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Introduction

Welcome to the second workshop on Natural Language Generation, Evaluation, and Metrics (GEM), to
be held on December 7, 2022 as part of EMNLP in Abu Dhabi. The workshop aims to bring together
researchers interested in model audits, new evaluatyion approaches and meta evaluations. The workshop
is privileged to present several invited talks this year and the results of the shared task on generation with
limited resources.
We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared tasks. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.
GEM Workshop Organizers.
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Keynote Talk: Challenges in evaluating safety for LLMs
Emily Dinan

FAIR (Meta AI)

Abstract: While research on large language models (LLMs) continues to accelerate, much recent work
has called attention to anticipated risks and harms from their use in society. We will discuss challenges
in evaluating the relative safety of these models as well as current approaches for doing so. Finally, we
will highlight avenues for future research into evaluating and mitigating these harms.

Bio: Emily Dinan is a Research Engineer at FAIR (Meta AI) in New York. Her research interests include
conversational AI, natural language processing, and safety and responsibility in these fields. Recently
she has focused on methods for preventing conversational agents from reproducing biased, toxic, or
otherwise harmful language. Prior to joining FAIR, she received her master’s degree in Mathematics
from the University of Washington.
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Keynote Talk: Instructable and Collaborative Language
Models
Timo Schick

FAIR (Meta AI)

Abstract: Textual content is often the output of a collaborative writing process — which includes wri-
ting text, making comments and changes, finding references, and asking others for help —, but today’s
NLP models are only trained to generate the final output of this process. In this talk, we will discuss
an alternative approach where models are trained to imitate the entire writing process. We will look at
examples of how this enables models to plan and explain their actions, to correct their own mistakes, and
to better collaborate with humans. We will also discuss how to make such models better at following
human-written instructions.

Bio: Timo Schick is a research scientist at FAIR working on few-shot learning in NLP. Previously, he did
his PhD at the Center for Information and Language Processing (CIS) in Munich and worked in industry
as a data scientist for several years. Timo’s current research focuses on instruction-based learning and
teaching language models to collaborate with other entities.
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Keynote Talk: Reflections on Trusting Untrustworthy
Language Generators

Sean Welleck
University of Washington

Abstract: In his 1984 Turing Award Lecture “Reflections on Trusting Trust”, Ken Thompson famously
said “You can’t trust code that you did not totally create yourself”. These words are especially relevant
today, as powerful and flexible language models generate natural language and code that is increasingly
human-like. However, these same systems challenge our trust, exhibiting odd degeneracies, amplifying
biases, and producing flawed reasoning. In this talk, I will introduce two directions for harnessing the
potential of these language models while mitigating the risks. First, I will discuss unlearning: removing
undesirable behaviors by integrating feedback and learning. Second, I will discuss how integrating lan-
guage models with trustworthy symbolic systems can open the door to tackling challenging mathematical
reasoning tasks. Join me as we explore the path towards trusting untrustworthy language generators.

Bio: Sean Welleck is a Postdoctoral Scholar at the University of Washington and the Allen Institute
for Artificial Intelligence, working with Yejin Choi. His research focuses on algorithms for natural
language generation and machine reasoning, with the aim of minimizing the effort needed to trust the
output of AI systems. He has developed unlearning, decoding, and evaluation algorithms for controllable
neural language generation, and methods for integrating language models with symbolic systems, with a
particular focus on mathematical reasoning. He received his Ph.D. from New York University, where he
was advised by Kyunghyun Cho. Outside of his research activities, he hosts the Thesis Review Podcast
and enjoys running long distances.
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Maja Popović and Anya Belz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Answerability: A custom metric for evaluating chatbot performance
Pranav Gupta, Anand A. Rajasekar, Amisha Patel, Mandar Kulkarni, Alexander Sunell, Kyung

Kim, Krishnan Ganapathy and Anusua Trivedi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Improved Evaluation of Automatic Source Code Summarisation
Jesse Phillips, David Bowes, Mahmoud El-Haj and Tracy Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Most NLG is Low-Resource: here’s what we can do about it
David M. Howcroft and Dimitra Gkatzia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

GiCCS: A German in-Context Conversational Similarity Benchmark
Shima Asaadi, Zahra Kolagar, Alina Liebel and Alessandra Zarcone . . . . . . . . . . . . . . . . . . . . . . 351

Control Prefixes for Parameter-Efficient Text Generation
Jordan Clive, Kris Cao and Marek Rei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

A Survey of Recent Error Annotation Schemes for Automatically Generated Text
Rudali Huidrom and Anya Belz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

What’s in a (dataset’s) name? The case of BigPatent
Silvia Casola, Alberto Lavelli and Horacio Saggion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399

Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora
George Kour, Samuel Ackerman, Eitan Daniel Farchi, Orna Raz, Boaz Carmeli and Ateret Anaby

Tavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Multilingual Social Media Text Generation and Evaluation with Few-Shot Prompting
Mack Blackburn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Assessing Inter-metric Correlation for Multi-document Summarization Evaluation
Michael Ridenour, Ameeta Agrawal and Olubusayo Olabisi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

x



Factual Error Correction for Abstractive Summaries Using Entity Retrieval
Hwanhee Lee, Cheoneum Park, Seunghyun Yoon, Trung Bui, Franck Dernoncourt, Juae Kim and

Kyomin Jung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Coherent Long Text Generation by Contrastive Soft Prompt
Guandan Chen, Jiashu Pu, Yadong Xi and Rongsheng Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Error Analysis of ToTTo Table-to-Text Neural NLG Models
Barkavi Sundararajan, Somayajulu Sripada and Ehud Reiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Improving Dialogue Act Recognition with Augmented Data
Khyati Mahajan, Soham Parikh, Quaizar Vohra, Mitul Tiwari and Samira Shaikh . . . . . . . . . . . 471

Do Decoding Algorithms Capture Discourse Structure in Multi-Modal Tasks? A Case Study of Image
Paragraph Generation

Nikolai Ilinykh and Simon Dobnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

20Q: Overlap-Free World Knowledge Benchmark for Language Models
Maxime De Bruyn, Ehsan Lotfi, Jeska Buhmann and Walter Daelemans . . . . . . . . . . . . . . . . . . . 494

What Was Your Name Again? Interrogating Generative Conversational Models For Factual Consisten-
cy Evaluation

Ehsan Lotfi, Maxime De Bruyn, Jeska Buhmann and Walter Daelemans . . . . . . . . . . . . . . . . . . . 509

Narrative Why-Question Answering: A Review of Challenges and Datasets
Emil Kalbaliyev and Kairit Sirts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Exploring a POS-based Two-stage Approach for Improving Low-Resource AMR-to-Text Generation
Marco Antonio Sobrevilla Cabezudo and Thiago Pardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

What Makes Data-to-Text Generation Hard for Pretrained Language Models?
Moniba Keymanesh, Adrian Benton and Mark Dredze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Don’t Say What You Don’t Know: Improving the Consistency of Abstractive Summarization by Con-
straining Beam Search

Daniel King, Zejiang Shen, Nishant Subramani, Daniel S. Weld, Iz Beltagy and Doug Downey
555

xi



Program

Wednesday, December 7, 2022

09:00 - 10:30 Opening Remarks and Keynote (Sean Welleck)

10:30 - 11:00 Coffee Break

11:00 - 12:30 Talk Session

12:30 - 14:00 Lunch Break

14:00 - 15:30 Poster Session

15:30 - 16:00 Coffee Break

16:00 - 17:00 Keynote (Timo Schick)

17:00 - 18:30 Talk Session

20:00 - 21:00 Virtual Keynote (Emily Dinan)

21:00 - 22:30 Virtual Poster Session

xii



Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 1 - 17
December 7, 2022 ©2022 Association for Computational Linguistics

Improving abstractive summarization with energy-based re-ranking

Diogo PernesÁç Afonso MendesÁ André F. T. MartinsÈÉÆ
ÁPriberam çUniversidade do Porto

ÈInstituto de Telecomunicações ÉLUMLIS (Lisbon ELLIS Unit), Instituto Superior Técnico ÆUnbabel
Lisbon, Portugal

diogo.pernes@priberam.pt,
amm@priberam.pt, andre.t.martins@tecnico.ulisboa.pt.

Abstract

Current abstractive summarization systems
present important weaknesses which prevent
their deployment in real-world applications,
such as the omission of relevant information
and the generation of factual inconsistencies
(also known as hallucinations). At the same
time, automatic evaluation metrics such as
CTC scores (Deng et al., 2021) have been re-
cently proposed that exhibit a higher correlation
with human judgments than traditional lexical-
overlap metrics such as ROUGE. In this work,
we intend to close the loop by leveraging the
recent advances in summarization metrics to
create quality-aware abstractive summarizers.
Namely, we propose an energy-based model
that learns to re-rank summaries according to
one or a combination of these metrics. We
experiment using several metrics to train our
energy-based re-ranker and show that it consis-
tently improves the scores achieved by the pre-
dicted summaries. Nonetheless, human evalua-
tion results show that the re-ranking approach
should be used with care for highly abstractive
summaries, as the available metrics are not yet
sufficiently reliable for this purpose.

1 Introduction

In recent years, abstractive methods have greatly
benefited from the development and widespread
availability of large-scale transformer-based lan-
guage generative models (Vaswani et al., 2017;
Lewis et al., 2020; Raffel et al., 2020; Zhang
et al., 2020), which are capable of generating
text with unprecedented fluency. Despite the re-
cent progress, abstractive summarization systems
still suffer from problems that hamper their de-
ployment in real-world applications. Omitting the
most relevant information from the source docu-
ment is one of such problems. Additionally, fac-
tual inconsistencies (also known as hallucinations)
were estimated to be present in around 30% of
the summaries produced by abstractive systems

on the CNN/DailyMail dataset (Kryscinski et al.,
2019). This observation has motivated a consider-
able amount of research on strategies to mitigate
the hallucination problem (Falke et al., 2019; Cao
et al., 2020; Zhao et al., 2020; Zhu et al., 2021),
but the improvements achieved so far are mild.
This is partly due to the difficulty of evaluating
the quality of summaries automatically, leading
to the adoption of metrics that are often insuffi-
cient or even inappropriate. Despite its limitations,
ROUGE (Lin, 2004) is still the de facto evaluation
metric for summarization, mostly due to its sim-
plicity and interpretability. However, not only does
it correlate poorly with human-assessed summary
quality (Kané et al., 2019), but it is also unreliable
whenever the reference summary contains halluci-
nations, which unfortunately is not an uncommon
issue in widely adopted summarization datasets
(Kryscinski et al., 2019; Maynez et al., 2020). For
these reasons, the development of more reliable
evaluation metrics with a stronger correlation with
human judgment is also an active area of research
(Kryscinski et al., 2020; Scialom et al., 2021; Deng
et al., 2021).

In this work, we propose a new approach to ab-
stractive summarization via an energy-based model.
In contrast to previous approaches, which use re-
inforcement learning to train models to maximize
ROUGE or BERT scores (Paulus et al., 2018; Li
et al., 2019), our EBM is trained to re-rank the
candidate summaries the same way that the chosen
metric would rank them – a much simpler problem
which is computationally much more efficient. This
way, we are distilling the metric, which presents
as a by-product an additional advantage: a qual-
ity estimation system that can be used to assess the
quality of the summaries on the fly without the need
of reference summaries. It should be remarked that
any reference-free metric, can be used at inference
time for re-ranking candidates from any abstrac-
tive summarization system, hence improving the

1
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quality of the generated summaries. Our re-ranking
model can therefore leverage the advantages of re-
cently proposed evaluation metrics over traditional
ones, which are essentially two-fold: i) being able
to better capture high-level semantic concepts, and
ii) in addition to the target summary, these met-
rics take into account the information present on
the source document, which is crucial to detect
hallucinations. We demonstrate the effectiveness
of our approach on standard benchmark datasets
for abstractive summarization (CNN/DailyMail,
Hermann et al. (2015), and XSum, Narayan et al.
(2018)) and use a variety of summarization metrics
as the target to train our model on, showing the
versatility of the method. We also conduct a hu-
man evaluation experiment, in which we compare
our re-ranking model trained to maximize recent
transformer-based metrics that aim to measure fac-
tual consistency and relevance (CTC scores, Deng
et al. (2021)). Our proposed model yields improve-
ments over the usual beam search on a baseline
model and demonstrates the ability to distill target
metrics. However, the human evaluation results
suggest that re-ranking according to these metrics,
while competitive, may yield lower quality sum-
maries than those obtained by state-of-the-art ab-
stractive systems trained with augmented data and
contrastive learning.

The remainder of the paper is organized as fol-
lows: in Section 2, we discuss the related work; in
Section 3, we do a brief high-level description of
neural abstractive summarization systems and how
different candidate summaries can be generated
from them; in Section 4, we describe our methodol-
ogy in detail, as well as the summarization metrics
that we shall use to train our re-ranking model;
Section 5 presents the experimental results of our
model and baselines, which include both automatic
and human evaluation; in Section 6, we discuss the
limitations of our approach and point some direc-
tions for future work, and we conclude this work
with some final remarks in Section 7.

2 Related work

In the context of natural language generation, the
idea of re-ranking candidates has been studied ex-
tensively for neural machine translation (Shen et al.,
2004; Mizumoto and Matsumoto, 2016; Ng et al.,
2019; Salazar et al., 2020; Fernandes et al., 2022),
but only seldom explored for abstractive summa-
rization. Among the former, the approach by Bhat-

tacharyya et al. (2021) is the most similar to ours
as they also resort to an energy-based model to
re-rank the candidates. However, they do not ap-
ply their method to abstractive summarization and
their training objective is different than the one we
shall define for our model: at each training step,
they sample a pair of candidates, and the model
is trained so that the difference between the en-
ergies of the two candidates is at least as large
as the difference of their BLEU scores (Papineni
et al., 2002). Thus, their approach only exploits
the information of two candidates at each training
step. Recently, improved learning objectives such
as contrastive losses have been proposed to enhance
the quality of the predicted summaries, especially
their factual consistency. Tang et al. (2022), Cao
and Wang (2021), and Liu et al. (2021) used data
augmentation to generate both factual consistent
and inconsistent sentences and used these in a con-
trastive learning objective to regularize the trans-
former learned representations. In a different line
of work, Cao et al. (2020) and Zhao et al. (2020)
trained separate models on the task of correcting
factual inconsistencies in the predicted summaries.
Zhu et al. (2021) presented a model that learns to
extract a knowledge graph from the source docu-
ment and uses it to condition the decoding step.
Goyal and Durrett (2021) trained a model to de-
tect non-factual tokens and used it to identify and
discard these tokens from the training data of the
summarizer. Aralikatte et al. (2021) modified the
output distribution of the model to put more focus
on the vocabulary tokens that are similar to the at-
tended input tokens. Despite being sensible ideas,
these techniques mostly focus on redefining the
training objective of the model and disregard the
opportunity to improve the summary quality at in-
ference time, either by redesigning the sampling al-
gorithm or using re-ranking. In a somewhat similar
direction to ours, a contemporary work (Liu et al.,
2022) proposes using a ranking objective as an ad-
ditional term on the usual negative log-likelihood
loss. Similar to us, Liu and Liu (2021) and Ravaut
et al. (2022) propose to use a trained re-ranker in as
post-generation step. The former use a contrastive
objective to learn a re-ranker that mimics ROUGE
scores. The latter employs a mixture of experts to
train a re-ranker on the combination of ROUGE,
BERT and BART scores.
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3 Abstractive summarization systems

A typical abstractive summarization model approx-
imates the conditional distribution p(y | x), of
summaries y given source documents x, and works
auto-regressively, exploiting the chain rule of prob-
ability:

p(y | x) =
l+1∏

i=1

p(y(i) | x, y0:(i−1)), (1)

where y(0) is a start-of-sequence token, the follow-
ing y(1), . . . , y(l) are the tokens in the summary,
from the beginning to the end, and y(l+1) is an end-
of-sequence token. Typically, the parameters of
this model are estimated under the maximum like-
lihood criterion, by minimizing the negative log-
likelihood loss for a training dataset {(xi, yi)}ni=1

containing source documents xi paired with the
respective reference summaries yi.

Usually, the decoding process aims at finding
the most likely sequence y∗ for the given x, i.e.
y∗ ≜ argmaxy p(y | x). Since searching for the
most likely sequence is intractable due to com-
binatorial explosion, mode-search heuristics like
greedy decoding and beam search are used in prac-
tice. Even if one could find the optimal sequence,
it is not guaranteed that this would be the best
summary for the given document. A primary rea-
son for this is that the distribution learned by the
model is only an approximation of the true condi-
tional distribution, and preserves some background
knowledge acquired during the unsupervised pre-
training of the underlying language model. This
is responsible for the presence of additional infor-
mation in the summary that was not in the source
document, which is the most frequent form of hal-
lucination in summarization (Maynez et al., 2020).
Another source of problems is the noise in the train-
ing datasets, which are often scrapped automati-
cally from the web with little human supervision
(Kryscinski et al., 2019).

In essence, finding the optimal training objective
and decoding algorithm to obtain the best summary
remains an open problem. We take a step in this
direction by sampling a set of candidate summaries
{ŷ1, ŷ2, . . . , ŷk} and then using a re-ranking model
to choose the best one. To ensure diverse candi-
dates, we experiment with diverse beam search
(Vijayakumar et al., 2016), a modification of tradi-
tional beam search including a term in the scoring
function that penalizes for repetitions across differ-
ent beams.

4 Energy-based re-ranking

4.1 Formulation

Formally, a summarization metric is a function
ϕ : X × Y2 7→ R that takes as input the source
document x ∈ X , the human-written reference
summary y ∈ Y , and the generated summary
ŷ ∈ Y , and outputs a scalar, usually in the unit
interval, measuring the quality of the generated
summary. Without loss of generality, through-
out this work we assume that higher values of
the metric indicate a better summary (as evalu-
ated by the metric). Then, for a given summa-
rization metric ϕ, our goal is to find a reference-
free function E : X × Y 7→ R with parameters
θ such that, for two candidate summaries ŷ and
ŷ′ for the same document x with reference sum-
mary y, E(x, ŷ; θ) < E(x, ŷ′; θ) if and only if
ϕ(x, y, ŷ) > ϕ(x, y, ŷ′). In the spirit of energy-
based models (LeCun et al., 2006),E should assign
low energy wherever p(y | x) is high and high en-
ergy wherever p(y | x) is low, but does not need to
be normalized as a proper density. More precisely,
E should satisfy p(y | x) ∝ exp(−E(x, y; θ)).
Under this perspective, at training time, ϕ works as
a proxy for the true conditional distribution, which
is unknown. At inference time, sampling sum-
maries directly from the distribution defined by
the energy-based model is a non-trivial task since
this model is not defined auto-regressively (Eikema
et al., 2021), unlike standard encoder-decoder mod-
els for summarization. Hence, we use its scores to
re-rank candidate summaries previously obtained
from a baseline summarization model.

4.2 Training and inference

We assume to have access to a training data setD =
{(xi, yi, ŷi)}ni=1, where xi and yi are respectively
the i-th source document and the corresponding
reference summary and ŷi = {ŷi,1, ŷi,2, . . . , ŷi,k}
is a set of (up to) k candidate summaries sam-
pled from a baseline summarization model, such as
BART (Lewis et al., 2020) or PEGASUS (Zhang
et al., 2020). Several techniques have been pro-
posed for training energy-based models that avoid
the explicit computation of the partition function
Z(x; θ) ≜

∫
Y exp(−E(x, y; θ)) dy and its gra-

dient, which are usually intractable (Song and
Kingma, 2021). Here, given this data and the met-
ric ϕ, we adopt the ListMLE ranking loss (Xia et al.,
2008) as the training objective. Specifically, the
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model is trained to minimize:

Lϕ(θ) ≜ −E(x,y,ŷ)∼D log
k∏

i=1

exp(−E(x, ŷi; θ)/τ)∑k
j=i exp(−E(x, ŷj ; θ)/τ)

,

(2)

where τ > 0 is a temperature hyperparameter and
the candidates ŷ1, ŷ2, . . . , ŷk are sorted such that if
i < j then ϕ(x, y, ŷi) ≥ ϕ(x, y, ŷj).

To gain some intuition about this loss function,
let us define: i) ri as the random variable corre-
sponding to the i-th ranked summary in a list of
k candidates ŷ1, ŷ2, . . . , ŷk and ii) the probability
that r1 takes the value ŷ1 as:

P (r1 = ŷ1 | x) ≜
exp(−E(x, ŷ1)/τ)∑k
j=1 exp(−E(x, ŷj)/τ)

,

(3)
where we have omitted the parameters θ for brevity.
Assuming that the first i− 1 candidates are ranked
correctly, the probability that the i-th candidate is
also ranked correctly is the probability that it is
ranked first in the list ŷi, ŷi+1, . . . , ŷk, thus:

P (ri = ŷi | x,r1:(i−1) = ŷ1:(i−1)) =

=
exp(−E(x, ŷi)/τ)∑k
j=i exp(−E(x, ŷj)/τ)

. (4)

It then follows from the chain rule that the proba-
bility that all the k candidates are ranked correctly
is:

P (r1:k = ŷ1:k | x) =

=
k∏

i=1

P (ri = ŷi | x, r1:(i−1) = ŷ1:(i−1))

=
k∏

i=1

exp(−E(x, ŷi)/τ)∑k
j=i exp(−E(x, ŷj)/τ)

. (5)

Hence, P (r1:k | x) is a distribution over all the pos-
sible permutations of the k candidates and the min-
imization of the loss Lϕ maximizes the likelihood
of the correct permutation, i.e. of the permutation
induced by ranking the candidates ŷ1, . . . , ŷk ac-
cording to the metric ϕ(x, y, ·). At inference time,
given an unsorted list ŷ of k candidate summaries
for the document x, we choose the candidate ŷ∗

that is the most likely to be the top-ranked:

ŷ∗ ≜ argmax
ŷ∈ŷ

P (r1 = ŷ | x) = argmin
ŷ∈ŷ

E(x, ŷ).

(6)
Thus, our energy based-model aims at ranking

a set of candidates the same way that the metric ϕ

would rank them, but it does this without having
access to the reference summary y. Therefore, this
is a way to distill the information contained in the
metric into a single and reference-free model that
can rank summary hypotheses on the fly.

4.3 Adopted metrics

So far, the definition of summarization metric we
have provided was generic, so now we focus on
describing the particular metrics we have used to
train our model. Summarization metrics can be
divided into two groups: reference-dependent and
reference-free, depending on whether ϕ actually
needs the reference summary or not. In the latter
case, ϕ(x, y, ŷ) ≡ φ(x, ŷ) ∀y, for some function φ.
Thus, reference-dependent metrics are mostly used
to evaluate and compare summarization systems,
whereas reference-free metrics can also be used
to assess summary quality on the fly. Therefore,
training our energy-based model using reference-
dependent metrics provides an indirect way to use
these metrics for the latter purpose as well.

Automatically assessing the quality of a sum-
mary is a non-trivial task since it depends on high-
level concepts, such as factual consistency, rele-
vance, coherence, and fluency (Lloret et al., 2018).
These are loosely captured by classical metrics
(Kané et al., 2019; Kryscinski et al., 2019) such
as ROUGE, which essentially measure the n-gram
overlap between ŷ and y. However, in recent years,
the availability of powerful language representa-
tion models like BERT (Devlin et al., 2019) per-
mitted and motivated the development of several
transformer-based automatic metrics.

There are a few metrics based on question gen-
eration (QG) and question answering (QA) models
(Wang et al., 2020; Durmus et al., 2020). Among
these, QuestEval (Scialom et al., 2021) exhibits the
strongest correlation with human judgment. This
metric uses a QG model to generate questions from
both the source document x and the candidate sum-
mary ŷ and a QA model to get the answers from
both, which are then compared to produce a score
in the unit interval. In addition to the QA and QG
models, QuestEval uses an additional model to de-
termine the importance weight of each question
generated from x. Although being reference-free,
this metric is computationally expensive, so it is
important to investigate whether our model can
produce a similar ranking more efficiently.

Following a different paradigm, Deng et al.
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(2021) proposed a set of metrics for natural lan-
guage generation tasks, named CTC scores, which
are based on the notion of information alignment.
They define the alignment of a document a to a doc-
ument b, denoted align(a → b), as a vector with
the same length as a where the i-th position is a
scalar in [0, 1] representing the confidence that the
information in the i-th token of a is grounded in b.
For summarization tasks, two alignment-based met-
rics are proposed, one for factual consistency and
the other for relevance, both achieving state-of-the-
art results in correlation with human judgment. A
generated summary ŷ is consistent with its source
document x if all the information in ŷ is supported
by x, hence the consistency score is:

CTCconsistency(x, ŷ) ≜ mean(align(ŷ → x)).
(7)

For relevance, the authors argue that, besides being
consistent, ŷ should contain as much information
as possible from the reference summary y, so they
define the relevance score as:

CTCrelevance(x, y, ŷ) ≜
≜ mean(align(ŷ → x))×mean(align(y → ŷ)).

(8)

Clearly, both metrics produce a score in the unit
interval, being consistency reference-free and rele-
vance reference-dependent.

5 Experiments

5.1 Datasets
We evaluate our model and the baselines in two
benchmark datasets for abstractive summarization:
CNN/DailyMail (Hermann et al., 2015) and XSum
(Narayan et al., 2018), both containing news ar-
ticles paired with their respective reference sum-
maries. In XSum, each summary consists of a
single sentence, while in CNN/DailyMail it can
consist of three sentences or more. XSum is also
known to be more abstractive and to have more hal-
lucinations than CNN/DailyMail (Narayan et al.,
2018; Maynez et al., 2020).

5.2 Baselines
A BART model (Lewis et al., 2020) trained on the
usual maximum likelihood objective is our baseline.
Summaries are sampled from this model using the
usual beam search. In addition, we also compare
our model with the following state-of-the-art meth-
ods: BRIO, by Liu et al. (2022), which employs

a ranking loss as an additional term on the train-
ing of the abstractive system; CLIFF, by Cao and
Wang (2021), which uses data augmentation tech-
niques and contrastive learning to enhance the fac-
tual consistency of the summaries; DAE, proposed
by Goyal and Durrett (2021), which detects and
discards non-factual tokens from the training data;
FASum, by Zhu et al. (2021), which incorporates
knowledge graphs also to enhance factual consis-
tency; SummaReranker, by Ravaut et al. (2022),
which employs a mixture of experts to train a re-
ranker on the combination of various metrics. In
Appendix B, we also experiment training the re-
ranking model with the max-margin objective pro-
posed by Bhattacharyya et al. (2021) for machine
translation and we present the results obtained
by using a perfect re-ranker for CTCconsistency and
QuestEval, which is feasible since these metrics
are reference-free.

5.3 Implementation details

Our energy-based re-ranking model (EBR-
ListMLE) consists of a BERT that receives as input
a pair (x, ŷ), of source document x and candidate
summary ŷ, and outputs the corresponding energy
score E(x, ŷ). Candidates are sampled using
diverse beam search (Vijayakumar et al., 2016)
on a BART encoder-decoder fine-tuned on the
respective summarization dataset. Further imple-
mentations details are provided in Appendix A.
For reproducibility purposes, our code and trained
models are also publicly available1. Regarding
the baselines, we use the official source code and
model checkpoints for CLIFF and DAE. The latter
is only evaluated on the XSum dataset since there
is no checkpoint available for CNN/DailyMail.
For the same reason, BRIO is only evaluated on
CNN/DailyMail. For FASum, we use the released
predicted summaries directly since this is the only
resource available.

5.4 Metrics

We train our model using the metrics discussed
in section 4.3 as the target metric ϕ. Specif-
ically, we experiment with ROUGE-L, QuestE-
val, CTCrelevance, and CTCrelevance + CTCconsistency.
ROUGE scores, QuestEval and CTC scores each
belong to a different evaluation paradigm and so
it is interesting to investigate their effect on our
re-ranking approach. It is important to point out

1https://github.com/Priberam/SummEBR
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that CTCconsistency is a reference-free metric whose
computational complexity is similar to that of our
re-ranker, so it is pointless to train our model based
on that metric alone. Instead, we report the re-
sults using this metric directly for re-ranking in
Appendix B. However, combining (i.e. summing)
it with CTCrelevance yields an interesting metric as
it takes into account two fundamental attributes
of a summary: factual consistency and relevance.
QuestEval is also reference-free but it is much more
computationally intensive as it requires a question
generation and a question answering step. Thus,
we train our model with this metric and report the
computational times for comparison. For evalua-
tion, in addition to the aforementioned metrics, we
also report results for ROUGE-1, ROUGE-2, and
FactCC (Kryscinski et al., 2020), which is a metric
based on NLI scores.

5.5 Automatic evaluation

5.5.1 Comparison with the baselines

The results obtained by our model and baselines are
presented in Table 1. We used 8 candidates for the
re-ranking models and beam search with 8 beams
for the baselines. The effect of using different
number of candidates for re-ranking is studied in
Appendix C. It is noticeable that the best results for
all the metrics are obtained by the EBR models, ex-
cept for the ROUGE scores, where BRIO, CLIFF,
and SummaReranker often outperform our mod-
els. SummaReranker is likely the strongest com-
petitor with our models, achieving close-to-best
ROUGE scores in both datasets and outperforming
the BART baseline in most of the remaining met-
rics. Surprisingly, DAE and FASum score below
BART in the vast majority of the automatic metrics.
Unfortunately, the authors of DAE do not provide
results for any of these metrics. Regarding FASum,
the authors do provide the ROUGE scores for their
model but they evaluate factual consistency using
a custom metric, for which they did not release the
implementation.

Among the re-ranking models, the best result
for a given metric is obtained when the model is
trained to re-rank according to that metric, as ex-
pected. It is also interesting to observe that training
for a given metric generally yields improvements
in the remaining metrics as well. This might be an
indication that the ranking model learns a useful
measure of summary quality, rather than exploit-
ing possible loopholes of the metrics. The best

model overall is arguably EBR-ListMLE trained
for CTCconsistency + CTCrelevance, achieving close
to best results in all the metrics except ROUGE
scores, which are known to correlate less strongly
with human judgment.

We also compared the inference time of our
model with the computation time of the two
reference-free metrics, CTCconsistency and QuestE-
val2. We performed this experiment by sampling
1000 (document, summary) pairs from the test set
of the CNN/DailyMail dataset and computing the
scores one by one (i.e. without mini-batching) us-
ing our model and each of the metrics. The re-
sults are in Table 2. The computation time of
CTCconsistency is comparable to, but larger than, that
of our EBR, with the difference explained by the
fact that the former is based on a RoBERTa-large
model (Zhuang et al., 2021) and the latter uses
BERT-base. As argued before and confirmed by
these results, the computation of QuestEval takes
two orders of magnitude longer, which motivates
distilling this metric into an EBR.

5.5.2 Cross-model experiments

An interesting question to investigate is whether
our model is learning a general approximation of
the target metric ϕ, rather than just learning to rec-
ognize features that correlate with ϕ but are spe-
cific to the summarization system that generated
the candidates. For this purpose, we experiment us-
ing a different abstractive summarizer to generate
the test candidates than the one that was used to
generate the training candidates. Specifically, we
apply the same EBR models as in Section 5.5.1,
which were trained using summaries sampled from
BART, to re-rank summaries obtained from PEGA-
SUS (Zhang et al., 2020). Like before, we obtain
8 candidate summaries for each source document
using beam search. In this experiment, our baseline
is PEGASUS with no re-ranking. The results are
in Table 3 and confirm that our EBR models have
learned to mimic the respective metrics faithfully.
The best score for each of the metrics is achieved
by the EBR model that was trained for that metric.
Moreover, when evaluated with different metrics,
these models tend to surpass the PEGASUS base-
line in the vast majority of the cases.
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CNN/DailyMail XSum
R1 R2 RL QE Cons Rel FCC R1 R2 RL QE Cons Rel FCC

BART 43.64 20.75 40.52 43.28 95.01 61.75 55.68 42.67 19.42 34.48 28.27 83.18 52.23 26.28

BRIO 47.97∗ 24.06∗ 44.86∗ 43.49 89.61 60.75 33.05 − − − − − − −
CLIFF 43.86 20.88 40.63 43.28 94.68 60.38 55.85 44.50 21.41 36.41 29.34 82.57 51.92 24.86

DAE − − − − − − − 37.61 14.19 28.84 29.20 79.45 51.05 19.46

FASum 40.40 17.68 37.26 42.87 94.30 57.91 51.20 30.22 9.97 23.69 24.35 75.45 39.42 26.96

SummaReranker 45.07 21.73 41.87 43.61 95.07 62.49 54.50 44.93 21.40 36.76 28.76 83.00 52.75 26.27

EBR [RL] 44.90 21.58 41.75 43.60 95.01 62.16 54.95 43.63 20.28 35.78 28.55 84.47 52.92 27.21

EBR [QE] 44.07 21.13 40.94 44.27∗ 95.71 62.48 59.23 42.94 19.42 34.62 29.89 83.34 52.50 26.34

EBR [Rel] 44.04 20.98 40.85 43.78 95.93 63.40 60.28 43.39 19.75 35.03 28.60 85.49 54.80 26.28

EBR [Cons+Rel] 43.88 20.87 40.69 43.79 96.15 63.32 61.67∗ 43.28 19.72 34.92 28.66 86.03∗ 54.74 27.12

Table 1: Results of our models and baselines on each of the automatic evaluation metrics. Bold font indicates
best result, and the second best results are underlined. A ∗ mark indicates that the difference to the second best
result is statistically significant (approximate permutation test at 95%). In the re-ranking models, the metric in
brackets indicates the target metric ϕ used to train the re-ranker. (R1: ROUGE-1, R2: ROUGE-2, RL: ROUGE-L,
QE: QuestEval, Cons: CTCconsistency, Rel: CTCrelevance, FCC: FactCC)

EBR CTCconsistency QuestEval
Time 1 1.83 114.98

Table 2: Relative computation times of the reference-
free scorers when scoring 1000 (document, summary)
pairs from CNN/DailyMail. The absolute computation
time for EBR was 23s.

5.6 Human evaluation

Even though the results on automatic evaluation
are promising, directly optimizing a metric is risky
as none of these metrics correlate perfectly with
human judgment. For this reason, it is crucial to
conduct human evaluation. Specifically, we asked
the judges to do pairwise comparisons between
the summaries generated by three models: BART,
CLIFF, which was the strongest published base-
line at the time we conducted this study, and our
EBR trained for CTCconsistency + CTCrelevance and
re-ranking candidates from BART. We chose these
metrics for the EBR since they exhibit stronger
correlation with human judgment than the remain-
ing (Deng et al., 2021) and explicitly account for
two key attributes of a summary: factual consis-
tency and relevance. For each source document,
we presented three pairs of summaries consecu-
tively, which correspond to all the pairwise com-
binations of the summaries generated by the three
systems. Then, we asked the judges to rank the
summaries in each pair according to three criteria:
factual consistency, relevance, and fluency. For
each criterion, the judges had to evaluate whether
the first summary was better than, tied with, or
worse than the second summary. The names of
the systems that generated each summary were
not shown to the judges and the order at which

2We used an 80-core CPU Intel Xeon Gold 5218R @
2.10GHz with 800GB of RAM and a GPU NVIDIA A100
with 80GB of memory.

summaries were presented was randomized. We
randomly sampled 30 source documents from the
test set of CNN/DailyMail and another 30 from
the test set of XSum, so each judge was asked to
compare 180 pairs of summaries. A screenshot and
description of the user interface of the evaluation
form is provided in Appendix D.1. We recruited
two judges for this task, who are specialists in lin-
guistics. The results are presented in Table 4. The
first observation is that our EBR model succeeds
at improving the quality of the candidates sam-
pled from BART on the CNN/DailyMail dataset
in all the three criteria. On XSum, the improve-
ments are marginal or even absent, except on the
fluency dimension. The EBR model itself has lower
confidence on the predictions made on the XSum
dataset: as shown in Figure 1, the EBR model
generally assigns higher energy to the XSum sum-
maries than to the CNN/DailyMail summaries. The
fact that our model improves fluency, which it was
not trained for, may indicate that there is an im-
plicit bias in our model and/or in the the target
metrics (CTCconsistency and CTCrelevance) towards
more fluent summaries. Surprisingly, the compar-
ison of our model with CLIFF contradicts the re-
sults of the automatic evaluation (Table 1), espe-
cially on the XSum dataset. Three reasons could
explain this phenomenon: i) the small number of
documents used for human evaluation when com-
pared to the size of the whole test set, ii) the EBR
failing to re-rank the candidates according to the
target metrics on these documents, and iii) limi-
tations of the metrics themselves. In order to in-
vestigate which is true, we computed the actual
values of CTCconsistency and CTCrelevance on the ex-
amples from XSum used for human evaluation.
Regarding CTCconsistency, the summaries of EBR
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CNN/DailyMail XSum
R1 R2 RL QE Cons Rel FCC R1 R2 RL QE Cons Rel FCC

PEGASUS 43.19 20.64 36.74 41.22 92.27 59.09 41.13 46.64 23.79 38.53 28.55 82.02 53.32 24.10

EBR [RL] 44.35∗ 21.37∗ 37.66∗ 41.60 92.54 59.50 42.45 46.74 24.28∗ 39.16∗ 28.52 82.01 51.87 26.04∗

EBR [QE] 43.70 21.04 37.17 42.28∗ 93.30 60.04 45.31 46.43 23.58 38.40 29.82∗ 82.72 53.38 22.94

EBR [Rel] 43.51 20.80 36.80 41.62 93.38 61.05∗ 44.19 46.92 23.70 38.50 28.78 83.18 55.33∗ 22.57

EBR [Cons+Rel] 43.36 20.76 36.75 41.74 93.82∗ 60.98 46.10∗ 46.92 23.79 38.61 28.82 83.82∗ 55.26 23.60

Table 3: Results of the cross-model experiment in which EBRs trained with summaries from BART are tested on
re-ranking summaries from PEGASUS. Bold font indicates best result. A ∗ mark indicates that the difference to the
result of PEGASUS is statistically significant (approximate permutation test at 95%). In the re-ranking models, the
metric in brackets indicates the target metric ϕ used to train the re-ranker. (R1: ROUGE-1, R2: ROUGE-2, RL:
ROUGE-L, QE: QuestEval, Cons: CTCconsistency, Rel: CTCrelevance, FCC: FactCC)

CNN/DailyMail XSum
FC R F FC R F

CLIFF is better .17 .33 .33 .25 .32 .27
Tie .65 .24 .40 .63 .63 .68
BART is better .18 .43 .27 .12 .05 .05
EBR is better .13 .30 .24 .15 .12 .30
Tie .80 .52 .58 .72 .77 .63
BART is better .07 .18 .18 .13 .12 .07
EBR is better .12 .45 .32 .10 .08 .07
Tie .68 .20 .42 .63 .63 .88
CLIFF is better .20 .35 .27 .27 .28 .08
Agreement .50 .63 .54 .56 .58 .87
Strong disag. .01 .11 .08 .01 .00 .00

Table 4: Proportion of times that each model was con-
sidered the best for the human judges in each pairwise
comparison according to each criteria (FC: factual con-
sistency, R: relevance, F: fluency). Rows “Agreement”
and “Strong disag.” show, respectively, the proportion
of times that the two judges agreed and chose opposite
options on the pairwise comparisons.

achieve a better score than those of CLIFF in 22
cases (out of 30), with an average score of 83.9%
vs. 80.2% for CLIFF. For CTCrelevance, EBR wins
against CLIFF in 20 cases, with average scores
of 54.3% and 49.9%, respectively. We have also
inspected the particular examples (shown in Ap-
pendix D.2) where the judges agreed that CLIFF
summary was better than the EBR summary on
the factual consistency dimension. This happened
only in three cases, but in all of them the EBR sum-
mary has obvious hallucinations and the CLIFF
summary does not. Nonetheless, in two of them,
the CTCconsistency scores of the EBR summaries are
larger than those of the CLIFF summaries, which
confirms the flaws of the metric.

6 Limitations and future work

Despite the improvements attained by our EBR
model, its applicability is fundamentally dependent
on the availability of reliable automatic evaluation
metrics. Unfortunately, the correlation of these
metrics with human judgment is still imperfect,
especially for highly abstractive summaries. In

Figure 1: Energy histogram of the candidate summaries
chosen by the EBR model on CNN/DailyMail and
XSum.

addition, transformer-based metrics are currently
only available for English. Finally, their backbone
models are trained on news data, which hampers
the reliability of these metrics in other domains.
It is, therefore, crucial to continue the pursuit for
more reliable metrics and to extend them to more
languages and domains.

7 Conclusion

We proposed an energy-based re-ranking model
that can be trained to rank candidate summaries
according to a pre-specified metric, leveraging the
recent advancements in automatic summarization
metrics to enhance the quality of the generated sum-
maries. The experiments show that the proposed
re-ranking model succeeds at distilling the target
metrics, consistently improving the scores of the
generated summaries. However, these improve-
ments not always agree with the human evaluation,
especially in the more abstractive setting (XSum),
due to flaws of the adopted target metrics (CTC
scores). Nonetheless, the proposed approach is
flexible in the sense that we can train it with any
target metric and apply it in conjunction with virtu-
ally any abstractive summarization system.
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A Further implementation details

A.1 Hyperparameters

To generate the training data for the re-ranking
model, we sample 8 candidate summaries for each
source document using diverse beam search with
a diversity weight of 0.8. The candidates are then
ranked according to the desired metric ϕ and the
BERT model is fine-tuned on this data for up to
4 epochs, with a batch size of 24, and using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 5 × 10−5. We use τ = 1 (equa-
tion (2)) in all experiments. We keep the model
that achieves the highest normalized discounted
cumulative gain in a validation set. To generate
the candidates at inference time, we set the diver-
sity weight to zero since results in a separate val-
idation set showed that this option yields the best
results in most cases (see Appendix A.2). The
models are implemented using the HuggingFace
library on top of PyTorch. We also use Hugging-
Face publicly available checkpoints for the BART
summarizers (facebook/bart-large-cnn
and facebook/bart-large-xsum) and for
BERT (bert-base-uncased).

A.2 Choice of the diversity weight

Although we have used diverse beam search to
generate the candidate summaries for training, we
decided to stick to vanilla beam search for test-
ing. This choice was made based on the results
presented in Table 5. For this experiment, we have
used a held-out development set from the valida-
tion set of CNN/DailyMail and we registered the
results achieved by our EBR model and by an ora-
cle re-ranker with diversity weights ranging from 0
to 0.8. According to all the metrics except ROUGE-
L, setting the diversity weight to a positive value
has a negative effect on the quality of the generated
hypotheses since even an oracle re-ranker would
have better results when the diversity weight is
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Diversity weight RL QE Cons Rel
EBR-ListMLE [RL]

0
43.50 43.57 95.32 63.28

Oracle [RL] 46.95 43.37 95.26 64.54
EBR-ListMLE [RL]

0.2
44.96 42.83 90.61 59.54

Oracle [RL] 49.89 42.48 90.72 61.39
EBR-ListMLE [RL]

0.5
44.98 42.83 90.47 59.53

Oracle [RL] 50.58 42.44 90.71 61.61
EBR-ListMLE [RL]

0.8
44.92 42.81 90.32 59.42

Oracle [RL] 50.72 42.38 90.59 61.65
EBR-ListMLE [QE]

0
42.59 44.17 95.93 63.59

Oracle [QE] 42.55 45.72 95.72 63.19
EBR-ListMLE [QE]

0.2
44.01 43.92 92.57 60.82

Oracle [QE] 43.80 45.60 91.84 59.98
EBR-ListMLE [QE]

0.5
44.08 44.08 92.69 60.97

Oracle [QE] 43.92 45.84 91.87 60.15
EBR-ListMLE [QE]

0.8
43.95 44.09 92.70 60.87

Oracle [QE] 43.74 45.88 91.81 60.00
EBR-ListMLE [Rel]

0
42.67 43.70 96.11 64.53

Oracle [Rel] 44.32 43.52 96.24 66.40
EBR-ListMLE [Rel]

0.2
43.83 43.24 93.77 62.26

Oracle [Rel] 46.04 42.87 93.56 64.52
EBR-ListMLE [Rel]

0.5
43.87 43.32 94.03 62.51

Oracle [Rel] 46.40 42.92 93.72 65.10
EBR-ListMLE [Rel]

0.8
43.79 43.29 94.06 62.47

Oracle [Rel] 46.40 42.82 93.69 65.18
EBR-ListMLE [Cons+Rel]

0
42.49 43.69 96.35 64.45

Oracle [Cons+Rel] 44.09 43.57 96.56 66.27
EBR-ListMLE [Cons+Rel]

0.2
43.62 43.24 94.21 62.25

Oracle [Cons+Rel] 45.30 43.00 94.42 64.20
EBR-ListMLE [Cons+Rel]

0.5
43.50 43.24 94.52 62.44

Oracle [Cons+Rel] 45.56 43.09 94.67 64.74
EBR-ListMLE [Cons+Rel]

0.8
43.43 43.21 94.56 62.46

Oracle [Cons+Rel] 45.42 43.02 94.70 64.79

Table 5: Results (in %) for different diversity weights in a held-out validation set of CNN/DailyMail. (RL: ROUGE-
L, QE: QuestEval, Cons: CTCconsistency, Rel: CTCrelevance)

zero. Thus, we decided to set it at this value for the
subsequent experiments with the test set.

B Ablation study

We now study the effect of training our EBR
model using the max-margin loss proposed by Bhat-
tacharyya et al. (2021) for machine translation. In
addition, we also compare our models with per-
fect re-rankers for the two reference-free metrics:
QuestEval and CTCconsistency. The results are in
Table 6, where we also reproduce the results from
our models presented in Table 1 for easier analy-
sis. The comparison between the max-margin loss
(EBR-MM) and ListMLE (EBR-ListMLE) shows
that the latter tends to perform slightly better, al-
though in the majority of the cases the difference
is not statistically significant. It should also be
remarked that re-ranking with the CTCconsistency
metric directly (Perfect Re-Rank [Cons]) yields
competitive results too: it is the best on this metric
in both datasets and it is close to the best model on
CTCrelevance in XSum. Re-ranking with QuestEval
(Perfect Re-Rank [QE]) generally produces inferior

results and, as shown previously in Table 2, has the
additional inconvenience of being much slower.

C Effect of varying the number of
candidates

Figure 2 shows the effect of varying the number
of candidate summaries on the performance of our
EBR models and BART baseline. The candidates
were obtained using beam search with the number
of beams equal to the number of candidates. The
figure also shows the performance of the perfect
re-ranker (Oracle), which defines the upper bound
on the performance of the EBR.

Increasing the number of candidates leads to im-
provements in the performance of the EBR model
when evaluated with the same metric it was trained
to maximize. However, for ROUGE-L, these im-
provements are only marginal. Moreover, the per-
formance gap between the Oracle and EBR tends
to increase as well, especially in the reference-
dependent metrics (ROUGE-L and CTCrelevance).
The BART baseline also benefits from having larger
beam sizes according to all metrics except ROUGE-
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Figure 2: Performance of the models on the CNN/DailyMail dataset according to the indicated metrics for different
numbers of candidate summaries. (RL: ROUGE-L, QE: QuestEval, Cons: CTCconsistency, Rel: CTCrelevance)

13



CNN/DailyMail XSum
R1 R2 RL QE Cons Rel FCC R1 R2 RL QE Cons Rel FCC

Perfect Re-Rank [QE] 43.91 20.99 40.76 45.74∗ 95.46 62.06 58.26 42.81 19.33 34.53 32.28∗ 83.31 52.57 26.58

Perfect Re-Rank [Cons] 43.43 20.59 40.29 43.68 96.69∗ 62.60 61.36 43.02 19.58 34.76 28.70 87.64∗ 54.33 27.61∗

EBR-MM [RL] 44.49 21.35 41.32 43.72 95.23 62.22 56.89 43.86 20.30 35.72 28.68 83.32 52.85 25.98

EBR-MM [QE] 44.07 21.13 40.93 44.22 95.70 62.54 59.49 42.85 19.42 34.54 29.63 83.37 52.58 25.86

EBR-MM [Rel] 43.92 20.87 40.72 43.79 95.78 63.20 59.84 43.44 19.83 35.03 28.79 84.82 54.54 25.67

EBR-MM [Cons+Rel] 43.75 20.78 40.56 43.78 95.98 63.10 60.75 43.31 19.76 34.95 28.83 85.42 54.50 26.38

EBR-ListMLE [RL] 44.90 21.58 41.75∗ 43.60 95.01 62.16 54.95 43.63 20.28 35.78 28.55 84.47 52.92 27.21

EBR-ListMLE [QE] 44.07 21.13 40.94 44.27 95.71 62.48 59.23 42.94 19.42 34.62 29.89 83.34 52.50 26.34

EBR-ListMLE [Rel] 44.04 20.98 40.85 43.78 95.93 63.40 60.28 43.39 19.75 35.03 28.60 85.49 54.80 26.28

EBR-ListMLE [Cons+Rel] 43.88 20.87 40.69 43.79 96.15 63.32 61.67∗ 43.28 19.72 34.92 28.66 86.03 54.74 27.12

Table 6: Results of our models (EBR-ListMLE) and baselines on each of the automatic evaluation metrics. Bold
font indicates best result, and the second best results are underlined. A ∗ mark indicates that the difference to the
second best result is statistically significant (approximate permutation test at 95%). The metric in brackets indicates
the target metric ϕ used to train the re-ranker. (R1: ROUGE-1, R2: ROUGE-2, RL: ROUGE-L, QE: QuestEval,
Cons: CTCconsistency, Rel: CTCrelevance, FCC: FactCC)

L. Nonetheless, BART performs consistently worse
than our EBR models according to all the metrics.
Interestingly, increasing the number of candidates
degrades ROUGE-L scores for all the models, ex-
cept for EBR trained using this metric as the target.

D Human evaluation: further details

D.1 Evaluation form interface
The human evaluation form was built using the
Google Forms platform. Figure 3 presents a screen-
shot of the user interface. As we can observe, the
interface was divided into seven sections. The first
one provides instructions to the user and a brief
definition of each of the three evaluation criteria:
“(1) - Factual consistency: A factually consistent
summary should only contain exact, undistorted
information that is present in the source text. No
external information should be added.”; “(2) - Rel-
evance: A relevant summary should provide the
most important information presented in the source
text.”; “(3) - Fluency: A fluent summary should
be clear, grammatically correct, and sound like
human-written text.”. The three subsequent sec-
tions present the source text followed by the two
anonymized summaries. Finally, the last three sec-
tions contain the multiple choice questions for each
of the evaluation criteria. This seven-section pat-
tern repeats itself for all pairwise comparisons in
the evaluation form.

D.2 Detected factual inconsistencies
In Table 7 we show a few documents together with
the summaries obtained from the baseline BART
obtained with the usual beam search and the sum-
maries chosen by the EBR model. Table 8 shows
the examples from XSum used in the human evalua-
tion questionnaire where the two judges agreed that
the CLIFF summary was better than the EBR sum-

mary, regarding factual consistency. In two of the
three examples, the CTCconsistency metric wrongly
assigns a larger score to the EBR summary than
to the CLIFF summary. Interestingly, though, the
EBR model would prefer the CLIFF summary over
the BART summary in two of the three cases.
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Text Cons E
Source
(CNN/DM)

Kell Brook has finally landed the Battle of Britain he craved, but will take on Frankie Gavin rather than bitter
rival Amir Khan. Just sixty four days after the first defence of his IBF belt against Jo Jo Dan, Brook will return to
action on a packed pay-per-view show on May 30 at the O2 in London. The welterweight bout has been added
to a card that includes world title challenges for Kevin Mitchell and Lee Selby while Anthony Joshua faces his
toughest test to date against Kevin Johnson. Kell Brook poses outside London’s O2 Arena where he will fight
Frankie Gavin on May 30. Brook posing on the train as he headed to London for the announcement of his fight.
Brook (left) was back in action as he beat Jo Jo Dan for the IBF World Welterweight title in Sheffield last month.
Brook poses with Gavin inside the O2 arena after announcing their world title fight. Brook had been desperate to
face Khan at Wembley in June but his compatriot ruled out a fight until at least later in the year. (...)

BART Kell Brook will fight Frankie Gavin at the O2 in London on May 30. The welterweight bout has been added to a
card that includes world title challenges for Kevin Mitchell and Lee Selby. Anthony Joshua faces his toughest test
to date against Kevin Johnson. Click here for more boxing news.

88.6% 0.09

EBR Kell Brook will fight Frankie Gavin on May 30 at the O2 in London. The welterweight bout has been added to a
card that includes world title challenges for Kevin Mitchell and Lee Selby. Anthony Joshua faces his toughest test
to date against Kevin Johnson. Brook had been desperate to face Amir Khan at Wembley in June.

97.3% −3.67

Source
(CNN/DM)

Aston Villa match-winner Fabian Delph was left pinching himself after booking his side’s place in the FA Cup
final at the expense of Liverpool. Villa skipper Delph set up Christian Benteke’s equaliser after Philippe Coutinho
opened the scoring for the Reds and then rounded off a superb afternoon by sweeping home nine minutes into the
second half to secure a 2-1 victory. Delph’s strike means that Tim Sherwood’s charges will return to Wembley to
face holders Arsenal in next month’s showpiece and the former Leeds midfielder says it will be a dream come
true. Fabian Delph fires past Liverpool keeper Simon Mignolet to book Aston Villa’s place in the FA Cup final .
Delph celebrates with team-mate Ashley Westwood after his 54th minute strike . Delph (left), Gabriel Agbonlahor
(centre) and Grealish savour the winning feeling in the Villa dressing room . ’I can’t wait for the final. To walk
out as captain is going to be the highlight of my career. So happy days, I’m happy for the boys,’ he told BT Sport
1. (...)"

BART Aston Villa beat Liverpool 2-1 in the FA Cup semi-final at Wembley. Fabian Delph scored the winning goal in the
54th minute. Tim Sherwood’s side will now face Arsenal in next month’s showpiece. Delph says the final will be
the highlight of his career.

85.3% 1.22

EBR Aston Villa beat Liverpool 2-1 in the FA Cup semi-final at Wembley. Fabian Delph scored the winning goal in the
54th minute. Tim Sherwood’s side will now face Arsenal in next month’s final. Delph says to walk out as captain
in the final will be the highlight of his career.

85.5% 0.73

Source
(XSum)

The UN has said media restrictions and violence meant the environment was not conducive to free, credible
elections. Unrest started in April after President Pierre Nkurunziza said he would run for a third term - something
protesters say is illegal. The president says he is entitled to a third term because he was appointed for his first
term, not elected. The presidential election is scheduled for 15 July. East African leaders have called for a further
two-week delay. Africa news highlights: 7 July The electoral commission spokesman told the BBC turnout for
the parliamentary poll had been low in the districts of Bujumbura where there had been protests, but that in some
provinces outside the capital it was as high as 98The ruling party - the CNDD FDD - was ahead in every province
of the country, Burundi’s electoral commission announced. They won 77 out of 100 elected seats in parliament,
AFP news agency says. (...)

BART Burundi has held parliamentary elections, two months after the UN suspended its observer mission to the country. 80.6% 3.68
EBR The ruling party in Burundi has won parliamentary elections, the first since a wave of protests began in April. 83.7% 2.57
Source
(XSum)

Many Sephardic Jews were killed, forced to convert to Christianity or leave at the end of the 15th Century.
Parliament paved the way for a change in citizenship laws two years ago, but the move needed Cabinet approval.
From now on, descendants of Sephardic Jews who can prove a strong link to Portugal can apply for a passport.
Proof can be brought, the government says, through a combination of surname, language spoken in the family or
evidence of direct descent. Thousands of Sephardic Jews were forced off the Iberian peninsula, first from Spain
and then from Portugal. Some of those who fled to other parts of Europe or to America continued to speak a form
of Portuguese in their new communities. The Portuguese government acknowledges that Jews lived in the region
long before the Portuguese kingdom was founded in the 12th Century. (...)

BART Portugal has approved a law that will allow descendants of Jews who fled the country to become citizens. 86.8% 1.48
EBR The Portuguese government has approved a law that will allow descendants of Jews who fled to Portugal to

become citizens.
93.1% 1.15

Table 7: Examples where the judges agreed that one of the summaries was better than the other on the factual
consistency dimension. Consistent and inconsistent segments are highlighted in green and red, respectively.
Columns Cons and E show the CTCconsistency (in %) and the energy score (output of the EBR model) on each of
the summaries, respectively. (Remember that for E lower is better.)
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Text Cons E
Source Lance Naik (Corporal) Hanamanthappa Koppad was tapped under 8m of snow at a height of nearly 6,000m along

with nine other soldiers who all died. Their bodies have now been recovered. The critically ill soldier has been
airlifted to a hospital in Delhi. "We hope the miracle continues. Pray with us," an army statement said. The army
added that "he has been placed on a ventilator to protect his airway and lungs in view of his comatose state". (...)

CLIFF An Indian soldier who was injured in an avalanche on the Siachen glacier in Indian-administered Kashmir last
week is in a "comatose state", the army says.

81.5 1.66

EBR A soldier who was trapped in an avalanche on the Siachen glacier in Indian-administered Kashmir last week has
been declared dead, the army says.

85.7 1.82

Source They were among four people who were on Irish Coastguard Rescue 116 helicopter when it crashed on Tuesday.
The funeral for pilot Captain Dara Fitzpatrick was held on Saturday. The search, which has been impeded by
adverse weather, will also focus on finding the wreckage of the helicopter. The priority for those involved in the
multi-agency operation has been to recover the bodies of chief pilot Mark Duffy and winchmen Paul Ormsby and
Ciarán Smith. (...)

CLIFF The search for the bodies of three crew members who died in a helicopter crash off the coast of the Republic of
Ireland has resumed.

89.4 3.24

EBR The search for two coastguard crew missing since a helicopter crash off the County Mayo coast has resumed. 79.9 3.51
Source In the Yemeni capital, Sanaa, where the threat of attack is considered greatest, the UK, France and Germany

have also shut their embassies. The British embassy has emptied completely, with all remaining British staff
leaving the country on Tuesday, while the US air force flew out American personnel. So just what is it about
al-Qaeda’s branch in Yemen that triggers such warning bells in Washington? Al-Qaeda in the Arabian Peninsula
(AQAP), al-Qaeda’s branch in Yemen, is not the biggest offshoot of the late Osama Bin Laden’s organisation, nor
is it necessarily the most active - there are other, noisier jihadist cells sprawled across Syria and Iraq, engaged in
almost daily conflict with fellow Muslims. But Washington considers AQAP to be by far the most dangerous
to the West because it has both technical skills and global reach. (...) According to the US think-tank the New
America Foundation, US drone strikes in Yemen have soared, from 18 in 2011 to 53 in 2012. A drone strike on
Tuesday reportedly hit a car carrying four al-Qaeda operatives. (...)

CLIFF The US has stepped up its drone strikes on al-Qaeda in the Arabian Peninsula (AQAP), a branch of the group that
it considers the most dangerous to the West.

76.8 3.57

EBR The US has ordered all its diplomats to leave Yemen, saying it is under "heightened" US security concerns. 80.3 2.25

Table 8: Examples from XSum where the two judges agreed that CLIFF was better than EBR on the factual
consistency dimension. Consistent and inconsistent segments are highlighted in green and red, respectively.
Columns Cons and E show the CTCconsistency (in %) and the energy score (output of the EBR model) on each of
the summaries, respectively. (Remember that for E lower is better.)
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Figure 3: Evaluation form
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Abstract

The main focus of data augmentation research
has been on the enhancement of generation
models, leaving the examination and improve-
ments of synthetic data evaluation methods
less explored. In our work, we explore a num-
ber of sentence similarity measures in the con-
text of data generation filtering, and evaluate
their impact on the performance of the targeted
Natural Language Understanding problem for
the example of intent classification and named
entity recognition tasks. Our experiments on
ATIS dataset show that the right choice of fil-
tering technique can bring up to 33% in sen-
tence accuracy improvement for targeted un-
derrepresented intents.

1 Introduction

Recent advances in transfer learning methods have
been a driving force in the progress of many Natu-
ral Language Understanding (NLU) tasks. These
methods typically involve pre-training of a large-
scale language model, followed by the task-specific
fine-tuning (Peters et al., 2018; Devlin et al., 2019).
Although these approaches have helped achieve
state-of-the-art results on a variety of supervised
learning tasks, they do not directly address the prob-
lem of task-specific annotated data sparsity. This
is where data augmentation techniques come in to
play, boosting model performance for a given su-
pervised task by generating novel data points that
are similar in characteristics to the available data.

The main thrust of data augmentation research
has been focused on improving generation mod-
els (Yu et al., 2017; Golovneva and Peris, 2020;
Kim et al., 2020; Liu et al., 2020; Sun et al., 2020;
Anaby-Tavor et al., 2020), while comparatively lit-
tle work has been done on comprehensively evalu-
ating and filtering high-quality synthetic utterances.
Current approaches suggest the use of a combina-
tion of automated metrics that evaluate utterances at

∗Work done during the authors’ tenure at Amazon.

the word or embedding level (Sharma et al., 2017;
Liu et al., 2020).

Popular word-based evaluation approaches are
based on comparing n-grams in the original and
generated text, and were originally developed for
machine translation evaluations. Among them com-
monly used scores are Bilingual Evaluation Un-
derstudy (BLEU) score (Papineni et al., 2002),
Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) (Lin, 2004), and Metric for Evalu-
ation of Translation with Explicit ORdering (ME-
TEOR) (Lavie and Agarwal, 2007). Both BLEU
and ROUGE-N are based on comparing the n-gram
overlap of the reference and generated texts and
counts the number of token matches, with the differ-
ence being that ROUGE is recall-focused whereas
BLEU is precision-focused. METEOR uses a set
1-gram mappings between the reference and gen-
erated text to get a weighted F-score, and adds a
penalty function for incorrect word order.

Word-based sentence evaluation can give low
scores for predictions with high lexical variation,
but these predictions are not necessarily poor qual-
ity. To address that, one could use embedding simi-
larity (Sharma et al., 2017), that will measure the
semantic similarity between the reference and pre-
diction based on the cosine similarity between word
and sentence embeddings.

While high-quality generated data should be sim-
ilar to the source data at hand, it is also important
for this data to be novel. To measure the diversity
of the generated text, one can use self-BLEU (Zhu
et al., 2018) score, which is computed by averag-
ing the BLEU scores of each generated utterance
using the rest of the generated text as the refer-
ence set. Furthermore, in an effort to address the
diversity-quality trade-off of synthetically gener-
ated data, (Montahaei et al., 2019) propose joint
diversity-quality metrics: MS-Jaccard similarity
calculated as the average n-gram Jaccard index of
the generated text, and Frechet BERT Distance
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(FBD) calculated as the Frechet distance between
the generated text distribution and the reference set
distribution while using BERT’s feature space for
the text.

Some approaches have been made to create a
statistical model that would serve as an indepen-
dent data evaluator. In their work, (Lowe et al.,
2017) propose an RNN-based Automatic Dialogue
Evaluation Model (ADEM) that predicts human
evaluation score for the generated utterance. The
drawback of this approach is that it requires addi-
tional data collection to train the model.

Despite a variety of approaches to annotated data
evaluation, there is no golden standard, moreover,
they often disagree on evaluation (Bhandari et al.,
2020). However, the real value of the generated
data can be only evaluated through the downstream
task, for example by estimating how much perfor-
mance improvement synthetic data can bring to the
targeted supervised NLU task.

In our work, we are connecting automated data
evaluation with the downstream tasks, and apply
it as a filtering mechanism to generated utterances.
Instead of attempting to build correlations with
expensive human evaluations, we indirectly eval-
uate the quality of the generated data through
the performance of the intent classification (IC)
and named entity recognition (NER) tasks on the
widely used Air Travel Information System (ATIS)
dataset (Hemphill et al., 1990).

In summary, our contributions are as follows:

1. We propose a novel synthetic text data evalu-
ation framework by adapting different word-
based and embeddings-based similarity mea-
sures for post-generation quality evaluation
linked to the performance improvement of the
targeted NLU problem on the example of IC
and NER tasks.

2. We propose a way to adapt a classification
model, which can serve as an independent
data evaluator and does not require additional
data collection.

3. We adapt generation models to produce la-
beled data with and without delexicalization.

4. We conduct experiments on ATIS dataset, a
standard benchmark dataset for intent classi-
fication and slot labelling. Our experimental
results show that proposed methods help to
improve generated data quality which reflects
in model performance improvements.

2 Synthetic data evaluation

Data sparsity is a common issue in multiple areas of
NLU research. It is often a difficult and costly exer-
cise for researchers to secure the required amounts
of high-quality annotated data to train their models.
In our work, we aim to generate synthetic data that
can be used to improve NLU model training. We
use the original training data along with intent and
slot labels as a source to the data generation model.
Each utterance u = w0, w1, ..., wn of length n is
represented as a sequence of tokens, where w0 is
utterance’s intent, and wi (i = 1..n) denotes the
ith slot of the utterance. In this paper, we will use
sentence and utterance interchangeably. Once data
is generated, we use several text evaluation met-
rics to filter out high-quality utterances that will
potentially bring greater benefit for the model.

2.1 Word-based sentence similarity
To evaluate the quality of the synthetic utterances
through word similarity, we calculate the n-gram
BLEU scores of the generated sentence pairing
with each sentence in the original training data with
the same intent. We also calculate the maximum of
the n-gram BLEU scores with all other intents, then
assign the difference between these two scores as
our maxBLEU score for the generated sentence.
This score considers both the similarity of the gen-
erated utterance to within-intent source data and the
dis-similarity to out-of-intent utterances. For each
generated utterance u for intent j, we calculate the
in-intent BLEU score BLEUj = BLEUN (u, Uj)
whereN = min(4, length(u)), Uj is the reference
set of source utterances in intent j ∈ I , and calcu-
late the out-of-intent BLEU score as the maximum
BLEU scores across all other intents. Finally our
quality score for the generated utterance is given
by the difference:

maxBLEU =BLEUj−
maxBLEUN (u, Ui)i∈I,i 6=j (1)

Instead of maximization, we can also use aver-
age operation to estimate the out-of-intent score to
get the avgBLEU score:

avgBLEU =BLEUj−
meanBLEUN (u, Ui)i∈I,i 6=j (2)

maxBLEU score will show how the generated
utterance is similar to the closest intent, other than
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the generated one j, while avgBLEU score reflects
how much close the utterance is to all other in-
tents on average. Inherently, the maxBLEU and
avgBLEU scores are similarity measures, while we
aim to preserve both the similarity and dissimilarity
within/out-of-intent that is in the original source
data. The Jaccard distance on the other hand mea-
sures both the similarity and the diversity of the the
data (Montahaei et al., 2019):

JD(Sui , Suj ) = 1− |Sui ∩ Suj |
|Sui ∪ Suj |

(3)

where ui, uj denote two different sen-
tences/corpora, Sui = w ∈ ui denotes the
set of words in the sentence ui. We apply
intra-group similarity check by using Jaccard
distance check, the steps are as follows:

1. for each intent j in the reference, calculate the
pairwise distance between each utterance and
take the mean as the intent threshold, tj ;

2. for each generated utterance u, based on
its first generated token (i.e. the intent
k it is predicted to be), calculate the Jac-
card distance between uand all sentences in
the reference intent group it falls into, if
mean(JD(u, um)um∈Uk

) < tk, then the gen-
erated sentence will be retained.

2.2 Embedding-based sentence similarity

In additional to token/ngram-based utterance simi-
larity check, we also utilize word embedding which
takes semantic context information into account for
word similarity. For a given utterance, we con-
struct a sentence embedding by averaging the em-
beddings of words composing in the sentence as
in embedding similarity (Sharma et al., 2017). To
compare the utterances, we use the popular cosine
distance

CD(ui, uj) = 1− ēui · ēuj

‖ēui‖‖ēuj‖
(4)

where ēui , ēuj denote the average sentence embed-
ding for sentences ui, uj respectively.

With this definition, we apply the same intra-
group similarity check algorithm as mentioned in
the previous session to filter the generated sen-
tences. In our experient, we use the pre-trained
fastText English embeddings (Grave et al., 2018).

2.3 Independent evaluator
Finally, we use a machine learning model to eval-
uate synthetic data quality. Unlike ADEM model
(Lowe et al., 2017), our evaluator, similar to the
filtering method used in (Anaby-Tavor et al., 2020),
does not aim to predict human evaluation scores.
Instead, it acts as an independently trained discrimi-
nator that assigns the probabilities for the utterance
to be real. For our evaluator, we first train a BERT-
based intent classification model on the train par-
tition of ATIS. To account for the data imbalance,
we add class weights calculated based on class fre-
quencies to the cross-entropy loss. This model is
then used to evaluate each synthetic utterance u.
An utterance is considered as legitimate and added
to the augmented set only if the model confidence
on predicting intent w0 = i, i ∈ I , is greater than
pre-defined threshold ti. Each threshold is calcu-
lated as follows:

ti =

{
max(pj), ∀j 6= i, j ∈ J, |J | > 1

min(pi), if J = {i}
(5)

where J ⊂ I is a set of all hypotheses for utter-
ances that in the reference belong to the intent
i ∈ I .

3 Experiments

In this section, we describe experimental setup,
evaluation metrics and provide the summary of the
experimental results.

3.1 Data
In our experiments, we use the Airline Travel In-
formation System (ATIS) dataset imported from
the Microsoft Cognitive Toolkit (CNTK). ATIS is a
standard benchmark dataset widely used for intent
classification and slot filling tasks. It consists of
a set of spoken utterances in the context of airline
information, classified into one of 26 intents with
127 slot labels. Table 1 shows train, dev and test
sizes per intent. We note that the intent distribution
of ATIS is highly imbalanced with over 70% of the
data belonging to the one intent (atis_flight) while
others intents have very low number of utterances
sometimes within only one subset, train, dev or
test.

3.2 Delexicalization
Similar to (Yu et al., 2020), in order to reduce
noise and add more variety to the generated data,
we experiment with using delexicalized utterances.
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Table 1: Utterance count in training, development and
test partition of ATIS dataset per intent.

intent train dev test
atis_flight 3309 357 632
atis_airfare 385 38 48
atis_ground_service 230 25 36
atis_airline 139 18 38
atis_abbreviation 130 17 33
atis_aircraft 70 11 9
atis_flight_time 45 9 1
atis_quantity 41 10 3
atis_flight#atis_airfare 19 2 12
atis_city 18 1 6
atis_airport 17 3 18
atis_distance 17 3 10
atis_capacity 15 1 21
atis_ground_fare 15 3 7
atis_flight_no 12 0 8
atis_meal 6 0 6
atis_restriction 5 1 0
atis_airline#atis_flight_no 2 0 0
atis_aircraft#atis_flight#atis_flight_no 1 0 0
atis_cheapest 1 0 0
atis_ground_service#atis_ground_fare 1 0 0
atis_airfare#atis_flight_time 0 1 0
atis_airfare#atis_flight 0 0 1
atis_day_name 0 0 2
atis_flight#atis_airline 0 0 1
atis_flight_no#atis_airline 0 0 1

We preprocess the data by replacing slot values
(some consisting of multiple tokens) with their
corresponding slot labels, before feeding it into
our data generation model. Once we obtain the
generated data, we re-fill the slot labels present in
these utterances with randomly sampled slot values
which correspond to the label. The utterances thus
created are used for the downstream tasks.

The following are the detailed steps together
with examples:

• Use original training data to create catalogs,
that for each label will contain a list of corre-
sponding slot values extracted from catalogs,
e.g.: {city_name: [london, denver, new york,
boston]};

• For input data in generation model,
anonymize slot values with slot labels,
e.g. from “buy a ticket to denver” to “buy
a ticket to city_name". This will help the
generation model focus on carrier phrase
and learn syntactic variations, rather than
semantic similarities between slot values,
as well as help to reduce the amount of
noise in generated data, such as when model
incorporates meaningless or confusing parts

of the slot values (for example, "find the
ticket price from new to san");

• Generate data using data generation model,
e.g. generate sentence like “atis_airfare find
the ticket price from city_name to city_name"
with intent appended to the beginning of the
utterance;

• Fill the slot value with catalogs by random
sampling, e.g. from generated utterance “find
the ticket price from city_name to city_name"
we backpropagate to "find the ticket price
from new york to boston".

3.3 Data generation

For data generation, we use the Sequence Gen-
erative Adversarial Networks (SeqGAN) model
developed by (Yu et al., 2017). Generative Ad-
versarial Nets (GANs) consist of two competing
networks, generator and discriminator. Generator
network implicitly learns data distribution through
the feedback it receives from discriminator net-
work, that is trained to distinguish fake and real
data points. Unlike classic GANs, SeqGAN specif-
ically addresses the issues of discrete tokens gener-
ation through a stochastic policy in reinforcement
learning that will guide token-by-token sequence
generation. The discriminator judges at sequence-
level with the intermediate state-action value calcu-
lated using Monte Carlo (MC) search. While (Yu
et al., 2017) applied the MC search at sequence-
level, (Golovneva and Peris, 2020) expanded this
work to apply the reinforcement learning reward as
an average of the token-level rewards. Their results
showed significant improvement in accuracy met-
rics for domain classification, intent classification,
slot F1 and Frame accuracy in their task mimicking
the bootstrapping of a new language. We use their
methods as a basis for our data generation tasks
here. It is worth noting, that synthetic data eval-
uation approach does not depend on the method
chosen for data augmentation, but is driven by the
downstream supervised NLU tasks.

Table 2: Performance results for stack-propagation
model on ATIS dataset: baseline.

method slot F1 intent acc sentence acc
baseline, published 95.900% 96.900% 86.500%
baseline, in-house 96.031% 96.678% 89.212%
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Table 3: Performance results for stack-propagation model on ATIS dataset in terms of slot F1 score, intent accuracy
(acc), and sentence acc. All metric values are calculated using the average of multiple trials, and t-test is used to
determine whether the results are statistically significant or not. In the table, the results with * are statistically
significant with p < 0.1, and best performing model for each metric is highlighted in bold. Utterance counts are
provided for train and dev partitions combined. Data were generated with (wd) and without (nd) delexicalization.

method # gen
utt

# utt
after
filter

total
# utt slot F1 intent

acc
sentence

acc

baseline 4,978 96.031% 96.678% 89.212%
no filtering, nd 7,519 12,497 95.996% 91.601% 85.330%
maxBLEU, nd 7,519 2,637 7,615 96.172% 96.529% 89.959%*
weighted BERT, nd 7,519 2,503 7,481 95.983% 97.088% 89.586%*
jaccard, nd 7,519 3,317 8,295 96.308% 96.267% 89.436%
avgBLEU, nd 7,519 3,099 8,077 95.948% 96.417% 89.205%
cosine, nd 7,519 1,992 6,731 95.900% 95.633% 88.578%
BERT, nd 7,519 4,739 9,717 94.882% 96.081% 83.763%
no filtering, wd 9,591 14,569 90.488% 86.338% 70.549%
maxBLEU, wd 9,591 1,152 6,130 95.926% 96.715% 89.287%
weighted BERT, wd 9,591 4,885 9,863 96.044% 96.939% 89.548%*
jaccard, wd 9,591 3,348 8,326 95.998% 96.753% 89.474%
avgBLEU, wd 9,591 3,499 8,477 95.056% 95.529% 88.026%
cosine, wd 9,591 1,834 6,812 95.755% 96.305% 88.578%
BERT, wd 9,591 5,332 10,310 94.134% 96.001% 83.521%

3.4 Model Architecture

For IC and NER tasks, we select one of the re-
cent state-of-the-art models, that achieved high per-
formance in intent classification and slot labeling
tasks on the ATIS dataset. A Stack-Propagation
Framework with Token-Level Intent Detection pro-
posed by (Qin et al., 2019) for joint intent detec-
tion and slot filling, that explicitly use intent in-
formation for slot labeling task. Unlike multitask
framework, where two tasks share only encoder,
stack-propagation explicitly provides features from
one task (IC) to another (NER). Additionally to ac-
count for contextual information, BiLSTM encoder
is enriched with self-attention.

3.5 Baseline

We evaluate model performance according to the
three metrics: intent accuracy for IC task, micro-
averaged slot F1 for NER prediction, and overall
sentence accuracy which is the relative number of
utterances for which the intent and all slots are
correctly identified. First we train the model on
non-augmented ATIS dataset, and average results
over 3 runs. As shown in the Table 2, results pub-
lished by (Qin et al., 2019) on application of a
Stack-Propagation Framework to ATIS dataset are
consistent with our results.

3.6 Results

In Table 3, we provide a summary of all experimen-
tal results which include data counts both pre- and
post-filtering and final metric values. Using Seq-
GAN model described in Section 3.3) we generate
two sets of 9600 utterances, one with delexicaliza-
tion and one without. The generated data sets are
approximately twice the size of the original train-
ing partition. Although we use training data for all
intents as an input to the data generation model, we
only augment utterances for underrepresented in-
tents, which excludes the biggest atis_flight intent.
We then remove any generated utterances which do
not start with a valid intent. This led to 7519 and
9591 augmented sentences with and without delex-
icalization respectively. We apply our six filtering
mechanisms as described in Section 2. based on
the following approaches: maxBLEU, avgBLEU,
Jaccard distance, cosine distance, BERT-based eval-
uator with and without class weight added to the
loss function. We use the resulting filtered sets as
augmentation for each experiment and present re-
sults of our quality evaluation tasks (IC and NER)
in Table 3.

Our results show that three filtering methods
consistently outperform the baseline, regardless
of whether delexicalized or not, when considering
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the overall sentence accuracy metric. These are
maxBLEU and Jaccard scores, as well as BERT
model with class weights. The overall highest im-
provement in sentence accuracy in observed when
using maxBLEU with no delexicalization.

Contrary to expectations, we do not see much
improvement offered by the use of delexicalization,
with delexicalized augmentation outperforming
non-delexicalized augmentation only in the case of
Jaccard-based filtering. Filtering using the word-
based sentence similarity methods - maxBLEU and
Jaccard - show similar results, while the BERT-
based classifier with weighted loss function outper-
forms on intent classification task. This is most
likely due to the fact that the classifier was trained
on the intent classification task at the slot value
level, so it can be expected to be better at filtering
those sentences where true sentence intent does not
match the first token of the generated sequence,
while it does not capture the correctness of the la-
bels. maxBLEU shows better performance than
aveBLEU, likely due to it being better at detecting
and filtering those generated utterances that be-
long to a wrong intent. maxBLEU filtering without
delexicalization produces the best overall sentence
accuracy. In particular, in Table 4 we see up to
33% in overall sentence accuracy improvement for
targeted underrepresented intents.

Table 4: Sentence accuracy comparison between in-
house baseline and model with training data augmented
by filtering generated data with maxBLEU score crite-
ria. Per-intent performance shows significant improve-
ments on intents with small amount of training data.

intent # test utt baseline maxBLEU
atis_flight 632 94.357% 94.568%
atis_airfare 48 97.222% 97.917%
atis_airline 38 92.105% 93.860%
atis_ground_service 36 66.667% 66.667%
atis_abbreviation 33 76.768% 87.879%
atis_capacity 21 84.127% 82.540%
atis_airport 18 59.259% 62.963%
atis_flight#atis_airfare 12 41.667% 47.222%
atis_distance 10 40.000% 43.333%
atis_aircraft 9 81.481% 74.074%
atis_flight_no 8 100.000% 100.000%
atis_ground_fare 7 66.667% 66.667%
atis_city 6 88.889% 61.111%
atis_meal 6 55.556% 77.778%
atis_quantity 3 77.778% 88.889%
atis_day_name 2 0.000% 0.000%
atis_flight_time 1 33.333% 66.667%
atis_flight#atis_airline 1 33.333% 0.000%
atis_flight_no#atis_airline 1 33.333% 33.333%
atis_airfare#atis_flight 1 0.000% 0.000%

We run additional experiments to demonstrate

that the maxBLEU filtering allows us to obtain
higher quality utterances than simple random sam-
pling. We randomly sample utterances from our
GAN-generated dataset to match the utterance
count yielded by maxBLEU filtering and add those
to the original training set as shown in Table 5.
We then train our NLU models on this dataset and
obtain metric values for comparison. The results
show that in all evaluations obtained using a train
set augmented with maxBLEU filtered data sig-
nificantly outperform those obtained using a train
set augmented with random-sampled data (t-test
p < 0.1). This shows that the maxBLEU filter-
ing method helps in choosing utterances of signif-
icantly higher quality when compared to simple
random sampling.

Table 5: Comparing maxBLEU filtering with random
sampling.

method slot F1 intent acc sentence acc
rand sample, nd 95.910% 94.401% 86.861%
maxBLEU, nd 96.172% 96.529% 89.959%*

4 Conclusions

We have explored a number of different approaches
for augmented data evaluation, that we used as a
filter for generated data. We evaluated the effec-
tiveness of the evaluations metrics based on the
selected targeted supervised NLU tasks, intent clas-
sification and named entity recognition. Experi-
ments show that the maxBLEU filtering method
without delexicalization produces the best over-
all/sentence accuracy, while weighted BERT-based
classifier and Jaccard distance provide the best per-
formance in terms of intent accuracy and slot F1
scores, respectively. Filtering through word-based
sentence similarity measures - maxBLEU and Jac-
card - show consistent improvement across all met-
rics, while BERT-based classifier with weighted
loss function filtering significantly outperforms on
intent classification task. We relate it to the fact
that being trained on the intent recognition task on
full sentences, the classifier network can capture
the correctness of the utterance intents, while it
underperforms on evaluating the correctness of the
labels.
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Abstract

Answering how-to questions remains a major
challenge in question answering research. A
vast number of narrow, long-tail questions can-
not be readily answered using a search engine.
Moreover, there is little to no annotated data
available to help develop such systems. This
paper makes a first attempt at generating coher-
ent, long-form answers for how-to questions.
We propose new architectures, consisting of
passage retrieval, subtopic planning and narra-
tive generation, to consolidate multiple relevant
passages into a coherent, explanatory answer.
Our subtopic planning module aims to produce
a set of relevant, diverse subtopics that serve
as the backbone for answer generation to im-
prove topic coherence. We present extensive
experiments on a WikiHow dataset repurposed
for long-form question answering. Empirical
results demonstrate that generating narratives
to answer how-to questions is a challenging
task. Nevertheless, our architecture incorpo-
rated with subtopic planning can produce high-
quality, diverse narratives evaluated using auto-
matic metrics and human assessment.1

1 Introduction

How-to question (e.g., "How to turn off news noti-
fication on my phone?") is an important question
type. To find answers, most people resort to inter-
net search. However, the answers usually scatter
in different web pages, making the search time-
consuming and inefficient. To remedy this issue,
Wikihow.com offers a platform for experts to share
their answers to how-to questions. Despite its valu-
able content, the total volume of Wikihow articles
is still limited. By far, Wikihow has only collected
around 74K articles, too few when compared to
other open-collaborative databases (e.g. over 6M
articles in Wikipedia, over 90M items in Wikidata).
As a result, it would be valuable to both editors

1We have made our dataset and source code available at
https://github.com/pengshancai/how-to-QA

How to Stop the Spread of Covid-19
Method 1

Method 2

Practicing Healthy Habits
Stay at home if you can. Although it’s a simple solution, avoiding 
contact with other people is an effective way to prevent the spread 
of COVID-19…

Wear a mask or face covering before going out in public. Slip 
on a medical mask or face covering before you go grocery 
shopping, or enter any public area…

Taking Precautions When You’re Sick
Quarantine yourself for at least 10 days. Stay at home when 
you’re sick, so you don’t risk passing the virus on to anyone else. 
Keep track of how long you’ve quarantined…
Separate yourself from the rest of your household if you’re 
sick. Designate a specific area of your home to be “yours” if you 
come down with COVID-19. If possible, designate a specific 
bathroom for yourself…

1

2

1

2

1. Practicing Healthy Habits
Stay at home if you can. Wear a mask or face covering before 
going out in public…

2. Taking Precautions When You’re Sick
Quarantine yourself for at least 10 days. Separate yourself from the 
rest of your household if you’re sick…

Although it's a simple solution, avoiding contact with other people 
is an effective way to prevent the spread of COVID-19. Make an 
effort to stay at home when you can, and avoid making trips unless 
you absolutely have to…

Slip on a medical mask or face covering before you go grocery 
shopping, or enter any public area. If you unknowingly have the 
virus, a mask can prevent you from spreading the illness…

Stay at home when you’re sick, so you don’t risk passing the virus 
on to anyone else. Keep track of how long you’ve quarantined—if 
you’ve been at home for 10 days and you haven’t had a fever for at 
least 1 day, then you can return to your usual routine…

…

How to Stop the Spread of Covid-19

Supporting passages are from WikiHow or Wikipedia.

The answer is a narrative with multiple subtopics.

Answering 

How-To Question

Figure 1: An example how-to question, its long-form answer
and supporting passages.

and readers if NLP technology could be applied to
automatically generate Wikihow entries to provide
high quality answers to how-to questions.

Recent advances in generative QA researches
have made it possible to generate answers to non-
factoid questions (Tan et al., 2018; Nishida et al.,
2019; Izacard and Grave, 2020). However, they
have two limitations in generating an Wikihow en-
try: First, Wikihow presents answers in a hierarchi-
cal structure: an answer usually contains several
sections, each led by a succinct subtopic. This
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How to Naturally Reduce Blood Pressure?

1. Changing your diet
Eat a balanced diet. Drink lots of water. Cut back 
on salt intake. Avoid alcohol and smoking... 

2. Exercise regularly
Keep the habit of working out. Lose weight if you 
are overweight... 

 1. Changing your diet.
 2. Getting medical help… 

 1. Changing your habits.
 2. Making dietary changes…

 1. Changing your diet.
 2. Exercise regularly…

Subtopics (Set 1)

Subtopics (Set 2)

Subtopics (Set 3)

Subtopic 
Planning

Answer 
Generation

Relevance:        0.51
Independence:  0.81

Relevance:        0.87
Independence:  0.55

Relevance:        0.86
Independence:  0.79

Question

Answer

Figure 2: An overview of our Arc-P architecture for answering how-to questions. Given a question, our subtopic planning
module generates multiple sets of subtopics using a sampling approach. It then automatically selects an optimal set of subtopics
by measuring their Relevance and Independence (section 2.4). The selected subtopics are finally sent to the answer generation
module to provide guidance to narrative generation.

structure helps readers with an overview of the
answer scope before locating the details (Hearst
and Pedersen, 1996). On the contrary, answers
generated by current QA models are usually un-
structured. Second, an informative and detailed
answer is usually a long sequence of text. Due to
exposure bias (He et al., 2019), long text generation
suffers from the risk that the quality of generated
text deteriorates as its length increases.

In this paper, we present a two-step approach to
answering how-to questions. For each question, our
subtopic planning module first generates several
subtopics to cover different aspects of the question.
Based on each subtopic, our answer generation
module then generates a paragraph of text to elab-
orate the subtopic. Compared to previous genera-
tive question answering methods, our architecture
has two advantages: (1) Subtopic planning allows
presenting answers in a well-organized structure,
which helps our readers to easily grasp the general
idea of the answer, offering an easy-to-follow read-
ing experience. Moreover, by generating answers
from various subtopics, our architecture is able to
provide answers with higher diversity in content.
(2) Our architecture decreases the risk of exposure
bias in the generated texts, by breaking down the
answer into multiple shorter subsections instead of
directly generating a long paragraph. In this way,
it improves the generated answer’s quality.

The quality of subtopics is crucial for the gener-
ation of long-form, explanatory answers. While a
set of good subtopics can improve answer genera-
tion, a set of bad subtopics may digress the answer
from the question. We observe two types of com-
mon mistakes in subtopic planning: (1) Irrelevant
subtopics: a generated subtopic is not closely re-
lated to the question. For example, in Figure 2, the
subtopic Getting medical help in the first subtopic
set is not related to the question how to naturally

reduce blood pressure; (2) Redundant subtopics:
two or more generated subtopics to the same ques-
tion have semantic overlap. For instance, in the sec-
ond subtopic set in Figure 2, the subtopic Making
dietary changes is included in the subtopic Chang-
ing your habits. This may further lead to repetition
in subsequent answer generation.

We deal with these problems with an additional
subtopic set selection step in the subtopic planning
module. The key idea is to first generate multi-
ple subtopic sets, and then evaluate their relevance
and independence to select one optimal subtopic
set for next-step processing. Specifically, we mea-
sure these two quantities in the vector space: We
use a paragraph encoder (which in our work is the
Dense Passage Retrieval model (Karpukhin et al.,
2020)) to map the question and all the generated
subtopics into a common embedding space. We
then measure relevance and independence accord-
ing to the subtopic vectors’ relative distances and
their distances to the question vector.

The contributions of our paper include:

• A novel how-to question answering architecture
based on subtopic planning;

• An efficient vector-space model to evaluate and
select high-quality subtopics to a question in
terms of relevance and independence;

• Extensive experiments with human study that
both prove the effectiveness of our methods and
explore factors affecting the quality of how-to
question answering results.

2 Model

2.1 General Architectures

A retrieve-generate paradigm consists of a re-
triever and a generator. Given a query x, the
retriever first collects K supporting paragraphs
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P = {p1, ..., pK} from a large text corpus. The
supporting paragraphs are expected to include ex-
ternal knowledge relevant to to x. The generator
then outputs the result y based on x and P . We
consider the following two architectures:

1) Arc-Direct (Arc-D) directly generates the an-
swer from the question by applying the retrieve-
generate paradigm;

2) Arc-Planning (Arc-P) (Figure 2) is composed
of a subtopic planning module and an answer gen-
eration module. It generates an answer in a two-
step manner: First, the subtopic planning mod-
ule decomposes q into a set of N subtopics S =
{s1, ..., sN}, for each subtopic si, i ∈ {1, ..., N},
the answer generation module generates a para-
graph of explanation to the subtopic. We present
all the subtopics and their explanation as the fi-
nal answer. Both subtopic planning and answer
generation modules apply the retrieve-generate
paradigm. Specifically, during subtopic planning,
all the subtopics are generated in one single se-
quence, and divided by a special separation token.
During answer generation, supporting paragraphs
for each individual subtopic are retrieved based on
the question and the subtopic.

2.2 Retriever
We use dense passage retriever (DPR) (Karpukhin
et al., 2020), a neural retrieving model as our re-
triever. DPR is composed of a query encoder EX

and a paragraph encoder EP . EX and EP respec-
tively encodes the query and potential paragraphs
into vectors in a common embedding space, the
relevance score of x and p is calculated as the inner
product between two vectors.

sim(x, p) = EX(x)TEP (p) (1)

After gaining the relevance score of x to each
paragraph in the large text corpus, we rank the para-
graphs according to their relevance score, the topK
paragraphs are selected as supporting paragraphs
to x. Note that we use the same DPR retriever to
retrieve supporting paragraphs for both question
queries and subtopic queries. This embeds ques-
tions and subtopics in the same space, thus enables
measuring the semantic relevance of a question and
its subtopics as will be described in Section 2.4.

2.3 Generator
We employ BART-LARGE (Lewis et al., 2020a), a
seq2seq Transformer model (Vaswani et al., 2017)

pretrained with a denoising objective as our genera-
tor. The generator takes as input a concatenation of
the query x and its relevant paragraphs P and out-
puts a sequence of words y = {y1, ..., yL}, where
L is the length of y. Formally,

p(y|x, P ) =
L∏

l=1

p(yl|x, P, y1:l−1) (2)

We leverage BART to decode multiple subtopics,
conditioned on the question and its supporting para-
graphs. All subtopics of a question are concate-
nated to form the target sequence. To predict the
l-th word of the sequence, our generator computes a
probability distribution over the vocabulary tokens
p(w|q, P, y1:l−1). Instead of the argmax inference

yl = argmax
w

p(w|x, P, y1:l−1), (3)

we perform sampling from the top-k most probable
tokens to obtain

yl ∼ p(w|x, P, y1:l−1). (4)

Our subtopic planning module attempts to gen-
erate multiple sets of subtopics using a sampling
method. The method is advantageous over greedy
decoding, which tend to produce high-likelihood
rather than diverse sequences (Ippolito et al., 2019).
The sets of subtopics will be subsequently mea-
sured by their relevance and independence to iden-
tify an optimal set of subtopics.

2.4 Subtopics Selection
While the generators are able to generate locally
fluent text, they do not guarantee global semantic
optimality (Holtzman et al., 2020, 2018). Specif-
ically, during experiments, we observed that for
the same question, the quality of different subtopic
sets generated using top-k sampling from the same
question vary greatly (Section 3.4). In this sec-
tion, we explore the following question: How to
automatically single out a high quality subtopic set
from various generated ones.

By observing the subtopic planning results, we
realize there exist two types of common mistakes
in subtopic planning: 1. The subtopics is irrelevant
to the question. 2. Subtopics have semantic overlap
with each other.

We present a simple yet effective method to filter
subtopics which may lead to the above mistakes. To
this end we reuse the trained DPR retriever to mea-
sure the generated subtopic sets from two perspec-
tives: 1. Relevance: How relevant each subtopic is
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to the question and 2. Independence: How much
overlap the subtopics have with each other.

Formally, given a question q and a subtopic set
S, we first transform q and each subtopic si in S
into vectors EX(q) and EX(si) in the DPR embed-
ding space. We define the neighbors of x, denoted
as NM (x), as the top M paragraphs whose DPR
embeddings are closest to EX(x), where M is a
human specified hyper-parameter.

Measuring relevance: We measure the relevance
of a question q and a subtopic si as follows:

relv(q, S) =

∑
si∈S #(NM (q) ∩NM (si)) /M

|S|
(5)

where #(·) refers to the number of elements within
a set. A higher relevance score indicates more
paragraphs relevant to the question also relates to
the subtopic, implying their semantic relevance.

Measuring Independence: We measure the inde-
pendence of a set of subtopics as follows:

indp(S) = Avg

(
1− #(NM (si) ∩NM (sj))

M

)

(6)
A high independence score indicates a paragraph

relevant to one subtopic may not be related to the
other subtopics, implying low semantic overlap
among subtopics.2

Selecting subtopics: A set of good subtopics needs
to be balanced in both relevance and independence.
As a result, we select a set of subtopics with the
maximum independence subject to the minimum
relevance of the subtopics greater than a human
specified threshold τ .

2.5 Training
Retriever. When retrieving supporting paragraphs
for a question q, we use the question itself as the
query. When retrieving supporting paragraphs for
a subtopic s, we use the concatenation of the q and
s as the query. We train the retriever by optimizing
the negative log likelihood loss:

LR = −log
esim(x,p+)

esim(x,p+) +
∑n

j=1 e
sim(x,p−j )

(7)

2We use the overlap of neighbors instead of the vector
cosine similarity to calculate relevance and independence as
the former directly reflects the overlap of potential supporting
paragraphs input to the generator.

where x is a query, positive paragraph p+ is a gold
supporting paragraph related to x, negative para-
graphs {p−1 , ..., p−n } are randomly sampled from
paragraphs unrelated to x.
Generator. After finished training the retriever,
we use the retriever to collect supporting para-
graphs as a part of training data to the generators3.
When training the generator of both Arc-D and Arc-
P’s subtopic planning module, we use the concate-
nation of the question and supporting paragraphs as
input. When training the generator of Arc-P’s an-
swer generation module, we use the concatenation
of the question, subtopic and supporting paragraphs
as input. We minimize the following maximum-
likelihood objective function:

LG = −
L∑

l=1

log(p(y∗l |x, P, y∗1:l−1)) (8)

where y∗ = {y∗1, ..., y∗L} is the ground-truth output
sequence.

3 Experiments

3.1 Datasets

We build a dataset HowQA by reformatting How-
Sum (Koupaee and Wang, 2018), a summarization
collected from Wikihow. Overall, our HowQA con-
tains 72.4K Wikihow articles, we randomly split
them into training/validation/test sets. As shown in
Figure 1, each Wikihow article contains one How
to question and several subtopics, each subtopic is
followed by a few description paragraphs. Each
paragraph starts with a summary sentence which
summarizes the meaning of the rest of the para-
graph. We collect all the summary sentences as
the explanation to the subtopic, and the rest of the
paragraphs as gold supporting paragraphs to the
subtopic. We consider two large text corpora as
source of supporting paragraphs: A. Wikihow train-
ing set; B. Wikipedia4. HowQA is used for training
and testing both retriever and generator. We show
the statistics of our HowQA in Table 15

3We use the retrieved supporting paragraphs instead of
gold supporting paragraphs as this better mimics the situation
in test time, where gold supporting paragraphs are unavailable.

