.2% 74.1% 70.5% 75.4% 72.8% 71.4% 74.1% 72.7%
GRU 71.8% 75.5% 73.5% 69.8% 76.9% 73.2% 71.6% 74.5% 73.0%
Average 70.9% 75.6% 73.1% 70.1% 76.1% 72.9% 71.1% 74.9% 73.9%

Table 7: Average test set precision, recall, and F1 scores for the four classification models trained on the three types
of train sets of QQQD.

Quora Question Pairs Dataset (QQQD)13, from which
we created three label-balanced data sets of comparable
sizes to the LCQMC counterparts. The average test set
accuracy scores in Table 6 clearly show that models
trained on the augmented train sets also need to see
ample original training examples (near 150k or above)
to stably outperform the baseline models, although the
threshold is higher here. Therefore, for random text
editing DA approach to work for question matching,
there is a need of sufficient training examples to enable
the trained models to mediate the negative impact of the
false matching augmented text pairs resulting from ran-
dom text editing perturbations and turn it into a means of
regularization that improves the models’ generalizabil-
ity. This is a general limitation of random text editing
perturbations applied as a DA approach.

Lastly, comparing the results from these two exper-
iments, or between Table 4 and Table 6, and between
Table 5 and Table 7, we can see that the discussions
and conclusions drawn from the LCQMC experiment
mostly apply for the QQQD experiment as well, since
the obtained data shares similar patterns. Besides the
threshold difference noted above, which may be dataset
specific, a noteworthy difference is that REDA+NG-
led models slightly but consistently outperformed the
REDA-led counterparts of test set accuracy and preci-
sion, although there is also no statistically significant
difference and the average F1 scores are same. This fact

13https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

again demonstrates the difficulty of fully accounting for
modern deep learning experiments, but it also strongly
confirms the negligible role of probabilistic linguistic
knowledge in text augmentation.

6 Limitations and future studies
Although we are highly confident that observations
made in this study are reliable, we were nevertheless
unable to experiment with different initializations of
the two REDA programs and different configurations
of the classification models, constrained by available
resources. Moreover, systematically and fairly evaluat-
ing a DA approach for NLP is uneasy or even unknown.
The current study only illustrates a tip of the iceberg.

In light of the limitations above, future studies may
carry out similar experiments with differing setups, dif-
ferent NLP tasks, or even distinct methods of fusing a
DA approach or technique with linguistic knowledge.
Because of the simplicity and low cost of the five DA
techniques employed in this study, it may also be impor-
tant to re-examine the effectiveness and limitations of
these random text editing operations for assorted NLP
tasks. This may then give us some useful insights into
building cheap and (highly) universal DA techniques
for NLP, which is currently lacking in the field.
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Appendix
A. Size of augmented train sets for the ablation
experiment
Table 8 contains the size of the train sets for the ablation
experiment on LCQMC. Please note that, for simplicity,
240k is used to refer to the full size of LCQMC, which is
238,766 to be exact. Also, due to deduplication, differ-
ent text editing operations may result in augmented train
sets with non-trivial difference in size, as discernible in
Table 8.

B. Average test set performance for the ablation
experiment
Figure 4, 5, and 6 show the average test set performance
(accuracy, precision, and recall, respectively) of the
four classification models, excluding the ERNIE-Gram
model. It is clear that the observations made in the
section 4.3 still hold.

C. Size of QQQD-related data sets
We created three label-balanced data sets based on
QQQD’s original train set since the test set is made
unlabeled for online competition. The size of the cre-
ated train, development, and test sets is 260k, 20k, and
18,526, respectively. Table 9 shows the size of aug-
mented train sets for QQQD.

Size SR RS RI RD RM
5k 24,402 24,758 16,733 16,780 24,859

10k 48,807 49,575 33,090 33,208 49,652
25k 122,358 124,040 83,329 83,592 124,237
50k 244,577 248,074 166,839 167,296 248,539
75k 220,843 223,497 162,563 162,972 224,026

100k 294,516 297,987 216,540 217,012 298,620
125k 368,078 372,536 270,957 271,552 373,266
150k 441,643 446,941 325,027 325,738 447,838
175k 515,229 521,484 379,352 380,214 522,535
200k 588,901 595,977 433,521 434,469 597,084
240k 703,077 711,631 517,492 518,664 712,852

Table 8: Size of the augmented train sets for the ablation
experiment on LCQMC.

Size REDA +N-gram
10k 148,341 141,604
50k 543,066 512,176
100k 1,086,063 1,023,777
150k 1,629,178 1,536,285
260k 2,823,733 2,662,639

Table 9: Size of the augmented train sets for QQQD.

Figure 4: Average test set accuracy scores of the four classifi-
cation models excluding ERNIE-Gram.

Figure 5: Average test set precision scores of the four classifi-
cation models excluding ERNIE-Gram.

Figure 6: Average test set precision scores of the four classifi-
cation models excluding ERNIE-Gram.
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