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Abstract

Few-shot slot tagging is an emerging re-
search topic in Natural Language Understand-
ing (NLU). Conventional few-shot approaches
use all the data from the source domains with-
out considering inter-domain relations and im-
plicitly assume each sample in the domain con-
tributes equally. However, our experiments
show that transferring knowledge from dissim-
ilar domains will introduce extra noises that
decrease the performance of models. We pro-
pose an effective similarity-based method to
select data from the source domains to tackle
this problem. In addition, we propose a Shared-
Private Network (SP-Net) for the few-shot slot
tagging task. The words from the same class
would have some shared features. We extract
those shared features from the limited anno-
tated data on the target domain and merge
them as the label embedding to help us pre-
dict other unlabelled data on the target domain.
The experiment shows that our method out-
performs the state-of-the-art approaches with
fewer source data. The result also proves that
some training data from dissimilar sources are
redundant and even negative for the adaptation.

1 Introduction

Slot tagging (Tur and De Mori, 2011), one of the
crucial problems in Natural Language Understand-
ing (NLU), aims to recognize pre-defined semantic
slots from sentences and usually is regarded as a
sequence labeling problem (Sarikaya et al., 2016).
For example, given the sentence “Book a ticket to
London", the word “London" should be recognized
as the slot “CITY" by the NLU model.

Currently, most of the methods for the slot tag-
ging task have a notorious limitation in that they
require a lot of annotated data. However, there are
almost infinite long tail domains in the real scenar-
ios (Zhu et al., 2014) so it is nearly impossible to
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Figure 1: The difference between training with (a) all
data and (b) data selection. The dashed line represents
the distance among different domains in the parameter
space with the centroid (Φ). With data selection, we
remove the dissimilar domains D4 and D5 from training
and the centroid will be closer to the target domain D′.

annotate sufficient data for each domain. Therefore,
few-shot learning methods (Ravi and Larochelle,
2016) have received attention as they can transfer
the knowledge learned from the existing domains
to new domains quickly with limited data.

Current works (Yoon et al., 2019; Liu et al.,
2020; Wang et al., 2021) proposed various methods
to improve the performance of slot tagging few-
shot learning, but most of them focus on “how" to
transfer rather than “what" should be transferred.
The knowledge from the not-relevant source do-
main is hard to help the model identify the slots in
the new domain. Further, such kind of knowledge
is redundant and sometimes could be regarded as
noises that even deteriorate the performance (Wang
et al., 2019; Meftah et al., 2021). We observe this
phenomenon and prove the existence of the neg-
ative transfer in the experiment. To this end, we
propose a similarity-based method to evaluate the
inter-domain relation and indicate which domains
should be selected for training. Specifically, we
calculate three different similarities, including tar-
get vocabulary covered (TVC), TF-IDF similarity
(TIS), and label overlap (LO) between domains,
and combine them with different weights. The
combined similarity function selects data from both
corpus level and label level, which is more com-



prehensive. In this way, the dissimilar sources will
be rejected, and the initial parameters of the model
will be naturally more closed to the local optimum
of the target domain. A high-level intuition of the
difference between training with all data and train-
ing with data selection is shown in Figure 1.

After selecting pertinent data, we also propose a
solution about “how" to transfer knowledge for a
few-shot slot tagging task. Specifically, we build
a Shared-Private Network to capture stable label
representations under the few-shot setting. Many
works (Hou et al., 2020; Zhu et al., 2020; Liu
et al., 2020) try to enhance the accuracy of slot
identification from the label representation engi-
neering. They assign each label with a semantic
vector (Snell et al., 2017; Hou et al., 2020; Zhu
et al., 2020; Yoon et al., 2019) rather than a sim-
ple one-hot encoding. However, the quality of the
label representations highly depends on the vol-
ume of the training samples and suffers from the
unstable problem under the few-shot setting due
to the extremely biased data distribution. Hence,
we propose the Shared-Private Network separate
the shared and private features from the limited
samples. The words with the same label share com-
mon information. They are extracted and saved
as shared features. Other parts are regarded as de-
tailed information related to the words and will be
saved as private features. After filtering the detailed
information out, the label representation generated
according to the shared features will be more ro-
bust against the annotation shortage problems in
the few-shot setting.