4We use Wikipedia as it is a trustworthy information source
for a knowledge intensive task like ours. By default, results re-
ported in the experiment are based on using Wikihow training
set as the supporting paragraph corpus unless stated otherwise.

5See Appendix for implementation and evaluation details.
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Dataset # Questions
# Subtopics # Supporting
(Explanations) Paragraphs

Train 69,990 214,549 1,074,129
Validation 1,200 3,692 18,423
Test 1,231 3,770 18,680

Avg Length of Subtitle 4.02
Avg Length of Explanation 35.14
Avg Length of Wikihow-train Paragraphs 68.89
Avg Length of Wikipedia Paragraphs 100.00
# Paragraphs in Wikihow-train 1.1M
# Paragraphs in Wikipedia 21.0M

Table 1: Statistics of our HowQA.

3.2 Evaluation Metrics

Automatic Metrics. We evaluate our over-
all performance with two sets of metrics: (1)
Surface-form coverage metrics, including ROUGE-
1, ROUGE-2, ROUGE-L and METEOR that are
commonly used in automatic summarization and
machine translation. These metrics measure how
many words in the groundtruths are covered by
the generated answers; (2) Diversity metrics (Li
et al., 2016; Hua et al., 2019a) is calculated by the
number of distinct unigrams (distinct-1), bigrams
(distinct-2) and trigrams (distinct-3) in the gener-
ated answers. The values are scaled by the length
of the answer to avoid favoring long text. The best-
performed system should have both high coverage
and diversity scores.

For the study of retrievers, we evaluate two com-
mon document retrieval metrics: (1) Hit@10 (Bor-
des et al., 2013), i.e., the proportion of gold sup-
porting paragraphs ranked in the top 10; (2) Mean
reciprocal rank (MRR) (Radev et al., 2002).

Human Evaluation Metrics. We note that
surface-form coverage metric may not necessar-
ily reflect the quality of generated answers. It is
limited in a situation when there are multiple ways
to decompose a How-to question into subtopics.
For instance, for the question "How to deal with
loneliness", one subtopic set may emphasize em-
bracing and enjoying loneliness, another may focus
on encouraging social interaction and improving
social skills. Both subtopic sets make good sense,
their contents vary greatly. We thus resort to human
judges to evaluate the quality of our answers.

Specifically, we collected our evaluation results
using Amazon Mechanical Turk6. We randomly
sample 90 questions from our test set. To evalu-

6We require our judges to have at least 100 previous jobs
and greater than 95% acceptance rate.

ate answer generation, we present judges with
several answers generated by different methods to
the same question, and let judges rank their pref-
erence for the answers from the best to the worst.
We report the average ranking for each model and
pairwise preference for each pair of model. To
evaluate subtopic selection, we ask our judges to
evaluate subtopic sets from three perspectives: (1)
Relevance: How close is each subtopic set related
to the question; (2) Independence: How indepen-
dent is each subtopic to the other subtopics in the
same subtopic set; (3) Overall Preference: How
do judges like the subtopic set. The grading scale
for each perspective is from 1 to 3. For both tasks,
each result is evaluated by ten individual judges.

3.3 Overall Performance with and without
Subtopic Planning

In this section, we explore the effects of subtopic
planning by comparing the overall answer genera-
tion performance of Arc-D and Arc-P. Evaluation
results show that our proposed Arc-P gives clear
advantage in both automatic and human evaluation.

• Surface-form Coverage. From Table 2 we
observed that Arc-P achieves better performance
than Arc-D in ROUGE and METEOR. This demon-
strates our Arc-P generates better answers than Arc-
D in terms of coverage of the original answer.

• Content Diversity. Table 2 shows the diver-
sity degree of Arc-D, Arc-P and the golden an-
swers. Arc-P significantly outperforms Arc-D in
all distinct-1, 2 and 3. This proves that by answer-
ing questions from various perspectives, Arc-P is
able to generate answers that are more diversified
in content. However, there still exists gaps between
Arc-P and the gold answer, this implies our gen-
erated answers still do not match human written
answers in content diversity.

• Human Evaluation.7 Given a question, we ask
human judges to rank their preference for the gold
answer and answers generated by Arc-D and Arc-P
respectively. From Table 3 we observed human
judges prefer answers from Arc-P much more than
Arc-D’s. Comparing to Arc-D, our Arc-P wins on
more than 72% of the cases. This demonstrates the
effectiveness of subtopic planning.

The results also show that neither Arc-D nor Arc-
P is comparable to human performance. A closer
investigation of the machine generated answers

7We present more examples and analysis in the appendix.
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Coverage Diversity
Models ROUGE-1 ROUGE-2 ROUGE-L METEOR Distinct-1 Distinct-2 Distinct-3

Arc-Direct 26.13 6.37 25.54 16.64 57.85 73.64 78.42
Arc-Planning 28.3 7.11 25.63 17.47 62.45 83.60 89.88
Gold Answers n/a n/a n/a n/a 68.51 90.61 94.52

Table 2: Performance of Arc-D and Arc-P in answer generation. Arc-P achieves higher ROUGE and METEOR score.

Single Model Average Rank ↓
Arc-D 2.48
Arc-P 1.87
Gold 1.65
Model Pair Prefer Rate ↑
Arc-P > Arc-D 72.22%
Arc-P > Gold 40.66%
Arc-D > Gold 23.55%

Table 3: Average ranking of each model and pairwise prefer-
ence rate between each pair of models.

ROUGE-1 ROUGE-2 ROUGE-L METEOR

5.00

2.05
1.57

1.01

3.18

1.61

4.64

1.94

Arc-Direct Arc-Planning

Figure 3: Score difference between part1 and part2.

show that they sometimes make obvious logical
mistakes. For example, for the question How to Use
Google Shopping Express, the machine presents a
generated fake sign-up URL.

Analysis of Degradation in Long Generation.
We conduct analysis on Arc-P’s effectiveness. Our
hypothesis is that by generating diverse answers,
all parts of an answer from Arc-P convey useful
information. To verify this, we design the follow-
ing experiment: For each generated answer from
Arc-D and Arc-P, we cut the answer into two parts
of equal length from the middle. We then calculate
each part’s ROUGE and METEOR score to the
golden standard. Figure 3 presents the score differ-
ences between part1 and part2. The performance
gaps from Arc-D are significantly large, implying
our Arc-P effectively avoids the performance degra-
dation in long-form text generation, and generates
answers of more consistent quality.

3.4 Effects of Subtopic Selection
In this section we analyze the effect of our subtopic
selection algorithm in Section 2.4. We compare the
qualities of our selected subtopics (Selected) with

Subtopic Set R-1 R-2 R-L METEOR

Low relv 27.53 6.59 24.83 17.27
Low indp 28.12 6.98 25.64 17.57
Selected 28.3 7.11 25.63 17.47
Oracle 28.93 8.11 25.96 19.87

Table 4: Automatic evaluation scores of answer generation
when using different subtopic sets. Selected refers to the best
subtopics set by our selecting metrics, Low relv and Low indp
respectively refers to choosing the subtopic set with the lowest
relevance and independence scores, Oracle refers to the oracle
subtopics in Wikihow articles.

Subtopic Set Relevance Independence Overall
Low relv 2.15 2.21 2.12
Low indp 2.30 2.07 2.02
Selected 2.39 2.30 2.25
Oracle 2.40 2.32 2.29

Table 5: Human evaluation scores for each subtopic set.

two variations: (1) selecting subtopic sets with low-
est relevance (Low relv) and (2) selecting subtopic
sets with lowest independence (Low indp). Similar
to our overall evaluation, we conduct both the auto-
matic evaluation and human evaluation as below:

Automatic Evaluation. Table 4 shows the per-
formance of Arc-P’s answer when using different
subtopic selections. We find that Selected gives bet-
ter performance than Low relv. This implies irrele-
vant subtopics deteriorate the quality of subsequent
answer generation. However, Selected shows simi-
lar performance to Low indp under the automatic
metric. Considering the large performance gap
from human evaluation, this confirms the problem
of these coverage-based metrics that they overlook
the semantic repetition of generation results.

Human Evaluation. Table 5 presents human
evaluation results of the subtopic planning module
of Arc-P. We observed score difference between
Selected, Low relv and Low indp. This proves
there exists quality discrepancy between different
subtopic sets generated from the same question
using top-k sampling. Specifically, Low relv and
Low indp achieve the worst performance in Rele-
vance and Independence respectively, this implies
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Category R-1 R-2 R-L METEOR Portion (%)

W
O

R
S

T

Work World 25.17 4.27 22.1 16.52 1.72
Health 25.72 5.97 25.24 16.94 14.21
Holidays and Traditions 25.82 5.37 24.07 14.82 0.81
Education and Communications 26.01 5.72 24.26 16.83 8.46
Work World 26.01 3.93 26.56 15.64 0.7

B
E

S
T

Cars & Other Vehicles 30.15 8.11 26.17 18.32 1.7
Youth 31.27 7.69 28.46 21.22 3.21
Personal Care and Style 31.45 9.11 28.67 19.23 6.73
Pets and Animals 32.52 9.96 26.99 20.13 6.6
Food and Entertaining 32.58 10.49 27.17 19.49 8.03

Table 6: Performance of different categories. The performance between categories vary greatly (e.g. The highest difference in
ROUGE-1 is over seven points). The training data portion for each category also varies greatly.

our vector space based metric is consistent with
human rankings, and could distinguish unrelated
and semantically overlapped subtopics. Moreover,
Selected outperforms both Low relv and Low indp
in all three metrics, and even achieves similar per-
formance to Gold. This demonstrates our subtopic
selection methods could effectively select subtopic
sets with a higher quality.

3.5 Effects of Question Categories

Wikihow classifies all questions into 20 categories.
We show in Table 6 the performance of 5 cate-
gories with the highest ROUGE-1 F1 score and
5 categories with the lowest8. From the table we
have the following observations: 1. There exists a
great discrepancy between performance of differ-
ent categories. 2. Generally, if a category contains
more data in the training set, it is more likely to
demonstrates better performance. 3. However, a
few categories with more training data (e.g. Edu-
cation and Communications) achieved much lower
performance than categories with less training data
(e.g. Cars and Other Vehicles). We argue this is
because in some categories, the answers to ques-
tions follow some specific routines. While in other
categories, there is no answer routine to follow. For
example, the category Cars and Other Vehicles con-
tains many questions about installing car parts, e.g.
how to install a car starter, How to install a car
stereo, etc. The answer to these questions usually
starts with removing the old car parts (Set the park-
ing brake, stall the car, take out the old car parts,
etc.) On the contrary, the category Education and
Communications contains many primary/middle
school math questions e.g. How to calculate vol-
ume, how to divide double digits, etc. The answers
to these questions do not follow any pattern, and

8We omit categories with <10 instances in the test set.

can not be answered routinely.

3.6 Effects of Other Factors

Effects of Retriever . We compare DPR with
three other retrievers: 1) TF-IDF (Wu et al., 2008)
measures the relevance between a query and a para-
graph by the weighted sum of overlapped words
between the query and the paragraph. 2) None-
RTV use only the query as input to the generator; 3)
Oracle-RTV uses the gold supporting paragraphs
in oracle Wikihow article as supporting paragraphs;
For each question, We rank all the supporting para-
graphs in test set. We demonstrate the retrievers’
performance in Table 7. We present in Table 8 the
ROUGE and METEOR scores when using differ-
ent retrievers to collect supporting paragraphs. For
both architectures, Oracle-RTV outperforms TF-
IDF and DPR by large margin, TF-IDF and DRP
also outperforms None-RTV significantly. How-
ever, even DPR achieves much better performance
than TF-IDF in retrieving evaluation, we do not
notice prominent difference in answer generation.
This implies the quality of supporting paragraphs
has limited effects on generation results.

Retriever Hits@10 MRR
TF-IDF 39.18 69.11
DPR 54.67 87.76
Oracle-RTV 100.00 100.00

Table 7: Performance of retrievers.

Effects of supporting paragraphs corpora. Ac-
cording to Figure 4, We do not observe explicit dif-
ference when using Wikihow-train and Wikipedia
as corpus. However, we note that compared to
Wikipedia, Wikihow-train is much smaller in vol-
ume. Thus in practice, Wikihow-train is a better
choice for corpus as it takes less retrieving time.
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Retriever R-1 R-2 R-L METEOR

Arc-Direct - Answer Generation
TF-IDF 26.4 6.41 25.53 17.15
DPR 26.13 6.37 25.54 16.64
None-RTV 17.65 4.53 18.52 8.02
Oracle-RTV 41.92 16.51 39/63 27.61

Arc-Planning - Answer Generation
TF-IDF 27.89 6.71 25.02 17.3
DPR 28.3 7.11 25.63 17.47
None-RTV 21.11 3.97 19.33 13.2
Oracle-RTV 46.45 18.94 43.05 32.32

Arc-Planning - Subtopic Planning
TF-IDF 23.0 7.89 23.79 17.13
DPR 23.04 7.8 23.57 16.59
None-RTV 16.36 4.68 17.17 11.39
Oracle-RTV 27.13 10.75 28.23 19.24

Table 8: Performance of answer generation when using dif-
ferent retrievers. Even though DPR outperforms TF-IDF by
over 10 points in both Hit10 and MRR (Table7), their answer
generation results are not prominently different.

ROUGE-1 ROUGE-2 ROUGE-L METEOR

Arc-Direct Arc-Planning

WikiHow Wikipedia

26.1 26.0

6.4 6.5

25.5 25.7

16.6 17.1

28.3 28.6

7.1 7.2

25.6 25.9

17.5 17.9

ROUGE-1 ROUGE-2 ROUGE-L METEOR

Figure 4: Performance of answer generation when using differ-
ent supporting paragraph corpora. We find that the difference
is not prominent.

4 Related Works

Question Answering Datasets Recent years has
witnessed great advances in open domain ques-
tion answering. However, most question answering
datasets (Yang et al., 2018; Joshi et al., 2017; Ra-
jpurkar et al., 2016; Dunn et al., 2017) are designed
for factoid questions, i.e., questions that start with
‘what’, ‘when’, ‘who’, ‘where’, ‘which’, etc. and
they require only extractive answers, i.e., the an-
swers are spans of source text.

There exist several non-factoid question answer-
ing datasets (Dos Santos et al., 2015; Yang et al.,
2015; Cohen et al., 2018; Nakov et al., 2017;
Hashemi et al., 2019; Fan et al., 2019). Most of
these datasets are proposed for the purpose of pas-
sage retrieval and re-ranking, i.e., the proposed
tasks are ranking the provided evidence passages
according to their relevance to a given question.
No answer generation is involved. An exception

is (Fan et al., 2019), which focus on non-factoid
questions, i.e. questions start with “why,” “how,”
and long-form answer generation, i.e. the answer
is an elaborate and in-depth passage. Our work dif-
fers from ELI5 with a specific emphasis on how-to
questions, and subtopic structures of their answers.

Question Answering Models As open domain
question answering is a knowledge intensive task,
most state of art models (Chen et al., 2017; Guu
et al., 2020; Lewis et al., 2020b; Izacard and Grave,
2020; Asai et al., 2021) apply a “retrieve-generate”
paradigm, where the retriever collects supporting
paragraphs related to the question from a large
external corpus, the generator then generates an
answer based on the question and the supporting
paragraphs. Compared to previous works which
apply the “retrieve-generate” paradigm, we use the
retriever not only to retrieve supporting paragraphs,
but also to evaluate and select subtopics.

Planning Based Text Generation Content plan-
ning is widely used to improve diversity and coher-
ence in various text generation tasks including story
generation (Yao et al., 2019; Goldfarb-Tarrant et al.,
2019), argument generation (Hua et al., 2019b),
Wikipedia article generation (Hua and Wang, 2019)
and abstractive summarization (Liu et al., 2015;
Huang et al., 2020) etc. While most research stud-
ies resort to key words or knowledge graph entities
for content planning, we use subtopics for planning
our answers.

Procedural Text Our work is also related to pro-
cedural text understanding such as recipes (Tandon
et al., 2020; Rajagopal et al., 2020; Du et al., 2019;
Dalvi et al., 2019; Tandon et al., 2019; Chu et al.,
2017). However, instead of tracking state changes
in procedure text, we focus on generating subtopics
to improve the coherence of answers.

Wikihow In previous researches, Wikihow data
(Koupaee and Wang, 2018) was mostly used in sum-
marization (Zhang et al., 2019; Kryscinski et al.,
2019) or step reasoning (Zhang et al., 2020), The
task we propose aims at different goals, i.e, decom-
posing a question into subtopics and generating
answer based on the question and subtopics.

5 Conclusion and Future Work

We proposed a novel subtopic planning based ar-
chitecture for answering How-to questions. Our
architecture is able to generate answers with bet-
ter structure, higher diversity and more consistent
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quality. Moreover, our subtopic selection method
effectively singles out high quality subtopics with
relevance and independence. Both automatic and
human evaluation proved the effectiveness of our
methods. We consider the two directions for future
research: 1) Improving the answer’s quality by ap-
plying end-to-end retrieval-generation models, e.g.
(Lewis et al., 2020b). 2) Developing precise met-
rics to evaluate long-form and non-factoid answers.
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A Appendices

A.1 Example Subtopic Sets

We observe that some system-generated subtopic
sets are flawed, but a large portion of the subtopic
sets are of good quality. Some of them are close to
human-written subtopics. Examples are provided
in Table 9 (examples 1–6). Moreover, we come up
with imaginary questions that are quite different
from those observed in Wikihow (examples 5–6)
and we find the model is able to produce reasonable
answers for those questions.

Irrelevant subtopics generated by our model tend
to have the following characteristics:

1. A later generated subtopic in the subtopic
set tends to be less relevant: Note that we
generate a set of subtopics in a seq2seq man-
ner, with the question and supporting docu-
ments as the source sequence, and the con-
catenation of all subtopics as the target se-
quence. Due to exposure bias (He et al., 2019),
subtopic generated in the later part of the se-
quence are more likely to be off-topic. Ex-
amples of this kind are included in Table 9
(examples 7–10). While the subtopics in the
front part are all related to the question, the
later generated subtopics, marked in red, tend
to deviate from the question.

2. Commonsense mistakes: We observe that
when the question is about a problem that re-
quires commonsense, the model tends to gen-
erate unrelated or erroneous subtopics. E.g. in
Table 9 example 9, the location services have
nothing to do with facebook like notification.
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It suggests that incorporating commonsense
knowledge may improve the performance of
a subtopic decomposition model.

Overlapped subtopics generated by our model
tend to have the following characteristics:

• Thanks to a repetition penalty, the generated
subtopics of the same subtopic set are usu-
ally different from each other. I.e., there are
only very few cases where multiple subtopics
of the same subtopic set are identical. How-
ever, there is no guarantee that those gener-
ated subtopics are semantically independent.
E.g., in Table 9 example 11–12, the orange
subtopics have semantic overlap. According
to our experimental results, the vector-space
based metrics could effectively identify those
semantically overlapped subtopics.

A.2 Example Long-Form Answers

Table 10 shows example answers generated by Arc-
D and Arc-P models, respectively. Notable find-
ings include the following observations:

1. Subtopics make a long answer more organized.
The answers generated by Arc-P are split into
multiple paragraphs, each paragraph focuses
on a subtopic. In contrast, answers generated
by Arc-D are quite general and sometimes dis-
ordered. Additionally, answers generated by
Arc-P are easier to read than those of Arc-D,
as the model leverages subtopics to generate
structured answers.

2. As the target sequence gets longer, the quality
of the generated sequence tends to deteriorate
due to exposure bias. This is demonstrated in
Table 10 example 1, where the model repeat-
edly generates the red part in the later stage of
the generation process. Instead of generating
a long paragraph as the answer, Arc-P gener-
ates several shorter answer paragraphs, thus
reducing the risk of exposure bias.

A.3 Implementation and Hyperparameters

Both Arc-D and Arc-P are based on a retrieval-
composing paradigm, which consists of a retrieval
module (DPR) and a composing module (BART).
We discuss the model implementation details and
hyperparameters below.

A.3.1 Retrieval module (DPR) key
parameters and implementation details

• Batch size: 80 (which means one positive in-
stance corresponds to 79 negative, including 1
hard negative instance);

• Max sequence length: 256;

• Training epochs: 12 (during testing, we use
the model that gives the best validation loss);

• The other hyper-parameters are based on the
default parameter of DPR: https://github.
com/facebookresearch/DPR

• DPR is trained on 4 M40 GPUs;

• Given a question, we search for a similar para-
graph that has high TF-IDF similarity with the
question, but is not among the question’s gold
supporting paragraphs as a hard negative in-
stance;

• DPR is pretrained on fairseq/roberta-base;

• When measuring relevance and independence,
we choose the top M = 500 paragraphs
whose DPR embeddings are closest to EX(x).

A.3.2 Composing module (BART) key
parameters and implementation details

• BART-large pre-trained on yjernite/bart_eli5;

• Max number of tokens input: 1024 (for Arc-
D), 512 (For Arc-P);

• Max number of tokens output: 384 (for Arc-
D), 128 (For Arc-P);

• Max number of training epochs: 9 (during
testing, we use the model that gives the best
validation loss);

• Learning rate: 3e-5;

• The other hyper-parameters are based on
the default parameters of huggingface’s
BART model: https://huggingface.co/

transformers/model_doc/bart.html

• For each question, we use top-k sampling to
generate 10 different subtopic sets.

• The BART is trained on a single M40 GPU,
the average training time is up to 4-5 days.

37

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/bart.html


ID Question & Subtopics
Fine Subtopic Sets Produced by the Model

1
Q How to be glamorous?
G 1.Caring for your body; 2. Applying makeup; 3.Dressing glamorous
H 1.Looking glamorous; 2.Dressing glamorous; 3.Acting glamorous

2
Q How to maintain a relationship?
G 1.Communicating your needs; 2.Keeping the romance alive; 3.Avoiding conflict
H 1.Love them for who they are; 2.Be a good listener; 3.Be nice

3

Q How to lose extreme weight?
G 1.Eating the right foods; 2.Exercising the right way; 3.Managing emotional and mental health
H 1.Setting a weight loss goal; 2.Designing a weight loss diet; 3.Using exercise to support weight loss;

4.Staying motivated

4
Q How to coach youth basketball?
G 1.Finding players; 2.Preparing for practice; 3.Developing effective coaching skills
H 1.Preparing yourself; 2.Meeting your players; 3.Putting your knowledge to work

5 Q How to train a dragon
G 1.Training your dragon; 2.Mastering the dragon’s flight

6 Q How to master Shinobi kill
G 1.Mastering the technique; 2. Mastering the art of killing

Flawed Subtopic Sets Produced by the Model

7
Q How to fold jeans?
G 1. Making a triangle fold; 2.Making a rectangle fold; 3.Folding a t-shirt
H 1. Folding jeans; 2.Storing folded jeans

8
Q How to coach youth basketball?
G 1. Becoming a good coach; 2.Developing your skills; 3.Finding a job
H 1.Preparing yourself; 2.Meeting your players; 3.Putting your knowledge to work

9
Q How to turn off facebook like notifications on iphone?
G 1. Disabling facebook like notifications; 2. Disabling location services
H 1. disabling notifications for a single post; 2.Disabling all facebook notifications

10

Q How to switch keyboard input languages in windows 8?
G 1. Switching keyboard input language; 2. Using the task manager
H 1. Switching through the settings charm; 2.Switching through the taskbar on the desktop;

3. Switching through keyboard shortcuts

11
Q How to maintain a relationship?
G 1. Maintaining a healthy relationship; 2. Keeping the relationship strong; 3. Avoiding toxic relationships
H 1.Love them for who they are; 2.Be a good listener; 3.Be nice

12
Q How to start a business in New York city
G 1. Developing your business plan; 2.Creating a marketing plan; 3. ...
H 1.Using city services to get your business started 2.Determining your market

Table 9: Examples of system-generated subtopics. Q refers to a question, G refers to a subtopic set generated by our model, H
refers to the subtopic set provided by human editors from Wikihow. The red subtopics are unrelated to the question, the orange
subtopics have semantic overlap among themselves, the blue questions are imaginative questions made-up by the authors.
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ID Question & Answers

1

Q How to Give Yourself Insulin?
Arc-D Determine if you need insulin. Prepare the insulin. Place the syringe in your arm. Use a needle for

the injection. Inject the insulin into your skin. Do not remove the needle. Check for bleeding.
Remove the needle. Prepare the insulin. Place the syringe in your arm. ... (repeated generation)

Arc-P 1.Getting Ready to Give Yourself Insulin: Prepare the insulin for injection. Check your bloodsugar.
Know when to give yourself insulin. Find a good needle and syringe. Clean your syringe thoroughly
. Decide where to give yourself insulin.
2.Administering the Insulin Injection: Wash your hands thoroughly with soap and water.
Determine the injection site. Position the needle at a 45-degree angle to the skin. Inject the insulin into
the skin. Wait for the insulin to release. Remove the needle from the skin.
3.Knowing when to Avoid Insulin Injections: Know the risks of insulin injections. Recognize the
symptoms of diabetes. Watch for signs of complications. See your doctor.

2

Q How to Not Worry About Something?
Arc-D Think about what you’re worried about. Make a worry list. Put your worries into perspective. Take some

time to be in the moment. Practice mindfulness. Talk to someone. Write down your worries. Do
something you enjoy. Get enough sleep. Focus on the positive. Avoid rumination. Recognize when
you need professional help. See a therapist. Join a support group.

Arc-P 1.Facing Your Worries: Practice mindfulness. Accept uncertainty. Set realistic goals. Don’t compare
yourself to others.
2.Making Time for Relaxation: Make time for exercise. Get enough sleep. Don’t procrastinate.Set aside
time to think about the future
3.Taking Care of Yourself: Get enough sleep. Eat a healthy diet. Exercise regularly. Find ways to relax.
Take care of your body.

3

Q How to Get Your Band Noticed?
Arc-D Make a website. Create a Facebook page. Create a Twitter account. Create an Instagram account.

Create a YouTube account. Create a blog. Play gigs. Find a manager. Contact music labels. Perform
locally. Get your music out there. Write songs. Record your music. Publish your music. Distribute
your music.

Arc-P 1.Developing Your Band’s Music: Record your songs. Make a demo tape. Put your music on YouTube.
Start a blog. Get an agent.
2.Promoting Your Band Online: Promote your band on social media sites. Create a blog.
Start a YouTube account. Get listed in music publications.
3.Promoting Your Band in Person: Play in front of friends and family. Go to local shows.
Promote your music on social media. Make a scrapbook.

4

Q How to Buy a Racehorse?
Arc-D Determine what you want in a horse. Decide how much money you can afford to spend on a horse.

Consider your finances. Find a good breeder. Research the condition of the horse. Check the horse’s
pedigree. Assess the horse’s temperament. Look at the horse’s past. Ask about the horse’s health. Make
sure that you have enough money before you buy the horse. Buy the horse from a reputable breeder.
Purchase the horse from a trustworthy seller. Do not buy a horse from a pet store.

Arc-P 1.Deciding to Buy a Racehorse: Consider the horse’s pedigree. Think about the horse’s age.
Consider the horse’s breed. Consider the horse’s physical condition. Consider the horse’s temperament.
2.Buying a Racehorse in Person: Decide what type of horse you want to buy. Visit several
barns and showmen. Make an appointment with the salesperson.
3.Buying a Racehorse Online: Find a horse to buy. Search for the horse online. Purchase your horse.

Table 10: Examples of system-generated answers with or without subtopics.
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• We balance equation 5 and 6 using a hyper-
parameter τ , specifically, the final score of a
subtopic set S to a question q is calculated as

Score(S, q) = τRelv(S, q) + (1− τ)Indp(S)

We determine τ by heuristically tuning on
validation set (MMR). We did so because the
quality of high-quality subtopics may not be
reflected by automatic coverage-based metrics.
During experiment, we set τ = 0.3.

A.4 Evaluation

A.4.1 Automatic Evaluation
We use the python library rouge 1.0.0 to calculate
ROUGE: https://pypi.org/project/rouge/;
METEOR: https://www.nltk.org/_modules/
nltk/translate/meteor_score.html

A.4.2 Human Evaluation
We recruit Amazon Turks to work on two tasks: (a)
1. Answer Preference, where we ask the Turks to
rank three answers to a given question according to
their preference; (b) 2. Subtopic Selection, where
we ask our judges to grade subtopic sets from three
perspectives: Relevance, Independence and Overall
Preference, on the scale of 1-3 points. The grading
guidelines are given below:

1. Relevance: How close is each subtopic set
related to the question; (1-point: One or more
subtopic is clearly not relevant to the ques-
tion; 2-points: One or more subtopics may
not relate to the question so well; 3-points:
All subtopics are related to the question.)

2. Independence: How independent is each
subtopic to the other subtopics in the same
subtopic set; (1-point: There is a clear mean-
ing overlap (or repetition) between a few
subtopics; 2-points: There is a weak mean-
ing overlap between a few subtopics; 3-
points: There is no meaning overlap between
subtopics.)

3. Overall Preference :How do judges like the
subtopic set. The grading scale for each per-
spective is from 1 to 3. (1: A bad set of
subtopics for the question; 2: An acceptable
but not good subtopics for the question; 3: A
good subtopics for the question)

Answer preference 47%
Subtopic-Relevance 36%
Subtopic-Independence 45%
Subtopic-Overall 39%

Table 11: Inter-annotator agreement of human evaluations

We present the screenshots of our AMTurk pages
in Figure 5 and 6. We measure inter-annotator
agreement using Cohen’s Kappa (k), the results are
presented in Table 11.

A.5 Dataset
We re-purpose the WikihowSum datasetfor our task.
The source code for processing the data has been
included in our project repository.
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Figure 5: A screenshot of subtopic evaluation performed by mechanical turkers.

41



Figure 6: A screenshot of answer ranking evaluation performed by mechanical turkers.
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Abstract

We explore the task of automated generation
of technical interview questions from a given
textbook. Such questions are different from
those for reading comprehension studied in
question generation literature. We curate a
context-based interview questions data set for
Machine Learning and Deep Learning from two
popular textbooks. We first explore the possibil-
ity of using a large generative language model
(GPT-3) for this task in a zero shot setting. We
then evaluate the performance of smaller gen-
erative models such as BART fine-tuned on
weakly supervised data obtained using GPT-3
and hand-crafted templates. We deploy an au-
tomatic question importance assignment tech-
nique to figure out suitability of a question in a
technical interview. It improves the evaluation
results in many dimensions. We dissect the per-
formance of these models for this task and also
scrutinize the suitability of questions generated
by them for use in technical interviews.

1 Introduction

Asking good questions is crucial for assessing can-
didates in technical interviews. But this requires
human experts with technical knowledge and expe-
rience. Therefore, the capability to automatically
generate technical questions to assess knowledge
and understanding for a specific subject can signifi-
cantly reduce expert effort in conducting interviews
and in scaling up the interview process. In this pa-
per, we focus on automated generation of interview
questions from textbook contexts.

There has a been a lot of interest in recent years
on question generation (QG) (Dhole and Manning,
2020; Bang et al., 2019; Back et al., 2021), and
many benchmark data sets exist (Rajpurkar et al.,
2016). Dhole and Manning (2020); Mazidi and
Nielsen (2014); Heilman and Smith (2010) fo-
cus on rule-based question generation, wherein
Dhole and Manning (2020) transform declarative

sentences into question-answer pairs using syn-
tactic rules, universal dependencies, shallow se-
mantic parsing and lexical resources. These gen-
erate precise questions but often fail due to their
heavy reliance on manually crafted feature sets.
Recent papers (Xiao et al., 2020; Zhao et al.,
2018; Serban et al., 2016) use deep neural networks
for QG. Serban et al. (2016) focus on generating
factoid questions from knowledge bases such as
Freebase. These use answers as clues to generate
questions. Back et al. (2021); Cui et al. (2021);
Huang et al. (2021) propose answer-agnostic QG.
Back et al. (2021) predict answer-like candidates
for the given passage and then generate questions
from these. Huang et al. (2021); Tsai et al. (2021)
use transformer-based generative models such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). In summary, all existing models and bench-
mark datasets address factoid question generation
for reading comprehension (RC).

Generating technical interview questions from
a context is harder than generating RC questions.
Such questions focus on technical concepts and
their relationships and test for knowledge and un-
derstanding of these. The answers are long-form
(2-5 sentences) and must be contained in the con-
text (‘What is regularization?’ is not answerable
from the context ‘This issue can be addressed using
L2 regularization’). Questions must be semanti-
cally complete (‘What is the form of the optimal
solution?’ is an incomplete question) and of ap-
propriate specificity (’What is machine learning’ is
too generic for assessing expertise in ML). Finally,
questions should have a diverse mix of intent and
task complexity (compared to just remembering).
As a result, RC-question generation models are not
appropriate for interview question generation, and
RC-question generation data sets are not useful for
evaluating interview question generation models.

To address this gap, we first create a dataset of
textbook contexts and corresponding technical in-
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terview questions from two popular textbooks on
Machine Learning (ML) and Deep Learning (DL).
We use this for evaluation of interview question
generation algorithms. Generation of large vol-
umes of gold-standard training data for this task
is difficult and expensive. So, we first evaluate
pre-trained large language models (LLM) such as
GPT-3 for this task in a zero-shot setting. We then
explore fine-tuning a relatively smaller LM (BART)
on weakly supervised training data. Wang et al.
(2021) have recently explored GPT-3 for creating
training data for many NLP tasks including factoid
RC question generation. We explore the use of
GPT-3 and template-based algorithms for silver-
standard interview question generation from text-
book contexts. We improve the question generation
quality by developing a post-processing unit which
filter out questions automatically by checking its
suitability in a technical interview. We evaluate
the models before and after filtering and see that
it improves the performance in many evaluation
dimensions.

Using detailed analysis of interview questions
generated using these models, we highlight the
challenges of this task, and also the key aspects
that future models will need to address.

2 Technical Interview Question Dataset

There is no public dataset on technical questions
from textbook contexts for evaluating our task.
Available question datasets for reading comprehen-
sion such as SQuAD (Rajpurkar et al., 2016) are
not ideal. So we create a gold-standard dataset by
manually generating questions on Machine learn-
ing (ML) and Deep learning (DL) from two pub-
licly available books, Bishop (2006) for ML and
Goodfellow et al. (2016) for DL.

We selected 3 chapters each from the ML and
DL books. We distributed these chapters to 10 an-
notators (internal to our organisation) with subject
knowledge as well as interview experience. We
consider each section in a chapter as one context,
and the annotators generate all possible long-form
questions from each such context. The annota-
tors are reminded of interview question templates
(Sec.3.2) but are not restricted to these. However,
they are instructed to ensure answerability from
context. Each chapter was first annotated inde-
pendently by two annotators. Then, annotation
differences, i.e., questions generated by one but not
the other, are resolved via discussion. A question

is added in the dataset only if both annotators are
convinced after discussion, thus making the inter-
annotator agreement 1 for the final dataset. We
obtained 161 questions from 3 chapters of the DL
book, and 187 questions from the 3 chapters of the
ML book. We discuss quality aspects of the dataset
in Sec.4. We will make this dataset public.

3 Question Generation Approaches

Here we describe the different question generation
and post-processing technique we use in the paper.

3.1 Zero-shot Generation with GPT-3

GPT-3 (Brown et al., 2020) is a transformer-
decoder based large language model (LLM) and
has shown excellent performance on many NLP
tasks in zero-shot settings (Wang et al., 2021; Yoo
et al., 2021). We explore GPT-3 for zero-shot tech-
nical interview question generation1. We use its in-
terview question generation preset, where we give
a context as prompt to GPT-3 and it generates a
set of interview questions from the context. At a
time, we provide one context paragraph, followed
by a new line and an instruction or prompt (‘Give a
list of questions from above passage’). We experi-
ment with different variants of prompt that include
the number of questions we want GPT to gener-
ate such as ‘Generate 10 questions...’. While such
prompts work, we observe that the initial set of
questions does not differ if prompts are changed.
But the questions in the later part of the generated
set changes for different prompts. This suggests
some internal ranking of the questions generated
by GPT-3. So, we decide not to include the number
of questions in the prompt and left this for GPT-3
to optimize. We set the temperature parameter to 0
to eliminate randomness in the generated questions,
and the other parameters as default.

We ran this GPT-3 question generation process
on the same chapters that were used for human
question generation (Sec.2). We do a comparative
analysis in Sec.4.

3.2 Generation with Fine-tuned BART

While GPT-3 is very powerful, it comes with a cost
in real-world applications. As a free open-source
alternative, that can be fine-tuned for our specific
task, we explore BART (Lewis et al., 2020), an-
other pre-trained language model that has been
used for Question Generation (Huang et al., 2021;

1We use free GPT-3 APIs.
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Tsai et al., 2021). Since our task is question gen-
eration, we use the BART model post-trained on
SQuAD. Since SQuAD contains factoid RC ques-
tions, this need further fine-tuning for our task. For
this, we create a silver-standard dataset. We take
the remaining chapters of the two books (11 for ML
and 17 for DL), which were not used for creating
the gold-standard dataset. We use two approaches
for generating silver-standard questions from these
- a template-based algorithm and GPT-3.

We use an unsupervised template-based algo-
rithm for QG given the context (Fabbri et al.,
2020; Puzikov and Gurevych, 2018; Yu and Jiang,
2021). Such approaches typically have high pre-
cision while generating a smaller number of ques-
tions. We use the following templates: WHAT IS

X?, WHAT ARE ADVANTAGES / DISADVANTAGES

/ USES OF X?, WHAT ARE THE DIFFERENCES

BETWEEN X AND Y?, WHAT IS THE RELATION

BETWEEN X AND Y?. We use precise regular
expressions and dictionaries for each template to
check applicability of a template to a sentence, and
use book indices to extract concepts for X and Y.
For each context, we take the union of questions
generated using each template for each sentence
in the context. We get 626 questions in all using
this approach. More details are included in the
Appendix.

We also use GPT-3 to generate silver-standard
questions from the same contexts as described in
Sec.3 . This gives us 3,013 questions in total.

We experiment with BART fine-tuned on tem-
plate and GPT-3 questions separately, as well as to-
gether. We combine template and GPT-3 questions
generated from the same context in two different
ways. For a context C, let Qt and Qg be the sets of
questions generated by the template algorithm and
GPT-3. In the ‘Concat’ mode, we consider (C,Qt)
and (C,Qg) as two distinct training instances (rows
in the training data). In the ‘Join’ mode, we create
a single training instance (C,Qt ∪Qg).

3.3 Importance based Question Filtering

While analysing the generated questions we saw
that many of them are trivial or obsolete. For exam-
ple, ‘What is a scalar?’ is too basic of a question to
be asked in a technical interview. Similarly ‘What
are the advantages of recirculation?’ is also not a
pressing question for a technical interview because
‘recirculation’ is not a very well known or popular
concept in machine learning. So it does not reveal

much about the expertise of a candidate by asking
this question.

We assign importance scores to all the questions
generated from the book and filter out questions
with importance score below a threshold. We use
the hierarchical Index and Table of Content (TOC)
of the book for assigning the importance scores.
First, we automatically create a concept list, Lc

present in the book from the Index and TOC. Using
this concept list, we annotate the concepts present
in each question. We assign importance score for
all the concepts in the question and then assign
importance to the question.

We observed that concepts appear more upfront
in the book are more fundamental and very often
later concepts are dependent on them. So there
is a strict partial order among concepts present in
the book determined by prerequisites. All books
are written in a way that prerequisites of a concept
appear before the concept because one has to know
the prerequisites to understand the current concept.
With this observation, we make an assumption
that concepts that appear upfront in the book or
in the chapters are more fundamental, hence more
important, than the concepts which appear later
and dependent on them. With this assumption, we
calculate two scores, namely TOC_score and In-
dex_score for each concept to find its importance.
TOC_score gives the importance score for a given
concept in reference to the TOC. Each concept can
appear in multiple chapters, in multiple sections
within a chapter and in multiple subsections within
a section. For each such occurrences, we have the
associated id from the TOC. For example, ‘super-
vised learning’ can appear in multiple places in
the book and suppose one occurrence has the id
4.7.2. From this id, we can infer that the above con-
cept appears in chapter 4 (chap_id), section 7 (sec-
tion_id) and subsection 2 (subsection_id). Using
this information, we assign a score for a particular
occurrence of the concept, c as follows.

TOC_occurrence_score(c) =

(chap_cnt− chap_id) ∗ 100 +

(max_sections− section_id) ∗ 10 +

(max_subsections− subsection_id) (1)

Here chap_cnt, max_sections, max_subsections
are total number of chapters, maximum number
of sections, subsections in a chapter respectively.
As it is apparent, we give highest priority to chap-
ters, then sections in the chapter, and finally the
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subsections in the section. For each occurrence
of a concept we calculate the score and the final
TOC_score of a concept is sum of scores from all
TOC_occurrence_score and normalised by the max
score of all concepts.

Likewise Index_score gives a score to a concept
in reference to the Index of the book. The Index is
basically a forest where each concept appear once.
Here we assume that a concept is more important
if has more sub-concept related to it. More specifi-
cally, an important concept will have a bigger sub-
tree under it considering the concept as root. To cal-
culate the score, we attach a weight wi = dmax− i
to each depth i and also count the number of dif-
ferent concepts in each depth i of the sub-tree, say
con_cnti. dmax is the maximum depth of any tree
in the Index. Then the Index_score of a concept, c
is calculated as follows.

Index_score(c) =

Σi(con_cnti ∗ 10wi)/max_index_score (2)

Here max_index_score is the maximum of index
scores of all concepts. So using the above formula
we can have an index score for all the concepts
present in the index. The final importance score of
a concept is the average of the TOC score and the
Index score.

Now we calculate the question importance from
concept importance as follows: from the annotated
concepts present in a question, we get the score
for each concepts. We get the sum of concept im-
portance as question importance and normalise the
importance score by dividing each of the question
score by the maximum score of all questions. Mul-
tiplying the question score by 10 makes the range
of the question score as 0 to 10.

We analysed the data and found that the most of
the useless questions are tagged with importance 0.
Questions with importance greater than 0 is useful
to variable degrees. So we only filter out all the
questions with 0 importance.

Table 2 shows that filtering improves the scores
in all dimensions except one: recall. Filtering will
never be able to improve recall, it can at-most be
equal to the manual one. Here it is decreasing
because some of the good questions are being fil-
tered out by our filtering module. But it is tightly
bounded in our case. At the worst case, recall de-
creases by 9 points.

4 Experiments and Analysis

We present experimental evaluation and in-depth
quality analysis of questions generated for test con-
texts by zero-shot and fine-tuned models using
gold-standard technical interview questions as a
reference. Detailed hyper-parameter settings are
included in the Appendix. The results of our anal-
ysis before applying the importance-based ques-
tion filtering are summarized in Table 1. In Table
2, we include the same analysis after doing the
importance-based question filtering. We describe
our findings below based on Table 1 i.e. before
doing the question filtering.

4.1 Analysis of Precision
We consider a question to be a valid interview ques-
tion from the context if it is (a) long-form, (b) com-
plete, (c) of the right specificity, and (d) answerable
from the context. A question is incomplete if it has
unresolved co-reference or it misses some context
for the question to be meaningful. We manually an-
alyzed all the questions generated by all algorithms
for the 3 test chapters of the DL book for these cri-
teria. Performance for these individual dimensions
as well as overall precision is shown in Tab.1.

Answerability from Context: For zero-shot
GPT-3 questions, 35% do not have answer in con-
text. The following are some example questions
with relevant parts of the contexts: (Q:What is
the contrastive divergence training?, C:“an autoen-
coder gradient provides an approximation to con-
trastive divergence training of RBMs”), (Q:How
can the singular value decomposition be used to
invert a matrix?, C:“the most useful feature of the
SVD is that we can use it to partially generalize
matrix inversion to nonsquare matrices, as we will
see in the next section.”). These illustrate the dif-
ficulty of ensuring answerability. BART performs
similarly, in all modes but one. When fine-tuned in
the ‘Concat’ mode, BART scores 73% and GPT-3
scores 65% (in table 1). We conjecture that this
improvement in answerability over GPT-3 gener-
ated questions is due to two reasons. First, the
template-based question generation conditions en-
sure context relevance, but GPT-3 questions are
not. In the ‘Concat’ mode, we combine the train-
ing data from GPT-3 and template algorithms in
such a way that one context have two training in-
stances. We believe that this gives more weight to
such questions which appear in both questions set
and have answer in context. Second, Wang et al.
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Model Tr. Q. Src. #Questions % In-Context % Complete Prec. Rec. % Complex
Manual NA 161 100 100 1.00 0.61 22
GPT NA 236 65 85 0.53 0.47 23
BART T 75 56 96 0.55 0.16 0
BART GPT 129 63 80 0.55 0.27 34
BART Concat(T,GPT) 95 73 87 0.64 0.23 24
BART Join(T,GPT) 132 61 80 0.52 0.26 37

Table 1: Performance of zero-shot GPT-3 (GPT) and various fine-tuned versions of BART using manually curated
interview questions as reference before filtering. Long-formness and specificity are not shown as all models score
100%. Recall is evaluated by considering all model-generated valid questions in adddition to human questions as
reference. Tr. Q. Src.=Training questions source. T=template-based questions, GPT=GPT-3 generated questions.

Model Tr. Q. Src. #Questions % In-Context % Complete Prec. Rec. % Complex
Manual NA 161 100 100 1.00 0.61 22
GPT NA 155 66 94 0.8 0.47 31
BART T 53 51 96 0.49 0.1 0
BART GPT 83 70 60 0.64 0.2 46
BART Concat(T,GPT) 60 75 98 0.72 0.16 30
BART Join(T,GPT) 79 61 90 0.57 0.17 46

Table 2: Performance of zero-shot GPT-3 (GPT) and various fine-tuned versions of BART using manually curated
interview questions as reference after filtering.

(2021) proves that under consistency assumption, a
model trained using GPT-3 labelled data has lower
classification error rate than GPT-3 itself. Here,
GPT-3 labelled data acts as a regularizer during
training. This result shows that fine-tuning smaller
LMs such as BART can achieve better performance
in this dimension compared to GPT-3.

Question Completeness: 15% of all GPT-3 ques-
tions are incomplete. The following are some exam-
ples: Q:How can the issue of scale be prevented?,
Q:What are some of the models that this technique
can be applied to?. The percentage is slightly lower
for fine-tuned BART in Concat mode (13%), but
the nature of mistakes is similar.

Long-form, Specificity, Semantic correctness:
We define Long-formness for a question if its an-
swer has more than one sentence. For Specificity,
we assume the contribution of the question in In-
terview setting for assessing the candidate’s knowl-
edge, i.e; the question shouldn’t be too broad or
too specific for a topic. Almost all models score
∼100% for long-formness and specificity level of
questions. The following is an outlier example of
a GPT-3 question that is too specific and simple
for an ML interview: Q:What is the multiplication
of a matrix by a scalar? However, GPT-3 does
generate some questions that are semantically in-

valid: Q:What is the determinant of a matrix if the
determinant is 0?, Q:What is Shilov? (Shilov is the
name of a researcher).

Overall Precision: A question is valid if it sat-
isfies all the listed criteria. Precision is the ratio
of the number of valid questions and the number
of generated questions. The precision of GPT-3 is
53%. Fine-tuned BART in ‘Concat’ mode has 64%
precision — an 11% improvement over GPT-3.

4.2 Analysis of the Recall
Evaluating recall with respect to the human gener-
ated questions is problematic because this question
set need not be exhaustive. Instead, we manually
identify additional valid questions generated by
each model from a context beyond those in the hu-
man generated set. We take the union of these with
the human generated questions as the set of all valid
questions for a context. We identify and eliminate
equivalent questions when taking the union. We
define recall of a model as the ratio of the number
of valid generated questions and the total number
of valid questions. Recall for the different models
is shown in Tab.1.

Among the models, GPT-3 generates the most
questions and also has the highest recall (47%).
However, in general it fails to generate DEFINE,
EXAMPLES OF and WHY questions. The fine-
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Model Tr. Q. Src. #Questions Prec. Rec. RougeL-Prec. RougeL-Rec.
Manual NA 161 – – – –
GPT NA 236 0.44 0.61 0.25 0.33
BART T 75 0.69 0.34 0.35 0.14
BART GPT 129 0.56 0.44 0.29 0.25
BART Concat(T,GPT) 95 0.62 0.39 0.34 0.21
BART Join(T,GPT) 132 0.55 0.44 0.27 0.25

Table 3: Automatic Evaluation of questions generated from DL book (before importance based filtering) using
Mapping and RougeL based precision, recall.

Model Tr. Q. Src. #Questions Prec. Rec. RougeL-Prec. RougeL-Rec.
Manual NA 187 – – – –
GPT NA 297 0.42 0.60 0.21 0.30
BART T 127 0.53 0.38 0.27 0.15
BART GPT 169 0.50 0.46 0.24 0.22
BART Concat(T,GPT) 143 0.49 0.42 0.26 0.20
BART Join(T,GPT) 181 0.52 0.50 0.26 0.27

Table 4: Automatic Evaluation of questions generated from ML book (before importance based filtering) using
Mapping and RougeL based precision, recall.

tuned BART ‘Concat’ model has much lower recall
(23%). Effectively, GPT-3 has higher F1 (48%)
compared to BART Concat (35%).

On the other hand, GPT-3 and other models gen-
erate many questions missed by humans, so that
human generated questions have a recall of only
61%. One example of GPT-3 questions missed by
humans is What is the pseudoinverse of a diagonal
matrix?. Here, the definition of pseudoinverse was
hidden inside explanation of mathematical notation
in the context. Another is What is the difference
between the singular value decomposition and the
eigendecomposition? from the context “SVD is
more generally applicable. Every real matrix has
a singular value decomposition, but the same is
not true of the eigenvalue decomposition”. The hu-
man annotator generated a What is the Advantage
of question, but missed the What is difference be-
tween question. This shows the potential of model
generated questions. However, GPT-3 or fine-tuned
BART do not generate any questions according to
a new template completely missed by humans.

4.3 Complexity and Diversity of Questions

In an interview, candidates should be asked a va-
riety of both simple and complex questions. We
define a question as complex if it contains more
than 1 concept from the topic. From Table 1, we see
that our BART model in ‘Concat’ mode, generates
similar % of complex questions as GPT-3 zero-shot

setting. Beyond validity, diversity and complexity
of questions is also important. One simple measure
of complexity is the number of concepts covered by
the question. 22% of human generated questions
have multiple concepts. Among the models, BART
Concat as well as GPT-3 have a similar percentage.
Interestingly, BART Join generates fewer questions
but a higher percentage of multi-concept questions.

The 5 levels of Bloom’s Taxonomy (Bloom
et al., 1964) provide another definition of cognitive
task complexity associated with a question (defined
in A.2). Interestingly, the human generated ques-
tions are uniformly distributed across these levels.
However, both GPT-3 (57%) and BART Concat
(58%) have a high proportion of questions from the
simplest ‘Remember’ level, corresponding mostly
to WHAT IS questions.

4.4 Automatic Evaluation

Since manual evaluation is extensive and costly, it
is not scalable for large set of data. To alleviate
such scenario we also provide some automatic mea-
sure for the evaluation of generated questions from
different approaches. For the given context we al-
ready have manually generated questions which
can serve as gold standard so our goal is to evaluate
the quality of generated questions with respect to
manual questions.

Since we have multiple manual and model gen-
erated questions for each context, our first aim is to
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have a one to one alignment for these two sets of
questions. For this, lets say there aremmanual and
n model generated questions for a context, then we
create a m× n matrix where each cell represents
the similarity score simi,j between the i’th manual
and j’th generated question. Here the similarity
score represents the cosine similarity between the
embeddings of the two questions using sentence
BERT (Reimers and Gurevych, 2019). We then
pass this matrix as input to Hungarian algorithm
(Kuhn, 1955) which outputs one to one mapping
between manual and generated questions.

Once we have pairwise questions we compute
precision and recall by two different methods,
namely mapping-based and RougeL-based (Lin,
2004). In the first one, for every context we filter
out pairs of questions whose similarity scores are
less than a threshold. Then we calculate precision
per context by summing the scores of the remain-
ing pairs and dividing it by the total number of
generated questions. Likewise recall per context
is obtained by dividing it by total number of man-
ual questions. The final precision and recall is the
average of all precision and recall per context.

For the second method, we filter out pairs of
questions from the outputs of the Hungarian Al-
gorithm like above using a threshold. All the un-
mapped questions are assumed to be mapped with
an empty string. Then we calculate the RougeL
precision and recall for every pair of questions.
Precision per context is calculated by dividing the
sum of RougeL precision by number of generated
questions in the context and Recall per context is
obtained by dividing sum of the RougeL recall by
the number of manual questions. Final precision
and recall is the average of all precision and re-
call per context. Just like manual evaluation, we
apply the automatic evaluation on unfiltered ques-
tions. We include the automatic evaluation results
for questions generated from the DL book in Table
3 whose manual evaluations are included in Table
1. We can see that both the automatic evaluation
methods in Table 3 positively correlate with the
manual evaluation in Table 1. Automatic mapping
based precision and recall have correlation 0.43
and 0.99 respectively with the manual precision
and recall. Automatic RougeL based precision and
recall have correlation 0.66 and 0.94 respectively.

Seeing the above correlation, we have deployed
our automatic evaluation methods on questions gen-
erated from 3 chapters of ML book for which we

do not have any manual evaluation. We have given
the evaluation results for ML questions in Table 4.

5 Limitations

In this work, we are trying to address what is the
best way to evaluate the task of question generation
for the technical interview. First limitation of this
work is that we could not create a large annotated
dataset as reference data as we need people with
subject expertise for annotation. Due to the same
reason, we were forced to train the generative mod-
els like BART on silver-standard dataset generated
using GPT-3. As GPT-3 is not freely available, the
amount of silver-standard data is also limited in
volume. The evaluation dimensions we propose for
this task involve human effort and obviously this is
not scalable.

6 Ethical Impact Statement

Generating interview questions using LLMs may
have some ethical concern when these questions
are used in actual interviews. In this work, we
propose how to evaluate such questions in multiple
dimensions. People should be careful before using
such questions in actual interviews.

7 Conclusion

In this paper, we explore the problem of technical
question generation for interviews from textbook
contexts in an weakly supervised approach. We
curate a dataset for evaluation for two domains,
machine learning and deep learning, using two
popular books. We analyzed zero-shot question
generation using GPT-3 and fine-tuning BART on
silver-standard training data for the same. We also
suggested a post processing filtering unit which
further improves the quality of generated questions.
Our manual analysis brings out the complementary
strengths and weaknesses of these approaches for
this task. More importantly, our detailed error anal-
ysis highlights the challenges of the task and shows
a pathway to better models by identifying the ma-
jor types of errors to focus on. Finally we devised
automatic evaluation techniques which positively
correlate with our manual evaluation.
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A Appendix

A.1 Template based question generation
After going over real interview transcripts, we iden-
tify some templates for the questions and write
algorithms for each of the template. We use these
templates for this task. We include some of these
templates and their examples in Table 5.

We run these templates on the sentences of the
books to generate the context-based question. We
use different algorithms for each template. Here,
we describe the algorithm for ‘Difference’ template.
Each template algorithm uses a list of concepts and
a list of keywords. Let C_list={c1, c2, c3, ...} be
a list of concepts present in the book. We created
this list using the index and Table of content of the
books. Multiple atomic concepts can combine to
form a maximal concept. For ex: "convolution"
and "neural network" can combine to "convolution
neural network". There can be multiple maximal
concept in a sentence which we store in a list de-
noted by Mx_c_list. Other than concepts present
in the sentence we also look for template specific
keywords or phrases which either give hints for
attributes of a concept or relationship between two
concepts. we call these phrases signals. For ex,
presence of "difference between" in a sentence hints
the possibility of distinctions between two concepts
being discussed. So we can generate a ‘Difference’
question from this sentence. We define a func-
tion Is_signal_present(sentence,signal_list, X ,Y )
which will take a sentence of a book, signal lists
and concepts X , Y and returns true if signal along
with concepts X and Y are present in the sentence
to generate a question out of it. We have shown our
pseudo code in algorithm1. Here, X and Y refers to
some concepts in the topic for which questions are
generated. We include some examples of template
generated questions from context in Table 6.

A.2 Bloom’s Taxonomy
Bloom’s taxonomy defined 6 categories of knowl-
edge in terms of skills/abilities in an increasing
order of cognitive load. We loosely assign differ-
ent types/templates of questions with one of these
Bloom’s categories: (i) Remember (‘What is X?’)
(ii) Understand (’How does SUB V X?’), (iii) apply
(’What are some applications of X’), (iv) analyze

Algorithm 1 Difference template algorithm

for sentence in context do
Mx_c_list = find_maximal_concept (sen-
tence, C_list)
for X in Mx_c_list do

for Y in Mx_c_list do
flag = Is_signal_present(sentence, sig-
nal_list, X ,Y )
if flag then

Q_gen: What is the difference be-
tween X and Y ?

end if
end for

end for
end for

(’Explain X’), (v) evaluate (’What are the differ-
ences between X and Y’), (vi) Create (We do not
have any questions in this category). Here, X and
Y refer to the concepts of the topic. As an exam-
ple ‘cross-entropy loss’ is a concept in machine
learning.

A.3 Question Importance Algorithm
We have described the method to calculate the ques-
tion importance method in 3.3. Here we provide
the pseudo-code for the same in algorithm 2.

A.4 Parameter Settings
We experiment with BART-base (Lewis et al.,
2020) model post-trained on SQuAD (Rajpurkar
et al., 2016). All experiments are done on 64GB
CPU with 20 cores. We use a batch size of 16
and train the model for 10 epochs. The average
time to train for 10 epochs is around 2 hours. We
optimize the model parameters using Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0001. Some contexts in our dataset is longer
than what BART encoder can accommodate (1,024
word piece tokens). During training, we use the
first 1,024 token of the context and discard the
remaining part of the context. During inference,
we split the longer context into multiple chunks of
1,024 tokens and run inference on each one of them.
We do an union of the generated questions from all
the splits.
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Template Example #Questions
What is X? What is EM algorithm ? 394
What are some uses of X? What are some uses of maximum likelihood? 118
What are the advantages of X? What are the advantages of the validation set? 66
What are the disadvantages of X? What are disadvantages of the metropolis algorithm? 32
What are the differences between X and Y? What are the differences between bagging and boosting? 4
What is the relation between X and Y? What is the relation between autoencoders

and latent variables? 12

Table 5: Examples of the template generated questions using some of the templates. Here, X and Y refers to some
concepts in the topic for which questions are generated.

Context Questions
An auto encoder is a neural network that is trained
to attempt to copy its input to its output.Internally,
it has a hidden layer h that describes a code used
to represent the input. ...
Recently, theoretical connections between auto encoders
and latent variable models have brought auto encoders
to the forefront of generative modeling.

What is an auto encoder?
What is the relation between auto encoders
and latent variable?

One advantage of directed graphical models is that a simple
and efficient procedure called ancestral sampling can
produce a sample from the joint distribution represented
by the model. ...
Ancestral sampling is generally very fast (assuming sampling
from each conditional is easy) and convenient.
One drawback to ancestral sampling is that it only applies
to directed graphical models. Another drawback is that
it does not support every conditional sampling operation. ...

What is ancestral sampling?
What are advantages of ancestral sampling?
What are disadvantages of ancestral sampling?

Unlike the deep belief network (DBN),
it is an entirely undirected model. Unlike the RBM,
the DBM has several layers of latent variables
(RBMs have just one). ...
A DBM is an energy-based model, meaning that the joint
probability distribution over the model variables is
parametrized by an energy function E . ...
In comparison to fully connected Boltzmann machines
(with every unit connected to every other unit),
the DBM offers some advantages that are similar
to those offered by the RBM. ...

What are some use of the dbm?
What are differences between the rbm and
the dbm?
What is a dbm?

Table 6: Examples of generated questions from the context using corresponding template matching algorithm. We
match the template algorithm at the sentence-level in the context.
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Algorithm 2 Question Importance algorithm

concept_importance = {}
for concept in L_concept do
toc_score = 0
max_score = −1
occurance_list= all_occurances(concept)
for occurrence in occurance_list do
toc_score += occurance_score(occurance) {from equation 1}

end for
toc_score = normalise(toc_score)
score = average(toc_score, index_score) {from equation 2}
concept_importance[concept]= score

end for
question_score.fromkeys(L_concept, 0)
for question in question_list do
concept_list= get_concepts(question)
for concept in concept_list do
question_score[question]+= concept_importance[concept]

end for
end for
max_score = find_max(question_score)
for question in question_score do
question_score[question]= question_score[question] ∗ 10/max_score

end for
return question_score
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Abstract
Despite the recent success of multi-task learn-
ing and pre-finetuning for natural language un-
derstanding, few works have studied the effects
of task families on abstractive text summariza-
tion. Task families are a form of task group-
ing during the pre-finetuning stage to learn
common skills, such as reading comprehen-
sion. To close this gap, we analyze the influ-
ence of multi-task learning strategies using task
families for the English abstractive text sum-
marization task. We group tasks into one of
three strategies, i.e., sequential, simultaneous,
and continual multi-task learning, and evaluate
trained models through two downstream tasks.
We find that certain combinations of task fami-
lies (e.g., advanced reading comprehension and
natural language inference) positively impact
downstream performance. Further, we find that
choice and combinations of task families influ-
ence downstream performance more than the
training scheme, supporting the use of task fam-
ilies for abstractive text summarization. Our
code is publicly available 1.

1 Introduction

Self-supervised learning has been a significant suc-
cess driver for generating high-quality abstractive
summaries (Devlin et al., 2019; Liu et al., 2019b;
Cohen and Gokaslan, 2020; Lewis et al., 2020; Raf-
fel et al., 2020; Radford et al., 2019). Through
self-supervision, language models implicitly learn
intrinsic language features (e.g., syntax) from unla-
beled data that they can use to solve downstream
tasks (Brown et al., 2020). However, skills neces-
sary to perform specific tasks often can be learned
from an existing set of labeled data, requiring fewer
training iterations (Rajpurkar et al., 2016; See et al.,
2017). For example, to perform text summariza-
tion, a helpful skill is the ability to answer questions
about texts (Rajpurkar et al., 2016).

1https://github.com/FKIRSTE/GEM_
emnlp2022-TOASTS

The multi-task learning paradigm and its variations
aim to acquire multiple skills simultaneously to
succeed on the downstream tasks, e.g., T5 (Raffel
et al., 2020), and are independent of a specific train-
ing stage (Aribandi et al., 2021). While studies on
the effects of multi-task learning on a large scale
exist (Aghajanyan et al., 2021; Sun et al., 2020;
Aribandi et al., 2021) and are evaluated on broad
natural language understanding benchmarks (Wang
et al., 2019), they are lacking insight on the influ-
ence on abstractive text summarization. Further-
more, multi-task learning approaches are diverse in
their methods (e.g., training scheme, mixing strat-
egy, task families), hampering their comparison.

In this work, we investigate the role of multi-task
learning on English abstractive text summarization.
Therefore, we organize 18 pre-selected training
tasks into six higher-level, modular task families.
Further, we compare three training schemes for the
pre-finetuning stage and their respective mixing
strategies through changes of multiple scores.

Our experiments show that families’ choice signifi-
cantly impacts text summarization, while different
training schemes have little influence. Moreover,
pairing a text summarization task family with any
other helps to stabilize the overall performance
when transferring to unknown data. In some cases,
we also found that a text summarization task family
can be substituted by other family pairs, e.g., ad-
vanced reading comprehension and classification.

To summarize our contributions:

• We study the influence of multi-task learning
by training models on six task families for the
English abstractive text summarization task.

• We evaluate the co-training of different task
families using statistical (e.g., ROUGE) and
semantic metrics (e.g., BERTScore) for 18
datasets.
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• We compare the influence of three training
schemes (i.e., sequential, simultaneous, con-
tinual multi-task learning) and two mixing
strategies (i.e., proportional, equal).

2 Related Work

Multi-task learning and pre-finetuning. Trans-
formers (Vaswani et al., 2017) such as BERT (De-
vlin et al., 2019) and GPT-3 (Brown et al., 2020) are
trained using a two-step approach, the pre-training
on large unlabeled corpora and the finetuning on a
smaller, more specific (and usually labeled) down-
stream corpus. This bilateral approach allows lan-
guage models to obtain general text representations
once to perform many NLP downstream tasks with
few gradient steps (e.g., document classification
(Ostendorff et al., 2020a,b), plagiarism detection
(Wahle et al., 2021, 2022b,c), media bias detection
(Spinde et al., 2021, 2022)). However, pre-training
is typically highly computationally expensive and
requires dedicated ample infrastructure; few re-
searchers can reproduce the pre-training of large
language models. Therefore, recent works (Phang
et al., 2018; Aghajanyan et al., 2021)) proposed
additional training stages between pre-training and
finetuning, i.e., pre-finetuning2.

ERNIE 2.0 (Sun et al., 2020) proposes continual
multi-task learning, in which tasks are trained in-
crementally, thereby building a queue of introduced
tasks that re-appear throughout the training process,
to counter catastrophic forgetting (McCloskey and
Cohen, 1989; Kirkpatrick et al., 2017). MUPPET
(Aghajanyan et al., 2021) and ExT5 (Aribandi et al.,
2021) follow a simultaneous approach, drawing het-
erogeneous batches from multiple tasks and mas-
sively scale their training to >50 and >100 tasks
respectively. MT-DNN (Liu et al., 2019a) organizes
the prediction layer of a Transformer into four task
families of common tasks of the GLUE benchmark
(Wang et al., 2018) and learns each task sequential
with their task order randomized. This study com-
pares continual multi-task learning, simultaneous
training, and sequential training for abstractive text
summarization.

Task selection and relationship. Vu et al. (2020)
conduct an empirical investigation on 33 tasks
across three broad groups (i.e., text classification,
question answering, and sequence labeling) to ex-

2In this paper, we will use intermediate training and pre-
finetuning interchangeably

plore their inter- and intra-group training for dif-
ferent group sizes. Their experiments suggest that
positive transfers between task groups are possi-
ble when the source dataset is small, and inter-
group transfers are sensitive to group sizes. ExT5
(Aribandi et al., 2021) analyzes the correlation of
task family representatives and shows, that summa-
rization tasks (i.e., CNN/Daily Mail (See et al.,
2017), XSum (Narayan et al., 2018), WikiLin-
gua(Ladhak et al., 2020)) generally reduce perfor-
mance on most other task families and that CBQA
tasks (i.e., Natural Questions (Kwiatkowski et al.,
2019), Trivia QA (Joshi et al., 2017), Hotpot QA
(Yang et al., 2018)) are sensitive to multi-task learn-
ing. For the task relationship and transfer analysis,
Aribandi et al. (2021) train on two families simul-
taneously and evaluate the first one. We expand
the study of Aribandi et al. (2021) by adapting task
families and respective representative tasks to be
related to the text summarization task (Section 3.1),
considering different family combinations, training
approaches (Section 3.2), and tracking their per-
formance through additional metrics for different
unseen datasets (Section 4).

Multiple works leverage algorithms for the selec-
tion of training tasks, e.g., Ruder and Plank (2017)
use Bayesian Optimization to learn similarity mea-
sures (i.e., Jensen-Shannon divergence (Lin, 1991)
and Rényi divergence (Rényi et al., 1961)) and a
Beta-Bernoulli multi-armed bandit with Thompson
Sampling (Russo et al., 2018; Thompson, 1933) is
used by AutoSem (Guo et al., 2019). Conversely,
ExT5 (Aribandi et al., 2021) does not rely on au-
tomatic training task selection approaches as de-
scribed by the preceding works and instead chooses
an empirical approach to select tasks for higher-
level task families. We follow the approach of
Aribandi et al. (2021)’s task representative selec-
tion when choosing our tasks as the training task
correlation analysis in ExT5 indicates which fami-
lies could positively influence text summarization.

3 Methodology

We name our study TOASTS, a Task-Oriented
AnalysiS for Text Summarization to investigate
the effects of different task family combinations
on English abstractive text summarization via a
multi-task learning architecture. TOASTS groups
selected pre-training tasks into task families and
explores the correlation of these families, their in-
fluence on two downstream tasks, and their aggre-
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Task Family Task Dataset Source Characteristics
Classification Sentiment Classification GoEmotion (2020) Reddit multi-label CLS
[CLS] Sentiment Classification IMDB (2011) IMDB binary CLS

Topic Classification AG News (2015) ComeToMyHead multi-class CLS

Commonsense Fill-In-The-Blank Winogrande (2021) WSC dataset binary options
[CMNS] Question Answering PhysicaliQA (2019) instructables.com binary options

Question Answering SocialiQA (2019) crowdsourced ternary options

Natural Language Inference Textual Entailment CLS MNLI (2018) SNLI corpus multi-label CLS

[NLI] Textual Entailment CLS ANLI (2020) human-and-model-
in-the-loop dataset multi-label CLS

Textual Entailment CLS QNLI (2018) Wikipedia binary classification

Reading Comprehension Binary QA BoolQ (2019) Google yes/no answer
[RC] Extractive QA SQuAD (2016) Wikipedia extractive answers

Abstractive QA TweetQA (2019) Twitter abstractive answers allowed

Advanced RC RC + Information Retrieval HotpotQA (2018) Wikipedia multi-hop question answering
[RC+] RC + Open Domain QA Natural Questions (2019) Google, Wikipedia answer information seeking questions

RC + CMNS ReCoRD (2018) CNN/DailyMail
and Internet Archive extractive Machine RC

Summarization Extractive SUM XSum (2018) BBC one-sentence summary
[SUM] Abstractive SUM WikiLingua [eng] (2020) WikiHow one-sentence summary

Abstractive SUM AESLC (2019) E-Mail subject line generation

Table 1: Our selection of 18 representative datasets organized by their task family. For every dataset, we list the
target task, the source, and the characteristics of the data. For a complete list of tasks, please see Appendix A.

gation through three training schemes. Therefore,
we use pre-finetuning, a second inexpensive pre-
training stage between pre-training and fine-tuning,
which was recently proposed by Muppet (Agha-
janyan et al., 2021) and tested by ExT5 (Aribandi
et al., 2021). Pre-finetuning has two main parts:
the task family setup and the training strategies.
The task family setup groups different tasks and
related datasets into broader families according to
their primary objective. The tasks of these families
are then combined following a training strategy and
evaluated into a final task. Figure 1 illustrates the
components of TOASTS, which are detailed in the
following sections.

3.1 Task family setup

Selection. A myriad of NLP downstream tasks
(e.g., word sense disambiguation and paraphrase
detection) can be considered when choosing a
multi-task architecture. Without computational lim-
its, one could explore all possible permutations of
tasks and the influence of the respective tasks on
downstream performance. Unfortunately, as the
number of tasks grows by more than their facto-
rial number, joint training becomes computation-
ally prohibitive (Aribandi et al., 2021). There-
fore, we organize tasks into six high-level fami-
lies (Aribandi et al., 2021; Brown et al., 2020) and
perform combinations on their family levels: clas-
sification (CLS), commonsense reasoning (CMNS),
and natural language inference (NLI), reading com-
prehension (RC), advanced reading comprehension

3 (RC+), summarization (SUM). We compose each
task family of three datasets that tackle different
aspects of the problem, as shown in Table 1.

The selected tasks in TOASTS should not be seen
as an exhaustive list of all NLP downstream tasks;
instead, they should be considered an educated se-
lection to measure task family influence on text
summarization. An extended list of planned tasks
for future analyses can be found in Table 7 in Ap-
pendix A.

Task mixing. After pre-selecting representative
tasks for each family, we control the percentage of
data ingested from each task using a task mixing
strategy. We consider two methods for process-
ing all combinations of task families: proportional
mixing (Sanh et al., 2019; Aribandi et al., 2021)
and equal mixing (Raffel et al., 2020). Equal mix-
ing picks training samples from each task with
equal probability, while proportional mixing sets
the probability to the proportion of each task’s size.
The use of proportional mixing as a default strategy
is the recommended approach for various multi-
task learning strategies (Sanh et al., 2019). How-
ever, continual multi-task learning (Section 3.2) re-
quires an equal mixing strategy even though related
studies have shown it to be sub-optimal (Raffel
et al., 2020). While we sample either proportional
or equal within task families, we draw equal be-
tween task families to balance the influence of po-
tentially different task families. We leave to future

3Aribandi et al. (2021) refer to this family as Closed Book
Question Answering (CBQA).
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Figure 1: The central architecture of TOASTS. The intermediate training phase commences the task family setup
(left) by organizing the pre-selected training tasks into families of similar problems and applying two (proportional,
equal) intra-family mixing strategies. The training strategies (right) continue by processing and organizing
the generated task families into batches according to one of three training schemes (sequential, simultaneous,
continual multi-task learning). After pre-finetuning BART, the resulting model is finetuned and evaluated on two
abstractive text summarization datasets (Reddit TIFU, arXiv). The training/mixing scheme pairings are marked by
the background colors green and blue .

work the investigation of the effects of different
amounts of tasks and samples per family.

3.2 Training strategies

Training Schemes. Multi-task learning during
a pre-finetuning stage allows us to start from a
pre-trained checkpoint, decreasing the final task’s
overall cost. We explore three multi-task learning
training schemes for the pre-finetuning as Figure 2
shows: sequential learning (seq) (McCloskey and
Cohen, 1989; Biesialska et al., 2020), simultaneous
learning (sim) (Caruana, 1997; Aghajanyan et al.,
2021), and continual multi-task learning (cMTL)
(Sun et al., 2020). In the sequential approach, train-
ing batches are composed of a single dataset, i.e.,
homogeneous batches, and their processing order
is sequentially randomized (Liu et al., 2019a). This
approach achieves a concentrated task learning on
the batch level while keeping the overall variety,
therefore learning a task more thoroughly before
moving to the next. For the simultaneous strat-
egy, we combine all tasks into a single pool and
draw randomly from it (Aghajanyan et al., 2021;
Aribandi et al., 2021). This prominent approach
introduces task variety on the batch level by con-
stantly challenging the model with different ap-
proaches, forcing it to identify intrinsic commonal-
ity between the task families quickly. For contin-
ual multi-task learning, we adjust the concept of
ERNIE 2.0 (Sun et al., 2020) to adapt it to our task
family configuration. As our tasks corpus is less
extensive than the training dataset used in ERNIE
2.0, we have to rejig the number of stages and train-

ing steps in TOASTS. Therefore, when including
new tasks and task families, we change their total
number of steps to 9k, and 27k, respectively, as
Table 2 shows. One difference from ERNIE 2.0 is
that once a new task is introduced to the pipeline
and trained for the first time at timestep t, we move
it to the end of the queue of previously trained tasks
as the last one to be executed in t + 1. Using the
order in (Sun et al., 2020) as an alternative way
of including and carrying new tasks, yields worse
results (Table 8). Through the pre-determined task
order of this approach, we can control which task
families follow each other and how fundamental a
task is by introducing it earlier than others.

Task S1 S2 S3 S4 S5 . . . S18

TF1.1 500 500 500 500 500 . . . 500
TF1.2 - 1k 500 500 500 . . . 500
TF1.3 - - 1.5k 500 500 . . . 500
TF2.1 - - - 2k 500 . . . 500
TF2.2 - - - - 2.5k . . . 500
. . . - - - - - . . . 500
TF6.3 - - - - - - 9k

Table 2: The number of batches during cMTL training
depends on the training stage and the number of intro-
duced tasks. S1 to S16 denote the stages when a new
task TF1.1 to TF6.3 is introduced. TF1.1 indicates the
first task of task family 1, TF1.2 the second task of task
family 1 etc.

4 Experimental setup

Model. For all experiments, we use BART-Large
(Lewis et al., 2020) to probe combinations of
task families, mixing, and training strategies in

57



(a) Sequential learning. (b) Simultaneous learning. (c) Continual multi-task learning.

Figure 2: TOASTS’s three training strategies. (a) Sequential learning (seq) draws a batch with samples from one
task of a task family at a time for every training stage. The order of tasks is randomized. (b) Simultaneous learning
(sim) samples from all available tasks at the same time. (c) Continual multi-task learning (cMTL) introduces a new
task in each training stage, which is added to the end of the training queue.

TOASTS. BART is a two-stage denoising autoen-
coder that corrupts its input text and reconstructs it
through a sequence-to-sequence model. We chose
BART because of its ability to perform a wide
range of downstream tasks, such as paraphrase de-
tection (Wahle et al., 2022b), fake news identifica-
tion (Wahle et al., 2022a), and text summarization
(Lewis et al., 2020). Additionally, in our prelim-
inary experiments, BART also performed better
than other candidate models such as PEGASUS
(Zhang et al., 2020) and T5 (Raffel et al., 2020)
(comparison in Tables 9 and 10 in appendix B).

Tokenization. We tokenize text using the BART-
Large tokenizer and augment all texts to include
task-specific prompts such as ’question:’ or
’context:’. Further, we structure the samples to
follow a uniform text-to-text style which allows
the model to handle multi-task learning across dif-
ferent task families without needing task-specific
losses, loss scaling or explicit gradient accumula-
tion on heterogeneous batches (Liu et al., 2019a;
Aghajanyan et al., 2021).

Hyperparameters. We run our experiments on 8
NVIDIA A100s with a total of 320GB GPU mem-
ory. The models are trained with a total batch size
of 8 for three epochs and up to 60k global steps
for six task families during pre-finetuning (fine-
tuning: 16k for Reddit TIFU, 70k for arXiv) with
half-precision (fp16). The pre-finetuning takes be-
tween 17min (single task family) and 11h (all task
families). The finetuning takes 2.2h for Reddit
TIFU and 19.85h for arXiv. During pre-finetuning,
we set the input sequence to 512 tokens and the tar-

get sequence to 128 as a compromise for training
time and context. During finetuning, the sequence
lengths are increased to 1024 and 512 for input and
target, respectively, to capture the full context of
both evaluation datasets. For other hyperparame-
ters we refer the reader to Table 41 in Appendix D.

Evaluation. To understand each task family’s in-
fluence, mixing, and training strategies, we evalu-
ate the text summarization task using two datasets:
Reddit TIFU (Kim et al., 2019) and arXiv (Co-
han et al., 2018). Reddit TIFU is composed of
120K posts from online conversations, with the
task of creating a tldr4 summary from the post.
The arXiv dataset consists of 250K scientific ar-
ticles with the task of deriving the abstract from
the full text. These datasets are commonly referred
to as challenging abstractive summarization tasks
(Zhang et al., 2020; He et al., 2020). In combina-
tion, they provide a balanced landscape as Reddit
TIFU contains shorter examples with an average of
432 words per post and 23 per summary, relying on
simpler linguistic, and arXiv longer examples with
4938 words per document and 220 per summary
constructed from elaborated text.

During our experiments, we consider a combina-
tion of count-based and semantic metrics to as-
sess the quality of produced summaries. We use
BLEU (Papineni et al., 2002), ROUGE (1, 2, L)
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005), which favor precision, recall, and harmonic
mean, respectively. Even though these traditional
metrics can work well for similarly worded sum-

4too long; didn’t read

58



Task Families
Reddit TIFU arXiv

seq sim cMTL seq sim cMTL

CLS 0.226 0.233 0.060 0.154 0.287 0.286
CMNS 0.226 0.078 0.078 0.286 0.197 0.163
NLI 0.030 0.082 0.082 0.168 0.111 0.182
RC 0.230 0.235 0.230 0.282 0.284 0.282
RC+ 0.224 0.082 0.078 0.282 0.289 0.203
SUM 0.231 0.235 0.231 0.288 0.282 0.286
ALL 0.222 0.228 0.037 0.281 0.279 0.008

BART (baseline) 0.087† 0.087† 0.087† 0.281† 0.281† 0.281†

Table 3: Results (METEOR) for single task families and the combination of all task families for the Reddit TIFU
and arXiv datasets. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent from training. †Repeated result for baseline without training scheme.

maries, they are limited when wording changes, but
the semantic meaning remains the same (Bhandari
et al., 2020; Huang et al., 2021). To assess seman-
tic similarity better, we also include BERTScore
(Zhang et al., 2019a), a similarity measure that
maximizes the cosine similarity between candidate
and reference contextualized token embeddings via
BERT (Devlin et al., 2019) in a greedy manner.

4.1 Experimental results and discussion

We structure our experiments into four research
questions, which tackle the relevance of task fami-
lies and dataset compatibility (RQ1), the effects of
co-training text summarization task families with
other families (RQ2), the co-training of task fami-
lies excluding text summarization (RQ3), and the
co-training of text summarization and two different
task families (RQ4).

We pre-finetune our baseline model (BART-Large)
for each experiment on specific task families (e.g.,
CLS, CMNS) and evaluate the resulting models
into the Reddit TIFU and arXiv datasets. Tables 3
to 6 show the different task mixing and training
strategies. Sequential (seq) and simultaneous (sim)
training strategies use proportional mixing, while
continual multi-task learning (cMTL) uses equal
mixing. Because of space constraints, we report
our results only for the METEOR metric, which
proved to be the most sensitive to our experiments.
We include a complete list of results for BertScore,
BLEU, METEOR, and ROUGE (1, 2, L) in Appen-
dices C.1 and C.2.

RQ1: Does increasing the number of pre-finetuning
datasets increase downstream task performance for
text summarization?
A. To identify if the text summarization down-

stream task benefits from unconstrained usage of
multiple task families, we compare how each task
family performs against the combination of all.

As Table 3 shows, the SUM task family consis-
tently outperforms the combination of all families
for both datasets (followed by RC), except for the
sim training scheme on arXiv. The increase in per-
formance through pre-training SUM is somehow
expected, as it is the most related task family to
the actual problem, i.e., abstractive text summariza-
tion. Conversely, NLI performs the worst when
compared to any other task family. Pre-finetuning
generally positively affects BART compared to its
baseline, except for a few cases (e.g., cMTL-RC+,
NLI). Overall, the sim training strategy greatly in-
fluenced downstream task performance.

Our results suggest that combining all task fami-
lies is suboptimal for text summarization, which
challenges recent observations for other NLP tasks
(Aghajanyan et al., 2021; Aribandi et al., 2021).
Also, increasing the number of task families re-
quires high compute budgets. As we train each
task family individually or all simultaneously, it is
unclear how much influence a summarization task
family (e.g., SUM) has on the others.

RQ2: How much does the text summarization task
affect other task families?
A. As SUM is closely related to the text summariza-
tion task, and it yields the best results in RQ1, we
explore how its combination with another task fam-
ily affects the resulting model. Table 4 shows the
results of combining SUM with other task fam-
ilies. Aside from a few cases (e.g., arXiv sim
for SUM+RC+), pairing with the SUM family im-
proves over almost every single run in Table 3 and
the combination of all task families.
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Task Families
Reddit TIFU arXiv

seq sim cMTL seq sim cMTL

SUM+CLS 0.230 0.233 0.077 0.285 0.285 0.283
SUM+CMNS 0.232 0.231 0.234 0.153 0.286 0.288
SUM+NLI 0.223 0.233 0.223 0.282 0.287 0.282
SUM+RC 0.233 0.229 0.234 0.285 0.280 0.283
SUM+RC+ 0.230 0.225 0.234 0.284 0.281 0.284

BART (baseline) 0.087† 0.087† 0.087† 0.281† 0.281† 0.281†

Table 4: Results (METEOR) for the combination of SUM and different task families for the Reddit TIFU and arXiv
datasets. Values in bold represent the highest results for a training scheme. Underlined values are the highest results
for that dataset independent of training. †Repeated result for baseline without training scheme.

While some task families’ combinations obtain
small benefits (seq-SUM+RC), others are greatly
affected (e.g., cMTL-SUM+CMNS) for both
datasets. The BART baseline performs bet-
ter than the pre-finetuning in only two cases,
i.e., SUM+CLS for Reddit TIFU (cMTL) and
SUM+CMNS for arXiv (seq). We observe fewer
outliers with low scores when pairing SUM with
other task families than in RQ1. Individual train-
ing improved the performance on arXiv the most
(seq and sim), while for Reddit TIFU, the combi-
nation of task families was more effective (seq and
cMTL).

Low scores are also less frequent when combin-
ing task families with one exception, i.e., cMTL-
SUM+CLS for Reddit TIFU. The lowest scores in
RQ1 (e.g., NLI, CMNS) and RQ2 (CLS) might be
related to the fact that these tasks are not contribut-
ing to the learned weights of the downstream task.
As Reddit TIFU uses mostly informal language
and its input sequence and summaries are short,
this might justify these low scores.

The improvements in Table 4 over the BART base-
line are likely to be related to the SUM family
rather than a mixing strategy or training scheme.
The results of individually training the SUM fam-
ily (RQ1) are equal or marginally higher when
combined with other task families (e.g., 0.233 for
SUM+RC vs. 0.231 SUM). As the SUM family
seems to substantially impact co-training multiple
tasks, we are interested in evaluating the influence
of families other than SUM.

RQ3: How do non text summarization task families
influence each other?
A. We remove the SUM family and co-train all pos-
sible pairs of task families. Table 5 shows that the
co-training of non text summarization task families

(e.g., NLI+RC+) can achieve equal or better results
in comparison to single SUM training (Table 3) or
its combination with other task families (Table 4)
for both Reddit TIFU and arXiv. Other combina-
tions such as CLS+RC and RC+RC+ also achieve
strong results.

Conversely, the combination of task families with
good results individually seems to have a harmful
influence on each other when paired. While CLS
and CMNS have good results individually (0.226
and 0.226 for the seq strategy on Reddit TIFU),
their pairing (e.g., CLS+CMNS) is strongly neg-
ative (e.g., 0.078 for the seq strategy on Reddit
TIFU). As in Table 3, different training schemes
seem to be a less dominant factor than task family
choice during pre-finetuning. Therefore, a proper
task family combination should precede architec-
tural training options.

Our results suggest that non text summarization
task families can be used to substitute for the SUM
family. Specifically, all best-performing results in-
clude RC or RC+ in their configuration. A possible
explanation for the stark influence of RC/RC+ is
that their problem of understanding texts is closely
related to summarizing texts. A link between read-
ing comprehension and text summarization is also
observed by psychologists in various studies (e.g.,
Cohen (2006); Kintsch and van Dijk (1978); Yu
(2008)).

RQ4: How are non text summarization task family
pairs affected by SUM?
A. Considering the positive effect of SUM in other
families (RQ2), we investigate its influence in task
family pairs (RQ3) as Table 6 shows. For this re-
search question, we only consider Reddit TIFU as
it provides a more challenging scenario (i.e., in-
formal, short texts) and limits our computational
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Task Families
Reddit TIFU arXiv

seq sim cMTL seq sim cMTL

CLS+CMNS 0.078 0.078 0.060 0.078 0.050 0.162
CLS+NLI 0.077 0.077 0.046 0.050 0.003 0.276
CLS+RC 0.231 0.231 0.230 0.287 0.283 0.181
CLS+RC+ 0.229 0.229 0.082 0.284 0.288 0.287
CMNS+NLI 0.231 0.231 0.081 0.137 0.212 0.118
CMNS+RC 0.227 0.227 0.077 0.283 0.284 0.179
CMNS+RC+ 0.232 0.232 0.232 0.279 0.280 0.082
NLI+RC 0.231 0.231 0.231 0.285 0.285 0.284
NLI+RC+ 0.233 0.234 0.227 0.286 0.290 0.282
RC+RC+ 0.228 0.228 0.228 0.287 0.281 0.285

BART (baseline) 0.087† 0.087† 0.087† 0.281† 0.281† 0.281†

Table 5: Results (METEOR) for the combination of all pairs of task families (except for SUM) for the Reddit TIFU
and arXiv datasets. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training. †Repeated result for baseline without training scheme.

Task Families
Reddit TIFU

seq sim cMTL

SUM+CLS+CMNS 0.228 0.227 0.077
SUM+CLS+NLI 0.231 0.231 0.082
SUM+CLS+RC 0.235 0.228 0.229
SUM+CLS+RC+ 0.235 0.233 0.082
SUM+CMNS+NLI 0.230 0.236 0.229
SUM+CMNS+RC 0.234 0.232 0.230
SUM+CMNS+RC+ 0.232 0.231 0.228
SUM+NLI+RC 0.229 0.231 0.228
SUM+NLI+RC+ 0.234 0.229 0.229
SUM+RC+RC+ 0.227 0.234 0.228

BART (baseline) 0.087† 0.087† 0.087†

Table 6: Results (METEOR) for the combination of
all pairs of task families and SUM for Reddit TIFU.
Values in bold represent the highest results for a training
scheme. Underline values are the highest results for that
dataset independent of training. †Repeated result for
baseline without training scheme.

budget (family co-training is increasingly expen-
sive when the number of task families grows).

Including SUM mitigates the adverse effects of
combining CLS+CMNS (e.g., 0.228 vs. 0.078
for the seq training scheme) and CLS+NLI (e.g.,
0.231 vs. 0.077 for the seq training scheme), ex-
cept for the cMTL training scheme. However, the
scores for CLS+RC+ are almost unchanged. The
seq and sim training schemes still perform best
(e.g., CMNS+NLI) but for different task family
combinations compared to the previous research
questions’ results (e.g., NLI+RC+ in RQ3). For the
best performing task families pairs in RQ3, only
CLS+RC and CLS+RC+ are still the top results
when including SUM. As in Table 4, the SUM
family seems to provide stability to the results, as

we see fewer fluctuations than in Table 5. We as-
sume the stability provided by SUM would also be
present in the inclusion of more task families. Fur-
ther, we observe the positive influence of RC and
RC+ when pairing three task families excluding
SUM (Tables 26 to 28).

5 Conclusion & Future Work

In this work, we studied the influence of multi-task
learning combinations of task families during the
pre-finetuning stage for English abstractive text
summarization. We trained three different training
strategies, six task families composed of 18 tasks,
and evaluated two downstream tasks.

Our experiments show that non text summarization
task families, e.g., advanced reading comprehen-
sion, can be used as a substitute for the summariza-
tion task (RQ2) or the combination of all task fam-
ilies (RQ1). However, including the summariza-
tion task family in the training process positively
impacts the downstream performance compared
to non text summarization family combinations.
Further, our analysis shows that training strategies
have little influence on the overall performance
compared to the task family selection.

We see this analysis as the first step to understand-
ing training strategies and task families for text
summarization. In the future, we want to investi-
gate more tasks (both in number and diversity) per
task family, training schemes, and mixing strate-
gies. We also plan to include psychological studies
comparing the similarities of textual understand-
ing tasks as a starting point for task family pre-
selection.
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Limitations

With the organization of tasks and datasets into
task families, this study highly depends on these
representative tasks’ domain and expressiveness.
As Aribandi et al. (2021) faced similar problems,
we followed their guidance to select representatives
to consist of a diverse set of datasets to train and
evaluate on and to partition task families as mu-
tually exclusive as possible while being related to
abstractive text summarization. However, none of
the datasets are perfectly isolated and can only be
used as a proxy for a larger task family.

Ethical Considerations

This study depends on existing resources and gen-
erative models; thus, it is not free of biases and
possible ethical considerations. One problem is
the generation of text summaries that contain non-
factual information, meaning distortion, social bi-
ases such as political stances, or abusive language
(Gooding, 2022). To mitigate these problems we
plan to condition the generation of trained models
for unsafe content or other harmful text to return
an empty string.

Furthermore, TOASTS is licensed to the public un-
der a copyright policy that allows unlimited repro-
duction, distribution, and hosting on any website
or medium. Hence, anyone can exploit its limita-
tions and inherited biases to propagate and amplify
unintentional societal problems.
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A Tasks and Families

Table 7 shows an extended version of pre-
finetuning tasks in Table 1 to-be-considered in fu-
ture work

B Additional Models

Tables 8 to 10 shows the results for different models
and loop orders. BART performed best compared
to models from related work, which is why we
chose the model throughout our experiments.

C Extended Results

C.1 Extended Results on Reddit TIFU
Tables 13 to 27 show the detailed evaluation for
each research question and all tested combinations
of task families evaluated on the Reddit TIFU
datasets. The tables are divided according to their
training scheme, i.e., each table shows one of the
three training schemes (sim, seq, cMTL).

C.2 Extended Results on arXiv
Tables 31 to 39 show the detailed evaluation for
each research question and all tested combinations
of task families evaluated on the arXiv datasets.
The tables are divided according to their training
scheme, i.e., each table shows one of the three
training schemes (sim, seq, cMTL).

D Hyperparameters

Table 41 shows the hyperparameters used through-
out the pre-finetuning and finetuning experiments.

