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Abstract

Automatically estimating the complexity of
texts for readers has a variety of applications,
such as recommending texts with an appro-
priate complexity level to language learners
or supporting the evaluation of text simplifica-
tion approaches. In this paper, we present our
submission to the Text Complexity DE Chal-
lenge 2022, a regression task where the goal
is to predict the complexity of a German sen-
tence for German learners at level B. Our ap-
proach relies on more than 220,000 pseudo-
labels created from the German Wikipedia and
other corpora to train Transformer-based mod-
els, and refrains from any feature engineering
or any additional, labeled data. We find that
the pseudo-label-based approach gives impres-
sive results yet requires little to no adjustment
to the specific task and therefore could be eas-
ily adapted to other domains and tasks.

1 Introduction

What makes some texts more difficult to read for
learners of a foreign language than others? How
does a complicated sentence construction or the
use of rare vocabulary increase complexity? The
prediction of text complexity with machine learn-
ing methods addresses these questions. In con-
trast to last years’ shared tasks at KONVENS,
which focused on the disambiguation of German
verbal idioms (Ehren et al., 2021), the identifica-
tion of toxic, engaging, and fact-claiming com-
ments (Risch et al., 2021), and scene segmentation
in narrative texts (Zehe et al., 2021), the task of
2022 is about text complexity. In this paper, we
present our submission to this Text Complexity
DE Challenge 2022. It is a shared task addressing
the automatic estimation of the complexity of Ger-
man sentences for readers, in particular, German
learners at level B. The provided training dataset
contains about 1000 sentences and the test dataset

about 300 sentences in German. Figure 1 shows
an exemplary sentence from the shared task dataset
in German, an English translation, and the arith-
metic mean of ratings from all annotators. With a
seven-level Likert-scale with values ranging from
very easy (1) to very complex (7), this task is a
regression task and it is evaluated using the Root
Mean Squared Error (RMSE). A third-order map-
ping is applied before the error is measured so that
the impact of any systematic bias in the predictions
on the metrics is reduced. Thereby, the focus of the
evaluation is shifted towards ranking sentences cor-
rectly with regards to their complexity rather then
assigning the correct absolute complexity score.
We refer to the overview paper of the shared task
for more details about the dataset and the overall
results (Mohtaj et al., 2022).

The remainder of this paper is structured as fol-
lows. Section 2 summarizes related work on text
complexity estimation and on pseudo-labeling tech-
niques for machine learning. We describe our ap-
proach in Section 3 and its evaluation in Section 4,
with experiments on the validation dataset provided
by the shared task organizers. We conclude in Sec-
tion 5 and provide an outlook on future work.

2 Related Work

Research on reading complexity of German texts
is so far relatively scarce with several papers intro-
ducing datasets of annotated German sentences or
longer texts and mostly feature-based approaches
for text complexity prediction. First of all, there is
a dataset with sentence-level annotations, which
is the basis of this shared task (Naderi et al.,
2019). Rios et al. (2021) introduce a dataset for
document-level text complexity with the applica-
tion focus of text simplification and there are two
other document-level text complexity datasets by
Battisti et al. (2020) and by Hewett and Stede



German Sentence: Als Versauerung der
Meere wird die Abnahme des pH-Wertes des
Meerwassers bezeichnet.
English Translation: Ocean acidification is
the term used to describe the decrease in the
pH of seawater.
Compexity Score: 2.13

German Sentence: Nach chemischer
Härtung des Rußes war er in der Lage, auf
galvanoplastischem Wege ein Zink-Positiv
und von diesem ein Negativ der Platte
anzufertigen, das als Stempel zur Pressung
beliebig vieler Positive genutzt werden konnte
– die Schallplatte war erfunden.
English Translation: After chemical hard-
ening of the carbon black, he was able to
produce a zinc positive by galvanoplastic
means and from this a negative of the record,
which could be used as a stamp for pressing
any number of positives - the record was
invented.
Complexity Score: 4.70

Figure 1: Two sentences from the training dataset.

(2021). The latter follows the format of a simi-
lar study (Hulpus, et al., 2019) based on a dataset
of English newspaper articles (Xu et al., 2015).
Another dataset is from a Kaggle challenge called
CommonLit Readability Prize, where the task is to
rate the complexity of literary passages for school
grades 3-12.1 Last but not least, there are unla-
beled datasets of German texts with simple lan-
guage, such as the Tagesschau/Logo corpus and
the Geo/Geolino corpus (Weiß and Meurers, 2018)
or Klexikon (Aumiller and Gertz, 2022). These
datasets cannot be used directly for fine-tuning
models on the text complexity prediction task due
to the lack of annotations. However, we show in
our approach that they can be used in combination
with pseudo-labeling.