The contributions of this work are as follows:
• We propose a similarity-based method to mea-

sure the relation among domains to guide data
selection and to avoid negative knowledge
transfer in few-shot learning.

• We propose the Shared-Private Network to
extract more stable label representation with
limited annotations.

• We prove the existence of negative transfer
via experiments and give explanations about
this phenomenon via visualization.

2 Related Work

Convention studies in slot tagging mainly focus
on proposing and utilizing deep neural networks
to recognize the semantic slots in given contexts
(Shi et al., 2016; Kim et al., 2017). However, most
of these models need a large amount of annotated

data which is scarce in the real world, especially
for those minority domains. Recent works (Bapna
et al., 2017; Shah et al., 2019; Rastogi et al., 2019;
Liu et al., 2020) propose several few-shot learning
methods for slot tagging and developed domain-
specific model with limited annotated data. It is
worth noting that, due to the lack of annotation on
the target domain, both approaches paid attention to
label representation engineering rather than using
conventional one-hot encoding directly. But build-
ing label representation with limited annotations is
still a challenge. To stabilize the effectiveness of
label representation, we proposed a Shared-Private
network to learn representation from shared infor-
mation of words.

Besides that, negative transfer that transferring
knowledge from the source can have a negative im-
pact on the target has been founded in many tasks
(Wang et al., 2019; Chen et al., 2019; Gui et al.,
2018). Because of this phenomenon, recent meth-
ods for relation analysis between source and target
domains have been proposed. Gururangan et al.
(2020) use vocabulary overlap as the similarity be-
tween two datasets and emphasize the significant
impact of domain-adaptive for pre-training. Dai
et al. (2019) study different similarity methods, in-
cluding target vocabulary covered (TVC), language
model perplexity (PPL), and word vector variance
(WVV) to select data for pre-training tasks. How-
ever, a single similarity function does not work well
in the few-shot setting. Different similarity meth-
ods always give diverse data selection strategies
and are hardly consistent. To this end, we propose
a comprehensive indicator that combines three sim-
ilarity functions to guide the data selection in the
few-shot setting.

3 Problem Definition

We follow the same task definition as Hou et al.
(2020). Given a sentence x = (x1, x2, · · · , xn) as a
sequence of words, slot tagging task aims to assign
the corresponding label series y = (y1, y2, · · · , yn)
to indicate which classes the words should belong
to. A domain D = {(x(i), y(i))}ND

i=1 is a set of
(x, y) pairs that from same scenario and ND is the
number of sentences in domain D.

In few-shot setting, models are trained from
source domain {D1,D2, · · ·} and are applied to
the target domain {D′

1,D′
2, · · ·} which are new to

the models. It is worth note that there are only few
labeled samples, which make up the support set



S = {(x(i), y(i))}NS
i=1, in each target domain D′

j .
For each unique N labels (N-way) in support set
S, there are K annotated samples (K-shot). Be-
sides that, the samples in the target domain D′

j are
unlabeled.

Thus, few-shot slot tagging task is defined as
follows: given a K-shot support set S and a query
sentence x = (x1, x2, · · · , xn), determine the cor-
responding labels sequence y∗:

y∗ = (y∗1, y
∗
2, · · · , y∗n) = argmax

y
p(y|x,S) (1)

4 Data Selection

In this section, we first show the existence of neg-
ative knowledge transfer among domains. The
phenomenon demonstrates the necessity of data
selection. Then introduce our similarity-based data
selection strategy that can be used to avoid nega-
tive knowledge transfer to improve performance in
few-shot slot tagging.

4.1 Negative Knowledge Transfer

Due to negative knowledge transfer, some knowl-
edge the model learned before is useless and may
affect the judgment of the model on the new do-
mains, which will degrade the performance. In the
preliminary study, we train the model with all dif-
ferent combinations of source domains and record
their performance. The relation between the num-
ber of source domains and their corresponding per-
formance is shown in Figure 2. Overall, with more
training domains, the performance would be bet-
ter. However, comparing the maximum values, it
is evident that training with three source domains
outperforms training with 4. This phenomenon
indicates that more source domains may even de-
crease the performance and proves the existence of
negative knowledge transfer. It also inspires us that
the model will achieve a better result with proper
data selection.