67



TF Task Dataset Citation

CLS Topic Classification AG News (Zhang et al., 2015)
Text Classification Civil Comments (Borkan et al., 2019)
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Textual Entailment Classification SciTail (Khot et al., 2018)
Natural Language Inference SNLI (Zhang et al., 2019b)
Natural Language Inference WNLI (Wang et al., 2018)

RC Binary QA BoolQ (Clark et al., 2019)
Multiple Choice QA Cosmos QA (Huang et al., 2019)
Multi-Sentence QA Eraser Multi RC (DeYoung et al.; Khashabi et al., 2018)
Extractive QA SQUAD (Rajpurkar et al., 2016)
Extractive QA TriviaQA (Joshi et al., 2017)
Abstractive QA TweetQA (Xiong et al., 2019)
Multiple Choice QA RACE (Lai et al., 2017)

RC+ Text2Text Generation E2E (Dušek et al., 2020)
RC + Question Answering MSMarco (Bajaj et al., 2016)
RC + Open Domain QA Natural Questions (Kwiatkowski et al., 2019)
RC + Commonsense Reasoning RECORD (Zhang et al., 2018)
RC + Information Retrieval HotpotQA (Yang et al., 2018)
RC + Extractive QA DROP (Dua et al., 2019)

SUM Abstractive Summarization Aeslc (Zhang and Tetreault, 2019)
Extractive Summarization Billsum (Eidelman, 2019)
Abstractive Summarization CNN (See et al., 2017; Hermann et al., 2015)
Headline Generation Gigaword (Rush et al., 2015)
Abstractive Summarization Multinews (Fabbri et al., 2019)
Abstractive Summarization WikiLingua [eng] (Ladhak et al., 2020)
Extractive Summarization XSUM (Narayan et al., 2018)

Table 7: An extended list of Table 1. This list can be used to extend TOASTS to more tasks and datasets in future
work. TF stands for Task Family.
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order BERTScore BLEU METEOR ROUGE-1 ROURGE-2 ROUGE-L

ascending (ours) 0.881 0.057 0.229 0.284 0.096 0.228
descending 0.861 0.003 0.082 0.095 0.012 0.085

Table 8: Results of different loop orders tested. Let t denote the current training stage, then the ascending order for
the training stage t is Taskt, Task1, Task2, ..., Taskt − 1. The descending order follows for the same training stage t
the form Taskt, Taskt − 1, Taskt − 2, ..., Task1.

model BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L Time

BART 0.881 0.061 0.231 0.286 0.100 0.233 0.75h
T5 0.881 0.052 0.218 0.282 0.090 0.229 1.15h
PEGASUS 0.876 0.058 0.215 0.264 0.094 0.216 1h

Table 9: Results of different models used. The models were finetuned on Reddit TIFU without pre-finetuning and
with full precision. Values in bold represent the highest results for a training scheme.

model BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L Time

BART 0.864 0.129 0.306 0.444 0.168 0.267 13.5h
T5 0.864 0.120 0.291 0.416 0.153 0.272 27.5h
PEGASUS 0.858 0.122 0.291 0.414 0.148 0.253 18.5h

Table 10: Results of different models used. The models were finetuned on arXiv without pre-finetuning and with
full precision. Values in bold represent the highest results for a training scheme.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.881 0.057 0.226 0.282 0.097 0.229
CMNS 0.881 0.055 0.226 0.282 0.095 0.228
NLI 0.869 0.000 0.030 0.088 0.006 0.083
RC 0.882 0.057 0.230 0.285 0.098 0.230
RC+ 0.881 0.056 0.224 0.281 0.096 0.229
SUM 0.881 0.061 0.231 0.287 0.098 0.231

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 11: RQ1 results (single task family) for Reddit TIFU and the sequential strategy. Values in bold represent
the highest results for a training scheme. Underlined values are the highest results for that dataset independent of
training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.881 0.061 0.233 0.286 0.099 0.232
CMNS 0.863 0.003 0.078 0.091 0.013 0.081
NLI 0.863 0.003 0.082 0.095 0.012 0.085
RC 0.881 0.061 0.235 0.290 0.100 0.232
RC+ 0.863 0.003 0.082 0.095 0.012 0.085
SUM 0.882 0.062 0.235 0.288 0.102 0.234

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 12: RQ1 results (single task family) for Reddit TIFU and the simultaneous strategy. Values in bold represent
the highest results for a training scheme. Underlined values are the highest results for that dataset independent of
training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.853 0.002 0.060 0.095 0.012 0.085
CMNS 0.863 0.003 0.078 0.091 0.013 0.081
NLI 0.863 0.003 0.082 0.095 0.012 0.085
RC 0.881 0.059 0.230 0.287 0.098 0.231
RC+ 0.863 0.003 0.078 0.091 0.013 0.080
SUM 0.881 0.059 0.231 0.287 0.098 0.232

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 13: RQ1 results (single task family) for Reddit TIFU and the continual multi-task learning strategy. Values in
bold represent the highest results for a training scheme. Underlined values are the highest results for that dataset
independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.880 0.053 0.222 0.278 0.092 0.225

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 14: RQ1 results (all task families) for Reddit TIFU and the sequential strategy. Values in bold represent
the highest results for a training scheme. Underlined values are the highest results for that dataset independent of
training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.881 0.057 0.228 0.283 0.095 0.228

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 15: RQ1 results (all task families) for Reddit TIFU and the simultaneous strategy. Values in bold represent
the highest results for a training scheme. Underlined values are the highest results for that dataset independent of
training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.819 0.000 0.037 0.000 0.000 0.000

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 16: RQ1 results (all task families) for Reddit TIFU and the continual multi-task learning strategy. Values in
bold represent the highest results for a training scheme. Underlined values are the highest results for that dataset
independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.881 0.061 0.230 0.284 0.098 0.230
SUM + CMNS 0.881 0.060 0.232 0.287 0.098 0.231
SUM + NLI 0.881 0.053 0.223 0.280 0.094 0.225
SUM + RC 0.882 0.061 0.233 0.288 0.100 0.235
SUM + RC+ 0.881 0.060 0.230 0.285 0.098 0.232

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 17: RQ2 results (pairing of the summarization task family with another task family) for Reddit TIFU and the
sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.881 0.061 0.233 0.287 0.096 0.232
SUM + CMNS 0.881 0.059 0.231 0.284 0.097 0.230
SUM + NLI 0.881 0.062 0.233 0.287 0.098 0.231
SUM + RC 0.881 0.059 0.229 0.286 0.097 0.231
SUM + RC+ 0.881 0.057 0.225 0.283 0.096 0.229

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 18: RQ2 results (pairing of the summarization task family with another task family) for Reddit TIFU and the
simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.864 0.003 0.077 0.093 0.013 0.081
SUM + CMNS 0.881 0.062 0.234 0.289 0.100 0.236
SUM + NLI 0.881 0.053 0.223 0.280 0.095 0.225
SUM + RC 0.881 0.062 0.234 0.290 0.100 0.233
SUM + RC+ 0.881 0.061 0.234 0.288 0.100 0.233

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 19: RQ2 results (pairing of the summarization task family with another task family) for Reddit TIFU and the
continual multi-task learning strategy. Values in bold represent the highest results for a training scheme. Underlined
values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.863 0.003 0.078 0.091 0.013 0.081
CLS + NLI 0.864 0.003 0.077 0.093 0.013 0.081
CLS + RC 0.881 0.059 0.231 0.288 0.097 0.232
CLS + RC+ 0.881 0.059 0.229 0.286 0.097 0.231
CMNS + NLI 0.881 0.060 0.231 0.286 0.099 0.231
CMNS + RC 0.881 0.059 0.227 0.282 0.096 0.228
CMNS + RC+ 0.881 0.061 0.232 0.287 0.097 0.231
NLI + RC+ 0.881 0.061 0.233 0.289 0.100 0.234
NLI + RC 0.881 0.058 0.231 0.286 0.097 0.231
RC + RC+ 0.881 0.058 0.228 0.284 0.096 0.230

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 20: RQ3 results (pairing of two task families excluding the text summarization family) for Reddit TIFU and
the sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset, independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.863 0.003 0.078 0.091 0.013 0.081
CLS + NLI 0.864 0.003 0.077 0.093 0.013 0.081
CLS + RC 0.881 0.059 0.231 0.288 0.097 0.232
CLS + RC+ 0.881 0.059 0.229 0.286 0.097 0.231
CMNS + NLI 0.881 0.060 0.231 0.286 0.099 0.231
CMNS + RC 0.881 0.059 0.227 0.282 0.096 0.228
CMNS + RC+ 0.881 0.061 0.232 0.287 0.097 0.231
NLI + RC 0.881 0.058 0.231 0.286 0.097 0.231
NLI + RC+ 0.881 0.061 0.234 0.289 0.100 0.234
RC + RC+ 0.881 0.058 0.228 0.284 0.096 0.223

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 21: RQ3 results (pairing of two task families excluding the text summarization family) for Reddit TIFU and
the simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are
the highest results for that dataset independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.853 0.002 0.060 0.095 0.012 0.085
CLS + NLI 0.869 0.000 0.046 0.056 0.007 0.055
CLS + RC 0.881 0.060 0.230 0.286 0.099 0.232
CLS + RC+ 0.863 0.003 0.082 0.095 0.012 0.085
CMNS + NLI 0.865 0.002 0.081 0.099 0.012 0.089
CMNS + RC 0.864 0.003 0.077 0.093 0.013 0.081
CMNS + RC+ 0.881 0.062 0.232 0.287 0.099 0.233
NLI + RC 0.881 0.060 0.231 0.287 0.098 0.232
NLI + RC+ 0.881 0.057 0.227 0.283 0.096 0.229
RC + RC+ 0.881 0.059 0.228 0.284 0.098 0.230

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 22: RQ3 results (pairing of two task families excluding the text summarization family) for Reddit TIFU
and the continual multi-task learning strategy. Values in bold represent the highest results for a training scheme.
Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS + CMNS 0.881 0.060 0.228 0.286 0.098 0.232
SUM + CLS + NLI 0.881 0.059 0.231 0.285 0.098 0.231
SUM + CLS + RC 0.882 0.060 0.235 0.288 0.099 0.234
SUM + CLS + RC+ 0.881 0.062 0.235 0.288 0.100 0.232
SUM + CMNS + NLI 0.881 0.059 0.230 0.284 0.096 0.229
SUM + CMNS + RC 0.882 0.061 0.234 0.288 0.099 0.232
SUM + CMNS + RC+ 0.881 0.062 0.232 0.287 0.100 0.233
SUM + NLI + RC 0.881 0.060 0.229 0.283 0.096 0.230
SUM + NLI + RC+ 0.881 0.061 0.234 0.289 0.099 0.234
SUM + RC + RC+ 0.882 0.058 0.227 0.284 0.099 0.232

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 23: RQ4 results (pairing of the summarization task family with two other task families) for Reddit TIFU and
the sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + RC+ + CLS 0.881 0.061 0.233 0.289 0.099 0.232
SUM + RC+ + CMNS 0.881 0.061 0.231 0.286 0.099 0.232
SUM + RC+ + NLI 0.881 0.058 0.229 0.285 0.098 0.231
SUM + RC+ + RC 0.881 0.059 0.234 0.287 0.097 0.232
SUM + CLS + CMNS 0.881 0.057 0.227 0.283 0.096 0.229
SUM + CLS + NLI 0.881 0.060 0.231 0.284 0.099 0.229
SUM + CLS + RC 0.881 0.058 0.228 0.286 0.098 0.230
SUM + CMNS + NLI 0.881 0.064 0.236 0.289 0.100 0.233
SUM + CMNS + RC 0.881 0.061 0.232 0.288 0.099 0.233
SUM + NLI + RC 0.881 0.061 0.231 0.287 0.098 0.233

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 24: RQ4 results (pairing of the summarization task family with two other task families) for Reddit TIFU and
the simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are
the highest results for that dataset independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS + CMNS 0.864 0.003 0.077 0.093 0.013 0.081
SUM + CLS + NLI 0.863 0.003 0.082 0.095 0.012 0.085
SUM + CLS + RC 0.881 0.058 0.229 0.285 0.098 0.231
SUM + CLS + RC+ 0.863 0.003 0.082 0.095 0.012 0.085
SUM + CMNS + NLI 0.881 0.059 0.229 0.285 0.098 0.230
SUM + CMNS + RC 0.881 0.059 0.230 0.285 0.099 0.232
SUM + CMNS + RC+ 0.881 0.059 0.228 0.284 0.096 0.229
SUM + NLI + RC 0.881 0.059 0.228 0.284 0.096 0.230
SUM + NLI + RC+ 0.881 0.058 0.229 0.284 0.096 0.230
SUM + RC + RC+ 0.881 0.059 0.228 0.285 0.097 0.230

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 25: RQ4 results (pairing of the summarization task family with two other task families) for Reddit TIFU
and the contniual multi-task learning strategy. Values in bold represent the highest results for a training scheme.
Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS + NLI 0.752 0.000 0.034 0.044 0.000 0.040
CLS + CMNS + RC 0.881 0.062 0.235 0.287 0.099 0.231
CLS + CMNS + RC+ 0.881 0.062 0.231 0.286 0.098 0.232
CLS + NLI + RC 0.881 0.059 0.233 0.289 0.099 0.233
CLS + NLI + RC+ 0.881 0.059 0.232 0.286 0.097 0.231
CLS + RC + RC+ 0.880 0.060 0.232 0.285 0.098 0.230
CMNS + NLI + RC 0.880 0.059 0.229 0.284 0.095 0.230
CMNS + NLI + RC+ 0.881 0.059 0.231 0.284 0.096 0.230
CMNS + RC + RC+ 0.881 0.058 0.232 0.285 0.097 0.230
NLI + RC + RC+ 0.881 0.058 0.230 0.284 0.097 0.229

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 26: RQ4 results (pairing of three task families excluding the text summarization family) for Reddit TIFU and
the sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS + NLI 0.746 0.000 0.024 0.028 0.000 0.275
CLS + CMNS + RC 0.881 0.060 0.232 0.287 0.099 0.232
CLS + CMNS + RC+ 0.863 0.003 0.082 0.095 0.012 0.085
CLS + NLI + RC 0.881 0.059 0.228 0.285 0.098 0.230
CLS + NLI + RC+ 0.881 0.057 0.225 0.283 0.097 0.231
CLS + RC + RC+ 0.881 0.058 0.227 0.282 0.097 0.229
CMNS + NLI + RC 0.766 0.000 0.020 0.009 0.000 0.009
CMNS + NLI + RC+ 0.881 0.058 0.230 0.283 0.097 0.229
CMNS + RC + RC+ 0.881 0.061 0.234 0.288 0.097 0.231
NLI + RC + RC+ 0.881 0.059 0.230 0.284 0.096 0.229

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 27: RQ4 results (pairing of three task families excluding the text summarization family) for Reddit TIFU and
the simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are
the highest results for that dataset independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS + NLI 0.751 0.000 0.017 0.000 0.000 0.000
CLS + CMNS + RC 0.753 0.000 0.009 0.015 0.000 0.015
CLS + CMNS + RC+ 0.861 0.002 0.064 0.057 0.012 0.054
CLS + NLI + RC 0.864 0.003 0.077 0.093 0.013 0.081
CLS + NLI + RC+ 0.863 0.003 0.082 0.095 0.012 0.085
CLS + RC + RC+ 0.747 0.000 0.025 0.020 0.000 0.020
CMNS + NLI + RC 0.867 0.004 0.105 0.125 0.012 0.101
CMNS + NLI + RC+ 0.881 0.058 0.228 0.285 0.096 0.230
CMNS + RC + RC+ 0.881 0.060 0.229 0.284 0.098 0.230
NLI + RC + RC+ 0.881 0.059 0.231 0.286 0.098 0.231

BART 0.858 0.003 0.087 0.105 0.011 0.090

Table 28: RQ4 results (pairing of three task families excluding the text summarization family) for Reddit TIFU
and the continual multi-task learning strategy. Values in bold represent the highest results for a training scheme.
Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.820 0.018 0.154 0.248 0.048 0.163
CMNS 0.860 0.119 0.286 0.432 0.167 0.249
NLI 0.817 0.020 0.168 0.266 0.048 0.169
RC 0.859 0.117 0.282 0.427 0.165 0.247
RC+ 0.859 0.117 0.282 0.426 0.164 0.246
SUM 0.859 0.121 0.288 0.431 0.167 0.249

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 29: RQ1 results (single task family) for arXiv and the sequential strategy. Values in bold represent the highest
results for a training scheme. Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.860 0.120 0.287 0.430 0.167 0.248
CMNS 0.806 0.011 0.197 0.215 0.038 0.137
NLI 0.812 0.006 0.111 0.187 0.016 0.123
RC 0.859 0.119 0.284 0.430 0.166 0.248
RC+ 0.859 0.120 0.289 0.431 0.167 0.248
SUM 0.859 0.117 0.282 0.429 0.166 0.248

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 30: RQ1 results (single task family) for arXiv and the simultaneous strategy. Values in bold represent the
highest results for a training scheme. Underlined values are the highest results for that dataset independent of
training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS 0.859 0.119 0.286 0.429 0.166 0.248
CMNS 0.819 0.017 0.163 0.295 0.051 0.171
NLI 0.815 0.018 0.182 0.272 0.044 0.170
RC 0.859 0.117 0.282 0.426 0.164 0.246
RC+ 0.817 0.020 0.203 0.249 0.051 0.159
SUM 0.860 0.119 0.286 0.431 0.167 0.249

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 31: RQ1 results (single task family) for arXiv and the continual multi-task learning strategy. Values in
bold represent the highest results for a training scheme. Underlined values are the highest results for that dataset
independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.859 0.116 0.281 0.427 0.165 0.248

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 32: RQ1 results (all task families) for arXiv and the sequential strategy. Values in bold represent the highest
results for a training scheme. Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.859 0.115 0.279 0.425 0.164 0.246

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 33: RQ1 results (all task families) for arXiv and the simultaneous strategy. Values in bold represent the highest
results for a training scheme. Underlined values are the highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

ALL 0.729 0.000 0.008 0.009 0.000 0.009

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 34: RQ1 results (all task families) for arXiv and the continual multi-task learning strategy. Values in bold
represent the highest results for a training scheme. Underlined values are the highest results for that dataset
independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.860 0.119 0.285 0.430 0.167 0.249
SUM + CMNS 0.811 0.016 0.153 0.254 0.046 0.164
SUM + NLI 0.859 0.117 0.282 0.427 0.165 0.247
SUM + RC 0.859 0.119 0.285 0.430 0.166 0.248
SUM + RC+ 0.859 0.118 0.284 0.428 0.166 0.247

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 35: RQ2 results (pairing of the summarization task family with another task family) for arXiv and the
sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.860 0.119 0.285 0.429 0.166 0.247
SUM + CMNS 0.860 0.119 0.286 0.432 0.167 0.249
SUM + NLI 0.859 0.120 0.287 0.431 0.167 0.249
SUM + RC 0.859 0.115 0.280 0.427 0.164 0.247
SUM + RC+ 0.859 0.116 0.281 0.427 0.164 0.247

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 36: RQ2 results (pairing of the summarization task family with another task family) for arXiv and the
simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

SUM + CLS 0.859 0.117 0.283 0.429 0.165 0.248
SUM + CMNS 0.860 0.120 0.288 0.432 0.167 0.249
SUM + NLI 0.859 0.117 0.282 0.427 0.165 0.247
SUM + RC 0.859 0.118 0.283 0.428 0.166 0.247
SUM + RC+ 0.859 0.118 0.284 0.428 0.166 0.247

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 37: RQ2 results (pairing of the summarization task family with another task family) for arXiv and the continual
multi-task learning strategy. Values in bold represent the highest results for a training scheme. Underlined values
are the highest results for that dataset independent of training.
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Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.863 0.003 0.078 0.091 0.013 0.081
CLS + NLI 0.731 0.000 0.050 0.086 0.000 0.050
CLS + RC 0.859 0.116 0.287 0.427 0.165 0.247
CLS + RC+ 0.859 0.118 0.284 0.430 0.167 0.248
CMNS + NLI 0.821 0.010 0.137 0.261 0.045 0.176
CMNS + RC 0.860 0.117 0.283 0.429 0.165 0.248
CMNS + RC+ 0.859 0.115 0.279 0.426 0.164 0.247
NLI + RC 0.859 0.119 0.285 0.429 0.166 0.248
NLI + RC+ 0.859 0.119 0.286 0.431 0.167 0.248
RC + RC+ 0.859 0.116 0.287 0.428 0.165 0.248

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 38: RQ3 results (pairing of two task families excluding the text summarization family) for arXiv and the
sequential strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.704 0.000 0.050 0.076 0.000 0.046
CLS + NLI 0.743 0.000 0.003 0.006 0.000 0.006
CLS + RC 0.859 0.118 0.283 0.428 0.165 0.247
CLS + RC+ 0.859 0.120 0.288 0.432 0.167 0.248
CMNS + NLI 0.805 0.012 0.212 0.215 0.041 0.134
CMNS + RC 0.859 0.118 0.284 0.428 0.165 0.248
CMNS + RC+ 0.859 0.115 0.280 0.426 0.165 0.247
NLI + RC 0.859 0.119 0.285 0.430 0.166 0.248
NLI + RC+ 0.859 0.121 0.290 0.432 0.168 0.249
RC + RC+ 0.859 0.116 0.281 0.426 0.164 0.247

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 39: RQ3 results (pairing of two task families excluding the text summarization family) for arXiv and the
simultaneous strategy. Values in bold represent the highest results for a training scheme. Underlined values are the
highest results for that dataset independent of training.

Task Families BERTScore BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

CLS + CMNS 0.813 0.018 0.162 0.259 0.052 0.176
CLS + NLI 0.859 0.113 0.276 0.422 0.161 0.245
CLS + RC 0.810 0.018 0.181 0.269 0.048 0.168
CLS + RC+ 0.860 0.120 0.287 0.432 0.167 0.249
CMNS + NLI 0.806 0.009 0.118 0.181 0.016 0.117
CMNS + RC 0.812 0.019 0.179 0.282 0.041 0.157
CMNS + RC+ 0.863 0.003 0.082 0.095 0.117 0.085
NLI + RC 0.860 0.118 0.284 0.429 0.166 0.247
NLI + RC+ 0.859 0.117 0.282 0.426 0.164 0.246
RC + RC+ 0.859 0.118 0.285 0.429 0.165 0.248

BART 0.859 0.116 0.281 0.425 0.163 0.246

Table 40: RQ3 results (pairing of two task families excluding the text summarization family) for arXiv and the
continual multi-task learning strategy. Values in bold represent the highest results for a training scheme. Underlined
values are the highest results for that dataset independent of training.

76



Hyper parameter Value
Optimizer AdamW
Adam-betas (0.9, 0.999)
Adam-eps 1e-8
LR 5e-05
LR Scheduler linear decay
Dropout 0.1
Weight Decay 0
Warmup Updates 0

Table 41: Hyperparameters used throughout all pre-finetuning and finetuning experiments.
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Abstract

One of the biggest challenges of natural lan-
guage generation (NLG) is the proper han-
dling of named entities. Named entities are
a common source of grammar mistakes such
as wrong prepositions, wrong article handling,
or incorrect entity inflection. Without factor-
ing linguistic representation, such errors are
often underrepresented when evaluating on a
small set of arbitrarily picked argument val-
ues, or when translating a dataset from a lin-
guistically simpler language, like English, to
a linguistically complex language, like Rus-
sian. However, for some applications, broadly
precise grammatical correctness is critical—
native speakers may find entity-related gram-
mar errors silly, jarring, or even offensive.

To enable the creation of more linguistically
diverse NLG datasets, we release a Corpus
of Linguistically Significant Entities (CLSE)
annotated by linguist experts. The cor-
pus includes 34 languages and covers 74
different semantic types to support various
applications from airline ticketing to video
games. To demonstrate one possible use
of CLSE, we produce an augmented version
of the Schema-Guided Dialog Dataset, SGD-
CLSE. Using the CLSE’s entities and a small
number of human translations, we create a
linguistically representative NLG evaluation
benchmark in three languages: French (high-
resource), Marathi (low-resource), and Rus-
sian (highly inflected language). We establish
quality baselines for neural, template-based,
and hybrid NLG systems and discuss the
strengths and weaknesses of each approach.

1 Introduction

Natural language generation (NLG) (Reiter and
Dale, 2000) is an umbrella term for the problem

*The first two authors contributed equally to this work.
�Part of this work done while at Google.

Figure 1: The corpus of linguistically significant en-
tities (CLSE) is created by annotating a large num-
ber of entities with their linguistic properties. En-
tities are grouped by (language, semantic_type,
linguistic_signature) triples. This results in a corpus
of entities that, for a given language and semantic type,
is balanced across linguistic properties. Note that some
linguistic signatures have few or no annotated entities
because they simply do not occur.

of generating fluent, human-like text from a vari-
ety of inputs. It covers, among others, text-to-text
problems such as text summarization or machine
translation (Allahyari et al., 2017; Stahlberg, 2020;
Malmi et al., 2022), image-to-text problems (Hos-
sain et al., 2019), and structured data to text (Ku-
kich, 1983; McKeown, 1985).

Unlike most natural language processing tasks,
it is hard to produce reusable ground truth labeled
data for NLG: there can be many different outputs
that are grammatical and human-like. This is why
it is important to invest in NLG resources, espe-
cially for non-English languages. The GEM bench-
mark (Gehrmann et al., 2021) is such an initiative
for NLG evaluation. Its second version (Gehrmann
et al., 2022) covers 40 tasks and 51 languages and
provides an easy way for others to contribute.

In parallel to adding new NLG resources, a
framework for dataset augmentation has recently
been introduced by Dhole et al. (2021). The main
idea is to perform transformation and slicing of the
existing datasets to boost certain properties as a
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case singular plural
nominative книга (kniga) книги (knigi)

genitive книги (knigi) книг (knig)

dative книге (knige) книгам (knigam)

accusative книгу (knigu) книги (knigi)

instrumental книгой (knigoy) книгами (knigami)

prepositional книге (knige) книгах (knigakh)

Table 1: Inflections of the word "book" in Russian.
Cf. "Я купил <книгу>" ("I bought a <book>"; da-
tive case) and "Моя <книга> потерялась" ("My
<book> got lost; nominative case).

way to adversarially test the generalization abilities
of the benchmarked models. Our contribution is
similar in spirit: the corpus of linguistically signifi-
cant entities (CLSE) enables transforming existing
datasets to be more balanced by linguistic phenom-
ena covered by named entities (Figure 1).

Ensuring grammatical correctness is arguably
a basic requirement for any NLG system in any
language. Native speakers may find grammatical
errors produced by such systems silly, jarring, or
even offensive, for example if the utterance refers to
an entity with the wrong tense, formality, animacy,
or gender (Dinan et al., 2020). The CLSE resource
we introduce here is particularly useful for stress-
testing the linguistic robustness of NLG systems.

The rest of the paper is organized as follows.
Section 2 introduces the CLSE corpus annotated
by linguist experts. In Section 3, we discuss the
problem of NLG for task-oriented dialogs and how
CLSE can be applied to it. In Section 4 we show
how to construct a linguistically diverse dataset
for this task, a dataset we refer to as SGD-CLSE.
In Section 5, we introduce three different baseline
NLG systems which we evaluate on this dataset.
Results are discussed in Section 6.

2 Corpus of Linguistically Significant
Entities (CLSE)

The Google Knowledge Graph API1 (Guha et al.,
2016) provides access to millions of entries that
describe real-world entities like people, places, and
things. Each entity is a node in the graph and can
be associated with any number of schema.org se-
mantic types, such as Person, AdministrativeArea,
or TouristAttraction.

We first source lexical annotations from expert
linguists for a large number of entities in the knowl-

1developers.google.com/knowledge-graph

edge graph. Lexical annotations are language-
specific and pertain to broader categories of lin-
guistic properties like Animacy,2 Case,3 Classifier,
Countability, Definiteness, Gender, and Number.
Different languages consists of different linguistic
properties. For example, the concept of animacy is
not used in the English language. Descriptions of
each linguistic property class are included along-
side the dataset release.

Linguistic annotations for an entity include those
that are important to handle in a template-based
language generation context. For instance in En-
glish, location entities have locative preposition
annotations while people entities have gender anno-
tations.4 In other languages like French, all entities
are annotated for grammatical gender, and entities
with an article are marked depending on whether
its article stays unchanged or gets merged with a
preposition (like it would for common nouns).

We use linguists who are native speakers in
their corresponding language to source linguis-
tic annotations for popular entities. Except
for the following eight low-resource languages—
Bengali (bn), Gujarati (gu), Kannada (kn), Malay-
alam (ml), Marathi (mr), Tamil (ta), Telugu (te),
and Urdu (ur)—all annotators possess at least a
bachelors degree in some branch of linguistics. Lin-
guist annotators’ median age ranges from 25 to 35,
and they are roughly equally split between male
and female. Instead of expert linguists—or in ad-
dition to them—one may use data mining tech-
niques (Gutman et al., 2018).

We introduce the concept of a linguistic signa-
ture, which is a linearized string representation of
an entity’s linguistic attributes for a specific lan-
guage. Table 2 illustrates some examples of lin-
guistic signatures.

The maximum hypothetical number of distinct
linguistic signatures for a language is the Cartesian
product of all linguistic features and values for that
language. However, not all linguistic signatures
are naturally occurring or relevant. For example,
mass nouns5 that start with a vowel do not occur in
Spanish. Consequently we source different entities
for different languages (and different number of

2en.wikipedia.org/wiki/Animacy
3See Table 1 as an illustration.
4Note that the gender annotations may be sometimes in-

complete or inaccurate due to changed state of the world, an
annotator mistake, or a lack of standard linguistic handling for
gender non-binary persons in certain languages.

5thoughtco.com/uncountable-noun-spanish-3079280
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lang name signature semantic type

fr Suisse number:SINGULAR,gender:FEMININE,
starts_w_vowel:0

Country

de Champions League number:SINGULAR,gender:FEMININE,
article:DEFINITE,
locative_prep:PREP_IN,
directional_prep:PREP_NACH

Event

ru Саратовские авиалини number:PLURAL,casus:NOMINATIVE,
allative:PREP_K,
comitative:PREP_S,topical:PREP_O,
locative_prep_geo:PREP_V

Corporation

Table 2: Examples of CLSE linguistic signatures (truncated for conciseness).

them) to ensure linguistic diversity appropriate for
each language.

To obtain entities based on linguistic vari-
ation, we annotate a large number of enti-
ties for each semantic type to create a ta-
ble of (language, semantic_type, entity_id,
name, linguistic_signature). We group rows
in the table by (language, semantic_type,
linguistic_signature) triples. The complete cor-
pus covers 34 languages, 74 semantic types, and
222 distinct linguistic signatures.

The full Corpus of Linguistically Significant En-
tities is available at clse.page.link/data.

3 CLSE Case Study: Task-Oriented
Dialogs

To demonstrate how one may use this corpus, we
consider the problem of NLG for task-oriented
dialog systems (Wen et al., 2015). Unlike open-
domain chit-chat systems, the natural language in-
terface of virtual assistants such as Amazon Alexa,
Apple Siri, or Google Assistant is highly task-
oriented. Users often interact with their virtual
assistants to accomplish a specific action, like find-
ing flights, booking restaurants, buying tickets, etc.

In a task-oriented dialogue, the conversation be-
tween the user and the assistant is tracked by a
dialog manager that uses a dialog state, a summary
of the entire conversation up to the current turn (see,
e.g., (Pieraccini, 2021)). The dialog state consists
of slots and values related to the specific intents,
services, and actions in question. The assistant uses
the dialog state to 1) invoke external APIs with ap-
propriate parameter values, as specified by the user

Wikidata CLSE

Total # of arguments 20 17
Output is missing "the" 1 6
Wrong preposition "in" 0 3
Grammatical outputs 95% 47%

Table 3: Comparing CLSE and WikiData as sources of
arguments for testing an NLG system.

over the dialog history, and 2) generate next actions
to continue the dialog, for example soliciting for
more information from the user or confirming the
user’s intent or request (Aliannejadi et al., 2021).
Finally, 3) the selected dialog actions along with
structured data is used to generate a new utterance
to respond back to the user (the NLG task).

Task-oriented NLG datasets like Multi-
WOZ (Budzianowski et al., 2018) and SGD (Ras-
togi et al., 2020) are designed to be balanced with
respect to the number of turns, intent and slot
usage, etc., without much focus on the linguistic
properties of incoming parameter values. For the
sake of illustration, let us consider the following
simplistic NLG system. It receives a location
argument and returns the following templated
response:

EMNLP will be held in ${location}.
Without consulting a linguist or a native speaker,
one can try exposing the issues of this tem-
plate by substituting different argument values
for location. The CLSE has 17 entries of type
AdministrativeArea with unique linguistic sig-
natures in English. Note that some signatures may
only differ in ways that are inconsequential to the
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Figure 2: An example of a conversation from a schema-guided dialog (Rastogi et al., 2020). The predicted dialogue
state (shown with dashed edges) for the first two user turns for an example dialogue, showing the active intent and
slot assignments, with two related annotation schemas. Note that the dialogue state representation is conditioned
on the schema under consideration, which is provided as input, as are the user and system utterances.

above templates, but the hope is still that they will
be more diverse than a general-purpose list. For
comparison, we consider a general-purpose list of
20 entities of type "administrative territorial entity"
(Q56061) from Wikidata (Vrandečić and Krötzsch,
2014).6 Table 3 summarizes the errors using entity
arguments from Wikidata and the CLSE. Wikidata
exposes only one potential issue: a missing deter-
miner in front of "Bahamas." Even worse, as of
2022-09-09, our SPARQL query returns the sur-
face form as "The Bahamas," which means that if
we were to evaluate our NLG system purely based
on the realized output texts, we may declare our
system to have 100% fluency, while using the enti-
ties from CLSE we immediately see that the system
is linguistically brittle, and there is more than 50%
fluency headroom (one sentence has two mistakes).

Factual accuracy mistakes are also unforgivable
when it comes to virtual assistants. Kale and Roy
(2020) point out delexicalized models as a less
error-prone alternative to lexicalized models. In the
delexicalized setting, models are trained to produce
output text with placeholders, which are filled in via
a separate lexicalization step (usually naive string
substitution). The semantic accuracy of delexical-
ized models tends to be far ahead of their lexical-
ized counterparts, especially in the presence of slot
values not seen during training. However, delexi-
calization and other copy-based methods are more
grammatically deficient in the presence of linguis-
tic phenomena such as morphological inflection
(changing surface form of a word depending on
its function in a sentence; see, e.g., Table 1). This
makes a naive delexialization approach suboptimal
for highly inflected languages (Dušek and Jurčíček,
2019), a claim that we will also test below.

6SPARQL query: pastebin.com/KBk17G5k.

4 SGD-CLSE: Generating Linguistically
Diverse Data Using the CLSE

We perform our experiments on the Schema-
Guided Dialog dataset from DCT8 (Rastogi et al.,
2020). To emulate a data-to-text setup, we pair each
utterance (text) with that utterance’s acts, services,
and slots. An example of such a pair can be seen in
Table 4. Since the scope of our experiments is to fo-
cus on linguistic robustness with regard to entities,
we only look at SYSTEM utterances, and ignore
all examples that don’t use any entity slots. This re-
sults in 707 (service_name, action, slot_names)
triples from the SGD train set and 23 triples from
the SGD test set.

Owing to the lack of noun inflections in En-
glish, we can also produce a delexicalized form
of the utterance by searching for and stubbing out
the argument values within. E.g., for the utter-
ance in Table 4 we would get "How would you
like ${restaurant}, which is situated in
${city}?". The delexicalized form gives us an
English template that allows us to substitute other
values for the placeholders to produce new realis-
tic utterances, enabling data augmentation methods
like the one described by Kale and Siddhant (2021).

In our case study, we assume that we already
have a system that can produce English utterances—
arguably a much easier task given the simplicity
of English grammar—and instead focus on local-
ization: generating fluent and grammatical output
in a target language. In this setup we get the fol-
lowing as input: dialog state, structured data, En-
glish text, and target language. We focus on three
languages: French, Russian, and Marathi. The mo-
tivation for choosing these languages is to have a
widely studied high-resource language (French),
a highly inflected language (Russian), and a low-

81

https://pastebin.com/KBk17G5k


input (structured data) output (utterance)

service_name: "Restaurants_1"
"How would you like Bazille,
which is situated in San Jose?"

actions: ["OFFER_restaurant", "OFFER_city"]
slots: {restaurant: "Bazille", city: “San Jose”}

Table 4: An example of structured data input and free text output for an SGD dialog utterance.

Figure 3: Algorithm for creating the SGD-CLSE dataset (example for French).

resource language (Marathi).
The process of creating the SGD-CLSE dataset,

leveraging the CLSE, is as follows. 1) for ev-
ery (service_name, action, slot_names) triple,
we generate argument values by randomly sam-
pling slot values from the CLSE for a specific tar-
get language: French, Russian, or Marathi respec-
tively. This requires us to establish a mapping
from each entity-related slot name to a semantic
type. For example, city slots in the SGD schemas
would be mapped to the City schema.org type in
the CLSE corpus. 2) we substitute these new ar-
gument values into the English delexicalized utter-
ances (templates) from SGD. The goal of entity
re-sampling using the CLSE is to generate as lin-
guistically diverse data as possible, for maximum
linguistic coverage in the target language.7 3) Fi-
nally, we use professional translators to translate
those utterances into the corresponding languages.
Figure 3 illustrates the algorithm.

We use the aforementioned process with three
examples per (service, action, slot_names) triple
to generate language-specific linguistically diverse
examples in French, Russian, and Marathi8 on the

7It is possible that substituting new arguments could break
the fluency of the example in the source language (English,
in our case). However, we found that imperfect substitutions
in the source language do not influence the quality of human
translations, produced by the process we describe further.

8It is worth noting that the quality bar for the CLSE an-

train partition of the SGD dataset. We then use
two of these examples for train and one for what
we call "within-triple test" split (wt-test).9 Unlike
the SGD dev and test splits, the wt-test split has a
particular focus on linguistics as opposed to gener-
alization across dialog states: it contains states that
were seen during training, but with a linguistically
diverse set of slot values. In addition to train and
wt-test sets, we also use a sample from the original
SGD dev and test sets translated into the target
languages. Table 5 has dataset statistics.

5 Experimental Setup

Below we describe our setup to evaluate different
NLG models using the SGD-CLSE dataset.

5.1 Models for Comparison
• nmt: An out-of-the-box machine transla-

tion model with English plain text as input.

notations was higher in Hindi compared to the other Indic
languages. While it might still be more appropriate to use
the Marathi section of the CLSE for other applications, we
empirically found that the Hindi section yields SGD-based
realizations of higher quality, while maintaining linguistic di-
versity. This is not entirely surprising, since the languages
are close geographically (both are spoken in India) and lin-
guistically (both are Indo-Aryan languages stemming from
Sanskrit). We therefore use the CLSE’s Hindi entities as a
proxy for Marathi ones.

9In cases where we were only able to obtain two distinct
examples, we use one of them for train and one for wt-test. In
case of a single example, the triple is discarded completely.
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lang train wt-test SGD test SGD dev

fr 451 233 277 187
ru 451 236 277 187
mr 451 234 277 187

Table 5: Number of items in different partitions of the
SGD-CLSE dataset.

We used the GOOGLETRANSLATE function of
Google Sheets.10

• d2t: A data-to-text model fine-tuned on the
available train set, with best checkpoint picked
on the dev set. We use a pretrained mT5 xxl
model (Xue et al., 2021) as a basis for our
fine-tuning.11

• tmpl: Collect translated templates (delexical-
ized utterances) for the train set. Slot values
are plugged in verbatim without any morpho-
logical inflection. Note that for most triples
we have two different translations available
for train (Table 5). We only use one of them
(picked at random) but also report confidence
intervals based on possibly picking different
translations as bases for delexicalization.12

• tmpl+G: Same as above with a grammatical
error correction (GEC) model applied on top
of the template output. We use gT5 xxl model
by Rothe et al. (2021).

Figure 4 illustrates which parts of the input data
are consumed by which models.

5.2 Training Details

For fine-tuning the d2t model we use a batch size
of 64 and fine-tuned on TPU for 5’000 steps with
a learning rate of 10−3. We trained the models
independently for each language and picked the
stopping point based on the corresponding dev set.
The model has 13B parameters.

10support.google.com/docs/answer/3093331; transla-
tions for the wt-test were obtained on 2022-01-28, for SGD
test/dev: on 2022-02-02.

11Our early experiments with mT5 base gave substantially
lower BLEU scores, suggesting that the bigger models yield
stronger baselines. We use xxl models going forward.

12We use a simple bootstrap procedure: pick one of the two
translations for each triple by flipping a fair coin. The process
is repeated 1000 times and the 5th and 95th percentiles are
reported as the confidence interval bounds.

French Russian Marathi

Accuracy 0.77 (s) 0.69 (s) 0.63 (s)
Fluency 0.43 (m) 0.51 (m) 0.35 (f)

Table 6: Kappa coefficient (Cohen, 1960) inter-rater
agreement. Values 0.21–0.40 are considered fair (f),
0.41–0.60 moderate (m) and 0.61–0.80 substantial (s).

5.3 Metrics

We use BLEU13 (Papineni et al., 2002) and
BLEURT14 (Sellam et al., 2020) as our automatic
metrics. For human evaluation, we assess fluency
and factual accuracy. Table 6 summarizes agree-
ment between raters.

Accuracy: Human raters are shown an NLG sys-
tem’s output in the target language as well as the
English text as a reference. They are instructed to
mark the NLG system output as inaccurate if any
information contradicts the English reference. This
effectively catches errors due to hallucinations, in-
correct grounding etc. Each example is rated by
three raters. We take the average of the accuracy
scores (1 for accurate, 0 otherwise).

Fluency: We ask the raters how grammatical an
NLG system’s output sounds on a 1 to 5 Likert
scale, with 5 being the highest score. Again, each
example is rated by three raters. We average the
scores across all the ratings to get the fluency score.

6 Results

We split this section into two. First, we look at the
results on the unseen test set. These contain dialog
situations, (service_name, action, slot_names),
which the systems did not see during training. We
then move to the wt-test split, where we expect the
gap to the human-written responses to be smaller.

6.1 Unseen Test Set

Table 7 contains the summary of the results. Nat-
urally, the template-based approaches are not able
to generalize to these situations, so they are not
included in the results here.

We could verify that all NLG systems are notice-
ably (and significantly) behind human translations
in terms of fluency. In terms of accuracy, on the
other hand, the nmt baseline is insignificantly be-
low the human bar for French, suggesting that we

13� github.com/tuetschek/e2e-metrics.
14BLEURT-20� github.com/google-research/bleurt.
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Figure 4: Input data flow for various baseline NLG systems. GEC and nmt (green) are off-the-shelf models, while
d2t (azure) is a model fine-tuned on given data. tmpl and tmpl+G are simple pipeline algorithms (rhombus shape).

BLEU BLEURT acc. fl.

fr
d2t 0.14 0.39 0.78 4.58
nmt 0.32 0.62 0.96N 4.43H

human - - 0.98 4.78N

ru
d2t 0.15 0.50 0.50 4.35
nmt 0.16 0.57 0.79N 3.70H

human - - 0.96N 4.89N

mr
d2t 0.07 0.60 0.41 3.50
nmt 0.12 0.71 0.77N 4.15N

human - - 0.92N 4.71N

Table 7: Results of the NLG models on the SGD test
set (unseen triples). For human scores—accuracy (acc.)
and fluency (fl.)—we also mark whether those are sta-
tistically significantly different from the previous row
using paired t-test: N or H denote significant difference
at p = 0.01, M or O — at p = 0.05 respectively.

do benefit from the high-resource nature of the lan-
guage. Another observation is that, while the nmt
baseline appears to outperform d2t on all dimen-
sions for a low-resource Marathi, the picture is less
clear for French and Russian. There we see that the
d2t actually scores significantly lower than nmt in
terms of accuracy but higher in terms of fluency.
We believe that the accuracy gap could be lowered
with more training data, which we leave for future
work to investigate.

6.2 Within-Triples Test

Table 8 contains a summary of performance of dif-
ferent NLG systems while Table 11 in Appendix B

contains example outputs. We see notable qual-
ity gains of the d2t or template-based approaches
compared to the off-the-shelf nmt system.

The grammatical error correction model
(tmpl+G baseline), appears to improve the results
on top of the pure template-based tmpl baseline
for high-resource languages. The gain is higher
for Russian, a highly inflected language. No
measurable effect is reported on Marathi, a low
resource language, suggesting that the grammar
error correction model itself may not be of
sufficient quality. The fluency tmpl+G achieves
for Russian is still significantly lower than that of
d2t, but comes with a significantly higher accuracy
(inasmuch as we can compare them given that the
fluency and accuracy scores for d2t come from a
different rater pool).

It is interesting to note that the d2t model ap-
pears to get higher human scores for French than
the other NLG systems, but scores lower on auto-
matic metrics. In fact, the human scores are not
statistically different from that of the human base-
line. Upon closer examination, however, we see
that this model still frequently makes grave mis-
takes. One explanation for this could be that the
humans have a tolerance for hallucinations or miss-
ing facts when there are many of them presented in
the same utterance. This is consistent with previ-
ous findings of Freitag et al. (2021). Appendix B
shows examples where the automatic metrics are
right to penalize the d2t model for accuracy while
raters completely miss it. While prior work such
as (Pagnoni et al., 2021; Honovich et al., 2022)
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BLEU BLEURT acc. fl.

fr

nmt 0.39 0.65 0.90 4.19
tmpl 0.46 0.70 0.88

[0.87, 0.90]
4.31M

[4.26, 4.34]

tmpl+G 0.47 0.71 0.91N
[0.88, 0.91]

4.48N
[4.43, 4.49]

d2t 0.41 0.65 0.91 4.64N

human - - 0.94 4.63

ru

nmt 0.15 0.57 0.71 3.37
d2t 0.37 0.66 0.72∗ 4.51N∗

tmpl 0.41 0.72 0.79N
[0.79, 0.83]

3.95H
[3.93, 4.03]

tmpl+G 0.44 0.74 0.79
[0.77, 0.81]

4.21N
[4.17, 4.28]

human - - 0.87N 4.62N

mr

nmt 0.15 0.69 0.72 3.73
d2t 0.33 0.69 0.66 4.05N

tmpl 0.51 0.78 0.83N
[0.80, 0.83]

4.32N
[4.27, 4.34]

tmpl+G 0.51 0.78 0.82
[0.79, 0.81]

4.29
[4.26, 4.33]

human - - 0.92N 4.50N

Table 8: Results of the baseline NLG systems on the
wt-test set (seen triples). For human scores—accuracy
(acc.) and fluency (fl.)—we also mark whether those
are statistically significantly different from the previous
row using paired t-test: N or H denote significant differ-
ence at p = 0.01, M or O — at p = 0.05 respectively.
The square brackets for template-based approaches de-
note 95% confidence intervals obtained using the boot-
strap procedure described in Section 5.1.
(∗) Human scores for d2t in Russian come from a different
rater population and may not be directly comparable.

studies factual consistency in English, further work
on evaluating factual consistency of localization
approaches is needed.

To summarize the above results, we can conclude
that there is still a gap between outputs gener-
ated by our baseline NLG systems and responses
written by humans, especially for lower-resource
languages like Marathi or morphologically com-
plex languages such as Russian. Among base-
line systems, the template-based tmpl/tmpl+G ap-
proaches, when available, clearly outperform the
d2t model for Marathi. The results of the auto-
matic metrics in other languages suggest the same
conclusion, though human scores are not always
consistent with that. We attribute this inconsis-
tency to the fact that the d2t system can generate
seemingly good responses that, while missing or
introducing facts, manage to convince human raters
of their accuracy (see Appendix B).

Even with this caveat, we can see that accuracy

scores of the template-based approach (tmpl+G)
is the same or higher than that of nmt or d2t base-
lines, suggesting that the factual accuracy is a fun-
damental weakness of neural approaches. At the
same time, the template-based approaches still suf-
fer from fluency issues, even with the grammatical
error correction model applied. We hypothesize
that the main reason is that the task of correcting
mistakes in the template-based approach does not
exactly map to the grammatical error correction
task. There are types of mistakes we see here that
humans rarely make: e.g., inserting determiners
in front of popular city names like "London" or
"Paris" or confusing dative for nominative (dative
and accusative are more commonly confused by hu-
mans). This suggests that developing a dedicated
grammar model for NLG may be helpful.

7 Conclusion and Discussion

Building a natural language generation system that
can handle a broad diversity of entities with vary-
ing linguistic phenomena remains an open chal-
lenge. With the CLSE, any schema-informed
NLG datasets can use techniques described in Sec-
tions 3 and 4 to produce better linguistically rep-
resented data, and measure metrics on that data to
draw more linguistically thoughtful conclusions.
The space of possible inputs that NLG systems
will be expected to handle may be highly uncon-
strained, and designing solutions that are linguisti-
cally robust, and defensibly so, is an ambitious and
worthwhile pursuit.

Our results in Section 6 establish an evaluation
procedure probing NLG systems for their linguistic
capabilities. We also evaluate four baselines us-
ing this procedure and conclude that none of them
is at the human level yet. Improving upon these
baselines can be approached from two sides: either
1) improving factual accuracy and reducing hallu-
cinations of a purely neural data-to-text approach
or 2) improving the quality of grammatical error
correction applied to a template-based approach.

Beyond NLG for virtual assistants, the CLSE
data may also be used for other NLG tasks. E.g., we
can use it to augment machine translation datasets
by swapping named entities to further probe the
fluency of generated translations.

The full CLSE dataset is openly available at
clse.page.link/data.
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8 Ethical Considerations

Releasing a dataset in multiple languages, includ-
ing several low-resource ones, would allow to push
the state of research in non-English NLG. While
it is not impossible that this dataset might be used
for building ML models for malicious applications,
we believe it will be widely used for public good
and will be a net positive contribution to society.

Crowd-sourced annotations were collected using
a proprietary crowd-sourcing platform. Workers
were paid at least 50% more than the minimum
hourly wage. No information about the workers
will be released and worker IDs are anonymized.

9 Limitations

The dataset we release and the experiments we
conduct have number of limitations. Firstly, there
are other linguistically significant phenomena that
arise from non-entities like verbs and numbers
that the CLSE does not include. Then we only
cover 34 languages—small in comparison to, say,
Wikipedia or Common Crawl datasets (Conneau
and Lample, 2019; Xue et al., 2021) covering 100+
languages. Moreover, the quality of annotations
for low-resource languages is lower due to limited
linguist resources. Not only the quality, but the
quantity of annotated entities varies greatly across
languages (Table 9), either due to some languages
having fewer linguistic signatures, or annotator re-
source constraints. The experiments we conduct
with SGD cover only a subset of CLSE in terms
of languages and semantic types. The SGD-based
dataset we used for our case study is rather small
(limited by the human translation budget), and hu-
man ratings were not free of biases (e.g., humans
were often more forgiving for accuracy mistakes
than the automatic metrics were). Our experiments
do not include an NMT model fine-tuned on the
human translations—a common domain adaptation
technique (Luong and Manning, 2015; Neubig and
Hu, 2018; Bapna and Firat, 2019)—in favor of a
direct data-to-text model. Finally, we used the xxl
versions of the models, which require significant
computational resources to train and run.
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A CLSE Dataset Statistics

Table 9 contains statistics of the CLSE dataset per language. We employ commonly used 2-letter language
tags (ISO-639-1), except for "cmn-CN" for Chinese Mandarin written using the simplified script, "cmn-
TW" for Chinese Mandarin written with traditional script, and "yue" for the Cantonese Chinese (written
using traditional script). We do not use the Chinese macro-tag "zh" because it is important to distinguish
the above locales for NLG purposes.

language ar bn cmn-CN cmn-TW cs da de en es fr gu
# unique entities 899 721 530 529 1238 1286 2922 4076 3181 4312 798
# ling. attributes 21 6 5 6 20 23 37 32 26 26 6

language hi id it ja jv kn ko ml mr nl no
# unique entities 950 705 2510 1063 55 849 885 888 924 1049 1237
# ling. attributes 18 9 41 47 2 6 9 6 6 20 23

language pl pt ru su sv ta te th tr ur vi yue
# unique entities 1606 2464 3039 29 1309 891 885 724 1262 883 612 551
# ling. attributes 30 25 31 2 19 6 6 9 10 6 8 19

Table 9: Per language statistics of the CLSE dataset. The number of annotated entities across different languages
varies greatly, either due to fewer linguistic signatures applicable to a given language or annotator resource con-
straints.

The complete corpus covers 34 languages, 74 semantic types, and 222 distinct linguistic signatures.
Table 10 contains a full list of the semantic types present in the dataset.

Semantic Type Description

AdministrativeArea A geographical region, typically under the jurisdiction of a particular govern-
ment.

Airline An organization that provides flights for passengers.

Airport An airport.

AmusementPark An amusement park.

Article An article, such as a news article or piece of investigative report. Newspapers
and magazines have articles of many different types and this is intended to
cover them all.

BodyOfWater A body of water, such as a sea, ocean, or lake.

Book A book.

BookSeries A series of books. Included books can be indicated with the hasPart property.

Brand A brand is a name used by an organization or business person for labeling a
product, product group, or similar.

Bridge A bridge.

BroadcastChannel A unique instance of a BroadcastService on a CableOrSatelliteService lineup.

BroadcastService A delivery service through which content is provided via broadcast over the
air or online.

BusStation A bus station.

CableOrSatelliteService A service which provides access to media programming like TV or radio.
Access may be via cable or satellite.

Cemetery A graveyard.

City A city or town.

CivicStructure A public structure, such as a town hall or concert hall.

CollegeOrUniversity A college, university, or other third-level educational institution.

Continent One of the continents (for example, Europe or Africa).
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Table 10 – continued from previous page
Semantic Type Description

Corporation Organization: A business corporation.

Country A country.

CreativeWork The most generic kind of creative work, including books, movies, pho-
tographs, software programs, etc.

DefenceEstablishment A defence establishment, such as an army or navy base.

Diet A strategy of regulating the intake of food to achieve or maintain a specific
health-related goal.

EducationalOrganization An educational organization.

Event An event happening at a certain time and location, such as a concert, lecture,
or festival. Ticketing information may be added via the offers property.
Repeated events may be structured as separate Event objects.

Game The Game type represents things which are games. These are typically rule-
governed recreational activities, e.g. role-playing games in which players
assume the role of characters in a fictional setting.

GovernmentOrganization A service provided by a government organization, e.g. food stamps, veterans
benefits, etc.

GovernmentService A service provided by a government organization, e.g. food stamps, veterans
benefits, etc.

Hospital A hospital.

ItemList A list of items of any sort—for example, Top 10 Movies About Weathermen,
or Top 100 Party Songs. Not to be confused with HTML lists, which are
often used only for formatting.

LakeBodyOfWater A lake (for example, Lake Pontrachain).

LandmarksOrHistoricalBuildings An historical landmark or building.

LocalBusiness A particular physical business or branch of an organization. Examples of
LocalBusiness include a restaurant, a particular branch of a restaurant chain,
a branch of a bank, a medical practice, a club, a bowling alley, etc.

LodgingBusiness A lodging business, such as a motel, hotel, or inn.

MobileApplication A software application designed specifically to work well on a mobile device
such as a telephone.

Mountain A mountain, like Mount Whitney or Mount Everest.

Movie A movie.

MovieSeries A series of movies. Included movies can be indicated with the hasPart
property.

MovieTheater A movie theater.

Museum A museum.

MusicAlbum A collection of music tracks.

MusicComposition A musical composition.

MusicGroup A musical group, such as a band, an orchestra, or a choir. Can also be a solo
musician.

MusicRecording A music recording (track), usually a single song.

MusicVenue A music venue.

Organization An organization such as a school, NGO, corporation, club, etc.

Periodical A publication in any medium issued in successive parts bearing numerical
or chronological designations and intended, such as a magazine, scholarly
journal, or newspaper to continue indefinitely.

Person A person (alive, dead, undead, or fictional).

Place Entities that have a somewhat fixed, physical extension.

PlaceOfWorship Place of worship, such as a church, synagogue, or mosque.
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Table 10 – continued from previous page
Semantic Type Description

Product Any offered product or service. For example: a pair of shoes; a concert ticket;
the rental of a car; a haircut; or an episode of a TV show streamed online.

ProductModel A datasheet or vendor specification of a product (in the sense of a prototypical
description).

RadioStation A radio station.

Restaurant A restaurant.

RiverBodyOfWater A river (for example, the broad majestic Shannon).

School A school.

SingleFamilyResidence Residence type: Single-family home.

SoftwareApplication A software application.

SportsOrganization Represents the collection of all sports organizations, including sports teams,
governing bodies, and sports associations.

SportsTeam Organization: Sports team.

StadiumOrArena A stadium.

TVSeason Season dedicated to TV broadcast and associated online delivery.

TVSeries CreativeWorkSeries dedicated to TV broadcast and associated online delivery.

TelevisionChannel A unique instance of a television BroadcastService on a CableOrSatelliteSer-
vice lineup.

TheaterGroup A theater group or company, for example, the Royal Shakespeare Company
or Druid Theatre.

TouristAttraction A tourist attraction. In principle any Thing can be a TouristAttraction, from
a Mountain and LandmarksOrHistoricalBuildings to a LocalBusiness. This
Type can be used on its own to describe a general TouristAttraction, or be
used as an additionalType to add tourist attraction properties to any other
type.

VideoGame A video game is an electronic game that involves human interaction with a
user interface to generate visual feedback on a video device.

VideoGameSeries A video game series.

VisualArtwork A work of art that is primarily visual in character.

Volcano A volcano, like Fuji san.

Waterfall A waterfall, like Niagara.

WebSite A WebSite is a set of related web pages and other items typically served from
a single web domain and accessible via URLs.

Zoo A zoo.

Table 10: List of all semantic types in the CLSE with descriptions from schema.org . Entities can be associated
with multiple semantic types. See (Guha et al., 2016) or schema.org for more details about the semantic types.
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B Model Output Examples

structured
data

service_name: Hotels_2 | confirm, where_to: Amsterdam | confirm,
number_of_adults: 5 | confirm, check_in_date: July 24, 2019 |
confirm, check_out_date: April 22, 2021

English Alright. So you’d like to make
a reservation for 5 in Amster-
dam. You are checking in July
24, 2019 and checking out on
April 22, 2021.

Alright. So you’d like to make
a reservation for 5 in Amster-
dam. You are checking in July
24, 2019 and checking out on
April 22, 2021.

nmt Bien. Donc, vous aimeriez faire
une réservation pour 5 à Amster-
dam. Vous vérifiez le 24 juillet
2019 et vous vérifiez le 22 avril
2021.

Good. So you would like to
make a reservation for 5 in Am-
sterdam. You verify on July 24,
2019 and you verify on April
22, 2021.

"check in/out" mis-
translated as "verify"

d2t Très bien. Vous arrivez le 24
juillet 2019 et partez le 22 avril
2021. C’est bien ça?

Very well. You are arriving on
July 24, 2019 and departing on
April 22, 2021. Is that cor-
rect?

missing "for 5" and
"Amsterdam", asking
a question in the end

tmpl D’accord. Vous souhaitez faire
une réservation pour 5 personne
à Amsterdam. Vous arrivez le
24 juillet 2019 et partez le 22
avril 2021.

OK. You want to make a reser-
vation for 5 person in Amster-
dam. You arrive on July 24,
2019 and depart on April 22,
2021.

"5 personne" is un-
grammatical

tmpl+G D’accord. Vous souhaitez faire
une réservation pour 5 person-
nes à Amsterdam. Vous arrivez
le 24 juillet 2019 et partez le 22
avril 2021.

OK. You want to make a reser-
vation for 5 people in Amster-
dam. You arrive on July 24,
2019 and depart on April 22,
2021.

human D’accord. Vous souhaitez faire
une réservation pour 5 person-
nes à Amsterdam. Vous arrivez
le 24 juillet 2019 et partez le 22
avril 2021.

OK. You want to make a reser-
vation for 5 people in Amster-
dam. You arrive on July 24,
2019 and depart on April 22,
2021.

Table 11: Example of different NLG system outputs in French.

We often see raters reporting perfect accuracy despite missed facts or new facts introduced by the model.
This is understandable, as humans are not perfect and often miss things. For example, the d2t output in
Table 11 misses multiple aspects, yet all three raters gave it a perfect accuracy score of 1. Despite high
human scores, such a model would be problematic to put in front of real users, as rightfully signalled by
the automatic metric(s). Therefore, one should not completely discard automatic metrics, and use them in
addition to human scores to flag potential model issues. Table 12 exemplifies this: all results get perfect
accuracy scores from the raters whereas BLEURT successfully catches the mismatch.
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English reference d2t model prediction BLEURT

Satire. Je vais lancer la lecture. C’est une satire tirée de
l’album de musique techno. / [I am going to start.
It’s a satire taken from the techno music album].

0.11

Please confirm the address of desti-
nation as 2901 East Hastings Street.
Also for how many person do you
want to book the cab and what type
of ride you want?

Vous allez au 2901 East Hastings Street, c’est ça?
Vous serez combien? / [You’re going to 2901 East
Hastings Street, right? How many of you?]

0.16

Is your destination 2033 Camden Av-
enue # F3? Please tell me the number
of seats you need, as well as your ride
preference. You can say Pool, Luxury
or something else.

Vous souhaitez une course luxe, unisexe au 2033
Camden Avenue # F3, pour combien de personnes?
/ [Would you like a luxury, unisex ride at 2033
Camden Avenue #F3, for how many people?]

0.18

Table 12: d2t model outputs with the lowest BLEURT scores in French. Mismatched facts are marked in bold. All
three of them get perfect accuracy scores from all three raters. Human raters are imperfect, and for factual accuracy,
there seems to be some tolerance for hallucinations or missing facts when there are many pieces of information
presented in the same utterance.
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C Datasheet

Datasheets for Datasets “document [the dataset]
motivation, composition, collection process, rec-
ommended uses, and so on. [They] have the po-
tential to increase transparency and accountability
within the machine learning community, mitigate
unwanted biases in machine learning systems, facil-
itate greater reproducibility of machine learning re-
sults, and help researchers and practitioners select
more appropriate datasets for their chosen tasks.”

Motivation

For what purpose was the dataset created? Was
there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.
CLSE was created for training, testing, and evaluat-
ing NLG systems in multiple languages, including
several low-resource ones. It allows to do sam-
pling and slicing by language, semantic type, or
linguistic phenomena.

Who created this dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?
Google Assistant NLP Team.

Who funded the creation of the dataset? If there is
an associated grant, please provide the name of the
grantor and the grant name and number.
Google Assistant NLP Team.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions be-
tween them; nodes and edges)? Please provide a de-
scription.
Entities of semantic types detailed in Appendix A.

How many instances are there in total (of each type,
if appropriate)?
80’893 language entries (13’649 unique entities).

Does the dataset contain all possible instances or
is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then
what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so,

please describe how this representativeness was vali-
dated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or
unavailable).
The dataset represents a sample of all entities

found in the Knowledge Graph. For each language
and semantic type, the sample is meant to limit
over-representation of entities with common lin-
guistic attributes (see Figure 1).

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features?
In either case, please provide a description.
See Table 2 for examples.

Is there a label or target associated with each in-
stance? If so, please provide a description.
No.

Is any information missing from individual in-
stances? If so, please provide a description, explaining
why this information is missing (e.g., because it was un-
available). This does not include intentionally removed
information, but might include, e.g., redacted text.
Certain linguistic attributes may not be annotated

for some languages due to limited language support.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? If so, please describe how these relation-
ships are made explicit.
No, except for the same entity—identified by its

ID—appearing for multiple languages as a separate
row.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please pro-
vide a description of these splits, explaining the rationale
behind them.
No.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a description.
Surface forms (entity names) and linguistic anno-

tations were created by humans and therefore may
be inaccurate or incomplete.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on ex-
ternal resources, a) are there guarantees that they will
exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., includ-
ing the external resources as they existed at the time
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the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please
provide descriptions of all external resources and any re-
strictions associated with them, as well as links or other
access points, as appropriate.
The dataset is self-contained. Entity IDs refer to

the Google Knowledge Graph API, but this is as an
implementation detail (API stability does not affect
the usefulness of the dataset).

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality,
data that includes the content of individuals non-
public communications)? If so, please provide a de-
scription.
No.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe
why.
No, to the best of our knowledge.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
Some entities in the dataset are of semantic type

“Person.”

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these
subpopulations are identified and provide a description
of their respective distributions within the dataset.
No.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indirectly
(i.e., in combination with other data) from the
dataset? If so, please describe how.
Yes, people with a Knowledge Graph entry can be

uniquely identified.

Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, reli-
gious beliefs, political opinions or union member-
ships, or locations; financial or health data; biomet-
ric or genetic data; forms of government identifica-
tion, such as social security numbers; criminal his-
tory)? If so, please provide a description.
No, to the best of our knowledge.

Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or in-
directly inferred/derived from other data, was the data
validated/verified? If so, please describe how.
The data was curated by linguists. See Section 2

for more details.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)? How were these mechanisms or procedures
validated?
The data was curated in spreadsheets and text files
and, as a rule, reviewed by another linguist.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)?
Exact details of the sampling procedure cannot

be disclosed at the moment to preserve anonymity
and to comply with internal policies of the authors’
organizations.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)?
Contractors. Each contract is reviewed, approved,

and executed according to the strict company poli-
cies.

Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the
data associated with the instances (e.g., recent
crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the in-
stances was created.
The bulk of linguistic data was collected over the

years 2020 and 2021. Semantic type associations
were retrieved from the Google Knowledge Graph
API on 2022-05-18.

Were any ethical review processes conducted (e.g.,
by an institutional review board)? If so, please pro-
vide a description of these review processes, including
the outcomes, as well as a link or other access point to
any supporting documentation.
Yes. The dataset description was improved and

this datasheet was created as an outcome.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
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Some entities in the dataset are of semantic type
“Person.” These are limited to individuals (alive,
dead, or fictional) who are popular enough to have
a Knowledge Graph entry.

Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?
No.

Were the individuals in question notified about the
data collection? If so, please describe (or show with
screenshots or other information) how notice was pro-
vided, and provide a link or other access point to, or
otherwise reproduce, the exact language of the notifica-
tion itself.
No.

Did the individuals in question consent to the col-
lection and use of their data? If so, please describe
(or show with screenshots or other information) how con-
sent was requested and provided, and provide a link or
other access point to, or otherwise reproduce, the exact
language to which the individuals consented.
N/A.

If consent was obtained, were the consenting indi-
viduals provided with a mechanism to revoke their
consent in the future or for certain uses? If so,
please provide a description, as well as a link or other
access point to the mechanism (if appropriate).
N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so,
please provide a description of this analysis, including
the outcomes, as well as a link or other access point to
any supporting documentation.
N/A.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature ex-
traction, removal of instances, processing of miss-
ing values)? If so, please provide a description. If
not, you may skip the remainder of the questions in this
section.
No.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or
other access point to the “raw” data.

N/A.

Is the software used to preprocess/clean/label the
instances available? If so, please provide a link or
other access point.
N/A.

Uses

Has the dataset been used for any tasks already? If
so, please provide a description.
Yes, for experiments in Section 5.

Is there a repository that links to any or all papers
or systems that use the dataset? If so, please provide
a link or other access point.
No.

What (other) tasks could the dataset be used for?
E.g., for balancing machine translation data.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? For example, is there anything that a future user
might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyp-
ing, quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide a
description. Is there anything a future user could do to
mitigate these undesirable harms?
The linguistic attributes are provided “as is” and

may be innacurate or incomplete.

Are there tasks for which the dataset should not be
used? If so, please provide a description.
The dataset should not be used to infer non-

linguistic properties of entities. In particular, the
linguistic attributes are not appropriate proxy data
to infer a person’s aliveness or gender.

Distribution

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
If so, please provide a description.
Yes.

How will the dataset will be distributed (e.g., tarball
on website, API, GitHub) Does the dataset have a dig-
ital object identifier (DOI)?
As a CSV file retrievable from https://clse.
page.link/data.
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When will the dataset be distributed?
Upon acceptance of the publication.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other ac-
cess point to, or otherwise reproduce, any relevant li-
censing terms or ToU, as well as any fees associated
with these restrictions.
Yes, CC-BY license.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances? If so, please describe these restrictions, and
provide a link or other access point to, or otherwise re-
produce, any relevant licensing terms, as well as any
fees associated with these restrictions.
No, to the best of our knowledge.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual in-
stances? If so, please describe these restrictions, and
provide a link or other access point to, or otherwise re-
produce, any supporting documentation.
No, to the best of our knowledge.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?
The authors of this publication.

How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?
Yes, by email or any other contact point provided
at https://clse.page.link/data.

Is there an erratum? If so, please provide a link or
other access point.
No.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how up-
dates will be communicated to users (e.g., mailing list,
GitHub)?
No updates are planned at the moment. If any is

made, it will be communicated at https://clse.
page.link/data.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances (e.g., were individuals in ques-
tion told that their data would be retained for a fixed

period of time and then deleted)? If so, please de-
scribe these limits and explain how they will be en-
forced.
N/A.

Will older versions of the dataset continue to be sup-
ported/hosted/maintained? If so, please describe how.
If not, please describe how its obsolescence will be com-
municated to users.
Yes.

If others want to extend/augment/build
on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a description.
Will these contributions be validated/verified? If so,
please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to
other users? If so, please provide a description.
Please, contact the dataset mainteners using the

contact information above.
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Abstract

Scoring the factuality of a generated summary
involves measuring the degree to which a target
text contains factual information using the in-
put document as support. Given the similarities
in the problem formulation, previous work has
shown that Natural Language Inference models
can be effectively repurposed to perform this
task. As these models are trained to score entail-
ment at a sentence level, several recent studies
have shown that decomposing either the input
document or the summary into sentences helps
with factuality scoring. But is fine-grained de-
composition always a winning strategy? In
this paper we systematically compare different
granularities of decomposition – from docu-
ment to sub-sentence level, and we show that
the answer is no. Our results show that incor-
porating additional context can yield improve-
ment, but that this does not necessarily apply to
all datasets. We also show that small changes
to previously proposed entailment-based scor-
ing methods can result in better performance,
highlighting the need for caution in model and
methodology selection for downstream tasks.

1 Introduction

With improvements largely driven by recent ad-
vances in pre-trained language models (Vaswani
et al., 2017; Radford et al., 2018; Lewis et al.,
2020), modern abstractive summarization models
are capable of producing summaries that are both
fluent and coherent. However, they are still prone to
various forms of “hallucination”, generating state-
ments that are not supported by the input text (Cao
et al., 2018; Maynez et al., 2020). This has lead to
a growing interest in being able to accurately mea-
sure the degree to which machine-generated output
is non-factual (Falke et al., 2019; Kryscinski et al.,
2020; Pagnoni et al., 2021; Laban et al., 2022).

In factuality scoring and other closely related
tasks such as fact verification (Vlachos and Riedel,
2014; Thorne et al., 2018), the objective is to assess

whether or to what degree the claims in a given text
can be supported by other “evidence” texts. Given
this setup, previous work has drawn a parallel
with the task of Natural Language Inference (NLI),
which has a similar goal of determining whether
the meaning of one text can be inferred (entailed)
from another (Dagan et al., 2006). As a conse-
quence, models trained on large NLI datasets (Bow-
man et al., 2015; Williams et al., 2018; Nie et al.,
2020) have often been successfully repurposed
for the task of detecting factual inconsistencies in
machine-generated summaries (Falke et al., 2019;
Kryscinski et al., 2020; Maynez et al., 2020; Zhang
and Bansal, 2021). It is now common that high-
performance NLI models are trained on a combina-
tion of NLI and fact verification datasets (Nie et al.,
2020; Schuster et al., 2021).

One way to repurpose NLI models for factuality
scoring is to use the full text of the input and sum-
mary as the premise and hypothesis respectively,
then take the factuality score to be a function of
the model output distribution. However, NLI mod-
els are usually trained with sentence pairs as input,
and can suffer performance degradation with the
longer contexts that arise in summarization (Laban
et al., 2022; Honovich et al., 2022). Worse yet, the
majority of modern NLI models are based on ar-
chitectures such as the Transformer (Vaswani et al.,
2017) that use fixed-length input sizes, and it may
not be possible for a full document and summary
pair to fit into this context.

Another approach to NLI-based factuality scor-
ing is grounded in the idea of first decomposing the
input text into finer levels of granularity, followed
by a later score aggregation step. Falke et al. (2019)
proposed a scoring method based on sentence level
decomposition, but concluded that the NLI models
at the time were not robust enough for the task.
However, recently both Schuster et al. (2022) and
Laban et al. (2022) have shown that variations on
this decomposition-based strategy, in combination
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with the improved performance of modern NLI
models, can produce systems that perform well
at the task of detecting factual inconsistencies in
generated summaries.

In this work we revisit existing studies of NLI-
based factuality scoring and perform a system-
atic comparison of input-summary decomposition
methodologies at different levels of granularity –
from document to sub-sentence level. We show
that contrary to previous findings, adding more
context to the premise (the source document) can
sometimes outperform approaches based on a more
fine-grained decomposition. We also find that small
changes to the factuality scoring function can lead
to a substantial increase in performance, but that
model performance does not necessarily generalize
across benchmarks that use different metrics (even
when applied to the same underlying data). Our
results highlight the need for caution and additional
evaluation when selecting a model and methodol-
ogy for downstream tasks.

2 Decomposition-based factuality scoring

In this work we are primarily concerned with ref-
erenceless factuality scoring of document sum-
maries. To do so, we therefore require a func-
tion from an input (document, summary) pair
to a score value Z ∈ R. NLI models typically
learn a function that maps a pair of input text
strings (Xprem, Xhyp), commonly referred to as
the premise and hypothesis, to a probability dis-
tribution over the output classes entailment, neu-
tral, or contradiction. One simple way to repur-
pose NLI models for factuality scoring is with
(document, summary) as (Xprem, Xhyp), and to
take the score Z to be some function fZ(pe, pn, pc)
over the probability values given for entailment
(pe), neutral (pn), or contradiction (pc)1. We ex-
periment with three decomposition-based scoring
methods, described in the following sections.

2.1 SummaC
The SummaC models proposed by Laban et al.
(2022) decompose the document and summary into
sentences. A document is split into M sentences
labelled D1, . . . , DM , and a summary into N sen-
tences S1, . . . , SN . Each (Dm, Sn) combination
is then passed through an NLI model, with scores

1We note that generally the NLI models are not well-
calibrated, and so these probability values may not necessarily
have semantically meaningful interpretations, but empirically
they can often be used directly in this manner.

computed using a function of the output proba-
bilities. This decomposition results in an M ×N
score matrix for each (document, summary). La-
ban et al. (2022) describe two model classes, which
differ in how they process the score matrix to create
a final factuality score for a summary:2

SUMMAC ZERO-SHOT (SCZS): each summary
sentence is first scored by taking the maximum
score value computed against any of the document
sentences (max over each column in the M ×N
matrix). These summary sentence scores are then
averaged to compute the final score.

SUMMAC CONVOLUTION (SCConv): the pair
matrix is converted to a histogram by placing the
score values into evenly spaced bins, then the result-
ing matrix is passed through a 1-D convolutional
layer. We refer the reader to Laban et al. (2022) for
further details.

We observe that although Laban et al. (2022)
indicate that the scoring function fZ that they use
is given by fZ = pe, the default parameters in their
publicly available code3 describe fZ = pe−pc. We
compare these two variants of the score function
fZ in § 3.1.

2.2 SENTLI

Similarly to Laban et al. (2022), Schuster et al.
(2022) propose a factuality scoring model that as-
signs a score for each summary sentence Sn accord-
ing to the maximum score across all (D1,...,M , Sn)
pairs. Each (Dm, Sn) is scored using a custom
NLI model based on T5 (Raffel et al., 2020) and
fine-tuned on a combination of the SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
ANLI (Nie et al., 2020), FEVER (Thorne et al.,
2018) and VitaminC (Schuster et al., 2021)
datasets.

Final scores are either the average score for all
S1,...,N in an aggregation method referred to as
“soft aggregation”, or the minimum score across
S1,...,N in their “hard aggregation” method. In
addition, Schuster et al. (2022) propose an exten-
sion to this approach called “retrieve and rerank”
(SENTLIRR). Here they again first score all
(Dm, Sn) using an NLI model. For each Sn, the
top-K Dm are selected according to both the entail-
ment and contradiction scores pe and pc. The NLI

2These models are agnostic to the particular NLI model
being used for scoring, but the best performing model in the
paper uses a version of ALBERT (Lan et al., 2020) fine-tuned
on a combination of MNLI and VitaminC.

3https://github.com/tingofurro/summac
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model is then presented with the same hypothesis
Sn, together with a concatenation of the top-K en-
tailing and contradicting sentences, with the output
used to create the final score that Sn. For further
details we refer the reader to Schuster et al. (2022).

2.3 Summarization Content Units (SCU)

Following Nenkova and Passonneau (2004) and
Shapira et al. (2019), we take decomposition a step
further and segment each summary into smaller
units called Summarization Content Units (SCUs).
In its original formulation, SCUs are hand-crafted
short spans of text describing a single fact con-
tained in one or more reference summaries4. As
our evaluation data is not manually annotated with
SCUs, we follow the method in Zhang and Bansal
(2021), where the authors show that SCUs can be
approximated using heuristics applied to the output
of a Semantic Role Labeler. However, whereas
these methods apply to reference-based evaluation
of summaries, in the absence of human reference,
here we adapt them to fit the referenceless evalu-
ation scenario. We refer to our method of decom-
position and scoring with SCUs as SCUZS, and
describe the details of the method in Appendix D.

3 Experiments and evaluation

We evaluate the performance of our models on
the SummaC benchmark (Laban et al., 2022),
which comprises of six datasets for summary in-
consistency detection: CoGenSumm (CGS) (Falke
et al., 2019), XSumFaith (XSF) (Maynez et al.,
2020), Polytope (PT) (Huang et al., 2020),
FactCC (FCC) (Kryscinski et al., 2020), Sum-
mEval (SE) (Fabbri et al., 2021), and FRANK
(FR) (Pagnoni et al., 2021). Evaluation is standard-
ized by casting each task as binary classification,
and then measuring performance using balanced ac-
curacy. As the NLI-based factuality scoring meth-
ods all output a scalar score value, we follow Laban
et al. (2022) and tune thresholds separately for all
methods and all datasets on the validation set, and
report results using these threshold values on the
test set. Although the FRANK dataset is part of
SummaC, we also perform a separate evaluation of
it using the original metrics of Pearson and Spear-
man correlations of the model output scores with
(non-binary) human scores.

To assess the benefits of decomposing text for
NLI-based factuality scoring, we compare the per-

4Example SCUs are given in Appendix D

formance of the aforementioned decomposition
methods with full text scoring, where either or both
the source document or the summary has not been
decomposed. We also test with a context length
of several sentences, computed using a simplified
version of the SENTLIRR method that we refer to
as TOPK, as follows:

• First decompose the document and summary
into individual sentences (D1,...,M , S1,...,N ),
and score all combinations using an NLI
model.

• For each Sn, select the top-K sentences in
D1, . . . , DM according to pe.

• Concatenate these top-K sentences to form a
new premise string.

• Run hypothesis Sn and the new premise
through the NLI model, again taking pe as
the final score for Sn.

• Compute the final factuality score as the aver-
age over the scores for each Sn.

To split text into sentences we use spaCy (Hon-
nibal et al., 2020). We note that Laban et al.
(2022) used NLTK (Bird et al., 2009) for sentence-
splitting, but this fails to correctly split sentences
on some examples with bad punctuation (which
are common in the FRANK dataset in particular5).
In all experiments, unless otherwise specified we
use the NLI model from Schuster et al. (2021) that
is fine-tuned on a combination of Vitamin-C and
MNLI datasets6, which we refer to as VITC. For
fair comparison with Laban et al. (2022), we set the
maximum “full document” context for the premise
to be 500 tokens.

3.1 Results

Our main results are summarized in Table 1, with
SummaC results at the top and FRANK results at
the bottom. In general, we find that factuality scor-
ing using fZ = pe has superior performance to
fZ = pe − pc, for all levels of input granularity,
and for all evaluation metrics. We surpass both
the original SCZS/SCConv and SENTLI/SENTLIRR
SummaC results using SCZS with this scoring func-
tion. Further performance gains are also obtained
from using additional context for the premise using
TOPK, and we find that including the full document

5see Appendix A for details
6This is the best performing NLI model in Laban et al.

(2022).
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m

m
aC

System fZ PG HG CGS XSF PT FCC SE FR Overall
SCZS 70.4* 58.4* 62.0* 83.8* 78.7* 79.0* 72.1*
SCConv 64.7* 66.4* 62.7* 89.5* 81.7* 81.6* 74.4*
SENTLI (soft) 79.3* 59.3* 52.4* 89.5* 77.2* 82.1* 73.3*
SENTLIRR (soft) 79.6* 62.7* 52.8* 86.1* 78.5* 80.4* 73.3*
SENTLIRR (hard) 80.5* 64.2* 55.1* 83.3* 79.7* 78.4* 73.5*
SCZS pe − pc sent sent 62.5 53.8 57.6 83.9 77.1 79.2 69.0
SCZS pe sent sent 76.8 65.6 57.6 89.9 79.7 81.3 75.1
SCZS pe doc doc 59.3 69.9 59.9 84.7 78.7 81.2 72.3
SCZS pe TOPK sent 79.7 67.3 56.9 89.4 81.8 81.4 76.1
SCZS pe − pc doc sent 76.3 69.0 58.2 85.4 83.3 82.6 75.8
SCZS pe doc sent 76.2 69.8 61.7 84.6 84.0 82.0 76.4
SCUZS pe TOPK SCU 72.9 65.6 57.1 80.5 82.1 81.7 73.3
SCUZS pe sent SCU 71.4 63.4 55.0 77.0 80.0 81.4 71.4

FR
A

N
K

System fZ PG HG Pearson ρ p-val Spearman r p-val
FactCC 0.20* 0.00* 0.30* 0.00*
BertScore P Art 0.30* 0.00* 0.25* 0.00*
SCZS pe − pc sent sent 0.32 0.00 0.26 0.00
SCZS pe sent sent 0.35 0.00 0.36 0.00
SCZS pe doc doc 0.31 0.00 0.25 0.00
SCZS pe TOPK sent 0.37 0.00 0.34 0.00
SCZS pe − pc doc sent 0.30 0.00 0.26 0.00
SCZS pe doc sent 0.34 0.00 0.29 0.00
SCUZS pe TOPK SCU 0.36 0.00 0.30 0.00
SCUZS pe sent SCU 0.36 0.00 0.34 0.00

Table 1: Test set results for SummaC and FRANK. Results marked “*” are taken from prior work, the rest are from
our implementations. “PG” and “HG” are the premise and hypothesis levels of granularity respectively. Sentences
in our implementations are split using spaCy.

context in the premise performs best of all, in con-
tradiction to previous findings on this benchmark7.
We see no additional performance benefit in going
below the sentence level and using SCUs on these
benchmarks, but the SCU decomposition does per-
form competitively across both benchmarks.

None of our variations achieve similar perfor-
mance to the published SCZS results, either per-
forming better or worse depending on whether fZ
is pe or pe − pc respectively. We believe that this
discrepancy is due to the fact that the published
SCZS results use classification thresholds that are
tuned on the test set8 rather than validation set.

On FRANK, we find that there is no single
method that performs best across both correlation
metrics, TOPK having the highest Pearson corre-
lation, and the sentence level SCZS the highest
Spearman correlation. It is notable however that
the larger premise context granularity DOC-SENT is
not as strong when using the original FRANK met-

7In Appendix B we show that some of these findings ap-
pear to be unique to this particular choice of NLI model.

8Confirmed via correspondence with Laban et al. (2022).

rics as it is on SummaC, highlighting the need to be
careful when comparing methods using different
metrics, even on the same underlying data.

4 Conclusion

In this work we revisited prior findings that the
best way to use NLI models for factuality scoring
of machine-generated summaries is to first decom-
pose the input to sentence level, score using NLI,
then aggregate the sentence level scores to produce
a document-level score. Contrary to prior work,
we find that there is no single optimal level of de-
composition that performs best across all tasks and
evaluation metrics. We showed that in general,
sentence level decomposition is preferable for the
summary/hypothesis side of the NLI input, but on
the premise side recent models such as VITC often
benefit from having longer input contexts avail-
able when scoring. We also show that for the six
datasets in the SummaC benchmark, there is still
considerable variation in the performance of our
methods both across the individual datasets, and
also within different metrics on the same dataset.
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Limitations

Although we evaluate our methods across six dif-
ferent datasets, all are broadly from the same nar-
row domain, namely English news articles. We
also note that despite the methods in Section 2 be-
ing agnostic to the choice of the NLI model that is
used for scoring, there can be considerable degrada-
tion in the performance of methods that use longer
premise contexts with some NLI models. More
details can be found in Appendix B.
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model. On SummaC, we see that using spaCy re-
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than the intended sentence level, making this result
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m
aC

System fZ Splitter CGS XSF PT FCC SE FR Overall
SCZS pe − pc NLTK 61.9 53.7 56.3 83.4 78.2 78.4 68.6
SCZS pe − pc spaCy 62.5 53.8 57.6 83.9 77.1 79.2 69.0
SCZS pe NLTK 75.6 65.3 60.4 89.5 80.1 79.1 75.0
SCZS pe spaCy 76.8 65.6 57.6 89.9 79.7 81.3 75.1

FR
A

N
K

System fZ Splitter Pearson ρ p-val Spearman r p-val
SCZS pe − pc spaCy 0.27 0.00 0.23 0.00
SCZS pe − pc NLTK 0.32 0.00 0.26 0.00
SCZS pe spaCy 0.35 0.00 0.36 0.00
SCZS pe NLTK 0.39 0.00 0.34 0.00

Table 2: Performance differences on SummaC and FRANK test sets based on choice of sentence-splitting method.
All methods use sentence level granularity for both premise and hypothesis. For SummaC all methods use thresholds
selected using the validation set.

difficult to interpret. The following is an exam-
ple of a passage of text taken verbatim from the
FRANK validation set:

Thousands attended the early morning
service at Hyde Park Corner and up to
400 people took part in a parade before
the wreath-laying at the Cenotaph.Anzac
Day commemorates the first major battle
involving Australian and New Zealand
forces during World War One.A service
was also held at Westminster Abbey.The
national anthems of New Zealand and
Australia were sung as the service ended.

Figure 1: The number of sentences produced by NLTK
and spaCy on SummaC and FRANK.

We note that in this example there is no space after
the fullstops, which causes NLTK’s parser to break.

NLTK produces 1 sentence for this block of text,
while spaCy produces 4 as we would expect. This
issue is relatively frequent in the FRANK dataset.
Figure 1 shows the distributions of the number of
sentences produced by NLTK versus spaCy for all
of the documents in both SummaC and FRANK,
with statistics given in Table 4. We see that spaCy
produces more sentences generally, with the dif-
ference being more pronounced on the FRANK
dataset.

B Performance variations with different
NLI models and levels of granularity

In Table 3 we investigate how changing the level
of decomposition effects the performance of two
additional NLI models. Notably with both of these
models, scoring using the full document as the
premise is significantly worse than either sentence
level decomposition, TOPK, or SCU, emphasiz-
ing that the results in Table 3 are highly depen-
dent on the performance of the VITC NLI model.
TOPK and sentence level both perform reasonably
well with these NLI models however, with the for-
mer being the best method to use on SummaC
with ROBERTAANLI and the latter the best with
ROBERTAMNLI. Again, we see no performance
benefit when going to the SCU level.

C SCU examples

Two example one-line summaries, along with two
extracted SCUs are shown below. Colors indicate
which parts of the generated summaries the SCUs
are extracted from.

Summary1: In 1998 two Libyans indicted in
1991 for the Lockerbie bombing were still in
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System PG HG CGS XSF PT FCC SE FR Overall
ROBERTAMNLI doc sent 58.1 56.2 52.9 62.5 57.0 66.2 58.8
ROBERTAMNLI TOPK sent 61.5 63.3 60.0 81.5 75.1 76.4 69.6
ROBERTAMNLI sent sent 75.2 61.3 59.2 90.7 80.1 79.5 74.3
ROBERTAMNLI TOPK SCU 66.3 62.0 51.5 74.8 73.2 76.2 67.3
ROBERTAMNLI sent SCU 71.6 65.1 53.9 81.9 77.0 80.0 71.6
ROBERTAANLI doc sent 53.5 62.9 55.8 62.3 59.6 69.5 60.6
ROBERTAANLI TOPK sent 77.3 65.4 58.4 82.4 78.4 76.9 73.2
ROBERTAANLI sent sent 73.1 61.2 59.6 87.6 74.1 80.2 72.7
ROBERTAANLI TOPK SCU 74.5 64.3 59.2 82.1 77.8 77.9 72.6
ROBERTAANLI sent SCU 70.8 64.4 55.8 79.8 76.7 81.0 71.4

FR
A

N
K

System PG HG Pearson ρ p-val Spearman r p-val
ROBERTAMNLI doc sent 0.16 0.00 0.11 0.00
ROBERTAMNLI TOPK sent 0.23 0.00 0.21 0.00
ROBERTAMNLI sent sent 0.27 0.00 0.27 0.00
ROBERTAMNLI TOPK SCU 0.23 0.00 0.21 0.00
ROBERTAMNLI sent SCU 0.26 0.00 0.27 0.00
ROBERTAANLI doc sent 0.05 0.04 -0.04 0.16
ROBERTAANLI TOPK sent 0.27 0.00 0.30 0.00
ROBERTAANLI sent sent 0.27 0.00 0.32 0.00
ROBERTAANLI TOPK SCU 0.24 0.00 0.23 0.00
ROBERTAANLI sent SCU 0.27 0.00 0.29 0.00

Table 3: Performance differences on SummaC and FRANK test sets based on choice of NLI model and level of
granularity. For SummaC all methods use thresholds selected using the validation set. Sentences are split using
spaCy. ROBERTAMNLI is the NLI model from Liu et al. (2019), and ROBERTAANLI is from Nie et al. (2020).

Libya.

Summary2: Two Libyans were indicted in
1991 for blowing up a Pan Am jumbo jet over
Lockerbie, Scotland in 1988.

SCUs: [two Libyans were officially accused
of the Lockerbie bombing, the indictment of
the two Lockerbie suspects was in 1991]

D SCU-based decomposition details

To create SCUs for a passage of text, we first split
it into sentences using spaCy. We then pass each
sentence through co-reference resolution (Joshi
et al., 2020), and then finally we create SCUs us-
ing the method based on Semantic Role Labeling
(SRL) (Shi and Lin, 2019) described in Zhang and
Bansal (2021). We use the publicly available code
from Zhang and Bansal (2021)9 for both the co-
reference resolution and SRL-based SCU genera-
tion.

9https://github.com/ZhangShiyue/
Lite2-3Pyramid, the authors refer to their SRL-based
SCUs as Semantic Triplet Units (STUs).

To score a (document, summary) pair, we ex-
perimented with decomposing either the document,
the summary, or both into SCUs. Here we describe
the two variations that performed best on initial
validation experiments. The first scores summary
SCUs against document sentences, and the second
scores summary SCUs using longer passages of
text from the document as context.

D.1 SENT-SCU
This method is the most similar conceptually to
SCZS.

• First decompose the document and summary
into individual sentences (D1,...,M , S1,...,N ),
and then further decompose each Sn into
SCUs SSCU1 , . . . , SSCUJ

.

• Score all (Dm, SSCUj ) combinations using an
NLI model, and fZ = pe.

• The score for each SSCUj is taken to be
the maximum over the (D1, . . . , DM , SSCUj )
pairs.

• For each Sn, average over the scores for
SSCU1 , . . . , SSCUJ

to calculate a score for
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SummaC

NLTK spaCy
Mean 20.6 22.4
Std. dev. 16.4 18.0
25th % 11.0 12.0
50th % 17.0 18.0
75th % 26.0 28.0

FRANK

NLTK spaCy
Mean 16.0 20.9
Std. dev. 11.3 11.3
25th % 7.0 13.0
50th % 14.0 18.0
75th % 24.0 28.0

Table 4: Mean, standard deviation, and percentiles of
the number of sentences produced by NLTK and spaCy
on SummaC and FRANK.

that summary sentence, before averaging over
the scores for each Sn to create the document
factuality score.

D.2 TOPK-SCU
This is similar to the TOPK scoring method from
§ 3.

• First decompose the document and summary
into individual sentences (D1,...,M , S1,...,N ),
and then further decompose each Sn into
SCUs SSCU1 , . . . , SSCUJ

.

• Score all (Dm, SSCUj ) combinations using an
NLI model, and fZ = pe.

• For each SSCUj , we select the top-K sen-
tences in D1, . . . , DM according to fZ = pe,
and concatenate them to form a new premise
string.

• Hypothesis SSCUj is re-scored using the new
premise string, using fZ = pe as the score for
SSCUj .

• For each Sn we then first average over the
scores for SSCU1 , . . . , SSCUJ

to calculate a
score for that summary sentence, before aver-
aging over the scores for each Sn to create the
document factuality score.
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Abstract

In this work, we use sentence similarity as a
lens through which to investigate the represen-
tation of meaning in graphs vs. vectors. On
semantic textual similarity data, we examine
how similarity metrics based on vectors alone
(SENTENCE-BERT and BERTSCORE) fare
compared to metrics based on AMR graphs
(SMATCH and S2MATCH). Quantitative and
qualitative analyses show that the AMR-based
metrics can better capture meanings dependent
on sentence structures, but can also be dis-
tracted by structural differences—whereas the
BERT-based metrics represent finer-grained
meanings of individual words, but often fail
to capture the ordering effect of words within
sentences and suffer from interpretability prob-
lems. These findings contribute to our under-
standing of each approach to semantic repre-
sentation and motivate distinct use cases for
graph and vector-based representations.

1 Introduction

Deriving sentence-level semantics is a nontrivial
task and is fundamental to natural language under-
standing. Word embeddings (vectors) and graph-
based formalisms are two kinds of sentence mean-
ing representations that are widely used in NLP
and NLG. One way to evaluate semantic represen-
tations is to compare their judgments on semantic
similarity, often using human judgments as a refer-
ence, and there are automatic sentence similarity
metrics that have been developed which make use
of vector and graph-based models.

Vector-based models, such as SENTENCE-
BERT (Reimers and Gurevych, 2019) and BERT-
SCORE (Zhang et al., 2019), rely on BERT embed-
dings. Though they are robust and highly efficient,
they often suffer from interpretability issues and do
not meet all of the expectations of a distributional
semantics model (Mickus et al., 2019).

On the other hand, semantic formalisms such
as Abstract Meaning Representation (AMR; Ba-

What is the difference between a stock and a bond?
What is the difference between a mode and a scale?
Figure 1: A sentence pair in the STS (Agirre et al.,
2016) dataset which receives a human judgment of 0
(no similarity), an S2MATCH similarity score of 0.75,
a SENTENCE-BERT similarity score of 0.10, and a
BERTSCORE score of 0.94. All three automatic met-
rics range from 0 to 1, where 1 indicates that the sen-
tences are identical.

narescu et al., 2013) are more explicit, and can
be compared via graph-based similarity measures
(Cai and Knight, 2013). While the explainability
of these metrics is high, some studies have shown
that they do not correlate with cross-lingual human-
level judgments of similarity as well as embedding-
based metrics (Wein and Schneider, 2022).

AMR-based metrics reflect the semantics of a
sentence while abstracting away from syntactic fea-
tures, while word-embedding based-metrics com-
pare the tokens with contextualized embeddings.
To this date, there is not a single approach that fully
captures sentence meaning in a transparent fashion,
so we need to investigate the strengths and weak-
nesses of different approaches in order to develop
a better representation.

Given the importance of reflecting semantic sim-
ilarity in formalisms of meaning, we hypothesize
that semantic similarity is an informative way to in-
vestigate these representations. In this work, we in-
vestigate these semantic models through the lens of
semantic textual similarity to investigate the differ-
ences between the various representations. These
graph-based and the BERT-based approaches to au-
tomatically assessing semantic similarity have dif-
ferent strengths, but no work to date has thoroughly
compared these metrics as a way to better under-
stand their applicability and utility. We investigate
how these metrics compare to human judgments
of similarity on a semantic similarity task. Specif-
ically, we compare and analyze the scores of two
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AMR-based metrics—SMATCH and S2MATCH—as
well as two BERT-based metrics—BERTSCORE

and SENTENCE-BERT—in relation to each other
and in relation to human similarity judgments. For
example, Figure 1 features a sentence pair with
vastly different similarity judgments via human an-
notation and three of our automatic metrics.

Our primary contributions include:
• Quantitative results comparing AMR-based

metrics and BERT-based metrics, with each
other and with human judgments of similarity

• Analysis of points of low and high agreement
between metrics

• Investigation of semantic features captured by
the metrics

• Discussion of the successes and weaknesses
of the performance of the metrics

Our data are publicly available.1

2 Background & Related Work

Abstract Meaning Representation. Graph-
based semantic representations take an explicit
approach to representing the meaning of the
sentence by defining the roles and relations of the
concepts within the sentence. AMR is a semantic
representation which captures the meaning of
a phrase or sentence in the form of a directed,
acyclic graph (Banarescu et al., 2013). The
graph’s nodes and edges correspond to concepts
in the sentence and the relations between the
concepts, respectively. Methods for evaluating the
performance of a text-to-AMR parser or computing
the similarity of two AMRs include SMATCH and
S2MATCH, described in §3.

Wein and Schneider (2022) introduce three meth-
ods for comparing cross-lingual pairs of AMRs and
evaluate the AMR-based metrics against human
judgments of sentence similarity and BERTSCORE.
Cross-lingually, Wein and Schneider (2022) found
that BERTSCORE was more correlated with human
judgments than the AMR-based metrics.
Semantic Textual Similarity. Semantic textual
similarity (STS) is the task of judging the semantic
equivalence of two sentences (Agirre et al., 2016).

In the most recent SemEval Semantic Textual
Similarity for monolingual data in 2016 (Agirre
et al., 2016), the top performing team at that time
incorporates WordNet information into word em-
beddings in their model (Rychalska et al., 2016).

1https://github.com/chingachleung/
Vector-and-Graph-Based-Metrics

Wang et al. (2022) combine FrameNet information
with SENTENCE-BERT (Reimers and Gurevych,
2019) to compute sentence similarity. WordNet
and FrameNet focus on lexical information and
relations between words or frames, which is dis-
tinctively different from AMR which represents
lexical concepts and their relations within the same
sentence. The state-of-the-art systems most corre-
lated with human judgments consistently make use
of Transformers, such as SMART-Roberta Large
(Jiang et al., 2020), which achieves state-of-the-art
92.9 and 92.5 on Spearman’s and Pearson’s corre-
lations.

Opitz and Frank (2022) introduced a similar-
ity metric, Semantically Structured SENTENCE-
BERT (S3BERT), which combines the explain-
ability of AMR metrics with the high performance
of BERT-based approaches. For the STS task,
S3BERT obtains a correlation score of 83.7 on
Spearman’s rank correlation coefficient. S3BERT
separates SENTENCE-BERT embeddings into par-
titions and trains the sub-embeddings on individual
aspects of AMR metrics. Opitz and Frank (2022)
developed S3BERT with the motivation of uncov-
ering the semantic features that contribute to simi-
larity ratings, and in doing so, develops hypotheses
and conjectures about the reasons to combine these
two methods based on their potential strengths and
weaknesses. For example, AMR metrics are said to
be able to capture specific aspects related to seman-
tic similarity, such as semantic roles, but are less
correlated with human judgments; the BERT-based
metrics are more similar to human judgments but
might lack sensitivity to word order. Relatedly,
Mohebbi et al. (2022) combine semantic roles la-
bels and dependency grammar on top of the BERT
Transformer model (Devlin et al., 2019) with the
aim of computing semantic textual similarity.

In order to provide a more fine-grained eval-
uation of existing AMR parsers, Damonte et al.
(2016) compare their parser with JAMR (Flanigan
et al., 2014) and CAMR (Wang et al., 2015) on var-
ious sub-tasks, such as named entity identification
and semantic role labeling, and conclude that there
is not a single parser that outperforms others in all
sub-tasks.