Similar to the pseudo-labeling approach that we
use, there is a data augmentation technique where
a slow but more accurate cross-encoder model is
used to label a large set of otherwise unlabeled data
samples (Thakur et al., 2021). This technique aug-
ments the training data for a faster, less complex

1https://www.kaggle.com/competitions/
commonlitreadabilityprize/

bi-encoder model to address a pairwise sentence
ranking task. Du et al. (2021) present a data aug-
mentation method where given a small, labeled
training dataset, they retrieve additional training
samples from a large unlabeled dataset and then
label these samples automatically with a model
trained on the original, smaller training dataset.
The resulting augmented, synthetic dataset can then
be used to train another model that generalizes bet-
ter to unseen data. Of the related work presented,
this approach, also referred to as self-training, is
the most similar to the approach we present in this
paper. The main difference is that Du et al. (2021)
tailor their approach mainly to domain-specific pre-
training, whereas we focus on task-specific fine-
tuning. Xie et al. (2019) extend the self-training
method by intentionally adding noise to the training
process to foster better generalization of the trained
models. Further, they repeat the self-training pro-
cess several times, so that the model trained on
pseudo-labels is again used to create another set
of pseudo-labels, which are in turn used to train
another model and so on. As this iterative approach
is very resource-intensive in terms of training time,
we limit our approach to only one iteration. How-
ever, no inherent limitation prevents our approach
from more training iterations. To the best of our
knowledge, there are no published approaches that
use neural language models for the particular task
of complexity prediction of German texts, but only
of English texts (Martinc et al., 2021).

3 A Semi-Supervised Learning Approach
for Text Complexity Prediction

Our semi-supervised learning approach uses neu-
ral language models based on the Transformer ar-
chitecture (Vaswani et al., 2017). As pre-trained
models that are not fine-tuned to a specific natu-
ral language processing task yet, we use GBERT
and GELECTRA models by Chan et al. (2020)
and an XLM-RoBERTa model by Conneau et al.
(2020). Given that the training dataset provided
by the shared task organizers is relatively small for
fine-tuning these pre-trained models, the core idea
of our approach is to increase the number of train-
ing samples by automatically generating pseudo-
labels. Figure 2 visualizes the different steps of the
entire approach with its three main steps: pseudo-
labeling, fine-tuning, and ensembling. For the im-
plementation of these steps, we use the two open

https://www.kaggle.com/competitions/commonlitreadabilityprize/
https://www.kaggle.com/competitions/commonlitreadabilityprize/
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Figure 2: Overview of the different steps that comprise the pseudo-labeling, fine-tuning, and ensembling approach.

source frameworks FARM2 and Haystack3.
The first step is to create a large corpus of Ger-

man sentences with varying text complexity to
serve as a source for the pseudo-label sentences.
This corpus comprises the following resources:

• eight random subparts of a German Wikipedia
dump (about 8 percent of all 2.3 million Ger-
man Wikipedia articles as of 2019),4

• 130,000 news articles from the German news
platform Zeit Online,5

• three million sentences from German newspa-
per texts as part of the Leipzig Corpus Collec-
tion (Goldhahn et al., 2012),

• the Geo/Geolino/Tagesschau/Logo cor-
pus (Weiß and Meurers, 2018),

• the Corpus Simple German (all subsets except
for Klexikon),6

• the Klexikon (Aumiller and Gertz, 2022), and

• the Hurraki dictionary for plain language.7

Combining these datasets results in a total of
12,955,913 sentences. As some of them appear
more than once, this corresponds to 12,562,164 dis-
tinct sentences. Each of them is embedded using a
SentenceTransformers msmarco-distilbert
model8 (Reimers and Gurevych, 2019) and added
to an OpenSearch index. Further, we fine-tune a
deepset/gbert-large model on the task of
sentence complexity on all of the provided train-
ing labels as a baseline. Subsequently, to get our

2https://github.com/deepset-ai/farm
3https://github.com/deepset-ai/

haystack
4The most recent dump is available online: https://

dumps.wikimedia.org/dewiki/20220720/
5https://www.zeit.de
6https://daniel-jach.github.io/

simple-german/simple-german.html
7https://hurraki.de
8sentence-transformers/msmarco-

distilbertmultilingual-en-de-v2-tmp-
lng-aligned

set of pseudo-labels, we embed each of the sen-
tences in the provided training set with the same
SentenceTransformers msmarco-distilbert
model and retrieve the 500 most similar sentences
from our large corpus of German sentences as po-
tential pseudo-labels. The baseline complexity
scorer model produces a complexity score for each
potential pseudo-label. To keep roughly the same
distribution as in the original training dataset, we
filter the generated pseudo-labels in the following
way: we keep only those sentences whose predicted
score does not deviate more than the standard de-
viation of the ratings of the original sentence used
to retrieve the 500 potential pseudo-labels. This
filtering results in a total of 228,796 pseudo-labels.
Table 1 lists the number of pseudo-labels originat-
ing from the different data sources.