4.2 Selection Strategy

An indicator is needed to select data or source do-
mains before training to avoid negative knowledge
transfer. Given a group of data from source domain
and the data of target domain, the indicator should
output a score that can reflect how fit are these
source data for transferring knowledge to the target.
Ideally, the indicator score behaves linearly with
the performance so that a higher indicator score can
lead to better performance. In this way, the group

Figure 2: The relationship between performance (y-
axis), specifically the F1 score, and the number of source
domains (x-axis).

of source data with the highest indicator score can
be selected as the best choice for training.

The data that can be leveraged includes the
source domains {D1, · · · ,DM} with sufficient la-
bels, the support set Sj with labels in the target
domain D′

j , and the query set Qj without labels.
Notice that the data in the support set Sj is much
less than the query set Qj . Considering the at-
tributes mentioned above and the data we can use,
we investigate three similarity functions as indica-
tors for data selection.

Target Vocabulary Covered (TVC) is a signifi-
cant corpus level feature that represents the overlap
of vocabulary between source domain(s) and a tar-
get domain and is defined as:

TVC(Di,D′
j) =

∣∣∣VDi ∩ VD′
j

∣∣∣∣∣∣VD′
j

∣∣∣ (2)

where VDi and VD′
j

are the vocabularies (sets of
unique tokens) of the source domain Di and the
target domain D′

j respectively and | · | is the norm
operation that indicates the size of the set. Intu-
itively, if most of words in the target domain have
already appeared in the sources, the word embed-
dings should have been well trained so that im-
proves the performance.

TF-IDF Similarity (TIS) is another corpus level
feature (Bao et al., 2020). We treat each domain as
a document and calculate their tf-idf features
(Salton and Buckley, 1988; Wu et al., 2008). Co-
sine similarity is used to evaluate the correlation
between the sources and the target. Compared with
TVC, TIS assigns each word a weight according
to the term frequency and inverse document fre-
quency, which takes fine-grained corpus feature



into account. The details are shown below:

tfi,j =
nij∑
k nk,j

(3)

where nij is the times of word ti appeared in do-
main Dj .

idfi = lg

(
M

|{j : ti ∈ Dj}Mj=1|

)
(4)

where M is the total number of domains. And the
tf-idf feature is the product of tf and idf:

tf-idfj = tfi,j · idfi (5)

tf-idfj can be regarded as the word distribution
feature of the domain j, and cosine similarity is
used to evaluate the correlation between the two
domains:

TIS(Di,Dj) =
tfidfDi · tfidfDj

||tfidfDi ||2 · ||tfidfDj ||2
(6)

where || · ||2 is the Euclidean norm.
Label Overlap (LO) is a label level feature that

represents the overlap of labels between source
domains and the target domain. Although labels
are scarce in the target domain under the few-shot
setting, the types of labels are not. Every label on
the target domain at least appeared K times (K-
shot) in the support set S and therefore, the types
of the labels are complete. Hence, label overlap is
also a good choice as a data selection indicator:

LO(Yi, Yj) =
|Yi ∩ Yj |

|Yj |
(7)

where Yi and Yj stand for the unique label set of
the source domain Di and the target domain D′

j ,
respectively.

Each similarity function only focus on a single
aspect, i.e. the corpus level information or the label
level. Therefore, it is inevitable to introduce bias
when we select data with them. Naturally, we come
up with a strategy that combines all three similarity
scores as the indicator to give a more stable guid-
ance for data selection. Assume that one of the
combinations, i.e. Cθ1,θ2,θ3(TVCi,TISi,LOi) =
θ1TVCi + θ2TISi + θ3LOi, is linear with the per-
formance, our goal is to find the best value of
θ1, θ2, and θ3. For a better reading experience,
Cθ1,θ2,θ3(TVCi,TISi,LOi) is abbreviated to Ci.

Algorithm 1 Training with combination of source
domains
Require: Set of source domains {D1, · · · ,DM}; Target do-

main D′; Model F ;
1: for 1 ≤ i ≤M do
2: all_combination =

combination({D1, · · · ,DM}, i)
// Select i domain(s) from M for training.