While prior research efforts have focused on ei-
ther combining explicit information from graph-
based resources with vectors, to the best of our
knowledge, there has not been a direct, fine-grained
comparison between these two formalisms. In our
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work, we perform a comparative analysis testing
the hypotheses proposed in Opitz and Frank (2022)
and analyzing the distinct strengths of graph versus
vector-based representations on the task of seman-
tic similarity.

3 Sentence Similarity Metrics

In this work, we investigate the performance of
and differences between four metrics of sentence-
level semantics: SMATCH (Cai and Knight, 2013),
S2MATCH (Opitz et al., 2020), SENTENCE-BERT
(Reimers and Gurevych, 2019), and BERTSCORE

(Zhang et al., 2019). We select these four metrics,
two AMR-based and two BERT-based, because
they are popularly used to compute sentence sim-
ilarity (Wang et al., 2022), and are often used for
downstream NLP tasks which depend on sentence
semantics, such as paraphrase detection (Issa et al.,
2018) and coreference predictions (Anikina et al.,
2020). Moreover, we wish to contrast the weak-
nesses and strengths of graph and BERT based
metrics.
SMATCH: SMATCH is a widely used metric that
measures whole sentence semantic structure sim-
ilarity by computing the overlaps of structures
between sentences that are represented in AMR
graphs (Cai and Knight, 2013). Since AMR ab-
stracts away from syntax, syntactic paraphrases are
expected to be represented with the same graph.
A SMATCH score of 1 indicates semantic equiv-
alence between two sentences, and a SMATCH

score of 0 indicates that two sentences are com-
pletely dissimilar. Figure 2 shows the AMR graph
of two semantically identical sentences. In or-
der to compute sentence similarity, sentences are
first parsed into AMR graphs. SMATCH then
aligns the graphs by finding the maximum num-
ber of triple matches (there are two types of
triple matches: <var, instance, concept> and <var,

relationship, var>), which is achieved by using a
hill-climbing method with a smart initialization and
4 random starts to increase the probability in find-
ing the highest number of matches (Cai and Knight,
2013).

(g / give-01
:ARG0 (h / he)
:ARG1 (m / money)
:ARG2 (s / school)

Figure 2: The AMR graph for two syntactic para-
phrases: He gives the school money, and He gives
money to the school

S2MATCH: This metric is an extension of
SMATCH which incorporates word-embeddings to
match synonyms or near-synonyms (Opitz et al.,
2020). During graph alignment, if the cosine simi-
larity between the word-embeddings of two nodes
meets a threshold, these two nodes, even if they
have a different surface form, are considered a
match. As a result, the S2MATCH score will go
up according to the cosine similarity score. This
addresses the disadvantage of SMATCH (Cai and
Knight, 2013) that graded meanings are not mea-
sured. For example, <var, instance, skinny> and
<var, instance, thin> are considered a match in
S2MATCH since “skinny” and “thin” are synonyms,
but not in SMATCH since “skinny” and “thin” are
two different words.

Following Reimers and Gurevych (2019), we
set the S2MATCH alignment threshold value to
0.5. Therefore, we only consider the similarity
between nodes if their cosine similarity reaches 0.5
or higher.

In order to use SMATCH and S2MATCH to com-
pare sentence similarity, we first use an automated
AMR parser (Bai et al., 2022) to convert sentence
pairs into AMR graphs. The parser is a BART-
based model (Lewis et al., 2020) that is trained
on a self-supervised graph-to-graph method. The
accuracy of the parser is 83.6% on the AMR2.0
(LDC2017T10) dataset.

SENTENCE-BERT: SENTENCE-BERT
(Reimers and Gurevych, 2019) is a BERT-based
model that is pre-trained on the SNLI (Bowman
et al., 2015) and the Multi-Genre NLI (Williams
et al., 2017) datasets. It generates sentence
embeddings using the Siamese BERT model
architecture (Devlin et al., 2019). To measure
sentence similarity using SENTENCE-BERT,
we pass sentence pairs into this model to obtain
sentence embeddings, and compute their cosine
similarity.

BERTSCORE: This metric was designed with
the intention to evaluate text generation quality
(Zhang et al., 2019). To obtain BERTSCOREs
between reference and candidate sentences, this
metric first matches the tokens in the sentences us-
ing a greedy method: each token in a sentence is
matched to the most similar token in the other sen-
tence. Therefore, tokens are potentially matched
more than once. After, the normalized pairwise co-
sine similarity between their word embeddings are
computed with an optional idf-importance weight-
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Metric Pearson Spearman

SMATCH 0.54 0.52
S2MATCH 0.55 0.53
SENTENCE-BERT 0.80 0.81
BERTSCORE 0.67 0.66

Table 1: Pearson and Spearman’s Rho correlations
with gold labels for each of the four metrics.

ing which can put more weight on more indicative
words of sentences during computation.

4 Data & Evaluation Protocol

We use the test data from the SemEval-2016 Se-
mantic Textual Similarity English Subtask (Agirre
et al., 2016) to evaluate the metrics on their de-
gree of alignment with human judgments. The data
contains 1,189 pairs of English snippets from five
sources: newswire headlines, short-answer plagia-
rism, machine translation post-editing, Q&A forum
answers, and Q&A forum questions. All the pairs
are labeled on an ordinal scale from 0 to 5, with
0 indicating the texts are completely dissimilar, and
5 indicating they are semantically equivalent. For
example, the sentences the bird is bathing in the
sink and birdie is washing itself in the water basin
are labeled as 5, while John went horse riding at
dawn with a whole group of friends and Sunrise at
dawn is a magnificent view to take in if you wake
up early enough for it are labeled as 0.

To measure the correlation between each met-
ric with human judgments, we use both the Spear-
man’s and Pearson’s rank correlation statistics.
SENTENCE-BERT (Reimers and Gurevych, 2019)
also use the same task to evaluate their model and
report 74% Spearman’s Rank correlation.

Since the AMR parser (Bai et al., 2022) used
in this experiment may output multiple alternative
AMR graphs due to linguistic ambiguity, we only
select sentences that are only parsed into a single
graph to avoid impact caused by ambiguity on the
correlation results. As a result, a total of 1138
sentence pairs are selected in our test set. This
pre-processing step is very likely the reason why
there is a discrepancy between our reported score
as shown in Table 1 and the reported score from
(Reimers and Gurevych, 2019).

5 Results and Analyses

In this section, we present qualitative and quantita-
tive analyses of the performance of each of the four
metrics: SMATCH, S2MATCH, SENTENCE-BERT,

Metric Mean

SMATCH 0.54
S2MATCH 0.56
SENTENCE-BERT 0.63
BERTSCORE 0.93
Gold 0.53

Table 2: Mean scores of the metrics and the gold labels

and BERTSCORE. Specifically, we aim to:
• Evaluate metric quality for measuring seman-

tic similarity, using human judgments as a
reference

• Identify the challenges of incorporating em-
beddings into graph-based metrics

• Identify challenging and easy scenarios, by
looking at what types of sentences the metrics
correlate best and worst with each other

• Uncover the strengths and weaknesses of each
metric, by analyzing what semantic aspects
these metrics are able to capture

5.1 Semantic Metric Quality

In our experiment, we use both Pearson’s and
Spearman’s correlation coefficients to compute cor-
relations between the metrics and human judg-
ments to avoid bias towards certain metrics due
to our choice of correlation tests. As shown in Ta-
ble 1, SENTENCE-BERT has the strongest correla-
tion with the gold labels on both the Pearson’s and
Spearman’s Rho. SMATCH and S2MATCH have the
lowest correlations with the the gold labels: 0.54
and 0.55 on Pearson’s, and 0.52 vs. 0.53 on Spear-
man’s respectively.

Although SENTENCE-BERT has the highest
similarity with human judgments, it suffers from
low interpretability. In particular, we find it hard to
account for seemingly inconsistent predictions. For
example, the sentence pair What is the best way to
store fresh berries? vs. What is the best way to cite
an anonymous writer? receives a similarity score of
0.06 from SENTENCE-BERT, but this pair What is
the best way to treat a feline ringworm? vs. What is
the best way to clean a grater? receives a similarity
of 0.4 from the same model. Intuitively, the differ-
ences in these two sentence pairs are very similar,
but they have very different similarity scores.

Besides correlation with human judgments, we
also look at the mean scores of the metrics versus
that of the human judgments, in order to understand
the likelihood of each metric considering sentences
similar or dissimilar. This will be particularly use-
ful if the metrics are used as an off-the-shelf tool to
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compute similarity in downstream NLP tasks. The
mean score of the test data in our experiment is 3.2
on an ordinal scale from 0 to 5, which translates to
0.53 on a 0–1 scale. We find that the graph-based
metrics’ scores are closest to the mean score of
human judgments, whereas BERTSCORE’s mean
is significantly higher (see details in Table 2). The
high scores produced by BERTSCORE could be
misleading, especially in cases where sentences are
completely dissimilar. Therefore, we also investi-
gate how this metric scores dissimilar sentences.
Out of 198 sentence pairs that are annotated as
completely dissimilar by human judgments, BERT-
SCORE gives an average score of 0.89, remarkably
higher than the average scores of S2MATCH and
SENTENCE-BERT for the same pairs, which are
0.36 and 0.28. For example, Step towards and Not
in sight is a sentence pair rated as 0 by human judg-
ments, but BERTSCORE gives a similarity score of
0.86. A potential cause is its greedy approach for
token matching: tokens are matched with the most
similar tokens from the other sentence, even if they
have already been matched with other tokens. The
way the sentences are constructed in the STS data
also exacerbates this behavior: on average, 57%
of the tokens in reference sentences also occur in
their candidate sentences, which means that there
are over 50% of the tokens which are considered
exact matches by BERTSCORE, even if the tokens
are used differently.

Based on the correlations with human judgments
and the mean scores of the metrics, we conclude
that SENTENCE-BERT’s scores are the most in-
dicative of semantic similarity between sentences.

5.2 Challenges of Incorporating Embeddings
into AMR Metrics

Theoretically, S2MATCH combines the strengths of
graph-based and vector-based metrics, but its low
correlation with human judgments calls into ques-
tion how embeddings have been incorporated into
graphs. In order to distinguish the performance of
SMATCH and S2MATCH, we first compare the simi-
larity between SMATCH and S2MATCH by running
the Spearman’s and Pearson’s correlation tests on
their similarity scores. We obtain 0.98 on both of
the tests, which serves as a strong indicator that
these metrics have extremely similar behavior. As
posited in Opitz et al. (2020), S2MATCH scores are
the same as or higher than SMATCH scores due
to the additional consideration of graded meaning.

Their extremely similar correlation scores with hu-
man judgments also implies that the use of vectors
in S2MATCH does not improve its representations
of meanings. Digging into the STS data, we ob-
serve several challenges that help explain why this
metric fails to achieve the ‘best of both worlds’.

Cosine similarity may not reflect semantic sim-
ilarity: For the sentence pair What type of faucet
is this? vs. What kind of socket is this?, the words
‘kind’ and ‘type’ have a cosine similarity score of
0.6, which is above the threshold we set. As a re-
sult, S2MATCH considers these two tokens a match,
and incorporates the cosine similarity score into the
final similarity score. This makes the S2MATCH

score of this pair higher than the SMATCH score.
However, we also see that the cosine similarity
score of ‘this’ and ‘kind’ is 0.778, which is higher
than the cosine similarity score between ‘kind’ and
‘type’. Although ‘this’ and ‘kind’ are not matched,
hence their cosine similarity score is not computed
into the final similarity score, it shows that em-
bedding similarity might not be always reliable
for comparing semantic similarity, which directly
impacts the performance of S2MATCH.

Conversion of words into frames potentially hin-
ders embedding comparison: During AMR pars-
ing, words can be represented with a frame that
looks different. This poses a challenge for com-
parison via embeddings since the embeddings of
words and their frames can be different. For ex-
ample, there was a pair in the test data where
the synonyms ‘therefore’ and ‘thus’ were used in
the same way, but given different frames, cause-01
vs. infer-01. The cosine similarity between similar-
ity between ‘therefore’ and ‘thus’ is 0.91, whereas
the cosine similarity between ‘infer’ and ‘cause’
is 0.23, which is lower than the threshold we
set. Since S2MATCH computes similarity between
frames instead of words, the synonyms ‘therefore’
and ‘thus’ could not be matched during S2MATCH

score computation. As a result, the S2MATCH and
SMATCH scores are the same for this pair.

Another scenario is when AMR ‘unpacks’ the
lexical semantics depending on derivational mor-
phology which may differ between synonyms, ob-
scuring their semantic similarity. For example,
the relational meaning of ‘employer’ in How do
I maintain a good relationship with an employer
after resigning? is expressed with the AMR frame
employ-01. This not only causes subsequent changes
in its graph structures, but also makes S2MATCH
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Metric Mean

S2MATCH 0.59 (0.23z)
SENTENCE-BERT 0.29 (−1.42z)
BERTSCORE 0.93 (0.11z)

Table 3: Mean absolute scores and z-scores of the met-
rics on 30 most dissimilar pairs (label 0 or 1). The z-
score refers to the number of standard deviations from
the mean value from each metric.

less likely to match it with the word ‘boss’ in the
sentence How do I maintain a good relationship
with my old boss after being promoted?. (The
AMR graph does not unpack the relational mean-
ing of ‘boss’ in the same way because it is not
signaled with a derivational suffix.) Even if boss
and employ-01 were matched, their cosine simi-
larity would be artificially low because they have
different parts of speech.

Given the similar behavior of SMATCH and
S2MATCH, the following subsections will focus on
S2MATCH in relation to the vector-based metrics
SENTENCE-BERT and BERTSCORE. We look
at examples where the metrics exhibit low (§5.3)
and high (§5.4) agreement with each other, to iden-
tify challenging and easy cases, and discuss the
impact of three semantic features: negation (§5.5),
semantic roles (§5.7) and paraphrases (§5.6).

5.3 Low Agreement Between Metrics
In order to compare how the metrics rank seman-
tic similarity differently, we first convert the raw
scores from each metric into z-scores using stan-
dard scaling. Next, for each sentence pair, we com-
pute the variance of the 3 metrics’ z-scores. We
examine the sentence pairs with high cross-metric
variance and observe that most are judged by hu-
mans as dissimilar in meaning (i.e., disagreement
among metrics predicts low meaning similarity).

As a means of comparing the metrics, we then
investigate the reverse: how pairs with the lowest
meaning similarity as judged by humans tend to
fare on different metrics (see Table 3). We find
that SENTENCE-BERT’s judgment is similar to
the gold labels, whereas S2MATCH and BERT-
SCORE tend to consider them more similar than
they actually are. For example, the pair in Figure 1,
which receives a human judgment score of 0, is
found to have the highest variance between the met-
rics. S2MATCH and BERTSCORE give a similarity
score of 0.75 (0.97z) and 0.94 (0.4z) respectively,
whereas SENTENCE-BERT gives a significantly
lower score, 0.1 (−2.2z).

We believe it is challenging for BERTSCORE

and S2MATCH to overcome surface level similarity
when computing semantic similarity. In contrast,
because of how SENTENCE-BERT is pretrained on
data, surface features might not necessarily obstruct
their semantic similarity judgment.

5.4 High Agreement Between Metrics

Based on our observation of the top 30 pairs that
have the lowest cross-metric variance, we find that
the metrics agree strongly with human judgments
as well as each other on sentences that exhibit either
of these two patterns:
1. rated with high similarity by all the metrics as
well as human judgments; exist great overlap of
words and argument structures
2. rated with low similarity by all the metrics as
well as human judgments; have little or no overlap
of words or argument structures

For example, this sentence pair falls into the
first pattern type, and is ranked as having the most
similar judgments from all the metrics, with a gold
label of 4: Sudanese soldiers had done this Sunday
six of the kidnappers in the border area between
Sudan, Chad and Egypt, and had arrested two of
them. and Sudanese soldiers had killed six of the
kidnappers this Sunday in the border area between
Sudan, Chad and Egypt, and had arrested two of
them.

Meanwhile, this sentence pair exhibits the sec-
ond pattern, has the fourth highest cross-metric
agreement score and receives a gold label of 0: The
other method is the top down approach which is a
method that combines memorization and recursion
vs. The easiest way to look at inheritance is as an
‘. . . is a kind of’ relationship.

Since all of the metrics show a similar behav-
ior with each other as well as with human judg-
ments on both highly similar and highly dissimilar
sentences, we can conclude that sentences with
semantic similarity strongly correlated with their
number of mutual surface features are “easy cases”,
i.e represented well by all the metrics.

5.5 Negation

Ettinger (2019) finds that pre-trained BERT is un-
able to capture the effect on negation on mean-
ing. By contrast, AMR explicitly encodes negation
through the inclusion of a polarity role, and the re-
mainder of the graph is structured as if the negated
statement did not appear. Currently, scope of nega-
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Metric Mean

S2MATCH 0.92
SENTENCE-BERT 0.88
BERTSCORE 0.99

Table 4: Mean scores of the metrics on negated pairs.

tion is not captured in the AMR annotation schema
(Stein and Donatelli, 2021).

We find that there is a significant discrepancy
between human judgments and the metrics on the
evaluation of negation. For example, the pair You
should do it vs. You should never do it is consid-
ered very dissimilar (with label 1 on a scale from
0 to 5) by annotators , but is rated relatively more
similar by the metrics: 0.86 by S2MATCH, 0.97
by BERTSCORE and 0.45 by SENTENCE-BERT.
Since there are only two negated pairs in the test
data, we also randomly select 10 negated sentences
from the NegDDI-DrugBank corpus (Bokharaeian
et al., 2014) and the BioScope corpus (Szarvas
et al., 2018), and manually construct their positive
equivalents to compute their semantic similarity,
in order to form a more robust analysis. For ex-
ample, the positive equivalent of These differences
in gene expression have not been molecularly de-
fined. is These differences in gene expression have
been molecularly defined.. As shown in Table 4,
all the metrics rate the 20 pairs with high simi-
larity. Since negation often reverses meanings of
sentences, we believe it is essential to address the
degree of impact of negation on meaning which
both the graph-based and vector-based metrics fail
to capture. We hope this result encourages more
robust research in the future on determining the
role of negation in semantic metrics.

5.6 Paraphrases

Compared with the BERT-based metrics,
S2MATCH is found to struggle more with para-
phrases, especially when there are syntactic
differences. We compare their scores on 164
paraphrase pairs (with gold label 5) in the test
data, and find that S2MATCH on average gives
considerably lower similarity scores in comparison
with the BERT-based metrics (see Table 5 for
details). For example, the two sentences in
Figure 3 are semantically identical, but S2MATCH

scores it with 0.65, which is considerably lower
than the SENTENCE-BERT and BERTSCORE

scores, 0.92 and 0.97 respectively. There are
multiple potential explanations for this outcome:

Metric Mean

S2MATCH 0.74
SENTENCE-BERT 0.90
BERTSCORE 0.96

Table 5: Mean scores of the metrics on paraphrases.

first, S2MATCH cannot capture that ‘use’ and ‘cash
out’ have the same contextual meaning because
it uses static GloVe embeddings to compute
similarity. Second, the arguments of ‘to’ are parsed
into :ARG2 and :purpose respectively, even they
serve the same function in the sentences. In other
words, the lexical and structural differences of
these sentences lead to differences in their AMR
graphs, resulting in a lower S2MATCH score.

Therefore, although AMR is intended to abstract
away from syntax and sentences with similar mean-
ings should have similar graph structures, we have
observed that this is not always the case: sentence
structure affects AMR graphs and thus affects se-
mantic similarity for AMR-based metrics.

Sentence 1: Should I use IRA money to pay down my student
loans?

(r / recommend-01
:ARG1 (u / use-01

:ARG0 (ii / i)
:ARG1 (m / money

:source (o / organization
:name (n / name

:op1 "IRA")))
:ARG2 (p / pay-down-05

:ARG0 ii
:ARG1 (l / loan-01

:ARG2 ii
:mod (p2 / person

:ARG0-of (s / study-01)))))
:polarity (a / amr-unknown))

Sentence 2: Should I cash out my IRA to pay my student loans?

(r / recommend-01
:ARG1 (c / cash-out-03

:ARG0 (ii / i)
:ARG1 (p / product

:name (n / name
:op1 "IRA")

:poss ii)
:purpose (p2 / pay-01

:ARG0 ii
:ARG3 (l / loan-01

:ARG2 ii
:ARG3 (p3 / person

:ARG0-of (s / study-01)))))
:polarity (a / amr-unknown))

Figure 3: AMR graphs for two paraphrases.

5.7 Semantic Roles
We observe that the AMR-based metrics are able
capture semantic roles and argument structures,
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which might not be captured by BERT-based met-
rics, or even human judgment.

For example, the pair in Figure 4 has the 9th high-
est cross-metric variance, which has a z-score of−0.655z from S2MATCH, −3.31z from SENTENCE-
BERT and −2.67z from BERTSCORE, and is anno-
tated as completely dissimilar by human annotators.
In other words, S2MATCH considers this pair much
more similar than the BERT-based metrics as well
as human judgments.

Sentence 1: Spanish bulls gore seven to death.

(g / gore-01
:ARG0 (b / bull

:mod (c / country
:name (n / name

:op1 "Spain")))
:ARG1 (p / person

:quant 7)
:ARG2 (d / die-01

:ARG1 p))

Sentence 2: Obama queries Turnbull over China port deal.

(q / query-01
:ARG0 (p / person

:name (n / name
:op1 "Obama"))

:ARG1 (p2 / person
:name (n2 / name

:op1 "Turnbull"))
:ARG2 (d / deal-01

:ARG2 (p3 / port
:location (c / country

:name (n3 / name
:op1 "China")))))

Figure 4: AMR graphs for two sentences that have sim-
ilar argument structures.

One reason that accounts for such a distinct judg-
ment from S2MATCH is that the two sentences share
certain similarity in their argument structures: their
main predicates have these three arguments ARG0,

ARG1, ARG2. Both the ARG0s refer to an agent, and the
ARG1s refer to a patient or theme.

Although we use human judgments as a refer-
ence to evaluate the performance of the metrics,
this example pairs shed some lights on the dimen-
sions of meaning: argument structures represent
semantic relationship between arguments, provid-
ing a high level of meaning representation of a
sentence. It is then worth asking if we should take
argument structure into consideration when com-
paring semantic similarity, and in what use cases
we should or should not.

One might argue that since this pair is completely
irrelevant, it makes sense not to consider them sim-
ilar at all. However, we observe that the sensi-
tivity to argument structures of the AMR-based

metrics can address drastic change of meaning due
to change of semantic roles. For example, the sen-
tence pair (A|B) is the conditional probability of A,
given B vs. P(B|A) is the conditional probability of
B given A has a gold label of 3, S2MATCH score of
0.39, SENTENCE-BERT score of 0.99 and BERT-
SCORE score of 0.98. In this case, S2MATCH’s
judgment is much more similar with human judg-
ments than the BERT-based metrics which regard
this pair as almost equivalent.

The cause for such a difference between the
graph-based and the vector-based metrics is that the
former identifies the argument of give-01 changes
from B to A, whereas since word order is not ex-
plicitly encoded in the computations of the vector
metrics, such a change is likely to have no impact
in their similarity judgments.

5.8 Summary of Findings

Among the metrics we compared, we found that
SENTENCE-BERT is most similar to human judg-
ments, but its judgment lacks interpretability be-
cause it is a pretrained model with its performance
dependent on the training data.

S2MATCH’s design takes advantage of both
graph-based and vector-based metrics, but fails to
take full advantage of vectors to compare word
similarity due to changes caused by AMR pars-
ing. Therefore, we suggest concepts that S2MATCH

aligns could have their embeddings represented by
their original words in the sentence, not the con-
cept labels themselves, so embeddings of words
instead of embeddings of their concepts are com-
pared for cosine similarity. For example, taking
advantage of a system that maps AMR concepts to
tokens, ‘employer’ would be aligned with ‘boss’,
not employ-01 with boss.

We have also identified challenging cases where
S2MATCH and BERTSCORE fail to account for
the inverse relationship between surface level simi-
larity and semantic similarity, and easy scenarios
when semantic similarity positively correlates with
surface level similarity.

Finally, we looked at three semantic features,
negation, semantic role arguments and paraphrases.
We found that all the metrics do not account for
the impact of negation on meaning, only the graph-
based metrics are sensitive to role arguments but
fail to capture semantic similarity of paraphrases.
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6 Conclusion

We compared four graph- and vector-based seman-
tic metrics via a semantic similarity task. In the
task, we used human judgments as a reference
and explored various scenarios to investigate the
strengths and weaknesses of these metrics, both
qualitatively with examples and quantitatively via
correlation with human judgments. We found
that graph-based metrics are highly accurate in
capturing meaning variations driven by change in
sentence structures, whereas vector-based metrics
allow more fine-grained meanings of individual
words due to contextual embeddings.

As we used automatic parsers in our experiments,
the results were certainly affected by some amount
of parser error. In future work, it would be inter-
esting to see how gold AMR graphs perform in the
same experiment. We also hope that our analyses
can motivate more robust research on utilizing the
strengths of both vector- and graph-based meaning
representations, allowing more effective semantic
representation at both the word and sentence levels.
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Abstract

Reflection is an essential counselling strat-
egy, where the therapist listens actively and
responds with their own interpretation of the
client’s words. Recent work leveraged pre-
trained language models (PLMs) to approach
reflection generation as a promising tool to aid
counsellor training. However, those studies
used limited dialogue context for modelling
and simplistic error analysis for human evalua-
tion. In this work, we take the first step towards
addressing those limitations. First, we fine-tune
PLMs on longer dialogue contexts for reflec-
tion generation. Then, we collect free-text error
descriptions from non-experts about generated
reflections, identify common patterns among
them, and accordingly establish discrete error
categories using thematic analysis. Based on
this scheme, we plan for future work a mass
non-expert error annotation phase for generated
reflections followed by an expert-based valida-
tion phase, namely “whether a coherent and
consistent response is a good reflection”.

1 Introduction

Patient health can be greatly improved by changing
behaviours such as smoking and alcohol consump-
tion. As patients rarely ask for help with it, health-
care practitioners often need to encourage, counsel
and advise them to make changes (Rollnick et al.,
2008). An effective counselling approach for this
purpose is motivational interviewing (MI, Miller
and Rollnick, 2012), which aims to elicit the moti-
vation for change from the client1 themselves.

In particular, reflection — also known as reflec-
tive listening — is an essential conversational strat-
egy in MI that has been shown to be related to posi-
tive counselling outcomes (Moyers et al., 2009). A
good reflection conveys to the client that the ther-
apist is listening, hearing and understanding them

1A person receiving MI is not necessarily a patient, there-
fore we use “client” instead of “patient” in this work.

Context
Utt. Role Text

ut−3 Client The baby was up all night and I’m ex-
hausted.

ut−2 Therapist So, what you’re saying is you’ve had a
rough night?

ut−1 Client Yes. She was up every three hours to eat,
I don’t understand it.

Response (Reflection)

ut Therapist So, she needed to eat every three hours
last night and that was really frustrating
for you?

Table 1: A 3-turn context and the ground-truth reflection
from an MI dialogue.

by reflecting back a short summary of how the ther-
apist understands what the client has said (Rollnick
et al., 2008), as shown in Table 1.

Reflection is a crucial skill for counsel-
lors (Braillon and Taiebi, 2020), but its training
is time-consuming and reliant on human super-
vision (Rautalinko and Lisper, 2004; Rautalinko
et al., 2007). Therefore, an automatic assistant
that offers reflection examples given a particular
dialogue context can speed up the process while
relieving the burden of supervision. Indeed, recent
years have seen studies (Shen et al., 2020, 2022)
on reflection generation that fine-tune pretrained
language models (PLMs) to produce a reflection
given some preceding utterances as the context.

Despite the progress in reflection generation, its
evaluation remains a challenge. Automated met-
rics in language generation tasks are often not ro-
bust (Liu et al., 2016) and human evaluation is
thus necessitated. Moreover, reflection requires
specialised knowledge and counselling is complex
and delicate. Ideally, therefore, generated reflec-
tions need evaluation by experienced therapists.
However, expert annotation is time-consuming and
costly (Moyers et al., 2005). Thus, human evalua-
tion in previous work suffers from issues including

116



simplistic evaluation scheme (e.g., good vs. bad)
and small (≤ 50) number of annotated reflections.

Another significant but underexplored weakness
is the lack of context. In prior work, dialogue mod-
els are given as the input context only a few (≤ 5)
preceding utterances. This can be inadequate for
models to produce context-aware responses and for
human evaluators to provide context-informed as-
sessment, considering that 1) therapy dialogues are
relatively long — often between 10 and 120 min-
utes (Rubak et al., 2005) — and 2) spoken-dialogue
utterances are typically short, unlike in written con-
versations. In particular, sufficient context is im-
portant for assessing if a generated text contains
hallucination (Ishii et al., 2022), a well-known is-
sue of neural natural language generation where
the output is unfaithful/ungrounded w.r.t. the input,
for example when a chatbot contradicts what it said
previously during a chat with the user (Vinyals and
Le, 2015).

To alleviate the time and resource requirement
for human evaluation, we advocate for disentan-
gling the human evaluation into two phases: 1) by
non-experts2: whether a generated reflection is
coherent and consistent w.r.t. its context and what
the issue of an incoherent/inconsistent reflection
is; 2) by experts: whether a coherent and consis-
tent reflection is a good reflection that conforms
to therapy guidelines. We argue that a non-expert
is perfectly capable as an evaluator for the first
phase, and that this setup saves time and resources
as a whole, especially in the second phase. In this
work, we conduct an initial study for the non-
expert annotation phase.

We use longer contexts — 14 turns on aver-
age — to better ground reflection generation and
human evaluation. We devise a non-expert annota-
tion scheme by 1) collecting free-text error descrip-
tions w.r.t. generated reflections from non-experts
and 2) identifying common patterns in the error de-
scriptions and summarising them into discrete cate-
gories using thematic analysis (Braun and Clarke,
2012), similar to recent work (e.g., Thomson and
Reiter, 2020) adopting bottom-up designs of text
error annotation schemes. Thus, we establish
{Malformed, Off-topic, Dialogue-contradicting,
Parroting, On-topic but unverifiable} as the error
categories, and a generated reflection may suffer
from one or more categories of error. Most of these

2“experts” refers to people well-versed in psychol-
ogy/psychotherapy and “non-experts” refers to the opposite.

categories require a deeper understanding of the
dialogue context but the latter three have not been
explicitly included in previous studies on reflection
generation.

Based on these error categories, we plan for fu-
ture work a mass non-expert error annotation phase
for generated reflections followed by an expert-
based validation phase, namely “whether a coher-
ent and consistent response is a good reflection”.

2 Related Work

2.1 Reflection Generation

PLM-based empathetic dialogue generation (EDG,
e.g., Rashkin et al., 2019) has seen considerable de-
velopment in recent years. Of particular interest to
us is EDG in counselling, which has taken the form
of reflection generation so far. In particular, Shen
et al. (2020) build a reflection generator that lever-
ages responses from similar conversations as auxil-
iary input, while Shen et al. (2022) utilise domain
and commonsense knowledge, both studies using
only 5 preceding utterances as the context. Ahmed
(2022) probes few-shot reflection generation for
individual patient statements instead of multi-turn
dialogues. Compared to those works, ours differs
in its use of long dialogue contexts (14 turns on
average) for the generator to enable more context-
aware reflections.

2.2 Human Evaluation of Empathetic
Dialogue Generation

The standard EDG human evaluation assesses
the dialogue-relevance, fluency and empa-
thy3 (Rashkin et al., 2019; Li et al., 2020b) of a
response on a Likert scale. A/B testing has also
been used to compare responses from different
models (e.g., Xie and Pu, 2021; Kim et al., 2021).

For evaluating reflection generation, Shen et al.
(2020, 2022) tweak the standard EDG human
evaluation slightly by replacing “empathy” with
“reflection-likeness” in {dialogue-relevance, flu-
ency, empathy} to gauge if the response interprets
what the client means. Those human evaluation
setups are small-scale, with less than 50 sampled
reflections per model. On the other hand, 369 re-
sponses generated by the patient-statement-based
reflection models in Ahmed (2022) are evaluated

3Usually rephrased, e.g., “did the responses show under-
standing of the feelings of the person talking about their expe-
rience?” (Rashkin et al., 2019)
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Label Reflection Question Input Other

Prop. 28% 28% 11% 33%

Table 2: Proportion of therapist utterances of each label
in high-quality AnnoMI dialogues.

by experts in a good-vs-bad binary setup. In com-
parison, our human evaluation is novel in its ex-
plicit focus on long-context-based error analysis of
generated reflections.

One issue not explicitly addressed in EDG hu-
man evaluation so far is hallucination, where the
output is unfaithful/ungrounded w.r.t. the input.
While “off-topic-ness” is roughly equivalent to “di-
alogue (ir)relevance”, it is only one type of hal-
lucination. Ishii et al. (2022) define a response to
be “intrinsic hallucination” if it contradicts the in-
put(e.g., Dziri et al., 2019; Li et al., 2020a) and “ex-
trinsic hallucination” if it cannot be verified based
on the input (e.g., Mielke et al., 2022; Roller et al.,
2021). Therefore, a hallucinating reflection can be
on-topic but contradict the context (intrinsic) or be
unverifiable based on the context (extrinsic). Since
reflective listening is based entirely on the context,
we argue that a hallucinating reflection can cause
quick client disengagement, since it is very likely
unnatural in the conversation context. Therefore,
we take hallucination into consideration explicitly,
in contrast to prior work.

3 Modelling of Reflection Generator

3.1 Counselling Dialogue Data: AnnoMI

We utilise AnnoMI (Wu et al., 2022), a corpus of
expert-annotated MI counselling sessions. AnnoMI
contains both “good” (high-quality) and “bad”
(low-quality) examples of MI. Aiming at gener-
ating good reflections, we leverage the 110 conver-
sations (8839 utterances) of high-quality MI.

Each therapist utterance in AnnoMI is annotated
by MI experts as Reflection, Question, Input, or
Other. Specifically, Reflection is reflective lis-
tening, Question means an open/closed question,
Input encompasses providing information and sug-
gestions, etc., while Other is the default and mostly
covers conversation facilitators like “Uh-huh”. The
utterances label distribution is shown in Table 2.

3.2 Model Input Format

We train similarly sized gpt2-medium (Radford
et al., 2019, 355M parameters) and bart-large

(Lewis et al., 2020, 406M parameters) as reflec-
tion generators. Like most open-domain dialogue
models, our models generate a response (therapist
reflection) based on an N -turn dialogue history
(namely the context), where the last turn comes
from the client. An illustrative 3-turn context and
its ground-truth reflection are shown in Table 1.
Pre-trained dialogue models like DialoGPT (Zhang
et al., 2020) are not used because they are mostly
pre-trained on written conversations with only a
few turns as the context, whereas therapy dialogues
are spoken and long, causing a large domain gap.

As the volume of AnnoMI reflections is relatively
small, we also train the models to generate other
types of therapist responses using ground-truth ut-
terance labels as plain-text conditioning codes, in-
spired by recent work (e.g., Rashkin et al., 2021) of
similar approaches. Specifically, we construct the
input as a sequence of context utterances with inter-
locutor labels and utterance separators, appended
by the ground-truth therapist response label. For
example, the context in Table 1 would become4:

“⟨client⟩The baby was up all night and I’m

exhausted.|⟨therapist⟩So, what you’re saying

is you’ve had a rough night?|⟨client⟩Yes. She

was up every three hours to eat, I don’t

understand it.|⟨therapist⟩~⟨listening⟩”

while the ground-truth response is simply

“So, she needed to eat every three hours last

night and that was really frustrating for you?”

The underlying assumption is that this will en-
able more training data for the language modelling
of therapy dialogue while better shaping the bound-
aries of reflections in the latent semantic space.

Thus, a training/validation/test example is sim-
ply a ⟨context, response⟩ pair representing the
⟨input, output⟩. Each context is left-truncated to
the most recent 384 tokens to preserve the most
recent dialogue turns5, while each ground-truth re-
sponse is right-truncated to 128 tokens.

3.3 Training Response Generator
For both GPT-2 and BART we adopt 10-fold cross
validation (CV) for training, in order to obtain

4In practice, we use “⟨asking⟩”, “⟨informing⟩”,
“⟨listening⟩”, “⟨other⟩” as the plain-text control codes
for Question, Input, Reflection and Other, respectively.

5384 tokens make up N turns where N vares depending
on the individual utterance lengths, but on average N = 14.
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Model GPT-2 BART

Perplexity 17.36 13.29

Table 3: Perplexity of each reflection generator under
cross validation.

a test-time generated response for each example
in the dataset (See §3.4). As noted in §3.2, we
train a generic response generator that can produce
any type (namely Reflection, Question, Input or
Other) of therapist response. The examples of each
fold are ensured to be from different dialogues, thus
maximising mutual exclusivity between the train-
ing (8 folds), validation (1 fold) and test (1 fold)
data for each of the 10 CV models. Also, the CV
is stratified so that the distribution of ground-truth
response types in each fold is the same.

To gauge the performance of the response gener-
ators on generating reflections, we evaluate them
only on the test-fold examples where the ground-
truth response is a reflection. Following most re-
cent studies (Thoppilan et al., 2022, Shuster et al.,
2022, inter alia) on response generation, we re-
port in Table 3 the perplexity (the lower the better)
of each model, which quantifies how uncertain a
model is about generating the ground-truth reflec-
tions in the test data. We do not compare these
numbers with other studies because 1) achieving
state-of-the-art is not our focus, 2) the dataset and
task are unique and have no comparable state-of-
the-art, and 3) to the best of our knowledge, there is
no study on the utility of perplexity as a metric for
reflection generation or counselling dialogue mod-
elling. We also experimented with paraphrasing-
based data augmentation, with no significant im-
provement gained.

3.4 Test-Time Reflection Generation

Once the models are trained, we use them to gen-
erate alternative reflections for the context of each
ground-truth reflection in AnnoMI, by conditioning
the output using the ⟨listening⟩ code as before.

Following recent work (e.g., Santhanam et al.,
2021) on hallucination in dialogue generation, we
experiment with a range of decoding strategies,
in order to capture a broad spectrum of potential
errors in model-generated reflections. For both
GPT-2 and BART, we explore

• Greedy decoding
• 5-Beam decoding, using all of the 5 decoded

Figure 1: Annotation Flow

sequences at the final time step
• Nucleus decoding (Holtzman et al., 2019),
p ∈ {0.4, 0.6, 0.8, 0.95}, 5 sequences sam-
pled for each p

4 Human Annotation

As the underlying assumption of our human anno-
tation is that incoherence/inconsistency errors can
be spotted by non-experts, we survey laypeople
for their own descriptions of reflection errors and
then summarise those free-text descriptions into
categories.

Annotation Materials We sample 3 contexts
from 3 different dialogues and use their respec-
tive ground-truth and model-generated reflections
for annotation. Based on the responses generated
for the 3 contexts, we randomly sample a subset of
60 for human annotation.

Annotators We recruited 6 volunteers with high
proficiency in English and no prior experience in
NLP or psychology/psychotherapy. Each annotator
worked on the same batch of 60 reflections for the
aforementioned 3 contexts in total.

Annotation Procedure The procedure is illus-
trated in Figure 1, and the annotation interface
is presented in Appendix A. The annotators are
shown each ⟨context, reflection⟩ pair and first
need to answer whether the reflection feels co-
herent and consistent given the context. If they
choose “No”, they are asked to describe the
incoherence/inconsistency-causing error(s) of the
reflection, otherwise they will proceed to the next
example. We note that we do not define “incoher-
ent” or “inconsistent” and instead leave it to the
discretion of the annotators, in order to gather more
natural insights on response errors. For the same
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reason, we use the word “response candidate” in-
stead of the more complex term “reflection”, and
we do not mention that some response candidates
came from models instead of humans.

Inter-Annotator Agreement The inter-
annotator agreement (IAA) on the “Coherent &
Consistent?” question is 0.37 in terms of Fleiss’
kappa (Fleiss, 1971), which is in the “fair agree-
ment” range (0.2-0.4) but close to the “moderate
agreement” threshold of 0.4. We attribute the
relatively low IAA to two factors: 1) We purposely
did not provide a strict definition of “coherence”
or “consistency” to the annotators, which led
some of them to consider issues like “intimidating
tone” as causes for incoherence/inconsistency, but
those are actually reserved for the expert-phase,
since therapy experts should be the ones to judge
whether a response is appropriate in a counselling
setting. 2) 6 annotators are involved in the
annotation process rather than just 2 to 3 as is
commonly done for human evaluation of generated
reflections (Shen et al., 2020, 2022), and it is
usually less likely to get higher agreement with
more raters.

Established Error Categories We use thematic
analysis (Braun and Clarke, 2012) to manually and
systematically identify common patterns in the an-
notators’ feedback and summarise them into the
following error categories:

• Malformed: a response that “feels broken”
because 1) it has unclear references, 2) it is
incomprehensibly ungrammatical, and/or 3)
its sentences are issue-free on their own but
confusing when combined.

• Dialogue-contradicting: a response that con-
tradicts the context, either partially or fully.

• Parroting: a response that repeats a certain
part of the context in an unnatural way.

• Off-topic: a reply that has little to no rele-
vance to the dialogue.

• On-topic but unverifiable: an on-topic reply
that cannot be verified based on the context.

For concrete examples of the categories, see Ta-
ble 4.

Other Considerations Good reflections some-
times repeat something that the client has said,
for example to affirm it, but those are natural
and good practices rather than unnatural repetition
(Parroting). Also, broadly speaking, Dialogue-

contradicting, Off-topic and On-topic but unver-
ifiable reflections are all unfaithful and ungrounded
w.r.t. the context, making them all manifestations
of hallucination. Finally, we note that a small per-
centage (≈ 8%) of error descriptions do not contain
sufficient information (e.g., “Doesn’t feel like a nat-
ural response”) and are therefore excluded from the
thematic analysis. To account for such generic feed-
back and also to capture potential errors that do not
fit neatly into the categories above, future users
of this scheme may optionally create an “Other”
category.

5 Conclusion

In this work, we explored non-expert annotation of
machine-generated reflections for counselling dia-
logues, based on the assumption that non-experts
are capable of context-informed 1) judgement of
whether a reflection is coherent and consistent
and 2) identification of the errors in an incoher-
ent/inconsistent reflection. We identified common
patterns among the free-text error descriptions from
non-experts about generated reflections and accord-
ingly used thematic analysis to establish discrete er-
ror categories that emphasised context understand-
ing. Based on these categories, we plan for future
work A) a mass non-expert error annotation phase
for generated reflections, followed by B) an expert-
based validation phase, and the results from both
phases will be released to the public.

Limitations

In this preliminary study, our goal is to establish
error categories for annotating machine-generated
reflections. While we believe the human annota-
tion conducted in this work is sufficient for achiev-
ing the goal, its limited annotation scale precludes
drawing reliable conclusions from more advanced
analysis, such as 1) coherence/consistency rates of
different models and decoding strategies, and 2)
correlation between human judgement and existing
automatic metrics that are commonly used for dia-
logue generation tasks. Therefore, in our next step,
we plan to carry out significantly scaled-up human
annotation, in order to facilitate further analysis.

Ethical Aspects

Before starting the experiment, the procedure and
materials were carefully reviewed by the Univer-
sity of Aberdeen’s Ethics Board. Our experiment
proposal was accepted without major revisions. All
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Context
Utt. Role Text

ut−16 Therapist Mm. So, embraces this life of the picket fence and the, you know, the little house and having the baby in
this-

ut−15 Client Yeah, suburbs. Yeah.
ut−14 Therapist So, you don’t wanna be that- that- that woman that’s just sort of living in this house with the baby

carriage, and at the same time, that world’s kind of saying it’s behind you.
ut−13 Client Yeah, I-I guess. Like, I don’t wanna- I don’t wanna lose my friends because of this. And I don’t wanna

put pressure on them to change because they’re, I mean, they’re good people. They’re just–
ut−12 Therapist You care about them.
ut−11 Client Yeah.
ut−10 Therapist It’s just the scene that they’re-they’re still in because their life maybe hasn’t taken that change that your

life has made. And so now, you’re here and you’re not sure. You want the baby, but you’re not sure about
the suburbs and the picket fence thing. You’re not sure–

ut−9 Client I don’t want that.
ut−8 Therapist You don’t want that.
ut−7 Client No.
ut−6 Therapist You want this baby.
ut−5 Client Yeah.
ut−4 Therapist And you wanna be, um, take care of your baby as the baby’s growing.
ut−3 Client Like, I wanna- I wanna be responsible for this thing.
ut−2 Therapist You don’t wanna let your baby down.
ut−1 Client No.

Ground-Truth Response (Reflection), Coherent & Consistent
ut Therapist And at the same time, it’s hard to let go of the past, but on the other hand, you’re thinking, “I don’t have

a choice. I’ve got to look this way.” Is that kind of what it feels like?

Malformed
Therapist You-you wanna be the one that, um–you’re the one who’s gonna pick up the phone, uh, uh–you wanna

pick up and, uh –or call them, um –to-to-unquote-the-mother and-to tell them that your-your daughter is
going to come home and she’s, uh...

Dialogue-contradicting
Therapist OK, so what I’m hearing you say is that taking care of a baby would be too much responsibility for you

right now, so you are not ready to have a baby.

Parroting
Therapist Mm-hmm. So, you don’t want to let your baby down.

Off-topic
Therapist So you do not wanna allow your kids to go across the street without you.

On-topic but unverifiable
Therapist You’ve really wanted to be a mom since you were a little girl.

Table 4: Example for each error category, as established in §4.

of the recruited annotators were volunteers. Upon
starting the experiment, each annotator was shown
a consent form containing all the information re-
garding the experiment procedure. All workers
had to confirm their acceptance of these conditions
before proceeding. Workers were given an email
contact in case of problems during the experiment.
No personal data about the annotators was kept
stored at the end of the experiment.
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Figure 2: Annotation Interface
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Abstract

The General QA field has been developing the
methodology referencing the Stanford Ques-
tion answering dataset (SQuAD) as the signifi-
cant benchmark. Compiling factual questions
datasets requires manual annotations, limiting
the training data’s potential size. We present
the WikiOmnia dataset, a new publicly avail-
able set of QA pairs and corresponding Rus-
sian Wikipedia article summary sections, com-
posed with a fully automated generation and
filtration pipeline. To ensure high quality of
generated QA pairs, diverse manual and au-
tomated evaluation techniques were applied.
The WikiOmnia pipeline is available open-
source and is also tested for creating SQuAD-
formatted QA on other domains, like news
texts, fiction, and social media. The resulting
dataset includes two parts: raw data on the
whole Russian Wikipedia (7,930,873 QA pairs
with paragraphs for ruGPT-3 XL and 7,991,040
QA pairs with paragraphs for ruT5-large) and
cleaned data with strict automatic verification
(over 160,000 QA pairs with paragraphs for
ruGPT-3 XL and over 3,400,000 QA pairs with
paragraphs for ruT5-large).

1 Introduction

Generative abilities of large and high-performing
pre-trained language models (LMs) are widely
investigated now, and special interest is aroused
around generating datasets in a fully unsupervised
way (Schick and Schütze, 2021). Question answer-
ing (QA) datasets can be easily adjusted to the
generation pipeline formats and become a source
for training generative reading comprehension sys-
tems (Brown et al., 2020; Wei et al., 2021), dia-
logue systems (Nehring et al., 2021), various tasks
in the field of information retrieval for various lan-
guages (Shavrina et al., 2021).

In this work, we present WikiOmnia - the
largest QA dataset for Russian, obtained in a fully-
automated way. The dataset contains QA pairs for

every article of Russian Wikipedia 1, based on the
summary sections. WikiOmnia consists of 2 parts:

1. the voluminous, automatically generated part:
15,9 million triplets consisting of the original
article summary, a corresponding generated
question and a generated answer;

2. the filtered part: the subsample of 3,5 million
triplets, fully verified with automatic means.

Apart from the data, we present a fully-automated
pipeline for SQuAD-like data generation for Rus-
sian, based on generative part represented by the
ruGPT-3 XL2 and ruT5-large 3 models, and filter-
ing part that includes Russian BERT4 baseline and
rich heuristic approach. All stated models were
fine-tuned on SberQuAD (Efimov et al., 2020) that
is based on the methodology of the original En-
glish SQuAD (Rajpurkar et al., 2016). The whole
automated and unsupervised generation and filtra-
tion pipeline was also tested for creating SQuAD-
formatted QA on other domains: news texts, cus-
tomer reviews, fiction, and social media. QA
datasets generated with ruGPT3XL and ruT5 will
be available on HuggingFace.

After some related work overview in Section
2, QA generation and filtration details are demon-
strated in Sections 3 and 4 respectively, followed
by the corpus statistics in Section 5. Evaluation
details are described in Sections 6 and 7.

2 Related Work

The proposed work is based upon the recent archi-
tectures in transformer language modelling - GPT-
3 (Brown et al., 2020) and T5 (Raffel et al., 2019),

1as of March 2021
2https://huggingface.co/sberbank-ai/

rugpt3xl
3https://huggingface.co/sberbank-ai/

ruT5-large
4http://docs.deeppavlov.ai/en/master/

features/models/squad.html
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and solves a standard SQuAD format problem, re-
sulting in triplets "text paragraph - question based
on paragraph - answer from the paragraph", see
the following example:

• Original Wikipedia paragraph:5 Коити
Масимо (яп. Масимо Ко:ити) — извест-
ный режиссёр аниме и основатель япон-
ской анимационной студии Bee Train. С
момента основания студии он руководит
производством почти всех её картин, а
также время от времени принимает уча-
стие в работе над анимацией и музыкой.
Kōichi Mashimo is a famous anime director
and the founder of the Japanese animation stu-
dio Bee Train. Since the creation of the studio,
he directed almost all studio’s works, and he
also sometimes participates in art and sound
tasks. Generated question (ruT5): Кто
является основателем японской анима-
ционной студии Bee Train? Generated
answer (ruT5): Коити Масимо English
QA translation: Who is the founder of the
Japanese animation studio Bee Train? Kōichi
Mashimo

The following subsections of this section will
break down previous work on the topic of QA
datasets and their generation.

Datasets. For English, SQuAD 1.1 (Rajpurkar
et al., 2016) consists of 107,785 question-answer
pairs. SQuAD 2.0, combines SQuAD 1.1 ques-
tions with over 50,000 unanswerable questions
(questions that cannot be answered based on the
corresponding paragraph) (Rajpurkar et al., 2018).
The following datasets for English were of com-
parable size or bigger. Trivia QA (Joshi et al.,
2017) includes 95 thousand QA pairs. Natural
Questions (NQ) (Kwiatkowski et al., 2019) con-
tains questions from Google search queries and
corresponding spans from Wikipedia articles as
answers: 307,373 training examples, 7,830 devel-
opment and 7,842 test examples. With the develop-
ment of deep learning models, over 80 new datasets
on QA and reading comprehension appeared in the
past two years (Rogers et al., 2021). Several mul-
tilingual QA datasets contain Russian examples:
MKQA (Longpre et al., 2020), TYDI QA (Clark
et al., 2020), a dataset for 7 languages (Asai et al.,
2020). Artetxe et al. (2020) conducted experiments

5https://en.wikipedia.org/wiki/K%C5%
8Dichi_Mashimo

on the Cross-lingual Question Answering Dataset
(XQuAD) benchmark that consists of a subset from
SQuAD v1.1 and its translations into 10 languages.

Wikipedia is commonly used as a relevant source
for new datasets: for example, Yang et al. (2015)
presented WIKIQA dataset of QA pairs. It contains
3,047 questions from Bing query logs, where each
one is associated with a Wikipedia page. Manual
annotation was used to check if a sentence from a
page summary paragraph is the correct answer to
the question. Lewis et al. (2021) automatically gen-
erated 65M QA pairs from Wikipedia paragraphs,
using four steps with separate models: passage se-
lection, possible answer extraction (with BERT),
question generation (with BART), and filtering.

For Russian, SberQuAD (Efimov et al., 2020)6

is the main resource for the QA system develop-
ment and evaluation. The dataset was created
following the methodology of the original En-
glish SQuAD, it contains about 50 thousand QA
pairs. No bigger QA datasets for Russian were cre-
ated yet, and synthetic QA generation approaches
were not applied to Russian yet. Although, pre-
trained language models, which are suitable for
generative tasks, might help create better QA sys-
tems: ruGPT-3 models (ruGPT3XL, ruGPT3Large,
ruGPT3Medium, ruGPT3Small) and ruT5 models
(ruT5-base, ruT5-large) exist for Russian and can
be implemented for the task.

Question-answer generation.. Classical QA
pair generation pipeline lets firstly choose among
text points that should be asked, then ask a ques-
tion based on these points, and after that find
the most likely candidate from the answer spans
in text (Reddy et al., 2017; Du et al., 2017; Al-
berti et al., 2019; Lee et al., 2020). Joint models,
for question and answer generation can be also
used (Shakeri et al., 2020; Cui et al., 2021) - i.e.
based on BART. Lyu et al. (2021) proposed BERT-
based model which generates questions heuristi-
cally from summaries. Some filtering steps can be
done after creating QA too (Alberti et al., 2019;
Puri et al., 2020; Lewis et al., 2021). Shakeri
et al. (2020) proposed likelihood of the generated
question-answers as a measure for it.

In the recent years, pre-trained language models
as unsupervised open-domain QA systems, that in-
corporate factual knowledge, were studied (Petroni
et al., 2019; Jiang et al., 2020b,a; Kassner and

6https://huggingface.co/datasets/
sberquad
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Schütze, 2020; Bouraoui et al., 2020) and criti-
cized (Cao et al., 2021). Other pre-trained language
models were also examined for the task: Wang
et al. (2021) fine-tuned BART to answer closed-
book questions, and Wang et al. (2020) studied
GPT-2-based models performance for constructing
knowledge graphs.

To the best of our knowledge, the only approach
to GPT-based QA generation and filtration was sug-
gested in (Liu et al., 2020), who used a QA genera-
tion pipeline to generate diverse question-answer
pairs from unlabeled text corpus. For question gen-
eration, GPT-2 small model, fine-tuned on SQuAD
1.1 training dataset, was used. To filter out low-
quality generated data, fine-tuned BERT-based QA
model utilizing the SQuAD 1.1 dataset was used:
examples were kept if F1 similarity score between
the answer span and the answer span predicted by
BERT-based QA was above 0.9. The performance
of question generation was evaluated by BLEU,
ROUGE-L, METEOR metrics. However, the ap-
proach was examined only for English.

3 Implementation Details

We used the biggest freely available Russian GPT3
model: ruGPT-3 XL. The model was trained using
Deepspeed and Megatron code and had sparse at-
tention blocks. Maximal sequence length for gener-
ation was 2048 tokens. We fine-tuned the model on
SberQuAD dataset with the following parameters:
batch-size = 2, sequence length = 2048, learning
rate = 0.000015. The model fine-tuning required
10 GPUs per worker, and it took 135,000 iterations.
After that we ran parallel QA generation with the
parameters: maximal length = 1048, beam search
with 7 as a number of beams, all 3grams can only
occur once, repetition penalty = 2.

We also fine-tuned ruT5-large model for Russian
on SberQuAD dataset with such parameters: num-
ber of epochs = 5, maximal length = 512, batch
size = 16, number of beams = 12.

For ruGPT-3 XL, we turned each example into
a line starting with a special text beginning token
(<[TEXT]>), a text, then a special question be-
ginning token (<[QUESTION]>), a question, a
special answer beginning token (<[ANSWER]>),
and, finally, an answer, followed with the end-of-
sequence special token. For ruT5-large, we pre-
sented each example in the same way, but special
text beginning, question beginning and answer be-
ginning tokens were in Russian. Both models were

fine-tuned to generate 3 QA pairs for a text.
For QA generation we crawled all Wikipedia

for the Russian language (up to March 2021) -
2,682,680 articles in general. We took only text
from summary sections in every Wikipedia article.
Based on page categories, we excluded disambigua-
tion articles from the data. Then we kept Wikipedia
article categories for each summary, for filtration
and analysis purposes. For processing purposes, we
splitted all Wikipedia data into 20 batches. Both
for ruGPT-3 XL and for ruT5-large, we generated
3 QA pairs per summary. So the dataset contains
summaries, QA pairs for them, and additional in-
formation, such as page title and corresponding
Wikipedia categories. All QA pairs for a summary
are included in one batch, and each summary ap-
peared in the Wikipedia summaries dataset only
once.

The dataset is presented in 20 batches, it lets use
any 18 batches as train set, and the remaining two
batches as development set and test set, if needed.
Both ruGPT-3 XL and ruT5-large fine-tuning, gen-
eration, filtration and evaluation tasks were per-
formed on 4 Tesla V100 GPU (32GB RAM) server
and in Google Colab.

4 Filtration of Generated Data

Inspired by (Liu et al., 2020), we applied a set of
hand-crafted heuristics to filter out generated QA
pairs of poor quality in the following steps, based
on manual evaluation (See Subsection 6.1.).

1. First of all, we dropped QA pairs with more
than one interrogative pronoun in a question.

2. Then we applied squad_ru_rubert_infer BERT
model for Russian pre-trained on SberQuad
7. We created ’gold’ answers for all gen-
erated questions with it, letting it answer
the questions generated by ruGPT-3 or ruT5.
After that we left strings with exact match
between lemmatized generated answer and
BERT model answer, with intersection of lem-
mas between two answers over 70%. This
threshold was chosen manually based on the
analysis of one data sample - batch 2 (random
50,000 examples from 90,927 summaries).

3. After that, we extracted named entities using
Natasha python library for Russian.8 We re-

7http://docs.deeppavlov.ai/en/master/
features/models/squad.html

8https://github.com/natasha/natasha
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moved QA pairs in which entities (of different
types) in a generated question were not pre-
sented in Wikipedia summary, and/or entities
(of different types) in a generated answer were
not presented in summary, using string match
methods.

4. Finally, we deleted duplicated QA pairs for
the same summaries where Levenshtein dis-
tance similarity ratio between questions and
Levenshtein distance similarity ratio between
answers was more than 70%.

Several additional options were implemented
and can be used too, but they were not included
into the final heuristics version for this specific
task after the manual analysis (See Subsection
6.1.): 1) ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005; Denkowski and Lavie, 2014) and
BLEU (Papineni et al., 2002) metrics in the second
step. For each pair among ’gold’ answer - gen-
erated answer, question - generated answer, text -
generated answer, text - question, three metrics for
lemmatized strings were calculated. The mean re-
sult for each pair was counted, and QA pairs where
values were less than the corresponding thresholds
60%, 50%, 40%, were removed. 2) Matching per-
sons and locations separately instead of the third
step. 3) Checking if the ’gold’ BERT model score
is over 0.99, filtering out complicated examples.
4) Calculating if word mover’s distance between
generated answer and ’gold’ answer is between 1.1
and 1.5, using the fastText model for Russian9.

The overall pipeline is presented in Figure 1.

5 Corpus Statistics

We describe the main characteristics of the result-
ing corpus. For synthetic data, it is especially im-
portant to control their diversity and frequency of
words.

Basic statistics. For ruGPT-3 and ruT5 gen-
erated data, generation and filtration results in a
detailed way are presented in Tab. 1 for Wikipedia
batches 1-5. We see that quality of ruT5 generated
QA pairs is much better; however, both models
require a filtration step for a ’clean’ dataset version.
In general, the raw dataset version for ruGPT-3 con-
tained 7,930,873 examples, and filtered version had
more than 160,000 examples. For ruT5, the raw

9araneum fasttextcbow-300-5-2018.model https://
rusvectores.org/en/models/

dataset version consisted of 7,991,040 examples;
filtered version included over 3,400,000 examples.

The most frequent words in questions and an-
swers for all 4 setups do not differ: they are about
years, names, places, numbers etc. For instant,
in questions the most frequent lemmas are ’god’
(year), ’nazyvat’sja’ (to be named), ’rodit’sja’ (to
be born), ’skol’ko’ (how many), ’gorod’ (town),
and in answers the most frequent lemmas are ’god’
(year), ’rajon’ (district), ’chelovek’ (human, per-
son), ’gorod’ (town), ’rossijskij’ (Russian).10 Av-
erage length for ruT5 before and after filtration
is about 52 characters (7 tokens) for questions
and about 24 characters (4 tokens) for answers.
For ruGPT-3, average length before filtration is 47
characters (7 tokens) for questions and 19 charac-
ters (3 tokens) for answers; after filtration its is
slightly shorter: 46 characters (7 tokens) for ques-
tions and 12 characters (2 tokens) for answers. In
SberQuAD train set, questions (64.4 characters, 8.7
tokens) and answers (25.9 characters, 3.7 tokens)
are longer (Efimov et al., 2020).

Self-BLEU for questions diversity. We com-
puted Self-BLEU as a metric of diversity for gen-
erated questions, as they are more specific for a
model than answers that depend on questions. We
followed (Holtzman et al., 2020) approach that is
based on (Zhu et al., 2018). It yields how one
sentence (a question) resembles other generated
questions in the collection: for each question as
a hypothesis and all other questions as references,
the BLEU score is calculated. Due to computa-
tional reasons, we took random samples of 5,000
examples from raw ruGPT-3 data (batch 2), raw
ruT5 data (batch 2), filtered ruGPT-3 data (includ-
ing batch 2), and filtered ruT5 data (including batch
2). To compare, we measured Self-BLEU for a ran-
dom sample of 5,000 questions from the original
SberQuAD too. For each text, there was only one
corresponding question in the data. Questions were
lemmatized before calculation.

Median Self-BLEU scores are presented in
Tab. 2, where lower Self-BLEU scores represent
higher diversity. SberQuAD data demonstrated the
highest diversity. While ruT5 generated questions
imply higher diversity after filtration, for ruGPT-3
the most relevant questions that remain after filtra-
tion are less diverse.

Wh-questions ratio. We also use wh-questions

10Here Russian words are given in Latin transliteration, for
readability purpose.
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Figure 1: The full WikiOmnia pipeline for QA generation.

Batch ruGPT-3 before filtering filtered ruGPT-3 ruT5 before filtering filtered ruT5
Batch1 266,332 10,079 272,397 152,884
Batch2 268,795 8,034 271,281 113,964
Batch3 276,618 6,176 275,412 124,784
Batch4 272,875 7,042 270,534 146,627
Batch5 276,107 5,536 279,363 157,535

Table 1: Number of QA pairs in ruGPT-3 and ruT5 generated batches before and after filtering: on the example of
Wikipedia batches 1-5.

Data Median Self-BLEU
Raw ruGPT-3 data (1) 0.45
Filtered ruGPT-3 data (2) 0.49
Raw ruT5 data (3) 0.40
Filtered ruT5 data (4) 0.38
SberQuAD data (5) 0.20

Table 2: Median Self-BLEU scores calculated for raw
ruGPT-3 generated data (1), filtered ruGPT-3 generated
data (2), raw ruT5 generated data (3), filtered ruT5 gen-
erated data (4), SberQuAD data (5).

ratio to check how diverse are the questions. We
select 15 Wh-words and similar words in Rus-
sian: ’kto’ (who), ’chto’ (what), ’kakoj’ (which,
what), ’chej’ (whose), ’gde’ (where), ’kotoryj’

(what, which), ’otkuda’ (where from), ’skol’ko’
(how many), ’kakovoj’ (what, by which), ’kakov’
(what, which), ’zachem’ (what for), ’kogda’
(when), ’pochemu’ (why), ’chem’ (with what),
’kak’ (how).11 On the example of 5 batches, we
checked how many such questions were presented
in data before and after filtration, compared with
SberQuAD ratios. Tab. 3 demonstrates results for
10 Wh-words and similar words, excluding ’chej’
(whose), ’otkuda’ (where from), ’zachem’ (what
for), ’kotoryj’ (what, which), ’kakovoj’ (what, ’by
which’), that were underrepresented both in 5
batches and in SberQuAD. For both ruGPT-3 and
ruT5 generated questions, ratios for ’skol’ko’ (how

11Here Russian words are given in Latin transliteration, for
readability purpose.
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Wh-word 1 2 3 4 5
kto (who) 0.15 0.04 0.14 0.12 0.05
chto (what) 0.08 0.10 0.06 0.07 0.13
kakoj (which, what) 0.08 0.12 0.09 0.08 0.11
gde (where) 0.07 0.04 0.12 0.10 0.03
skol’ko (how many) 0.02 0.06 0.04 0.04 0.03
kakov (what, which) 0.05 0.02 0.01 0.00 0.01
kogda (when) 0.06 0.04 0.11 0.12 0.05
pochemu (why) 0.00 0.00 0.00 0.00 0.01
chem (with what) 0.01 0.01 0.01 0.01 0.03
kak (how) 0.18 0.13 0.14 0.11 0.07

Table 3: Wh-questions median ratios for raw ruGPT-3 generated data (1), filtered ruGPT-3 generated data (2), raw
ruT5 generated data (3), filtered ruT5 generated data (4) on the example of Wikipedia batches 1-5; Wh-questions
ratio for SberQuAD data (5).

many) and ’kak’ (how) after filtration are higher
than in SberQuAD questions. Generated QA pairs
of good quality more often contain a numerical an-
swer. Questions with ’kto’ (who), ’gde’ (where),
and ’kogda’ (when) have higher ratios in ruT5 ques-
tions than in SberQuAD. On the contrary, more
complicated questions with ’pochemu’ (why) and
’chem’ (with what) are less presented in generated
QA pairs. It can be also noticed that ruGPT-3 gener-
ates questions with ’kakov’ (what, which) (a short
form of a wh-word) more often than ruT5. ruGPT-3
generated QA pairs with ’kto’ (who) have rather
low quality and contain information about persons
not from the summaries, that’s why they are strictly
filtered out. On the example of ’kogda’ (when),
we see that QA pairs with dates, provided by ruT5,
are more correct than such pairs from ruGPT-3.
Therefore, in comparison with SberQuAD, both
generated datasets remain diverse, too.

6 Performance Evaluation

6.1 Human Evaluation and Error Analysis

Human Evaluation for editing the pipeline. We
took human evaluation into account for the data
generated by a fully automated generative pipeline
twice, conducting the intermediate and the final
evaluation stages. This manual evaluation was con-
ducted by the authors, as well as discussions about
problematic points to handle disagreements. On
the intermediate stage, we took multiple series of
10,000 random summaries and analysed manually
the generated QA pairs for them, as well as the
examples remaining after filtration with different
filtration options; the same steps were reproduced
for QA pairs by ruGPT-3 and ruT5. Based on this

intermediate evaluation, the generation and filtra-
tion pipeline was edited: step 1 was added; step 3
was placed after step 2 (not before it); several steps
were removed from the pipeline (See Section 4).
After that, the final evaluation stage was conducted
for the same samples with the final filtration op-
tions results: for these samples, rate of examples
remaining after filtration reached about 5% for QA
pairs generated by ruGPT-3 and about 30% for QA
pairs generated by ruT5. During the final stage, we
also checked manually, in addition, several random
samples of 10,000 QA pairs for specific evaluation
tasks.

Wikipedia topics before and after filtration.
To estimate if filtration ratio varies for different top-
ics, we checked the ratio of examples that remained
after filtration for various Wikipedia categories
groups (on the example of Batches 1-5): history
events, famous persons biographies, plants, techni-
cal descriptions, geography, mathematics, sports,
actors, and movies. Categories for the selected top-
ics were grouped using heuristics rules, based on
saved Wikipedia category names for each example
(one example could have multiple categories).

Both ruGPT-3 and ruT5 generated QA pairs
showed the best results for articles about sports,
perhaps due to simple and well-structured sum-
maries. Error analysis showed that ruGPT-3 also
performed rather well on history and plants topics,
but answers to the correct questions, also correct
in meaning, did not match the ’gold’ answers well.
In addition to sports, ruT5 QA pairs for technical,
history and geography articles also yielded higher
quality, they did not contain additional informa-
tion not from the corresponding summaries, unlike
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ruGPT-3. In general, for technical topics (i.e. com-
puter science), generated QA pairs yielded worse
quality before filtration than for other topics.

Example of an erroneous QA pair generation
with ruT5, detected by filtering:

• Original Wikipedia paragraph:12 Пса-
тирелла водолюбивая (лат. Psathyrella
piluliformis) — гриб рода Псатирел-
ла (Psathyrella) семейства Псатирелло-
вые (Psathyrellaceae). Съедобность гри-
ба спорна, чаще он считается несъедоб-
ным, иногда — условно съедобным, но
невысокого качества. Psathyrella piluli-
formis is a species of agaric fungus in the
family Psathyrellaceae. It is considered edible
but of low quality, with fragile flesh and be-
ing difficult to identify. Generated question
(ruT5): Какова способность гриба ме-
нять окраску? Generated answer (ruT5):
в зависимости от условий English QA
translation: What is the ability of a fungus to
change color? Depends on conditions

The filtered dataset may still contain two types
of errors that were not detected by the filters: 1)
questions about information that was not presented
in a summary (0.008% for ruGPT-3, based on a
random example of 10,000 QA pairs); 2) erroneous
answers with numbers (if not years).

6.2 Automated Evaluation
During all evaluation experiments, we focused
mostly on training QA systems using the filtered
WikiOmnia part with QA pairs generated by ruT5,
as it is bigger (than the part with QA pairs by
ruGPT-3) and lets experiment with different sample
sizes. We took random dataset parts of 50,000 ex-
amples, 100,000 examples, and 300,000 examples.
For each sample size, we took 2 random samples
and calculated the average score values for them.

Experiment set 1. We fine-tuned ruBERT base
cased model (BERT model for Russian 13) on each
of these samples and then evaluated it on develop-
ment and test parts of SberQuAD dataset. As a
baseline, we fine-tuned ruBERT on the train part
of SberQuAD dataset. F1 score and exact match
(EM) were used as standard SQuAD evaluation
metrics. For all setups, the following parameters

12https://en.wikipedia.org/wiki/
Psathyrella_piluliformis

13https://huggingface.co/DeepPavlov/
rubert-base-cased

were used for fine-tuning: 3 epochs, learning rate
= 2e-5, weight decay = 0.01.

Experiment set 2. We took models above, al-
ready fine-tuned on WikiOmnia samples (100,000
examples and 300,000 examples), and fine-tuned
them further on SberQuAD train part (1, 2 and
3 epochs). Results for Experiment sets 1 and
2 are presented in Tab. 4. In the second exper-
iment set, the models fine-tuned on 100,000 or
300,000 WikiOmnia triplets and then fine-tuned
on SberQuAD train part (2 epochs), perform better
than models fine-tuned only on 100,000 or 300,000
WikiOmnia triplets, or the baseline model fine-
tuned on SberQuAD train part (3 epochs). Fine-
tuning first on WikiOmnia and then on SberQuAD
yields better results than fine-tuning only on
SberQuAD.14 The WikiOmnia size lets conduct
experiments with different sample sizes.

Experiment set 3. Following the Experiment
set 2 results, we decided to take an ’own’ devel-
opment set from WikiOmnia (10,000 triplets) and
to compare results on it with results on develop-
ment and test parts of SberQuAD (Tab. 5). We
took a random sample with 110,000 examples from
WikiOmnia by ruT5. We conducted ruBERT base
model fine-tuning: 5 runs for different folds where
10,000 triplets were taken as a development set for
evaluation, and the remaining 100,000 triplets were
used for fine-tuning, 2 epochs in each run. Results
on the WikiOmnia development set, in all runs, are
much better than results on SberQuAD develop-
ment and test sets. Perhaps, due to the datasets
specifics, SberQuAD development and test sets are
suitable for models, fine-tuned on WikiOmnia, eval-
uation, only if they were fine-tuned on SberQuAD
train as a second step.

7 Pipeline Evaluation on Other Domains

For evaluation purposes, we also tested the full
pipeline on data samples of four other text gen-
res in Russian: news stories, social media posts,
product reviews, and fiction texts. Each sam-
ple has 2,000 examples taken randomly from the
following datasets: 1) news from the newspaper

14Models, fine-tuned on the ruGPT-3 generated WikiOm-
nia part, showed the same peruliarity: after fine-tuning on
WikiOmnia and then on SberQuAD train, EM on the devel-
opment set was 67.71, F1 score on the development set was
86.64, EM on the test set was 66.57, and F1 score on the test
set was 85.88. All metrics, excepting the last one, are better
than the baseline. As the filtered ruGPT-3 generated WikiOm-
nia part is rather small and contains only 164,253 examples,
all experiments were conducted for this whole part.
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Model setup EM on dev F1 on dev EM on test F1 on test
Baseline (1) 66.39 85.92 66.46 85.93
(2) 59.26 79.89 58.30 79.26
(3) 60.04 80.57 58.64 79.94
(4) 59.80 80.50 58.36 79.97
(5) 67.32 86.26 66.29 85.76
(6) 67.04 86.18 66.96 86.03
(7) 65.95 85.67 65.48 85.40

Table 4: Evaluation scores for ruBERT base model fine-tuned on: SberQuAD train (1), WikiOmnia 50,000 examples
by ruT5 (2); WikiOmnia 100,000 examples by ruT5 (3); WikiOmnia 300,000 examples by ruT5 (4); WikiOmnia
100,000 examples and then SberQuAD train 1 epoch (5); WikiOmnia 100,000 examples and then SberQuAD train 2
epochs (6); WikiOmnia 100,000 examples and then SberQuAD train 3 epochs (7).

Model EM on own dev F1 on own dev EM on dev F1 on dev EM on test F1 on test
1 run 87.47 95.14 59.32 80.00 58.30 79.71
2 run 87.89 95.24 59.86 80.40 58.46 79.87
3 run 88.08 95.46 59.83 80.33 58.57 79.92
4 run 87.53 95.18 60.22 80.66 58.64 79.89
5 run 87.90 95.18 59.39 80.18 58.21 79.70

Table 5: Evaluation on the development set from WikiOmnia (own dev), in comparison with evaluation on
SberQuAD development (dev) and test (test) sets (5 runs).

Gazeta,15 (Gusev, 2020) with text lengths up to
3,500 characters; 2) social media texts from the
Taiga corpus16 (Shavrina and Shapovalova, 2017),
with texts lengths up to 3,000 characters; 3) re-
views from the dataset17 on product reviews about
clothes from an e-commerce website (Smetanin
and Komarov, 2019), with text lengths over 500
characters and up to 1,007 characters, as these texts
are rather short; 4) fiction texts from the collection
of Russian classical literature texts18: fragments
from texts, with text lengths up to 3,000 characters.

For every text, three QA pairs were generated.
Filtration steps were the same as for QA pairs based
on Wikipedia summaries. After filtration, we got
the following results for ruGPT3XL: 497 pairs re-
mained for fiction texts, and 559 pairs were left for
news texts. For reviews, the pipeline performed in
the best way: 1379 pairs were left. The worst per-
formance was for social media: only 154 pairs re-
mained. ruT5-large also yielded good performance
on reviews: 1,542 pairs were left after filtration.
The explanation might be that review texts as a

15https://github.com/IlyaGusev/gazeta
16https://tatianashavrina.github.io/

taiga_site/
17https://github.com/sismetanin/

rureviews
18https://www.kaggle.com/d0rj3228/

russian-literature

genre usually have definite patterns and structure.
The worst ruT5-large results were also for social
media: only 945 pairs remained. Social media
texts looked mostly like opinionated pieces where
it would be hard to create QA pairs manually too.

Both pipelines, for ruGPT3 XL and ruT5-large,
can be generalized comparatively well to other gen-
res. Although ruT5-large performed generally bet-
ter on all four genres, the results mostly differed
on news texts: 3,204 texts remained after filtering.
Other filtration techniques should be investigated,
handling the remaining errors, i.e. how to check
quality of numerical answers (especially by ruGPT-
3), or how to check question and answer similarity
to the corresponding summary, considering para-
phrases. Reasons of the results of the automated
evaluation on SberQuAD development and test sets
should be also explored further. The dataset im-
plementation for various and diverse tasks and its
evaluation on them remains a separate point for
further research.

8 Conclusions

We propose WikiOmnia, the new largest question-
answering dataset for Russian: it contains QA pairs
and corresponding Russian Wikipedia article sum-
maries. It can be used to improve the quality
of monolingual and multilingual information re-
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trieval systems, open domain question answering,
etc. Quality of generated QA pairs in the filtered
part of the dataset is ensured by diverse automated
filtration techniques, manual and automated eval-
uation. We also present the automated generation
and filtration pipeline that can be applied to vari-
ous sources of text data, including expanding the
applicability of QA systems to news data, fiction,
reviews.

We welcome researchers in the fields of informa-
tion retrieval and language technology to use both
the dataset to train the models, and the pipeline to
expand the capabilities and robustness of the ex-
isting QA systems. We invite the community to
reproduce the work on materials of other languages,
using multilingual models and existing baselines.
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Abstract

Human Evaluation (HE) of automatically gen-
erated responses is necessary for the advance-
ment of human-machine dialogue research.
Current automatic evaluation measures are poor
surrogates, at best. There are no agreed-upon
HE protocols and it is difficult to develop them.
As a result, researchers either perform non-
replicable, non-transparent and inconsistent
procedures or, worse, limit themselves to auto-
mated metrics. We propose to standardize the
human evaluation of response generation mod-
els by publicly sharing a detailed protocol. The
proposal includes the task design, annotators
recruitment, task execution, and annotation re-
porting. Such protocol and process can be used
as-is, as-a-whole, in-part, or modified and ex-
tended by the research community. We validate
the protocol by evaluating two conversation-
ally fine-tuned state-of-the-art models (GPT-2
and T5) for the complex task of personalized
response generation. We invite the community
to use this protocol - or its future community
amended versions - as a transparent, replicable,
and comparable approach to HE of generated
responses1.

1 Introduction

Early attempts to evaluate automatic Natural Lan-
guage Generation (NLG) models using human
judges dates back to before the appearance of end-
to-end models (Jones and Galliers, 1995; Coch,
1996; Lester and Porter, 1997). However, due to the
expensive requirements such as training skilled an-
notators and the time-consuming nature of this eval-
uation, automatic metrics became the common eval-
uation criteria in several NLG tasks. Metrics such
as BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005) and ROUGE (Lin, 2004) have
been used to evaluate the model performance in
machine translation and automatic summarization
tasks as inexpensive and rapid evaluations. After

1Link to the protocol and materials Repository

observing the reliability of these metrics for the
task they are designed for (if applied correctly),
they have been used to evaluate the models in other
tasks such as response generation. However, sev-
eral studies have shown that currently available
automatic metrics can not be good candidates for
evaluating a generated response (Liu et al., 2016;
Sai et al., 2022); these criteria co-relate poorly
with human judgement and are inadequate since
the generation is subject to trivial factors such as
coherency, fluency and grammatical structure, as
well as non-trivial factors such as appropriateness,
engagement, and user acceptance.

Human Evaluation (HE) is still the necessary ap-
proach to evaluate the generated responses (Smith
et al., 2022). With the development of crowd-
sourcing annotation platforms, conducting an HE
task is less expensive and more feasible than early
methodologies. Nonetheless, little attention has
been given to the assessment of the design of HE
task. Due to the lack of an agreed upon and stan-
dard protocol, HE tasks have been performed while
suffering from nontransparent procedures, non-
replicable and incomparable results, and unclear
resource allocations.

In this work, we propose to standardize the ex-
perimental methodology for human evaluation for
response generation models. We present a detailed
protocol to the community for this task, in order to
increase the comparability, replicability, and inter-
pretability of such evaluations among works and
domains. All the required steps and materials to
conduct a HE in a transparent and extendable way
(including task design, annotator recruitment, task
execution, and annotation reporting) are described
and shared with the community. The proposed pro-
tocol is domain-agnostic, language-independent,
and open to be extended to different versions and
standards. We invite the community to not only
utilize this protocol but also to improve and extend
it into referable and version-able standards for the
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HE task. In order to validate the proposed protocol,
we evaluate two conversationally fine-tuned state-
of-the-art models for the Italian language, based on
GPT-2 (De Mattei et al., 2020) and T5 (Sarti and
Nissim, 2022), for the task of response generation
in personal dialogues using knowledge grounding.

2 Literature Review

Earlier attempts to evaluate dialogue systems by
human judges considered user satisfaction as the
evaluation criterion (Walker et al., 1997). Despite
the introduction of automatic metrics and a research
direction aiming to better the metrics used for the
evaluation of dialogue models (Zhang et al., 2019;
Huang et al., 2020; Mehri and Eskenazi, 2020),
Human Evaluation (HE) is still the gold standard
for assessing the qualities of a generated response
and a generative model.

While the importance of the proper evaluation
of a dialogue model using human judges is well-
established in the community, how to perform such
evaluation is still an unsolved question (Smith
et al., 2022). As an outcome, countless HE tasks
have been presented and conducted in this domain,
resulting in non-comparable and non-replicable
results. Dialogue systems have been evaluated
with different granularity (turn-level vs dialogue-
level), different evaluation policies (single-model
vs pairwise-model, candidate-ranking vs. winner-
selection) and in different modalities (interactive
vs static) (Smith et al., 2022). The ambiguities in
HE tasks conducted so far have also been studied
by Belz et al. (2020), where the authors focused
on disentangling the characteristics of already con-
ducted HE tasks to increase the interpretability and
comparability of the evaluations and results. Fur-
ther inconsistency in the evaluations includes the
ambiguity in the criterion name, i.e. two criteria
with the same name assess two different qualities in
different works, whereas the same quality has been
named with various terms among works (Howcroft
et al., 2020). In addition to the aforementioned
works, this naming inconsistency can also be found
in the grounded generation literature (Zhang et al.,
2020; Wang et al., 2020; Huang et al., 2021; He-
dayatnia et al., 2020; Zhang et al., 2020) where a
criterion with the same name refers to two different
qualities and presents different definitions among
works.

An important factor for reproducing any crowd-
sourcing experiment is reporting the details related

to that experiment and its settings. This issue has
been studied by Ramírez et al. (2021), where the
authors identify the properties that researchers have
to provide to facilitate the reproducibility of any
crowd-sourcing experiments. The same problem
has been studied specifically for HE experiments
by Howcroft et al. (2020) where the authors iden-
tify the lack of reporting crucial details, and other
issues such as high levels of variation among the
evaluation procedures. Howcroft et al. (2020) fur-
ther stress the need for a standard and coherent
experimental design and terminology for the task
of HE in the community.

3 Proposed Human Evaluation Protocol

We propose to standardize the Human Evaluation
(HE) experiments through a referable and repli-
cable protocol to address the problems of non-
comparability and inconsistency in the literature.
Considering the complexity of designing and ex-
ecuting such evaluations, we unfold the task into
four main steps in order to study and analyze the
crucial aspects at each step. We aim to maximize
the reliability and replicability of the evaluation
while minimizing the task difficulty and complexity.
Our proposed protocol consists of four executive
steps, i.e. 1) Task Design; 2) Annotator Recruiting;
3) Task Execution; and 4) Reporting.

3.1 Step 1: Task Design
The first step is to design the evaluation task, which
can be characterized by the two aspects of eval-
uation and annotation characteristics. Defining
these characteristics clearly and transparently is
paramount to achieve replicability and comparabil-
ity among works and models.

3.1.1 Evaluation Characteristics
As the initial step, definition of the evaluation char-
acteristics of the task include the evaluation gran-
ularity, quality dimensions to evaluate and their
definitions, the questions to be asked to the annota-
tors, and the annotations format.

Granularity The evaluations conducted in the
literature can be categorized into two levels of gran-
ularity as dialogue-level, where the model is eval-
uated at the end of a complete dialogue, and turn-
level, where the model is evaluated based on its
output for a specific turn in the dialogue. Recent
works indicate that the turn-level evaluation is more
fine-grained since it captures errors such as con-
tradictions and response repetitions (Smith et al.,
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2022). Turn-level evaluation can be further cat-
egorized as absolute (single-model, or rating) or
comparative (winner-selecting, or ranking). In this
protocol, we evaluate the models at the turn-level;
and in order to avoid biasing the annotators with
the quality of other candidates which may result in
an unintentional pick-the-best response, we eval-
uate the candidates using the absolute setting (i.e.
presenting one candidate per time for each dialogue
history). In this way, the performance quality of
each model is evaluated independently and we can
obtain a model-specific list of limitations and error
signals. Furthermore, the ground truth turn is also
provided as a response candidate to the annotators,
representing a point of reference.

Quality Dimensions We include four criteria in
this version of the protocol, based on the most com-
mon errors and qualities for an end-to-end response
generation model. Nevertheless, the proposed pro-
tocol can be extended to other criteria and quality
dimensions. The proposed criteria and their defini-
tions are as follows;

• Appropriate whether the proposed response
candidate makes sense with respect to the
dialogue history; and to investigate if it is
a proper continuation of the given dialogue
(thus coherent).

• Contextual whether the proposed response
candidate contains references to the dialogue
context (thus not generic); and to investigate
whether the response refers to non-existing
or contradicting information (such as model
hallucination).

• Listening whether the speaker of the proposed
response is following the dialogue with atten-
tion (note that generic responses are also in-
dicating that the speaker is not following the
dialogue).

• Correct whether the response candidate is
correct considering the grammar, syntax and
structure of the response.

Questions One of the important details, which
is usually missing in the evaluation reports in the
literature, is the formulation of the questions the
annotators are prompted for the quality of the re-
sponses. The questions must be designed in a clear
and neutral form in order to avoid any possible bias
while addressing the important factors evaluated
by each criterion. We present the questions de-
signed to evaluate the responses in each dimension
in the Appendix, Section A (The protocol can be

expanded to other dimensions used by adding the
corresponding criteria and questions).

Decisions For each criterion, the annotators are
asked to select an answer from a 3-point Likert
scale modeled as positive (eg. Correct, Appropriate
), negative (eg. Not Correct, Not Appropriate), and
"I don’t know". The purpose of the third choice, "I
don’t know", is to avoid forcing non-deterministic
and error-prone judgements on one of the other two
options. That is, the non-expert annotator (in some
cases nor the expert annotator) may not be able to
make a deterministic decision due to the residual
and inevitable ambiguity of the annotation task.

Explanations In order the obtain better insights
into the capabilities and limitations of the models,
we ask the annotators to explain their judgement
by pointing out possible errors or rightness of a
response. The explanation is asked for three of the
criteria (listening is excluded) and mostly when the
response is negatively evaluated or the annotator
is not sure ("I don’t know."). In order to intro-
duce the minimum amount of cognitive workload
to the task, the annotators are asked to explain their
judgement for each response right after evaluating
a response candidate, through predefined options to
select from, and/or free text. The list of predefined
explanation options to select from and the cases
for which the explanation is asked is presented in
Table 1.

3.1.2 Annotation Characteristics
Another principal aspect of HE experiments is the
annotation characteristics. Despite the importance
of this aspect and its influence on the resulting
quality, little attention is given to the careful design
of the HE annotation task.

We can model the annotation task as the inter-
actions of the human (in our setting the annotator)
with a task system (the evaluation). From the be-
ginning of the task, the annotator tends to create a
Mental Model of the task according to the proper-
ties and information she/he is presented to (Moray,
1998). One of the main causes of issues in such
settings is the gap between the user’s and the de-
signers’ mental model (Norman, 1988; Xie et al.,
2017). Furthermore, studies show high levels of
cognitive workload in a task reduce the humans’
ability to retrieve and exploit knowledge while re-
ducing the mental workload helps to reduce the
frequency of errors (Leveson, 2016; Zenati et al.,
2020; Ramírez et al., 2021). Therefore, it is nec-
essary to carefully design the annotation task to
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Quality 
Dimension

Annotators’  Decision Quality 
Sub-dimensionValue Explanation Options 

Appropriateness

Appropriate
❏ “The proposed response is coherent with the dialogue context.” Coherence
❏ Add free form text explanation -

Not Appropriate
❏ “The proposed response is not coherent with the dialogue context.” Incoherence
❏ Add free form text explanation -

I don’t know ❏ Please Add free form text explanation (required) -

Contextualization
Not Contextualized

❏ “The response is generic or does not contain any explicit or implicit 
reference to what it has been said in the dialogue context.” Genericness

❏ “The response is not consistent with the information contained in the 
dialogue context.” Hallucination

❏ Add free form text explanation -
I don’t know ❏ Please Add free form text explanation (required) -

Correctness
Not Correct

❏ “The response contains grammatical errors.” Grammaticality
❏ “The response contains one or more parts that are repetitive.” Repetition
❏ Add free form text explanation -

I don’t know ❏ Please Add free form text explanation (required) -

Table 1: The explanation options provided to the annotators to support their decisions. The annotators can select
predefined option(s) and/or write a free form text. Each explanation option refers to a sub-dimension which is used
as interpretations for the result analysis. The sub-dimensions are not presented to the annotators.

ensure a controlled level of cognitive workload
throughout the task and minimize the possibility of
misunderstanding or ambiguity for the annotators
by using well-explained guidelines, a simplified
User Interface, and a clear annotation process.

Guidelines & Examples An important resource
in crowd-sourcing annotation tasks is the guide-
lines, which have the objective to introduce the
task to the annotator and instruct them about the
process. The task guidelines and the examples must
be written with a clear and simple structure in order
to minimize possible ambiguities for the annotators
and help them form a mental model in line with
the one of the task designers. The examples should
be carefully selected to point out the possible am-
biguities and difficulties during the annotation and
to help the workers get familiar with the task. Our
task guidelines include an introduction to the task,
the definition and description of each criterion and
corresponding answer sets, as well as examples
of various scenarios and annotations. The com-
plete format of this version of our guidelines can
be found on repository.

User Interface We designed and implemented
a User Interface (UI) for the task of Human Eval-
uation, with the objective of an easy-to-use and
intuitive platform that is extendable to other ver-
sions of the evaluation. A complete description of
the UI is presented in Appendix, Section C.

Internal Pilots Internal pilots can provide reli-

able feedback about the difficulty/subjectivity of
the task, the amount of time required to perform
the task, and a threshold for the expected output
quality of the task if done correctly. Internal pilots
also help to detect and resolve possible ambiguity
and issues in the task and its materials prior to the
main task.

3.2 Step 2: Annotator Recruitment

After designing the task, we need to recruit the re-
quired number of annotators to perform the task. In
most cases the annotation is done through crowd-
sourcing. In that case, there are several aspects
involved in the process of recruiting the crowd-
workers that can affect the outcome quality includ-
ing the sampling policy, the qualification, and the
compensation.

Sampling In order to obtain reliable results, it is
important to recruit the annotators from the correct
target group. Selecting the annotators in the litera-
ture has been mostly conditioned by prerequisites
such as location, language fluency, and level of ed-
ucation. Further, Mousavi et al. (2021) studied the
impact of domain expertise in a domain-specific
annotation task.

Qualification Karpinska et al. (2021) observed
that when the annotators are sampled from workers
in crowd-sourcing platforms, sampling conditions
are not adequate as they may be fulfilled inappropri-
ately (for instance the use of VPNs to fake a certain
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location). Therefore, in addition to the mentioned
prerequisites, it is essential to set up a qualifica-
tion task for the workers. The qualification task
helps the task designers to filter out contributors
with low-quality performance and helps the crowd-
workers to get familiar with the main task and the
UI.

Compensation Proper compensation is an im-
portant extrinsic factor that can affect the perfor-
mance of crowd workers, and the time it takes for
the job to be selected and worked on by the work-
ers (Mason and Suri, 2012; Whiting et al., 2019;
Ramírez et al., 2021). Therefore, it is crucial to es-
timate properly and fairly the time and complexity
needed to complete the task and set a fair wage in
order to ensure a proper compensation.

3.3 Step 3: Task Execution

The execution of the main task is subject to con-
tinuous control of the progress and quality. In this
phase, the agreement level among the annotators
can indicate whether the outcome quality is main-
tained throughout the task. Sudden drops or jumps
in the agreement level can be due to unbalanced
difficulty among batches, or a low-quality contrib-
utor. While the former should be addressed using
stratified sampling when designing the task, Ric-
cardi et al. (2013) observed that providing real-time
feedback to the annotators helps them to recover
their mistakes and improve their performance for
the upcoming tasks.

3.4 Step 4: Annotation Reporting

Howcroft et al. (2020) highlights the lack of a stan-
dard for reporting the description and the results of
HE experiments and points out the need for proper
reporting of the evaluation details and results anal-
ysis. Furthermore, Ramírez et al. (2021) stresses
the importance of reporting the crowd-sourcing ex-
periment in a proper and standard way in order
to facilitate replicability of the experiment and re-
producibility of the results. In this protocol, we
provide a checklist of aspects and elements that are
necessary to be reported along with the final results
in order to ensure a clear and transparent presen-
tation of the protocol and possible outcomes. The
characteristics of the task that should be reported
are:

• Evaluation granularity (dialogue-level vs.
response-level, comparative vs. absolute)

• Quality dimensions, their definitions, and cor-

responding questions
• Annotation format (item selection, free form

text, ranking, rating, etc.)

While the details regarding the recruitment of
the crowd-workers include:

• Sampling criteria, the description of qualifica-
tion task and acceptance\rejection criterion

• Number of workers recruited

Besides the mentioned details, there are certain
statistics related to the execution of the evaluation
task and its final outcome that should be reported
to increase the credibility of the results. These
statistics include:

• Annotators participated in the study
• Samples annotated in the study
• Votes per each sample
• Inter-Annotator Agreement level & the metric

used
• Workload allocated per annotator
• Demographic of the annotators
• Resource Utilization (time to perform the task,

payment to the annotator, crowd-sourcing plat-
form)

4 Validation of the Protocol

We validate the proposed protocol by evaluating
two response generation models for the task of
personal and grounded response generation. For
this purpose, we fine-tuned two of the state-of-
the-art Pre-trained Language Models (PLMs) for
the Italian language. The first model fine-tuned is
iT5 (Sarti and Nissim, 2022), which has the same
architecture as T5 PLM (Raffel et al., 2020), pre-
trained on a large Italian corpus. We used iT5-Base
which consists of 12 layers per stack (encoder or de-
coder) with 220M parameters. The second model
fine-tuned in this work is GePpeTto (De Mattei
et al., 2020) which is a decoder-only autoregressive
PLM based on GPT-2 small (Radford et al., 2019),
for the Italian language. The model consists of
12 layers of decoder and byte-pair encoding, with
117M parameters.

The fine-tuning of the two models was done us-
ing the dataset of Follow-Up dialogues collected
by Mousavi et al. (2021). This dataset is a collec-
tion of dyadic conversations about personal events
and emotions the narrator has experienced while
the listener tends to respond with personalized and
helpful suggestions. The dialogues in this data set
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are based on a personal narrative about the same
event and participant that the narrator has shared
prior to the dialogue. We fine-tuned the models
with and without grounding the generation on the
corresponding narrative for each dialogue via the
same approach used by Zhao et al. (2020). In our
setting the knowledge selection module is not re-
quired since the correct narrative for each dialogue
is deterministic.

iT5-Base was fine-tuned using AdaFactor opti-
mizer (Vaswani et al., 2017) and early stopping wait
counter equal to 3, with batch size and dialogue his-
tory window equal to 4. GePpeTto was fine-tuned
using AdamW optimizer (Loshchilov and Hutter,
2017) and early-stopping wait counter equal to 3,
with batch size and dialogue history window equal
to 2. For fine-tuning the models 80% of the dataset
was used, while 10% was used as the validation set
for early stopping and parameter engineering and
the rest of the data, unseen 10%, was used as the
test set (the splits were sampled at dialogue level to
ensure no history overlap among splits). The auto-
matic evaluation of fine-tuned models is presented
in Table 3.

4.1 Implementation of the HE Protocol

We implemented the proposed protocol to evalu-
ate the performance of the two models by human
crowd-workers.

Task Design We followed the Task Design step
explained in subsection 3.1 closely. We then sam-
pled 42 different dialogue histories from the fine-
tuning test set (approximately 50%) for the eval-
uation (the length of histories varies from 2 to 4
turns) and sampled the responses of all models for
each dialogue. We conducted two internal pilots
using 5 dialogues with 3 internal experts (the ex-
perts were not involved in the design of the task), as
well as 3 internal non-expert annotators. After each
pilot, the feedback of both groups was collected
and few refinements were made to the UI and the
guidelines.

Using the feedback obtained from the internal
pilots regarding the difficulty of the task and the
amount it takes to annotate the samples, we pre-
pared the annotation batches so that each batch
consists of approximately 10 dialogue histories of
4 turns in average, with 3 response candidates (in-
cluding the ground truth) to evaluate for the next
turn. During the internal pilots, each batch of 5
dialogues took an average of 15 minutes for the

non-expert annotators. Therefore, we set the aver-
age required time to 35 minutes and the maximum
time possible to annotate a batch to 90 minutes, in
order to factor in the possible lower pace of non-
expert annotators.