The pseudo-labels are used to fine-tune different
Transformer-based models on the task of complex-
ity scoring. We fine-tune deepset/gelectra-
large, deepset/gbert-large and xlm-
roberta-large using three different seeds for
each model, resulting in a total of nine models.
Subsequently, we fine-tune each of these models
using five-fold cross-validation with the original
training set, resulting in a total of 45 models. Fi-
nally, to combine these 45 models into an ensemble
providing a single prediction score per data sample,
we train linear regression models on the out-of-fold
predictions from the previous cross-validations.

4 Experiments

We evaluate four different settings using five-fold
cross-validation:

• a baseline deepset/gbert-large
model fine-tuned on the provided training set,

• an ensemble of nine models fine-tuned
only on pseudo-labels and with three dif-
ferent random seeds, scores aggregated
by mean (deepset/gbert-large,
deepset/gelectra-large, xlm-
roberta-large

https://github.com/deepset-ai/farm
https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
https://dumps.wikimedia.org/dewiki/20220720/
https://dumps.wikimedia.org/dewiki/20220720/
https://www.zeit.de
https://daniel-jach.github.io/simple-german/simple-german.html
https://daniel-jach.github.io/simple-german/simple-german.html
https://hurraki.de


Table 1: Number of pseudo-labeled sentences with the average length in characters, and the average mean opinion
score per data source. The text complexity of the sources differs with Wikipedia and Hurraki being the most,
respectively least difficult.

Data Source #Sentences ∅∅∅Length ∅∅∅MOS

GERMAN WIKIPEDIA 137,228 133 3.0
ZEIT ONLINE 47,613 108 2.5
3 MILLION NEWS SENTENCES 25,928 110 2.6
GEO/GEOLINO/TAGESSCHAU/LOGO 7,971 98 2.5
CORPUS SIMPLE GERMAN 4,896 93 2.3
KLEXIKON 3,600 75 2.0
HURRAKI 1,559 43 1.5

• an ensemble of 45 models fine-tuned on
pseudo-labels and the provided training set,
with scores aggregated by mean, and

• an ensemble of 45 models fine-tuned on
pseudo-labels and the provided training set,
with scores aggregated by a linear model.

We submitted the predictions of each of the last
three settings to the shared task competition.9

The first setting serves as our baseline with a
deepset/gbert-large model fine-tuned on
the provided training data. The model is trained
on each of the cross-validation folds using early
stopping for a maximum of four epochs. Each
training run was tracked using MLflow and can be
found here.

The second setting is an ensemble of the
language models deepset/gbert-large,
deepset/gelectra-large and xlm-
roberta-large. Each of these models is
fine-tuned for two epochs on the pseudo-labels
described in Section 3 using three different random
seeds. This results in an ensemble of nine models.
One training run takes approximately three hours
on an NVIDIA Tesla V100 GPU with 16 GB of
RAM.

For the third and fourth setting, we fine-tune
the resulting models of the previous step on the
provided training dataset. To further increase the
number of models in the ensemble, we perform
five-fold cross-validation on each of the nine mod-
els, resulting in a total of 45 models. Again, each
training run was tracked using MLflow and can
be found here. To ensemble these 45 models, we
use two different techniques. The third setting ag-
gregates each individual score into a single score

9https://codalab.lisn.upsaclay.fr/
competitions/4964

by simply taking the arithmetic mean of all scores.
The fourth setting trains a linear ridge regression
model on the out-of-fold predictions for each model
that we trained, resulting in five linear regression
models. Applying these linear regression models
decreases the number of scores from 45 to 5. To
get a single score out of these five scores, we calcu-
late their arithmetic mean. Table 2 summarizes the
hyperparameters that are used to train the models
for the different described settings.

Table 3 lists the cross-validation RMSE on the
provided training set. As expected, the approach
of using pseudo-labels in combination with ensem-
bling outperforms the simple baseline. We observe
that fine-tuning the models only on the pseudo-
labels already outperforms the baseline that uses
only the original training data. Performance im-
proves further if the models that were fine-tuned
on the pseudo-labels are additionally fine-tuned on
the original training data. Moreover, using a linear
model to aggregate the individual scores instead of
using the plain average does not further improve
the final score. The best setting, consisting of an
ensemble of 45 Transformer models fine-tuned on
both the pseudo-labels and the provided training
data, with results aggregated using a linear regres-
sion model, yields an RMSE of 0.433.