3: for 1 ≤ j ≤ |all_combination| − 1 do
4: combination = all_combination[j]

// e.g. combination = [D1,D3]
5: Dtraining ←Merge(combination)

6: TVC = TV C(Dtraining,D
′)

7: TIS = TIS(Dtraining,D
′)

8: LO = LO(Dtraining,D
′)

9: train
(
F(Dtraining)

)
until Loss converge

10: p̂i = eval((F(D′))
11: end for
12: end for

Following the least squares method (Merriman,
1877), we design the objective function as follows:

argmin
θ1,θ2,θ3,w,b

1
NE

∑NE
i=1 ∥[wCi + b]− p̂i∥2

s.t. w > 0, b ≥ 0
(8)

where w and b are the weight and bias of the linear
function to simulate the linear relation between the
indicator score and the performance. NE is the
number of the experiments, and p̂i is the actual
performance of the experiment i. TVCi, TISi, and
LOi are the TVC score, TIS score, and LO score
between the source domains and the target domain
in the experiment i.

To solve the problem in equation (8), we design
a scheme to generate samples with the combination
of source domains. We pre-define the number of
source domains and enumerate all combinations.
The three similarity scores between the combina-
tion of source domains and target domains will be
calculated and recorded. Then we train the model
with the combination and record the final perfor-
mance on the target domain. In this way, we get
sufficient tuples (TVC,TIS,LO, p) to figure out
the optimum θ1, θ2, and θ3 (see Algorithm 1).

With sufficient samples, we fit them with the
linear function in equation ( 8) and optimize w,
b, θ1, θ2, and θ3 via SGD (Curry, 1944). Due to
the data distribution bias of different domains, we
finally assign different wj and bj for each target
domain D′

j to acquire a better linear relation. For
the combination weights θ1, θ2, and θ3, we keep
same for different target domains. Further, we still
have the following points to declare:



• The parameters w and b are learnable but un-
necessary for data selection. They are not
a part of the indicator and are only used to
observe the linear relation between the combi-
nation similarity scores and the corresponding
performance.

• Due to the cross-validation setting in the real
dataset (e.g., SNIPS), to avoid data leakage
of the target domain, we obtain θ1, θ2, and θ3
according to the validation domain for each
target. The combination from the validation
domain still works well on the target and can
prove the generality of this strategy.

• Although training with a combination of
source domains is time-consuming, it can be
adapted to different domains once the opti-
mum combination weights have been found.

After that, we can select domains according to
the optimum w∗, b∗, θ∗1, θ∗2, and θ∗3. The domains
which can achieve a higher combined similarity
score may lead to better performance, and this can
be formulated as:

argmax
i

w∗ (θ∗1TVCi + θ∗2TISi + θ∗3LOi) + b∗

(9)
And due to w > 0, equation ( 9) is equivalent to:

argmax
i

θ∗1TVCi + θ∗2TISi + θ∗3LOi (10)

In this way, the domain specific w and b are elimi-
nated.

5 Shared-Private Network

Based on the Prototypical Network (Snell et al.,
2017), we propose the Shared-Private Network (SP-
Net) to gain more representative label embeddings.
The workflow is divided into two stages: SP-Net
extracts label embeddings for each class from the
support set in the first stage. SP-Net predicts each
query sentence in the second stage according to the
label embeddings extracted from stage one. Fig-
ure 3 illustrates this process.

(a) Encode Firstly, sentences are encoded into
word embeddings via BERT (Devlin et al., 2019).
Given a sentence x = (x1, x2, · · · , xn) as a se-
quence of words, BERT will generate their cor-
responding contextual word embeddings E =
(E1, E2, · · · , En), where Ei ∈ Rh. h is the hid-
den size of the word embedings.

(b) Extract shared features Although words
are different, there is common information among

words from the same class. Intuitively, the same
class words always appear in a similar context with
similar syntax. And in some cases, they can even be
replaced with each other without any grammatical
mistakes. For example, even though we replace the
phrase “Hong Kong" with “New York" in Figure 3,
the sentence still makes sense. Common informa-
tion can help us generate scalable label embeddings
that can represent most of the words in a class. The
shared layer in the framework is designed for this.
In this work, we implement the shared layer with a
residual linear function, and the shared feature of a
word is calculated as follows:

Es
i = Ei + RELU(EiWs + bs) (11)

where Ws ∈ Rh×h and bs ∈ Rh are the weight and
bias of the shared layer, respectively. RELU is the
rectified linear unit function (Maas et al., 2013).