Recruiting Crowd-worker We used Prolific
crowd-sourcing platform2, and selected the crowd-
workers using the following prerequisites:

• Location: Italy
• Gender Distribution: Available to All
• First Language: Italian
• Minimum Approval rate: 95%
• Minimum complete submissions: 20 jobs
• Education: Available to all
• Expertise: Available to all
In addition to the sampling policy, the annotators

were asked to perform a qualification task. The task
consisted of evaluating the response candidates for
5 dialogues (same dialogues used in the internal
pilots) in an identical setting to the main task. We
considered the Inter-Annotator Agreement (IAA)
of the internal non-expert annotators calculated by
Fleiss’ κ (Fleiss, 1971) as the threshold (0.21).
In order to qualify each worker, we computed the
agreement level among the internal annotators and
the worker and if it was above the threshold, the
worker was qualified for the main task.

Based on the workload and the estimated time re-
quired for the task, we set the wage as 4.67 pounds
for 35 minutes, equal to 8 pounds per hour3. In this
protocol, qualified crowd-workers were also paid
for the qualification task.

4.2 Annotation Statistics
In total, 40 workers participated in the annotation
task and 35 of them were qualified. The 42 sam-
ples to annotate were distributed in two batches of
11 and two batches of 10 samples. Each batch is
annotated by 7 annotators and the annotators spent
an average of 19 minutes for the qualification batch
and 45 minutes for annotating the main batches. In
addition to the decided compensations, one anno-
tator was rewarded a bonus of two pounds since
he/she informed us about an unexpected bug in the
UI via email.

2Prolific: https://www.prolific.co/
3Prolific’s Payment Principles mandates a fair and ethical

payment to the workers with the minimum of 6 pounds (8
dollars) per hour. While deploying the study on the platform,
the task owner is prompted with recommended payment level
for the study, for which our payment of 8 pounds per hour was
labelled as "Good".
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Models Inter Annotator Agreement Level measured by Fleiss’ κ
Appropriateness Contextualization Correctness Listening IAA per Model

GePpeTto 0.27 0.14 0.64 0.15 0.32±0.10

+Knowledge 0.42 0.22 0.36 0.27 0.36±0.11

iT5-Base 0.24 0.19 0.06 0.18 0.27±0.04

+Knowledge 0.18 0.03 0.30 0.21 0.19±0.06

IAA per 0.30 ±0.10 0.15±0.05 0.41±0.20 0.23±0.07
-Dimension Fair Poor Moderate Fair

Table 2: The Inter-Annotator Agreement (IAA) level calculated by Fleiss’ κ. The last row and last column represent
the average IAA (and the standard deviation) per each of the criteria and each model, respectively. The low IAA on
Contextualization indicates the high level of complexity and subjectivity in this criterion. In contrast, the moderate
level of IAA is achieved over Correctness criterion, suggesting a lower level of subjectivity in the judgements.

Models Automatic Evaluation Human Evaluation
nll ppl Appropriateness Contextualization Correctness Listening

Ground Truth - - 100.0% 97.62% 97.62% 97.62%
GePpeTto 2.76 15.84 66.67% 69.05% 83.33% 64.29%

+Knowledge 2.79 16.33 59.52% 57.14% 83.33% 57.14%
iT5-Base 2.05 7.79 66.67% 73.81% 100.0% 66.67%

+Knowledge 2.04 7.70 80.95% 80.95% 85.71% 76.19%

Table 3: The automatic and human evaluation outcome of the fine-tuned models. The results are obtained by majority
voting. The evaluations indicate that grounding mostly improves the performance of iT5 Base, while it worsens
GePpeTto’s performance. Note that the perplexity can not be compared among models since the pre-training data
and thus the vocabulary distributions are not identical.

During the execution of the task, we calculated
the agreement between each pair of annotators us-
ing Cohen’s kappa (Cohen, 1960) as well as the
agreement among all annotators in the same batch
using Fleiss’ κ (Fleiss, 1971) metrics. We further
calculated the agreement among all annotators on
strong judgements, by removing items that were
labelled as "I don’t know." by at least one annotator.
Despite little fluctuations in the agreement level,
no low-quality contributions were detected and the
agreement level on different batches was consistent
throughout the evaluation.

Table 2 presents the average Inter Annotator
Agreement (IAA) measured by Fleiss’ κ. The
agreement is calculated per each model and cri-
terion in each batch (for the 7 annotators who anno-
tated the batch) and averaged over all batches. The
results indicate that Contextualization and Listen-
ing are the two criteria with the highest levels of
subjectivity and complexity. In contrast, high IAA
over Correctness suggests that it has been easier
for the annotators to assess the grammatical and
structural aspects of the response samples.

4.3 Evaluation Results

Table 3 presents the results of the HE based on
the majority voting for each model. While the
grounding generally improved the performance of
iT5-Base, it worsened the performance of GeP-
peTto in all aspects. Nevertheless, it introduced
grammatical and structural errors in iT5-Base out-
put. Moreover, grounding did not improve GeP-
peTto to generate more contextualized responses.
While grounded iT5-Base outputs were evaluated
the highest among the models, there is still a huge
gap to reach the quality of the ground truth. This
matter shows the complexity of generating an ap-
propriate and contextual response in personal dia-
logues.

Figure 1 represents the sub-dimension errors that
the annotators selected to explain their negative
votes on the response candidates. The explanation
option corresponding to each error is presented in
Table 1. The figure is obtained by considering all
the votes of the annotators on every response sam-
pled from the models (each response is evaluated
by 7 annotators, thus 294 votes in total). There-
fore, for instance, while iT5-Base achieves 100%
of "Correctness" by majority voting, there are 7
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Figure 1: The sub-dimension errors selected by the annotators for the explanation of negative judgements in each
criterion. Each bar represents the percentage of the times the error category (x-axis) was selected as the reason to
reject the output of the corresponding model. The figure is obtained by considering all the votes (i.e. not majority
voting). Note that the labels are not mutually exclusive.

cases (out of 294) where the annotators labelled
it as "Not Correct"; the selected reason in 4 cases
was grammatical error and in 3 cases a repetition
in the response.

These results indicate that, regardless of the
model, while grounding reduces the cases that a
response is labelled as "Not Contextualized" due
to being a Generic response, it increases the cases
of Hallucination problem with almost the same
proportion. Nevertheless, the percentage of cases
where a response is labelled as "Not Appropri-
ate" due to being Incoherent is not affected by the
grounding technique and all models suffer from
this error equally. Furthermore, we observe that
grounding slightly increases the cases in which
a response by GePpeTto is labelled as "Not Cor-
rect" due to errors related to Grammaticality, while
it considerably reduces the cases of Repetition in
such responses.

In addition to the pre-defined explanations, in
a few cases the annotators also provided us with
free-form explanations. Specifically, in 10% of the
cases in which the model outputs were labelled as
"Not Correct", the annotators provided us further
explanations to indicate the exact grammatical er-
ror such as punctuation or subjunctive errors (Con-
giuntivo in Italian). In 5% of the times in which
the model responses were considered "Not Con-
textualized" the annotators pointed out the exact
part of the response which is mentioning a wrong
event/participant, or is in contradiction to the dia-

logue history. Lastly, in 10% of the cases where
the response candidate was evaluated as "Not Ap-
propriate" the annotators provided explanations to
highlight the exact segment of the response that is
not right or is ambiguous.

5 Conclusion

While Human Evaluation is the necessary method-
ological step in the assessment of response gener-
ation models, there is a lack of a standard. This
deficiency has resulted in often ambiguous, incom-
parable and non-replicable published experiments.
In this work, we aim at addressing this problem
by sharing a complete methodology for evaluat-
ing generated responses using human judges. We
publish the first version of the protocol and all its
materials to the community. The expectation is to
engage them to utilize, extend, and complement
this protocol into further versions and a transparent
resource that can be publicly accessed. The ulti-
mate goal is to engage the community to consider
HE as an important topic of research. The complete
protocol and supporting materials can be found in
a public repository (including the guidelines, task
design, the UI, and the analysis scripts).
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Appendix

A Questions

Dimension Question Answer Option Option Definition

Appropriateness
Is the proposed 

response candidate 
appropriate?

Appropriate
The response makes sense and it can be the natural continuation of the 
shown dialogue context.

Not Appropriate The response does not make sense in the current dialogue context.

I don’t know
The candidate contains some elements which make sense with respect 
to the dialogue context, but some that do not.

Contextualization

Does the proposed 
response contain 
references to the 

context of the 
dialogue?

Contextualized
The candidate contains implicit or explicit references to the dialogue 
context.

Not Contextualized
The candidate doesn’t contain any reference to the dialogue context, 
or contains references that are incoherent with the dialogue context.

I don’t know
The response contains some references to the dialogue context, but 
contains other references that are not clear or relevant.

Listening

In the proposed 
response candidate, 

how much do you think 
person A is listening to 

person B?

Listening
Speaker A is listening with attention to speaker B and follows the 
dialogue.

Not Listening Speaker A seems not to pay attention to what speaker B is saying.

I don’t know It is unclear if speaker A is listening to speaker B or not.

Correctness
Is the proposed 

response grammatically 
correct?

Correct The response does not contain any type of grammatical or structural 
error, any repetitions, misspellings or any other types of error.

Not Correct The response contains some grammatical or structural errors such as, 
repetitions, misspelling, any other types of error.

I don’t know It is hard to identify if the response contains errors or not.

Table 4: The questions and possible answer options presented to the annotators for the evaluation of the response
candidates in this version of the protocol. The complete version of the option definitions is presented to the
annotators in the guidelines.
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Figure 2: The human evaluation of the models in each criterion by considering all the votes (i.e. not majority voting).
Each bar represents the percentage of the times the corresponding model was labelled positively by the criterion on
x-axis. While Table 3 is obtained by majority voting, this figure is obtained by considering all the annotators votes
on the response samples (i.e. not majority voting). iT5-Base variations outperform GePpeTto variations, regardless
of the presence of grounding.
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C User Interface

Figure 3: Throughout the task, a short version of the guidelines is always presented to the annotator with the
possibility to access the complete version via hyperlinks. During the evaluation, the corresponding dialogue context
is shown to the annotator on the left, while the criterion question and the proposed response candidate are presented
on the right, along with the name of the dimension, the definition of the dimension, and the possible decision values
and their definitions. In order to reduce the cognitive workload of the annotators, all candidates for a specific
dialogue context are evaluated one by one for the same criterion after one another (i.e. the annotator evaluates all
the candidates of the presented dialogue history for criterion A, and then all the same candidates regarding criterion
B). In this way, the left side of the UI (dialogue history) remains unchanged so that the annotator does not have to
go through the dialogue history several times, and focuses on each evaluation metric per sets of response candidate.
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Abstract

Logic-to-text generation is an important yet un-
derrepresented area of natural language genera-
tion (NLG). In particular, most previous works
on this topic lack sound evaluation. We ad-
dress this limitation by building and evaluating
a system that generates high-quality English
text given a first-order logic (FOL) formula as
input. We start by analyzing the performance
of Ranta (2011)’s system. Based on this anal-
ysis, we develop an extended version of the
system, which we name LOLA, that performs
formula simplification based on logical equiva-
lences and syntactic transformations. We carry
out an extensive evaluation of LOLA using stan-
dard automatic metrics and human evaluation.
We compare the results against a baseline and
Ranta (2011)’s system. The results show that
LOLA outperforms the other two systems in
most aspects.

https://gitlab.nl4xai.eu/eduardo.
calo/LoLa

1 Introduction

Logical formalisms play a pivotal role in many ar-
eas of science. Hence, grasping the meaning of
these formalisms is crucial for many scholars and
researchers. However, this task is not straightfor-
ward, and sometimes even experienced logicians
might have trouble deciphering a complex formula.

Natural language generation (NLG) techniques
can be employed to ease this task. However, logic-
to-text generation is understudied, compared to
text generation from other inputs (Reiter and Dale,
2000; Gatt and Krahmer, 2018). One notable ex-
ception (see §2 for some other examples) is Ranta
(2011), a rule-based system that translates between
first-order logic (FOL) formulae and natural lan-
guage (NL). While providing a promising starting

∗These authors contributed equally to this work.

point for logic-to-text generation, the system is not
evaluated. In our work, we first address this gap
via a human translation quality assessment (TQA).
Based on this, we propose LOLA, a novel logic-to-
text system extending Ranta (2011)’s architecture,
which searches for the most suitable formula for
translation among the pool of logically equivalent
formulae.

We also address one of the many issues that
make NLG evaluation challenging (Novikova et al.,
2017; Zhou et al., 2022), namely, defining the core
dimensions to evaluate (Howcroft et al., 2020),
especially issues of meaning vs. grammaticality.
These issues come to the fore in logic-to-text gener-
ation, where text should be faithful to the original
formula, comprehensible, and fluent. These are
the central requirements to look for, as text gen-
erated from logic can be extremely disfluent and
incomprehensible (e.g., a literal translation from a
formula), while still being faithful. Furthermore,
evaluating faithfulness cannot rely on checking fac-
tual accuracy (as in, e.g., WebNLG (Gardent et al.,
2017)), due to the problem of logical form equiv-
alence (Shieber, 1993), which implies that every
formula of FOL is equivalent with infinitely many
other FOL formulae, where the question of whether
two FOL formulae are logically equivalent is, in
general, undecidable. This complicates the prob-
lem of finding a formula that is most suitable for
being input to an NLG program.

There are also potential trade-offs between eval-
uation dimensions. For instance, more fluent real-
izations may sometimes be more ambiguous with
respect to a formula, compromising faithfulness
(Khan et al., 2012). To use a well-worn example,
Everyone loves someone can be seen as a correct
realization of ∀x(Person(x)→ ∃y(Person(y)∧
Love(x, y))), but the sentence is ambiguous, also
allowing for the more specific interpretation that
there exists someone who is loved by everyone
(i.e., with the scope of the quantifiers reversed).
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In our work, we use a deterministic procedure for
generating text from formulae, allowing us to hold
faithfulness constant in order to address issues of
comprehensibility and fluency.

Our work also addresses the question of which
human evaluation task is appropriate for a given
system (Gehrmann et al., 2022), proposing a novel
evaluation using natural language inference (NLI;
Storks et al., 2019; Poliak, 2020).

In outline, the main contributions of this paper
are the following:

i) We analyze the quality of the translations of
the FOL-to-text system presented in Ranta
(2011) via a human translation quality assess-
ment.

ii) We exploit the outcomes of the quality assess-
ment to develop the improved system LOLA.

iii) We present the results of a comprehensive
automatic and human evaluation of LOLA.

2 Related Work

Although receiving far less attention than other
tasks, generating NL text from (logically rich)
meaning representation (MR) formalisms has a rela-
tively long tradition in NLG, with approaches rang-
ing from rule-based (Wang, 1980; Appelt, 1987;
Shieber et al., 1990) to statistical (Lu and Ng, 2011;
Basile, 2015) and neural models (Wu et al., 2022).

Several MRs have been the focus of the task:
logic-based (e.g., description logic (Androutsopou-
los et al., 2013), FOL (Mpagouli and Hatzilyger-
oudis, 2007), and discourse representation struc-
tures (Liu et al., 2021; Wang et al., 2021)),
graph-based (e.g., Abstract Meaning Represen-
tation (AMR; Konstas et al., 2017; Bai et al.,
2022, i.a.)), and formal languages (e.g., SPARQL

(Ngonga Ngomo et al., 2013; Ell et al., 2015)).
Some of these MR formalisms are much simpler

than FOL. For example, AMR has less descriptive
power (Bos, 2016), whereas datasets such as GEO-
QUERY (Zelle and Mooney, 1996) and ROBOCUP

(Chen and Mooney, 2008), used in, e.g., Wong and
Mooney (2007), omit logical operators and vari-
able binding. For these reasons, we select FOL as
our formalism, incorporating different types of for-
mulae and defining a concept of well-behavedness
(see §4.2) to characterize those best suited for logic-
to-text translation.

Apart from Ranta (2011), closest to our work are
the following approaches. Phillips (1993) considers
the problem of logical form equivalence. Mpagouli

and Hatzilygeroudis (2009) present a rule-based
approach to generate text from FOL with some syn-
tactic optimizations. Coppock and Baxter (2010)
propose an algorithm based on dynamic semantics
for a specific class of formulae. Kutlak and van
Deemter (2015) use background axioms to simplify
a FOL formula. Flickinger (2016) generates multi-
ple paraphrases from an input formula. Manome
et al. (2018) is one of the few logic-to-text ap-
proaches using a sequence-to-sequence framework.
Kasenberg et al. (2019) generate explanations from
a well-defined logical formalism in the context of
human-robot dialogue.

A common thread in most of this work is the
absence of (proper) evaluations. In particular, as
in Ranta (2011), the proposals in Phillips (1993),
Mpagouli and Hatzilygeroudis (2009), Coppock
and Baxter (2010), and Kutlak and van Deemter
(2015) do not include any attempt at systematic
evaluations. In Flickinger (2016), there is a men-
tion of a very preliminary inspection of the para-
phrases generated, with pointers for improving the
evaluation left for future work. Manome et al.
(2018) make an effort to move beyond standard
metrics proposing an automatic evaluation based
on recognizing textual entailment and present an in-
formal analysis of some generated sentences. How-
ever, a proper human evaluation is missing. Kasen-
berg et al. (2019) do not evaluate their system using
automatic metrics. Yet, they perform a human eval-
uation based on three dimensions and statistically
analyze the results. We aim to build a system that,
given a logical formula, will produce effective texts
(i.e., optimally helpful to the needs of the user)
(Mayn and van Deemter, 2020), thus, carrying out
proper evaluations is one of the main focuses of
our work.

3 Model and Data

Ranta (2011) We consider the logic-to-text gen-
eration system presented in Ranta (2011)1 as the
starting point for our experiments. The system
translates a string from one language into another
in two steps: (i) the string in the source language
is parsed into an abstract syntax tree (AST), and
(ii) the AST is linearized into a string in the target
language via language-specific concrete syntax.

The abstract syntax defines functions for several
logical constructs, while concrete syntaxes are for-

1https://github.com/GrammaticalFramework/
gf-contrib/tree/master/cade-2011
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mulated to generate FOL linearizations in six NLs.
In addition to this, the system performs some core-
to-extended AST manipulations (e.g., flattening, ag-
gregation, in-situ quantification, verb negation, and
reflexivization) to improve fluency. Figure 3 in Ap-
pendix A shows a graphical visualization of Ranta
(2011)’s system. The system can parse all well-
formed FOL formulae without identity (Shapiro and
Kouri Kissel, 2021), containing unary and binary
predicates and bound variables.

Grade Grinder Corpus The Grade Grinder Cor-
pus (GGC; Barker-Plummer et al., 2011) is a corpus
of > 4.5m FOL translations (correct and incorrect)
of ca. 300 sentences made by 55k students answer-
ing exercises in Barwise et al. (2000). Each NL

sentence can have multiple (logically equivalent)
correct answers.

We select just the portion of answers that are
marked as correct and filter the formulae that are
not parsable by Ranta (2011)’s system (i.e., formu-
lae with time stamps, mathematical operators, 3−
and 4−ary predicates, the identity symbol, and
more than 100 characters). This yields around
5, 500 formulae.

Random Generator In GGC, formulae are un-
derstandable by humans and have corresponding
sentences that are semantically and pragmatically
acceptable. However, it might not be representative
of the space of all possible formulae. Therefore, we
additionally create a tool that generates a random
FOL formula in the space of all possible formulae
for a given domain lexicon.

4 Assessing Ranta (2011)

To judge the quality of Ranta (2011)’s translation
system, we set up a translation quality assessment
(TQA; Castilho et al., 2018; Han et al., 2021). A
group of human evaluators was asked to analyze
a list of English translations from FOL formulae,
generated by Ranta (2011)’s system. Specifically,
we were interested in receiving feedback on three
dimensions: (i) faithfulness (i.e., whether the gen-
erated text conveys all and only the information
of the input formula), (ii) comprehensibility (i.e.,
whether the generated text is clearly understandable
by the evaluator), and (iii) fluency (i.e., whether
the generated text is grammatically accurate and
natural-sounding). The evaluation dimensions, es-
pecially faithfulness and comprehensibility, are not
entirely independent of each other. Nonetheless,

they possess their own traits that we wanted to as-
sess separately. A problematic point is establishing
faithfulness to an underlying formula in presence
of an ambiguous or incomprehensible sentence. To
mitigate this problem, in the NLI task introduced
for the human evaluation (see §6.2), we gave par-
ticipants the opportunity to signal text that is am-
biguous or incomprehensible.

A total of 10 participants (master students, 4
males and 6 females, with a median age of 24.0
years, SD = 1.2) with sufficient knowledge of logic
and proficiency in English2 voluntarily participated
in the study.

Setup Evaluators were shown batches of 25
formula-translation pairs consisting of (i) a ran-
dom selection of 10 formulae extracted from the
parsable portion of the GGC corpus and their Ranta
(2011)’s translations, (ii) 10 randomly generated
formulae and their Ranta (2011)’s translations, and
(iii) 5 filler formulae with incorrect translations
created manually. All participants saw the same 5
filler items. The purpose of the fillers was to verify
the participants’ knowledge of FOL. Were at least
2 out of 5 filler items not identified as such by a
participant, their survey response would be ignored
entirely in the analysis. None of the participants
was omitted by this criterion. See Appendix G
for details on the construction of the fillers and
Table 13 for the complete list.

To ensure coverage, each participant was pre-
sented with a different batch of experimental
items.3 They were required to judge formula-
translation pairs under the three dimensions men-
tioned above. In particular, for each pair, they had
to answer a polar question on the translation’s faith-
fulness with the original formula, and rate on a
5−point Likert scale the translation’s comprehensi-
bility and fluency. Moreover, the evaluators were
asked to perform full post-editing (Hu and Cad-
well, 2016) on the translations. The instructions
given, the questions asked, and one example batch
of experimental items can be found in Appendix G.

2The participants involved were students of a MSC in arti-
ficial intelligence taught in English, which requires knowledge
of logic (in particular, propositional logic and FOL) and profi-
ciency in English for enrolling. Moreover, at the beginning of
the questionnaire, participants were required to rate their own
knowledge of FOL on a 5−point Likert scale.

3Presenting different batches to each subject prevented
us from computing some quantitative analyses, such as inter-
annotator agreement. However, the main goal of the TQA was
to perform a qualitative study of the system performance and
get a more thorough overview of the quality of the translations.
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4.1 TQA Results
Evaluators marked 91% of Ranta (2011)’s transla-
tions as faithful to the original formula. Most of
the translations marked as unfaithful consisted of
filler translations. The few non-filler translations
that were marked incorrectly were ambiguous and
misunderstood by the participants. Thus, we can
safely assume that Ranta (2011)’s system, due to
its deterministic nature, is robust enough in cor-
rectly parsing the structure of the input formula,
producing faithful translations.

The average rating of the translations was 3.99
(SD = 1.10) for comprehensibility and 3.26 (SD

= 1.32) for fluency. Interestingly, we found that
the average faithfulness, comprehensibility, and
fluency of the translations from randomly gener-
ated formulae are lower than those of the transla-
tions from the GGC formulae, as shown in Table 1.
We observed a moderate positive correlation (us-
ing Pearson’s r coefficient) between the compre-
hensibility and fluency of the (non-filler) transla-
tions (r(198) = 0.60, p < .01). Furthermore, we
found a weak negative correlation between formula
complexity (in number of connectives, i.e., a for-
mula with more connectives is more complex) and
comprehensibility of the corresponding translations
(r(198) = −0.18, p < .01) and a weak negative
correlation between formula complexity and flu-
ency of the corresponding translations (r(198) =
−0.24, p < .01). We also observed weak negative
correlations between translation length (in number
of words) and comprehensibility (r(198) = −0.23,
p < .01), as well as between translation length and
fluency (r(198) = −0.34, p < .01).

Type # Faithfulness Comprehensibility Fluency

µ σ µ σ

GGC 100 93% 4.10 1.02 3.37 1.34
RG 100 88% 3.87 1.15 3.15 1.29

Table 1: The percentage of translations marked as faith-
ful, and the mean (µ) and standard deviation (σ) of the
comprehensibility and fluency of translations on a scale
of 1 to 5, reported for corpus formulae (GGC) vs. ran-
domly generated formulae (RG).

Post-Edits Post-edits were suggested for 51% of
Ranta (2011)’s translations and are often shorter
(in word count) than the original translations. The
edits can be roughly divided into three categories:
(i) syntactic optimizations similar to the core-to-
extended AST manipulations introduced in Ranta
(2011) (see §3), (ii) conversions based on logical

equivalences, and (iii) paraphrases using a variety
of linguistic constructions. Table 2, Table 3, and Ta-
ble 9 respectively show some examples for each of
the three categories. See Appendix D for a detailed
description of these categories.

4.2 Well-Behavedness

Ranta (2011)’s system accepts as input all well-
formed FOL formulae (see §3). However, the TQA

results suggest that it might be practical to narrow
down the definition of formulae suitable for trans-
lation to a more restricted subset. The set of well-
formed formulae also includes formulae which
the participants in the TQA had difficulties with
or provided post-edit suggestions for, i.e., formu-
lae with vacuous quantification (e.g., (∀x)Even(2)
or (∀x)(∀x)Even(x)), formulae with double nega-
tion (e.g., ¬¬Even(2)), formulae with nested im-
plication (e.g., (Odd(1)→ (Odd(3))→ Odd(5)),
and formulae with 8 or more connectives. Translat-
ing literally such formulae could result in incom-
prehensible and disfluent sentences.

Therefore, we operationalize well-behavedness
as ‘the property that a formula should have to be
structurally suitable as input for translation into
NL’. Well-behavedness is achieved by applying
a number of rules to avoid formulae with certain
properties, such as double negation and vacuous
quantification. The formal definition is present in
Appendix B. Formulae that are not well-behaved
will be referred to as ill-behaved.

5 LOLA

Based on the post-edits we received in the TQA

described in §4, we developed LOLA (system for
translating between Logic and Language), a new
logic-to-text system that keeps Ranta (2011)’s orig-
inal system as its backbone but improves it by ex-
tending its algorithm. In particular, LOLA imple-
ments the first two categories of post-edits derived
from the results of the TQA, i.e., core-to-extended
AST-like manipulations and logic-based simplifica-
tion, leaving out the third one (stylistic paraphrases)
for future work.

The first class of improvements extends the list
of Ranta (2011)’s core-to-extended AST conver-
sions with some additional optimizations. See Ap-
pendix C for details on their implementation. The
second class of improvements manipulates an in-
put FOL formula through the application of logi-
cal equivalence laws, based on Partee et al. (1993),
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Optimization Original Formula Ranta (2011) Translation Post-Edit
Moving the negation inward ¬(∃x)FrontOf(x, a) It is not the case that there is an element x such that x is in front of a. There is no element in front of a.
In-situ quantification (∃x)Small(x) There is an element x such that x is small. Something is small.
Predicate-sharing aggregation Larger(d, b) ∧ Larger(e, b) ∧ FrontOf(b, e) ∧ FrontOf(b, d) d is larger than b, e is larger than b, b is in front of e and b is in front of d. Both d and e are larger than b, and b is in front of both e and d.
Reflexivization ¬SameShape(a, a) a is not of the same shape as a. a does not have the same shape as itself.

Table 2: Optimizations similar to Ranta (2011) core-to-extended AST manipulations suggested in the post-edits of
the TQA, with the original formulae and Ranta (2011) translations.

Equivalence Law Original Formula Ranta (2011) Translation Post-Edit
Double negation ¬¬(Medium(a) ∨ FrontOf(a, b)) It is not the case that it is not the case that a is medium or in front of b. a is medium or in front of b.
Redundant information ¬SameCol(e, d) ∧ ¬SameCol(e, c) ∧ ¬SameCol(e, d) e is not in the same column as d, e is not in the same column as c and e is not in the same column as d. e is neither in the same column as d, nor in the same column as c.
De Morgan’s laws ¬(Tet(b) ∨ Tet(d)) It is not the case that b is a tetrahedron or d is a tetrahedron. Neither b nor d is a tetrahedron.
Simplification of ¬(∃x)ϕ to (∀x)¬ϕ ¬(∃y)SameCol(a, y) It is not the case that there is an element y such that a is in the same column as y. All y’s are not in the same column as a.

Table 3: Optimizations based on logical equivalence laws suggested in the post-edits of the TQA, with the original
formulae and Ranta (2011) translations.

with two additional laws to deal with vacuous quan-
tification. See Table 8 for the list of laws.

The search for the optimal translation is per-
formed as follows. A tree of possible formula
manipulations is constructed, with as root node
the input formula’s AST, and where each node’s
children are manipulations of the AST that result
in a different AST. This tree has a maximum depth
because in many cases there are infinitely many ma-
nipulations. The maximum depth was experimen-
tally set to 5. After the construction of the search
tree, all ASTs in the tree are optimized with the
full list of core-to-extended AST conversions and
linearized, after which the shortest linearization in
the tree is returned. The results of the TQA (see
§4.1) show that there is a weak negative correla-
tion (r(198) = −0.23) between translation length
and its assessed comprehensibility but a somewhat
stronger negative correlation (r(198) = −0.34) be-
tween translation length and its assessed fluency.
Therefore, we decided to pick the length of the
translation (in number of words) as the selection
criterion.4 Figure 4 in Appendix C shows an ex-
ample of a search tree of formula manipulation
sequences.

6 Evaluation

To assess the quality of FOL to NL translations of
LOLA, we set up a thorough comparative evalu-
ation experiment. We compared the translation
quality of three different systems: (i) a BASE-
LINE generating near-literal translations of for-
mulae, which is Ranta (2011)’s system without
its core-to-extended AST optimizations, (ii) Ranta
(2011), and (iii) LOLA. We run standard auto-
matic NLG metrics based on n−gram overlap and
semantic similarity, conduct a human evaluation,
and compute correlations between the results. The

4If there are multiple shortest linearizations, the first oc-
currence encountered in a depth-first traversal is chosen.

dimensions on which the translation quality of the
systems was evaluated are comprehensibility and
fluency.5 The evaluation also partly focused on
well-behaved vs. ill-behaved formulae (see §4.2),
investigating how different types of formulae im-
pact the quality of the translations.

6.1 Automatic Evaluation

For the automatic evaluation, we considered all
the formulae included in the parsable portion of
the GGC (see §3) with their associated ground
truth NL references. Each formula was given as
input to the three systems to be translated into En-
glish.6 We then compared the realizations of the
three systems with the ground truth references. We
used seven automatic metrics, three of which are
based on n−gram overlap, namely, BLEU (Papineni
et al., 2002),7 METEOR (Banerjee and Lavie, 2005),
and ROUGE-L (Lin, 2004), two on ELMo embed-
dings (Peters et al., 2018), namely, Word Mover’s
Distance (WMD; Kusner et al., 2015)8 and Sen-
tence Mover’s Similarity (SMS; Clark et al., 2019),9

and two on BERT (Devlin et al., 2019), namely,
BERTScore (Zhang et al., 2020),10 and SBERT

(Reimers and Gurevych, 2019).11 For BERTScore,
METEOR, ROUGE-L, and SacreBLEU, we used the
implementations provided by Hugging Face (Wolf

5In contrast to the TQA (see §4), faithfulness was not con-
sidered one of the evaluation dimensions because the results
of the TQA show that the translations of Ranta (2011) are
always faithful. This also holds for BASELINE (since the
extended syntax constructs are inherently equivalent to their
core syntax counterparts), and remains true for LOLA (since
the formula simplifications are based precisely on the laws of
logical equivalence).

6See Table 10 in Appendix E for some examples.
7We used the SacreBLEU (Post, 2018) implementation for

improved reproducibility.
8https://github.com/src-d/wmd-relax
9https://github.com/eaclark07/sms

10We used the model roberta-large_L17_no-idf.
11We computed cosine similarity after obtaining sentence

embeddings with the model all-distilroberta-v1.
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et al., 2020).12 Table 4 summarizes the results ob-
tained.

System n−gram-based Metrics Semantics-based Metrics

METEOR ROUGE-L SacreBLEU BERTScore SBERT SMS WMD

BASELINE 46.66 31.46 9.69 88.10 72.18 6.30 1.19
Ranta (2011) 50.10 36.54 11.70 89.00 72.93 23.68 14.69
LOLA 53.87 45.01 17.27 90.77 77.89 54.11 38.92

Table 4: Performance of the three systems against the
GGC ground truth references according to the automatic
metrics. All scores are reported on the same scale to
improve readability.

LOLA outperforms the other two systems on all
metrics. However, in the context of logic-to-text
generation, the results of metrics based on n−gram
overlap vs. metrics based on semantic similarity
should be interpreted differently. The texts that we
are comparing (i.e., GGC ground truth references
and texts generated by the three systems) differ
considerably in their structural realization, while
keeping the same underlying meaning (i.e., they
are paraphrases). This is due to the fact that the
GGC ground truth references explain the logical
formulae, which, in turn, are given as input to the
three systems that operate in deterministic ways,
ensuring faithfulness of the output texts. Therefore,
we expect the results of metrics based on seman-
tic similarity to be comparable across the three
systems. On the contrary, we should notice more
variance with metrics based on n−gram overlap,
since they are more reliant on the surface structure
of the texts.

Nevertheless, BERTScore is the only semantics-
based metric that is close to following the expected
behavior. This might be an additional indication
that neural language models are not capable yet
to capture deep semantics of NLs, but are still bi-
ased towards morphosyntactic realizations (Bender
and Koller, 2020). On the other hand, we can ob-
serve substantial variance in the results involving
n−gram-based metrics. All these metrics favor
LOLA, which apparently creates texts structurally
closer to the original GGC ground truth references.

6.2 Human Evaluation

The human evaluation consisted of two tasks: (i) a
natural language inference (NLI) task to assess the
comprehensibility of the translations and (ii) a flu-
ency ranking (FR) task (Bojar et al., 2014) to assess
the fluency of the translations. The instructions
given and the questions asked to the participants

12https://huggingface.co/evaluate-metric

can be found in Appendix H.
Half of the formulae used in the experimental

items were extracted from the GGC, while the other
half were randomly generated. This resulted in a set
of formulae that contained both well-behaved and
ill-behaved formulae and was representative of the
entire space of FOL formulae. Each formula was
given as input to the three systems to be translated
into English.

A total of 21 participants (researchers and stu-
dents, 9 males and 12 females, with a median age
of 25.0 years, SD = 12.2) with sufficient knowl-
edge of logic and proficiency in English13 were
recruited for the task.

Setup The rationale for using NLI is that it taps
comprehension, allowing us to gauge the extent
to which FOL translations by different systems fa-
cilitate inference. In this case, the fact that the
underlying meaning is captured by a logical for-
mula ensures that the task is highly controlled. Ad-
ditionally, NLI allows checking more objectively
how well participants understand text, removing
the factor of subjectivity that characterizes other
evaluation methods such as Likert scales.

The NLI task was framed in such a way that the
three system translations (one per system) of the
same formula were considered as premises associ-
ated with the same hypothesis (manually crafted)
each time. An illustration of this is presented in
Table 5. The third answer option Other was added
for cases in which the premise was ambiguous or
unclear for the participant.14

Participants were randomly assigned to one of
three groups. Items for the experiment (where an
item consists of a formula translation by only one
of the three systems and the associated hypothe-
sis) and participant groups were counterbalanced
by rotating through a 3 (system) × 3 (participant
group) Latin square (Fisher, 1925). This ensured
that the experimental items were counterbalanced,
so that every item was shown to approximately the
same number of participants and every participant
was shown the same number of items (42), while
participants only saw one system translation per

13All participants had taken at least one course on FOL. Fur-
thermore, at the beginning of the questionnaire, participants
were asked to rate their knowledge of logic on a 4−point Lik-
ert scale and their proficiency in English on a 5−point Likert
scale.

14In the analysis, the Other option was always marked
incorrect because ambiguous and unclear translations are less
understandable.
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formula.

BASELINE Does the hypothesis automatically follow from the premise?
Premise: “b is a cube or it is not the case that b is a cube

and c is a cube.”
Hypothesis: “only c is a cube.”

Yes No Other
Ranta (2011) Does the hypothesis automatically follow from the premise?

Premise: “All these hold:
- b is a cube or b is not a cube;
- c is a cube.”

Hypothesis: “only c is a cube.”

Yes No Other
LOLA Does the hypothesis automatically follow from the premise?

Premise: “c is a cube.”
Hypothesis: “only c is a cube.”

Yes No Other

Table 5: Example of three NLI experimental items
derived from translating the formula (Cube(b) ∨
¬Cube(b)) ∧ Cube(c) with the three systems.

The motivation behind using FR is that evaluat-
ing fluency in an absolute manner can be tricky.
Comparing different outputs can aid evaluators to
make more informed judgments. In this task, par-
ticipants were asked to rank the translations of the
three different systems of the same source formula
according to the criterion of fluency. Ties were
allowed. An illustration of this is presented in Fig-
ure 1. The FR task did not require a Latin square
design because all three translations per formula
were presented together in the same experimental
item. Therefore, each group of participants was
shown the same set of 20 FR questions.

Given the following formula and candidate translations, rank the translations
from most fluent to least fluent.

Formula: (Cube(b) ∨ ¬Cube(b)) ∧ Cube(c)
System 1: “b is a cube or it is not the case that b is a cube and c is a cube.”
System 2: “All these hold:

- b is a cube or b is not a cube;
- c is a cube.”

System 3: “c is a cube.”

Figure 1: An illustration of a FR question in the experi-
ment.

NLI Results The comprehensibility of a trans-
lation was calculated as the proportion of correct
answers (i.e., correctly spotted presence or absence
of entailment) to its corresponding NLI question.
The mean of the percentage of correct NLI answers
per participant was 70.4% (SD = 8.9%) and the
mean of the percentage of correct answers per
question was 70.2% (SD = 28.7%). The inter-
annotator agreement was very low (Krippendorff’s
α = 0.181), highlighting the difficulty of this task.
Two outlier NLI questions, on which the partici-

pants performed significantly worse than on other
questions, with the percentage of correct answers
being more than two standard deviations below the
mean, were removed from the analysis.

The translations from LOLA had the highest
mean of the percentage of correct answers. Fig-
ure 2 shows the distribution of the percentages
of correct participant responses for the different
types of formulae.15 A two-way system × well-
behavedness ANOVA revealed that there was a sig-
nificant interaction between the effects of transla-
tion system and formula type on the percentage
of correct answers (F (2, 114) = 3.11, p = .048).
Simple main effects analysis showed that transla-
tions from well-behaved formulae received a signif-
icantly higher percentage of correct answers than
translations from ill-behaved formulae (F (1) =
8.87, p = .004), and that there was a significant
effect of translation system on the percentage of
correct answers (F (2) = 5.50, p = .005).
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Figure 2: The distribution of the percentage of cor-
rect answers to the NLI questions (outliers excluded),
grouped by formula type and translation system, as a
boxplot showing the medians, lower quartiles, and up-
per quartiles, along with extreme values. Diamonds are
outlier values.

Tukey’s HSD test for multiple pairwise compar-
isons showed that the effect of translation system is
mainly due to a difference between BASELINE and
LOLA (p = .005, +16.59 under LOLA). There
were no significant differences between BASELINE

and Ranta (2011) (p = .657) and LOLA and Ranta
(2011) (p = .053). Tukey’s HSD test revealed also
that the interaction effect found is mainly due to

15Note that this figure shows some outliers other than the
ones removed from the analysis. The outliers removed from
the analysis were the questions with a mean of the percentage
of correct answers more than two standard deviations below
the mean over all the questions, while the outliers in this
figure are the outlier questions per formula type per translation
system.
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the extremely low percentage of correct answers
for BASELINE translations from ill-behaved for-
mulae. All three translation systems had a higher
percentage of correct answers for well-behaved
formulae: BASELINE (p = .021, +23.75 under
BASELINE’s translations from well-behaved formu-
lae), Ranta (2011) (p = .013, +24.97 under Ranta
(2011)’s translations from well-behaved formulae),
and LOLA (p = .002, +29.52 under LOLA’s trans-
lations from well-behaved formulae). Furthermore,
LOLA’s translations from ill-behaved formulae
were higher than BASELINE’s translations from ill-
behaved formulae (p = .002, +8.19 under LOLA).

FR Results To calculate the ranking of the three
systems based on the individual rankings the par-
ticipants gave in each of the FR questions, we
used the TRUESKILL adaptation of Sakaguchi et al.
(2014).16 TRUESKILL was run 200 times on 1260
pairwise rankings derived from the 420 collected
system rankings (20 per participant; Krippendorff’s
α = 0.475). The results of the clustering of sys-
tems with overlapping rank ranges are presented
in Table 6. There were significant differences be-
tween the ranked fluency of the three systems, such
that they were all in a different cluster. The final
ranking was LOLA > Ranta (2011) > BASELINE.

# µ Rank Range System
1 3.539 1− 1 LOLA

2 −0.643 2− 2 Ranta (2011)
3 −2.873 3− 3 BASELINE

Table 6: The final ranking of the three systems according
to TRUESKILL (significance cluster number at p−level
p ≤ .02 (#), the final estimate of the system’s ability (µ;
inferred mean), the range of ranks in which the system
falls, and system name).

To test whether there was an interaction effect
on ranked fluency between the type of formulae
(well-behaved or ill-behaved) and translation sys-
tem, TRUESKILL was run for well-behaved and
ill-behaved formulae separately. For well-behaved
formulae, the model was run 200 times on 693 pair-
wise collected rankings derived from the 231 sys-
tem rankings (11 per participant). For ill-behaved
formulae, the model was run 200 times on 567
pairwise collected rankings derived from the 189
system rankings (9 per participant). The results
of the clustering of systems with overlapping rank

16www.github.com/keisks/wmt-trueskill. See Ap-
pendix F for a high-level description of TRUESKILL.

ranges for well-behaved formulae vs. ill-behaved
formulae are presented in Table 7. We found a dif-
ference between the fluency of translations from
well-behaved formulae by Ranta (2011) vs. LOLA,
in addition to a difference in fluency between the
two systems for translations from ill-behaved for-
mulae (in both cases, LOLA had a higher rank than
Ranta (2011)).

Well-Behaved Formulae Ill-Behaved Formulae
# µ Rank Range System # µ Rank Range System
1 2.256 1− 1 LOLA 1 3.826 1− 1 LOLA

2 0.325 2− 2 Ranta (2011) 2 −1.423 2− 2 Ranta (2011)
3 −2.594 3− 3 BASELINE 3 −2.355 3− 3 BASELINE

Table 7: The final rankings of the three systems for well-
behaved formulae vs. ill-behaved formulae according
to TRUESKILL (significance cluster number at p−level
p ≤ .02 (#), the final estimate of the system’s ability (µ;
inferred mean), the range of ranks in which the system
falls, and system name).

6.3 Correlations between Automatic Metrics
and Human Judgments

In order to have a more comprehensive picture of
our experiments, we calculated correlations (using
Pearson’s r coefficient) between the results of the
automatic evaluation and the judgments obtained
during the human evaluation. We considered only
the experimental items derived from the formulae
extracted from the GGC used for the NLI and FR

tasks, as they have ground truth NL references and
thus were scored using the automatic metrics. As
for the metrics, we considered BERTScore, ROUGE-
L, and SBERT.

For computing the correlation on the NLI task,
we calculated a normalized score on [0, 1] per trans-
lation, based on the answers given by the partic-
ipants, such that the closer the score is to 1, the
more comprehensible the translation. Similarly,
the higher the score given by the automatic metrics
to the translation, the more similar (structurally or
semantically) to the ground truth reference it is. We
observed no correlation between human judgments
and any of the metrics (r(55) = 0.05, p = .737
with BERTScore; r(55) = −0.08, p = .540 with
ROUGE-L; r(55) = 0.009, p = .947 with SBERT).
For reference, Figure 5 in Appendix E shows the
scatterplots.

For computing the correlation on the FR task,
we scored each translation based on the average
ranking received in the FR task. Each translation
was scored from 1 (most fluent) to 3 (least fluent)
by the participants, so we obtained translations
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scored on [1, 3]. In this case, the higher the av-
erage FR score, the more the translation is likely
to be disfluent. Conversely, the higher the score
of the automatic metrics, the more similar to the
ground truth reference the translation is. Allegedly,
a more fluent translation for humans should receive
a higher score from the automatic metrics, so we
expect a negative correlation between the average
FR scores and the metric scores. This is supported
by the results, where we observe weak to moder-
ate negative correlations (r(25) = −0.48, p = .01
with BERTScore; r(25) = −0.51, p < .01 with
ROUGE-L; r(25) = −0.35, p = .08 with SBERT),
statistically significant for two out of three met-
rics (BERTScore and ROUGE-L). Figure 6 in Ap-
pendix E shows the scatterplots representing the
negative correlations.

We proceeded with a manual analysis to fur-
ther inspect the misalignments between automatic
scores and human judgments in the two evalua-
tion tasks. Specifically, we wanted to study two
extreme cases, namely, when a high score from
the automatic metrics corresponded to poor human
judgments, and vice versa. See Appendix E for a
detailed report.

Our results highlight an apparent lack of appro-
priate metrics to automatically evaluate the task
of logic-to-text generation, as the metrics that we
considered measure different properties than the di-
mensions we are interested in assessing. Semantics-
based metrics focus exclusively on computing se-
mantic similarity between texts. Moreover, they
should theoretically be solid enough to capture nu-
ances in meaning, yet we saw that this is mostly not
the case (with BERTScore being the only exception).
Consequently, the nature of these metrics does not
allow them to tackle the core issue of comprehen-
sibility, i.e., whether a text is more understandable
than another. Our results also suggest that these
metrics are of limited use for assessing fluency.
Similarly, metrics relying only on n−gram overlap
are unsuitable for any task involving comprehen-
sion, as they simply compare surface realizations
of texts. On the other hand, they might be slightly
more appropriate to evaluate fluency, as overlap-
ping tokens can be an indication of fluency.

7 Future Work

We see two main areas for further investigation.
First, we will examine to what extent our approach
can be scaled up to include FOL with identity by en-

hancing the generator, the logical equivalence laws,
and crucially, the optimization operations that were
applied to the sentences generated. Second, we
will try to implement the list of linguistic improve-
ments that emerged from the TQA (see Table 9)
by investigating methods to programmatically ex-
ploit paraphrasing techniques (rule-based, neural,
or hybrid), and adequately scoring the resulting
translations.

8 Conclusion

We conducted a human TQA on the faithfulness,
comprehensibility, and fluency of Ranta (2011)’s
translations. We implemented part of the results to
build LOLA, an enhanced version of Ranta (2011)’s
FOL-to-text system, which optimizes the input for-
mula when generating text. We evaluated LOLA

against a baseline and Ranta (2011)’s original sys-
tem, performing both automatic and human eval-
uations. Our results suggest that Ranta (2011)’s
framework, once adequately enhanced with logical
equivalence laws, lends itself well to generating
NL translations of FOL formulae. Furthermore, the
results indicate the inappropriateness of current
standard automatic metrics to evaluate logic-to-text
generation, as they focus on assessing different
properties than the dimensions relevant for this
task.

The present work on logic-to-text generation can
be potentially beneficial for a variety of applica-
tions. Paraphrasing systems could profit from the
constraints given by logical equivalence laws to
generate faithful paraphrases. Logic teaching can
benefit by incorporating LOLA in an intelligent tu-
toring system supporting students and educators.
LOLA could also be the base for a system help-
ing engineers comprehend the convoluted outputs
of theorem provers, as literally translating those
formulae might result in quite cumbersome text.

We hope that this paper will motivate researchers
in the broader NLG community to focus more on
the issue of generating faithful, comprehensible,
and fluent text from logically rich inputs.

Limitations

At present, both Ranta (2011) and LOLA do not
cover identity (=). When identity is added to FOL,
the expressive power of FOL increases very signifi-
cantly, allowing it to express things like “there are
more/fewer than n A’s”, “exactly n A’s are B’s”,
and so on, often using formulae whose structure
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is very distant from those of normal English sen-
tences.

The current experimental design of the NLI task
does not allow us to get fine-grained insights on am-
biguity (i.e., the different readings that a translation
may induce), which is crucial to avoid misunder-
standings about the original meaning of a formula.
In particular, the choice of the Other option re-
vealed that the participants did spot the existence
of ambiguities in the premises, or did not detect
them at all, resulting in different interpretations of
the premise.

The vocabulary of entities and relations from
the GGC is limited in nature, given its pedagogical
origin. Enlarging and diversifying the language
domain would raise complications such as dealing
with logical properties of the predicates, both in iso-
lation and compositionally, implicatures, and world
knowledge. Consequently, ensuring the creation of
a fair and proper evaluation, especially for the NLI

task, would be significantly more challenging.
Our evaluation focused exclusively on English.

However, studying this subject from the perspec-
tives of (typologically) different languages would
bring up an incredibly wide range of research
questions, e.g., is the concept of well-behavedness
language-independent? Do the modifications per-
formed to Ranta (2011)’s system scale up to other
languages?
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A Details on Ranta (2011)

Figure 3 shows a graphical schematization of Ranta
(2011)’s translation system.

Input formula:
∀x(Number(x)→ (Even(x) ∨Odd(x)))

PUniv

PImpl

PConj

PAtom

APred1

IVar

VString

“x”

Odd

PAtom

APred1

IVar

VString

“x”

Even

COr

PAtom

AKind

IVar

VString

“x”

Nat

VString

“x”

PAtom

APred1

IUniv

Nat

ConjPred1

BasePred1

OddEven

COr

Output text:
every number is even or odd

Parsing

Optimization

Linearization

Figure 3: A model of Ranta (2011)’s translation sys-
tem, with an example translation of a FOL formula into
English. Each AST node is named after the syntactic
function used to construct the constituent.

B Formal Definition of Well-Behavedness

The following is the formal definition of well-
behavedness, stating all the conditions that a for-
mula should have to be suitable for translation into
NL:

1. All atomic propositions are well-behaved for-
mulae.

2. Negation: if ϕ is a well-behaved formula and
it does not contain subformulae of the form
¬ψ for any formula ψ, then ¬ϕ is a well-
behaved formula.

3. Conjunction: if ϕ and ψ are well-behaved for-
mulae, then (ϕ∧ψ) is a well-behaved formula.

4. Disjunction: if ϕ and ψ are well-behaved for-
mulae, then (ϕ∨ψ) is a well-behaved formula.

5. Implication: if ϕ and ψ are well-behaved for-
mulae and neither of them has any subformu-
lae of the form α→ β for any set of formulae
{α, β}, then (ϕ → ψ) is a well-behaved for-
mula.

6. Universal quantification: if ϕ is a well-
behaved formula, x is a variable, and ϕ con-
tains at least one free occurrence of x, then
(∀x)ϕ is a well-behaved formula.

7. Existential quantification: if ϕ is a well-
behaved formula, x is a variable, and ϕ con-
tains at least one free occurrence of x, then
(∃x)ϕ is a well-behaved formula.

8. Bounded quantification: if ϕ is a proposition,
x is a variable, K is a kind predicate, and ϕ
contains at least one free occurrence of x, then
(∀x : K)ϕ and (∃x : K)ϕ are well-behaved
formulae.

9. Conjunction and disjunction of proposition
lists: if ϕ1, ..., ϕn are propositions, then
∧[ϕ1, ..., ϕn] and ∨[ϕ1, ..., ϕn] are proposi-
tions.

10. Nothing else is a well-behaved formula.
In addition to this definition, the well-

behavedness of a formula also depends on its com-
plexity, calculated in the number of connectives.
Only if a formula contains < 8 connectives, it is
considered well-behaved.

C Additional Details on LOLA

The list of core-to-extended AST conversions was
expanded with the following optimization rules.

The rule of existential negation turns a negated
existential quantifier into a negative existential,
which asserts the non-existence of an element in
the domain of quantification. This optimization
should improve translations such as it is not the
case that there exists an element x such that [...]
to there exists no element x such that [...], pushing
the negation inward.

The rule of in-situ quantification without a kind
predicate applies to the special case of kind pred-
icates such as natural number that, according to
Ranta (2011), serve to restrict the domain of quan-
tification. This rule replaces an occurrence of a
bound variable in the quantified proposition (∀, ∃,
or ⊥) with simpler expressions (everything, some-
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Propositional Logic First-Order Logic
Idempotence Quantifier Negation
P ∨ P ⇔ P ¬(∀x)ϕ(x)⇔ (∃x)¬ϕ(x)
P ∧ P ⇔ P (∀x)ϕ(x)⇔ ¬(∃x)¬ϕ(x)

¬(∀x)¬ϕ(x)⇔ (∃x)ϕ(x)
Associativity (∀x)¬ϕ(x)⇔ ¬(∃x)ϕ(x)
(P ∨Q) ∨R⇔ P ∨ (Q ∨R)
(P ∧Q) ∧R⇔ P ∧ (Q ∧R) Quantifier Distribution

(∀x)(ϕ(x) ∧ ψ(x))⇔ (∀x)ϕ(x) ∧ (∀x)ψ(x)
Commutativity (∃x)(ϕ(x) ∨ ψ(x))⇔ (∃x)ϕ(x) ∨ (∃x)ψ(x)
P ∨Q⇔ Q ∨ P
P ∧Q⇔ Q ∧ P Quantifier Independence

(∀x)(∀y)ϕ(x, y)⇔ (∀y)(∀x)ϕ(x, y)
Distributivity (∃x)(∃y)ϕ(x, y)⇔ (∃y)(∃x)ϕ(x, y)
(P ∨Q) ∧ (P ∨R)⇔ P ∨ (Q ∧R)
(P ∧Q) ∨ (P ∧R)⇔ P ∧ (Q ∨R) Quantifier Movement

ϕ→ (∀x)ψ(x)⇔ (∀x)(ϕ→ ψ(x))
Identity (if x is not free in ϕ)
P ∨ ⊥ ⇔ P ϕ→ (∃x)ψ(x)⇔ (∃x)(ϕ→ ψ(x))
P ∨ ⊤ ⇔ ⊤ (if x is not free in ϕ)
P ∧ ⊥ ⇔ ⊥ (∀x)ψ(x)→ ϕ⇔ (∃x)(ψ(x)→ ϕ)
P ∧ ⊤ ⇔ P (if x is not free in ϕ)

(∃x)ψ(x)→ ϕ⇔ (∀x)(ψ(x)→ ϕ)
Complement (if x is not free in ϕ)
P ∨ ¬P ⇔ ⊤
¬¬P ⇔ P (double negation) Vacuous Quantification
P ∧ ¬P ⇔ ⊥ (∀x)ϕ⇔ ϕ (if x is not free in ϕ)

(∃x)ϕ⇔ ϕ (if x is not free in ϕ)
De Morgan
¬(P ∨Q)⇔ ¬P ∧ ¬Q
¬(P ∧Q)⇔ ¬P ∨ ¬Q

Conditional
P → Q⇔ ¬P ∨Q
P → Q⇔ ¬Q→ ¬P (contraposition)

Table 8: List of logical equivalence laws used as formula conversions in LOLA, where P , Q, or R stand for any
arbitrarily chosen well-formed formula, and ϕ(x) or ψ(x) for any formula in which x is free.
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thing, or nothing). As an example, for all x, x is
even would be optimized to everything is even.

The rules for 2−place predicate-sharing aggre-
gation are of two kinds: in subject-sharing, differ-
ent occurrences of the same predicate in a formula
share the first argument; in object-sharing, different
occurrences of the same predicate share the second
argument. In these cases, the formula is flattened
to merge the occurrences of the predicate. For ex-
ample, Parallel(a, b) ∧ Parallel(c, b) would be
translated as a and c are parallel to b.

Finally, the optimization rule to perform reflex-
ivization on negated predicates improves transla-
tions such as x is not bigger than x to x is not bigger
than itself.

Given the optimization rules presented in this
section and in §3 and the equivalence laws in Ta-
ble 8, the selection of the optimal translation is
performed as described in §5. Figure 4 shows an
example of a search tree.

D Details on the TQA’s Post-Edits

The post-edits suggested by the participants in the
TQA (see §4.1) can be divided into three categories.
The first category is in the spirit of Ranta (2011)’s
core-to-extended AST manipulations. The opti-
mizations that the evaluators suggested are: mov-
ing the negation inward if an existential quantifier
is negated, in-situ quantification without a kind
predicate present, two-place predicate-sharing ag-
gregation, and reflexivization of negated predicates.
Table 2 shows one example for each suggested op-
timization.

The second category includes conversions based
on the structural manipulation of the form of the
input using logical equivalence laws. This way,
logically equivalent but arguably more comprehen-
sible and fluent translations can be obtained. Exam-
ples of this are the elimination of double negation,
the use of De Morgan’s laws (Barwise, 1977), and
the simplification of ¬(∃x)ϕ to (∀x)¬ϕ. Table 3
presents some examples of conversions suggested
in this category.

The third category consists of linguistic and
stylistic optimizations of the translations, introduc-
ing a greater variety of terms, expressions, and syn-
tactic constructions than those employed by Ranta
(2011). Examples of some linguistic constructions
introduced are relative clauses, anaphoric expres-
sions, periphrastic expressions, and the rephrasing
of connectives. Table 9 presents the complete list

of linguistic constructions, together with the logical
constructs they can convey.

E Details on the Evaluation

Table 10 presents some outputs generated by the
three systems we compared for evaluation. The
table highlights the different operations to trans-
late formulae into text used by the three systems.
Note, in particular, the convoluted nature of the
quasi-literal translations of BASELINE, and the
techniques employed by Ranta (2011) and LOLA

to improve them. Specifically, Ranta (2011) im-
plements some common techniques in NLG (e.g.,
aggregation in (3)), while LOLA additionally em-
ploys logical equivalence laws (e.g., double nega-
tion in (1)) to further refine the translations.

Figure 5 presents the scatterplots showing
the relationships (not statistically significant) be-
tween the average NLI score and the scores as-
signed by the automatic metrics to the translations
(BERTScore in Figure 5a, ROUGE-L in Figure 5b,
and SBERT in Figure 5c). Figure 6 presents the
scatterplots showing the weak to moderate negative
correlations (statistically significant for BERTScore
and ROUGE-L) between the average FR ranking and
the scores assigned by the automatic metrics to the
translations (BERTScore in Figure 6a, ROUGE-L in
Figure 6b, and SBERT in Figure 6c). Note, however,
that the FR rank alone (1, 2, or 3) of a translation
might not be ideal to measure its fluency. Given
that ties were allowed in the FR task, it might be
the case that all the translations of an input for-
mula receive a 1. However, this might mean that
the translations are all equally disfluent. Therefore,
two translations of different formulae receiving a
1 cannot be viewed as equally fluent. Nonetheless,
the correlations we found might be due to the fact
that few FR rankings resulted in ties.

In order to shed some light on the evaluation
methods, we inspected cases in which the auto-
matic scores and the human judgments of a re-
alization are misaligned. Table 11 and Table 12
(concerning NLI and FR, respectively) show some
samples. In Table 11, a particularly interesting ex-
ample is (7): the text is extremely comprehensible
for humans, however, since none of the tokens of
the generated text overlaps with those of the ref-
erence, the score assigned by ROUGE-L is 0. A
similar thing happens in (8) but for different rea-
sons: SBERT is unable to get the semantic similarity
between the generated text and the more natural-
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(∀x)¬¬Even(2)

(∀x)Even(2)

Even(2)

VC 1

COMP 2

¬(∃x)¬¬¬Even(2)

QN 2

¬(∃x)¬Even(2)

(∀x)Even(2)

QN 2

(∀x)¬¬Even(2)

QN 4

¬¬Even(2)

VC 1

QN 4

¬¬Even(2)

Even(2)

COMP 2

VC 1

Figure 4: A part of the search tree of possible manipulations for the formula (∀x)¬¬Even(2), where the names of
the logic laws are abbreviated (e.g., QN 1 = the first law of quantifier negation, see Table 8). In the system, this tree
has ASTs as nodes, but for readability, the formula linearizations are displayed instead.

Linguistic Construction Logical Construct Example
Relative clause Conjunction There exists something that is not prime.
Adverbial clause Conjunction Something is in the same row as a, while a is even.
Adverbial clause Implication Everything is small as long as it is a dodecahedron.

a is smaller than b if a is a cube.
Correlative conjunction Conjunction Both a is in the same row as b and b is a dodecahedron.
Correlative conjunction Exclusive or Everything is either a cube or a tetrahedron.
Correlative conjunction Negated disjunction Neither b nor d is a tetrahedron.
Deixis Identity If b is small, it is a tetrahedron.

If w and y are tetrahedrons, they are in the same column.
Referring expression Identity If something is in front of a cube, then the cube is large.

At least one of d and b is left of the other.
Conditional mood Implication If a had the same shape as b, then c would be in the same row as c.
Modality Implication If a is even, then there must be something that is even.
Present participle Implication a being left of b implies that b is a dodecahedron.
Adverbial clause Reverse relation a is to the left of d or the other way around.
Modifier Inequality Nothing is smaller than something else.
Collective predicate Distributive predication If w and y are tetrahedrons, they are in the same column.

Table 9: Linguistic and stylistic constructions suggested in the post-edits of the TQA, with the logical constructs
they can express or emphasize, illustrated with (slightly revised) examples.

164



sounding reference, thus assigning a low score to
a comprehensible translation. In the opposite case
(i.e., incomprehensible translations receiving high
automatic scores), a noteworthy example is (9):
the realization is quite convoluted (containing two
negations, an implication, and the repetition of a
constant), yet surprisingly, BERTScore catches the
semantic similarity with the reference, even though
equivalence laws are involved. Example (11) is
obscure: in this case, in contrast to (8), SBERT is
able to capture the semantic similarity with the ref-
erence, albeit the convoluted realization received a
rather poor human judgment.

In Table 12, the realization in (12), (13), and
(14) turns out to be particularly problematic. Al-
though receiving a high score in the FR task, it
is scored poorly by all the metrics, for the same
reasons as above: as for ROUGE-L, the n−gram
overlap between the realization and the reference
is weak, while SBERT does not capture the seman-
tic similarity. BERTScore is seemingly the only
metric that handles semantics satisfactorily, as its
score is anyhow relatively high. In the opposite
case (i.e., disfluent translations receiving high au-
tomatic scores), (15) is particularly remarkable as
BERTScore is capable of detecting the semantic
similarity of logically equivalent constructions in-
volving antonyms (x is smaller than y ≡ y is larger
than x). The realization in (16) is a nearly-literal
translation of the original formula that is consid-
ered very disfluent by humans. Regardless, the
n−gram overlap with the reference is prominent,
so ROUGE-L gives it a relatively high score. (17)
shows similar behavior to (11): SBERT surprisingly
catches the semantic similarity between the realiza-
tion and the reference, despite the involvement of
equivalence laws.

F TRUESKILL Description

TRUESKILL was originally developed in Herbrich
et al. (2006) for modeling the relative skills of play-
ers in online gaming communities, echoing Elo
(1978). In higher-level terms, TRUESKILL assumes
that the skill level (score) of each player (system)
Sj is defined by its estimated mean performance
µSj and the uncertainty of this estimate σ2Sj

. Before
any match is played, µSj is initialized to 0. These
Bayesian estimates are continually updated with
each match.17 The size of the updates depends on
the amount of surprisal and confidence. A player

17Note that µSj can take negative values.

with a relatively low mean performance beating a
player with a relatively high mean performance is
more surprising than the opposite outcome. Thus,
more surprising outcomes result in bigger updates
than less surprising ones.

G TQA Questionnaire

Figure 7 presents the instruction text shown to the
participants at the beginning of the survey, and
Figure 8 the set of questions provided to the par-
ticipants. Table 13 shows an example batch of for-
mulae and translations used as experimental items.
The filler formulae and translations present in the
table were designed in such a way that the transla-
tions resembled those of Ranta (2011), they were
incorrect, and their incorrectness would be easily
detectable for people with a moderate amount of
experience in logic.

H Human Evaluation Questionnaire

Figure 9 presents the instructions and questions
shown to the participants.
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Figure 5: Scatterplots with the relationship between the average NLI score and the score assigned by the automatic
metrics to the translations.
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Figure 6: Scatterplots highlighting the negative correlations between the average FR rank and the score assigned by
the automatic metrics to the translations.

Formula and Reference BASELINE Ranta (2011) LOLA

(1)
¬¬Large(d)
d is large.

It is not the case that it is not the case that d is large. It is not the case that d is not large. d is large.

(2)
∀x∀y((Cube(x) ∧ FrontOf(y, x))→ Small(x))
If a cube has something in front of it, then it’s small.

For all x, for all y, if x is a cube
and y is in front of x, then x is small.

For all x, for all y, if x is a cube
and y is in front of x, then x is small.

For all y, for all cubes x, y is not in front of x or x is small.

(3)
Smaller(f, a) ∨BackOf(f, a)
f is either in back of or smaller than a.

f is smaller than a or f is in back of a. f is smaller than a or in back of a. f is smaller than a or in back of a.

(4)
∃u(Dodec(u) ∧ ¬(Large(u) ∨ Small(u)))
Some dodecahedron is neither large nor small.

There is an element u such that u is a dodecahedron
and it is not the case that u is large or u is small.

There is a dodecahedron u such that
it is not the case that u is large or small.

It is not the case that every dodecahedron is small or large.

(5)
¬∃w(Person(w) ∧ Pet(w))
People are not pets.

It is not the case that there is an element w such that
w is a person and w is a pet.

It is not the case that some person is a pet. For all persons w, w is not a pet.

Table 10: Examples of text generated by the three systems compared in the evaluation, together with the input
formula and the ground truth reference.

Formula and Reference Realization System NLI Score (↑) Metric Score (↑) Metric

(6)
∀x¬∃xCube(x)
There are no cubes.

For all x, it is not the case that there is an element x such that x is a cube. Ranta (2011) 1.000 0.843 BERTScore

(7)
∀x¬∃xCube(x)
There are no cubes.

Nothing is a cube. LOLA 1.000 0.000 ROUGE-L

(8)
∃x∃y(Cube(x) ∧ Cube(y) ∧ Large(x) ∧ Small(y) ∧ FrontOf(x, y))
A large cube is in front of a small cube.

There is an element x such that there is an element y such that
x is a cube and y is a cube and x is large and y is small and x is in front of y.

BASELINE 1.000 0.509 SBERT

(9)
¬(Larger(b, a)→ ¬Larger(b, e))
b is larger than both a and e.

It is not the case that if b is larger than a, then b is not larger than e. Ranta (2011) 0.333 0.901 BERTScore

(10)
¬(Larger(b, a)→ ¬Larger(b, e))
b is larger than both a and e.

It is not the case that if b is larger than a, then b is not larger than e. Ranta (2011) 0.333 0.444 ROUGE-L

(11)
∃x(Larger(a, x) ∧ Cube(x))→ ¬∃y(Tet(y) ∧ ¬Smaller(a, y))
If a is larger than some cube then it is smaller than every tetrahedron.

If there is an element x such that a is larger than x and x is a cube,
then it is not the case that there is a tetrahedron y such that a is not smaller than y.

Ranta (2011) 0.333 0.846 SBERT

Table 11: Selected cases of misalignment between the normalized score retrieved from the NLI task vs. the score
assigned to the realizations by some automatic metrics against the ground truth reference.

Formula and Reference Realization System FR Score (↓) Metric Score (↑) Metric

(12)
∀x((Cube(x) ∧ Small(x))→ ∃t(Large(t) ∧ Cube(t) ∧BackOf(x, t)))
Every small cube is in back of a large cube.

For all small cubes x, there is an element t such that t is large, t is a cube and x is in back of t. LOLA 1.000 0.859 BERTScore

(13)
∀x((Cube(x) ∧ Small(x))→ ∃t(Large(t) ∧ Cube(t) ∧BackOf(x, t)))
Every small cube is in back of a large cube.

For all small cubes x, there is an element t such that t is large, t is a cube and x is in back of t. LOLA 1.000 0.333 ROUGE-L

(14)
∀x((Cube(x) ∧ Small(x))→ ∃t(Large(t) ∧ Cube(t) ∧BackOf(x, t)))
Every small cube is in back of a large cube.

For all small cubes x, there is an element t such that t is large, t is a cube and x is in back of t. LOLA 1.000 0.653 SBERT

(15)
Smaller(a, b) ∧ Smaller(e, b)
b is larger than both a and e.

a is smaller than b and e is smaller than b. BASELINE 2.048 0.927 BERTScore

(16)
¬∃x(LeftOf(x, a) ∧ ∃z(Smaller(x, z) ∧ LeftOf(z, b)))
Nothing to the left of a is smaller than anything to the left of b.

It is not the case that there is an element x such that x is to the left of a
and there is an element z such that x is smaller than z and z is to the left of b.

BASELINE/Ranta (2011) 1.905 0.464 ROUGE-L

(17)
Large(a) ∨ Large(c) ∨ ¬(Tet(a) ∧ Tet(c))
a and c are both tetrahedra only if at least one of them is large.

a is large or c is large or it is not the case that a is a tetrahedron and c is a tetrahedron. BASELINE 2.190 0.847 SBERT

Table 12: Selected cases of misalignment between the score (averaged) assigned to the realizations by humans in
the FR task vs. the score assigned by some automatic metrics against the ground truth reference.
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EVALUATING ENGLISH TRANSLATIONS FROM FIRST-ORDER LOGIC FORMULAE

Thank you very much for participating in this experiment. It will take approximately 15 to 30 minutes to fill in this survey. If at
any point you would like to stop, you can close this form and your response will be deleted. If you do wish to participate, your
response will be handled anonymously: The information in this study will only be used in ways that will not reveal who you are. You
will not be identified in any publication from this study or in any data files shared with other researchers. Your participation in
this study is confidential.

The purpose of this experiment is to evaluate the strengths and weaknesses of a system that translates first-order logic formulas
into English. We will present to you, one by one, 25 formulas with their translations, such as the one below:

Formula: ¬ ∃ x ( Cube ( x ) ∧ LeftOf ( b , x ) )
English translation: It is not the case that b is to the left of some cube

Please answer the following questions for each of them:
1. Is the translation correct, yes or no? By a correct translation, we mean that the sentence conveys the same information as the
input logical formula (there is no possible world in which the formula is true while the English translation is false, or vice
versa).
2. Is the translation clear? By a clear translation, we mean that the sentence is understandable and does not have multiple
readings.
3. Is the translation fluent? By a fluent translation, we mean that the sentence sounds like a natural English sentence.
4. Do you have a suggestion for a better translation? Think, for example, about how the translation can be improved given the above
three criteria (correctness, clarity, and fluency). However, you can be very free in your ideas here, write whatever you like!

Your answer to question 4 is most important for us. Especially if you think the given translation is unclear and/or not fluent,
write down a translation that you think is more understandable and/or sounds better. A translation should always be one or more
whole sentences.

In answering all questions, please note that it is very important that you evaluate the quality of the translations and base your
opinion only on the semantic content (the meaning) of the formula, not on its specific syntactic form (such as the order of the
conjuncts). In other words, think about whether the translation is suitable given the formula's meaning, no matter what the formula
looks like.

The survey will start off with a few personal questions and a practice example. After you have answered all of the questions for
each formula and translation pair, you will be asked to give a general structured review of the strengths and weaknesses of the
translation system. With which types of sentences does the system have difficulties? For which types of sentences do you believe
the system performs sufficiently well? Please keep this final question in mind while evaluating the translations.

For your information, these are the interpretations of the predicates used:
Dodec ( x ) x is a dodecahedron
Small ( x ) x is small
Student ( x ) x is a student
Medium ( x ) x is medium
Cube ( x ) x is a cube
Prime ( x ) x is a prime
Person ( x ) x is a person
Tet ( x ) x is a tetrahedron
Pet ( x ) x is a pet
Large ( x ) x is large
Even ( x ) x is even
Adjoins ( x , y ) x is adjacent to y
SameCol ( x , y ) x is in the same column as y
LeftOf ( x , y ) x is to the left of y
RightOf ( x , y ) x is to the right of y
Smaller ( x , y ) x is smaller than y
FrontOf ( x , y ) x is in front of y
Larger ( x , y ) x is larger than y
SameRow ( x , y ) x is in the same row as y
SameShape ( x , y ) x is of the same shape as y
SameSize ( x , y ) x is of the same size as y
BackOf ( x , y ) x is in back of y

Here are two example formula-translation pairs with potential answers (but many more can be correct!) that would be helpful for us
in thinking about how to improve the translation system:

Example 1

Formula: ∀ x ∃ y ( ( LeftOf ( x , y ) ) ∧ ¬ Dodec ( y ) )
Translation: for all x , there is an element y such that x is to the left of y and y is not a dodecahedron

1. Is the translation correct, yes or no?
“Yes”

2. Is the translation clear, on a scale of 1 to 5?
“3”

3. Is the translation fluent, on a scale of 1 to 5?
“2”

4. Do you have a suggestion for a better translation?
“everything has something to the right of it that is not a dodecahedron”
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Example 2

Formula: Pet ( a ) → ∃ x Adjoins ( b , b )
Translation: if a is a pet , then there is an element x such that x is adjacent to b

1. Is the translation correct, yes or no?
“No”

2. Is the translation clear, on a scale of 1 to 5?
“3”

3. Is the translation fluent, on a scale of 1 to 5?
“1”

4. Do you have a suggestion for a better translation?
“if a is a pet, then b is adjacent to itself”

Now it is your turn!

Figure 7: The instruction text shown to the participants at the beginning of the TQA.

0. Informed consent
I have read the above information and understand the purpose of the research and that data will be collected from me. I also
understand that participating in this study is completely voluntary. I agree that data gathered for the study may be published
or made available provided my name or other identifying information is not used.

○ I confirm this
○ I do not confirm this and want to withdraw from participation

1. Personal questions
What is your gender?

○ Male
○ Female
○ Prefer not to say

How old are you?

How would you rate your knowledge of and familiarity with first-order logic? Where 1 stands for “I have been introduced to
logic but it is long ago and I am a bit rusty”, and 5 stands for “I use logic on a daily basis”.

1 2 3 4 5

2. Questions for each of the formula-translation pairs in the experimental items of the batch:
Formula: <formula>
Translation: <translation>

1. Is the translation correct? Correct means that the sentence conveys exactly the same information as the input logical
formula.

○ Yes
○ No

2. Is the translation clear? Clear means that the sentence is understandable and does not have multiple readings.
(Very unclear) 1 2 3 4 5 (Very clear)

3. Is the translation fluent? Fluent means that the sentence sounds as a natural English sentence.
(Not fluent) 1 2 3 4 5 (Very fluent)

4. Do you have a suggestion for a better translation? If so, then write it down here.

3. Final questions
Give a general structured review of the strengths and weaknesses of the translation system. With which types of formulas does
the system have difficulties? For which types of formulas do you believe the system performs sufficiently well?

Do you have any final comments?

Figure 8: The set of questions provided to the participants in the TQA.
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Item Type FOL Formula English Translation
1 GGC ∀z((Cube(z) ∧ ∃uFrontOf(u, z)) → Small(z)) for all z , if z is a cube and there is an element u such that u is in front of z , then z is small
2 GGC ∀v((Dodec(v) ∧ ¬∃wRightOf(w, v)) → Small(v)) for all v , if v is a dodecahedron and it is not the case that there is an element w such that w is to the right of v , then v is small
3 GGC ¬Cube(a) → (Cube(c) ∨ (¬Cube(c) → Cube(e))) if a is not a cube , then at least one of these holds :

• c is a cube
• if c is not a cube , then e is a cube

4 GGC ∀x(∀y(Dodec(x) ∧ ¬RightOf(y, x)) → Small(x)) for all x , if for all y , x is a dodecahedron and y is not to the right of x , then x is small
5 GGC ¬∃y(¬Tet(y) ∧ ¬∃xFrontOf(x, y)) it is not the case that there is an element y such that y is not a tetrahedron and it is not the case that there is an element x such

that x is in front of y
6 GGC ¬∃x(¬∃yFrontOf(y, x) ∧ ¬Tet(x)) it is not the case that there is an element x such that it is not the case that there is an element y such that y is in front of x and

x is not a tetrahedron
7 GGC ∀x((Dodec(x) ∧ ¬∃yRightOf(x, y)) → ∃zLeftOf(x, z)) for all x , if x is a dodecahedron and it is not the case that there is an element y such that x is to the right of y , then there is an

element z such that x is to the left of z
8 GGC ∀y∀x((Dodec(y) ∧ Tet(x)) → FrontOf(x, y)) for all y , for all x , if y is a dodecahedron and x is a tetrahedron , then x is in front of y
9 GGC ∀y∀z((Cube(y) ∧ Dodec(z) ∧ BackOf(y, z)) → Smaller(y, z)) for all y , for all z , if y is a cube , z is a dodecahedron and y is in back of z , then y is smaller than z
10 GGC ¬(Cube(a) ∧ Cube(d)) ∨ LeftOf(a, d) ∨ LeftOf(d, a) it is not the case that a is a cube and d is a cube , a is to the left of d or d is to the left of a
11 RG Student(a) ∨ (Medium(b) ∨ ∀xSameSize(x, x)) a is a student , b is medium or for all x , x is of the same size as itself
12 RG ∀x¬(LeftOf(x, x) → LeftOf(a, b)) for all x , it is not the case that if x is to the left of itself , then a is to the left of b
13 RG Adjoins(a, b) ∧ ((SameRow(a, b) ∧ Person(b)) → (Dodec(c) ∧ RightOf(c, a))) all these hold :

• a is adjacent to b
• if a is in the same row as b and b is a person , then c is a dodecahedron and c is to the right of a

14 RG ∀xRightOf(a, a) for all x , a is to the right of itself
15 RG ∀x∀x∃xSameSize(x, a) for all x , for all x , there is an element x such that x is of the same size as a
16 RG ∃x∀x¬Larger(x, x) there is an element x such that for all x , x is not larger than x
17 RG ¬(Adjoins(a, b) → Adjoins(a, c)) ∨ ¬(Student(c) ∧ Medium(a)) it is not the case that if a is adjacent to b , then a is adjacent to c or it is not the case that c is a student and a is medium
18 RG Medium(a) ∨ ((Small(b) → Tet(b)) → ¬Person(c)) at least one of these holds :

• a is medium
• if if b is small , then b is a tetrahedron , then c is not a person

19 RG ∀x∃xSameSize(x, a) for all x , there is an element x such that x is of the same size as a
20 RG (∃xFrontOf(a, x) → (Large(a) ∧ SameSize(a, b))) ∨ Smaller(c, c) at least one of these holds :

• if there is an element x such that a is in front of x , then a is large and of the same size as b
• c is smaller than itself

21 Filler ¬∃x(SameShape(a, b) → SameRow(c, c)) it is not the case that there is an element x such that a is in the same shape as b and c is in the same row as itself
22 Filler ∀x(Tet(x) ∨ Prime(a)) ∨ ∃x(Person(x) → Student(a)) for all x , x is a tetrahedron or a is a prime or there is an element x such that a is a student
23 Filler ∃x∀yLarger(x, a) ∧ ∀y¬Pet(b) there is an element x such that for all y , x is larger than a and there is an element x such that for all y , b is not a pet
24 Filler ∃x(((SameShape(x, a) ∧ Tet(x)) → Adjoins(x, a)) for all x , if x is of the same shape as a, then x is adjacent to a
25 Filler ∃xCube(x)(Person(a) → Adjoins(x, a)) there is a cube such that a is a person or x is adjacent to a

Table 13: One example batch of formulae and translations of the experimental items used in the TQA (GGC =
formulae taken from the Grade Grinder Corpus with Ranta (2011)’s translation, RG = randomly generated formulae
with Ranta (2011)’s translation, Filler = randomly generated formulae with manually crafted incorrect translation).

NATURAL LANGUAGE INFERENCE & FLUENCY RANKING

Thank you very much for participating in this experiment! In this experiment, you will be performing 2 separate tasks, which will
be explained to you beforehand. It will take approximately 30 minutes to complete the tasks. If at any point you would like to
stop, you can close this form and your response will be deleted. If you do want to participate, your response will be handled
anonymously: The information in this study will only be used in ways that will not reveal who you are. You will not be identified
in any publication from this study or in any data files shared with other researchers. Your participation in this study is
confidential. If you wish to participate, please confirm your consent in the following question. For any questions about the
survey, you can contact us.

0. Informed consent
I have read the above information and understand the purpose of the research and that data will be collected from me. I also
understand that participating in this study is completely voluntary. I agree that data gathered for the study may be published
or made available provided my name or other identifying information is not used.

○ I confirm this
○ I do not confirm this and want to withdraw from participation

1. Personal questions
What is your gender?

○ Male
○ Female
○ Prefer not to say

How old are you?

How would you rate your proficiency in English?
1 2 3 4 5

How would you rate your knowledge of and familiarity with first-order logic?
1 Lower level than the ones below
2 Level of a bachelor/master student who has followed 1 or 2 classes of logic.
3 Level of a bachelor/master student who has followed more than 2 classes of logic.
4 Higher level than the ones above

From which perspective have you mainly studied logic?
○ Computational/mathematical perspective
○ Linguistic/philosophical perspective
○ Another perspective

Did you participate in our previous experiment in March 2022? This experiment was called “Evaluating English translations from
First-Order Logic formulae”. The participants were asked to judge the quality of English translations from First-Order Logic
formulae, and provide suggestions for better translations.

○ Yes
○ No
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2. Natural Language Inference
As we explained before, you will be performing 2 separate tasks in this experiment. The first one is called Natural Language
Inference task, which works as follows: In each question, you are shown two sentences, which are called the premise and the
hypothesis. You will be asked to think about whether the hypothesis follows from the premise or not.
For your information, the premises and hypotheses always make claims about a domain consisting of objects called A, B, C, D, E and
F. There are no other objects in this domain. Some premises and hypotheses might describe weird or impossible situations. This is
because the domain is part of an extraordinary world, where it can happen that something is smaller than itself, or next to itself;
where something can be smaller and larger than something else at the same time; where cubes can be even and odd; where objects are
not always of the same size as itself. The only thing you have to worry about, however, is whether the hypothesis is automatically
true if the premise is true, no matter how odd their interpretations.

Here are two example questions to give you an idea of what the task looks like:

Example 1. Does the hypothesis automatically follow from the premise?
Premise: It is not the case that B is to the left of some cube.
Hypothesis: There is no cube.

○ Yes
○ No
○ Other (pick this option if is unclear whether the hypothesis follows from the premise, and explain why)

In this example, the correct answer is No, because the premise only states that B is not to the left of some cube, but does not
state anything about the existence of cubes in general. So it does not follow from the premise that there is no cube.

Example 2. Does the hypothesis automatically follow from the premise?
Premise: For all x, x is a cube.
Hypothesis: B is a cube.

○ Yes
○ No
○ Other (pick this option if is unclear whether the hypothesis follows from the premise, and explain why)

The premise is a translation from a first-order logic formula. It quantifies over the entire domain, stating that for all objects x
in the domain, x is a cube. In other words: Everything is a cube. So the correct answer is Yes, because if everything in the domain
is a cube, then B, an object in the domain, is a cube.

In answering the following questions, choose the third answer option Other if it is debatable whether the hypothesis follows from
the premise (e.g., if the premise is open to multiple interpretations, or if you do not understand the premise or hypothesis).
Explain there shortly what is unclear. Please do not think too long about each question. If you have much trouble understanding the
premise or hypothesis, choose the Other option and move on.

(Now 42 NLI questions of the following form are shown:)
Does the hypothesis automatically follow from the premise? Pick the third answer option if it is unclear whether the hypothesis
follows from the premise (e.g., if the premise is open to multiple interpretations, or if you do not understand the premise or
hypothesis), and explain why.
Premise: <premise>
Hypothesis: <hypothesis>

○ Yes
○ No
○ Other

3. Fluency Ranking
The purpose of this second (and final) task, which is called Fluency Ranking task, is to evaluate the fluency of English
translations from first-order logic formulas. We will present to you, one by one, 20 formulas with 3 candidate translations, like
in the example below:

Formula: ¬ ∃ x ( Cube ( x ) ∧ LeftOf ( B , x ) )
Translation 1: There is no element x such that x is a cube and B is to the left of x.
Translation 2: It is not the case that there is an element x such that x is a cube and B is to the left of x.
Translation 3: For all cubes x, B is not to the left of x or x is not even.

Please rank the translations by the criterion of fluency, where rank 1 stands for the most fluent, and 3 for the least fluent
translation. By a fluent translation, we mean a translation that sounds as a natural English sentence. In ranking, ties are
allowed. So, for example, if you think Translation 1 is best and Translation 2 and 3 are equally bad, give Translation 1 the
highest rank (1), and Translation 2 and 3 the next highest rank (2), assigning nothing to the third rank.
In ranking the translations, please note that it is very important that you evaluate the fluency of the translations based only on
the form of the translations (not on their adequacy given the formula). It can happen that two candidate translations are exactly
the same. Please assign them the same rank always.

For your information, these are the interpretations of the predicates used in the formulas:
Dodec ( x ) x is a dodecahedron
Small ( x ) x is small
Student ( x ) x is a student
Medium ( x ) x is medium
Cube ( x ) x is a cube
Prime ( x ) x is a prime
Person ( x ) x is a person
Tet ( x ) x is a tetrahedron
Pet ( x ) x is a pet
Large ( x ) x is large
Even ( x ) x is even
Adjoins ( x , y ) x is adjacent to y
SameCol ( x , y ) x is in the same column as y
LeftOf ( x , y ) x is to the left of y
RightOf ( x , y ) x is to the right of y
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Smaller ( x , y ) x is smaller than y
FrontOf ( x , y ) x is in front of y
Larger ( x , y ) x is larger than y
SameRow ( x , y ) x is in the same row as y
SameShape ( x , y ) x is of the same shape as y
SameSize ( x , y ) x is of the same size as y
BackOf ( x , y ) x is in back of y

(Now 20 FR questions of the following form are shown:)
Given the following formula and candidate translations, rank the translations from most fluent (1) to least fluent (3). Base
your ranking only on the criterion of fluency (how natural the sentence sounds in English). Ties are allowed.
Formula: <formula>
Translation 1: <translation 1>
Translation 2: <translation 2>
Translation 3: <translation 3>

(Most fluent) 1 2 3 (Least fluent)
Translation 1 ○ ○ ○
Translation 2 ○ ○ ○
Translation 3 ○ ○ ○

4. Final question
Do you have any final comments on the survey?

Figure 9: The instructions and questions shown to the participants in the human evaluation.
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Abstract

To be trusted and perceived as natural and co-
herent, conversational systems must adapt to
the language of their users. While personal-
ized dialogue is a promising direction, control-
ling generation for fine-grained language fea-
tures remains a challenge in this approach. A
recent line of research showed the effective-
ness of leveraging pre-trained language mod-
els toward adapting to a text’s topic or sen-
timent. In this study, we build on these ap-
proaches and focus on a higher-level dimen-
sion of language variation: speakers’ age. We
frame the task as a dialogue response genera-
tion, and test methods based on bag-of-words
(BoW) and neural discriminators (Disc) to con-
dition the output of GPT-2 and DialoGPT with-
out altering the parameters of the language
models. We show that Disc models achieve a
higher degree of detectable control than BoW
models based on automatic evaluation. In con-
trast, humans can partially detect age differ-
ences in BoW but not Disc responses. Since
BoW responses are deemed better than Disc
ones by humans, simple controllable methods
thus appear to be a better tradeoff between
adaptation and language quality. Our work
confirms the challenges of adapting to higher-
level dimensions of language variation. More-
over, it highlights the need to evaluate natural
language generation thoroughly.

1 Introduction

Developing dialogue systems that can hold human-
like conversations has been a long-standing goal in
Artificial Intelligence (AI) research. This includes
the ability to mimic speakers’ speaking styles and
language traits, which is shown to be of crucial
importance for systems to be trusted and perceived
as natural and coherent (Shum et al., 2018; van der
Goot and Pilgrim, 2019).

Current approaches in conversational models
typically aim to improve dialogues by leveraging
persona-specific traits—a speaker’s age, gender,

geographic location, etc. This is achieved by train-
ing systems with either implicit (Kottur et al., 2017;
Li et al., 2016) or explicit (Qian et al., 2018; Zhang
et al., 2018; Zheng et al., 2019) representations of a
speaker. These approaches are generally shown to
produce multi-turn conversations that are deemed
of better quality by humans, but they pay little at-
tention to understanding what factors determine
human judgements. Recently, See et al. (2019)
showed that linguistic aspects such as specificity,
relatedness, and repetition play an important role,
and that explicitly controlling for them during gen-
eration increases human engagement in a conver-
sation. However, fine-tuning these large models to
control the generation turns out to be a challeng-
ing task, which is further limited by the scarcity of
annotated conversational datasets.

A recent growing interest in controllable text
generation has been fostered by approaches lever-
aging large pre-trained language models (PLMs;
see Sec. 2.2). In particular, one direction is to oper-
ate at the decoding stage while leaving the underly-
ing PLM unaltered (Dathathri et al., 2020; Li et al.,
2022), which was shown to be successful in gener-
ating texts that adapt to a specific topic, length or
sentiment. Though these approaches are not typi-
cally aimed at modelling conversations, they have
been shown to be also suitable to generate con-
trolled responses to dialogue utterances (Madotto
et al., 2020).

Building on this line of research, in this study we
explore adaptation by large PLMs to a specific, yet
unexplored dimension: language variation due to
speakers’ age. The relationship between a person’s
age and their use of language is a thoroughly stud-
ied subject in linguistics and psychology, and vari-
ous differences between younger and older speak-
ers have been reported at the level of both content
and style (see Pennebaker and Stone, 2003). While
a few studies showed that speakers’ age can be pre-
dicted both in discourse and dialogue (see Sec. 2.1),

172



no work to date has explored whether, and to what
extent, age-related detectable features can be lever-
aged by controllable text generation models.

In this study, we explore this issue for the first
time. Though previous work showed that some
degree of adaptation can be achieved to a text’s
sentiment or topic, we argue that age-related traits
are different since they involve subtle, fine-grained
features lying at a more abstract level compared to
other language dimensions. Therefore, we hypothe-
size that this task is more challenging and possibly
requires complex adaptation strategies.

Following the approach by Madotto et al. (2020),
we experiment with dialogue data and frame the
controlled generation problem as the task of gener-
ating a response to a dialogue utterance. We opt for
this setup since it allows us to genuinely investigate
language adaptation while leaving aside the extra
challenges of modelling full, multi-turn dialogues.
Though generally short, single dialogue utterances
are shown to contain a fair amount of age-related
language signal (Jansen et al., 2021).

We employ the Plug-and-Play Language Model
(PPLM) method by Dathathri et al. (2020) and
condition the generation of two large PLMs,
GPT-2 (Radford et al., 2019) and DialoGPT (Zhang
et al., 2020a), by means of various age-specific at-
tribute models. With this approach, generation is
steered leaving the underlying PLM unaltered. We
test two attribute models based on bag-of-words
(BoW) methods or more complex neural discrim-
inators, and perform extensive evaluation of the
generated outputs.

Through automatic evaluation, we show that
(1) some degree of detectable age adaptation is
achieved by all tested models, with (2) discrimina-
tor methods outperforming simpler BoW strategies.
At the same time, (3) BoW models turn out to
produce more fluent and less repetitive responses
compared to the more complex models. These re-
sults are partially disconfirmed when moving to
human evaluation. Indeed, (1) humans can detect
age-related differences in the generated language
only to a very limited extent, and (2) this is re-
stricted to responses by BoW but not discriminator
models. As for the quality of the generated lan-
guage, (3) outputs by BoW are deemed more fluent
and human-like compared to discriminator ones,
though this does not systematically correspond to
a perceived better output. Based on these results,
BoW-based controllable strategies appear to be a

better tradeoff between adaptation and language
quality compared to more complex methods.

Overall, our results confirm the challenges
of adapting to higher-level dimensions of
language variation, such as those due to speak-
ers’ age. Moreover, we highlight the need of
complementing automatic analyses with fine-
grained human evaluation. Data and code to
reproduce our experiments can be found here:
https://github.com/lennertjansen/
pplm-age-adapt-dialogue.

2 Related Work

2.1 Language and Age

A wealth of studies in linguistics and psychology
showed that age plays a role in affecting both the
content and style of the speaker’s language (for
further references and discussion, see Pennebaker
and Stone, 2003). These findings motivated NLP
research aimed at predicting the age of a speaker
based on their language. By training a feature-
based classifier on a corpus of age-annotated blog
posts, Schler et al. (2006) found that speakers’ age
is best predicted by a combination of content and
style features. A similar pattern of results was
reported by Nguyen et al. (2011), who extended
the investigation to phone conversations and online
posts, and by Nguyen et al. (2013), who focused
on tweets. Rao et al. (2010) further showed the ad-
vantage of including sociolinguistic features when
dealing with tweets, with Rosenthal and McKe-
own (2011) showing that including features of a
speaker’s online behavior is beneficial when exper-
imenting with blog posts. Recently, Jansen et al.
(2021) went beyond feature-based approaches and
showed that BERT (Devlin et al., 2019) outper-
forms other methods when fine-tuned on a dataset
of dialogue utterances. Again, both stylistic and
lexical cues were reported to be relevant for distin-
guishing between age groups.

Overall, these studies revealed that the language
by younger and older speakers can be detected,
among other aspects, by the use of slang and
neologisms, pronouns, affect words, capitaliza-
tions, alphabetical lengthening, acronyms and verb
tenses. Surprisingly, little attention has been paid
to model age-related differences in language gener-
ation. One exception is represented by research on
personalized conversational models, where age is
typically considered as one of the speaker-specific
traits (Li et al., 2016; Zheng et al., 2019). In these
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approaches, however, age adaptation is neither ex-
plicitly enforced nor directly measured. We tackle
this problem by leveraging recent methods from
controllable text generation.

2.2 Controllable Text Generation

Broadly speaking, controllable text generation
(CTG) refers to the problem of generating texts
that meet certain controllable constraints, which
are usually task-specific (for an overview, see Prab-
humoye et al., 2020; Zhang et al., 2022). In the
context of storytelling, for example, endowing a
story with a plot and an ending is a CTG problem,
as is the control of topic, sentiment or style in a
discourse or dialogue response. The latter line of
research, aimed at enforcing attribute-based gen-
eration, is particularly relevant to our work. Fo-
cusing on discourse data such as reviews or news,
various studies demonstrated the effectiveness of
RNN language models (Ficler and Goldberg, 2017),
VAEs (Hu et al., 2017; Wang et al., 2019; Xu et al.,
2020), and GANs (Wang and Wan, 2018) in control-
ling for attributes such as sentiment, theme, style or,
more rarely, age (Lample et al., 2019). As for dia-
logue, early approaches showed the effectiveness of
SEQ2SEQ models in capturing speaking style and
background information of specific speakers (Li
et al., 2016). However, all these approaches heavily
rely on large-scale datasets, which is a challenge
for supervised and cross-domain text generation
tasks (Zhang et al., 2022).

To alleviate this limitation, approaches that lever-
age large pre-trained language models (PLMs) such
as GPT (Radford et al., 2019), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020) or DialoGPT (Zhang
et al., 2020a) were recently proposed. Some of
them model CTG by fine-tuning the PLM parame-
ters (Lin et al., 2021); others by changing the PLM
architecture or training a large conditional model
from scratch (Keskar et al., 2019; Zhang et al.,
2020b; Wang et al., 2021; He, 2021; Zeng and Nie,
2021). While these methods have generally proven
effective in controlling for the desired attribute in
a dialogue, discourse, and even image captioning
setting, they are often computationally expensive to
train and involve fine-tuning or modifying the PLM
for each desired attribute. To avoid these issues,
a few approaches have proposed to operate at the
decoding stage by steering the PLM outputs while
leaving its parameters unaltered (Dathathri et al.,
2020; Khalifa et al., 2020; Krause et al., 2021; Liu

et al., 2021; Yang and Klein, 2021; Li et al., 2022).
One of the most successful and popular meth-

ods is the Plug-and-Play Language Model (PPLM;
Dathathri et al., 2020). Using a previously trained
attribute-based classifier (with 100,000 times fewer
parameters than the PLM) to guide text generation
by the PLM, this approach was shown to achieve
a good degree of CTG for topic and sentiment in
a discourse setting while being very inexpensive
to train. Motivated by this, Madotto et al. (2020)
extended the approach to model dialogue response
generation and demonstrated its portability to the
conversational domain, where a high degree of con-
trol for sentiment and topic was achieved while en-
suring fluency. In this work, we build on Madotto
et al. (2020) and make a step forward by controlling
a more abstract, higher-level dimension compared
to sentiment or topic: language variation due to
speakers’ age.