5 Conclusion

In this paper, we presented our submission to the
Text Complexity DE Challenge 2022. We lever-
aged pseudo-labeled sentences from Wikipedia and
several other publicly available, unlabeled corpora.
Based on the labeled training dataset from the
shared task and the additional pseudo-labeled data,
we fine-tuned Transformer-based neural language
models. Our best ensemble model achieved an

https://public-mlflow.deepset.ai/#/compare-runs?runs=[%22189a619c257d42bb81740547d982bc62%22,%22a96714b9e9b64eb79f40dc771fc43dd8%22,%22d86720d85b4845909782756c3b511a77%22,%22bad0a5b2197e4c42ad55e2c379c4cf18%22,%22b20dac7cb1e942cbb7ccc59357898080%22]&experiment=560
https://public-mlflow.deepset.ai/#/compare-runs?runs=[%22d4d4ba81b7084ee29f51c07248f841a1%22,%22cb51b7a5ae5445f4a908c0229925cb54%22,%2299212c9a951543f8aaea7a2c64fd63ef%22,%220928389a5c914b8581113358a29340c4%22,%2227ac05a160ed428eb0f1b0f07d2a73ed%22,%22f2240f0f8fed4f6590420321a80e52fd%22,%22362f8a5343a14aa2b13d00f513e19052%22,%220539b876f74a4a508100816a476de8e2%22,%22c54a757edc7444b79566b395087aa7b5%22,%2209557849f8b54e1aab247fa00283b78d%22,%223cf22a6a8ba14bf0b64d1ccbaf6bf3f3%22,%223a3d19acaf584d999f5c07820e9a116d%22,%2267890d23fb7349d68ded69901e5b4a4f%22,%22ad96d9e0dc1b403b880d51149c1231fd%22,%228f2dc5c7cc29489d9698d2270297e292%22,%22ea178a505a5b43fb9c1cb84668403d90%22,%22f446a239dd0c40edbeda2521827eaa77%22,%22730c33aa3cfb4ad28a23e0cad47471bb%22,%22771763983a534f2e814ed751b502f84a%22,%22230d9af487b44295bad59f57e80e1f13%22,%2237929400152f4d2084116a87b721c939%22,%22e55f70f3da20484889ab5e8810f76f32%22,%220b0a3213a5c449f58afbd5c98989316d%22,%221fb62d0ff447430c9bda9e5b5700318e%22,%22e5af89a3109f4fc9b32d11ed1fbaa3c0%22,%2243d792fee61c4f4d9e604e5921efb40f%22,%2292dee3ad99714e49b563488f6d198bd3%22,%22b40a28ee733a46cda76ceaca85cfb222%22,%22b410aee81f5b45a3947a7fdcff504e10%22,%225497a0f5d64d412baa020fc925f51695%22,%2269317267890c412eb3e6625c3d9617c6%22,%227d97ace6cd7c4dffba1428d15caa21af%22,%228ee83e5bdec8412ba3d9acf288dd02fb%22,%22cb9e6d9f79a44a05a7d590e4bde129bf%22,%22b0a241c8650140839c5b5eb64a05a50a%22,%2248cfa0218fe9408fb288191eaf99b28c%22,%22847dfa3a3155414e8710e11f553015b2%22,%22ab739830d0b141c896c898147916da1d%22,%227e71372bacc3413786089713eadfcf00%22,%22de5418458c444c3d85bf61c5c2f76196%22,%2203741051db1f48c08377f57750547c50%22,%220d4545ecb2a047abbdab64a7145c0f30%22,%2276788ee2ccb845bf9cc3262ebeddab4d%22,%221a6f42548703452c99701b04d6414e65%22,%22a04c3c0dc45e48e48073d93ff52e4f98%22]&experiment=560
https://codalab.lisn.upsaclay.fr/competitions/4964
https://codalab.lisn.upsaclay.fr/competitions/4964


Table 2: Hyperparameters for fine-tuning the language models on the pseudo-labels and the provided training data.

Hyperparameter Fine-Tuning on Pseudo-Labels Fine-Tuning on Training Set

Learning rate 1e-5 1e-6
LR schedule linear linear
Warm-up steps 10% 10%
Batch size 20 for xlm-roberta-large,

32 otherwise
20 for xlm-roberta-large,

32 otherwise
Early stopping 6 4

(Max.) epochs 2 4
Optimizer Adam Adam
Max sequence length 128 128

Table 3: Cross-validation RMSE.

Model 1 2 3 4 5 ∅∅∅

Baseline 0.512 0.460 0.440 0.398 0.488 0.460
Ensemble pseudo-labels only 0.500 0.462 0.381 0.450 0.442 0.447
Ensemble simple mean aggregation 0.491 0.443 0.374 0.443 0.426 0.435
Ensemble linear model aggregation 0.445 0.455 0.405 0.443 0.418 0.433

RMSE of 0.433 in cross-validation on the public
dataset without third-order mapping and an RMSE
of 0.454 on the private test dataset with third-order
mapping (0.484 without third-order mapping). For
future work, our trained model could be used to cre-
ate more pseudo-labels for another iteration of the
entire approach, presumably resulting in a model
that generalizes even better to unseen test data.
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