(c) Extract private features Besides the shared
information, each word still has its specific infor-
mation. Recalling the phrase replacing case men-
tioned in Figure 3, although the sentence is without
any grammatical mistakes after phrase replacing,
the meaning has been changed. This is due to the
private information carried by the word. The pri-
vate information is ineffective and can be harmful
to label embeddings as they lack generality. Less
private information can lead to a better quality of
label embeddings, and therefore, the private layer
is designed to extract private information from the
word embeddings. The private layer is also im-
plemented with a residual linear function, and the
private feature of a word is calculated as follows:

Ep
i = Ei + RELU(EiWp + bp) (12)

where Wp ∈ Rh×h and bp ∈ Rh is the weight and
bias of the private layer, respectively. So far, the
shared layer and private layer are symmetrical and
share the same design.

(d) orthogonality constrain To ensure the
shared features and private features are separated
completely, we introduce the following constraints:

• The shared features of the words in the same
class should be close to each other.

• The private features of words should be di-
verse even though they belong to the same
class.

• The shared and private features of a word
should not overlap.

For the first requirement, Chen et al. (2020) pro-
posed using contrastive loss that can make the same



BERT

[CLS] Show me the flights to New York on Next Monday

[CLS] Book a ticket from Hong Kong to London tomorrow night

Shared Layer

(d)

Private Layer

(e)

TimeCity

[CLS] I'd like to make a reserva-
tion to Boston next week

BERT

Shared Layer

S

(a) (a)

(b)(c) (c) (b)

(f)

(b)

Query Set

Support Set

stage (i) stage (ii)

Figure 3: This is the workflow of SP-Net. In this case, the support set contains 2 sentences, and the query set contains
1. The details of processes (a) encode, (b) extract shared features, (c) extract private features, (d) orthogonality
constrain, (e) extract label embeddings, and (f) predict are introduced in the main body.

samples close and different samples far apart. The
similarity between samples are defined as follows:

sim(Es
i , E

s
j ) =

Es⊤
i Es

j

∥Es
i ∥∥Es

j∥
(13)

The loss in the first requirement is defined as:

L1 = E
c

− log

∑
{i;yi=c}

∑
{j;yj=c}

esim(Es
i ,E

s
j )/τ

∑
{i;i∈S}

∑
{j;j∈S}

esim(Es
i ,E

s
j )/τ


(14)

where τ is the temperature parameter and c is the
class. The numerator is the sum of the similar-
ity scores whose class is c. The denominator is
the sum of all the similarity scores. Specifically,
embeddings in the same class present a high simi-
larity score and the numerator is large, and the loss
decreases.

For the second requirement, according to the co-
variance of two variables, we define the divergence
between two embeddings as:

D(Ep
i , E

p
j ) = (Ep

i − Ep)T (Ep
j − Ep) (15)

where Ep is the mean vector of all private embed-
dings in the set. The loss in the second requirement
is:

L2 = − 1

|S|2
∑
i∈S

∑
j∈S

logD(Ep
i , E

p
j ) (16)

where |S| is the size of the support set, i.e., the
number of words. Higher divergence among the
private embeddings will lead to lower loss. We also

implement L2-norm to restrain the increase of the
parameters.

The third requirement refines the shared features
further. We introduce the orthogonality constraints
(Liu et al., 2017) to force the shared embedding
independent of the private embedding:

L3 =
1

|S|
∑
i∈S

∥∥∥Es⊤
i Ep

i

∥∥∥
2

(17)

where ∥ · ∥2 is the Euclidean norm.
(e) Extract label embeddings Label embed-

dings are extracted from shared embeddings for
each class. We take the mean vector of the shared
embeddings which belong to class c as the label
embedding:

Ec =
1

|{yi = c}|
∑

{yi=c}

Es
i (18)

where Ec is the label embedding of the class c.
(f) Predict We calculate the similarity between

shared embeddings of the query sentence with the
label embeddings. We provide various options, and
here we take cosine similarity as an example:

pci =
Es⊤

i Ec

∥Es∥∥Ec∥
(19)

where pci is the similarity between word i with
class c and can also be regarded as the confidence
that the word belongs to this class. The class with
the highest similarity will be considered as the pre-
diction for the word. We take the binary cross-



Model We Mu Pl Bo Se Re Cr Avg.