3 Problem Formulation

In general terms, the problem we tackle is the fol-
lowing: given a dialogue utterance (prompt), we
generate a dialogue response (output).

3.1 Non-Adaptive Setting
In the non-adaptive setting, we tackle the task as
a plain text generation problem. Given a prompt,
a Transformer-based pre-trained language model
p(x) generates an output x by sampling from the
distribution of words that are assigned the highest
likelihood of following the prompt. This can be
seen as sampling from a conditional distribution,
p(x|prompt).

3.2 Age-Adaptive Setting
In the age-adaptive setting, the task is an instance
of controllable text generation (CTG). Given a
prompt, we seek to generate an output that is con-
trolled for age, i.e., that resembles a response by a
younger/older speaker. This can be seen as a sub-
problem of vanilla text generation: the conditioning
factor for the generated text is further constrained
to also include some predefined attribute, a (in
our case, age). CTG is then analogous to sampling
from the conditional distribution, p(x|prompt, a).

PPLM To control generation, we use the PPLM
method (Dathathri et al., 2020). PPLM builds on a
text classifier or attribute model, p(a|x), that repre-
sents the degree of adherence of text x to a certain
attribute a, e.g., age. Since the attribute model,
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p(a|x), is used to control the generation by a pre-
trained Transformer-based language model, p(x),
PPLM can be seen as modeling the conditional dis-
tribution of generated text x given a, i.e., p(x|a).

In simple terms, the attribute model perturbs the
activation space of the underlying language model
by making it more likely to generate text that aligns
with the predefined attribute. This is achieved by
leaving the parameters of the underlying language
model unaltered. More formally, PPLM perturbs
the generated output one token at a time in the
direction of the sum of two gradients: (1) by maxi-
mizing the loglikelihood of a under the conditional
attribute model p(a|x) (to enforce control); (2) by
ensuring high loglikelihood of the generated text
under the unaltered language model p(x) (to en-
force fluency). The gradient updates only affect the
activation space, i.e., the original model parame-
ters are preserved. Sampling is done by following
gradients in the latent representation space by ap-
proximately implementing the Metropolis-adjusted
Langevin sampler (Roberts and Tweedie, 1996) de-
ployed in Nguyen et al. (2017).1

4 Method

In our experimental pipeline, we condition the gen-
eration of two large pre-trained language models
by means of two age-specific attribute models. In
particular, we generate responses to a number of
dialogue utterances used to prompt text generation.
We then evaluate the extent to which the generated
responses contain age-related features that can be
detected by automatic metrics.

4.1 Data

To train/initialize our attribute models, we use the
data introduced by Jansen et al. (2021). This data
comes from the spoken partition of the British Na-
tional Corpus (BNC; Love et al., 2017) and in-
cludes dialogue utterances by users from either of
two age groups: a younger group (age: 19-29) and
an older group (age: 50 or more). In total, the
data consists of 172,303 utterances, i.e., 138,662
younger utterances and 33,641 older ones. In addi-
tion to the full dataset, Jansen et al. (2021) also use
a partition of it which is balanced per age group and
includes 67,282 total utterances. This is the split of
the data they employ to train their younger/older
classifiers (Sec. 4.5). As described in Sec. 4.3, we
use both the full and balanced version of the data.

1See Dathathri et al. (2020) for further details.

younger-specific words older-specific words

um, sh*t, cool, f*cking,
friends, literally, weekend,
amazing, friend, ha, huh,
hate, fun, blah, uni,
massive, Friday, parents,
mate, hell, annoying, wait,
ridiculous, crazy, horrible

may, mother, perhaps, huge,
business, although, certainly,
email, along, often, possibly,
wonderful, dear, supposed,
otherwise, asked, gosh, bits,
almost, particularly, decided,
finished, across, near, flat

Table 1: Some of the younger- (age 19-29) and older-
specific (age 50+) words used by the BoW method.

4.2 Pre-Trained Language Models
We experiment with two large pre-trained lan-
guage models: GPT-2 (Radford et al., 2019)
and DialoGPT (Zhang et al., 2020a). We gener-
ate responses using these two models both in a
non-adaptive (Sec. 3.1) and age-adaptive setting
(Sec. 3.2). In the age-adaptive setting, the models
are conditioned by an attribute model. Similarly
to Dathathri et al. (2020), we experiment with two
attribute models.

4.3 Age-Controlled Language Models
Below, we describe the attribute models used in our
study. For both models, we experiment with the
same hyperparameters, reported in Appendix A.

BoW-based attribute model This method relies
on lists of words that are representative of each
age group’s language. We automatically extract
them from the full version of the dataset via a
frequency-based approach. In particular, for each
age group, we (i) order all unique words by fre-
quency; (ii) keep the most frequent words—the
ones that make up for at least 85% of the cumu-
lative occurrences; (iii) remove words that are in
both age groups; (iv) keep, for each group, only
the words that account for at least 85% of the re-
spective cumulative occurrences.2 Our final lists
include 56 younger- and 92 older-specific words.
A few examples can be found in Table 1. The BoW-
based attribute model gives the log of the sum of
likelihoods of each word in the list. Given a bag-
of-word {w1, ..., wk} that represents a given age
group a, and the output distribution of the language
model pt+1, the attribute model’s log-likelihood is:

log p(a|x) = log

(
k∑

i

pt+1[wi]

)
(1)

2The 85-th percentile cutoff points are used to yield
wordlists of similar lengths as those by Dathathri et al. (2020).
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Ascending∇ log p(a|x) increases the likelihood of
generating words that are either in the BoW or not
in the BoW, but semantically related.

Neural discriminator attribute model We ran-
domly split the balanced version of the dataset into
a training (90%) and test (10%) set and train a
neural classifier to distinguish between dialogue
utterances from the two age groups. The classifier
receives the representation of the sentence from the
last layer of a frozen pre-trained language model
and performs the binary task via a single linear
layer. The size of both the input and linear layer is
equal to the size of the LM’s output layer. The dis-
criminator is trained using Adam (Kingma and Ba,
2015) with a learning rate of 1 · 10−4 and default
values for all other parameters from PyTorch’s im-
plementation of Adam, with a maximum sequence
length of 512 tokens, for 20 epochs, and a batch
size of 64. The discriminator parameters that are
used in the age-adaptive setting come from the
epoch with the highest test accuracy (67.4% accu-
racy for GPT-2, 67.6% for DialoGPT).

4.4 Prompts

In both the non-adaptive and age-adaptive set-
tings, we prompt the models with handcrafted di-
alogue utterances. This allows us to devise dia-
logue utterances that are neither younger- nor older-
sounding,3 so as to genuinely explore age adapta-
tion of the tested methods while minimizing bias ef-
fects. We experiment with the following 5 prompts:
(i) Good weather we’re having; (ii) Can we talk?;
(iii) Hi, how’s it going?; (iv) Hey; (v) Hello, tell me
about your latest holiday.4 For each prompt, we let
models generate 6 outputs of a given token length.
Since we experiment with 9 output lengths (6, 12,
24, 30, 36, 42, 48, 54, and 60 tokens), each model
is evaluated over a total of 270 dialogue responses,
i.e., 5 prompts × 9 lenghts × 6 outputs. 5

4.5 Evaluation

We evaluate model outputs along two dimensions:
age adaptation and quality of generated language.

3We verify this by feeding the prompts to the best-
performing BERT-based younger/older classifier by Jansen
et al. (2021). We consider them neutral if the classifier assigns
a probability of 0.6 or lower to both age groups.

4For comparison, we have also experimented with prompts
that are classified as either younger- or older-sounding. Re-
sults are in Appendix C.

5An exhaustive exploration of the effect of various prompts
and output lengths is beyond the scope of this study. We leave
it for future work.

Age adaptation To quantify age adaptation, we
leverage the best-predictive younger/older classi-
fier by Jansen et al. (2021). This model adds a
dropout layer and a linear layer on top of BERT
embeddings (Devlin et al., 2019), which are fine-
tuned on the age classification task. In particular,
we use the weights of the best-performing run of
their model (achieving 73% accuracy) and report
accuracy in predicting the expected age, i.e., the
one which the model has been adapted to. Note
that we do not use this classifier as an attribute
model to condition generation for 2 main reasons:
(1) BERT and *GPT models differ on several levels,
which would make the implementation technically
challenging; (3) using BERT as an attribute model
would go against the overall goal of PPLM, which
is to use tiny models to condition large models.

Language quality Following standard practice
in NLG, we take perplexity of an external LM as
a proxy for fluency of the generated language: the
lower the perplexity, the higher the fluency of the
generated output. Perplexity (ppl) is expressed as:

ppl(x) = exp

{
−1

t

t∑

i

ln pθ(xi|x<i)
}

(2)

where x represents a sequence of tokens, t is se-
quence length, xi is the i-th token, and θ denotes
the LM’s parameters. Following Dathathri et al.
(2020), we obtain perplexity scores by GPT-1 (Rad-
ford et al., 2018).

Furthermore, we evaluate the degree of text di-
versity by considering the normalized number of
distinct unigrams (Dist-1), bigrams (Dist-2), and tri-
grams (Dist-3) in the generated output. The higher
the score, the less repetitive the language is.

5 Results

Age adaptation Tables 2a and 2b report the re-
sults by the younger-adapted and older-adapted
models, respectively. As can be seen, discriminator-
based models (Disc) achieve a higher degree of age
control as detected by automatic means compared
to bag-of-words (BoW). This is particularly the
case for the older setting, where both GPT2-based
and DialoGPT-based Disc models outperform their
BoW counterparts by more than 30 accuracy points,
with BoW models being far below chance level.
As for the younger setting, BoW models perform
comparably better by slightly underperforming (Di-
aloGPT) or outperforming (GPT2) their Disc coun-
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Model ppl Dist-1 Dist-2 Dist-3 Acc.
↓ better ↑ better ↑ better ↑ better ↑ better

GPT-2 (G) 27.50 (6.58) 0.87 (0.09) 0.94 (0.04) 0.90 (0.06) -
G-BoW 27.91 (7.18) 0.87 (0.10) 0.93 (0.05) 0.90 (0.06) 70.4%
G-Discrim 32.09 (18.98) 0.77 (0.20) 0.86 (0.13) 0.84 (0.15) 67.8%

DialoGPT (D) 37.52 (12.06) 0.86 (0.13) 0.90 (0.08) 0.85 (0.10) -
D-BoW 38.53 (12.64) 0.87 (0.12) 0.90 (0.08) 0.86 (0.10) 83.0%
D-Discrim 42.01 (16.94) 0.90 (0.12) 0.86 (0.14) 0.77 (0.22) 85.9%

(a) Younger-adapted models

Model ppl Dist-1 Dist-2 Dist-3 Acc.
↓ better ↑ better ↑ better ↑ better ↑ better

GPT-2 (G) 27.50 (6.58) 0.87 (0.09) 0.94 (0.04) 0.90 (0.06) -
G-BoW 27.58 (7.07) 0.86 (0.10) 0.93 (0.04) 0.90 (0.06) 43.0%
G-Discrim 47.15 (47.56) 0.73 (0.24) 0.75 (0.28) 0.75 (0.27) 74.3%

DialoGPT (D) 37.52 (12.06) 0.86 (0.13) 0.90 (0.08) 0.85 (0.10) -
D-BoW 37.85 (11.17) 0.87 (0.12) 0.90 (0.08) 0.86 (0.09) 21.5%
D-Discrim 41.17 (20.72) 0.87 (0.12) 0.89 (0.13) 0.83 (0.16) 56.7%

(b) Older-adapted models

Table 2: Results of age-controlled dialogue generation. Format: average metric (standard error). ppl is perplexity
wrt GPT-1. Dist-n (for n = 1, 2, 3) is the number of distinct n-grams normalized by text length. Acc. stands for
accuracy of the younger/older classifier. Values in bold are the best in the column; the second-best are underlined.

terparts. Overall, these results show that Disc mod-
els are more effective than simple BoW ones to
control for age-related language features, with this
advantage being particularly evident in the older
setting.

Striking differences in performance can be ob-
served between GPT2- and DialoGPT-based mod-
els. While the latter clearly outperform the former
in the younger setting (+13-18 acc. points), an op-
posite pattern is observed in the older setting, with
GPT2-based models gaining 18-22 points over their
DialoGPT-based counterparts. This divergent pat-
tern is interesting, and could be due to a younger-
language bias of DialoGPT (fine-tuned on Reddit
threads, where the majority of users are in the age
range 20-29), which would limit adaptation toward
the older group.6 On average, BoW models are
more effective in GPT-2 than DialoGPT (56.7 vs
52.3), while Disc results are on par (71.1 vs 71.3).

Taken together, these results show that the PPLM
approach is effective in controlling for age-related
language features that can be detected by a trained

6This is supported by the mean probabilities assigned by
the BERT-based classifier to the younger class on DialoGPT
and GPT-2 outputs: 0.76 for DialoGPT, 0.62 for GPT-2.

classifier, and that adaptation is stronger when us-
ing a neural discriminator attribute model.

Language quality Moving to measures of lan-
guage quality, we observe that the base GPT-2 is
either the best or the second-best with respect to
both perplexity and number of distinct n-grams.
As for age-adapted models, BoW ones are gen-
erally shown to outperform Disc models. GPT2-
based BoW models, in particular, appear to be
the best overall age-adapted models: they com-
pare to GPT-2 in terms of both fluency and diver-
sity, which confirms that conditioning generation
through wordlists does not negatively impact on
the quality of the generated language. In contrast,
Disc models perform comparably worse on these
metrics, which suggests a much bigger impact.

Since automatic metrics are known to have their
own limitations (see, e.g., the case of perplexity in
capturing language fluency; Mir et al., 2019), in
the next section we complement the results by the
automatic metrics via extensive human analysis.
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6 Analysis

We run 3 crowdsourcing studies with human par-
ticipants aimed at (1) exploring whether age dif-
ferences detected by a classifier correspond to hu-
man intuitions on age-related language features;
(2) assessing the quality of each model’s gener-
ated language; (3) testing which age-adapted model
produces the best outputs. Based on their over-
all better age control and language quality, we
choose to focus on GPT2-based models: GPT2
(hence, base), BoW-younger, BoW-older, Disc-
younger, and Disc-older. Data collection is per-
formed on Appen (appen.com). Participants are
paid 0.08$ per judgement (which corresponds to
around 10$/hour considering a conservative rate of
2 judgements/minute). In total, the full data collec-
tion costed around 2.5K$. The instructions given
to the participants in the three studies we describe
below are available in Appendix D. Participants
were restricted to be from English-speaking coun-
tries and we used test-questions for quality control:
only participants who correctly answered at least
70% of test-questions were considered trustworthy.

6.1 Are Age-Related Differences Detectable?

We aim at testing whether the age-adapted outputs
by a model (e.g., BoW-younger) are perceived as
sounding more like their target age group (younger)
than those by both its counterpart (BoW-older)
and the base model. Therefore, we set up three
comparisons of outputs by BoW and Disc models,
respectively: younger vs older, younger vs base,
and older vs base. In particular, we experiment
with 300 outputs per model,which sums up to 900
unique outputs within BoW and 900 within Disc
models. Outputs from various models are paired
based on the same prompt and if they have similar
length.7 We ask 5 participants to judge which of
the two outputs in a given comparison pair sounds
younger/older than the other. In total, we collect 9K
judgements by 467 different participants. Table 3
shows some examples.

Results We consider the assessment for a pair as
correct if at least 3 out of 5 participants converge on
the target age group; otherwise, we deem it wrong.
In Figure 1, we report the results of this analysis.
As can be seen, human ‘accuracy’ lags well behind
the accuracy by the classifier in 3 models out of
4. This is not the case only for BoW-older, where

7See Appendix E for more details on data preprocessing.

Figure 1: Accuracy by humans and the classifier in de-
tecting age-adapted outputs. The dotted red line indi-
cates chance level; ** stands for statistical significance
at p < 0.01. Best viewed in color.

the classifier’s accuracy is below chance level. One
striking observation is that, overall, the degree of
age control detected by humans is very limited, and
indeed never significantly outperforming chance
level (50%) for p < 0.05.8 This suggests that what
makes an output sound as younger or older for a
text classifier is not something that is clearly de-
tectable by humans. This could be due to the differ-
ent type of language features that human speakers
and the models leverage when making this assess-
ment. For example, a classifier could exploit regu-
larities on topics or domains that are present in the
training data, while human participants solely rely
on information from their language competence.9

At the same time, some age-related features ap-
pear to be present in the outputs by BoW-younger,
where human accuracy in detecting younger from
base outputs reaches 55% – though this comparison
is not significantly different from chance according
to conventional statistical criteria.10 Moreover, we
find that the difference between BoW-younger (M
= 0.55, SD = 0.5) and Disc-younger (M = 0.43,
SD = 0.5) is statistically significant via an unpaired
t-test, t(587) = 2.9, p = .003. In contrast, no adapta-
tion at all is detected by humans in the outputs by
Disc models.

These results indicate that the adaptation to age
brought by a PPLM approach can be detected by hu-
man speakers only to a limited extent. At the same
time, BoW models are generally better than Disc
ones, and this difference is statistically significant

8We test this by means of a one-sample t-test.
9What are the cues that guide this assessment is in itself

an interesting question, which deserves further investigation.
10One-sample t-test between BoW-younger (M = 0.55, SD

= 0.5) and chance (M = 0.5), t(288) = 1.6, one-tailed p = .056
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model age group output

BoW younger We have the best weather in the world. I
BoW older The weather is good and I think you’re all going to love it. I’m happy to announce that I have a new home
Disc younger This is great. It gives us more fun than ever before, and we can enjoy a great coffee. Happy birthday guys. . . .
Disc older The sun was setting when we were getting up with a huge rain and we got stuck in on one one of the three

Table 3: One example generated for the prompt ‘Good weather we’re having.’ by each age-adapted model for
which at least 4 / 5 participants agreed the response sounds like language from the target age group, both against
the other age model and the base model. Some outputs are truncated due to the fixed-length criterion used.

Figure 2: Human judgements on a scale from 1 to 5 on
fluency and human-likeness of outputs by the base and
the age-adapted models. Best viewed in color.

for the younger age group. Here, people appear to
be better than chance in detecting age-related differ-
ences, though this is only a trend without statistical
significance (possibly due to sample size).

6.2 Is the Generated Language Good?

We test whether, and to what extent, the language
generated by the 4 age-adapted models and the base
model, that we use as a control, is deemed good by
humans. We consider all the outputs generated by
the 5 models, i.e., 1.5K outputs in total. We then
ask 5 participants to judge, on a 5-point scale, the
degree of fluency and human-likeness of the output.
We define fluent language as having few repetitions
and a good flow; human-like as being likely to be
produced by a human speaker. We collect a total
of 15K judgements, i.e., 7.5K per property, by 278
unique participants.

Results We compute the average score obtained
by an output for a property, and then average over
all the samples. Results are reported in Figure 2.
As can be seen, while BoW models are on par with
the base model with respect to both properties, Disc
models are assigned much lower values. That is,
the outputs by Disc models are deemed much less
fluent and less human-like than those by BoW mod-

Figure 3: Percentage of human participants who judged
an output by a model to be better than an output by
another model. Best viewed in color.

els and the base model. One interesting observation
is that judgements of human-likeness are system-
atically higher than fluency, and this holds for all
models. This reveals that the two properties capture
different and possibly complementary aspects (a
text can be human-like though not perfectly fluent),
which highlights the need of using multiple metrics
to assess the quality of NLG systems.

Taken together, these results suggest that the per-
turbations operated by Disc models on the decoding
of the LM are heavier than those by BoW models,
and that Disc models achieve a level of control that
is more detectable by automatic classifiers at the
cost of being less fluent and less human-like. It is
worth noting that this pattern closely mirrors the
perplexity and Dist-n scores reported in Tables 2,
where Disc models are shown to be systematically
behind GPT2 and BoW-based models.

6.3 Which Models Produce Better Outputs?

We focus on the two younger-adapted and older-
adapted models and test which of the two produces
an overall better output according to humans. We
pair each output by a model with an output by the
other model for the same target age group: i.e.,
BoW-younger vs Disc-younger and BoW-older vs
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Disc-older. We end up with 300 pairs per age group,
i.e., 600 pairs in total. We then ask 5 participants to
judge which of the two outputs in the pair is overall
better. In total, we collect 3K judgements by 230
distinct participants.

Results For each pair, we take the output with
the majority of votes (3 or more). We then compute
the proportion of cases in the data where the output
by BoW/Disc was chosen. Results are reported
in Figure 3. For the younger group, BoW-based
outputs (M = 0.56, SD = 0.5) are deemed better
than those by Disc (M = 0.44, SD = 0.5), and this
difference is statistically significant as per a paired
t-test, t(293) = 2.2, p = .026. Surprisingly given
the results of the previous analysis (where BoW
neatly outperforms Disc in terms of fluency and
human-likeness), an opposite pattern is observed
for the older group, though the difference between
BoW and Disc is not significant (p = .222). We
hypothesize that this dissociation could be due to
the different types of evaluation (rating vs. binary
choice), which deserves further investigation.

7 Conclusion

We focused on age-related language variation and
tested whether current approaches to controllable
text generation can capture it in a dialogue response.
We showed that models achieve substantial adapta-
tion based on automatic metrics, while age-related
differences can be detected only to a limited extent
by humans. At the same time, simple controllable
methods based on BoW appear to be a good trade-
off between control and quality. From a broader
perspective, our case-study on age adaptation re-
veals that controlling for subtle, fine-grained lan-
guage features remains an open challenge. More-
over, we show that human evaluation is crucial
to assess the degree of achieved control since it
provides different insights compared to automatic
metrics (Li et al., 2018; Sudhakar et al., 2019).

Limitations

On the need for age adaptation This work
starts from the assumption that users of language
technologies, such as dialogue systems or chat-
bots, would appreciate an age-adaptive system, i.e.,
would perceive age-adaptation as positive. This
is motivated by evidence from psychology and so-
ciolinguistics showing that age-driven linguistic
variation is typically in play. Nevertheless, this as-

sumption remains to be validated by means of user
studies.

On the impact of prompts While we exper-
iment with both age-neutral and age-adapted
prompts, texts are generated based on a limited
number of prompts. Further attention should be
paid to investigating the impact of prompts (and
prompt features) on the resulting outputs.

On the experimental setting While we formu-
late the problem as dialogue response generation,
dialogue features are not exploited. A simple step
in this direction could be to experiment with other
ways of prompting the model, e.g., by providing a
signal of which dialogue participant is speaking (A,
B) and whether there is a turn transition between
prompt and generated response.

On the use of other CTG methods We experi-
ment with only one CTG method, namely PPLM.
In future work, we plan to address this limitation
by extending our investigation to other approaches.

Ethics Statement

Broader impact As for most technologies, ours
can have a positive impact on society, e.g., by pro-
moting the development of more inclusive systems
that speak the language of their users, indepen-
dently of their age; or, by informing work on de-
biasing language models, that appear to be biased
toward the language of younger groups of users.
On the other hand, we acknowledge and are aware
of possible harmful or undesirable uses of this tech-
nology, e.g., toward amplifying biases or explic-
itly/implicitly discriminating people based on their
age (Rosales and Fernández-Ardèvol, 2020; Styp-
ińska, 2021; Noble, 2018). We advocate for a re-
sponsible, rigorous use of the methodology and
materials described in this study.

Privacy and discrimination Age is personal
data or privately identifying information according
to the EU or US defintion, respectively. As such,
it is a protected class in US and various other anti-
discrimination regulations. In the present sttudy,
we experiment with anonymous textual data aggre-
gated at the level of two macro age classes: younger
vs older speakers. For a given utterance, we only
consider the age range of the speaker who uttered
it, 19-29 vs 50+. No info regarding speaker identity
(ID, previous dialogues, etc.) or their demographics
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(gender, location, social status, etc.) is ever consid-
ered. We argue this is a valuable way to limit as
much as possible any privacy and discrimination
risks. We thank the anonymous ethics reviewer for
providing valuable input on this and for pointing to
the studies cited in the paragraph above.

Human evaluation We ensure human partici-
pants taking part in our human evaluation are paid
properly according to the standards of our institu-
tion’s country/countries. To avoid any harm, we
carefully remove any offensive or inappropriate lan-
guage from the samples. Participants were given
the opportunity to report any problem when partici-
pating in the evaluation. No issues were reported.

Pretrained language models There are serious
risks associated with the development and use of
large PLMs (Bender et al., 2021), which we lever-
age in this research. Such risks include the envi-
ronmental impact of the computational resources
required for training and the encoding and possi-
ble amplification of biases present in the massive
amounts of un-curated data the models learn from.
The PPLM approach we explore in the present work
provides an alternative to re-training or finetuning
the model and in this sense it does not incur further
environmental cost. Nevertheless, the approach
does rely on a large PLM, with all the lack of trans-
parency regarding the pre-training data that this
involves. Our attribute models are trained on the
BNC, a carefully curated and documented dataset.
Yet, we acknowledge that the lack of control over
the PLM pre-training data is likely to occasionally
lead to undesirable outputs.
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Appendices

A PPLM Hyperparameters

Table 4 reports the hyperparameters used for both
the BoW and Disc models. Please refer to Dathathri
et al. (2020) for further details on the hyperparam-
eters. For comparison, the set of hyperparameters
used in the paper by Dathathri et al. (2020) is given
in their Table S18.

B Examples of Generated Outputs

In Table 5, we report a few more outputs generated
by GPT2-based models.

C Results with Younger / Older Prompts

For comparison, we also experiment with prompts
that are automatically classified as either younger-
or older-sounding. Younger-sounding prompts:
What are your plans this week?; What do you
wanna eat?; Do you have any hobbies?; Can I add
you on Facebook?; When did you go? Awesome!
I actually haven’t been there. Older-sounding
prompts: Tell me about your family.; Good after-
noon.; I had a splendid weekend.; Hello, how are
you?; Hello, tell me about yourself. the results
of the models using these prompts are reported in
Tables 6 and 7.

D Instructions to Participants

The instructions given to the participants in the
human evaluation studies can be found in Figures 4,
5 and 6.

E Preprocessing for Human Evaluation

The generated samples were checked for
the presence of inappropriate language us-
ing a list of over 1300 English words that
can potentially be offensive, available at
https://www.cs.cmu.edu/~biglou/
resources/bad-words.txt. The samples
that contained terms in this list were manually
scanned and those that were deemed actual
instances of offensive language use were discarded.
Altogether, 39 offensive samples were removed
(BoW-younder: 3; BoW-older: 1; Disc-younger:
35). To counter the fact that some adapted models
had fewer samples, some of the samples were
reused with different pairings to arrive at 300
samples per model.

Outputs from different models being compared
in the human evaluation always involve the same

184

https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt


method type attribute hyperparameters
BoW / Disc younger / older m = 3, λkl = 0.01, α = 0.02, γ = 1.5, γgm = 0.9, r = 10, τ = 1.0

Table 4: Hyperparameters used in our experiments. Please refer to Dathathri et al. (2020) for further details. An
important hyperparameter is m, i.e., the number of perturbation steps/iterations.

model age prompt output
BoW Y Can we talk? Yes, I can. And I hope you will join me in this discussion.
BoW O Can we talk? What about the world? What is reality? Can we make it? Are we really all
BoW Y Hey. My name is Alex. I am a programmer by trade. I’ve spent the past 3 years working,. . .
BoW O Hey. I’m just getting my new laptop and I noticed that my wallpaper was getting a weird,. . .
Disc Y Hey. I I I love my parents
Disc O Hi, how is it going? The summer of 2015 has begun and it seems that I’m finally going home to Spain,. . .
Disc Y Hello, tell me about your latest holiday. Do you wish you were you will be happy with it?You can use this technique,. . .
Disc O Hey. ITheItIfThatYouWeAndItThatItIfItYouItItThereItItInThisItIfYouItYouThereIfThatYouItItIt,. . .

Table 5: A few more examples of outputs generated by GPT2-based models. Y stands for younger, O for older.

Model ppl. Dist-1 Dist-2 Dist-3 P̄Y Acc.
↓ better ↑ better ↑ better ↑ better ↑ better ↑ better

GPT2 (G) 28.05 (±6.12) 0.85 (±0.13) 0.91 (±0.08) 0.88 (±0.08) 0.80 (±0.33) -

G-BoW 28.81 (±7.09) 0.86 (±0.12) 0.92 (±0.08) 0.89 (±0.08) 0.82 (±0.32) 83.3%

G-Disc 39.32 (±37.49) 0.84 (±0.21) 0.61 (±0.40) 0.57 (±0.40) 0.70 (±0.40) 70.7%

DialoGPT (D) 36.69 (±9.11) 0.87 (±0.10) 0.91 (±0.06) 0.87 (±0.08) 0.90 (±0.24) -

D-BoW 37.35 (±8.60) 0.88 (±0.10) 0.91 (±0.06) 0.87 (±0.08) 0.90 (±0.26) 90.0%

D-Disc 39.22 (±14.96) 0.89 (±0.12) 0.86 (±0.19) 0.79 (±0.23) 0.89 (±0.25) 91.1%

Table 6: Results of age-controlled dialogue generation: younger-targeted models, conditioned on younger
prompts. Format: average metric (standard error). ppl. is perplexity w.r.t. GPT-1. Dist-n (for n = 1, 2, 3)
is the number of distinct n-grams normalized by text length, as a measure of diversity. P̄Y is the sample’s average
probability to contain features learned to be younger by BERT-based classifier. Acc. is BERT-based classifier’s
accuracy when classifying the row’s samples. Values in bold are the best in the column.

Model ppl. Dist-1 Dist-2 Dist-3 P̄O Acc.
↓ better ↑ better ↑ better ↑ better ↑ better ↑ better

GPT2 (G) 29.34 (±10.30) 0.86 (±0.09) 0.94 (±0.04) 0.90 (±0.06) 0.40 (±0.43) -

G-BoW 28.81 (±10.10) 0.86 (±0.10) 0.93 (±0.05) 0.90 (±0.06) 0.41 (±0.43) 41.1%

G-Disc 95.21 (±174.42) 0.65 (±0.27) 0.78 (±0.18) 0.78 (±0.18) 0.90 (±0.25) 90.3%

DialoGPT (D) 38.18 (±12.03) 0.86 (±0.12) 0.90 (±0.08) 0.86 (±0.09) 0.28 (±0.38) -

D-BoW 37.80 (±11.74) 0.86 (±0.12) 0.90 (±0.07) 0.87 (±0.08) 0.28 (±0.39) 29.3%

D-Disc 40.08 (±16.77) 0.85 (±0.14) 0.88 (±0.10) 0.83 (±0.14) 0.61 (±0.42) 61.1%

Table 7: Results of age-controlled dialogue generation: older-targeted models, conditioned on older prompts.
Format: average metric (standard error). ppl. is perplexity w.r.t. GPT-1. Dist-n (for n = 1, 2, 3) is the number
of distinct n-grams normalized by text length, as a measure of diversity. P̄Y is the sample’s average probability to
contain features learned to be younger by BERT-based classifier. Acc. is BERT-based classifier’s accuracy when
classifying the row’s samples. Values in bold are the best in the column.

prompt. In addition, we make sure that the length
of the generated outputs being compared is similar.
We do this by always picking two relevant samples
from the same length class.

185



Figure 4: Participant guidelines for the crowdsourcing study reported in Section 6.1.
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Figure 5: Participant guidelines for the crowdsourcing study reported in Section 6.2.
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Figure 6: Participant guidelines for the crowdsourcing study reported in Section 6.3.
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Abstract

Text generation has long been a popular re-
search topic in NLP. However, the task of gen-
erating recruitment emails from recruiters to
candidates in the job recommendation scenario
has received little attention by the research com-
munity. This work aims at defining the topic of
automatic email generation for job recommen-
dation, identifying the challenges, and provid-
ing a baseline template-based solution for Dan-
ish jobs. Evaluation by human experts shows
that our method is effective. We wrap up by dis-
cussing the future research directions for better
solving this task.

1 Introduction and Prior Work

Recruitment email generation is a crucial step in the
overall job recruitment process. When recruiters
find suitable candidates for a job, they need to write
emails to contact the candidates, explaining why
they are fit for the job and inviting them to apply.
The job market produces a huge number of job post-
ings on a daily basis, which results in a significant
amount of human labor required to write recruit-
ment emails. The recruiters are in urgent need of
an automatic approach to compose these emails, to
reduce their efforts and increase productivity.

The core challenges facing the task are two-fold:
persuasiveness and personalization. First, the
emails should contain sufficient reasons to con-
vince the candidate that their qualifications match
the requirements of the position, and illustrate
that the position meets the candidate’s expecta-
tions. Second, personalized emails should let the
job seekers feel that the recruiters pay special at-
tention to them and in turn motivate them to ap-
ply. In an interview of recruiters of varying re-
cruitment experience, recruiters believe that proper
personalization on the recruitment emails could
boost candidate positive response rate, and admit
that the current emails, largely composed based on

fixed templates, are not personalized and persua-
sive enough (Bogers and Kaya, 2021).

Recruitment email generation can be seen as a
task-oriented text generation problem. One needs
to extract information from the input job descrip-
tion and candidate profile, and generate the recruit-
ment email accordingly. A large body of research
on emails focuses on the analysis side, typically au-
tomatic detection of phishing emails by extracting
features (Basnet et al., 2008; Verma and El Aassal,
2017; Yu et al., 2009). In the realm of email synthe-
sis, email subject line generation (Xue et al., 2020;
Zhang and Tetreault, 2019) has been studied. For
generation of the main email body, attempts have
been made on fake email generation for malicious
purposes (Das and Verma, 2019; Baki et al., 2017)
based on a two-step pipeline (Chen and Rudnicky,
2014a,b) for email synthesis. As far as we know,
generating recruitment emails in job recruitment is
an unexplored task in literature, despite its practical
significance and challenging nature.

We therefore formally formulate the task of re-
cruitment email generation and provide a baseline
template-based system for it by extending Chen
and Rudnicky (2014a)’s approach. In particular,
we randomly generate an email from a library of
different pre-defined components, and fill the moti-
vational sentence with certain slots by combining
matched skills and occupations extracted from the
job and candidate in question. We conduct a user
study to evaluate the quality of the generated text
and examine if it can save recruiters’ time in writ-
ing emails. The results show that recruiters under
test are overall satisfied with the generated emails,
and the time spent on writing emails for each can-
didate is significantly reduced.

The rest of the paper is organized as follows. We
define the problem formally in Section 2. We run a
pilot study to examine the simple end-to-end neural
generation algorithm in Section 3 and elicit the
need for a fine-grained synthesizing approach. Our
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template-based approach is described in Section 4,
and the user evaluation is reported and discussed
in Section 5. We conclude and point out future
directions in Section 6.

2 Task Definition and Notations

Recruitment email generation calls for generating
an email based on an input the job and a candidate
. It requires us to extract the matched information
from different job and candidate fields, and con-
vert it to natural language expressions in the email.
Typically, a job posting contains its title, company
name and a textual description. A candidate profile
has a headline, a list of keywords, a list of preferred
job titles, the candidate’s work experience and ed-
ucational experience, and the candidate’s resume
text.

The data we work with comes from Jobindex1,
one of Scandinavia’s largest job portals and recruit-
ment agencies. In the Jobindex system, the above-
mentioned fields are the main source of information
for jobs and candidates. The majority of the jobs
and candidate profiles are in Danish. Please refer
to Fig. 1 for an example of a pair of job and can-
didate, and the real recruitment email written by
a human recruiter. The personal information has
been removed from the example and all texts are
translated to English.

3 Pilot Study: end-to-end neural
generation

The most intuitive way to handle the recruitment
email generation task is to generate the whole email
in a fully end-to-end fashion by concatenating the
job and company text. We conduct a pilot study to
examine whether this setting works in practice.

Model. We build a Transformer encoder-
decoder, the state-of-the-art architecture for nat-
ural language generation, to support a sequence-
to-sequence generation of recruitment email. The
job and candidate texts are fed to the encoder side,
and the recruitment email is generated in a token-
by-token auto-regressive manner. The Transformer
structure enables us to load the weights of the pre-
trained Danish language model, Danish-BERT 2.
Rothe et al. (2020) conducted a comprehensive
comparison of different strategies to use the pre-
trained BERT weights for sequence-to-sequence
generation, and found that the bert2bert setting can

1https://www.jobindex.dk/
2https://huggingface.co/Maltehb/danish-bert-botxo

yield robust performance across different text gen-
eration tasks. Therefore, we follow this setting and
initialize the weights for both encoder and decoder
with the Danish-BERT checkpoint. Please refer
to Rothe et al. (2020) for further details. We claim
that this model may not be the state-of-the-art for
Danish text generation, since Danish GPT is pub-
licly available 3. However, it is a strong-performing
model due to its Transformer architecture, and its
generated text is representative of the state-of-the-
art neural generation models.

Data Preprocessing. We focus on generating
Danish emails from Danish jobs and candidate pro-
files. We mine (job, candidate, email) triplets from
the Jobindex database. We filter out samples with
non-Danish text, too short job descriptions and
empty job titles. A total number of 317566 sam-
ples are obtained. Due to the limitation on input
length by the model, we concatenate the summary
of job description and the headline, job titles, educa-
tion experience and work experience of candidate.
Different fields are split by the periods. For recruit-
ment emails, we only take their main bodies. We
replace specific job title and company name with
special tokens “[job]” and “[cpy]” respectively.

Training and Evaluation. Our Transformer
encoder-decoder has 12 layers and 12 attention
heads and a maximum length of 512 tokens on
both encoder and decoder sides. The embedding
dimension and hidden dimension are set to 768
and 3072, respectively. We split all samples into
training, validation and test set at a 7:2:1 ratio. We
perform mini-batch learning to train the model with
a batch size of 32. The average cross-entropy loss
over all tokens at the decoder side is used as the
loss function. We train the model on the training
set for a maximum number of 5 epochs with Adam
optimizer, and stop training when the validation
loss stops dropping.

We use bilingual evaluation understudy (BLEU)
as the quantitative metric for the generated mes-
sage. The BLEU scores are calculated for individ-
ual translated segments, by comparing them with a
set of good quality reference translations. The aver-
age scores over the whole test corpus are computed
as an estimation of the overall quality.

Result. We obtained a BLEU score of 23.2 on
test samples for the generated texts, which is far
from the SOTA neural text generation system for
Danish (32.5 - 33.8) (Fan and Gardent, 2020). This

3https://huggingface.co/flax-community/dansk-gpt-wiki
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Figure 1: Example of a real recruitment email for the given job and candidate pair. The texts are translated from
Danish to English.

reveals that the generated emails have a limited
overall quality.

Additionally, manual inspection shows that the
auto-generated emails have low extent of person-
alization and persuasiveness. The generated moti-
vational sentences usually do not contain specific
reasons of match and are prone to grammatical er-
rors. See Fig. 2 for concrete examples. We posit
that it is because the motivational sentences are usu-
ally located in the middle of email body, embedded
in texts primarily generated from templates. Also,
over 80% of the motivational sentences are devoid
of case-specific information such as the matched
skills or occupations. Therefore, an end-to-end
generation system is capable of learning these re-
curring template-based texts quite well, but poor at
learning case-specific motivational sentences.

4 Proposed Methodology

The evaluation result of end-to-end neural gener-
ation indicates the need for a finer-grained gener-
ation system. Instead of generating the email as
a whole, a special module should be developed
to generate case-specific information, such as the
motivational sentence, from the input job and can-
didate texts. We are inspired by the two-step email
synthesis (Chen and Rudnicky, 2014a) to generate

recruitment emails: email structure generation and
slot filling. Specifically, we randomly generate an
email template from a pre-constructed library of
email components. The slots of the template in-
dicate case-specific fields, and are then filled by
extracting information from the matched job and
candidate. The overall process of the system is
shown in Fig. 3.

Potentially, our approach is superior to end-to-
end generation in three aspects: 1) recruiters follow
a similar process to write emails in a real-case sce-
nario, so the generated emails are more likely to
be accepted by and benefit recruiters; 2) the algo-
rithm has a better control of the generated content,
and ensures a certain extent of grammatical correct-
ness and readability; 3) by explicitly composing
case-specific information, the algorithm enhances
personalization and persuasiveness of the generated
recruitment emails.

In the following text, we introduce the imple-
mentation details of our template-based generation
system.

4.1 Template Parsing

Template data cleaning. We get a total number
of 553 raw templates from Jobindex system. We
remove the non-Danish templates and templates for
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Figure 2: Examples of generated emails by the end-to-end neural model. The generated motivational sentences are
translated in English and colored in red.

other purposes from the collection, and the remain-
ing ones are classified into company-specific and
general templates. Company-specific templates
are provided by some companies to the recruiters
with the request that these templates are strictly
used when generating recruitment emails for these
specific companies. General templates are used for
all other cases. Eventually, 270 general templates
and 81 specific templates remain in the database.

Manual annotation. We define a list of email
components (or fields) according to their functions
based on manual inspection. They are mainly cate-
gorized into functional, case-specific and auto-fill
fields. Functional fields are indicative of email
structure, and do not entail case-specific informa-
tion. Case-specific fields contain information spe-
cific to the matched pair of job and candidate, such
as the job title, company name, motivational sen-
tences expressing why the candidate is fit for the
job, and so on. Some case-specific fields are auto-
matically filled by the Jobindex system, and they
are referred to as auto-fill fields instead. A total
number of 54 email components are defined.

For each template in the database, we manually
annotate the text by inserting HTML tags before
and after a certain text segment to indicate its func-
tion in the email.

Parsing. We parse the annotated templates to
construct the email component library, essentially
a dictionary of (component_name, content list)
pairs. The annotated templates are each parsed in
a recursive fashion by an HTML parser. Starting
from the root element of the whole template, the

parser performs the same operations for each
element: identify its child elements, process each
the child element, append the processed child
element content to the dictionary, and replace
the child element with the marker “[% f %]”.
As such, the parser navigates all HTML tags
in the template and adds their contents to the
corresponding component content list. In the text
content of each component, its child components
are all masked with “[% f %]” tags as desired.
The output of the algorithm is the top-level
structure of the email templates, which are stored
in the dictionary as values of “skeleton_follower”
and “skeleton_non_follower” for followers and
for non-followers, respectively. Followers are
candidates who follow a company in their profile,
and non-followers are candidates who do not
follow a company. After parsing all templates,
we obtain a list of contents for each pre-defined
email component. Examples of extracted email
components are shown in Fig. 4. It is worth noting
that nested structures universally appear among
functional components, i.e. the textual content of
one component may contain other components.

4.2 Baseline Template-based Email
Generation Algorithm

We build an email generation system based on
the constructed email component library. The
algorithm randomly generates a template from
the constructed library, based on whether the
database contains the company name and whether
the candidate is a follower of the company. Then,
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Figure 3: Diagram of the email generation system. The final generated messages are the main body of a real
recruitment email, translated to English for this example.

Figure 4: The HTML tag, description and example of email components, extracted from the template database.

we extract the matched skills and occupations from
the input job and candidate, and convert them to a
coherent expression for the motivational sentence
explaining why the candidate fits the job.

Random template generation. Two issues should
be accounted for when generating a proper tem-
plate for a matched (job, candidate) pair. First,
some companies prefer writing recruitment emails
based on company-specific templates, so the sys-
tem should always use a company template where
possible. Second, followers should be contacted
with slightly different emails to stress that the can-
didate follows the company.

The algorithm works as follows. First, we search

for templates with the company name of the job
posting. If company-specific templates can be
found, then we randomly choose a template from
the matched company templates. If it returns an
empty list, then we randomly generate a template
from the email component library. We start with
a randomly selected follower skeleton or a non-
follower skeleton according to whether the com-
pany is in the candidate’s following list. Then, we
navigate through all unfilled slots in an iterative
fashion. For each slot, we randomly pick a text
content from all its respective candidates in the li-
brary. Since the text expression may contain other
unfilled slots, this process goes in an iterative fash-
ion until no functional component tags appear in
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the templates.
To this end, we have obtained a template for

the recruitment email. An example can be seen in
Fig. 5.

Figure 5: A randomly generated template for non-
followers.

Template filling. We compose the motivational
sentence based on the matched qualifications of
the candidate, including skills and occupations.
For this purpose, we construct a dictionary of
skills and occupations from the ESCO (European
Skills, Competences, Qualifications and Occupa-
tions) database4. ESCO has a 4-level category an-
notation for skills and occupations in different lan-
guages. We include both skills and occupations as
dictionary keys in English and Danish. We also add
the list of IT-related skills from Microsoft Skills
library5 into the dictionary. A total number of
129474 skills and 46060 occupations are collected.

Based on the dictionary, we extract skills and
occupations from the matched pair of job and can-
didate texts and obtain their intersections. We first
use a built-in name entity recognition (NER) al-
gorithm in the spaCy6 package to identify text
spans that may contain skills and occupations, and
check whether each is a skill or an occupation. The
matched skills and occupations are obtained by
taking the set intersections. We further split the
language skills from the matched skills set.

Simple rules are then applied to convert the
matched skills, occupations and language skills
to a coherent expression as explanations of why the
candidate fits the job. The skills and occupations
are respectively concatenated with the “{}, {} og
{}” pattern, and conjunctive expressions are added
to combine the expressions for skill and occupation

4https://esco.ec.europa.eu/
5https://learn.microsoft.com/en-us/
6https://spacy.io/

match. It is further appended by the language skill
match expression, if non-Danish skills are detected
in both the job and candidate. The whole expres-
sion is inserted to the motivation sentence template
with modifications of the pre-slot expressions to
ensure coherence. When multiple slots appear in
a motivational sentence template, they are inserted
with matched skills and matched occupations, re-
spectively. As a back-up, a general text expression
will be randomly chosen from a list of contents in
case of no matched qualifications.

Please see Fig. 6 for a visual illustration of how
the matched qualifications are converted to a moti-
vational expression.

Figure 6: An example of composed motivational sen-
tence from matched skills, occupations and language
skills.

Text post-processing. We automatically post-
process the generated email in the final step. Specif-
ically, if multiple punctuations appear in a row, we
keep only the last punctuation. We also make sure
the first letter of a sentence is upper-cased. Finally,
we correct the spacing errors between words in a
sentence, between sentences, and between para-
graphs. This gives the final output message pro-
duced by the template-based recruitment email gen-
eration algorithm.

5 Evaluation

We conduct an offline evaluation with real expert re-
cruiters to evaluate the performance of the template-
based email generation algorithm. The quantita-
tive measures for natural language generation are
not employed, since the template-based approach
may produce significantly different structures from
the real recruitment emails and still be reasonably
good. Indeed, it remains an open question to design
quantitative measures for evaluating the generated
recruitment emails, as the judgments on the persua-
siveness or personalization of the email vary from
person to person.

We randomly sample a collection of truly
matched (job, candidate) pairs from the Jobindex
database. They are randomly assigned to each of a
group of 10 recruiters. The pairs are randomly split

194



(a) Unhelped case. (b) Helped case.

Figure 7: Screenshots of the interface in (a) “unhelped” and (b) “helped” case.

into 5 sessions of 10 pairs each. Each recruiter is
randomly assigned with “helped” tasks (with gen-
erated texts) and “unhelped” tasks (with generated
templates). Each task is “helped” for half of the
recruiters and “unhelped” for the other half. The
interface contained pairs of matched job postings
and candidate profiles, and an interface is provided
to the recruiter with either pre-generated template
(“unhelped”) or the email (“helped”). For the email,
the inserted case-specific information is wrapped
by brackets “{}”. A checkbox is also presented
to the recruiters for providing a 4-level judgment
on the quality of the email or template (4 = Per-
fect, 3 = Minor Revision, 2 = Major Revision, 1 =
Useless). The judgment is on language quality for
templates and on both language quality and infor-
mation correctness for emails. The recruiters are
asked to click a button before and after writing the
recruitment email, so that the difference between
the recorded time stamps are the time spent on it.
The screenshots of the interface are shown in Fig. 7.

Result on text quality. We have collected the re-
sults of 224 helped tasks (with generated emails
by our algorithm) and 241 unhelped tasks (with
our generated templates by our algorithm). The
recruiters’ annotations on the quality of the gener-
ated texts are shown in Fig. 8. In terms of average
ratings, we obtained a value of 2.53 for generated
emails and 2.46 for generated templates for the
evaluation of the new template-based system. Over
50% of the generated texts (53.58% for emails and
51.03% for templates) are satisfactory, requiring

minor or no edits. It is interesting to see that more
recruiters are satisfied with the generated texts than
the templates. This implies that the generated mo-
tivational sentence is exceptionally helpful for re-
cruiters. In the same time, there is still room for
the text quality to improve, and neural method for
generating case-specific information is a feasible
direction.

Figure 8: Bar plots of annotations for the offline-
evaluation in Apr 2022. The red bars are the recruiters’
judgments on the quality of generated templates, and
blue bars are the recruiters on the quality of generated
messages.

Result on time cost. We computed the average
time a recruiter spent on writing the message in the
unhelped and helped case, respectively. The time
difference between the two scenarios is the reduc-
tion of recruiters’ time by our template-based au-
tomatic text generation system. As a consequence,
recruiters spent an average of 178.99s on each
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matched pair in the helped case, and an average
of 235.63s on each matched pair in the unhelped
case. On average, a recruiter spends 56.64s shorter
on writing an email with automatically generated
messages than merely on top of the provided tem-
plates. In order to remove the discrepancy across
individual recruiters, we zero-averaged the time
for each recruiter and recalculated the time differ-
ence. A closer but still remarkable gap between the
times (51.31s) is observed. It shows that this sim-
ple template-based system can significantly save
recruiters time on writing recruitment emails.

6 Conclusion

We have proposed recruitment email generation
for job recruitment, a novel task in text generation.
We demonstrate its challenge and significance in
the pilot study and a user study of our template-
based approach. The challenge mainly resides in
constructing case-specific components of the email
from the input job and candidate to enhance person-
alization and persuasiveness. Quite often, the rea-
sons of a good match are semantically non-explicit
and cannot be extracted by common word or phrase
matching. At the same time, we have observed that
a simple approach can remarkably benefit recruiters
by saving around 1/4 of their time.

Future work could contribute to this task in the
following aspects:

• End-to-end neural generation of motivational
sentences. Rather than the simple rule-based
algorithm for composing the motivational sen-
tences, we may learn a neural generation sys-
tem from the real emails in a data-driven man-
ner.

• Robust intrinsic evaluation metrics. The n-
gram matching-based metrics, such as BLEU
or ROUGE, are not suitable for this task.
Beyond the real-user evaluation, it remains
an open challenge to propose robust metrics
that objectively evaluate the generated text,
in terms of both language quality and task-
related aspects.

• Deep representations of job and candidate to
better extract reasons of match. Deep neural
models should be constructed to perform deep
understanding of jobs and candidates in or-
der to support extraction of below-the-surface
matched qualifications.

• Generating explanation of recommendations.
Currently, the email generation is a separate
process from job recommendation. It would
be interesting to view recruitment emails in-
stead as explanations of the recommendation
systems, and propose recommendation mod-
els that supports interpretations of the recom-
mendations. The authentic explanations of
recommendation will be then be incorporated
in the recruitment email.
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Abstract

Automatic Text Summarization has seen a large
paradigm shift from extractive methods to ab-
stractive (or generation-based) methods in the
last few years. This can be attributed to the
availability of large autoregressive language
models (Lewis et al., 2019; Zhang et al., 2019a)
that have been shown to outperform extrac-
tive methods. In this work, we revisit ex-
tractive methods and study their performance
against state of the art(SOTA) abstractive mod-
els. Through extensive studies, we notice that
abstractive methods are not yet completely ab-
stractive in their generated summaries. In addi-
tion to this finding, we propose an evaluation
metric that could benefit the summarization re-
search community to measure the degree of
abstractiveness of a summary in comparison
to their extractive counterparts. To confirm the
generalizability of our findings, we conduct ex-
periments on two summarization datasets using
five powerful techniques in extractive and ab-
stractive summarization and study their levels
of abstraction.

1 Introduction

The amount of data on the internet has been grow-
ing exponentially creating excessive information
for users to consume. Automatic text summariza-
tion alleviates this issue of information overload
by producing shorter and concise summaries that
capture the essence of the long source text. Au-
tomatic text summarization can be broadly clas-
sified into kinds- Extractive summarization and
Abstractive summarization. Extractive summariza-
tion identifies important excerpts from the source
document to produce summaries. These excerpts
are composed of sentences and phrases which the
model deems most appropriate for summarizing
the source document. With the advent of sophis-
ticated language models trained on large amounts
of data, most of the recent work in summariza-
tion has drifted towards abstractive summarization.

Summarization tasks have now become one of the
benchmarks to beat with many of the SOTA genera-
tion models. In abstractive summarization, natural
language generation techniques are employed to
generate a summary.

Humans write concise summaries by introduc-
ing novel words and only using information from
the source text that they deem absolutely neces-
sary. Since abstractive summarization models gen-
erate words which are not necessarily present in
the source text as is, the expectation is that the sum-
maries generated would be truly abstractive and
hence closer to human generated summaries. In the-
ory, abstractive summarization models should out-
perform extractive methods as they have the ability
to generate free form text like humans. In practice,
however, we find that the abstractive summaries of
SOTA models today are closer to extractive sum-
maries than to the human generated summaries
against which they are compared. Table 1 shows a
generated summary by BART that has many over-
lapping snippets with the context. These observa-
tions have previously been unnoticed largely due
to the evaluation methods that have been employed.
As performing human evaluations is expensive, au-
tomatic metrics like BLEU (Papineni et al., 2002)
and ROUGE (Papineni et al., 2002) have been used
widely to measure the amount of overlap between
generated summaries and reference summaries. As
a result, these evaluation methods were not geared
towards measuring abstractiveness of summaries.
To better differentiate summaries generated by ab-
stractive summarization models from their extrac-
tive counterparts, we also propose an evaluation
metric called AbsExtScore.

In order to analyze the extent of these issues in
abstractive summarization models, we chose three
SOTA abstractive summarization models trained
on CNN DailyMail (See et al., 2017) and the X-
Sum (Narayan et al., 2018) datasets (Section 3).
We also chose two SOTA extractive summarization
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Context Abstractive Summary Ground Truth
...prince george’s first year - which boosted the
economy by £247m...that a little girl could bring
in £150m for the british economy...a princess
would be able to set trends throughout her
life...which will be great for the people who de-
signed her clothes or those who can make quick
knock-off copies

prince george’s first year boosted the economy
by £247m. a little girl could bring in £150m for
the british economy. a princess would be able to
set trends throughout her life. this will be great
for the people who designed her clothes or those
who can make quick knock-off copies.

as kate and william prepare to welcome their second child , there ’s no
doubt that the royal couple ’s favoured childrenswear brands are hoping
to cash in on the arrival .indeed , if prince george ’s first year - which
boosted the economy by 247m - is anything to go by , anything that
the second-born touches will turn to gold and copycat designs will bring
a welcome boost to the high street .the baby could generate a billion
pounds over its lifetime .

Table 1: Example of Context, Ground truth and Abstractive Summary from CNN/DM dataset.

models trained on the same datasets (Section 4).
We make the following observations and contribu-
tions:
• We observe that abstractive summarization mod-

els are not introducing enough novelty words and
more simply copying over the words from the
source text (Section 5).

• We observe that there is a large overlap between
the extractive and abstractive summaries which
questions the abstractiveness of the summaries
generated by abstractive summarization models.

• To measure the quality of summaries in terms of
abstractiveness, we propose an evaluation metric
called AbsExtScore (Section 5.3). We also show
that there is a correlation between human judge-
ments and this evaluation metric by conducting a
human subject study on a sample of summaries.

2 Related Work

Both extractive and abstractive summarization tech-
niques have been well studied in the Natural Lan-
guage Processing (NLP) community. Earlier work
in extractive summarization relied on clues such as
position of sentences and frequency of words while
extracting most important snippets for summaries
(Khan and Salim, 2014; Baxendale, 1958). More
recently, neural network-based extractive summa-
rization have gained more popularity (Alami et al.,
2019; Xu and Durrett, 2019; Chen et al., 2018;
Mohsen et al., 2020; Anand and Wagh, 2019;
Zhong et al., 2020; Liu et al., 2019).

There has also been significant work in abstrac-
tive summarization (Genest and Lapalme, 2012;
Barzilay et al., 1999; Tanaka et al., 2009). Most of
the recent approaches use encoder-decoder archi-
tectures to generate summaries (Lee et al., 2020;
Yao et al., 2020; Iwasaki et al., 2019; Zhang et al.,
2019a; Raffel et al., 2019a; Lewis et al., 2019).
These methods produce summaries using words
that are not present in the source text and hence
these methods have gained more popularity over
the last few years. Transformer models with self-
supervised training (Devlin et al., 2018; Radford
et al., 2018; Raffel et al., 2019a; Yang et al., 2019;

Clark et al., 2020; Liu et al., 2019) have shown to
perform well on language learning when fine-tuned
on various NLP tasks. More recently, BART(Lewis
et al., 2019), PEGASUS (Zhang et al., 2019a) and
T5 (Raffel et al., 2019b) have shown state-of-the-art
performance in abstractive summarization, so we
analyze the generated summaries of these models in
comparison with SOTA methods in extractive sum-
marization (Zhong et al., 2020; Liu et al., 2019).
Previous work on measuring the abstractiveness
and extractiveness in summaries has been restricted
to measuring diversity of n-grams (Scialom et al.,
2020; Grusky et al., 2018) but we move to a more
semantic based metric to measure these aspects of
a summary.

3 Datasets

We use two standard summarization benchmarks:
CNN-Dailymail (2017) : a corpus of news articles
and human generated summaries. We use the entire
test set of size 11, 490.
X-Sum (2018) : corpus of news articles and the task
is to predict the first sentence given the remaining
article content. We again use the entire test set of
11, 334 samples from this dataset.

4 Models

We study BART (Lewis et al., 2019), PEGASUS
and T-5 (Raffel et al., 2019c) for abstractive sum-
marization. For extractive summarization we use,
BertSumExt (Liu, 2019) and MatchSum (Zhong
et al., 2020). We use the versions fine-tuned on
the datasets described in Section 3 for experiments.
These models are in the top 10 on the leaderboard at
the time of writing this paper 1. These approaches
are described below:
BART: An encoder decoder model that uses a bidi-
rectional encoder and an autoregressive model as
its decoder. The model is trained using de-noising
objective.
PEGASUS: Encoder decoder model that is pre-
trained to encourage abstractive summarization.

1https://paperswithcode.com/dataset/cnn-daily-mail-1
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CNN XSum
Mean[std] BLEU-1 BLEU-2 Mean[std] BLEU-1 BLEU-2

ground truth 0.751[0.098] 0.833 0.605 0.519[0.158] 0.572 0.279
bart 0.942[0.053] 0.955 0.903 0.608[0.169] 0.661 0.383
pegasus 0.889[0.063] 0.913 0.833 0.584[0.174] 0.641 0.371
t5 0.932[0.081] 0.937 0.849 0.685[0.187] 0.726 0.446

Table 2: We measure the overlap between the source article and summaries by different models. Both the overlap
metric defined in Section 5.1 and the BLEU metric without brevity penalty are shown in the tables. For the overlap
metric we show both the mean(µ) and sigma(σ).

The model is trained to predict masked out sen-
tences in the source text.
T-5: Text-based language problems are handled in
a unified Text to Text framework to obtain signifi-
cant improvements on several benchmark tasks.
BertSumExt: Model learns to pick the top 3 sen-
tences that seem most relevant from the source text
using Bert and inter-sentence transformer layers.
MatchSum: Model uses semantic matching be-
tween the document and the candidate summaries
to pick the summary that is closest to the document.
They achieve this using a margin-based triplet loss.

5 Experiments and Results

The summarization community has looked at us-
ing text overlap metrics like, BLEU or METEOR.
The widely used text overlap metric for summa-
rization is ROUGE-L that measures the overlap of
words using Longest Common Subsequence be-
tween the generated summary and the ground truth.
While these metrics attempt to compare the ground
truth with the generated sentences, they certainly
do not measure the abstractive component that one
expects from abstractive summarization models.
We describe experiments that show the model is
merely copying words from the source text and
not introducing novel words present in the ground
truth. In order to allow future models to measure
this abstractiveness we introduce a metric called
AbsExtScore that will allow us to measure the ab-
stractive prowess of these summarization models.

5.1 Source Text and Summary Overlap
We measure the percentage overlap of the words
between the summary and the article for both
the ground truth and the generated summaries,
overlap_metric(J) = (S ∩ T )/|T |, S represents
the set of source words and T represents the set of
target words in the summary (be it ground truth
or model generated). We also use the conven-
tional BLEU metric to measure overlap between
the source article and the target. However, we set
the brevity penalty (BP) to 1 in order to reduce the

penalty owing to the long sentences in the source
article.

We see that the ground truth summaries have
a much lower overlap with the article indicating
that humans write a more abstractive version of the
summary when compared to how a model performs
abstractive summarization (Table 2). All the results
are statistically significant using t-test. We see
that there is at least 15% less overlap between the
ground truth and generated summaries from any
model on the CNN dataset and 8% less overlap on
the XSum dataset. We also see that the overlap with
BLEU is 10 − 15 points higher for the generated
summaries than the ground truth showing that the
models are copying several words from the source
text without actually introducing novel words.

5.2 Overlap between Abstractive and
Extractive Summaries

We wanted to understand if the overlap between
the abstractive summary and the ground truth was
larger than the abstractive summary and the ex-
tractive summary. To investigate this, we measure
the overlap between the summaries produced by
3 abstractive models and the summaries produced
by 2 extractive models on 2 different datasets us-
ing Equation 1. However, in Table 3 we see that
all the 3 abstractive models overlap more with the
extractive summaries than the actual ground truth.

5.3 AbsExtScore

Abstractive summaries have to be closer to the
ground truth in semantic space when compared
to the extractive summary for any given source text.
We use this as the foundational principle for our
AbsExtScore which measures these distances in
the semantic space. We project all the three sum-
maries (abstractive, extractive and ground truth)
into semantic space using the Siamese Distil Bert
model (Reimers and Gurevych, 2019) trained on
Bing queries. We use this model as it allows us
to adapt well to different domains of source texts.
Owing to the contrastive loss that this model was
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CNN XSum
MatchSum BertSumExt Ground Truth MatchSum BertSumExt Ground Truth

BART 0.534[0.157] 0.528[0.159] 0.348[0.129] 0.324[0.132] 0.419[0.177] 0.419[0.183]
PEGASUS 0.547[0.157] 0.532[0.16] 0.381[0.142] 0.309[0.134] 0.411[0.18] 0.447[0.194]
T5 0.706[0.22] 0.657[0.239] 0.498[0.227] 0.375[0.166] 0.466[0.204] 0.368[0.181]

Table 3: Overlap between the abstractive and extractive summaries. We see that the abstractive summaries overlap
more with their extractive counterpart than with the ground truth.

CNN XSum
Eucledian Distance Cosine Similarity Eucledian Distance Cosine Similarity

BART PEGASUS T5 BART PEGASUS T5 BART PEGASUS T5 BART PEGASUS T5
MatchSum 0.72 0.663 0.615 0.724 0.668 0.629 0.13 0.103 0.25 0.14 0.108 0.277
BertSumExt 0.714 0.654 0.643 0.713 0.656 0.646 0.472 0.405 0.683 0.4661 0.398 0.674

Table 4: AbsExtScore between different Abstractive and Extractive Summarization models. On CNN/DM we
observe that both the Euclidean distance and cosine similarity favors the extractive summary over the ground truth
for all scenarios. While on the XSum dataset it favors the ground truth in 3/6 scenarios. We conducted a proportions
z test and all results are statistically significant.

trained on, the model should be capable of captur-
ing the difference in semantics of the three sum-
maries. We define the score as below:

AbsExtScore =

∑N

n=1
argmin(d(eabs, egt), d(eabs, eext))

N
(1)

Here N is the total number of samples present
in the test set. eabs, egt and eext refers to embed-
dings obtained by using the MS Marco Distil Bert
model (Reimers and Gurevych, 2019). d refers
to the L2 distance between the two vectors. We
also experimented with the use of a cosine simi-
larity function. In this case we take argmax as
we want the vectors to be close to each other. We
want the AbsExtScore to be close to 0 so that the
abstractive vectors are closer to the ground truth
vectors and not the extractive vectors. However,
from Table 4 we see that in only 3/12 different
scenarios is the score less than 0.40, showing that
the abstractive models overlap quite significantly
with the extractive summaries in semantic space.
We observe the same correlation with both the co-
sine similarity and Euclidean distance measures
(L2 distance). Our metric is different from seman-
tic measure metrics like BERTScore (Zhang et al.,
2019b) and BARTScore (Yuan et al., 2021) as our
metric captures both semantic similarity and ‘ab-
stractiveness’ measures. We are not proposing a
metric that measures the overlap between generated
sentence and ground truth. We are only trying to
introduce another dimensionality of measurement
that helps answer the degree of abstractiveness of
the model at a corpus level.

5.3.1 Human Subject study
To understand if there is a correlation between
the automated metric proposed above and human

judgement, we conducted a pilot human evaluation
by randomly sampling 50 data points from the test
set of CNN/DM. We presented the abstractive sum-
mary of this data point and asked the annotator to
judge if it was closer to the ground truth over its
extractive counterpart. We picked the BART ab-
stractive model and MatchSum extractive model for
this study. We got 3 annotations per datapoint (150
total). We said that "An example of close resem-
blance includes but not limited to having similar
phrases or having matching words." to provide a
judgement baseline to the annotators. We ran this
study on Amazon Mechanical Turk. We removed
a few annotations which were done in under 15
seconds (random annotations) . This reduced our
total annotations to 62. Out of the 62 annotations,
41 said that the abstractive summaries are closer to
extractive summary while 21 felt that it was closer
to ground truth. We conducted a proportion z test
to find that this result is statistically significant
(p-value=0.007). Humans thought the abstractive
summaries are close to extractive summaries 66%
of the time while our metric gave a score of 72%.
Agreement between humans and our metric was
76%.

6 Conclusion and Future Work

A central tenet of abstractive models is to abstract
relevant information from source text. We find that
the abstractive models merely copy words from
source text and are failing to insert novelty words.
We show that the abstractive summaries are closer
to the extractive summaries than they are to ground
truth. We use models built for semantic understand-
ing to introduce a new metric called AbsExtScore
which the summarization community can adopt to
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understand the level of abstraction introduced by
their proposed abstractive models in comparison to
their extractive counterparts. We conducted a hu-
man subject study to show the correlation between
the automated metric and human judgements.
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A Appendices

A.1 Overlap of Abstractive models with
Source Text

A.1.1 CNN/DM Dataset

(a) Bart (b) Pegasus

(c) T5

A.1.2 XSum Dataset

(a) Bart (b) Pegasus

(c) T5
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A.2 Overlap of Abstractive models with
Extractive Models.

A.2.1 CNN/DM Dataset
BertSumExt

(a) Bart (b) Pegasus

(c) T5

MatchSum

(a) Bart (b) Pegasus

(c) T5
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A.2.2 XSum Dataset
BertSumExt

(a) Bart (b) Pegasus

(c) T5

MatchSum

(a) Bart (b) Pegasus

(c) T5
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Abstract

Writing job vacancies can be a repetitive and ex-
pensive task for humans. This research focuses
on automatically generating parts of vacancy
texts, i.e., the benefits section, given structured
job attributes as input using mT5, the multi-
lingual version of the state-of-the-art T5 trans-
former model. While transformers are accu-
rate at generating coherent text, they can strug-
gle with correctly including structured (input)
data in the generated text. Including this input
data correctly is crucial for vacancy text genera-
tion; otherwise, job seekers may be misled. To
evaluate how the model includes the different
types of structured input, we propose a novel
domain-specific metric: ‘input generation ac-
curacy’. Our metric aims to address the short-
comings of Relation Generation, a commonly
used evaluation metric for data-to-text genera-
tion that relies on string matching, as our task
includes evaluating generated texts based on
binary and categorical inputs. Using our novel
evaluation method, we measure how well the in-
put is included in the generated text separately
for different types of inputs (binary, categorical,
numeric), offering another contribution to the
field. In addition, we evaluate how accurately
the mT5 model generates texts in the requested
languages. Our experiments show that mT5 is
highly accurate at generating texts in the cor-
rect (requested) languages, and at handling seen
categorical and binary inputs correctly. How-
ever, mT5 performed worse when generating
text from unseen city names or working with
numeric inputs.

1 Introduction

Integrating Natural Language Processing (NLP)
solutions to improve the human workforce offers
great opportunities for process automation (Devara-
jan, 2018). Such process automation can be to
automate the writing of parts of the vacancies us-
ing the given structured data. This research was
carried out with Randstad Netherlands, a Dutch HR

services company that provides vacancies in Dutch
and English.

Natural Language Generation (NLG) is the sub-
field of NLP focusing on automatic text writing.
Text generation tasks can be categorized depending
on the input into text-to-text generation (e.g., text
translation) and data-to-text generation (e.g., the
generation of Wikipedia biographies). Generating
vacancy text falls under the data-to-text generation
category, since particular job-specific information
(for example: MINSALARY = 2500, MAXSALARY =
2700, SALARYTYPE = ’per month’) is provided
as input and a coherent sentence that combines the
given information must be generated as the output
(for example ’You will receive between 2500 and
2700 euros on a monthly bases’). Early data-to-
text generation approaches used hand-engineered
templates (Kukich, 1983; McKeown, 1992; McRoy
et al., 2000) to generate texts. These templates
can be intuitively explained as a series of written
text elements, with certain segments serving as the
template’s ’backbone’ and the remaining segments
being filled up with information from the struc-
tured data (Wang and Cardie, 2013). From the
previous example: ’You will receive between 2500
and 2700 euros on a monthly bases’ the follow-
ing template can be created ’You will receive be-
tween <MINSALARY> and <MAXSALARY> euros
on a monthly bases’. Such simple (template-based)
method was used as the baseline for this research.
While this solution is computationally cheap, fast
and the inputs will be correctly included, a lot of
manual effort is required to create the templates
and the generated texts will be very repetitive.

Transformer models are a type of neural network
architecture that use transfer learning. Transfer
learning is the technique where these models are
initially trained (pre-trained) on a large unlabeled
text dataset and some supervised tasks. The ’knowl-
edge’ learned through pre-training is then reused
on the new task, making transformer methods cur-
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rently the most effective solution for text generation
(Devlin et al., 2019). While there is no transformer
model available that was pre-trained on data-to-text
generation tasks, recent research in (Kale and Ras-
togi, 2020) showed that transformer models - that
were pre-trained on text-to-text generations tasks
- outperform traditional (non-transformer) neural
network solutions for data-to-text generation task
after fine-tuning. Based on this finding and the
fact that our dataset is multilingual, we used the
multilingual version of T5, mT5 (Xue et al., 2021).
In contrast to the template-based method, trans-
formers can provide a wide range of text variation.
However, when generating text, transformers pick
the next word with some randomness, thus they are
less accurate at including the input correctly.

This paper investigates how the benefit sections
of vacancies (namely: salary, hours, contract and
location) can be generated using mT5. Our con-
tribution is three-fold. On one hand, we use mT5
in a new domain, with a relatively small and pro-
prietary dataset - that contains many noise and in-
correct samples - in a multilingual setting. On the
other hand, we confirm the importance of domain
specific evaluation metrics in data-to-text gener-
ation, by analyzing - with the metrics developed
by us - how accurate mT5 is in terms of includ-
ing the input correctly in the generated text. We
also investigate how creating more training data
(through translation and generating synthetic sam-
ples) can improve this accuracy. Focusing on in-
cluding the input correctly is particularly important
in this domain, where incorrect wages, or stating
hourly salaries instead of monthly can be mislead-
ing to candidates.

This paper focuses on answering the following
research question:

RQ1 To what extent can the state-of-the-art mul-
tilingual text-to-text generation transformer,
mT5 (Xue et al., 2021) be used to generate
the benefit sections of vacancies in a multi-
linguistic environment?

To answer this research question we aim to an-
swer the following sub-questions:

RQ1.1 How accurate is mT5 in terms of gener-
ating the text in the correct language for the
benefit sections of vacancies?

RQ1.2 When using new domain specific metrics
to measure the input generation accuracy, how

does mT5 perform, in terms of including dif-
ferent types of inputs (numerical, binary, cate-
gorical) in the generated text?

RQ1.3 How can creating extra training data by
translating the training samples automatically
and generating synthetic training data increase
the accuracy of the model regarding language
and input generation?

2 Related Work

The current state-of-the art solutions in text gener-
ation are transformer models that rely on transfer
learning, where a model is initially pre-trained on
a large dataset, before being fine-tuned on a down-
stream task (for example text summarization). Pre-
training on a large, unlabelled dataset is important
for transformer models, because during this pre-
training the model learns the basics of language.
T5 transformer was proposed with a new dataset by
Google Raffel et al. (2020). This so called Colos-
sal Clean Crawled Corpus (C4)* is a thoroughly
cleaned massive text dataset, scraped from many
websites for pre-training the model. The model is
classified as text-to-text, since both the input and
output are always text strings. To define which task
(for example text summarization) the model should
perform, a task-specific prefix was appended to
the input during the pre-training. This prefix is
simply a short synopsis of the task that is subse-
quently used throughout fine-tuning to teach the
model a new task. This same prefix is then used to
specify what task to perform when employing the
model. Such a prefix may be ’Translate English
to German:’ (for machine translation) or ’Summa-
rize’ (for text summarization) (Raffel et al., 2020).
Thanks to this task-specific prefix and the large pre-
training dataset, the model is adaptable enough to
be fine-tuned on different downstream tasks with
the same loss function and hyperparameters.

2.1 Transformer-based data-to-text
generation application domains

All relevant transformer based data-to-text research
have been conducted in three domains (sport game
summaries, open and closed domain Wikipedia).
The researches in the Wikipedia domain use ToTTo
(Parikh et al., 2020) and WebNLG † (Gardent et al.,
2017; Zhou and Lampouras, 2020; Castro Ferreira
et al., 2020) datasets with training sizes of 120K

*https://www.tensorflow.org/datasets/catalog/c4
†https://webnlg-challenge.loria.fr/challenge_2020
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and 25.3K. The best performing model for the
ToTTo dataset is a simple fine-tuned T5 model
(Kale and Rastogi, 2020). For the WebNLG do-
main the best one is T5 with some adjustment to
control the generation by including conditional,
input-dependent information in the prefixes (Clive
et al., 2021). This domain has received more at-
tention than the others for multilingual data-to-text
generation (Moussallem et al., 2020). Agarwal
et al. (2020) found that by fine-tuning the model
in two languages via machine translation (on the
WebNLG dataset), a bilingual T5 model can out-
perform two separate monolingual T5 models. We
use an equivalent strategy for enhancing the mul-
tilingual model by automatically translating the
training samples.

The last domain - sport game summaries - uses
the RotoWire dataset (Wiseman et al., 2017) with
4.9K training samples to generate NBA basketball
game summaries from the structured game scores.
An intriguing transformer-based approach (Gong
et al., 2019) demonstrated how producing syntactic
training data by replacing the scores with new, syn-
thetic values improves performance. We use the
same concept in this paper.

Recently, Qin et al. (2022) proposed a neural
approach to generate the requirements section of
the job description. This research however is not
a data-to-text generation study, because it focuses
on generating the requirements for jobs (such as
the required skills), based on the fluent text of the
tasks section of the job descriptions. Our research
concentrates on a different task within the domain
by generating the benefit section of the vacancies.
We use a transformer model and a data-to-text ap-
proach on a bilingual dataset, which is highly unbal-
anced (having about 95% of the samples in Dutch)
and diverse regarding the data types (numeric, cate-
gorical, binary), which sets the research apart from
previous work.

2.2 Existing evaluation methods

Typical quality of text generation metrics are Bilin-
gual Evaluation Understudy (BLEU) score (Pap-
ineni et al., 2002), Recall-Oriented Understudy for
Gisting Evaluation (ROUGE) score (Lin, 2004) and
Metric for Evaluation of Translation with Explicit
ORdering (METEOR) score (Lavie and Agarwal,
2007). ROUGE measures the recall by concentrat-
ing on how many n-grams of the reference (hu-
man written text) appeared in the generated text,

whereas BLEU measures precision of the appear-
ing n-grams by measuring on how much of the
output text appeared in the reference (Lin, 2004).
METEOR was proposed for machine translation to
improve the alignment with human judgement. The
metric computes the explicit word-to-word match
between the output and the reference, however it
has many properties that are missing from the previ-
ous metrics. METEOR performs stemming (using
the Porter Stemmer) and also takes synonyms into
consideration (Lavie and Agarwal, 2007). The tra-
ditional quality of text evaluation methods however,
fail to evaluate the generated text in terms of their
fidelity to the input data (Wiseman et al., 2017). To
solve this issue Relation Generation (RG) metric
was proposed in (Wiseman et al., 2017). The metric
measures how well the system includes the input,
however it assumes that the entities can be detected
in the generated text using string matching (Dhin-
gra et al., 2019). This is not the case for our task, be-
cause while some entities can be detected: like the
location (the city name), numbers are more prob-
lematic due to the monetary units. For example,
in the Netherlands the decimal point is indicated
by a comma instead of a period. Lastly, measuring
the binary variable (hidesalary) is not in any way
detectable by string matching only. Therefore, we
propose new rule based domain specific measures,
which we describe in subsection 3.6.

3 Methodology

3.1 Dataset

The internal dataset of Randstad Netherlands was
used for the research which contains both struc-
tured vacancy data (e.g., salary amount), which we
use as input for text generation, and the correspond-
ing human written vacancy texts (targettext),
i.e., the desired output of the text generation. We
focused on the following four benefit sections:
salary, location, hours and contract. Figure 1
shows an example for each of these benefit sec-
tions, using a vacancy for a Customer Service
Representative published on Randstad Netherlands’
website‡. Table 1 shows the 11 different input
fields and how each benefit section uses differ-
ent ones (except the language, which is used
for every section). Four data types are present
in the dataset: integer (min/maxhours) and non-
integer (min/maxsalary) numericals, categoricals

‡https://www.randstad.com/find-a-job/
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(location, contracttype, salarytype) and
binary (hidesalary, fixhour, fixsalary).

Figure 1: The figure illustrates the layout of the benefit
section on the website of Randstad Netherlands.

3.2 Template-based method
When designed properly, template-based models
always perform perfect in terms of including the
inputs and using the correct language. We imple-
mented a template-based method to compare the
performance of mT5 and to provide an alternative
solution to the transformer approach for this do-
main. The pipeline of this method starts by creating
a template of every targettext from the training
data, by replacing the numeric and the location
input values in the text with a token corresponding
to the feature name. (For example from the sample
’C2800 - C3000 gross per month’ we create a tem-
plate as ’ C<MINSALARY> - C<MAXSALARY>
gross per month’.) Next, we choose a set of tem-
plates for each combination of categorical data by
selecting the top five most common templates for
each combination from the training data. These pre-
vious steps are performed only once, whereas the
next step, the text generation, is performed every
time a new benefit section needs to be generated
with the method. As part of this text generation
step, for each sample a template is picked from the
correct combination and then, this picked template
is filled with the correct values by replacing the
feature tags with their values. The steps are the
same for every section and every combination of
categories has five templates. Appendix A contains
an example for the template-based method.

3.3 mT5 model
We used hugging face’s PyTorch implementation§

with the default tokenizer and default loss (cross-
entropy loss) to fine-tune the base version of the
mT5 model. For optimizer we used Adafactor with
the recommended setting by Shazeer and Stern
(2018). Similar to the task-specific prefix, the input

§https://huggingface.co/docs/transformers/
model_doc/mt5

for the mT5 model is provided in a text format. For
data-to-text generation, the input is typically pro-
vided by first including the feature name and then
the feature value. Because transformer models are
extremely sensitive to how the input is given (Lester
et al., 2021), we experimented for each section with
three distinct input formats during the fine-tuning
of the model. The only difference between the
inputs is how the feature name is represented in
the input. For each section the ’FEATURENAME’
token was changed to the feature name which we
want to include and the ’value’ token was replaced
by the value of the feature. For each of our three
formats, listed below, we present an example from
the location benefit section, where our only fea-
ture is the location and the value of the feature is
’Amsterdam’.

• input A: <FEATURENAME> value
example: <LOCATION> Amsterdam

• input B: FEATURENAME = value
example: LOCATION = Amsterdam

• input C:<FEATURENAME> value
</FEATURENAME>
example:<LOCATION> Amsterdam
</LOCATION>

For English text generation we used the prefix ’Gen-
erate in English’ and for Dutch ’Generate in Dutch’.
We specified the prefix and the input in English.

We fine-tuned the original dataset using each in-
put format and choose the best performing one
based on the input generation accuracy score
(the newly developed metrics explained in subsec-
tion 3.6). When fine-tuning the models on the trans-
lated and the synthetic dataset we used the same
input and prefix as on the original dataset. Our hy-
perparameter tuning consisted of finding the num-
ber of epochs that had the highest input generation
accuracy. For the generation, we set the sampling
parameter to True. Allowing sampling means that
the next word is randomly picked from the con-
ditional probability distribution, thus the model is
more diverse and does not generate the same sen-
tence for the same input, unless the random seed is
identical. This is important, because otherwise all
samples with the same input would have the same
generated text, making the outputs very repetitive
(for example every job that has 40 working hours,
which is quite common). For the text generation,
we also set the ’top_p’ parameter to 1 to ensure that
only the tokens whose combined probability adds
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Relevant
benefit section Feature Description Data type Occurring values

All language Language of the vacancy text categorical (string) {English, Dutch}
Salary hidesalary Whether salary amount should be mentioned binary {True, False}

minsalary Lower limit of salary amount in euro numeric (float)
9.63 - 41.0 for hourly,
250 - 4500 for monthly

maxsalary Upper limit of salary amount in euro numeric (float)
9.7 - 45.0 for hourly,
250 - 6000 for monthly

fixsalary Whether minsalary and maxsalary are equal binary {True, False}
salarytype Frequency of payment categorical (string) {Monthly, Hourly}

Hours minhour Minimum working hours per week numeric (int) 2 - 55
maxhour Maximum working hours per week numeric (int) 2 - 55
fixhour Whether minhour and maxhour are equal binary {True, False}

Contract contracttype Type of offered contract categorical (string)
{Temporary, Temporary with a
possibility of fixed, Fixed}

Location location
City name of
work location

categorical (string) -

Table 1: Overview of the features in the dataset

up to 100% are kept for generation. Additionally,
we set ’top_k’ parameter to 10 to make sure to only
choose from the ten most probable tokens.

3.4 Generating extra training data

We applied two methods to generate extra training
data. One for producing additional examples in
each language (inspired by Agarwal et al. (2020))
by translating all English training samples to Dutch
and all Dutch training samples to English using the
Googletrans library¶. Then, we repeated the pre-
processing steps, removed the duplicated samples
and appended this new training set to our original
training set, approximately doubling our training
set and obtaining a balanced dataset in terms of lan-
guage. We refer to this training set as the translated
training set. For the second method (similarly to
Gong et al. (2019)), we generated synthetic data
for the sections with the numeric inputs (salary and
hours). We guaranteed that the range between the
lower and higher values (lower and higher bounds)
were not exceeded (for working hours and monthly
and hourly salary amount separately). After ran-
domly selecting the new numbers, we replaced the
original numeric values in the targettext to cre-
ate the new synthetic training samples. We rounded
every value to two decimals and ensured using the
correct monetary unit for the salary section. For the
hours section, we only picked from integer num-
bers, following the nature of the training data. We
created such synthetic training samples by replac-
ing values three times on every training sample
from the translated dataset. After creating the syn-
thetic data we performed the pre-processing steps

¶https://pypi.org/project/googletrans/

and removed any duplicates, thus we received an
approximately three times larger, balanced - re-
garding the language - dataset that included some
randomness and covered more numeric values than
our previous training sets. We then added this train-
ing set to our translated dataset, which we refer to
as synthetic training data in the rest of the paper.

3.5 Experimental setup

We split the data for each benefit section into train-
ing, validation and test sets with a 60-20-20% ratio.
Table 9 in Appendix C contains the sample sizes
for each benefit sections. The details about how
the random seed was set for different parts of the
workflow in order to ensure reproducibility and
fair comparison between models can be found in
Appendix D.

3.6 Evaluation metrics

3.6.1 Text Quality
To measure the quality of text, we use the BLEU-
1, BLEU-2, ROUGE-1, ROUGE-2 and METEOR
scores (previously explained in section 2). We only
use the BLEU and ROUGE scores up to two n-
grams because our sections are rather short ( 5.5
to 7 words on average). Additionally, we record
the size of vocabulary by automatically counting
the number of unique words in the generated texts
after removing all numeric values, and excluding
the city name for the location section. This way
we ensure that including a wrong input does not
change the size of vocabulary.

3.6.2 Language accuracy
A main goal of this study is to determine, whether
the mT5 model is reliable in terms of generating
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text in the requested language. Thus, we compare
the requested language to the language of the gener-
ated text. We used the Lingua library|| for language
detection, as this library is suitable for detecting
language of short sentences specifically. To de-
termine the language accuracy we calculate the
percentage for each language where the detected
language matches the intended one.

3.6.3 Input generation accuracy
For the newly developed ’input generation accu-
racy’ metrics, we calculate the number of correct
samples divided by the number of all samples. The
correct samples are identified with predefined rules
with string matching. For the location section a
sample is considered correct if the city name is cor-
rectly included. For the contract section, we use a
collection of terms to classify the created text into
one of three potential categories (Temporary, Tem-
porary with a possibility of fixed, Fixed). For the
hours and salary sections we extract the numbers
from the generated text and compare them to the
input numbers. If there is any difference between
the two set of numbers we treat the sample incor-
rect. Furthermore we check whether each number
is only included once. This is especially crucial for
the fix salaries otherwise for example the following
text would be considered correct: ’You will work
between 40 and 40 hours’. For the salary section,
we also check whether the monetary unit is set prop-
erly (the decimal is separated with a comma) and
the rounding is correct (all integers are rounded
to whole numbers and non-integers to two deci-
mals). Additionally, we use string matching to
assess the categorical salarytype input genera-
tion accuracy. First, we lowercase the generated
text and then for example if the salary type is ’per
month’, we consider the sample correct if the gen-
erated text contains ’month’ but not ’hour’. As a
result, records are not only penalized if they in-
clude the wrong salary type, but also if they do not
contain the correct one. Finally, we measure the
binary input generation accuracy (for hidesalary)
by detecting whether any numeric values appear in
the generated text.

4 Results

Table 2 shows the results for each section. It shows
the input format (Input), epoch size (Epoch), qual-
ity of text scores (METEOR, BLEU-1, BLEU-2,

||https://pypi.org/project/lingua/

ROUGE-1, ROUGE-2), language accuracy scores
(English, Dutch), input generation accuracy (for
categorical, numerical and binary inputs), and vo-
cabulary size in words.

4.1 Location

Rows 1-3 in Table 2 show the results obtained for
the location benefit section. The best perform-
ing input format for mT5 (based on input gen-
eration accuracy) was ’FEATURE = value’ (in-
put B). A perfect language accuracy was already
achieved on the original dataset (row 2). By fine-
tuning the model on the translated dataset, we were
able to increase the input generation accuracy to
84.87% (row 3). mT5 fine-tuned on this trans-
lated data (row 3) reached similar results regarding
the METEOR score and slightly outperformed the
template-based method (row 1) in terms of BLEU-2
and ROUGE-2 score. Additionally, the size of vo-
cabulary was more than twice (315-339) for the
generated text when compared to the template-
based method (129).

4.2 Contract

As mentioned in section 3, we used the English
prefix value of the input when fine-tuning the mod-
els. However, in the case of the contract section
the English language accuracy remained zero even
after using the translated dataset for fine-tuning
(row 6 on Table 2). Then we fine-tuned the model
using a translated version of the prefix and the in-
put. For example for an English sample the prefix
was given as ’Generate in English’ and the input
format was ’CONTRACTTYPE = fix’, while for a
Dutch sample the prefix was specified as ’Gener-
eren in het Nederlands’ and the input was trans-
lated to Dutch and given as ’CONTRACTTYPE =
vast’. As shown on row 7, with the translated pre-
fix and input, the model was able to achieve high
language accuracy for English (92.31%) and a high
input generation accuracy (96.44%) too. Adding
the translated data (row 8), however was found un-
necessary as it resulted in a decrease in the cat-
egorical input generation accuracy (to 74.19%).
Overall, the transformer model achieved similar
results to the template-based method (row 4) re-
garding the language and the input accuracy, while
under performing in terms of the quality of text
scores. Furthermore, the used vocabulary by the
transformer had a 3.5 times larger size (170-263)
than the template-based method (77).
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Benefit
section Model Training

data Input Epochs METEOR BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 English
lang. acc.

Dutch
lang. acc.

Binary
input
gen. acc.

Categorical
input
gen. acc.

Numeric
input
gen. acc.

Size of
voc.

1 Location
Template-
based

Original - - 19.95 30.24 11.84 37.67 10.62 100.00 100.00 NA 100.00 NA 129

2 Location mT5 Original B 40 20.88 28.35 13.53 34.43 13.09 100.00 100.00 NA 76.97 NA 315
3 Location mT5 Translated B 50 20.33 27.77 13.40 32.36 11.87 100.00 100.00 NA 84.87 NA 339

4 Contract
Template-
based

Original - - 37.16 36.88 25.93 56.03 30.63 100.00 100.00 NA 100.00 NA 77

5 Contract mT5 Original C 15 25.43 26.42 14.43 34.81 15.12 0.00 99.54 NA 78.42 NA 219
6 Contract mT5 Trans. C 20 25.09 26.55 14.10 34.02 14.33 0.00 99.77 NA 66.63 NA 170
7 Contract mT5 Original B (tran.) 15 29.10 29.42 16.51 39.14 16.88 92.31 98.97 NA 96.44 NA 263
8 Contract mT5 Translated B (tran.) 15 26.71 27.37 15.02 34.85 15.28 92.31 99.77 NA 74.19 NA 224

9 Hours
Template-
based

Original - - 46.38 42.11 35.34 80.16 63.92 100.00 100.00 NA NA 100.00 51

10 Hours mT5 Original B 15 35.82 35.16 25.90 61.18 40.91 15.38 99.50 NA NA 83.17 137
11 Hours mT5 Translated B 30 40.22 37.92 29.01 60.06 41.30 92.31 100.00 NA NA 77.51 184
12 Hours mT5 Synthetic B 50 42.62 39.83 31.69 63.38 45.28 100.00 99.83 NA NA 98.06 163

13 Salary
Template-
based

Original - - 30.45 32.03 22.34 60.80 38.09 100.00 100.00 100.00 100.00 100.00 112

14 Salary mT5 Original A 30 28.27 31.16 20.53 46.82 28.10 96.88 99.85 89.71 99.06 85.31 528
15 Salary mT5 Translated A 40 29.20 31.67 20.56 48.22 28.57 96.88 99.93 99.21 97.44 84.23 585
16 Salary mT5 Synthetic A 40 27.70 29.74 18.70 46.32 25.89 100.00 99.93 99.93 97.44 68.06 607

Table 2: The results for each benefit section. NA refers to ’Not Applicable

4.3 Hours

For the experiments on the hours section, the
best performing input format was B; ’FEA-
TURE=value’. The results show that by using the
translated dataset, the model reaches a significantly
higher language accuracy, with English language
accuracy improving from 15.38% to 92.31% (row
11 on Table 2). However, by using the translated
training set for fine-tuning, and having two samples
for the same number, the model’s input accuracy de-
creased to 77.51% (row 11). By using the synthetic
training data for fine-tuning, thus adding more ran-
domness, the input accuracy increased to 98.06%
and approached the template-based method, while
keeping a high language accuracy (row 12). More-
over, the experiments show that the transformers
use about 3 times more words (137-184) than the
template-based method (51).

4.4 Salary

For the salary section the best performing input
format was input A. Row 13-16 on Table 2 illus-
trates that a high language accuracy (>96.88%)
is achieved by the transformer regardless of the
training data. While the categorical input gener-
ation accuracy was not significantly affected by
the training data (decrease of 1.62%), the binary
input accuracy improved (by 9.5%) with added
translated data (row 15). In contrast, when fine-
tuning on more training data, numeric input accu-
racy dropped, in particular with synthetic data (by
16.17%, row 16). Lastly, the vocabulary size is
around 2.5 times higher for transformers (528-607)
compared to the template-based method (127).

5 Analysis and discussion

5.1 Language accuracy

Table 2 shows how fine-tuning the model on dif-
ferent training data affected the language accuracy
for each benefit section. The Dutch language ac-
curacy was high (between 98.97% and 100%) for
each benefit section regardless of the training data.
In terms of English language accuracy, the loca-
tion and salary sections performed well (with a
language accuracy between 96.9% and 100%) re-
gardless of the training data. While the extra train-
ing data was beneficial for the hours section (and
lead to an accuracy of 92.3% from 15.4%), it was
ineffective for the contract section, keeping the En-
glish language accuracy at zero. Meanwhile, by
translating the input and the prefix, a good level of
English language accuracy (92.31%) was obtained
for the contract section too. While intuition sug-
gests that language accuracy may be affected by
the volume of training samples - as Dutch samples
account for approximately 95% of each section -
this idea cannot be supported, because both the
contract and hours sections have approximately
3-4 times more training data (and approximately
2.5-3.5 times more English samples in the train-
ing data), than the location section, which was still
able to reach a perfect English language accuracy
with such a small training set as 454 samples (from
which 20 were English).

5.2 Input generation accuracy

Appendix F contains three correct and three incor-
rect examples for each type of input generation
(categorical, binary and numeric) and each benefit
section.
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Location The categorical input in the location
benefit is unique because the input can only be
generated in one single way (mentioning the city
name can not be done differently). Row 2 on Ta-
ble 2 shows that when fine-tuned on the original
training data, the model achieved an input accuracy
of 76.96%. Using the translated training data for
fine-tuning, significantly increased this score and
resulted in an accuracy of 84.87%. However, this
is still a long way from the rule-based approach.
Previous work (Kale and Rastogi, 2020) pointed
out that data-to-text generation algorithms perform
worse on test samples that have an unseen input.
This decrease was major, around 23.2% (with an ac-
curacy of 60%) for a neural-based model, but only
2% (with an accuracy of 90%) for T5 transformer,
when applied in the closed Wikipedia domain (Kale
and Rastogi, 2020). Our test set had five cities that
were unseen; not present in the training data. The
input accuracy for the 9 samples, which used one
of these unseen cities, was 44.44%. Whereas the
input accuracy for the samples with the seen input
was 96.06%. In case of some samples with unseen
inputs, the model generated text with a new city
name. For example, when the input was ’Zwaag’
the model generated the following sentence ’Pal
gelegen achter her centraal station Zwaaijdijk’,
naming a non-existing city. The samples with un-
seen inputs in our dataset are very specific, small
Dutch city names, that were allegedly not part of
the corpus mT5 was trained on, which could ex-
plain why transfer learning had a major impact
when using the closed domain Wikipedia dataset
(WebNLG) in the related work (Kale and Rastogi,
2020), but not in our domain.

Contract and salary We see a high accuracy for
categorical input generation (96.44% and 99.06%)
at the contract and salary sections, using only the
original training data. Fine-tuning on extra training
data had no significant impact on salary, however
adding translated training data caused a drop in cat-
egorical input accuracy by 25.25% for the contract
section.

Binary input generation The salary section of
Table 2 reveals that fine-tuning the model on the
translated dataset significantly improves binary in-
put generation accuracy (from 89.71% to 99.21%).
This accuracy nears perfection, which demonstrates
the transformer can learn domain knowledge by
learning to hide the salary amount. Some of the

correctly generated text for hidden salaries were:
’Based on experience’, ’A good salary and excellent
reimbursement overtime’.

Numeric input accuracy The hours section of
Table 2 illustrate that fine-tuning on the translated
training set resulted in some decrease (5.66%, from
83.17% to 77.51%) for the hours benefit section
regarding the numeric input generation accuracy.
This is not surprising given that by translating, all
covered numbers in the training samples were cov-
ered roughly twice as much. However, by using the
synthetic dataset for training the distribution of the
samples in the training set was very even (because
randomly choosing the values during the method of
creating the synthetic data) and the model reached
a 98.06% input generation accuracy. Compared
to prior work (Gong et al., 2019) where includ-
ing synthetic data lead to an accuracy increase of
2.6%, in our case accuracy increased by 14.89%.
However, this strategy of fine-tuning on synthetic
data did not work for the salary section. The ac-
curacy of numeric input generation actually de-
creased significantly (from 85.31% to 68.06%).
This might be explained by the nature of the data,
because the hours section only includes integer
numbers and covers a very limited range of num-
bers (between 2 and 55 in the training data). On
the other hand the salary section contains monthly
and hourly salaries too. Monthly salary are integers
with a wide range (the range in the training data is:
250 - 6000) while the hourly wages are rounded to
two decimals and cover the range (in the training
data) between 9.63 - 45.00. A possible explanation
might be that the original dataset focuses on certain
numbers. The proportion of the unique numbers
(for both minimum and maximum and hourly and
monthly salaries) was between 20.5% and 36.05%.
There are some patterns in the data, which were not
matched when adding synthetic data. For example,
next to understandably common decimal values for
hourly salaries (0, 50, 99) other values (e.g., 48,
97, 29 or 8) are common too. This could be caused
by collective labor agreements, minimum wage,
yearly salary increases, or inflation correction.

5.3 Limitations

One limitation of our work is the unbalanced nature
of the original dataset in terms of language. While
this provides a unique opportunity and challenge, it
also leads to having only very few (between 2-64)
English samples for some sections. These small
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sample sizes may make our findings less reliable
regarding the English language accuracy. A sec-
ond limitation concerns our focus on the benefit
sections of vacancies. These sections are rather gen-
eral and typically do not vary between jobs as much
as other vacancy sections (e.g., the task section),
which might make our finding less generalizable.
However, due to absence of structured input we
were unable to study other vacancy sections.

6 Conclusion

Although the amount and the imbalanced nature of
the dataset (in terms of language) prevent us from
drawing definite conclusions, our analysis reveals
several insights into the behavior of the mT5 model,
which we use to answer our three sub-questions.
RQ1.1 First, we focus on finding how accurately
mT5 generates text in the correct language. Over-
all, we found that with the right parameter tuning,
prefix, and input, mT5 performs very well in gen-
erating text in the correct language.
RQ1.2 To find how accurate mT5 is at including
different types of inputs (numerical, binary, cate-
gorical) correctly in the generated text, we used
our own new, domain-specific metrics in the gen-
erated text. We conclude that while mT5 is highly
accurate at generating from binary inputs, and seen
categorical inputs, it struggles with unseen categor-
ical and numeric inputs.
RQ1.3 Finally, we explore how fine-tuning mT5 on
translated and synthetic data affects the language
and input generation accuracy. We found that fine-
tuning mT5 on additional training data (translated
and synthetic) can lead to major improvements,
however the rate of which strongly depends on the
nature of the task and the distribution of numeric
samples in the dataset.

In conclusion, we evaluated how accurately mT5
includes inputs in the generated text with custom
metrics developed by us, on a novel task in the job
description domain. We applied transfer learning
on a new and unique dataset in terms of volume and
language balance. While our findings are mostly
in line with earlier studies, we demonstrate that
language accuracy, input generation accuracy, and
the effectiveness of extra training data are highly
dependent on the nature of data and task. Overall,
even though the model may not be as accurate as
a template-based approach, it can be employed un-
der human supervision to generate benefit sections
of vacancies, and will yield more diverse outputs.

Additionally, when using the model, the users can
rely on custom evaluation metrics developed by us.

Promising future work directions include using
more languages and other sections of vacancy texts.
For example, while the requirements section of the
vacancies currently do not have structured input
data available; these inputs may be extracted au-
tomatically using a skill extraction model, such
as LinkedIn’s Job2Skills model (Shi et al., 2020).
Extending the study to novel sections of the va-
cancy could give a great opportunity to observe
how transformers work with categorical input with
a wider range of values than our salarytype and
contracttype, while still being more general than
the location input. Another intriguing step is to
investigate how automatically generated text af-
fects the accessibility of job descriptions. Finally,
evaluating the models with the recruiters would be
a logical next step too.
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Appendix A Template-based method

This appendix helps to understand the template-based method described in subsection 3.2. It contains the
pipeline for the template-based method with an example (Figure 2) as well as the combinations for the
templates.

Figure 2: The pipeline of the template-based method with an example for the salary benefit section. In the first step
the values of all non categorical features get replaced by the feature name resulting in a template for every training
sample. Next, for all combination the five most common template gets extracted. In the third step, one of the chosen
template gets randomly picked which then is filled in by replacing the non categorical feature names with their
values in step 4.

A.1 Template combinations
This Section contains the combination of templates for each benefit section. Table 3 shows that the

location section only had two different types of templates, the contract and the hours benefit sections had
six (show on Table 4 and Table 5), while the salary benefit section had ten different types (shown on

Table 6).

Combination Language
1 English
2 Dutch

Table 3: There are 2 combinations for the location section, each combination contains 5 templates.
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Combination Language Fix hour Full time
1. English False False
2. English True False
3. English True True
4. Dutch False False
5. Dutch True False
6. Dutch True True

Table 4: There are 6 combinations for the hours section, each combination contains 5 templates.

Combination Language Contract type
1 English Temporary
2 English Temporary with a possibility to fixed
3 English Fixed
4 Dutch Temporary
5 Dutch Temporary with a possibility to fixed
6 Dutch Fixed

Table 5: There are 6 combinations for the contract section, each combination contains 5 templates.

Combination Language Hidesalary Fixsalary Salary type
1. English True - -
2. Dutch True - -
3. English False True Hourly
4. English False True Monthly
5. Dutch False True Hourly
6. Dutch False True Monthly
7. English False False Hourly
8. English False False Monthly
9. Dutch False False Hourly
10. Dutch False False Monthly

Table 6: There are 10 combinations for the salary section, each combination contains 5 templates.

Appendix B mT5 model

For optimizer we used the Adafactor optimizer, with the default parameters suggested by Shazeer and
Stern (2018). Table 7 shows the values of the parameters.

Parameter Parameter name Set value
ϵ1 regularization constants for square gradient 10−30

ϵ2 parameter scale 10−3

d threshold of root mean square of final gradient update 1
β̂2t decay rate 1− t−0.8

α external learning rate 10−3

Table 7: The hyperparameter settings for the Adafactor optimezer based on Shazeer and Stern (2018)
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Appendix C Details of dataset, pre- and postprocessing steps

First, we fixed the monetary units and the hidesalary binary field for the salary benefit section. Then,
we excluded samples that were not correct based on the language and at including the input (for which we
used our own input accuracy metrics explained in subsection 3.6).
In Table 8, we show the set of words for each benefit section that were removed before running the
language detection on the generated text.

Section Words removed
for language detection

Location location from input
Contract words : contract, direct, per, week, of, permanent
Hours -
Salary per, week

Table 8: Words removed for each section before running the language detection on the generated text

In Table 9, we show the size of training, validation and test set for each benefit sections.

Benefits
section

Size of
training set

Size of
validaiton set

Size of
test set

Location 454 152 152
Contract 2696 899 899
Hours 1854 618 618
Salary 4197 1399 1399

Table 9: Size of training, validation and test set for each benefit section

In Table 10, we show the number of English and Dutch samples for each benefit section in the training,
validation and test set.

Section Samples in training set Samples in validation set Samples in test set
All Dutch English All Dutch English All Dutc English

Location 454 434 20 152 148 4 152 150 2
Contract 2696 2626 70 899 881 18 899 873 26
Hours 1854 1807 47 618 608 10 618 605 13
Salary 4197 4061 136 1399 1353 46 1399 1335 64

Table 10: The number of samples for each section in the training, validation and test set. The sample size is further
braked down regarding the language.

Appendix D Random seed

The random seed was set to 1 for the splitting the dataset into training, validation and test set. The
validation set was used for hyperparameter tuning and deciding which input format to use. Additionally,
because both the template-based method and the transformer method has some randomness we assigned a
random integer number between 1 and 9999 to every sample in the validation and the test set, which we
then used as the random seed for generating the text, for the template-based method and the mT5 models.
This way we ensured reproducibility and fair comparison between models. Additionally, we set the
random seed for the transformer models to be 1 before fine-tuning the models.

Appendix E Rule-based classifier for the contract type evaluation

The following algorithm contains the rule-based classifier that was used to detect the contract type in the
generated text for the contract benefit section.
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Algorithm 1 Contract type classifier
words = set of lower case words of generated text
if any words in {’prospect’, ’possibility’ , ’opportunity’ , ’chance’, ’kans’, ’mogelijkheid’ , ’uitzicht’ ,
’view’, ’option’} then

return Temporary with a possibility to fixed
else if any words in { ’temporary’, ’tijdelijk’ } then

return Temporary
else if any words in {’permanent’, ’direct’, ’directly’, ’long’, ’vast’, ’dienstverband’, ’jaarcontract’}
then

return Fixed
end if

Appendix F Examples

The following tables contain 3 correct and 3 incorrect examples for each type of input (categorical, binary,
numeric) for each section. The Dutch samples have been translated by the authors to English for a better
understanding of the examples.

F.1 Examples of categorical input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

LOCATION = Veghel
Super mooi bekend bedrijf in Veghel
(Translated: Super nice well-known company in Veghel)

LOCATION = RIJEN
Werken in de omgeving van Rijk
(Translated: Work in the area of Rijk)

LOCATION = Schiphol
Werken in de dynamische omgeving Schiphol
(Translated: Work in the dynamic environment of Schiphol)

LOCATION = Zwaag
Pal gelegen achter het centraal station Zwaaijdijk!
(Translated: Located right behind Zwaaijdijk central station!)

LOCATION = Amstelveen
Werken op een mooie locatie in Amstelveen
(Translated: Work at a beautiful location in Amstelveen)

LOCATION = Oud Gastel
Een baan in de Hoeksche Waard: Oud-Beijerland
(Translated: A job in the Hoeksche Waard: Oud-Beijerland)

Table 11: Correct and incorrect examples of the categorical location generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output
<CONTRACTTYPE>temporary with
a view to permanent

The chance of permanent contract
<CONTRACTTYPE>temporary with
a view to permanent

Fulltime with our client

<CONTRACTTYPE>temporary with
a view to permanent

Opportunity to get a permanent contract <CONTRACTTYPE>fix
Een temporary baan
(Translated: A temporary job)

<CONTRACTTYPE>vast
Direct op contract bij het bedrijf
(Translated: Direct contract with the company)

<CONTRACTTYPE>fix The possibility to get a permanent contract

Table 12: Correct and incorrect examples of the categorical contract generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

<FIXSALARY>2100.0 <SALARYTYPE>per month A salary of C 2100 gross per month.
<FIXSALARY>10.0
<SALARYTYPE>per hour

Salaris C10.
(Translated: Salary C10.)

<MINSALARY>2600.0 <MAXSALARY>3000.0
<SALARYTYPE>per month

Salary between C 2600 and C 3000
gross per month.

<MINSALARY>11.0 <MAXSALARY>12.0
<SALARYTYPE>per hour

Salaris tussen de C11,- en C12
(Translated: Salary between C11 and C12.)

<FIXSALARY>14.0 <SALARYTYPE>per hour Good hourly rate of C 14 gross per hour. <FIXSALARY>11.5 <SALARYTYPE>per hour
Salaris Bespreekbaar, per week betaald!
(Translated: Salary Negotiable, paid per week!)

Table 13: Correct and incorrect examples of the categorical salary generation from the test set
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F.2 Examples of binary input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

<HIDESALARY>TRUE Based on experience <HIDESALARY>TRUE
Een salaris van C11,- bruto per uur!
(Translated: A salary of C11 gross per hour!)

<HIDESALARY>TRUE A good salary and excellent reimbursement overtime <HIDESALARY>TRUE
Een salaris van C11,49 per uur
(Translated: A salary of C11.49 per hour)

<HIDESALARY>TRUE A good salary in accordance with the collective labor agreement <HIDESALARY>TRUE
Een loon van C 16,- per uur
(Translated: A wage of C16 per hour)

Table 14: Correct and incorrect examples of the binary salary generation from the test set

F.3 Examples of numeric input generation

Examples of correct samples
from test set

Examples of incorrect samples
from test set

input output inpug output

FIXHOUR = 32 Work week of 32 hours FIXHOUR = 32
De mogelijkheid om 32 ur tot 32 uur te werken
(Translated: Possibility to work from 32 to 32 hours)

MINHOUR = 24| MAXHOUR = 40 24 to 40 hours, choose how many hours you work MINHOUR = 10| MAXHOUR = 15
11-15 uur, vraag naar het rooster.
(Translated: 11-15 hours, ask for the schedule.

MINHOUR = 32| MAXHOUR = 40 A working week from 32 to 40 hours (your preference) FIXHOUR = 38
Een werkweek tussen de 38 en 38 uur.
(Translated: A work week between 38 and 38 hours.)

Table 15: Correct and incorrect examples of the numeric hours generation from the test set

Examples of correct samples
from test set

Examples of incorrect samples
from test set

Input Output Input Output

Montlhy <FIXSALARY>500.0 <SALARYTYPE>per month max. 500 euro gross per month
<MINSALARY>2400.0 <MAXSALARY>3100.0
<SALARYTYPE>per month

Salaris tussen de C2400 en C.- C3300 per maand
(Translated: Salary between C2400 and
C.- C3300 per month)

<FIXSALARY>500.0 <SALARYTYPE>per month Stage starting salary of C500 per month <FIXSALARY>2200.0 <SALARYTYPE>per month
Goed salaris van rond de C2200 en C2200 per maand!
(Translated: Good salary of around C2200
and C2200 per month!)

MINSALARY>3000.0 <MAXSALARY>3500.0
<SALARYTYPE>per month

Salary between C3000 and C3500 per month
<MINSALARY>2771.0 <MAXSALARY>3934.0
<SALARYTYPE>per month

Salaris tussen de C2110 en C3738 bruto per maand
(Translated: Salary between C2110
and C3738 gross per month)

Hourly FIXSALARY>11.0 <SALARYTYPE>per hour 11 euros per hour and shifts allowances <FIXSALARY>11.67 <SALARYTYPE>per hour
Een salaris van C11,62 bruto per uur
(Translated: A salary of C11.62 gross per hour)

<MINSALARY>14.27 <MAXSALARY>17.68
<SALARYTYPE>per hour

Salaris tussen de C14,27 en C17,68 per uur
(Translated: Salary between
C14.27 and C17.68 per hour)

<MINSALARY>12.42 <MAXSALARY>18.47
<SALARYTYPE>per hour

C12,42 - C18,57 per uur op basis van ervaring
(Translated: C12.42 - C18.57
per hour based on experience)

<FIXSALARY>11.5 <SALARYTYPE>per hour
Een lekker salaris van C11,50 per uur
(Translated: A nice salary of C11.50 per hour)

<FIXSALARY>11.27 <SALARYTYPE>per hour
Uurloon van C12,27
(Translated: Hourly wage of C12.27)

Table 16: Correct and incorrect examples of the numeric salary generation from the test set
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Abstract

Recent pre-trained language models have
shown promising capabilities in generating flu-
ent and realistic natural language text. How-
ever, generating multi-sentence text with global
content planning has been a long-existing re-
search question. Current approaches for con-
trolled text generation can hardly address this
issue, as they usually condition on single
known control attributes. In this study, we pro-
pose a low-cost yet effective framework which
explicitly models the global content plan of
the generated text. Specifically, it optimizes
the joint distribution of the natural language
sequence and the global content plan in a plug-
and-play manner. We conduct extensive ex-
periments on the well-established Recipe1M+
benchmark. Both automatic and human evalua-
tions verify that our model achieves the state-
of-the-art performance on the task of recipe
generation.1

1 Introduction

Recent progress in large-scale language model pre-
training has facilitated significant improvement in
generating increasingly realistic natural language
text. Although this has been achieved on the
surface-level fluency, it has been pointed that gen-
erating multi-sentence text with global constraints,
or long-term planning is still far from being solved.
Typical examples of such task include story con-
tinuation with logical coherency (Nye et al., 2021;
Sinha et al., 2019), and recipe generation with step-
by-step planning (Marin et al., 2019).

As suggested by LeCun (2022), the aforemen-
tioned issues cannot be ameliorated by simply in-
creasing the size of model parameters or the scale
of pre-training data. Adding to this, current ap-
proaches for controlled text generation cannot di-
rectly tackle those issues either. For example,

1Our code and other related resources are publicly
available at https://github.com/williamLyh/
RecipeWithPlans.

CTRL (Keskar et al., 2019), which trains a class-
conditional language model, and PPLM (Dathathri
et al., 2019), which re-ranks the language model
predictions by an attribute model. They usually
share a common setup of optimizing conditional
distributions P (y|a), where y is the text sequence
and a is the desired single control attribute. Exam-
ples of control attribute include sentiment (Ghosh
et al., 2017), topic (Tang et al., 2019) and formality
(Wang et al., 2019). However, content planning
requires controlling with consideration of global
context, which is more sophisticated than the sin-
gle control attributes. Therefore, we identify the
research gap for the current controlled text gener-
ation models to generate multi-sentence text with
long-term content planning.

Motivated by previous research in cognitive sci-
ence (Evans, 2003), Nye et al. (2021) pointed out
that the reasoning of a neural-based model should
consist of two systems, i.e. the system 1 makes
intuitive and associative responses, and the system
2 makes deliberative and logical decisions. With
greatly increased capabilities, large language mod-
els have become sufficiently competent to act as
the system 1. However, we argue that, to address
the aforementioned research gap, it is vital to em-
power the language models with the ability to make
logical decisions, i.e. predict content plans.

In contrast to the existing methods that optimize
the conditional distributions, we propose a novel
framework which explicitly models the content
plan c and optimizes the joint distribution P (y, c)
in a plug-and-play manner. Figure 1 depicts an
overview of our approach. Specifically, our pro-
posed framework consists of (i) a content planner
which predicts the global content plan of the output
text; and (ii) a sequence generator, based on pre-
trained language models, that generates the output
following the content plan. The predicted content
plan steers the generation of the sequence generator
through a lightweight and plug-and-play style plan
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classifier. It worth emphasizing that the sequence
generator does not need to be trained with plan-
specific data, which means adapting our framework
to other Natural Language Generation (NLG) tasks
is cheap and efficient.

We comprehensively evaluate our approach on
the recipe generation task using the widely-used
Recipe1M+ benchmark (Marin et al., 2019). The
experimental results demonstrate that our approach
significantly outperforms previous state-of-the-art
(SOTA) as judged by both automatic and human
evaluations. In particular, the results show that the
recipes generated by our model are more accurate
and highly controllable.

In summary, we conclude our contributions as
two-fold: Firstly, we identify the current research
gap and propose a novel framework that generates
text with content plans in a plug-and-play man-
ner. Secondly, we conduct extensive experiments
to show that our framework achieves SOTA perfor-
mance on the widely-used Recipe1M+ benchmark.

2 Background and Related Works

2.1 Controlled Text Generation

Controlled Text Generation (CTG) refers to tasks
of generating natural text conditioned on given
controlled attributes. CTG approaches that
leverage transformer-based Pre-trained Language
Model (PLM) could be classified into three cat-
egories according to their required computation
resources (Zhang et al., 2022). We provide a brief
overview of these three categories.

Retraining. These methods usually modify the
original architecture of PLMs and retrain them for
a specific downstream task. For example, CTRL,
proposed by Keskar et al. (2019), is a representa-
tive that trains a language model with task-specific
control codes for each type of text corpus. Another
work is POINTER, proposed by Zhang et al. (2020),
which stacks the architecture of insertion-based
transformer (Chan et al., 2019) in a hierarchical
manner to enforce hard lexical constrains during
text generation. This type of methods could control
the generated text effectively, but may negatively
affect generalization of the PLM. They also usually
have high computational footprint, and large-scale
task-specific annotated data.

Fine-tuning. These methods require partial or
full fine-tuning of a PLM for each individual target

attribute. For example, Bostrom et al. (2021) pro-
posed ParaPattern which fine-tunes BART-based
models (Lewis et al., 2020a) to generate text via
applying different logical operations to premise
inputs. Ribeiro et al. (2021) fine-tunes PLMs to
control the generation from different types of graph-
ical data. The prefix-tuning, proposed by Li and
Liang (2021), only optimizes a task-specific vector
(prefix), while freezing the rest of PLM, to con-
trol the domain of generation. Fine-tuning PLMs
based on a small amount of labelled data for the
specific downstream task has achieved competitive
performance. However, fine-tuning based methods
usually steer the PLM from the side of input, which
means it could be hard to enforce hard constrains
on the outputs directly.

Post-processing. These methods usually do not
require task-specific data to fine-tune the PLM, but
require decoding algorithms to re-rank the gener-
ated text in a post-processing manner. As a repre-
sentative work, PPLM, proposed by Dathathri et al.
(2019), uses gradients from an attribute discrimi-
nant model to steer the text generation. FUDGE,
proposed by Yang and Klein (2021), weights the
decoding probabilities with an attribute predictor
which takes partial sequence as input. Su et al.
(2022b); Su and Collier (2022) proposed Con-
trastive Search decoding, which encourages diver-
sity by penalizing repetitive tokens. Lu et al. (2021)
proposed NeuroLogic Decoding, which enforces
the generation to satisfy a set of pre-defined hard
lexical constrains. MAGIC, proposed by Su et al.
(2022a), applies an image relevance discriminator
to guide the generation process with visual infor-
mation. This type of methods are usually compu-
tationally cheap and flexible, because they have a
separate guiding module. The increasing number
of parameters of the PLM would not affect the com-
plexities of the methods. Our approach falls into
this category of methods.

2.2 Generation with Plan

From the perspective of CTG tasks, attributes
to control during generation include sentiment,
topic, style, formality, story structure, content plan,
among others. For example, Ghosh et al. (2017)
proposed Affect-LM, which extend an LSTM lan-
guage model by conditioning on pre-defined affect
categories and strength. Fu et al. (2018) investi-
gated the task of learning paper-news title style
transfer from non-parallel data. Li et al. (2020)
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proposed the framework of SongNet which studies
rigid format control to generate poems or songs
that obey pre-defined rhyming schemes.

Previous works in controlling the generation
with content planning are mainly focusing on the
task of data-to-text generation and always taking
schema selection and ordering as content plans.2

For example, Moryossef et al. (2019) separates
planning from neural text realization and takes
the most probable traversal of RDF graph trees
as content plan. Zhao et al. (2020) employs a GCN
encoder to order the nodes of input RDF data as
content plan. Su et al. (2021) proposed Plan-then-
Generate, which treats orders of tabular schema as
plans and then plans are encoded along with lin-
earized data as inputs to a generative model. How-
ever, those methods require graphical or tabular
input data and can only model content planning
based on the data schema, which limits their do-
main of application. Yao et al. (2019) proposed a
hierarchical generation framework that first plans a
keyword storyline and then generate a story based
on the storyline. However, the generated keywords
do not capture any global relation between each
other.

2.3 Recipe Generation
Recipe generation refers to the task of generating
recipe instructions from food images or textual
ingredients and food title. Because recipes have the
natural step-by-step sequence flow, sentence-level
content planning is desired in order to generate
high quality recipes.

Previous works tackled this issue in many direc-
tions. Chandu et al. (2019) treated this problem
as a Visual Story Telling task and built a dataset
containing images and text for each intermediate
step. The recipe instructions are generated from
the sequential images. Kiddon et al. (2016) models
global coherence of the recipes by maintaing an
ingredient checklist dynamically. During genera-
tion, a language model is encouraged to refer to
the checklist item. Bosselut et al. (2018) tracks
ingredient entity with a recurrent memory module
and explicitly models actions as a set of per-defined
state transforming operations. The recipes are then
interpreted as structured collections of ingredient
entities executed upon by cooking actions. (Ma-
jumder et al., 2019) investigated the task of person-

2Schema selection and ordering depend on input data struc-
ture, e.g. selecting and re-ordering the cells of tabular data or
the nodes of graphical data.

alized recipe generation. The user’s previously con-
sumed recipes are encoded and attended by recipe
name and ingredients to generate complete instruc-
tions. However, they require complicated input
data format, and sophisticated planning templates.

Recipe1M+, introduced by Marin et al. (2019),
is an extension of Recipe1M (Salvador et al., 2017)
and contains over 1M textual recipes and ingre-
dients and 13M corresponding food images. The
dataset has been used for versatile tasks, such as
image-recipe retrieval (Chen et al., 2017), multi-
modal embedding learning (Min et al., 2017), and
recipe generation (Salvador et al., 2019). The
RecipeGPT, proposed by H. Lee et al. (2020), fine-
tuned a GPT-2 as a backbone generation model,
taking only recipe titles and ingredients as input
and recipe instructions as output. The NeuroLogic
Decoding (Lu et al., 2021) takes the same setup,
while enforcing hard lexical constrains on the oc-
currence of the ingredients. We follow the setup of
these works and only consider the textual compo-
nents of the Recipe1M+.

To the best of our knowledge, for the task of
CTG with content planning, there has been no pre-
vious attempt neither on dataset with more flexible
format such as recipe, nor with a plug-and-play
post-process method.

3 Methodology

3.1 Overview

Figure 1 depicts our proposed framework. Given
the recipe title and ingredients, the content plan-
ner (§3.2) first predicts the most probable content
plan. The predicted content plan then guides the
generation of the sequence generator (§3.3) via a
lightweight and plug-and-play operation. Below,
we elaborate the details of the proposed approach.

3.2 Content Planner

A carefully designed plan schema is vital for sys-
tems that require sophisticated controls. By ex-
amining recipe instructions, we observe the fact
that they share a common structure of sequence of
step-by-step stages and there are natural patterns
behind those stage sequences. Therefore, we treat
a content plan as a sequence of stages, where some
stages could be of the same type. Specifically, we
define 7 types of instruction stage based on the
processing step of the food, including:

• Pre-processing means the preparations of in-
gredients or cooker.
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Sequence 
Generator

Content  
planner

Stage plan

 Pre-processing,Pre-processing,  
Mixing, Cooking, ... 

<TITLE_START> BBQ Bacon Mushrooms
<TITLE_END> <INGR_START> 1 lb pepper
bacon <INGR_NEXT> button mushrooms...
<INGR_END>

Title & ingredients

 
Recipe instructions

 <INSTR_START> remove stems from mushrooms.
<INSTR_NEXT>cut each mushroom into 4 pieces...
<INSTR_END>

<INSTR_NEXT>

yk-1 yk yi-2 yi-1

P(yi|y<i-1;x)
mix
toss
...

0.23

0.10

0.08

...

P(cj|yk:i)

0.21
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...

Preprocessing
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...
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from Add bacon and
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mix
toss
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mix
toss
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toss+Title &
ingredients

Plan-aware Decoding

Figure 1: Model overview. The upper half demonstrates our framework. Firstly, the title and ingredients are used to
predict the stage plan by the content planner module. Then, the sequence generator module, guided by the stage
plan, generates the recipe instructions. The bottom half illustrates one step of the plan-aware decoding. In the given
example, the current stage is ‘cooking’. The language model (blue) outputs unconditional probabilities based on all
previous context and inputs. The stage classifier (red) computes the probabilities of the current partial sentences
belonging to the current stage ‘cooking’.

• Mixing includes actions of combining one or
more ingredients together.

• Transferring is for the actions of moving or
transferring food or intermediate food to a
specific place.

• Cooking represents the actual cooking ac-
tions, which could vary drastically across dif-
ferent recipes.

• Post-processing usually refers to the follow-
ing up actions after the ‘cooking’ stage, such
as ‘cooling down’, ‘garnish’.

• Final refers to the last few actions before serv-
ing the food or the serving action itself.

• General includes the rest of actions which
cannot be classified into the above categories.

As recipe instructions are usually sentences led
by action verbs, an assumption is made that the
stage types of the instructions are decided by their
main action verbs. For each type of stage, we as-
sign a set of exclusive stage-specific action verbs,
as shown in Table 1. For example, the ‘cooking’
stage includes actions such as ‘fry’, ‘bake’, ‘boil’,

Stage Types Keywords
Pre-processing Peel, beat, rinse, prepare ...
Mixing Mix, add, combine, blend ...
Transferring Move, put, pour, place ...
Cooking Fry, bake, cook, boil, grill ...
Post-processing Cool, shake, garnish, cover ...
Final Serve, yield, wrap, enjoy ...
General Uncovered or ambiguous verbs

Table 1: Seven stage types and example keywords for
each stage type.

etc. Then, we built a rule-based system that auto-
matically tags recipe instructions with stage labels
according to the pre-defined verb sets. We tag the
instructions from train set of Recipe1M+, which
contains around 710K recipes, with the stage labels
and refer to them as silver labels. 3 By this way,
we can obtain the content plan of a recipe, i.e. the

3In Appendix A.3, we elaborate more implementation de-
tails of the rule-based stage tagging system. In §4.2, we evalu-
ate the quality of the silver labels with human annotations on
an evaluation subset.
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sequence of the stage labels.
After acquiring the content plan c =
{c1, c2, ..., c|c|} using our rule-based system, the
distribution of c is then modelled by the content
planner as P (c|x), where x is the given recipe title
as well as ingredients, and cj belongs to one of
the seven stage types shown in Table 1. Specifi-
cally, given the recipe title and ingredients, we use
a Seq2seq model, i.e. BART (Lewis et al., 2020b),
to model the content plan as

P (c|x) =
|c|∏

j=1

pθc(cj |c<j ;x), (1)

where θc is the parameters of the content planner.
The main assumption of our modelling choice is
that the content plan, i.e. cooking procedure, could
be mostly determined once the target food and in-
gredients are known.

3.3 Plan-Aware Decoding

Given the recipe title and ingredients x, and the
content plan c, we formulate the conditional dis-
tribution of recipe y by following the Bayes rule
as

P (y|x, c) =
|y|∏

i=1

p(yi|y<i;x, c)

∝
|y|∏

i=1

pθg(yi|y<i;x) · pθf (cj |yk:i),

(2)

where cj refers to the stage that the current partial
sequence yk:i belongs to. The θf is an off-the-shelf
stage classifier which predicts the probability dis-
tribution over 7 stage classes by taking the partial
sequence yk:i as input. It should be noted that we
assume the probability of the current stage label
should only depend on the partial sequence that
belongs to the current stage.

During inference, based on Equation 2, the se-
lection of the output token ŷi at step i follows

ŷi = argmax
yi∈VS

pθg(yi|y<i;x)
(1−α) · pθf (cj |yk:i)

α,

(3)
where α is a hyper-parameter that regulates the
importance of two terms. VS is the set of top-S
predictions from the sequence generator’s probabil-
ity pθg(·|y<i;x) and S is set as 5 by default. We

use the sequence generator’s predictions on sub-
set VS to approximate the predictions over the total
vocabulary. With this approximation, the stage clas-
sifier only needs to be applied upon S candidates,
therefore assuring the computational efficiency.

In this work, we fine-tune a GPT-2 model (Rad-
ford et al.) on the training set of the Recipe1M+
benchmark to make it the sequence generator.
To acquire the stage classifier, we fine-tune a
lightweight DistilBERT (Sanh et al., 2019) on the
partial recipe instructions with the silver stage la-
bels that we obtain as described in §3.2.

Intuitively, our approach can be deemed as uti-
lizing the stage classifier as a re-ranking step on
the top S candidates predicted by the sequence gen-
erator. Figure 1 illustrates an example, in which
the sequence generator first predicts probabilities
across all the vocabulary and the word ‘barbeque’
has the highest likelihood. Then, the stage classifier
re-ranks the predictions based on the current stage
label ‘cooking’ and assigns the highest probability
to ‘toss’.

We note that using a partial sequence stage clas-
sifier to guide the decoding shares a similar idea
with the previous study, i.e. FUDGE (Yang and
Klein, 2021). However, in contrast to FUDGE, our
approach works on discriminating 7-class planning
stages rather than only supporting binary attributes.
In addition, to ensure the structural fluency of the
generated recipe, we also control the generation
from the perspective of global content planning,
rather than focusing on one single control attribute.

3.4 Advantages and Limitations

In this section, we discuss the theoretical advan-
tages and limitations of our proposed approach.

We highlight the advantages that: (i) We control
the generation process in the plug-and-play manner,
without the need of fine-tuning the language model,
i.e. sequence generator module, with plan-specific
data. In other words, given an off-the-shelf stage
classifier and content planner, our framework is
training-free. (ii) The stage classifier and content
planner are both lightweight models compared to
the sequence generator and can be fine-tuned with
non-parallel data. (iii) Because the content plan
schema is designed by humans, our framework can
effectively inject human knowledge of the constrain
patterns explicitly into the generation process.

We also point out the limitations of our frame-
work: (i) The overall performance of our model
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depends on the manually designed plan schema,
which cannot be perfect, as it is based on heuris-
tic experience. There are many cases where the
stage of the instructions could be ambiguous. For
example, in a real recipe, it is possible for ‘slice
the steak’ to be both type of ‘pre-processing’ or
‘post-processing’. It is hard for humans to de-
cide whether ‘add salt and pepper’ is a special
case of ‘seasoning’, which belongs to the stage
‘pre-processing’ or ‘mixing’. Another example is
‘pour milk and mix well’, which contains two verbs
from two stages. (ii) As pointed out by Zhang
et al. (2022), guided re-ranking algorithm, as a
method of controlled text generation based on post-
processing, suffers the problem of relatively low
control strength, compared with the methods based
on fine-tuning or retraining.

4 Experiments

In this section, we evaluate our method from three
aspects: (i) The performance of planner module;
(ii) the performance of the stage classifier; and
(iii) the performance of the recipe generation. The
implementation details on these three parts are ex-
plained in §4.1, §4.2, and §4.3, respectively. In
Appendix A.5, we provide examples that compare
the generated results from our model and the base-
lines.

We pre-processed the Recipe1M+ dataset by
firstly filtering out instructions that contain less
than 3 words, e.g. ’combine all’, as they are usu-
ally trivial. We also truncate recipes with too many
instructions at the length of 15, because recipes
with too many instructions usually include irrele-
vant information due to data scraping errors. By
this way, about 9% of the original Recipe1M+ are
filtered out and the resulting dataset are used in our
experiments.

4.1 Planner Evaluation

As described in §3.2, the content planner predicts
the sequence of stage plans from the given recipe
title and ingredients. We took the sequences of the
silver stage labels as reference plans and finetuned
a seq2seq model, i.e. BART base version (Lewis
et al., 2020b). The silver labels are generated
through the automatic tagging system described
in §3.2. We evaluate the content planner module
on the test set of the Recipe 1M+.

Table 2 presents the evaluation results on the
content planner, where the exact match rate is the

Metrics Planner
Uni-gram 69.4
Bi-gram 42.3
Tri-gram 16.9
Exact match 39.0

Table 2: Planner module evaluation results. Match rate
accuracy (in percentage) for uni-gram, bi-gram, tri-gram
and exact match, between predicted and reference plans
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Figure 2: Histograms of the length of the predicted and
the corresponding reference plans.

percentage of matched stages in their exact posi-
tions of the reference plan. From the results, we
see that our planner module achieves 39% accuracy.
Additional to this, because we are comparing two
plan sequences, n-gram match rates are also im-
portant indicators to measure how good underlying
patterns are learnt. We show that for uni-gram and
bi-gram we achieved relatively high match rates at
69.4% and 42.3%, respectively; For tri-gram, we
got 16.9% accuracy. This performance drop shows
that our planner can learn the patterns between two
successive instructions to an acceptable level, but
the patterns among three successive instructions
become hard to predict.

To further illustrate the performance of the con-
tent planner module, we also compare the distri-
bution of lengths of the predicted and reference
stage plans. As shown in Figure 2, their histograms
show similar bell-shape and the percentage of their
mismatching is around 29.1%, which we consider
as acceptably low. The main source of this, we
believe, is due to the heavy tail of the distribution
at length of 15. As explained in Appendix A.1, this
is caused by the truncation of recipe instructions
during the pre-processing steps.
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Model Accuracy
Stage classifier 56.3
Silver label 62.7

Table 3: Stage classifier evaluation results. The accuracy
(in percentage) of the predictions of our stage classifier
and automatically tagged silver stage labels, compared
with manually labeled gold annotations.

4.2 Stage Classifier Evaluation

As described in §3.3, the stage classifier predicts
the stage label for the given full or partial recipe
instruction. In our experiments, we implement the
stage classifier by fine-tuning a DistilBERT with
partial instructions along with the corresponding
silver stage labels. The partial instructions can be
obtained by truncating the instructions from the
training set of the Recipe1M+ at random positions.
The size of the resulting partial instructions train-
ing set is around 4.9M. Below, we evaluate the
performance of our stage classifier.

We construct a evaluation set by randomly sam-
pling 300 examples from the recipes instructions
in the test set of Recipe1M+. Then, we ask three
human annotators proficient in English to anno-
tate the instructions with stage labels following our
provided guidelines. The human annotations are
referred as gold labels. In Table 3, we evaluate the
stage classifier and the rule-based tagging system
with the gold labelled evaluation set. The stage
classifier achieves accuracy of 56.3%, while its up-
per bound, the silver labels, has accuracy of 62%.
We consider this is an acceptable performance, be-
cause this is a 7-class classification problem and
there is subjective understanding of the imperfect
plan schema, as explained in §3.4.

4.3 Recipe Generation

In this section, we evaluate our plan-aware decod-
ing method with both automatic and human eval-
uations, and compare the performance with two
strong baseline methods. The sequence generator
of our model is a base version of GPT-2, finetuned
on the training set of the Recipe1M+ dataset. We
pre-processed the recipe data with special separa-
tion tokens, as shown in the example in Figure 1,
and more details are provided in Appendix A.1.
Both our sequence generator as well as the com-
pared baselines are fine-tuned on the same pro-
cessed data.

4.3.1 Baselines
RecipeGPT, proposed by H. Lee et al. (2020), fine-
tuned a base version of GPT-2 with the training
set of the Recipe1M+ dataset. During generation,
it employs two types of decoding methods, top-k
sampling and beam search. We re-implement the
RecipeGPT as a representative of finetune-based
methods and set the sampling candidate number
and the beam size as 5.

NeuroLogic decoding, proposed by Lu et al.
(2021), is a post-processing method which can be
applied to different generative models. It tries to
search for optimal output sequences that satisfy a
set of pre-defined lexical constrains. The constrains
enforce certain words to appear or not appear in the
generated sequences. In this work, we choose the
base version of GPT-2 as the underlying generative
model and set the constrains such that all ingredi-
ents from the inputs should appear in the generated
sequences. The beam size is set as 5.

4.3.2 Metrics
Automatic Metrics. We use two widely-used met-
rics to assess the surface-level accuracy of the
generated result, including BLEU (Papineni et al.,
2002) and ROUGE-L (Lin and Hovy, 2002). To
measure the controlling ability of different mod-
els, we measure the plan match rate, which is the
average percentage of the stage plan of the gener-
ated recipes that agree with the input stage plan.
The stage plans of the generated recipes are also
labelled by the rule-based stage tagging system de-
scribed in §3.2. In Table 4, we refer the plan match
rate as Plan Match.

We also explicitly measures the average percent-
age of coverage of the given ingredients and the
percentage of hallucinated ingredients. In Table
4, we refer to them as coverage and extra, respec-
tively. . The details of how they are calculated are
provided in Appendix A.2

Human evaluations. To make a similar compar-
ison, we follow the same human evaluation setup as
previous studies such as FUDGE and PPLM (Yang
and Klein, 2021; Dathathri et al., 2019). Specifi-
cally, we run A/B test style human evaluations to
compare our model with the two baselines on the
aspects of fluency and quality in a manner of one-
to-one pairwise comparison. For each comparison,
the two compared models both generate recipes
based on 100 randomly selected recipe title and
ingredients. The evaluators were asked to rate the
fluency, in Likert scale from 1 to 5, and the quality
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Model BLEU↑ ROUGE-L↑ Plan Match↑ Coverage↑ Extra↓
RecipeGPT, top-k 11.5 34.8 26.0 59.0 24.0
RecipeGPT, beam 12.2 37.1 24.0 63.1 21.9
NeuroLogic 11.8 38.2 21.8 67.1 22.5
Our model 13.9 39.1 40.6 65.4 20.7
Our model, oracle 14.3 40.6 39.2 65.8 22.0

Table 4: Experimental results for our models and the baselines. Oracle version of our model represents the
plan-aware decoding is guided by the reference plan. All models are evaluated on the same evaluation subset. ↑
means the higher the better, and ↓ means the lower the better.

Method Fluency Quality
RecipeGPT, beam 4.07 0.68
Our model 4.34 0.88
NeuroLogic 3.87 0.59
Our model 4.27 0.85
Our model, oracle 4.31 0.81
Our model 4.28 0.76

Table 5: Human evaluations on the generated recipes.
A/B test style pairwise comparisons.

of the generated recipes. For the quality, the evalua-
tors need to decide which recipe can reproduce the
food described by the given title (recipe A, recipe
B, neither or both). In Table 5, we report quality
as the percentage of the recipes that are labelled
as able to reproduce the food. The details of the
human evaluators are described in Appendix A.4.

4.3.3 Results
We create an evaluation subset by randomly sam-
pling 4000 examples from the test set of the
Recipe1M+. All experiments are conducted on
this same subset. Table 4 presents the results of dif-
ferent methods averaged over 5 runs with different
random seeds.

Apart from the the aforementioned baselines, we
also evaluate the oracle version of our model, which
takes the reference stage plans as the guidance. The
experimental results show that our model outper-
forms all compared baselines on all metrics except
for the ingredient coverage. The differences are sta-
tistically significant for BLEU, ROUGE-L and Plan
Match as judged by Sign Test with p < 0.01. For
the percentage of hallucination ingredients, the dif-
ference is weakly significant (p < 0.1). The perfor-
mance gains of our model on BLEU and ROUGE-
L suggests that it can produce recipes with better
surface-level similarities by injecting the knowl-
edge of content plans. On the metric of ingredient
coverage, NeuroLogic decoding achieves the best

results as it explicitly priorities the hard constrain
of occurrence of the ingredients over surface-level
fluency. It is worth noting that our models, includ-
ing the oracle version, generally achieve signifi-
cantly higher plan match rate than all the compared
baselines. This verifies that our model can effec-
tively control the generation process of the recipe
by following the given content plans.

For the human evaluation, our model is com-
pared with the RecipeGPT and NeuroLogic base-
lines in pair and outperforms them on both fluency
and recipe quality. In addition, we observe that,
with the help of the stage plan, our model can
produce much less repeated, irrelevant or redun-
dant instructions. Furthermore, by explicitly con-
ditioning on stage plans, the recipes generated by
our model are considered of better quality, which
means they are easier for human readers to fol-
low successfully.4 Lastly, the oracle version of
our model achieves further improved performances,
suggesting that better stage plans can effectively
provide human readers with better reading experi-
ence and more helpful guidance.

5 Conclusion

In this work, we first identify the research gap of the
current controlled text generation models to gener-
ate text with sentence-level content planning. Then
we propose a framework that optimizes the joint
distribution of the natural language sequence and
the content plans in a lightweight as well as plug-
and-play manner. Extensive automatic and human
evaluations demonstrate that our model achieves a
new state of the art on the recipe generation task
and outperforms previous studies by significant
margins. Lastly, we show that our model can gener-
ate recipes that are more accurate and controllable
by following the guidance of explicit content plans.

4In Appendix A.5, we provide detailed examples to com-
pare the generated results from different methods.
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A Appendix

A.1 Details of preprocessing
We then further processed the recipes by adding
special separation tokens, as shown in the exam-
ple in Figure 1. The separation tokens include <
TITLE_START > and < TITLE_END >
to wrap the recipe title, < INGR_START >,
< INGR_END > and < INGR_NEXT >
to wrap and split the recipe ingredients. Similarly,
< INSTR_START >, < INSTR_END >
and < INSTR_NEXT > are used to wrap and
split the recipe instructions. There is no leaking
of the stage label information from the separation
tokens.

A.2 Details of metrics computing
To identify the ingredients in the generated recipes,
we first create a list of total input ingredients in
the Recipe1M+ dataset and then identify the ingre-
dients in the recipes by string match. The hallu-
cination percentage is the number of hallucinated
ingredients over the total number of ingredients in
the input. Ingredients that are not included in the
input, but included in the total ingredient list, are
considered as hallucinated. It is worth noting that
because of the limitations of string match, which
cannot deal with plural, quantifier, synonym and
etc, the coverage and hallucination percentages are
not perfect. Therefore, they are better interpreted
as rough indicators and used to compare between
models parallelly.

A.3 Rule-based stage label tagging system
In this section, we elaborate how we implement the
rule-based tagging system. To process on instruc-
tion, firstly we use the tokenizer from Python pack-
age Spacy (Honnibal and Montani, 2017) to iden-
tify all the verbs by checking the Part-Of-Speech
(POS) tag of each token. Then we remove the verbs
that are in the clauses by identifying punctuation

and conjunction words. If, by this point, there are
more than one verbs left, we always keep the first
verb as the main verb and tag the instruction base
on this verb. We tag the stage label by looking
up which stage type the main verb belongs to, as
shown in the example keywords in Table 1.

A.4 Details of Human evaluators
For the tasks of human annotator in Section 4.2 and
evaluation in Section 4.3.2, we ask three voluntary
university students whose first language are English
to conduct each task. They are paid with rate of 10
GBP per hour, which is above the minimum hourly
wage in UK.

A.5 Case study: Recipe Generation Example
In Table 6, we show generation examples of three
recipes. Instructions labeled in red show undesired
characteristics.

In the first example, the ‘Eggs Barbados’, the
recipes generated by baselines, RecipeGPT and
NeuroLogic, both have the instruction ‘Preheat
oven to 350 degrees f.’. We consider this instruc-
tion is irrelevant because the oven is never used in
the rest of the recipes.

In the second example, the ‘Our Favourite Wheat
Bread’, the recipe generated by RecipeGPT shows
undesired repetitive patterns on the instructions
‘Punch down and let rise again.’.

In the third example, the ‘Pomegranate Ice Tea’,
the recipe generated by RecipeGPT is inaccurate
by ‘Serve immediately’, because it lacks the step
of ‘Pour over ice’ or ‘add ice’.
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Recipe Title Ingredients Model Generated Results

Eggs Barbados

1 bunch green onions;
1 package cream cheese;
1 tablespoon butter;
12 whole eggs;
1 tablespoon milk;
salt and pepper to taste

RecipeGPT

Preheat oven to 350 degrees f. Slice the green onions in half
lengthwise. Slice the cream cheese in half lengthwise. Melt
the butter in a large skillet over medium heat. Add the green
onions and saute until tender. Add the cream cheese, eggs,
milk and salt and pepper to taste. Cook until the eggs are set.
Serve immediately.

NeuroLogic

Preheat oven to 350 degrees f. Slice the green onions and the
cream cheese in half lengthwise. Melt the butter in the pan
over medium heat. Add the green onions and saute until tender.
Add the cream cheese, eggs, milk and salt and pepper to taste.
Cook until the eggs are completely cooked.

Ours

Slice the green onions into 1/4 inch slices. Melt the butter in
a frying pan. Add the chopped onions and saute until they are
soft. Add the cream cheese and mix well. In a separate bowl,
beat the eggs and milk. Add the eggs to the cream cheese mixture
and mix well. Add the green onions and salt and pepper to taste.
Drop by spoonfuls onto a greased baking sheet. Bake at 350
degrees for 20 minutes.

Reference

Chop your green onions and break up the cream cheese into
little chunks. Melt the butter in your frying pan on medium-low
heat. While the butter melts, beat the eggs with the milk until
combined. Add your salt and pepper. pour the egg mixture
into the pan. Dont stir up the eggs too much, just occasionally
scrape the bottom to mix up the cooked egg with the runny stuff.
Once the eggs are mostly cooked but still look a little wet, turn
off the heat. You dont want overcooked eggs, theyre rubbery and
icky! As soon as you turn off the heat, mix the cream cheese
chunks and chopped green onions into the eggs. Let it sit for just
a few seconds, so that the heat of the pan melts the cream cheese.

Our Favourite
Wheat Bread

1 tablespoon dry yeast;
2 cups warm water;
14 cup soft butter;
18 cup molasses;
14 cup honey;
1 teaspoon salt;
3 cups whole wheat flour;
2 cups white flour.

RecipeGPT

Dissolve yeast in warm water. Add butter, molasses, honey, and
salt. Mix well. Add whole wheat flour and white flour. Knead
until smooth and elastic. Cover and let rise in a warm place for
1 hour. Punch down and let rise again. Punch down again and
let rise again. Punch down again and let rise again. Punch down
again and let rise again. Punch down again and let rise again.
Punch down again and let rise again. Punch down again and
let rise again. Punch down again and let rise again

NeuroLogic

Dissolve yeast in warm water. Add water, butter, molasses, honey,
and salt. Mix well. Add whole wheat flour and white flour. Mix
well. Knead until smooth and elastic. Cover and let rise in a warm
place for 1 hour. Bake for 1 hour.

Ours

Dissolve yeast in warm water. Add butter, molasses, honey, and
salt. Add whole wheat flour and white flour. Mix until smooth.
Cover and allow to rise in a warm place until doubled in size.
Punch down and let rise again. Pre-heat oven to 350 degrees.
Grease a loaf pan. Pour in batter. Bake for 1 hour.

Reference

Dissolve yeast in warm water. Combine butter, molasses, honey,
and salt. Add yeast mixture. Gradually add flour. Turn onto
floured surface and knead until smooth. Place in greased bowl
and let rise until double. Let dough rest a few minutes. Shape into
2 loaves. Place in greased bread pans. Let rise about 1 hour. Bake
at 375 for 35-40 minutes.

Pomegranate Iced Tea

2 ounces freshly squeezed
pomegranate juice or
2 ounces store-bought
pomegranate juice;
5 ounces tea;
1 ounce simple syrup;
lemon wedge.

RecipeGPT Combine the pomegranate juice, tea, simple syrup, and lemon
wedge in a pitcher. Serve immediately.

NeuroLogic Combine the pomegranate juice, tea, simple syrup, and lemon
wedge in a pitcher. Add ice and stir well.

Ours
Combine the pomegranate juice, tea, simple syrup and lemon
wedge in a pitcher. Add ice and stir well. Pour into a chilled
glass and garnish with a lemon wedge.

Reference Prepare tea and cool. Mix the rest of the ingredients. Pour over
ice in an iced tea glass. Garnish with lemon wedge.

Table 6: Case Study. Generation examples of 3 recipes by our model and baselines. Instructions labeled in red are
considered problematic.
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Abstract

Controllable Text Generation (CTG) has ob-
tained great success due to its fine-grained
generation ability obtained by focusing on
multiple attributes. However, most existing
CTG researches overlook how to utilize the
attribute entanglement to enhance the diver-
sity of the controlled generated texts. Facing
this dilemma, we focus on a novel CTG sce-
nario, i.e., blessing generation which is chal-
lenging because high-quality blessing texts re-
quire CTG models to comprehensively con-
sider the entanglement between multiple at-
tributes (e.g., objects and occasions). To
promote the research on blessing generation,
we present EBleT, a large-scale Entangled
Blessing Text dataset containing 293K En-
glish sentences annotated with multiple at-
tributes. Furthermore, we propose novel eval-
uation metrics to measure the quality of the
blessing texts generated by the baseline mod-
els we designed. Our study opens a new re-
search direction for controllable text genera-
tion and enables the development of attribute-
entangled CTG models. Our dataset and source
codes are available at https://github.com/
huangshulin123/Blessing-Generation.

1 Introduction

Controllable Text Generation (CTG) aims to auto-
matically generate the text under the restrictions of
given conditions (Prabhumoye et al., 2020; Dong
et al., 2021; Sun et al., 2022). As the mainstream,
controlling multiple attributes enriches the infor-
mation contained by generation and matches the
demand of application scenarios, such as gener-
ating Chinese poetry (Yi et al., 2020), restaurant
reviews (Chen et al., 2021), and product descrip-
tions (Xu et al., 2019).

∗∗ indicates equal contribution.
†† Corresponding author: Hai-Tao Zheng and

Ying Shen. (E-mail: zheng.haitao@sz.tsinghua.edu.cn,
sheny76@mail.sysu.edu.cn)

Occasion Object Entanglemnet

Christmas

Boss Merry Christmas to a boss who keeps the office humming 
along like Santa’s Workshop!

Dear boss, I wish God shower you with his blessing this 
Christmas. Happy X-mas.

Birthday

Colleague

May success and happiness be with you every day, 
happy birthday to you.

May your career dreams be shinning like the candles 
on your cake. Happy birthday!

Figure 1: Two groups of blessing examples. Each group
contains blessing messages without (top) and with (bot-
tom) the attribute entanglement. Representative ele-
ments of occasion/object attributes are marked.

Take the Chinese poetry generation task as an
example, one beautiful poetry sentence should con-
tain multiple attributes and reflect the entanglement
(or mixture) of them through reasonable connec-
tion, e.g., in the sentence “胡马南来路已荒(The
enemy’s warhorses march to the south, through de-
stroyed roads)”, “胡马(enemy’s warhorses)” is a
representative element of the military career, “南
来(march to the south)” and “荒(destroyed)” rep-
resent the attribute of troubled times. This poetry
sentence vividly depicts a picture of War in trou-
bled times through the entanglement of attributes
in just seven characters. Yi et al. (2020) also claim
that considering the entanglement among attributes
can effectively enhance the quality and diversity
of generated poetry. Therefore, we believe that
better CTG models must focus on the effect of at-
tribute entanglement, i.e., enhancing the reflection
of multiple attributes through the use of various
representative elements in the generated text.

For Chinese CTG, with poetry generation as a
typical scenario, researchers have conducted in-
depth research on attribute entanglement, but in
the English CTG field, the research on attribute
entanglement has not been explored. Therefore, to
promote research on attribute-entangled CTG in
the English community, in this paper we focus on
blessing generation, a new CTG task that plays
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a key role in social scenarios. The automatically
generated blessings will greatly promote interper-
sonal communication and enrich people’s daily
life. More crucially, the blessing generation task
is challenging due to its high requirement for en-
tanglement between attributes, such as objects and
occasions. As shown in Figure 1, “Santa’s Work-
shop” connects the occasion (Christmas) and object
(Boss) into one phrase, making the blessing won-
derful. A more vivid blessing embodies these two
attributes in an intertwined manner, such as “keeps
the office humming along like Santa’s Workshop”.

Facing the vacant of blessing generation, we
construct EBleT, a large-scale Entangled Blessing
Text dataset annotated with multiple attributes. Par-
ticularly, the EBleT is constructed with the follow-
ing two features: (1) EBleT contains 23 occasions
and 34 objects annotated on 293,403 blessing texts
from 12 blessing websites. (2) As 92% of the bless-
ing texts are personalized for the corresponding
attributes, EBleT has at least 82% data containing
the entanglement between attributes.

Additionally, the common generation evaluation
metrics cannot reflect the characteristics of bless-
ings clearly. To evaluate the generated blessings
more comprehensively, we propose novel metrics
to automatically calculate the degree of attribute en-
tanglement and the quality of blessings. Our exper-
iments demonstrate that mainstream CTG methods
struggle to contain the entanglement. Moreover,
existing methods can not balance the fluency, diver-
sity, and entanglement between attributes. These
results indicate that the blessing generation task we
focus on is challenging and could serve as a useful
benchmark for CTG research.

2 Task Definition

The blessing generation task aims to obtain a
generation model G(x1, x2; θ) parameterized by
θ. Given the input attributes containing an object
x1 ∈ X1 and an occasion x2 ∈ X2, the model G
should output a blessing text y sent to x1 for x2,
where y = {y1, y2, ..., yn} is a sequence contain-
ing n words, and xi(i = 1, 2) is a word or a phrase
belonging to a collection of objects or occasions.
The generated text y should reflect not only the
language style of blessing, but also effective entan-
glement between both attributes. Additionally, the
evaluation metrics for the language style of bless-
ing and entanglement are described in Section 4.

3 EBleT Dataset

3.1 Dataset Construction
Data Collection We search blessing-related key-
words (e.g., “send blessing”, “send wish”) via
Google Search and obtain 12 blessing websites.
We check the licences of those websites to ensure
that data from these websites can be legally em-
ployed for our non-profit academic research. The
occasions and objects are labeled by page headings
and subheadings from these websites. Therefore,
we obtain the headings and subheadings, as well
as corresponding lists of blessing texts. The occa-
sions and objects are extracted from the headings
and subheadings. We totally collect about 1 million
texts from the web as the raw corpus.

Data Cleaning After acquiring the original cor-
pus, we remove completely duplicate sentences,
delete all non-English text, and remove the sen-
tences that do not reflect corresponding occa-
sion/object attributes. Additionally, we observe
that too long or too short sentences are mostly noise.
Therefore, to further clean the dataset, we keep only
sentences in the range of 10 to 200 words in length.

Human Evaluation To manually evaluate the
quality of EBleT, we randomly select 20 data sam-
ples from each “object-occasion” pair except for
the pairs related to the “General” object and finally
obtain 5,520 data samples. Then we employ 3 col-
lege students who are English native speakers as
annotators to manually assess the personalization
and entanglement scores of these samples. As the
annotation payment, we provide them 5 dollars for
every 100 sentences they judged. Besides, to ensure
the reliability of their scores, we carefully explain
the concept of personalization and entanglement to
them before the start of annotation. Specifically, a
blessing can be called personalized if the anno-
tator can easily know its labeled occasion/object.
Moreover, a blessing can be called entangled if it
cleverly blends the characteristics of the labeled
occasion/object, rather than combining the two
so rigidly that it can be substituted for any other
occasions or objects. After being familiar with
the concepts of personalization and entanglement,
our annotators are asked to judge the sampled data
and give the score (0 - common, 1 - personalized,
2 - both personalized and entangled). We take the
majority vote as the annotation result for a data
sample. The Fleiss’ kappa (Fleiss, 1971) of the an-
notations is 0.837, which indicates the annotation
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results of our annotators can be regarded as “almost
perfect agreement” (Landis and Koch, 1977). The
results of human evaluation will be presented and
analyzed in the “Dataset Quality” of Section 3.2.

3.2 Dataset Analysis
Dataset Statistics Table 1 describes statistics of
EBleT. Compared with previous annotated CTG
datasets, e.g., ROCStories (Mostafazadeh et al.,
2016) with 50K stories, GYAFC (Rao and Tetreault,
2018) with 53K sentences and ToTTo (Parikh et al.,
2020) with 121K tables, our EBleT containing
293K blessing texts with corresponding occasion
and object labels can be regarded as a sufficiently
large-scale dataset. Moreover, our dataset consists
of up to 276 pairs crossed by 23 categories of oc-
casions and 34 categories of objects, which is chal-
lenging for models to learn the characteristics of
each category of occasions and objects and to en-
tangle them. More details and examples of EBleT
are shown in Appendix A.1.

Property Value

Dataset Size 293,403
Average Length 43.06
# Occasions 23
# Objects 34
# Occasion-object Pairs 276

Table 1: Dataset statistics of EBleT.

Dataset Quality Table 2 shows human evalua-
tion results of EBleT. It indicates that about 92%
of the blessing texts are personalized for the cor-
responding attributes, and about 82% data reflect
the entanglement between attributes, which demon-
strates the quality of EBleT.

#Sample #Per. #Ent.

Occasion Christmas 480 445 397
Halloween 160 144 134

Object Teacher 200 181 164
Boss 140 126 118

Total 5,060 4,676 4,170

Table 2: Partial human evaluation results of EBleT.
#Sample, #Per. and #Ent. denote the total number
of sampled sentences, the number of personalized sen-
tences and the number of entangled sentences respec-
tively. The full list is presented in Table 7.

Dataset Visualization After removing the stop-
words and the words related to specific occasions

and objects, we plot the word cloud of EBleT as
shown in Figure 2. We find out that some words
(e.g., “wish”, “love”, and “happiness”) appear fre-
quently. This phenomenon not only meets our
common sense, i.e., blessing texts usually express
wishes for each other, but also provides a class of
words that need to be focused on for the develop-
ment of future blessing generation models.

Figure 2: The word cloud visualization of EBleT.

4 Evaluation Metrics

4.1 Blessing Score

To measure the quality of blessings, Blessing Score
should reflect the extent to which a sentence fits
the language style of the blessing. By counting
word frequency, we observe that some words, e.g.,
“happy”, “merry”, and “heart”, frequently appear
in blessing texts rather than in other texts. We
obtain the 50 most frequently occurring words and
remove the stopwords. These words are utilized to
construct the bag-of-words of the blessing B.

For a sentence to be evaluated, to avoid the influ-
ence of irrelevant words, we use KeyBERT (Groo-
tendorst, 2020) to extract 10 keywords to form a
keyword list K as a representative of the sentence.
All words inB andK are converted to word embed-
dings by Word2Vec (Mikolov et al., 2013) model
E(.). For each keyword, we calculate its maximum
similarity to all words in B, and then average the
maximum similarity of all keywords to obtain the
Blessing Score (BLE). It is formulated as follows:

BLE =
1

|K|
∑

w∈K

max
b∈B

E(w) · E(b)

∥E(w)∥ · ∥E(b)∥ . (1)

4.2 Entanglement Score

To evaluate the degree of attribute entanglement,
we assume that a blessing sentence with higher En-
tanglement Score should satisfy that the elements
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Figure 3: The correlation between human annotations
and automatic metrics. The horizontal axis represents
the proportion of the set that is manually annotated as
blessing or entanglement.

related to the occasions and objects appear simulta-
neously in more clauses. Further, occasion-related
and object-related elements should alternate more
times in one more entangled blessing sentence.

We construct two bags-of-words B1, B2 to rep-
resent the occasion-related and object-related ele-
ments respectively. Specifically, the bags-of-words
contain words directly related to the corresponding
occasions and objects, which are listed in Table 8
and Table 9 of the Appendix.

For the Entanglement Score, we calculate
whether words related to the two attributes oc-
cur simultaneously within each clause by co-
sine similarity, and add a bonus term O1 for the
cases where related words occur alternately mul-
tiple times. Formally, for each sentence S to
be evaluated, we split S into m clauses S =
{s1, s2, ..., sm} and each clause si consists of n
words si = {wi1, wi2, ..., win}. The Entanglement
Score (ENT) for S is calculated as follows:

ENT =
∑

si∈S

I((∃ wij , wik ∈ si) C(wij , wik)) +O, (2)

C(w1, w2) = sim(w1, B1) > t ∧ sim(w2, B2) > t, (3)

sim(w,B) = max
b∈B

E(w) · E(b)

∥E(w)∥ · ∥E(b)∥ , (4)

where I(c) is the indicator function, which has a
value of 1 when the condition c is satisfied, t is a
predetermined threshold.

4.3 Metric Verification
To verify the effectiveness of our proposed blessing
and entanglement score, we conduct consistency
analyses between automatic scores and human an-
notations. We extract 11 subsets and each of them

1The specific implementation of our designed bonus is
presented in the source code of the supplementary material.

has 100 pieces of data. Meanwhile, we make the
proportion of blessings or entanglement (annotated
by humans) in each set different, which is from
0.0 to 1.0. The average blessing score and entan-
glement score for the 11 subsets are calculated
by our metrics. The results presented in Figure 3
demonstrate that our proposed metrics are highly
consistent with the results of manual annotation.

5 Experiments

5.1 Experiment Setup

We set up experiments to evaluate the performance
of existing models to generate entangled blessing
texts. The full dataset is divided into a training
set, a validation set and a test set in the ratio of
9:0.5:0.5 by stratified sampling.

To measure the consistency of generated outputs
and reference blessing texts, we utilize BLEU (Pa-
pineni et al., 2002) and WMD (Kusner et al., 2015).
WMD is a method to calculate the minimum em-
bedded word distance required for a document to
transfer to another one. In addition, we use Per-
plexity and Distinct-n(n=1,2,3) (Li et al., 2016)
to evaluate the fluency and diversity of generated
outputs. Specifically, GPT-Neo (Gao et al., 2020)
is employed as the language model to obtain the
perplexity. Furthermore, we use Blessing Score
and Entanglement Score mentioned in Section 4 to
evaluate the quality of blessings.

We evaluate two widely used generation models
on EBleT for our proposed task:

GPT-2 (Radford et al., 2019) is a Transformer-
based decoder-only model (Liu et al., 2022) which
achieves stable and excellent generation perfor-
mance. For this task, we design a prompt: “Send
this blessing to <object> for <occasion>”, where
<object> and <occasion> represent the object and
occasion attributes, respectively. The prompt is
utilized for the prefix input of GPT-2 model. Di-
verse Beam Search (Vijayakumar et al., 2016) is
employed as the decoding method during the gen-
eration process to ensure diversity of generated
blessings.

T5 (Raffel et al., 2020) is a model of the encoder-
decoder framework which is commonly used for
text-to-text generation tasks. The prompt men-
tioned above is utilized for the input of encoder
side of T5 model.

Additionally, we consider applying CVAE (Sohn
et al., 2015) for generation and using the latent vari-
ables to represent the entanglement of the two input
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BLEU↑ ROUGE-L↑ WMD↓ PPL↓ DIST-1↑ DIST-2↑ DIST-3↑ BLE↑ ENT↑
Common - - - - 0.609 0.953 0.998 0.022 -

GPT-2 0.225 0.382 1.018 20.12 0.176 0.327 0.405 0.308 3.52
T5 0.247 0.393 1.015 13.47 0.140 0.274 0.358 0.334 3.23

GPT-2 + CVAE 0.137 0.340 1.058 28.84 0.409 0.788 0.907 0.223 3.63
GPT-2 + Adv. 0.147 0.349 1.050 28.32 0.397 0.778 0.903 0.226 3.78

Reference - - - - 0.455 0.830 0.928 - 4.54

Table 3: Performance of different models on EBleT. Common represents the news texts collected from British
Broadcasting Corporation which is used to make the comparison with blessings. "↑" represents higher is better for
this metric and "↓" represents lower is better.

attributes. Following the previous work (Fang et al.,
2021), we employ pretrained GPT-2 as the back-
bone of CVAE to obtain higher quality generated
results. Furthermore, we employ adversarial train-
ing (Adv.) (Yi et al., 2020) instead of minimizing
KL divergence in CVAE to allow the model to learn
more complex entangled representations.

5.2 Experiment Results

The results of Table 3 demonstrate that: (1) Models
trained on EBleT can generate fluent blessing texts.
The language style of generated texts is generally
consistent with that of the blessing texts in the
dataset. (2) The diversity and Entanglement Score
of texts generated by GPT-2 and T5 are actually
low. Meanwhile, employing CVAE or adversar-
ial training architecture based on GPT-2 can effec-
tively improve these two metrics but slightly reduce
the quality of blessing. Additionally, the architec-
ture of adversarial training outperforms CVAE in
the entanglement and the quality of blessing, sug-
gesting that the adversarial training architecture is
more appropriate for entangling the attributes into
generation. (3) There exists a gap of diversity and
Entanglement Score between generated texts and
references. It indicates that EBleT is a challeng-
ing benchmark for exploring the entanglement of
attributes in CTG. Future work on this task should
consider all the metrics of fluency, diversity, quality
of blessings, and entanglement to generate bless-
ings that are more in line with human expression.

6 Related Work

Controllable text generation (CTG) usually takes
the controlled element and source text (which can
be missing) as the input. Based on the input, the
generation model produces the target text satisfying
controlled elements. According to the core of CTG,
i.e., the diversified controlled elements, we can

divide CTG into the following two categories:
Attribute Control: Ghosh et al. (2017) add the

sentiment information into the generator to control
the sentiment of the generated sentences. Luo et al.
(2019) explore a framework including sentiment
analysis and sentiment generator to control the fine-
grained sentiment of generation. Chen et al. (2021)
introduce a mutual learning framework to generate
emotionally controllable comments. In addition,
Wang et al. (2019) control the style of the generated
text to present a specific style of writing. Zhang
et al. (2018) build a generation system to generate
conversations with the specific persona.

Content Control: Cao et al. (2015) control the
topic of generation, exploring the latent semantics
of vocabularies and texts to get the distribution
of the topic. Keskar et al. (2019) add different
controlling code to realize topic control. Koncel-
Kedziorski et al. (2016) use the generator to edit
the articles written by humans, changing the theme
without changing the original story. Additionally,
Zheng et al. (2020) build LSTML and LSTMR
to make sure the entities appear in the generated
summary. Xu et al. (2020) incorporate keywords
into each sentence of the story over the generation
process. Kikuchi et al. (2016); Duan et al. (2020)
introduce the methods for controlling the output
sequence length.

However, existing research work on controlled
generation doesn’t include the work related to bless-
ing and neglects the entanglement among attributes.
Blessings can be used in many aspects of life, such
as e-cards, advertisements, and so on. Thus we
introduce a new task - blessing generation and pro-
pose the corresponding dataset EBleT.

7 Conclusion

To explore the entanglement between attributes,
we present EBleT, a blessing dataset that presents
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a new controllable generation task. We propose
novel metrics to automatically measure attribute
entanglement and the quality of blessings. We
also provide several baselines and conduct experi-
ments for blessing generation. Experimental results
demonstrate that EBleT could serve as a useful
benchmark for attribute entanglement in CTG.

Limitations

In this paper, we conduct experiments on EBleT
employing some representative mainstream models.
Since our work is only a pilot study of attributed-
entangled CTG, we do not conduct experiments
on more controllable generation models. Because
of the challenge of EBleT, we suggest that more
complex models can be implemented for improving
the performance of blessing generation.

Ethical Considerations

In this paper, to facilitate the study of attribute-
entangled CTG, we propose the blessing generation
task which needs to pay attention to the attribute
entanglement to obtain vivid blessings. We believe
that the blessing generation task embodies human-
istic care, and the various generated blessing texts
can not only enrich people’s daily life, but also pro-
mote interpersonal relationships. We also present
EBleT, a large-scale annotated blessing dataset. All
the corpora used in EBleT come from freely avail-
able resources on public websites and do not in-
volve any sensitive or illegal data. Additionally, we
design new automatic evaluation metrics to mea-
sure the quality of blessings. We think that our
designed metrics are instructive for future research
on the CTG tasks. After all, in the current CTG
field, how to conduct an effective evaluation is also
an important and yet unsolved problem.
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A Appendix

A.1 Dataset Details
The size of each object/occasion category is shown
in Table 4 and Table 5 respectively. It is worth
noting that the “General” category refers to the
case where the sending object of corresponding
blessing is not acquired during the data collection
process. In addition, there is mutual inclusion be-
tween some objects in our dataset. We consider
this phenomenon is reasonable, e.g., we may write
only one blessing message for elders, and send it to
others, such as parents, uncles, and teachers, with
a little modification.

Some examples of EBleT are shown in Table 6
which contain the blessings and the corresponding
attributes (i.e., occasions and objects).

Object Size Object Size

General 102,284 Customer 4,220
Friend 48,058 Parent 3,791
Lover 20,314 Newlywed 3,210

Teacher 14,092 Senior 2,785
Girlfriend 9,323 Daughter 2,614

Dad 8,871 Son 2,610
Kid 8,373 Employee 2,272
Wife 7,584 Grandma 427

Husband 7,478 Cousin 403
Boyfriend 6,603 Niece 319
Student 6,600 Granddaughter 238

Boss 5,592 Aunt 215
Sister 5,208 Grandson 210

Colleague 4,896 Nephew 160
Brother 4,884 Grandpa 155

Classmate 4,770 Uncle 135
Mom 4,602 Grandparent 107

Table 4: The data size of each object category.

Occasion Size Occasion Size

New Year 55,162 Farewell 9,046
Birthday 36,329 Valentine’s Day 8,727

Christmas 27,713 Halloween 6,050
Wedding 21,039 Mother’s Day 4,132

Good Morning 18,197 Exam 3,659
Thanksgiving 15,245 Happy Weekend 3,506
Graduation 15,234 Good Afternoon 2,284

Father’s Day 14,344 Fool’s Day 2,074
Teacher’s Day 12,321 Easter 1,999
Good Night 11,667 Housewarming 1,810

Children’s Day 11,067 Women’s Day 1,239
Anniversary 10,559

Table 5: The data size of each occasion category.
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[Anniversary] [Aunt] Happy Anniversary to the people I look up to whenever I am in doubt. Dear uncle and aunty, you
guys are surely made for each other. Have a great year ahead.

[Anniversary] [Parents] You are the parents that all kids hope to have, you are the couple that all lovers hope to be and you
both are the pillars of support that every family wishes it had. Happy anniversary to the best parents ever.

[Birthday] [Daughter] This day is truly a special day for us because this is the day when we first had a glimpse on our
angel. Have a lovely birthday our dear daughter!

[Birthday] [Colleague] Ignite one candle, happiness will last forever. We work together for around one-third in a day, and
it’s more than we spend time with our family, and It means we are colleagues. Happy birthday, dear colleague!

[Children’s Day] [Kid] My child, I bless you on this special day. You will never grow up, I wish you a happy Children’s
Day!

[Children’s Day] [Student] We may be your teachers but we also have a lot more things to learn from you, especially how
to laugh with all your hearts. Happy children’s day!

[Christmas] [Boss] Merry Christmas to a boss who keeps the office humming along like Santa’s Workshop!

[Christmas] [Wife] Precious wife, my heart hangs on your every breath, like lights hanging on a Christmas tree. Merry
Christmas my dear love!

[Easter] [Boyfriend] One the beautiful Easter day, my boyfriend, let the prayers and fasting for Lord Jesus bring much love
and happiness in our lives. I pray to the Lord to make our relationship fruitful and prosperous. Have a happy Easter.

[Easter] [Teacher] Dear teacher, you are my inspiration and I am happy to be under your guidance. It’s such a hopeful time
of year, I hope your heart gets filled with love, baskets with candies and Easter eggs this Easter.

[Thanksgiving] [Boss] It has always been a pleasure working with you because it has been great learning. Thanking you
for playing a leading role in my happiness at work. Warm greetings on Thanksgiving!

[Thanksgiving] [Wife] Today, I want to say thanks so much for accepting to spend the rest of your life with me. Thanks so
much for being my heart beat. I love you, dear wife. Happy Thanksgiving day!

Table 6: The examples of EBleT. The words related to the attribute Occasion and Object are highlighted(e.g. Happy
Anniversary).
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Object #Sample #Per. #Ent. Occasion #Sample #Per. #Ent.

Aunt 80 73 66 Anniversary 260 239 214
Boss 140 126 118 Birthday 520 479 436
Boyfriend 240 223 197 Children’s Day 120 112 104
Brother 220 199 180 Christmas 480 445 397
Classmate 220 206 183 Easter 100 92 81
Colleague 200 187 162 Exam 200 185 163
Cousin 60 55 48 Farewell 220 205 186
Customer 100 90 83 Father’s Day 120 112 99
Dad 140 128 115 Fool’s Day 40 38 35
Daughter 200 188 168 Good Afternoon 120 113 100
Employee 120 112 97 Good Morning 340 310 279
Friend 440 405 361 Good Night 260 239 213
Girlfriend 300 278 248 Graduation 300 285 243
Granddaughter 60 55 52 Halloween 160 144 134
Grandma 40 38 33 Happy Weekend 60 56 48
Grandpa 20 18 16 Housewarming 60 53 50
Grandparent 20 17 14 Mother’s Day 140 131 114
Grandson 40 37 31 New Year 440 404 368
Husband 260 237 211 Teacher’s Day 80 76 63
Kid 180 168 145 Thanksgiving 320 300 260
Lover 340 319 282 Valentine’s Day 300 274 245
Mom 200 188 165 Wedding 320 289 262
Nephew 20 19 17 Women’s Day 100 95 76
Newlywed 20 18 16
Niece 60 56 51
Parent 160 147 133
Senior 80 73 69
Sister 240 216 195
Son 200 189 166
Student 160 149 130
Teacher 200 181 164
Uncle 40 37 33
Wife 260 244 221

Table 7: Complete human evaluation results of EBleT. #Sample, #Per. and #Ent. denote the total number of sampled
sentences, the number of personalized sentences and the number of entangled sentences respectively.
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Object/Occasion Related Words

Colleague colleague, work, workplace, office, workshop, companion, workmate, coworker, mate, associate,
helper, partner, hard, company, career, wealth, business

Boss boss, work, workplace, office, workshop, chairman, chief, head, sir, supervisor, leader, charge,
administrator, management, leadership, dictator, rule, thank, success, company, full, career, team,
support, help, guidance, money, business, mentor, job, employees, create, development, professional,
encouragement, achievements

Girlfriend girlfriend, queen, love, addicted, kiss, sweetheart, mate, bestie, date, babe, baby, partner, forever, heart,
beautiful, dear, sweet, forever, together, give, long, dreams, warm, sun, care, thank, future, moment,
wind, bright, gift, remember, lovely, honey, promise, cherish, promise, shining, flower

Aunt aunt, uncle, aunty, dear, sweet, family

Boyfriend boyfriend, love, addicted, kiss, sweetheart, mate, bestie, date, babe, baby, partner, heart, forever,
darling, honey, promise, charming, precious, hugs, accompany

Brother brother, dear, forever, sister, sweet, heart, luck, joy, proud, engagement, health, family, harmony,
thanks, handsome, follow, childhood, room

Classmate classmate, friend, together, forever, long, sincere, graduation, cherish, youth, road, think, school,
everyone, memory, success, grow, accompany

Cousin cousin, grow, hand, family, forever

Customer new, customer, work, health, joy, friendship, money, client, gifts

Dad father, dad, love, thank, hard, warm, care, healthy, forever, family, dear, work, rain, give, young, strong,
back, child, grow, son, daughter, support, parents, longevity, gratitude, kindness, umbrella, gentle,
teaching, understand, journey, lamp, encouragement, illuminating, handsome, stalwart

Daughter daughter, dear, sweet, baby, family, princess, enjoy, gift, lovely, parents, born, th

Employee work, employee, thank, luck, future, success, career, dedication, together, forever, colleagues, team,
success, appreciate, office

Friend happiness, friend, forever, dear, joy, friendship, warm, work, smile, care, sun, miss, sincerely, reunion,
help, grow, accompany, kind, cherish, sunshine, gratitude, drink, successful, buddy, embrace, invite,
lonely

Granddaughter granddaughter, dear, candies, sweet, grandpa, grandma, favorite, happy, trick, toy, beautiful

Grandma grandma, health, longevity, dear, old, thank, grandmother, joy, beautiful, sweet, kind

Grandpa grandpa, healthy, longevity, heart, smile, dear, old, thank, grandfather, joy, beautiful, sweet, kind,
grandson, embrace

Grandparents grandparents, healthy, longevity, heart, smile, dear, old, thank, joy, beautiful, sweet, kind, grandson,
embrace

Grandson grandson, cute, dear, candies, sweet, grandpa, grandma, favorite, happy, trick, toy, handsome, magic

Husband love, husband, dear, heart, life, always, thank, only, father, special, sweet, everything, marriage, wife,
honey, baby, children, grateful, family, kind, wedding, marriage, cherish, met, deep, promise, moments,
engagement

Kid children, kid, happy, childhood, childlike, innocence, child, little, heart, face, fun, growth, dreams,
laugh, play, enjoy, haha, colorful, free, fly, lively

Lover love, heart, life, dear, sweet, forever, dreams, together, sweetheart, thank, wife, husband, honey,
moment, light, warm, babe, cherish, promise, sure, met, shining, angels, partner, hug, breath, important

Mom mom, mother, love, thank, health, hard, forever, son, woman, daughter, grateful, parents, kindness

Nephew nephew, success, future, dear, life, proud, achieve, niece, adult

Newlywed newlywed, love, together, wedding, life, marriage, beautiful, new, congratulations, hundred, harmony,
wife, pair, bridegroom, moment, phoenix, candles

Niece success, future, dear, life, proud, achieve, niece, adult, hard, beauty

Parent mom, parent, care, mother, family, father, life, thank, grateful, forever, children, warm, dear

Senior health, senior, old, long, longevity, thank, care, wealth, give, sir

Sister sister, dear, beautiful, heart, brother, old, little, gift, proud, family

Table 8: Bag-of-words related to objects and occasions.
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Object/Occasion Related Words

Son son, dear, sweet, baby, family, prince, enjoy, follow, handsome, gift, pride, lovely, parents, born, th

Student student, children, future, childhood, friends, innocence, childlike, smile, classmates, knowledge, grow,
road, college, proud, career, study, wisdom, university, achieve, examination

Teacher teacher, hard, students, full, knowledge, care, light, podium, gratitude, chalk, soul, sun, wisdom, thank,
kindness, forward, tree, dreams, education, support, learning, accompany, class, illuminating, wings,
guidance, watering

Uncle uncle, old, aunt, dear, sweet, family

Wife wife, love, life, beautiful, heart, dear, mother, woman, everything, family, darling, warm, sweetheart,
moment, thanks, dream, children, married, accompany, sunshine, given, deserve, help

Christmas Christmas, Xmas, merry, santa, card, tree, eve, stocking, humming, peace, claus, warm, night, gift, bell,
snow, cold, deer, candlelight, chimney, elk, sled, shining, jesus

Thanksgiving thanksgiving, thank, grateful, gratitude, care, give, warm, smile, kindness, bright, cherish

Graduation graduation, congratulation, graduate, determination, dedication, achievement, life, future, success, proud,
work, teacher, school, classmates, dreams, youth, journey, forward, college, leave, knowledge, continue,
grow, study, society, examination

Anniversary wedding, love, increase, darling, marriage, th, year, couple, life, together, best, believe, more, wonderful,
always, heart, wife, husband, long, future, relationship, sweet

Birthday birthday, happy, years, health, long, forever, special, gift, dreams

Children’s Day children, childhood, always, sweet, play, innocent, smile, june, forever, face, young, grow

Easter easter, god, christ, lord, resurrection, new, eggs, spring, pray, basket, renewal, prosperity, bunny, rejoice,
risen, holy

Exam exam, success, luck, god, pray, comes, write, believe, sure, result, grades, final, proud, study, lord, pass,
wisdom, efforts, questions, victory, preparation, excellent, paper, deserve, confidence

Farewell farewell, life, goodbye, thank, friend, future, miss, luck, again, back, remember, memories, leaving,
cherish, years

Father’s Day father, dad, love, thank, mountain, sea, deep, strong, support, son, shoulders, strength, light, parents,
tired, accompany, busy, gentle, umbrella, teachings, given, heavy

Fool’s Day fool, april, happy, stupid, look, phone, money, really, smile, read, haha

Good Afternoon afternoon, day, enjoy, everything, sunshine, lunch, midday, relaxing, breath

Good Morning morning, face, new, smile, sun, start, light, mood, yesterday, embrace

Good Night night, sleep, goodnight, dreams, tomorrow, sweet, stars, pray, today, bed, moon, close, asleep, sound,
amen

Halloween halloween, ghost, fun, pumpkin, afraid, lantern, candy, mask, witches, broom, moon, children, vampires,
monster

Happy Weekend weekend, work, fun, relax, saturday, busy, enjoy, rest, tired, sleep

Housewarming new, house, housewarming, move, congratulations, come, neighbors, firecrackers, welcome

Mother’s Day mother, love, thank, children, women, daughter, son, giving, grow, sea, raising, sunshine, breeze,
embrace

New Year new, spring, coming, eve, change, warm, year, red, together, fireworks, welcome, forward, bright,
prosperity, winter, busy, snow, cold, bloom, approaching, continue

Teacher’s Day teacher, thank, work, students, knowledge, full, flowers, light, chalk, podium, sun, warm, candle,
dedication, school, september, growth, tree, garden, respect, illuminate, education, children, classroom,
guidance, ignited

Valentine’s Day valentine, love, heart, dear, darling, together, sweet, promise, honey, share, romantic, handsome,
beautiful, kiss, important, partner, babe

Wedding love, wedding, life, forever, marriage, congratulations, sweet, future, bride, harmony, wife, always, year,
fate, home, share, moment

Women’s Day women, beautiful, special, strength, wife, work, power, inspiration, proud, deserve, queen

Table 9: Bag-of-words related to objects and occasions.

247



Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pages 248 - 261
December 7, 2022 ©2022 Association for Computational Linguistics

Unsupervised Token-level Hallucination Detection
from Summary Generation By-products

Andreas Marfurt
Idiap Research Institute, Switzerland

EPFL, Switzerland
andreas.marfurt@idiap.ch

James Henderson
Idiap Research Institute, Switzerland

james.henderson@idiap.ch

Abstract

Hallucinations in abstractive summarization
are model generations that are unfaithful to
the source document. Current methods for de-
tecting hallucinations operate mostly on noun
phrases and named entities, and restrict them-
selves to the XSum dataset, which is known to
have hallucinations in 3 out of 4 training exam-
ples (Maynez et al., 2020). We instead consider
the CNN/DailyMail dataset where the summa-
rization model has not seen abnormally many
hallucinations during training. We automati-
cally detect candidate hallucinations at the to-
ken level, irrespective of its part of speech. Our
detection comes essentially for free, as we only
use information the model already produces
during generation of the summary. This enables
practitioners to jointly generate a summary and
identify possible hallucinations, with minimal
overhead. We repurpose an existing factuality
dataset and create our own token-level anno-
tations. The evaluation on these two datasets
shows that our model achieves better precision-
recall tradeoffs than its competitors, which ad-
ditionally require a model forward pass.

1 Introduction

Large pretrained Transformers (Vaswani et al.,
2017; Devlin et al., 2019) have considerably ad-
vanced the state of the art in abstractive summa-
rization (Liu and Lapata, 2019; Lewis et al., 2020;
Zhang et al., 2020). However, model hallucinations
– where the information in the generated summary
is not faithful to the source document – are a promi-
nent remaining failure mode of these models.

A lot of recent work has addressed this problem,
predominantly on the XSum dataset (Narayan et al.,
2018). XSum is an outlier, however, in that over
75% of its reference summaries contain hallucina-
tions (Maynez et al., 2020). Models trained (or
finetuned) on this dataset are consequently prone to
hallucinate themselves when summarizing an arti-
cle. Additionaly, current work focuses on detecting

Figure 1: BART cross-attentions align copied segments
of the summary with the respective segments in the
source. Attention weights are normalized by row. Only
the first summary and source sentences are shown.

hallucinations for noun phrases and named entities
(Wang et al., 2020; Durmus et al., 2020; Scialom
et al., 2021), sometimes with the addition of dates
and numbers (Narayan et al., 2021). Recent work
has shown, however, that summarization models
also make mistakes in other parts of speech, such
as predicates (Pagnoni et al., 2021).

In this paper, we aim to expand the current line
of research to a different dataset, and to remove the
restriction to entities. We use the diagonal cross-
attention patterns present in Transformer-based ab-
stractive summarization models (see Figure 1) to
align the summary with the source document. We
detect hallucinations in an unsupervised fashion for
segments of aligned and unaligned tokens by com-
puting statistics from the encoder’s self-attentions
and the decoder’s next-word probabilities. These
by-products arise when generating a summary with
any Transformer model. In this paper, we use
BART (Lewis et al., 2020). We evaluate our ap-
proach on two datasets.1 We repurpose the factu-
ality dataset FRANK (Pagnoni et al., 2021), but
only 0.4% of tokens turn out to be hallucinations.
Therefore, we additionally create our own dataset

1Our data and code are available at https://github.
com/idiap/hallucination-detection.
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called TLHD-CNNDM, which contains token-level
annotations on examples heuristically selected to
have a higher chance of containing a hallucination.
Indeed 14.2% of tokens in TLHD-CNNDM are
hallucinations. Our method demonstrates good re-
sults compared to its competitors, while at the same
time requiring negligible additional computation.
At the same time, hallucination detection proves to
be a difficult task, in particular on intrinsic hallu-
cinations (defined in Section 3), where all models
struggle to detect any hallucinations.

2 Related Work

Several different methods have been proposed to
detect hallucinations. Specialized decoding strate-
gies are used to nudge the model to stay closer to
the source vocabulary (Aralikatte et al., 2021) or
its entities (Narayan et al., 2021). Multiple studies
use automatic question generation and answering
models to ask questions about entities in the gen-
erated summary, and try to answer them from the
source document (Wang et al., 2020; Durmus et al.,
2020; Scialom et al., 2021). If the question cannot
be answered from the source document, the entity
is considered a hallucination. Filippova (2020) de-
termine the degree of hallucination from the differ-
ences in probabilities assigned by a conditional and
an unconditional language model. In the related
area of factuality detection, Cao et al. (2022) use
the same idea to identify hallucinated but factual
summaries. Entailment-based classifiers are used
to evaluate a summary’s factuality at the level of
text or dependency arcs (Falke et al., 2019; Goyal
and Durrett, 2020). It is also common to create
synthetic data for a classifier by corrupting the in-
put, for hallucinations (Zhou et al., 2021) as well as
factuality (Cao et al., 2020; Kryściński et al., 2020).
However, the error distributions obtained syntheti-
cally can differ from those of models (Goyal and
Durrett, 2021). More types of factuality errors are
identified in Pagnoni et al. (2021) with a detailed
human annotation, finding discourse and semantic
frame errors. These detection methods can be used
to identify mistakes or rerank multiple outputs (e.g.
Ladhak et al., 2022).

3 Hallucination Detection

Definition. We adopt the definition from Maynez
et al. (2020), and define intrinsic hallucinations as
combinations of information from the source docu-
ment that cannot be inferred from it, and extrinsic

hallucinations as information that is not present in
the source document. Paraphrases and information
that can be directly inferred from the source doc-
ument, however, do not constitute hallucinations.
Furthermore, whether some information is a hallu-
cination is an orthogonal problem to whether that
information is factually correct, a question we do
not consider in this paper.

3.1 Unsupervised Hallucination Detection

In the process of generating a summary,
a Transformer-based abstractive summarization
model creates a number of by-products, such as de-
coder next-token generation probabilities, encoder
and decoder self-attentions, and decoder to encoder
cross-attentions, for each layer and attention head
of the model. These can be easily accessed from
e.g. the HuggingFace transformers library (Wolf
et al., 2020).

Motivation. It is debated whether model atten-
tions can be used to explain model decisions (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019) and
how much a Transformer encoder’s output repre-
sentation still represents the token at its position in
the input (Brunner et al., 2020). Nevertheless, we
posit that the diagonal attention patterns observed
in Figure 1, together with the fact that the source
and target tokens match for the entire segment, is a
strong enough signal to claim that a summarization
model copied this segment from the source.

Additionally, we conjecture that the faithfulness
of a summary to the source document is not inher-
ently a question that spans multiple sentences, in
contrast to a summary’s factuality (Pagnoni et al.,
2021). As a consequence, we detect hallucinations
at the token level by processing summary sentences
in isolation.

Initial alignment. From the observations above,
we start by aligning summary and source posi-
tions based on cross-attentions. In BART cross-
attentions, the maximum cross-attention weight is
often put on the beginning-of-sequence token in
the source. If the token is a preposition, a high
attention weight is also put on its preceding and
succeeding tokens. We therefore accept a target-
source alignment of target token ti iff it matches
a source token in its top-4 cross-attention weights.
This constitutes our initial alignment.

Context voting. In a second step, we expand the
initial alignment with a position-based voting algo-
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seg1, 
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Figure 2: BART encoder self-attentions relate the
aligned segments seg1 and seg2 of the source document
(grey boxes) by their interactions (blue boxes). Only the
first two source sentences are shown.

rithm. For each target token ti, its context tokens
ti−l, . . . , ti−1, ti+1, . . . , ti+l in a window of size l2

around ti vote on the expected source position of
ti given their own alignment and an assumed di-
agonal attention pattern. If a token is not aligned
to the source, it does not vote. We accept a vote
when at least half the neighboring tokens agree. We
perform voting for a maximum of 10 rounds, and
we stop early when it has converged, which often
happens after 2 rounds.

After these two alignment stages, we have a set
of aligned segments, with a token-level correspon-
dence between summary and source, and a set of
unaligned tokens. We now look to detect intrinsic
hallucinations in the former set, and extrinsic ones
in the latter.

Classifying aligned tokens. Aligned tokens ap-
pear in the source document, and consequently do
not constitute extrinsic hallucinations. To assign a
probability of them being intrinsic hallucinations,
we compare characteristics of their aligned source
segments. Maynez et al. (2020) speculate that in-
trinsic hallucinations are potentially a failure of
document modeling. We add that the encoder may
also have performed well at document modeling,
but the communication to the decoder through the
representational bottleneck may have failed. In the
latter case, we should be able to read the associa-
tion of two source segments from the strength of
the encoder’s self-attentions between the two seg-
ments. We determine the association strength α of
two aligned segments seg1 and seg2 by the area-

2We choose l = 3 as our window size.
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Intrinsic hallucinations: gaudy, abandoned

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Figure 3: Association strength α between aligned seg-
ments. The intrinsic hallucinations in the fourth segment
show the least interaction with other segments. Full ex-
ample in Appendix B.

normalized sum of encoder self-attention weights
(encij and encji) between the two segments:

α(seg1, seg2) =

∑
i∈seg1,j∈seg2

encij + encji
2 ∗ |seg1| ∗ |seg2|

(1)
where i and j are the source indices of segments
seg1 and seg2, and |.| is the cardinality. Figure 2
visualizes the areas whose attention weights are
summed with blue boxes. The score for a segment
is the mean α to all other segments in its summary
sentence. The higher the score, the higher our
confidence in the two segments being semantically
close, and therefore not intrinsic hallucinations. As
an example, Figure 3 shows that the fourth segment
has the smallest association strength to the other
segments. Indeed, this is an intrinsic hallucination.
It talks about the present state of the mansion, while
the predicate concerns the past.

Classifying unaligned tokens. While unaligned
tokens can still appear in the source document and
result in an intrinsic hallucination, the prevalent
error mode for this set of tokens are extrinsic hal-
lucinations. We found that generated summaries
sometimes contain sentences entirely unrelated to
the article, most likely an artefact of data collection.
Our first score βalign is the fraction of the summary
sentence tokens that are aligned.

For unaligned tokens in mostly-aligned sen-
tences, we conjecture that generations by a strong
language model fit in well (both syntactically and
semantically) with the source document and the
summary written so far, and thus should be ex-
pected by the model. In the opposite case, unex-
pected generations lead to a higher amount of sur-
prisal. The expected surprisal of a language model
can be quantified with the entropy of its next-word
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Figure 4: Summary containing an extrinsic hallucination (tokens in bold red). The decoding entropy of the first
hallucinated token is high, those of the subsequent tokens are low. We determine the hallucination score (Eq. 2) of
the entire segment (Definition in Eq. 3) from its first token.

decoding probabilities (Meister et al., 2020). Fig-
ure 4 shows the decoding entropy of an example
summary. We thus propose a second score βentropy
as the inverse smoothed decoding entropy:

βentropy(ti) =
1

H(ti) + 1
(2)

withH(ti) the entropy of the next-word probability
distribution of target token ti.

Only the generation of the first token of an unex-
pected segment is surprising (as seen in Figure 4),
and subsequent completions of the segment have
high probability and low entropy. We therefore split
a span of unaligned tokens into segments based on
the decoding entropy. The construction is as fol-
lows: As long as the decoding entropy of the next
token ti decreases the mean decoding entropy of
the current segment seg, it is added. Otherwise a
new segment is started.

seg′ :=





seg ∪ ti if H(ti) <

∑
tj∈seg H(tj)

|seg| ,

ti otherwise.
(3)

Converting scores to probabilities. All our
faithfulness scores are nonnegative, and upper
bounded by 1. A higher score means less chance
of hallucination. We therefore convert each faith-
fulness score s to a hallucination probability p by
scaling and inverting it.

p = 1− s− smin

smax − smin
(4)

where smin and smax are the minimum and maxi-
mum scores across the entire dataset. In an offline
evaluation setting, one can compute all scores on a
dataset first, and then get smin and smax. For the on-
line setting, these values have to be set. On our two

datasets, we observe that the minimum and maxi-
mum values do not change much, so we expect the
current values to transfer to new datasets. They are
[0, 0.02] for α, [0.08, 0.71] for βentropy, and βalign
is already in the correct range.

BART-GBP. As we will see in the ablation study
in the results in Section 5, the association strength
α decreases the performance of our detection
method. Our final model, BART-GBP (BART gen-
eration by-products), therefore only uses the βalign
and βentropy scores.

4 Experiments

We study CNN/DailyMail (Hermann et al., 2015),
a summarization dataset known to be highly extrac-
tive (Grusky et al., 2018) and therefore less likely
to contain a lot of hallucinations.

4.1 Datasets

Finding an existing dataset to evaluate our method
is difficult, since we need access to the model’s
attentions and decoding probabilities alongside the
outputs.