1-shot
SimBERT 36.10 37.08 35.11 68.09 41.61 42.82 23.91 40.67
TransferBERT 55.82 38.01 45.65 31.63 21.96 41.79 38.53 39.06
L-TapNet+CDT+PWE (Hou et al., 2020) 71.53 60.56 66.27 84.54 76.27 70.79 62.89 70.41
L-ProtoNet+CDT+VPB (Zhu et al., 2020) 73.12 57.86 69.01 82.49 75.11 73.34 70.46 71.63
BERT-ProtoNet 60.01 43.33 52.42 44.37 47.86 50.91 39.04 45.65
SP-Net 70.67 59.27 69.58 82.80 76.92 72.49 74.63 72.34
SP-Net + Domain Selection 76.07 64.29 71.10 84.19 81.63 73.66 76.41 75.34 (+3.71)

5-shot
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
TransferBERT 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11
L-TapNet+CDT+PWE(Hou et al., 2020) 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01
L-ProtoNet+CDT+VPB(Zhu et al., 2020) 82.93 69.62 80.86 91.19 86.58 81.97 76.02 81.31
BERT-ProtoNet 68.98 59.31 62.42 81.35 78.91 67.57 71.69 70.03
SP-Net 83.92 69.37 79.47 89.43 87.95 77.75 80.31 81.17
SP-Net + Domain Selection 84.03 71.09 82.01 92.13 89.44 80.71 80.88 82.90 (+1.59)

Table 1: F1 scores of few-shot slot tagging on SNIPS dataset.

Model 1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.

SimBERT 19.22 6.91 5.18 13.99 11.32 32.01 10.63 8.20 21.14 18.00
TransferBERT 4.75 0.57 2.71 3.46 2.87 15.36 3.62 11.08 35.49 16.39
L-TapNet+CDT+PWE 44.30 12.04 20.80 15.17 23.08 45.35 11.65 23.30 20.95 25.31
L-ProtoNet+CDT+VPB 43.47 10.95 28.43 33.14 29.00 56.30 18.57 35.42 44.71 38.75
SP-Net 43.95 13.02 27.77 34.05 29.70 57.70 18.62 36.41 44.97 39.42
SP-Net Domain Selection 43.95 13.02 27.77 34.05 29.70 (+0.70) 57.70 21.11 36.41 44.97 40.05 (+1.30)

Table 2: F1 scores of few-shot slot tagging on NER dataset. The performance improvements of SP-Net Domain
Selection compared to all baselines are significant (validated by Student’s t-test with p-value < 0.01).

entropy loss to measure the error in each class:

L4 =
1

|Q|

|Q|∑
i

C∑
c

yi log p
c
i +(1− yi) log (1− pci )

(20)
where C is the number of unique labels in the query
set and |Q| is the number of words in the query set.

Finally, we combine the L1, L2, L3, and L4 with
different weights as the cost function:

L = αL1 + βL2 + γL3 + δL4 (21)

where α, β, γ, and δ are hyperparameters deter-
mined by the experiments.

6 Experiments

6.1 Dataset

We evaluate the proposed method following the
same experiment setting provided by Hou et al.
(2020) on SNIPS (Coucke et al., 2018) and NER
dataset (Zhu et al., 2020). SNIPS contains seven
domains, including Weather (We), Music (Mu),
PlayList (Pl), Book (Bo), Search Screen (Se),
Restaurant (Re), and Creative Work (Cr), and the
sentences in SNIPS are annotated with token-level
BIO labels for slot tagging. Each domain will be

tested in turn following the cross-validation strat-
egy. Five domains are used for training and one for
evaluation in each turn. In each domain, the data
are split into 100 episodes (Ren et al., 2018). For
the sake of fair peer comparison, the selection of
evaluation domain and episodes construct are kept
the same with Hou et al. (2020). The NER dataset
contains four domains: News, Wiki, Social, and
Mixed. In addition, because the number of domains
in the NER dataset is too short, we randomly split
domains into pieces and select those pieces via the
combined similarity function. More training details
can be found in the appendix.

6.2 Baselines

SimBERT assigns a label to the word according
to cosine similarity of word embedding of a fixed
BERT.
TransferBERT directly transfers the knowledge
from the source domain to the target domain by
parameter sharing.
L-TapNet+CDT+PWE (Hou et al., 2020) com-
bines with the label name representation and a spe-
cial CRF framework.
L-ProtoNet+CDT+VPB (Zhu et al., 2020) utilizes
the powerful distance function VPB to boost the
performance of the model.



BERT-ProtoNet is the model proposed in this
work which is without the Shared-Private layer.
This model is used for ablation study.
SP-Net is the Shared-Private Network proposed in
this work.
SP-Net + Domain Selection is also SP-Net, but
it is trained with the selected data according to the
data selection strategy we proposed.

6.3 Main Results

Table 1 shows the results of 1-shot and 5-shot on
the SNIPS dataset. Generally speaking, the SP-
Net achieves the best performance on the 1-shot
setting and comparable performance on the 5-shot
setting (0.14% adrift of SOTA). The data selection
strategy dramatically enhances the performance on
both the 1-shot and 5-shot settings. With the data
selection, the performance of SP-Net is far beyond
other baselines.

The result on the NER dataset also proves the
effectiveness of our method (See Table 2). It is
noticed that, due to the short of the data, combined
similarity select all data on most domains except
Wiki of 5-shot task. Therefore the result of SP-
Origin and SP-Domain Selection are nearly the
same.

support sample

true center

inferred center

distance

bias

Figure 4: This is diagram shows the automatic correc-
tion of distribution bias when the number of supports
increased. The circles are samples in the support set
and triangles are the inferred center, as well as label
embedding, according to the supports. Stars are the true
center of classes.

The effect of the Shared-Private Network is more
remarkable if the number of support samples is less.
The SP-Net outperforms all baseline in the 1-shot
setting, but in 5-shot, it achieves comparable per-
formance. The shared-private Network essentially
corrects the bias between the label embedding and
the center of the class. The bias will be more se-
vere if the support is less. With the increase in the
number of supports, bias could be suppressed to
some extent (see Figure 4). Some other methods,
like label description (Hou et al., 2020), can also
correct such kind of bias if enough supports are
given. But when the supports are highly scarce,
Shared-Private Network performs the best.

6.4 Analysis
We further visualize the relation between the per-
formance with the similarity function and compare
combined similarity with TVC in Figure 5. We
firstly sample some combinations of source do-
mains and train the model. Then we calculate their
similarity with the target domain and record per-
formance. From the left part of Figure 5, the per-
formance generally positively correlates with TVC.
However, its precision is poor, so that cannot be
used as an indicator. Points around the green line
have similar TVC scores, but the performance is
quite diverse, i.e., the green points’ are from 20%
to 70%. A similar conclusion can be drawn from
the horizontal direction: blue points around the
blue line have identical performance, but their TVC
scores are 36% to 87%. Therefore, data selection
with TVC suffers severe performance fluctuation.
By comparison, there is an apparent positive linear
correlation between combined similarity and per-
formance in the target domain (See the right part
of Figure 5).
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Figure 5: The relation between performance (y-axis)
and the similarity function (x-axis). Different target
domains are in different colors.

More analysis of (1) the comparison between the
combination similarity function with its component
TVC, TIS, and LO, and (2) inter-domain relations
are shown in the appendix.

7 Conclusions and Future Work

In this paper, we prove the existence of negative
knowledge transfer in few-shot learning and pro-
pose a similarity-based method to select pertinent
data before training. We propose a Shared-Private
Network (SP-Net) for the few-shot slot tagging
task. We prove the effectiveness and advantages
of both the data selection method and SP-Net with
experiments. In the future, we will investigate the
relations among domains and improve our data se-
lection method to select episodes or samples rather
than domains.
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