FRANK. We repurpose FRANK, a factual-
ity metric evaluation dataset (Pagnoni et al.,
2021). It consists of 250 summaries from the
CNN/DailyMail test set, obtained from SummEval
(Fabbri et al., 2021). FRANK introduces a typology
of factual errors, which we convert to hallucination
annotations by using examples of predicate, entity
and circumstance errors as candidates for intrinsic
hallucinations, and out-of-article errors as candi-
dates for extrinsic hallucinations. Our publically
available model version produces slightly different
outputs from theirs, so we manually correct labels
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where the outputs differ. Our adapted dataset con-
tains 57 hallucinated words (31 intrinsic, 26 ex-
trinsic) which corresponds to 0.4% of the 15,700
total words. At the sentence level, 3.5% contain at
least one hallucinated word (31/897), while at the
summary level it is 9.2% (23/250).

TLHD-CNNDM. Since the number of halluci-
nations in FRANK is low, we additionally collect
human annotations ourselves. We produce BART
model outputs for the CNN/DailyMail test set (ex-
cluding the FRANK examples) by using the stan-
dard HuggingFace implementation with the default
parameters. To arrive at an interesting dataset, we
first rank summary sentences by two criteria: 1) the
number of non-contiguous alignments to the source
document found by lexical overlap, and 2) the num-
ber of words that do not appear in the source doc-
ument. Both criteria are length-normalized. We
pick the top 75 examples from both lists, arriving
at 150 summary sentences. We then perform a
human annotation as detailed in Appendix C. Our
dataset contains 299 hallucinated words out of a
total 2,100 (14.2%). Of those hallucinations, 51
are intrinsic, and 248 are extrinsic. Of the 150
sentences, 78 contain at least one hallucination
(52%). The annotator agreement with the major-
ity class (following Durmus et al., 2020) is 94.6%,
and 73.9% and 86.3% for intrinsic and extrinsic
hallucinations, respectively. We name our dataset
TLHD-CNNDM (token-level hallucination detec-
tion for CNN/DailyMail).

4.2 Model Details

For generating our summaries, attentions and
decoding probabilities, we use the BART-
large model finetuned on CNN/DailyMail
(’facebook/bart-large-cnn’) from the Hug-
gingFace transformers library3, with its default
parameters. In generation with beam search,
multiple beams are active at each generation step,
but only one beam is eventually selected. We
extract the attention and decoding probabilities of
this beam with our own code. When inspecting
cross-attentions, we found layers 10 and 11 (out
of 12) to show the cleanest diagonal patterns (as
presented in Figure 1). Other layers either have
less focused attention, or they look at the previous
token (mostly lower layers), the beginning-of-
sequence token, or periods. We average the

3https://github.com/huggingface/transformers

attentions from layers 10 and 11. We select the
same layers for the encoder self-attentions.

4.3 Baselines
As baselines, we use four classes of models: lexi-
cal overlap, an entity-focused question-generation-
answering model, a dependency entailment-based
model, and a token-level classification model
trained on synthetic data.

Lexical-n. This baseline lexically aligns the sum-
mary and the source document. It greedily adds the
longest matching span, down to a span length of
n. This baseline classifies all unaligned tokens as
(presumably extrinsic) hallucinations. For aligned
tokens, our most successful heuristic determines
the hallucination probability for each aligned span
as the fraction of aligned tokens that have an align-
ment in the same source sentence as the current
span:

1−|tokens aligned to same source sentence|
|all aligned tokens| . (5)

FEQA. FEQA (Durmus et al., 2020) generates
questions about the summary’s entities, then tries
to answer them from the source document. It then
computes the token-level F1 score between the
summary’s text and the predicted text span from
the source. Unmatched answers indicate halluci-
nations. We compute word-level probabilities by
averaging the F1 scores of all spans the word is
part of.

DAE. Dependency arc entailment (DAE) (Goyal
and Durrett, 2020, 2021) decides from its depen-
dency arcs whether the generated summary sen-
tence is entailed by the source document. While
DAE is technically a factuality detection method,
we conjecture that hallucinations in the summary
should not be entailed by the source document ei-
ther. In footnote 6 of Goyal and Durrett (2021), the
authors propose that a word is non-factual if any of
its arcs is non-factual. We therefore compute word
hallucination probabilities as the maximum proba-
bility of non-factuality of its dependency arcs. We
use their model variant trained with entity-based
synthetic data on CNN/DailyMail.

Fairseq. With the help of synthetic training
data, where factual tokens have been automati-
cally replaced with hallucinations, pretrained lan-
guage models can be finetuned to directly pre-
dict a hallucination label for each input token
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Figure 5: Precision-recall curves for all hallucinations in the FRANK and TLHD-CNNDM datasets.

Method Best F1 PR AUC ROC AUC

FRANK

FEQA* 0.0245 0.0062 0.3327
DAE* 0.0419 0.0157 0.7164
Fairseq w/o ref* 0.1651 0.0723 0.8129
Fairseq w/ ref* 0.0682 0.0232 0.7017
Lexical-1 0.1913 0.0677 0.8788
Lexical-2 0.0854 0.0335 0.8058
Lexical-3 0.0610 0.0268 0.7672
BART-GBP 0.2778 0.1777 0.8934

TLHD-CNNDM

FEQA* 0.3156 0.2031 0.3899
DAE* 0.3167 0.1988 0.5803
Fairseq w/o ref* 0.3957 0.3255 0.7375
Fairseq w/ ref* 0.2672 0.1714 0.5521
Lexical-1 0.3937 0.2819 0.6846
Lexical-2 0.3535 0.2166 0.4802
Lexical-3 0.3025 0.1785 0.2599
BART-GBP 0.3806 0.3502 0.7332

Table 1: Best F1 score on the precision-recall curve,
area under precision-recall curve, and area under the
ROC curve. Methods marked with * require an addi-
tional model forward pass, which increases runtime and
resource use.

(Zhou et al., 2021). We use the model finetuned
on XSum and evaluate how it transfers to the
CNN/DailyMail dataset. Since we compare to
our unsupervised method, we leave retraining the
model on CNN/DailyMail to future work. We eval-
uate both model settings, with and without access
to the reference summary. We call this method
Fairseq based on its Github repository name.

5 Results

We use precision-recall curves to evaluate the hal-
lucination detection methods. Precision-recall is

the preferred metric when finding the instances of
the positive class (hallucinations) has exceptionally
high value compared to the instances of the nega-
tive class. Appendix A also shows ROC curves.

Main result. Our main result is shown in Table 1,
which considers performance when classifying hal-
lucinations of both intrinsic and extrinsic type. We
present the best F1 score on the precision-recall
curve, the area under the precision-recall curve,
and the area under the ROC curve. Additionally,
we show whether the method requires an additional
model forward pass, which incurs a longer runtime
and higher resource costs, by marking the respec-
tive methods (with *). BART-GBP performs best
on the FRANK dataset, and has the largest AUC
for precision-recall on the TLHD-CNNDM dataset.
For the other metrics, it is close behind the high-
est score, all while being completely unsupervised.
Fairseq without access to the reference summary
performs well on TLHD-CNNDM, but worse on
FRANK. The setting without access to the refer-
ence summary does better across all datasets and
metrics, and is therefore reported from now on.

The precision-recall plots in Figure 5 give further
details on the main result. BART-GBP manages
to get high precision for the data points where it
is most certain, something other methods struggle
with. At higher levels of recall, the difficulty of
the task leads to lower precision scores across all
methods. The FRANK dataset, where only 0.4%
of tokens are hallucinations, is very challenging
(see Figure 5a). With 14.2% of positive labels,
TLHD-CNNDM is less extreme, but still proves to
be difficult for all methods, as seen in Figure 5b.
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Figure 6: Precision-recall curves for the label subsets of extrinsic and intrinsic hallucinations in the FRANK (6a,
6b) and TLHD-CNNDM (6c, 6d) datasets.

Extrinsic hallucinations. Figures 6a and 6c
show the models’ performance on the label sub-
set of extrinsinc hallucinations. To evaluate on
this subset, we remove data points that are gold
intrinsic hallucinations in order to not unfairly pe-
nalize models for detecting those, and vice versa
for evaluation of intrinsic hallucinations. Apart
from BART-GBP and Fairseq, the Lexical-1 base-
line manages to find some hallucinations. However,
it does not provide a fine-grained trade-off between
precision and recall, in contrast to BART-GBP.

Intrinsic hallucinations. As we can see from
Figures 6b and 6d, finding intrinsic hallucinations
proves to be very difficult for all methods. We there-
fore zoom in both graphs on the y-axis. BART-GBP
performs well relative to the baselines. Notably for
the TLHD-CNNDM dataset, DAE manages to find
some hallucinations at some of its highest proba-
bility selections, but quickly diminishes at higher
recall.

In summary, BART-GBP gets consistent and
very competitive results in both datasets and on
all label subsets, even while being an unsupervised
method. The ROC curves in Figures 8 and 9 in
Appendix A further confirm this finding.

Ablation study. We are interested to see how
each of our designed scores contributes to finding
hallucinations. In Table 2, we show an ablation
study with the area under the precision-recall curve
as the performance metric. We see that of all indi-
vidual scores, βalign performs best. Combining it
with βentropy (by taking the maximum of both prob-
abilities for each token) further improves results on
the TLHD-CNNDM dataset, but not on FRANK.
α performs barely above a baseline that would clas-
sify all data points as hallucinations. This came
as a surprise to us, as we expected α to perform
better from the motivation in Section 3.1. Adding
α to the β scores decreases performance drastically.

Scores FRANK TLHD-CNNDM

α 0.0051 0.1440
βalign 0.1993 0.3260
βentropy 0.0685 0.3198
βalign, βentropy 0.1777 0.3502
α, βalign, βentropy 0.0390 0.1687

Table 2: Ablation study for different combinations of
scores. Metric is area under precision-recall curve.
BART-GBP is the combination of βalign and βentropy.

This comes from the fact that our scores are not
calibrated, so the distribution of each score will
be different. As a result, when taking the max of
multiple scores, one of them may dominate. When
we plot a histogram of our scores’ values, we see
that this is the case for α, leading to such a perfor-
mance deterioration in the case of combining all
three scores. Since α on its own does not score
well, we do not further calibrate our scores.

Maximum possible hallucination recall. We
motivated our approach by arguing that token-
level methods are superior to entity-based question-
generation-answering systems (like FEQA) or de-
pendency arc entailment-based DAE. These meth-
ods may miss some hallucinated tokens as they
only compute hallucination probabilities for a sub-
set of all tokens. To verify how many these are, we
analyze the recall each method achieves when it
classifies all tokens that it considers as positives.

The results are shown in Table 3. The disad-
vantage for FEQA and DAE is substantial. FEQA
classifies less than half of the tokens labeled as
hallucinations in the FRANK and TLHD-CNNDM
dataset. DAE is limited to a recall of around 80%,
as it cannot detect tokens that are not part of one of
the dependency arcs considered for entailment.
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Method Maximum possible recall

FRANK

FEQA 38.60%
DAE 80.70%
Fairseq 100.00%
Lexical-n 100.00%
BART-GBP 100.00%

TLHD-CNNDM

FEQA 46.15%
DAE 77.93%
Fairseq 100.00%
Lexical-n 100.00%
BART-GBP 100.00%

Table 3: Maximum possible recall of FEQA (entity-
based), DAE (dependency arc entailment), and the
token-level methods Fairseq, Lexical-n and BART-GBP.

Score All Extrinsic Intrinsic

FRANK

Aligned (α) 50.88% 11.54% 83.87%
Unaligned (βentropy) 52.63% 96.15% 16.13%
Both (βalign) 100.00% 100.00% 100.00%

TLHD-CNNDM

Aligned (α) 19.06% 11.29% 56.86%
Unaligned (βentropy) 81.27% 88.71% 45.10%
Both (βalign) 100.00% 100.00% 100.00%

Table 4: Maximum possible recall of aligned and un-
aligned token scores wrt. all, extrinsic, or intrinsic hal-
lucinations.

Maximum recall of (un)aligned tokens. Align-
ing the summary with the source document forms
the basis of our method. How many hallucinations
are part of aligned spans, and how many are un-
aligned? We perform this analysis in Table 4. We
can see that extrinsic hallucinations are mostly part
of unaligned spans, which are scored by βentropy.
Intrinsic hallucinations in the FRANK dataset are
mostly part of aligned spans, scored by α. In the
TLHD-CNNDM dataset, however, intrinsic hallu-
cinations are only part of aligned spans around half
of the time.

Note that aligned and unaligned scores can add
up to slightly more than 100%. This occurs when
some BPE tokens of the same word are aligned and
others are not (e.g. when a name appears together
with a possessive ’s).

6 Conclusion

We have presented BART-GBP, a method to detect
hallucinations from the by-products of summary
generation of a BART abstractive summarization
model, trained and evaluated on CNN/DailyMail.
We first aligned the segments of the summary and
source document using cross-attentions, and then
used encoder self-attentions and decoding proba-
bilities to detect intrinsic and extrinsic hallucina-
tions, respectively. This happens with minimal
computational overhead, compared to prior work
that uses external models that require an additional
model forward pass. Our evaluations show that this
is a difficult task, and especially intrinsic halluci-
nation detection needs to be addressed by future
work. We hope to contribute to this endeavor with
our method and our token-level annotated dataset,
TLHD-CNNDM.

Limitations

The results in this paper are limited by several fac-
tors. Firstly, the definition of what constitutes a
hallucination is neither set in stone, nor a mathe-
matical construct, and therefore open to interpre-
tation. We experienced this first-hand from the
feedback of our annotators. This makes the task of
teaching a model to identify hallucinations all the
more difficult, and the gap to optimal performance
in the results (for all methods) makes this visible.

Another limitation is given by the model under
study. We already mentioned in Section 3.1 that
the interpretability of attention patterns is a debated
topic in the research community. A model trained
to faithfully explain its decisions would be even
better suited to perform this kind of analysis.

Transfer to other models. While we do not as-
sume that our method transfers easily to some
attention-based RNN architectures, we saw indica-
tions that it could transfer to other Transformer-
based summarization models. In initial exper-
iments, we have used BERTSUMABS (Liu and
Lapata, 2019), which shows very similar cross-
attention patterns (see Figure 7). There are some
small differences, however. BERTSUMABS puts its
maximum attention weight to the copied word more
often, but still shows a lot of attention to CLS/SEP
tokens in the source and BOS/EOS tokens in the
summary. Additionally, the tokenization is differ-
ent which can have an impact on the alignment
stage. In BART, for example, the same word can
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Figure 7: BERTSUMABS cross-attention patterns are
very similar to those of BART, both Transformer-based
summarization models.

be tokenized in different ways when it is preceeded
by the BOS token, a whitespace, or punctuation.
This sometimes prevented our method from align-
ing the same word due to unmatched tokens.

Transfer to other datasets. We do not expect
these results to transfer to datasets that have a large
percentage of hallucinations, i.e. XSum. We are
not aware of other datasets with those same hallu-
cination characteristics. However, we expect that
other summarization datasets could benefit from
our method, especially those that are similarly ex-
tractive as CNN/DailyMail. The scoring range to
convert scores into probabilities may have to be
recomputed.

Prevalence of sports topics in hallucinations.
The prevalence of sports topics in CNN/DailyMail
hallucinations hints at divergence issues between
the source and reference (Wiseman et al., 2017;
Dhingra et al., 2019; Kryscinski et al., 2019) for
these topics: True additional information (such as
standings) is added by the author/editor. It is inter-
esting to note that while models trained on XSum
learn to hallucinate consistently, CNN/DM models
learn to hallucinate on sports topics. While re-
moving hallucinations from the training data could
address hallucinations, this seems infeasible, and
detecting hallucinated model outputs is a more prac-
tical approach.

Ethical Considerations

By using a large pretrained language model, this
study inherits the issues that come with these mod-
els, i.e. reproduction of biased or offensive content
that appeared in the pretraining corpus, which in-
cludes documents on the web. Unexpected and
unwanted model behavior should be reduced. De-
tecting hallucinations is one of the methods to do
so, which can prevent misrepresentation of the text

to be summarized by the model, and avoid dis-
tributing potentially misleading and in the worst
case harmful content. On the other hand, a danger
in using an imperfect model to detect hallucina-
tions can be to create a false sense of security and
lower the vigilance of people tasked with checking
model outputs.

In this study, we also conducted a human evalua-
tion. The privacy of our annotators is respected by
labeling each example’s answers with annotator_0,
annotator_1 and annotator_2, respectively. Their
answers consist exclusively of an extracted text
span from the summary sentence in question. No
personal information was collected. With regard to
the presented content in the evaluation, the articles
are part of the publically available CNN/DailyMail
test set, and supposedly do not contain offensive
content. The generated summaries were checked
manually. We did not hear any negative feedback
from our annotators in this or any other regard.
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A ROC Results

Figures 8 and 9 show the ROC curves on the
FRANK and TLHD-CNNDM datasets. There is
a large label imbalance in both datasets, with the
positive class only making up 0.4% of FRANK’s
labels, and 14.2% of those in the TLHD-CNNDM
dataset. This has to be considered when looking at
these figures.

BART-GBP performs best on both datasets and
label subsets, except for intrinsic hallucinations in
the TLHD-CNNDM dataset in Figure 9c, where
DAE and Lexical-1 perform better.

One thing that is easily visible from the ROC
curves is the fraction of positive labels that can be
discovered by a detection method. When a curve
flattens out, it is no longer able to find more halluci-
nations without labeling all tokens as positive. This
further highlights the strengths of the token-level
methods BART-GBP and Lexical-n.

B Hallucination Examples

We present two examples of hallucinations,
one of intrinsic hallucination from the FRANK
dataset, and one of extrinsic hallucination from
the TLHD-CNNDM dataset. In the former
example, Mike Tyson’s mansion is now in a
gaudy, abandoned state, but was not while he
still lived in it. In the latter example, the name
of the stadium (Old Trafford) is never mentioned
in the article, so it is an extrinsic hallucination.
As an aside, factuality cannot be determined,
since the article only talks about a "meeting" of
the two teams and does not mention the home team.

Intrinsic hallucination from FRANK.
Article: (CNN)A trip to a former heavyweight
champ’s gaudy, abandoned mansion. The tallest
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Figure 8: ROC curves for hallucinations in the FRANK dataset.
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Figure 9: ROC curves for hallucinations in the TLHD-CNNDM dataset.

and fastest "giga-coaster" in the world. A dramatic
interview with a famed spiritual leader – and the
tearful reaction by one of his former students.
These are some of the best videos of the week: In
the 1980s and ’90s – before he moved to Vegas and
started keeping tigers as pets – former heavyweight
boxer Mike Tyson lived in a Southington, Ohio,
mansion. The home featured an indoor swimming
pool, a marble-and-gold Jacuzzi (with mirrored
ceiling, naturally) and an entertainment room large
enough for small concerts. Tyson sold the house in
1999; it’s due to become, of all things, a church.
The video can be seen at the top of this story. Not
a fan of roller coasters? You may want to skip
the next video – but for the rest of us, the thrill of
watching is the next best thing to being there. The
Fury 325 can be found at Carowinds amusement
part in Charlotte, North Carolina. Watch the video:
In a CNN exclusive, Alisyn Camerota looked
into allegations that Bikram yoga creator Bikram
Choudhury sexually assaulted six former students.
"He’s a person who’s based a lot of truths on a
lot of lies," said Sarah Baughn, who alleges that
Choudhury sexually assaulted her. Watch the
video: CNN’s Karl Penhaul spoke to a shepherd
who witnessed the final seconds of Germanwings
Flight 9525, which crashed in the French Alps

last week. "I saw the plane heading down along
the valley and I said, ’My God, it’s going to hit
the mountain,’ " Jean Varrieras told Penhaul. "I
ducked my head. ... Then after that, I saw the
smoke." Watch the video: Magician and comedian
Penn Jillette was part of a panel speaking to
CNN’s Don Lemon about the controversial Indiana
religious freedom law. Jillette, an avowed atheist
and libertarian, noted "we are not talking about
forcing people to engage in gay sex, or even
endorse gay sex." His provocative opening led
to an energetic back-and-forth with the Alliance
Defending Freedom’s Kristen Waggoner and the
ACLU’s Rita Sklar. Watch the video: A professor
of physics at a British university asked 100 people
to create a composite with facial features they
thought were beautiful – and then asked another
100 to rate their attractiveness. You’ll never guess
what celebrities best fit the model. Watch the
video:
BART summary: Former heavyweight champ
Mike Tyson lived in a gaudy, abandoned mansion
in Ohio. CNN’s Karl Penhaul spoke to a shepherd
who witnessed the final seconds of Germanwings
Flight 9525. Penn Jillette was part of a panel
speaking to CNN’s Don Lemon about the contro-
versial Indiana religious freedom law.
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Intrinsic hallucinations: gaudy, abandoned

Extrinsic hallucination from TLHD-CNNDM.
Article: Gareth Barry has advised his Everton
team-mate Ross Barkley against moving to Manch-
ester City at this young stage of his career. Barry
speaks from experience having spent four seasons
at the Etihad before arriving on Merseyside and
the veteran midfielder believes it is still too early
for the 21-year-old to decide on his future. Ahead
of the Toffees meeting with Manchester United
on Sunday, Barry told the Mirror: ’Personally, I
think he’s still too young to make that move. Ross
Barkley’s rise to stardom has seen him repeatedly
linked with Premier League champions Man City .
Everton team-mate Gareth Barry has advised the
youngster not to leave Goodison too soon . ’He’s
still learning the game. He’s got the right manager
here to push him to the next level. ’As soon as
he reaches that next level, then there’s another
decision to be made. At the moment, I think it’s
too early.’ And asked if considered the Premier
League champions to be a graveyard for young
talent, Barry added: ’I think so, yeah.’ Barkley
has overcome his early season struggles to play
an influential role in Everton’s recent revival and
Barry believes the youngster he mentors daily
can achieve anything he wants in the game. The
21-year-old signs autographs for fans after coming
through a difficult start to the season . Veteran
midfielder Barry spent four seasons at City before
being found surplus to requirements . ’I sit next to
him in the changing room at the training ground. I
speak to Ross quite often,’ said Barry. ’You feel
sorry for him sometimes because the expectation
is getting thrown on to his shoulders – people are
expecting of him, week in, week out, goals and
assists. ’That hasn’t happened, but at the same
time he’s still improving as a player and growing
in maturity. ’His ability and his strengths are there
for everyone to see, he can go on and be a top top
player.’
BART summary: Ross Barkley has been linked
with a move to Manchester City. Everton team-
mate Gareth Barry believes it is too early for
the 21-year-old to leave Goodison Park. Barry
spent four seasons at the Etihad before arriving on
Merseyside. Everton face Manchester United at
Old Trafford on Sunday.
Extrinsic hallucinations: at Old Trafford

C Human Annotation Details

Our human annotation was performed with 3 sets
of 3 annotators, each annotating 50 examples. The
full instructions are given below, together with an
example of how the human annotation task looks.

Hallucination detection

This study evaluates hallucinations in automatic
summarization models. A hallucination is informa-
tion that is not directly supported by the article that
the model has to summarize.
Main question: Can the summary sentence in
question be inferred directly from the article?
There are two types of hallucinations: intrinsic and
extrinsic hallucinations. They are defined as fol-
lows (from Maynez et al., 2020):
Intrinsic hallucination: Combination of informa-
tion from the article that does not follow from it
Extrinsic hallucination: Information not present
in the article
Not a hallucination: Paraphrases, or information
directly inferred from the article
Importantly, this is not a question of whether the
summary is true or false, just whether it faithfully
represents the information in the article.

The goal in this study is to annotate a summary
sentence with intrinsic and extrinsic hallucinations,
by copying the words that cannot be inferred from
reading the article. Here’s an example (the part
in red is the annotation that you will do [your
annotations can stay black]):
Example annotation
Article: Manchester City was defeated by Crystal
Palace 2-1 at the Etihad Stadium on Sunday. Glenn
Murray and Jason Puncheon scored the goals for
Palace, while Yaya Toure was the only scorer for
City. City’s best striker Sergio Aguero was left
on the bench for yet another game. The result is
especially shocking when comparing the squad’s
total transfer fees: £40m pounds for Crystal Palace
vs. £500m for Manchester City.
Full summary: Crystal Palace beat Manchester
City 2-1 on Saturday. Yaya Toure was left on the
bench, and Crystal Palace have spent £40m on
transfer fees so far this season.
Sentence in question: Yaya Toure was left on the
bench, and Crystal Palace have spent £40m on
transfer fees so far this season.
Intrinsic hallucinations: Yaya Toure
Extrinsic hallucinations: so far this season
Explanation: It was Sergio Aguero that was left
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on the bench, not Yaya Toure (since he scored a
goal, we know that he was playing). We’re looking
for a hallucination that is as small as possible,
that’s why we didn’t mark “Yaya Toure was left
on the bench”, or “was left on the bench”. For the
extrinsic hallucination, there is no mentioning that
the spending was for this season only. There is
also a mistake in the first sentence of the summary
(Saturday vs. Sunday in the article), but this is not
the sentence in question, so we ignore it.

Notes

• If there are no hallucinations, leave the line
blank.

• If there are multiple hallucinations in the sen-
tence, separate them with a comma.

• Sometimes a sentence is not complete, or
there are multiple sentences in one, but a pe-
riod is missing to separate them. Just treat
the “sentence in question” as if it were a sin-
gle sentence. (These are artifacts of sentence
splitting/the training data, which we do not
evaluate here.)

• The examples below have a visual help: Text
overlaps of more than two words between the
sentence and the article are written in bold
and numbered at the end, like this: [1]. This
is just a help for you to find information faster,
and does not mean the model copied the parts
from there. Example: Article: This year’s
harvest was[1] especially rich on apples.[2]
Sentence: This year’s harvest was[1] high
on apples.[2]

• Hint: Read the sentence in question first, and
then look for the relevant information in the
article.
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Abstract
A wide variety of tasks have been framed
as text-to-text tasks to allow processing by
sequence-to-sequence models. We propose a
new task of generating a semi-structured in-
terpretation of a source document. The inter-
pretation is semi-structured in that it contains
mandatory and optional fields with free-text in-
formation. This structure is surfaced by human
annotations, which we standardize and convert
to text format. We then propose an evaluation
technique that is generally applicable to any
such semi-structured annotation, called equiva-
lence classes evaluation. The evaluation tech-
nique is efficient and scalable; it creates a large
number of evaluation instances from a compara-
bly cheap clustering of the free-text information
by domain experts. For our task, we release a
dataset about the monetary policy of the Fed-
eral Reserve. On this corpus, our evaluation
shows larger differences between pretrained
models than standard text generation metrics.

1 Introduction

General-purpose sequence-to-sequence models
have achieved impressive results on conditional
text generation (Radford et al., 2019; Brown et al.,
2020), machine translation (Liu et al., 2020; Xue
et al., 2021), and text summarization (Lewis et al.,
2020; Zhang et al., 2020a). This has lead to their
application to ever more tasks; as long as the task
can be formalized in a text-to-text format, it can be
processed by these models (Raffel et al., 2020).

We apply sequence-to-sequence models in a dif-
ferent setting: documents interpreting other docu-
ments. This phenomenon is pervasive in our daily
lives, be it a critic reviewing a play or book, a web-
site presenting highlights of a travel guide, or, as in
this paper, a journalist writing an article about an
organization’s press release.

For social scientists, these reviews or articles
present an interesting subject of study; they surface

*Correspondence to andreas.marfurt@idiap.ch.
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Figure 1: Our proposed interpretation task. A journalist
creates an interpretation of a source document. A so-
cial scientist extracts and categorizes the relevant parts
of the interpretation by means of annotation, which is
converted into text-only format. The model learns the
interpretation process by directly predicting the target
annotation from the source document.

the author’s interpretation of the original source
document. With the tool of human annotations,
domain experts can extract the core constituents
and surface implicit information in these various
interpretations to make them comparable.

In this paper, we train models to learn this in-
terpretation process (see Figure 1).1 We describe
how human annotations can be standardized and
converted into a text-only format to serve as semi-
structured targets in this interpretation prediction
task. We introduce the FOMC dataset, a corpus
about the monetary policy of the Federal Reserve,
the central bank of the United States of Amer-
ica. The dataset contains source documents of
greatly varying length, containing policy announce-
ments such as press releases or speeches. The
target interpretations are short, and consist of se-
lected sentences taken from New York Times arti-
cles, which are then annotated by domain experts.
We also devise a scalable evaluation technique for
semi-structured outputs, which we call equivalence
classes evaluation. Domain experts cluster high-
lighted text spans from the human annotations into
equivalence classes, signifying their semantic inter-

1Our data, code and finetuned models are
available at https://github.com/idiap/
semi-structured-annotations.
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changeability. A generative model is then probed
with a prefix and either a true continuation from the
data or a wrong continuation from a different equiv-
alence class. If the model learned the process of
interpretation well, it will give higher probability
to the true continuation. From a single cluster-
ing, we can automatically generate a large number
of evaluation instances by sampling negative text
spans. We train Transformer (Vaswani et al., 2017)
sequence-to-sequence models with varying levels
of pretraining on the FOMC dataset, and find that
BART (Lewis et al., 2020) performs well on our
equivalence classes evaluation and standard text
generation evaluation metrics.

Our contributions are: 1) We introduce a new
dataset on document interpretation, with semi-
structured annotations and documents on the mone-
tary policy of the Federal Reserve. 2) We introduce
a method to convert these annotations into text
format and apply generative text models. 3) We
devise a scalable technique to evaluate models on
the task of generating semi-structured outputs, by
efficiently utilizing domain experts’ grouping of
text spans into equivalence classes. 4) We perform
an evaluation with our technique, and showcase its
flexibility with an in-depth error analysis.

2 Semi-Structured Human Annotations

We consider a setting where a long text is inter-
preted in a few sentences. The interpretation may
select an aspect of the source text to focus on, and
it may be opinionated. Each sentence is annotated
by domain experts to surface and structure the im-
portant information.

2.1 Standardizing Human Annotations

We aim to standardize the human annotations into
a general but flexible semi-structured format which
should make it possible for NLP models to process
them. In order to do so, we first have to define the
possible annotation operations.

Our annotations are created from two operations:
1) marking spans with a label in order to categorize
them, and 2) optionally commenting on a marked
span to give context, paraphrase or make implicit
information explicit.

2.2 Converting Annotations to Text

We convert annotations into a text-only format by
inserting category-specific start and end tokens for
each marked span. Overlapping or fully contained

[STD SENTENCE START] [REFERENCE START] Last week
[REFERENCE END] , the [ACTOR START] Federal Reserve
[ACTOR END] [ACT START] left interest rates unchanged
(Did not raise rates) [ACT END] , but it remained on
guard against inflation by continuing its stated bias
toward higher rates -- despite mixed signals on just
how much [EVIDENCE START] the economy may be slowing
[EVIDENCE END] . [STD SENTENCE END]

Last week , the Federal Reserve
left interest rates unchanged , 
but it remained on guard against  
inflation by continuing its stated 
bias toward higher rates -- despite 
mixed signals on just how much 
the economy may be slowing .

Did not raise rates

Figure 2: Example of the automatic conversion of an
annotated interpretation into text format.

spans are allowed. We include the comments by
adding them in parentheses (imitating a similar use
in natural language) at the end of the respective
marked span and before the category end token.
An example annotation transformed to text format
is shown in Figure 2.

2.3 The Interpretation Task

We propose the task of generating the interpreta-
tions, including the human annotations, from the
source documents. This task can be formalized as
a sequence-to-sequence generation task, with pairs
of a single source document xi and one or more tar-
get annotations yij in text format, with 1 ≤ j ≤ mi.
The multiple target annotations are equivalent to
multiple references in traditional text generation
tasks, i.e. they are all equally valid solutions to the
task. In total, there are n source documents and
m =

∑n
i=1mi targets.

The targets yij contain marked spans of cate-
gories c from a predefined set of categories C.
Some categories occur in every target, and some are
optional, as illustrated in the paragraph Annotation
Categories below.

2.4 The FOMC Dataset

We now present our dataset constructed according
to the guidelines above. The source documents and
targets were selected and annotated by domain ex-
perts. They are on the topic of the monetary policy
of the Federal Open Market Committee (FOMC) of
the Federal Reserve, the central bank of the United
States of America, in the years from 1967 to 2018.
The source documents are policy announcements
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of the FOMC such as press releases, speeches, tes-
timonies, Q&A sessions, or meeting minutes. The
targets are sentences from news articles of the New
York Times which conform to the requirements
(see Annotation Categories below). An example is
shown in Appendix D.

Data collection. Domain experts2 searched the
New York Times archives for articles on the mon-
etary policy of the Federal Reserve. Candidate
articles were searched for sentences that contain
all mandatory categories described below. If a sen-
tence is found, it is annotated by highlighting the
categories and adding comments. All annotations
are validated by a senior domain expert3. Sen-
tences from the same article referencing the same
source document are collected in a single target
annotation. If multiple articles reference the same
source document, one target annotation is created
per article.

Annotation Categories. A selected sentence is
called a standardized sentence in the corpus termi-
nology. The mandatory and optional categories, as
well as their purpose, are listed below:

• Standardized sentence: Mandatory. Marks
the start and end of a target sentence.

• Act: Mandatory. Most often contains a com-
ment. Marks an action (or non-action) on
monetary policy. Example: "left interest rates
unchanged (Did not raise rates)".

• Actor: Mandatory. Marks the entity perform-
ing the act. By design, this is exclusively the
Federal Reserve or FOMC. Example: "Fed".

• Reference: Mandatory. Provides a link to
the source document, which can be opaque
in the article, e.g. saying that something hap-
pened yesterday. That source is systematically
tracked down by the domain experts. Exam-
ple: "yesterday’s meeting".

• Attribution: Optional. Marks the individual
advocating for the Federal Reserve to perform
a certain action. Example: "Greenspan".

• Motive: Optional. Can appear multiple times.
States the goal of an act. Example: "to fight
inflation".

2PhD students in economics and political science at the
Graduate Institute

3Ashley Thornton and David Sylvan

Train Valid Test

Source documents 1342 167 169
Target annotations 3246 364 380

Mean targets/source 2.42 2.18 2.25
Max targets/source 36 17 16

Table 1: Number of examples in each split in the FOMC
dataset.

Count Source documents Targets

(Std) Sentences 262.6 (± 688.6) 1.6
Words 6054.1 (± 12639.4) 123.6
Start/end tokens - 18.2
Total tokens 6054.1 (± 12639.4) 141.8

Table 2: Mean length of source documents and target
annotations in the FOMC dataset.

• Evidence: Optional. Can appear multiple
times. States an observation, e.g. about the
current economic state, that served as an in-
centive for the act. Example: "high oil prices".

• Scope: Optional. Marks the temporal scope
of an act. Example: "by the end of the year".

Dataset statistics. We now show dataset statis-
tics. First, the number of examples in each split
(80%/10%/10% for train/validation/test) is pre-
sented in Table 1. Second, the number of tokens in
source and target texts is shown in Table 2.

Filtering source documents. As is evident from
Table 2, the source documents are generally very
long. In contrast, the maximum number of input
tokens that state-of-the-art models are pretrained
on, lies between 512 in BERT (Devlin et al., 2019)
and 1024 in BART (Lewis et al., 2020). This lim-
itation is due to the quadratic complexity of self-
attention in the Transformer architecture (Vaswani
et al., 2017) and its resulting strain on computa-
tional resources.

As a consequence, there are two ways to define
the prediction task for the FOMC dataset. The
first one is to condition on the full text document,
but devise models capable of handling very long
inputs, such as adding a filtering module (used
below) or using appropriate architectures such as
the Longformer (Beltagy et al., 2020). The sec-
ond option is to condition on a specific filtering
of the source documents which reduces them to a
length that can be processed by the chosen model.
Alongside the data, we provide a script that allows
for selecting sentences from the source document,
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Evaluation: Act type
Category: Act
Equivalence class 1:

- left interest rates
unchanged (Did not
raise rates)

Equivalence class 2:
- decided to raise interest
rates (Did raise rates)

- voted to raise rates (Did
raise rates)

Equivalence class 3:
- lowered interest rates a
quarter point (Cut rates)

Figure 3: Definition of an evaluation with its equiva-
lence classes.

while satisfying the length restriction for a given
tokenizer from the HuggingFace transformers li-
brary (Wolf et al., 2020). The selection logic can
be set to either pick sentences from the top of the
source document (Lead strategy), or to use an ora-
cle that greedily picks sentences that maximize the
length-normalized ROUGE-2 recall gain (Oracle
strategy).

3 Equivalence Classes Evaluation

To evaluate a model on predicting the marked spans
of individual annotation categories, we propose the
equivalence classes evaluation as an efficient way
of generating evaluation instances from domain
experts’ knowledge.

3.1 Definition

An evaluation selects a category c that it wants
to evaluate, which in turn consists of 2 or more
equivalence classes. The members of an equiva-
lence class are marked spans of category c in the
dataset. Members of the same equivalence class are
semantically interchangeable in the target annota-
tion, with respect to the objective of the evaluation.
The members of all equivalence classes must be
syntactically interchangeable, such that replacing
one for the other still results in a grammatically
correct sentence. An example is given in Figure 3.

3.2 Creating Evaluation Instances

Evaluation instances are then created by searching
target annotations in the validation/test set for a
member of an equivalence class. If one is found, an
evaluation instance is created consisting of 1) the
prefix yprefix up until the selected span, 2) the se-
lected span a(pos) as the true (positive) continuation,
and 3) a randomly selected span a(neg) from a dif-

[REFERENCE START] Last week [REFERENCE END]
, the [ACTOR START] Federal Reserve
[ACTOR END] [ACT START]

left interest rates unchanged (Did not
raise rates)

decided to raise interest rates (Did raise
rates)

Figure 4: Equivalence classes evaluation instance with
prefix yprefix, a positive continuation a(pos) and a negative
continuation a(neg).

ferent equivalence class as the false (negative) con-
tinuation. a(neg) is chosen by uniformly sampling
a negative equivalence class, and then uniformly
sampling one of its members. An example is shown
in Figure 4, where a(pos) is in equivalence class 1 of
the example evaluation in Figure 3, and a(neg) has
been sampled as the first member of equivalence
class 2. Any other member of equivalence classes
2 or 3 could have been chosen as well.

For a single match of a positive span in the eval-
uation set, one can create a large number of evalua-
tion instances by sampling negative continuations
without replacement.

Optionally, the positive span a(pos) can be re-
placed by a different member of the same equiva-
lence class (for equivalence classes with more than
one member). This can help mitigating lexical inac-
curacies that can arise from replacing a span with
another, which otherwise only exist for a(neg).

Relation to Pattern-Exploiting Training. In
Schick and Schütze (2021a), Pattern-Exploiting
Training (PET) is introduced. The concept of ver-
balizers is similar to equivalence classes. In their
work, verbalizers are manually predefined single
tokens that represent a class label.4 Our equiva-
lence classes consist of expert-selected multi-word
spans from the data, that each represent the con-
cept of their equivalence class. Equivalence classes
are multi-faceted: They determine both a semantic
concept and a grammatical structure, and are al-
ways defined with respect to a certain aspect under
evaluation.

3.3 Model Evaluation

To evaluate the generative model, we obtain the
probability pθ it assigns to a(pos) and a(neg) by get-
ting its next-token probabilities given the prefix
yprefix. We apply teacher-forcing and obtain the

4In their follow-up work, they extend verbalizers to multi-
ple tokens (Schick and Schütze, 2021b).
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probabilities autoregressively, extending the prefix
with the previous token at each turn. The probabil-
ity of the entire span is computed as

pθ(a) =
l∏

i=1

pθ(ai|yprefix, a<i) (1)

where a ∈ {a(pos), a(neg)}, and l is the length
of a. The model solves an instance correctly if
pθ(a

(pos)) > pθ(a
(neg)).

If the lengths of a(pos) and a(neg) are substantially
different, the value of pθ could be determined more
by the difference in length than in semantics. We
avoid this during sampling of a(neg) by restricting
the maximum difference in number of words be-
tween a(neg) and a(pos) to 2.

3.4 In-Depth Analysis

The equivalence classes evaluation also allows for
an in-depth error analysis. First, we can test spe-
cific properties for a category, such as how well the
model handles negation in acts. Second, we can
break down an evaluation’s score by combinations
of equivalence classes, and identify the hardest
combinations for the model. We show examples of
such analyses in Section 5.3.

Data augmentation. As an added benefit, equiva-
lence classes give rise to a simple training data aug-
mentation method. We create additional training
examples from equivalence classes by exchanging
the ground-truth highlighted span with a different
one from the same equivalence class. We post-
pone testing the efficacy of this data augmentation
method to future work.

4 Experiments

In our experiments, we use the FOMC dataset de-
scribed in Section 2.4.

4.1 Equivalence Classes

The equivalence classes for our evaluations were
proposed by one of the authors5 and validated by
the same senior domain experts as for the FOMC
dataset described in Section 2.4. We create an eval-
uation for each of the following 5 categories: act, at-
tribution, motive, evidence, and scope. We add one
evaluation for the act comments, without the act
itself. Furthermore, we create additional in-depth
evaluation examples for modal verbs and negation,

5Andreas Marfurt

which our domain experts are especially interested
in. We create separate evaluations for modal verbs
in positive (e.g. should) and in negative formula-
tion (e.g. might not), to avoid confounding with the
effect of negation. These 3 evaluations (positive
modal verbs, negative modal verbs, negation) are
created for acts without comments, act comments,
and acts concatenated with comments.

One evaluation instance is created for each exam-
ple in the evaluation set that contains any member
of the evaluation’s equivalence classes. If the eval-
uation instances n have not reached 100 yet, ⌊100n ⌋
negative spans a(neg) are sampled per instance, such
that the total number is close to 100. If more than
100 matches are found, all of them are included in
the evaluation with one randomly sampled negative
span. We do not replace positive spans. This proce-
dure generates 1974 total evaluation instances from
the validation set, and 2104 from the test set. The
general evaluations of the 5 categories plus the act
comments (excluding in-depth evaluations) contain
818 evaluation instances from the validation set,
and 886 from the test set. The smallest category
(motive) has 74 and the largest (act labels) has 336
test evaluation instances.

4.2 Standard Text Generation Metrics

Since our task is a sequence-to-sequence task, we
also report standard text generation metrics. If not
mentioned otherwise, we compute the following
metrics for generated annotations without special
tokens (category start and end tokens).

ROUGE. ROUGE (Lin, 2004) is a textual over-
lap metric which is widely used in text summariza-
tion, a task with strong connections to ours. As
is common in summarization, we report ROUGE-
1/2/L as the unigram and bigram overlap, and the
longest common subsequence, respectively. We
compute ROUGE with and without special tokens,
as we want to see both how well the model gener-
ates the annotations as well as the original article.

BERTScore. We use BERTScore (Zhang et al.,
2020b) as a semantic similarity metric between the
generated and reference target annotations. We
do not use idf-importance weighting, and we use
baseline rescaling.6 If multiple target annotations
are present, the maximum similarity is reported, as
proposed by the authors.

6Evaluation hash: roberta-large_L17_no-idf
_version=0.3.11(hug_trans=4.6.1)-rescaled
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Distinct bigrams. We report the distinct bigrams
in the generated target annotations. This metric
checks if the model produces overly generic and
repetitive outputs. A higher number of distinct
bigrams corresponds to higher lexical diversity in
the output and is desirable.

Novel bigrams. Novel bigrams measure the per-
cent of bigrams in a generated annotation that do
not appear in the filtered source document that
serves as input text. This metric measures the ex-
tractiveness of the model, i.e. its tendency to copy
text from the input.

4.2.1 Annotation Category Metrics
We add annotation category-specific metrics to the
text generation metrics. These metrics are designed
to detect if any category or the target format are
ignored by the model.

Category counts. We report the mean and stan-
dard deviation of each annotation category’s occur-
rence over the generated target annotations.

Categories correctly closed. This evaluation
measures the percent of annotation spans that are
correctly encompassed by a category start and end
token. This evaluation shows whether the decoder
correctly learned to generate in the target format.

4.3 Filtering Source Documents

As detailed in Section 2.4, the source documents
are much longer than current Transformer mod-
els with quadratic self-attention complexity can
process. However, we conjecture that only very
specific parts of these documents are needed to
generate the comparably very short target annota-
tions (see Table 2). On top of mentioned filtering
strategies, we train a filtering model. For this pur-
pose, we finetune a BERT model (Devlin et al.,
2019) for sequence classification.7 We split long
inputs at sentence boundaries into chunks of at
most 512 tokens, and then predict whether to keep
the sentences in the current chunk.

We train the model with a cross-entropy loss
between the predictions and the oracle selection
described in Section 2.4. We train with a batch
size of 5 for 10 epochs, but stop early when the
F1 score on the validation set no longer improves.
We use the same learning rate schedule as for the

7We use the standard implementation in the HuggingFace
transformers library (Wolf et al., 2020).

generative models described below, with a maxi-
mum learning rate of 1e-3. During inference, we
select the sentences with the highest logits until we
reach the token limit. The selected sentences are
concatenated in the order in which they appear in
the source document. We name this filtering model
FilterBERT.

4.4 Generative Models

For our generative models, we rely on the Trans-
former architecture (Vaswani et al., 2017), and com-
pare finetuning differently pretrained models.

Transformer. We use a randomly initialized
Transformer encoder-decoder to test the effect of
skipping pretraining. Our implementation of the
Transformer is the same as the BERT model below.

BERT. We finetune a pretrained BERT encoder
(Devlin et al., 2019) and train a randomly initial-
ized Transformer decoder, as proposed in Liu and
Lapata (2019). Unless otherwise mentioned, we
use the base model size.

BART. We finetune the BART model (Lewis
et al., 2020) as a proponent of a jointly pretrained
encoder and decoder.

Training details. Training steps and learning rate
hyperparameters were selected on the validation
set with a grid search with exponential step sizes.
We train our models for a maximum of 10 (Trans-
former/BERT) or 20 (BART) epochs, which corre-
sponds to 8000 or 16000 steps with a batch size of
4, respectively. We stop training early if the vali-
dation loss does not improve any further. We set
the maximum learning rate to 1e-4 for randomly
initialized parameters, and 1e-5 for pretrained ones.
Exceptionally for BART, we use a learning rate
of 1e-6 for the tied input/output embeddings. We
warm up the learning rate for a tenth of the total
epochs, with a linear increase from 1/100-th of the
maximum learning rate, and then a linear decay
back down to the starting point. We use the Adam
optimizer (Kingma and Ba, 2015).

Generation details. For our evaluation of text
generation metrics (see Section 4.2), we generate
text with beam search. We use 5 beams, a minimum
generation length of 50 tokens and a maximum of
500, no length penalty, and no n-gram blocking
(Paulus et al., 2018).
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Model Act Act comments Attribution Motive Evidence Scope Mean

Transformer 93.18% 93.45% 94.79% 66.22% 43.68% 50.00% 73.55%
BERT 97.73% 94.64% 97.16% 66.22% 45.98% 54.44% 76.03%
BART 98.86% 96.13% 97.16% 71.62% 81.61% 80.00% 87.56%

Table 3: Accuracy of main equivalence classes evaluations.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore Distinct bigrams Novel bigrams

References - - - - 9961 82.68%

Transformer 31.89 10.27 25.06 0.72 214 87.61%
BERT 41.09 18.31 31.63 19.00 965 82.75%
BART 42.73 20.64 33.08 26.78 3011 73.62%

Table 4: Text generation evaluation results. ROUGE is computed on targets including special tokens.

5 Results

5.1 Equivalence Classes Evaluation

Our main results for the general equivalence classes
evaluations on the 5 categories plus act comments
are shown in Table 3. The BART model with a
jointly pretrained encoder and decoder substan-
tially outperforms the Transformer and BERT mod-
els. The act, act comments and attribution evalua-
tions are solved nearly perfectly, but the others are
harder. For the evidence evaluation, Transformer
and BERT perform substantially below the random
baseline, which would achieve 50% in expectation.
We analyze the case of the evidence evaluation
further in Section 5.3.

5.2 Text Generation Metrics

We show the results of text generation metrics in
Table 4. Again, BART outperforms the other mod-
els. The low scores in BERTScore and distinct bi-
grams (excluding special tokens) indicate that the
Transformer fails to generate diverse and topical
target annotation sentences. However, the compara-
bly high ROUGE scores (including special tokens)
show that it learns to generate the target format
well, which is also supported by the last column
of Table 5. BART generates the most diverse and
topical target annotations, and is also the most ex-
tractive method, showing that it makes use of the
input document.

In Table 5 in the appendix, we show the mean
and standard deviation of each category’s anno-
tation counts for our three models. BERT pro-
duces outputs that stay closest to the number of
category annotations of the reference target annota-
tions. BART under-generates all categories, which
can be partially explained by it not having learned

to open and close category spans reliably. The com-
bination of not having seen the format during pre-
training and a lower decoder learning rate, which
was helpful for the other tasks, explains why BART
performs worse than the models with randomly
initialized Transformer decoders.

5.3 In-Depth Analysis
Table 6 in the appendix shows a selection of equiva-
lence classes evaluations where equivalence classes
were built for a specific purpose. In our evaluations,
these measure performance on act modal verbs (e.g.
raised rates vs. might raise rates) and act negation,
both aspects that are of high importance to our do-
main experts. We can see that negation is handled
well by all models, and that modals are substan-
tially harder for acts, but not for act comments
(where the act is part of the prefix). Acts with com-
ments (last column) do not necessarily make the
task easier than acts without comments (second
column).

We also perform a qualitative in-depth analysis
of the evidence evaluation for the BART model. To
that effect, we count the percentage of evaluation
instances the model gets wrong for each pair of
equivalence classes, which is shown in the confu-
sion matrix in Figure 5. The number in each square
corresponds to the number of mistakes in the evalu-
ation. Some of the mistakes occur for the following
pairs of equivalence classes, where a(pos) is taken
from the first, and a(neg) from the second:

• deflation – low/declining inflation

• cooling housing market – tightening credit
market (full example in Appendix E)

• high unemployment – high oil prices

• high unemployment – weak economic activity
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. high inflation
2. low/declining inflation

3. weak dollar
4. high money supply growth
5. low money supply growth

6. deflation
7. high oil prices

8. falling oil prices
9. cooling housing market

10. tightening credit market
11. weak economic activity

12. high unemployment
13. strengthening economy

14. slowing growth

0 0 0 0 0 0 0 0
0 1 0 1 0

1 0 0

0 0
0 1 0 0 1 0 0 0

1 0 0 0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 1 1 1 0 1 0
0 0 0 0 0
0 0 1 0 0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Confusion matrix of BART’s accuracy on
pairs of evidence equivalence classes. The equivalence
class for a(pos) is on the y-axis, the one for a(neg) on the
x-axis. Each cell contains the number of mistakes the
model makes for that combination. Empty cells do not
have a corresponding pair in the evaluation.

• slowing growth – low money supply growth

The mentioned combinations of economic pro-
cesses are correlated or even co-occurring, making
it difficult for the model to distinguish the positive
from the negative span. In these cases of close
semantic similarity, the model may fall back to
ranking candidate text spans higher based on e.g.
their frequency in the training data, where inflation
is one of the dominant subjects. For other combi-
nations, such as weak dollar – deflation, the model
just makes mistakes.

5.4 Ablation Study

We perform ablation studies with respect to model
size, filtering strategy and source document input
length. The tables with the results have been moved
to Appendix C.

Model sizes. In the results shown so far, BART
has outperformed the Transformer and BERT. How-
ever, those models operate with 247 million param-
eters (size of BERT-base), while BART has 406
million. In Table 7, we see that increasing BERT’s
parameters to the size of BERT-large only provides
small to no benefits. BART still outperforms BERT-
large, even with almost half of the parameters, due
to – as we believe – the beneficial initialization
from joint encoder-decoder pretraining. This is es-
pecially valuable on the FOMC dataset, which has
comparably few training instances.

Filtering strategies. In Section 4.3, we intro-
duced the FilterBERT model for identifying and
selecting salient sentences from long source doc-
uments. As stated in Section 2.4, together with

the dataset, we make available a script for filtering
source documents with either the Lead or the Ora-
cle strategy. The former selects sentences from the
top of the source document, the latter selects those
that most increase the length-normalized ROUGE-
2 recall with the target annotations. In Table 8, we
see that Oracle filtering generally performs best on
generation metrics, but not on equivalence classes.
The FilterBERT model outperforms the Lead strat-
egy for BART but not for generation metrics on
BERT. In general, the differences between the gen-
erative models are much larger than between the
filtering strategies.

Source document input length. Finally, since
BART has the ability to process inputs of up to
1024 tokens in length, we evaluate how that com-
pares to the input length of 512 tokens that we have
used so far. The results in Table 9 show that for
the Lead filtering strategy, longer inputs benefit all
metrics except ROUGE-2. With Oracle filtering,
ROUGE-2 and distinct bigram evaluations perform
slightly worse with longer inputs, while the rest im-
prove. In summary, the additional input sentences
only make a small difference for BART.

6 Related Work

To the best of our knowledge, our setting, task, and
evaluation have not been studied in prior work.

Evaluation. The closest approach to our equiv-
alence classes evaluation is the concept of verbal-
izers in Pattern-Exploiting Training (PET) (Schick
and Schütze, 2021a,b), the relation to which we
already discussed in Section 3.2. The biggest dif-
ference to our approach is that PET’s verbalizers
are limited to a small, bounded set of predefined
single tokens or few-token spans, while our equiv-
alence classes are unbounded, and their members
are collected from the data without restrictions on
length or content.

Other work has also tried to make human anno-
tations more efficient, e.g. for importance judge-
ments of sentences in multi-domain summarization
(Jha et al., 2020), or multi-task information ex-
traction (Bikaun et al., 2022). AnnIE builds fact
synsets to speed up open information extraction
(Friedrich et al., 2022).

Aspect-oriented summarization. Interpreta-
tions may focus on certain aspects in the source
documents, making them somewhat similar to
aspect-oriented summarization. AspectNews
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(Ahuja et al., 2022) and SPACE (Angelidis et al.,
2021) are two recent datasets with accompanying
models.

News summarization. Since our interpretations
are excerpts of New York Times articles, news sum-
marization is relevant to our work as well. This
is a very active field of research, with multiple
large-scale datasets (e.g. CNN/DM (Hermann et al.,
2015; Nallapati et al., 2016), XSum (Narayan et al.,
2018), among others). A lot of methods have been
tried on these datasets. BART (Lewis et al., 2020)
and PEGASUS (Zhang et al., 2020a) have shown
some of the best results for fine-tuned models.

7 Conclusion

We have devised a method to convert semi-
structured human annotations into text format. We
then introduced a task of predicting annotated in-
terpretations of source documents that can be tack-
led with sequence-to-sequence models. We pre-
sented a human-annotated corpus about the mone-
tary policy of the Federal Reserve. Our equivalence
classes evaluation is an efficient technique to cre-
ate a large number of targeted evaluation instances
from a comparably cheap clustering by domain
experts. We use this technique to evaluate state-
of-the-art generative models on our task, and find
that it shows larger differences between pretrained
models than standard text generation metrics. In
further in-depth analyses, the equivalence classes
evaluation tests the models for specific properties,
such as how they handle negation, and detects why
models struggle to correctly rank alternative text
spans of certain human annotation categories.

Limitations

In the following we discuss some limitations of our
paper.

Subjectivity of the annotation process. Even
though annotation protocols can be standardized
and outputs aggregated over multiple annotators,
the process of annotation remains subjective. In our
interpretation task, social scientists extract and cat-
egorize information, providing additional context
where necessary, and all annotations are validated
by a senior domain expert. The models trained on
the data will focus on the aspects that the annota-
tors deemed important. This is not inherently a bad
thing. Human annotation is a flexible tool that a
different set of annotators could use to highlight

other aspects of the data. Note that this is a separate
consideration from reproducibility of our results,
which we enable by open-sourcing our data, code
and models.

Application to other domains. We have yet to
establish transferability of our allowed set of an-
notations and task setup to other domains. While
we expect our procedure to be general enough to
work in different areas, this paper only uses a single
corpus about macroeconomics. The reason for the
limitation to one corpus is the high cost of finding
relevant interpretation documents, performing the
extraction and annotation, and standardizing the
resulting annotations.

Equivalence classes creation. While the cre-
ation of equivalence classes is less expensive than
directly creating evaluation examples, it still re-
quires manual effort by domain experts, which is
an expensive resource. This could be alleviated
with an automatic method to obtain equivalence
classes. In theory, the identification of candidate
members of equivalence classes should be facili-
tated by the category annotations. The two member
properties of 1) semantic interchangeability within
equivalence classes and 2) syntactic interchange-
ability across equivalence classes could potentially
be judged by a strong language model.

Syntactic structure of equivalence class mem-
bers. Syntactic interchangeability is a require-
ment on equivalence class members within one
equivalence classes evaluation. This limits us to
one syntactic construction per evaluation. We se-
lect the most common one in each category to ob-
tain a large enough number of evaluation instances.
As a consequence, the model will not be tested on
different syntactic structures. Unfortunately, test-
ing all possible syntactic constructions suffers from
1) a data sparsity problem, where not enough ex-
amples of the same construction occur in the data,
and 2) a large increase in manual effort required to
construct one evaluation per syntactic structure.

Ethical Considerations

Since this work uses pretrained language models,
it inherits the problems of those models with re-
spect to reproducing biased or offensive content
present in the pretraining data. We finetune our
models on the FOMC dataset, which consists of
policy announcements of the FOMC and news arti-
cle sentences of the New York Times. Both of these
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sources can be considered trustworthy and careful
with respect to the language that they use, in con-
trast to general text on the web that was present in
BART’s pretraining data. The topic of our dataset
is the monetary policy of the Fed. Non-topical con-
tent was filtered in the data collection stage. All
included news article sentences (which form the tar-
gets of our finetuning) were carefully selected and
annotated. We therefore expect not to have intro-
duced additional ethical issues with our dataset or
finetuning. It should be noted that the dataset dates
from 1967 to 2018, so it spans different historical
contexts.

The annotations were performed by researchers
of the Graduate Institute in their capacity as PhD
students, postdocs and professors.
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A Category Counts

The mean and standard deviation of category
counts, for the references as well as the model
generations, are listed in Table 5.

B In-Depth Results

Selected results of the in-depth analysis are shown
in Table 6.

C Ablation Results

We present the results of our ablation study on
model sizes in Table 7, on filtering strategies in
Table 8, and on source document input lengths in
Table 9.

D Full FOMC Example

We present the first example from the FOMC test
set. We show the source document filtered with
FilterBERT, the target annotation and BART’s
prediction. At the end, we show the generation
scores for this example.

Filtered source document: FEDERAL RE-
SERVE press release For Use at 4:30 p.m. August
22, 1986 The Federal Reserve Board and the
Federal Open Market Committee today released
the attached record of policy actions taken by the
Federal Open Market Committee at its meeting

272

https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41


on July 8-9, 1986. Such records for each meeting
of the Committee are made available a few days
after the next regularly scheduled meeting and are
published in the Federal Reserve Bulletin and the
Board’s Annual Report. The summary descriptions
of economic and financial conditions they contain
are based solely on the information that was avail-
able to the Committee at the time of the meeting.
Attachment RECORD OF POLICY ACTIONS OF
THE FEDERAL OPEN MARKET COMMITTEE
Meeting Held on July 8-9, 1986 Domestic policy
directive The information reviewed at this meeting
indicates that economic activity has expanded at
a relatively slow pace recently. The intermeeting
range for the federal funds rate was reduced to 5
to 9 percent. Other interest rates rose early in the
period but then retreated amid signs of weakness
in the economies of the United States and some of
its major trading partners, renewing expectations
of a discount rate cut in the near future. Since
the May meeting short-term market rates had
declined 10 to 40 basis points on balance. In
their discussion of policy implementation for the
weeks immediately ahead, Committee members
took account of the likelihood that the discount
rate would be reduced within a few days after
the meeting. Against the background of sluggish
expansion in economic activity and a subdued rate
of inflation, most of the members believed that
some easing was desirable and they indicated a
preference for implementing the easing, at least
initially, through a lower discount rate rather than
through open market operations. In one view, a cut
in the discount rate might need to be accompanied
by some increase in the degree of pressure on
reserve positions, pending evaluation of further
economic and financial developments. The
reduction was viewed as a technical adjustment
that would provide a more symmetrical range
around a lower federal funds rate that could be
expected to emerge following the anticipated
reduction in the discount 7/8-9/86 - 18 rate. Most
short-term interest rates have declined on balance
since the May 20 meeting of the Committee. In the
implementation of policy for the immediate future,
the Committee seeks to decrease somewhat the
existing degree of pressure on reserve positions,
taking account of the possibility of a change in the
discount rate.
Target annotation: [STD SENTENCE START]
Policymakers at the [ACTOR START] Federal

Reserve [ACTOR END] [ACT START] decided
at their July meeting to loosen credit condi-
tions (Loosened monetary policy) [ACT END]
[MOTIVE START] in an effort to stimulate the
sluggish economy [MOTIVE END], according to
[REFERENCE START] minutes [REFERENCE
END] of the meeting released today. [STD
SENTENCE END] [STD SENTENCE START]
Members of the [ACTOR START] Federal Open
Market Committee (Fed / FOMC) [ACTOR END]
[REFERENCE START] voted [REFERENCE
END] 10 to 1 to follow a strategy that would
push interest rates lower, [ACT START] despite
[ATTRIBUTION START] objections from one
member (Should not loosen monetary policy)
[ACT END] (One member of the FOMC) [ATTRI-
BUTION END] that [EVIDENCE START] such
a course might threaten renewed inflation later
[EVIDENCE END]. [STD SENTENCE END]
[STD SENTENCE START] Thomas C. [ATTRI-
BUTION START] Melzer [ATTRIBUTION END],
president of the St. Louis [ACTOR START]
Federal Reserve Bank [ACTOR END], [ACT
START] cast the single dissenting vote (Should not
loosen money supply) [ACT END]. The minutes
said Mr. Melzer [REFERENCE START] expressed
concern [REFERENCE END] that [EVIDENCE
START] looser Fed controls could initiate renewed
inflation [EVIDENCE END] and [EVIDENCE
START] weaken the dollar on foreign exchange
markets [EVIDENCE END]. [STD SENTENCE
END]
BART prediction: [STD SENTENCE START]
The [ACTOR START] Federal Reserve’s Open
Market Committee (Fed) [ACTOR END] [ACT
START] voted unanimously at its July 8-9 meeting
to ease monetary policy further (Might cut rates, in
future) [ACT END], according to [REFERENCE
START] minutes [REFERENCE END] of the
session released today. [STD SENTENCE END]

ROUGE-1/2/L (including category mark-
ers): 31.68/17.00/28.71
ROUGE-1/2/L (excluding category markers):
30.38/15.38/27.85
BERTScore: 27.29
Novel bigrams: 84.38%
Closed correctly: 100.00%
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E Equivalence Classes Evaluation
Example

We present an evaluation instance from the
equivalence classes evaluation for the evidence
category. BART got this example wrong, i.e.
judged the negative continuation a(neg) as more
likely than the positive a(pos) (appears in Figure 5,
positive class 9, negative class 10).

yprefix: [STD SENTENCE START] Ben S.
[ATTRIBUTION START] Bernanke [ATTRI-
BUTION END] , the chairman of the [ACTOR
START] Federal Reserve [ACTOR END] Board,
[REFERENCE START] declared [REFERENCE
END] on Friday that the central bank [ACT
START] ”stands ready to take additional actions
as needed” (Might cut rates, in future) [ACT
END] [MOTIVE START] to prevent the chaos
in mortgage markets from derailing the broader
economy [MOTIVE END] . Mr. Bernanke avoided
any specific promise to lower the central bank’s
benchmark federal funds rate at its next policy
meeting on Sept. 18. But he acknowledged
[EVIDENCE START]
a(pos): the dangers posed by the twin storms in
housing and mortgage lending
a(neg): credit was becoming harder to get for both
consumers and businesses
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Model Std sent Act Actor Reference Attribution Motive Evidence Scope Closed correctly

References 1.60 (± 0.93) 1.60 (± 0.93) 1.60 (± 0.93) 1.60 (± 0.93) 0.87 (± 1.18) 0.39 (± 0.72) 1.22 (± 1.41) 0.21 (± 0.45) 100.00%

Transformer 2.69 (± 0.62) 2.69 (± 0.62) 2.69 (± 0.62) 2.60 (± 0.64) 0.02 (± 0.22) 0.08 (± 0.31) 0.05 (± 0.22) 0.01 (± 0.11) 100.00%
BERT 1.63 (± 0.75) 1.63 (± 0.75) 1.63 (± 0.75) 1.63 (± 0.77) 0.73 (± 0.73) 0.43 (± 0.62) 0.07 (± 0.26) 0.14 (± 0.38) 99.97%
BART 1.55 (± 0.70) 0.79 (± 0.71) 1.22 (± 0.84) 1.37 (± 0.68) 0.29 (± 0.55) 0.02 (± 0.17) 0.13 (± 0.44) 0.05 (± 0.21) 69.44%

Table 5: Mean and standard deviation of category counts.

Model Act negation Act modals (pos) Act comment modals (pos) Act with comment modals (pos)

Transformer 89.58% 70.65% 93.81% 68.13%
BERT 93.75% 70.65% 93.81% 69.23%
BART 95.83% 89.13% 97.94% 80.22%

Table 6: Accuracy on selected in-depth equivalence classes evaluations.

Model Parameters EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

Transformer 247M 73.55% 31.89 10.27 25.06 0.72 214
BERT-base 247M 76.03% 41.09 18.31 31.63 19.00 965
BERT-large 771M 75.76% 41.26 17.91 31.39 19.30 1232
BART 406M 87.56% 42.73 20.64 33.08 26.78 3011

Table 7: Selected evaluation metrics for different model sizes.

Model Filter model EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

BERT FilterBERT 76.03% 41.09 18.31 31.63 19.00 965
BERT Lead 75.51% 41.27 18.74 31.44 19.59 1012
BERT Oracle 75.15% 41.38 18.54 32.05 19.96 1010

BART FilterBERT 87.56% 42.73 20.64 33.08 26.78 3011
BART Lead 86.90% 41.56 19.79 32.09 25.15 1976
BART Oracle 87.16% 44.04 21.84 33.87 26.98 3528

Table 8: Selected evaluation metrics for different filtering strategies.

Model Filter model Input tokens EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

BART Lead 512 86.90% 41.56 19.79 32.09 25.15 1976
BART Lead 1024 87.12% 42.39 19.64 32.20 25.44 2421

BART Oracle 512 87.16% 44.04 21.84 33.87 26.98 3528
BART Oracle 1024 89.15% 44.81 21.36 34.77 27.79 3296

Table 9: Selected evaluation metrics for different source document input lengths.
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Abstract

Automatic SQL generation has been an active
research area, aiming at streamlining the ac-
cess to databases by writing natural language
with the given intent instead of writing SQL.
Current state-of-the-art (SOTA) methods for
semantic parsing depend on large language
models (LLMs) to achieve high predictive ac-
curacy on benchmark datasets. This reduces
their applicability, since LLMs require expen-
sive GPUs. Furthermore, SOTA methods are
ungrounded and thus not guaranteed to always
generate valid SQL. Here we propose T5QL, a
new SQL generation method that improves the
performance in benchmark datasets when us-
ing smaller LMs, namely T5-Base, by ≈ 13pp
when compared against SOTA methods. Addi-
tionally, T5QL is guaranteed to always output
valid SQL using a context-free grammar to con-
strain SQL generation. Finally, we show that
dividing semantic parsing in two tasks, candi-
date SQLs generation and candidate re-ranking,
is a promising research avenue that can reduce
the need for large LMs.

1 Introduction

Automated code generation has long been consid-
ered one of the fundamental tasks in computer sci-
ence (Pnueli and Rosner, 1989). Recently, deep
learning (DL) methods for code generation have
been proposed which overcome the lack of flexibil-
ity of more traditional approaches (Le et al., 2020).
Some DL approaches can act as code completion
tools (Svyatkovskiy et al., 2020; Chen et al., 2021)
while others can use natural language (NL) as input
to generate code (Yin and Neubig, 2017), i.e., se-
mantic parsing (Kamath and Das, 2018). The latter
methods are particularly helpful for developers that
are not proficient in all programming languages
that are part of their development pipeline. For
example, a developer might be familiar with the
controller language (e.g., Python) but unfamiliar
with the database access language (e.g., SQL).
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Figure 1: Exact-match accuracy of the highest scor-
ing prediction as a function of beam size on the Spider
development set. Our method, T5QL, significantly im-
proves upon T5-Base and is superior to PICARD-Base.
PICARD-3B remains the SOTA for very large LMs, i.e.,
PICARD-3B uses T5-3B which is ≈ 13x larger than
T5-Base. Results for PICARD-Base and PICARD-3B
are straight (dashed) lines since Scholak et al. (2021)
only report results in the setting using database content
for a single point, namely beam search with 4 beams.

Generating SQL from NL is challenging because
the NL query might be ambiguous (e.g., columns
from different tables can have the same name).
Futhermore, obtaining labelled pairs of NL queries
to SQL is hard, time-consuming, and requires la-
bellers that are proficient in SQL. In recent years,
benchmark datasets have been used by developers
to evaluate their methods, namely Spider (Raffel
et al., 2019) and CoSQL (Yu et al., 2019).

PICARD (Scholak et al., 2021) is the current
SOTA method, i.e., the highest ranked method on
Spider. It is built on top of T5 (Raffel et al., 2019),
a general purpose LLM. As proven by Merrill et al.
(2021), LLMs are ungrounded and thus can gener-
ate any token at any given step, which may result in
invalid SQL; thus, to improve upon T5, PICARD
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prunes the search tree in order to avoid generating
invalid SQL. However, since PICARD fully prunes
branches during beam search, it is not guaranteed
to always generate an answer. Another major issue
with PICARD is that it needs a very large LM to
achieve good performance: PICARD gets ≈ 75.5%
exact match (EM) accuracy in Spider’s develop-
ment set when using T5-3B, but only ≈ 66.6%
when using the smaller T5-Base.

Here, we propose T5QL, a novel SQL generation
method that achieves 69.3% EM on Spider develop-
ment set using T5-Base instead of the ≈13x larger
T5-3B. T5QL uses constrained decoding to ensure
that it always generates valid SQL, and it always
generates an answer. Our main contributions are:

1. Narrow the gap between large and small LMs
(Figure 1). With beam size equal to 4 and
using T5-Base, T5QL achieves 69.3% EM
accuracy on Spider, versus 66.6% obtained by
PICARD. PICARD with T5-3B is still SOTA
(75.5%) but it requires much larger GPUs,
which are expensive and thus not available for
regular practitioners.

2. Propose a constrained decoding method that
always generates valid SQL, except for infre-
quent model hallucinations. In Appendix A.1
we show one such case.

3. Propose a novel ranker model for SQL gen-
eration. This model re-ranks the generator
model’s predictions after beam search, boost-
ing EM on Spider for larger beam sizes (e.g.,
8 beams) from 67.9% to 69.6%.

The remainder of the paper is organized as fol-
lows. Section 2 presents SOTA for SQL genera-
tion. Section 3 describes T5QL’s main components,
namely constrained decoding and the ranker. Sec-
tion 4 shows our results. Finally, Section 5 con-
cludes our work.

2 State-of-the-art

Automated program generation has long been one
of the major goals of computer science. Various
program synthesis tools have been proposed that
generate SQL from code fragments (Cheung et al.,
2012) or pairs of input-output examples (Orvalho
et al., 2020). However, code fragments might not
be readily available if the developer does not write
code or does not want to, and creating enough input-
output examples for the program synthesis tool to

be effective might be cumbersome. Other tools
generate SQL from NL which is more developer-
friendly (Yaghmazadeh et al., 2017).

The complexity of generating SQL from NL
varies with the length and complexity of the SQL
query and the size of the database schema. Thus,
in order to properly evaluate and compare methods’
performance, multiple benchmark datasets have
been proposed, namely Spider (Raffel et al., 2019),
Spider-SSP (Shaw et al., 2021), and CoSQL (Yu
et al., 2019). We describe these benchmarks in de-
tail in Section 4.2 and discuss how they relate to
our research questions (enumerated at the start of
Section 4).

The current SOTA for SQL generation (i.e., the
methods that achieve the highest performance on
benchmark datasets) comprises DL methods. DL
methods for code generation avoid the complex-
ity of traditional program synthesis and, thus, are
generally faster during generation (Parisotto et al.,
2016; Hayati et al., 2018; Sun et al., 2019).

RatSQL’s authors argue that predicting SQL di-
rectly from NL is hard and can be made easier by
instead predicting an intermediate representation
(IR) that is more similar to NL than SQL is (Wang
et al., 2019; Gan et al., 2021). With this insight,
they obtained SOTA results on Spider. However,
their IR is not capable of representing all SQLs
and, thus, for some queries the correct SQL is not
obtainable, leading to a loss of EM accuracy. Other
approaches were built on top of RatSQL with good
results (Zhao et al., 2021; Shi et al., 2020; Yu et al.,
2020). One of the major disadvantages of these
methods is that, since they use custom architec-
tures, they cannot leverage pre-trained LLMs in
their decoding step. Being able to leverage LLMs
is beneficial since they can be used for multiple
tasks. For example, Xie et al. (2022) unifies struc-
tured knowledge grounding tasks into a text-to-text
format and are thus able to train the same model
for different tasks.

To the best of our knowledge, Shaw et al. (2021)
were the first to propose a method that uses an
LLM, namely T5, and evaluate it on Spider. They
concluded that their method had good predictive
capabilities, but sometimes generated syntactically
incorrect SQL and had lower precision in out-of-
distribution examples. Since T5 is ungrounded,
it cannot be guaranteed to always generate valid
SQL; the same is true for other LLMs (Merrill et al.,
2021). In order to address the issue, Xiao et al.
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Figure 2: T5QL model architecture. T5QL receives as input an NL query and a database schema (step 1). Then, the
generator model, T5, consults the constrained decoder to know which tokens are valid (step 2) and predicts the next
token (step 3). This step is done iteratively. The generation is done using beam search, thus producing a set of k
candidates which are given as input to the ranker model (step 4). Finally, the ranker model ranks all candidates and
a final prediction is outputted by T5QL (step 5).

(2016) propose a method that constrains the output
generation based on grammatical rules. They also
compare a model trained with constraints and verify
that using the constraints only during inference
improves the model.

Targeting code generation specifically, Scholak
et al. (2021) propose PICARD, a method that con-
strains the model generation by removing wrong
outputs during beam search. By doing so, PICARD
is the current SOTA in the Spider benchmark. How-
ever, they report that PICARD did not generate any
SQL for 2% of the queries. Poesia et al. (2022) im-
prove LLM performance in the few-shot setting by
introducing two components, one that selects the
examples to be given to the model and another that
constrains the generation of syntactically correct
SQL. However, fine-tuned models (e.g., PICARD)
still perform better in the general task than their
model, which was trained in the few-shot setting.

In this work, we use one model to generate
candidates, a generator, and another to re-rank
them, a ranker. This choice is motivated by recent
work (Chen et al., 2021) where the authors show
that a re-ranking method boosted performance for
code generation. Regarding semantic parsing more
concretely, Ye et al. (2022) use a ranker model
to select candidates, and then a fine-tuned model
generates the final output; their model shows good
generalization capabilities and outperforms previ-
ous methods for question answering on knowledge
graphs. More recently, Krishna et al. (2022) argue
that when current LLMs are given a prefix prompt
they can often generate text that is incoherent with
the prefix. They propose a ranker model that scores

the generator’s candidates for an input prefix and
obtain results that outperform earlier models in
both automatic and human evaluation.

3 Method

We start this section by presenting an overview
of our method and its architecture (Figure 2). Then,
we focus on each of its main components, namely
constrained decoding and the ranker. Finally, we
discuss the scoring function and evaluation metrics.

3.1 Overview

Our method outputs the corresponding SQL query
for a given NL query and a database schema. The
database schema comprises a list of tables and their
respective columns. Figure 2 shows a simple NL
query, "Give me the users sorted by country", and
a toy database schema with only two tables, User
and Account. The generator, T5, receives the NL
and the database schema as input and, starting with
an empty string, it iteratively predicts the next to-
ken. However, unlike regular T5, the next token
prediction is limited by the constrained decoder
to only consider tokens that form a valid SQL
query up to that point. For example, if the cur-
rent query is "from User", the next valid tokens
include "select", "as X", and "join", but do not
include "from" or "User". We discuss why we
invert the from and the select statements in Sec-
tion 3.2. We use beam search to generate multiple
candidate queries, which are given as input to the
ranker model.
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3.2 Constrained decoding

We use constrained decoding to limit which tokens
are considered by the generator to make the next
token prediction. In order to enforce valid tokens,
we build a context-free grammar (CFG) of SQL
statements. Our constrained decoding method, de-
scribed in Algorithm 1, is similar to the one pro-
posed by Poesia et al. (2022): for each decoding
step, given the current generation P , T5QL finds
the maximum parsable prefix P ∗, this means that
all SQL tokens in the prefix P ∗ have valid syntax
(lines 2–5). Then, using the lookahead feature of
the parser, T5QL tokenizes all possible suffixes
for P ∗ and adds them to trie T (lines 6–10). Fi-
nally, T5QL computes possible generation tokens
by searching the possibles suffixes for P in T (lines
11–12).

Algorithm 1 Constrained decoding

1: procedure NEXTTOKEN(P , T ) ▷ P is the
current SQL generation and T the current trie

2: P ∗ ← FINDPARSABLEPREFIX(P )
3: S ← GETPARSERSTATE(P ∗)
4: N ← PARSERNEXTTOKENS(S)
5: N∗ ← FILTERWRONGTOKENS(S,N)
6: for n in N∗ do
7: C ← P ∗ + n
8: CT ← SENTENCETOKENIZER(C)
9: T ← ADDTOTRIE(T,CT )

10: end for
11: P T ← SENTENCETOKENIZER(P )
12: returnGETCHILDREN(T, P T )
13: end procedure

We note that, while our grammar is context free,
our constrained decoding method uses context to
make decisions: FILTERWRONGTOKENS (line 5
of Algorithm 1) constrains the SQL generation by
only allowing the generation of columns that are
defined in the from statement and by mapping table
aliases to the original tables. We should point out
that, while this is currently not performed by our
method, we could extend constrained decoding to
enforce more rules, such as only allowing tables to
be joined using valid foreign keys or limiting the
where statement to only have conditions that have
the proper return type given the column types (e.g.,
if a column "X" is of type string, "X > 10" is not a
valid generation).

Next, we focus on the grammar. For brevity,
we only show higher-level statements below; the

entire grammar is shown in our Codalab page1.
Statements inside square brackets indicate that they
are optional (e.g., a SQL query can have an empty
where statement).

⟨sql⟩ |= ⟨expr⟩
⟨expr⟩ |= ⟨query⟩ |

⟨expr⟩ union ⟨expr⟩ |
⟨expr⟩ intersect ⟨expr⟩ |
⟨expr⟩ except ⟨expr⟩

⟨query⟩ |= from ⟨from-expr⟩
select ⟨select-expr⟩
[where ⟨where-expr⟩]
[group by ⟨groupby-expr⟩]
[having ⟨having-expr⟩]
[order by ⟨orderby-expr⟩]
[limit ⟨limit-expr⟩]

Our grammar only supports SQL select state-
ments since our focus are queries that retrieve data
from a database. These select statements can be
a single query or contain subqueries joined by
unions, intersects, and excepts. We note that the
from and the select statements are inverted. This is
done because, besides restricting T5 to only gen-
erate syntactically correct SQL, we also restrict
it to only generate SQL with valid table names
(i.e., tables that exist in the database schema) and
valid column names (i.e., columns that exist in the
database schema for the given table). To restrict
the generation to only valid columns, it is helpful
to first know the valid tables, which are obtained
in the from statement. Thus, T5QL first parses the
from statement and stores the selected tables; then,
when the select statement is parsed, T5QL already
knows what columns are valid since they had to ap-
pear in the selected tables (e.g., from the example
from Figure 2, if the current query is "from User
select", then "user.ID" and "user.name" are
valid token predictions while "account.country"
and "account.userId" are not).

For a given query and database schema pair, we
augment the grammar shown previously with two
extra rules specifying the valid tables and the valid
columns. For the example from Figure 2, we would
add the following production rules:

1https://worksheets.codalab.org/worksheets/
0x0049b642db90440e9eaf9cf6a850b4c9
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⟨table-name⟩ |= user | account
⟨column-name⟩ |= user.id | user.name |

user.birthdate |
user.name |
user.country |
account.userId |
account.country

When a table has an an alias, we add one ex-
pression for the alias and another for the original
table table (e.g., for a column "alias1.columnA",
we add two expressions to the 〈column-name〉
rule: "alias1.columnA" and "tableX.columnA",
assuming that alias1 corresponds to tableX).

The grammar is given as input to the Lark
parser2. We use Lark since it is one of the fastest
parsers for Python, and it includes a look-ahead
feature that we require.

3.3 Ranker

We use beam search to generate a set of k candidate
queries and employ a ranker model to choose the
best option among the k candidates. We hypothe-
size that splitting the task of SQL generation into
two tasks, (1) SQL candidates generation and (2)
SQL candidate ranking, boosts the performance of
the complete task since each model is only focused
on a simpler task.

We use a trained generator model to generate the
dataset to train the ranker model. The T5 model
described in Section 3.2 samples 16 SQL queries
for each input (NL query and database schema pair)
in the training dataset using beam search. From the
16 generated SQLs we sample the 12 with lowest
tree edit distance (TED) (discussed in Section 3.5)
to guarantee that we select hard negative examples.
If the generator model does not predict the correct
SQL in any of the 12 SQLs samples, we discard
the one with the highest TED and add the correct
SQL as one of the samples. Using the same sam-
pling strategy (i.e., based on TED), we sample an
additional two SQLs from the training dataset per-
taining to the same database as the input, for a total
of 14 SQLs for each input.

For the ranker model, we fine-tune CodeBERT
(Feng et al., 2020) in a cross encoder setting. The

2https://github.com/lark-parser/lark

ranker is given pairs of NL and SQL and predicts
the probability of the pairs being correct, i.e., the
SQL corresponding to the NL. We also append the
terminals found in the NL using the method pro-
posed by Lin et al. (2020) to the final NL (e.g., for
the NL "People from ’France’", the NL is trans-
formed into "People from ’France’ | France").

3.4 Scoring Function

Similarly to Yee et al. (2019), we compute the final
prediction score for a given input by combining the
generator’s probability score with the ranker’s prob-
ability score using the linear combination shown
in Equation 1, where t is the length of the SQL,
and λ is a tunable weight. In order to compare
the generator’s probability p(y|x) with the ranker’s
probability p(x, y), we scale the generator’s proba-
bility by t.

1

t
log p(y|x) + λ log p(x, y) (1)

3.5 Evaluation metrics

The most commonly used evaluation metrics for
SQL comparison are EM and execution match
(EX). EM checks if two SQLs are syntactically
equivalent, while EX checks if running two SQLs
yields the same output. While desirable, EX is
more computationally expensive than EM since it
requires running the SQL statements, which might
not even be possible if we do not have access to the
database content. When measuring the method’s
performance, it is also relevant to highlight if it also
predicts terminal values or not; T5QL generates the
full SQL query, including terminal values.

Since EM is binary, its value might not be very
informative for the user nor the model. Partial
matches sub-divide the comparison to only portions
of the SQL statement, such as the from clause or the
where clause. Thus, one SQL prediction might be
wrong in multiple parts of the query, and this more
granular information can be useful to improve the
model. However, these measures are still coarse;
thus, we use the TED in some experiments (namely
in the ranker) when we want more information on
the difference (or distance) between two SQLs.

In order to compute the TED between two SQL
statements, we transform each SQL statement into
a tree and use APTED3 to compute the TED be-
tween two trees. Due to SQL’s semantics, we first
normalize the SQL to a canonical representation

3https://github.com/DatabaseGroup/apted
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Figure 3: EM accuracy in Spider’s development set by
beam size. All methods use T5-Base as their LM except
for PICARD-3B which uses T5-3B. The performance
of PICARD-3B is shown as a straight line since the
authors only report results on the development set using
database content for a single point (beam search with 4
beams). The Oracle plot shows the performance ceiling
for T5QL, i.e., the performance of T5QL using a perfect
ranker that always outputs the correct SQL if the gener-
ator offers it as one of the candidates after beam search.

(e.g., sort the list of tables in the select alphabet-
ically, transform left joins into right joins). Then
modify APTED to guarantee that the TED is mean-
ingful (e.g., the cost of removing a terminal and
column name should be the same).

4 Experiments

We start by describing the experimental setup in
Section 4.1. Then, we detail each dataset and the
relevant evaluation metrics in Section 4.2. Then,
each subsequent section (Section 4.3–4.6) tries to
answer each of the following research questions:

Q1. Does constrained decoding improve the gen-
erator’s performance?

Q2. Does T5QL have compositional generaliza-
tion capabilities?

Q3. Does T5QL generalize to the conversational
setting?

Q4. Instead of using a very large generator, can
we improve performance using a ranker?

4.1 Experimental setup
For our experiments we use a G4DN Extra Large
AWS machine, which has an NVIDIA T4 Tensor

Core GPU installed and 4 CPU-cores. We make
our code available in our public Codalab page45.

4.2 Datasets

We evaluate T5QL on three benchmark datasets:
Spider (Raffel et al., 2019), Spider-SSP (Shaw
et al., 2021), and CoSQL (Yu et al., 2019).

Spider comprises 10,181 NL and database
schemas pairs, on 200 different database schemas.
Evaluation on Spider consists of two main leader-
boards: EX with terminal values and EM without
terminal values. At the time of writing, PICARD
is the current SOTA method on both leaderboards.

Spider-SSP is a different splitting of the Spi-
der dataset, with the aim of testing compositional
generation instead of cross-database generalization,
i.e., in the original Spider data split, a database
schema seen in train is not seen in eval or test.
Splits in the Spider-SSP dataset are made in three
different fashions: random split, a split based on
source length, and a split based on Target Maxi-
mum Compound Divergence (TMCD). The goal
here is to evaluate if the model can have good per-
formance on queries that it has not seen in training.

While Spider consists of a single NL and do-
main model pair mapped into a single SQL query,
CoSQL consists of a conversational dataset with
multiple iterations of NL plus data model being
mapped to a SQL query. The goal of CoSQL is
to simulate a user progressively exploring a data
model. CoSQL contains 4,298 interactions and
≈ 12, 000 questions, on the same 200 data models
used in Spider. Evaluation is done using EM with-
out terminal values and reported using two differ-
ent metrics: question match (QM) and interaction
match (IM). QM evaluates if all SQLs are correctly
predicted, while IM evaluates if the questions for
the same interaction are correctly predicted.

4.3 Q1. Constrained decoding

LMs are unconstrained and thus can generate any
token at any given time. For SQL generation, LMs
may generate SQL that are syntactically incorrect,
which impact their performance.

Here, we compare the performance of an uncon-
strained LM against T5QL without the ranker com-
ponent. Both methods use the same LM, namely
T5-Base, and are trained using the same training

4https://worksheets.codalab.org/worksheets/
0x0049b642db90440e9eaf9cf6a850b4c9

5We will make the code available in github after the blind
review process is finalized.
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configuration; the only difference is that T5QL uses
constrained decoding as described in Section 3.2.
Both methods serialize the database schema as a
string and append it to the source sequence sim-
ilarly to Suhr et al. (2020). Similarly to Scholak
et al. (2021), we train both methods for a maximum
of 512 training epochs with mini batch size of 5,
205 gradient accumulation steps, with a learning
rate of 1e−4, and an adafactor optimizer with ep-
silon set as 1e−6. We evaluate the models using
beam search with 1, 2, 4, and 8 beams. Contrary to
Scholak et al. (2021), we report results for a batch
size of 1025 instead of 2048 since it lead to better
results in our case.

Figure 3 shows the performance of several meth-
ods and those results are discussed in this subsec-
tion and in the next ones. All methods use T5-Base
as its LLM, except for PICARD which is the cur-
rent SOTA and uses T5-3B, a much larger LM.

From Figure 3, we observe that T5 achieves
≈ 55.1% EM accuracy using one beam, and its
performance does not improve with the beam size.
Our method, T5QL, without the ranker compo-
nent (i.e., T5QL wo/ Ranker in Figure 3) achieves
≈ 65.7% EM accuracy using one beam, a gain of
≈ 10.6pp, which is a relative gain of ≈ 19.2%.
Using 2 and 4 beams, we improve T5QL’s perfor-
mance to ≈ 67.6% and ≈ 68%, a gain of ≈ 1.9pp
and ≈ 2.3pp, respectively, when compared against
T5QL using only one beam. We observe a loss of
performance when using 8 beams. These results
highlight the advantage of using constrained de-
coding for SQL generation: by using a CFG to
guarantee that the LM always generates valid SQL,
we improve the model’s performance.

4.4 Q2. Compositional generalization

Compositional generalization of LLMs has at-
tracted attention in recent years. Shaw et al. (2021)
propose Spider-SSP, a dataset that can be used to
measure the compositional generalization of SQL
generation methods. In this section we use Spider-
SSP to evaluate if constraint decoding increases the
compositional generalization capabilities of T5QL.

Shaw et al. (2021) already reported that T5-Base
model struggles in most splitting strategies, partic-
ularly when using length-based split and TMCD
split; we reproduce those results in Table 1 in rows
T5-Base and T5-3B. We note that, in their experi-
ments, the predicted SQL follows the convention
of predicting first the select statement and then the

from statement. As discussed in Section 3.2, T5QL
first predicts the from statement and then the select
statement. Thus, we evaluate two different models:
T5-Base, which is similar to the model evaluated
by Shaw et al. (2021), and T5QL-Base wo/ CD
which is T5QL without the constrained decoding
component (and without the ranker). We compare
these models against T5QL-Base and T5-3B; the
latter also predicts the select statement first.

We observe that T5QL-Base wo/ CD obtains sig-
nificantly higher EM than T5-Base, namely for the
TMCD split where there is a gain of 22pp, which
is a 52% relative gain. These results highlight that
predicting the tables before predicting the columns
seems to help the model. This result corroborates
the results obtained by Lin et al. (2020), which
use a representation similar to ours. We also verify
that T5QL-Base slightly, but consistently, improves
upon the results obtained by T5QL-Base wo/ CD
for all splitting strategies, namely in TMCD where
there is a gain of 2pp. Finally, we conclude that our
strategy narrows the performance gap between the
performance of methods using small LMs (i.e., T5-
Base) and very large LMs (i.e., T5-3B) by compar-
ing the performance of T5QL-Base against T5-3B.

4.5 Q3. Generalize to conversational setting

Often users might want to explore their data with-
out having to write SQL. Thus, a conversational
setting where user’s iteratively ask questions to an
AI is particularly interesting. Yu et al. (2019) pro-
pose a dataset comprised of multiple question-SQL
pairs, each consisting of several user interactions.
They evaluate SQL generation methods using QM
and IM. In this section we use CoSQL to evaluate
if constrained decoding increases the performance
of T5SQL in the conversational setting.

We observe gains of≈ 7.9% and≈ 5.5% in QM

Spider-SSP

Model Rand. Templ. Len. TMCD

T5-Base 76.5 45.3 42.5 42.3
T5QL-Base wo/ CD 84.7 58.3 50.6 64.4
T5QL-Base 85.7 61.1 54.4 65.9
T5-3B 85.6 64.8 56.7 69.6

Table 1: EM accuracy in the Spider-SSP dataset using
different splitting strategies. T5QL-Base wo/ CD (i.e.,
without constrained decoding) and T5QL-Base adopt
the strategy of predicting SQL with the from statement
before the select statement, while T5-Base and T5-3B
do the opposite, which is the default.
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CoSQL

Model QM IM

T5QL-Base wo/ CD 42.8 14.8
T5QL-Base 50.7 20.3
PICARD - 3B 56.9 24.2

Table 2: QM and IM in the CoSQL development set.

and IM, respectively, when we add constrained de-
coding to T5QL-Base. We observe that PICARD-
3B is still SOTA for the task, but the gap is sig-
nificantly narrower. This is further evidence that
constrained decoding can improve the performance
of LMs in multiple SQL generation tasks.

4.6 Q4. Ranker

Current SOTA methods, such as PICARD, use
beam search to find the best candidate and out-
put it as the final prediction. Here we test whether
we can boost predictive performance by, instead
of using the beam-selected best candidate as the
final prediction, having a ranker that finds the best
candidate among the list of candidate predictions
found by the generator.

Our first step to validate this hypothesis is to run
beam search for multiple beam sizes k, namely 1, 2,
4, and 8, and measure the accuracy@k. In our set-
ting, the accuracy@k can be regarded as an oracle
ranker than can always find the correct candidate
if it is present in the list of candidate generations.
From Figure 3 we observe that this oracle could
achieve 78.2% EM accuracy with 8 beams, sur-
passing the performance of PICARD-3B but using
T5-Base instead of T5-3B, which is highly desir-
able due to T5-3B’s expensive nature in terms of
GPU costs. Thus, our goal here is to build a ranker
model that can boost the performance of T5QL
without the ranker (T5QL wo/ Ranker in Figure 3)
and approximate it to the oracle’s performance.

We note that the ranker model should be of a
comparable size to the generator, i.e., fit in the
same GPU. Otherwise, the advantage of using a
small LM as the generator is lost since we assume
that the practitioner has hardware that can fit the
larger ranker, which might not be true. Here we
use T5-Base as the generator and CodeBERT as
the ranker, which are of comparable size.

To train the ranker model, we first create a
dataset following the steps described in Section 3.5.
Then, we fine-tune a CodeBERT model for 50,000
training steps, using a batch size of 32 and 1 gra-

dient accumulation step, with a 1e−3 learning rate
and an AdamW optimizer with weight decay of
1e−2 and a linear schedule with warmup of 1% of
the steps. We use Equation 1 to score the generated
SQL; we conduct hyperparameter tuning for λ and
conclude that λ = 2e−2 performs best.

We analyze if combining the generator’s score
with the ranker’s score is superior to using each
of the score’s individually. From Figure 3 we con-
clude that combining the ranker model’s score with
the generator model’s score (i.e., the T5QL plot)
improves the best EM from 67.9% to 69.3% when
compared against T5QL without the ranker score.
Furthermore, we also observe that using only the
ranker score (i.e., the T5QL Ranker Score plot)
leads to a drop in performance even when com-
pared against T5QL wo/ Ranker. This effect is
more noticeable for larger beam sizes, which indi-
cates that the ranker model struggles to differentiate
the correct SQL from the wrong SQL.

From these experiments, we conclude that the
ranker boosts the performance of the generator.
However, the ranker’s score needs to be combined
with the generator’s score to guarantee that the
ranker’s score does not completely dominate the
generator’s predictions. We should also note that
there is a very large gap between our ranker and
the oracle, which leaves room for future research
to improve the ranker model. We believe that this a
promising line of research that can further narrow
the gap between the performance between small
LMs and large LMs.

Finally, we run T5SQL on Spider’s test set and
obtain 66.8% EX and 65.9% EM. These results
rank among the top-10 best models in terms of EX,
and as the 22nd best in terms of EM6, whilst using
small models. Small models have the advantage of
being less computationally expensive and allowing
more easily for the use of ensemble methods.

5 Conclusion

Here we put forward T5QL, a new method for
SQL generation with SOTA performance on bench-
mark datasets when using small LMs. T5QL uses
constrained decoding to improve predictive perfor-
mance and also to guarantee that the generated SQL
is always valid. Futhermore, we complement the
generator model with a ranker model that is capa-
ble of choosing the best candidate SQL from a pool
of a few candidates.

6https://yale-lily.github.io/spider
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A SQL generation analysis

In this section we analyse in detail the predictions
generated by T5QL. In Appendix A.1 we measure
how often T5QL outputs valid SQLs and give an
example of one invalid SQL. In Appendix A.2 we
show an example of how constraining column name
generation can boost performance.

A.1 Valid SQL generation
First, we check if T5QL using constrained decod-
ing can still generate unparsable SQL. We obtain
T5QL-Base’s predictions in Spider’s development
set for beam sizes of 1, 2, 4 and 8. We observe that:

• T5QL never generates an unparsable SQL for
the top-1 beam when the beam size > 1.

• Invalid SQL is generated when the LM (i.e.,
T5) enters a loop, as can be seen in Listing 1.
Since the SQL length is limited, T5QL outputs
the incomplete (and invalid) SQL. The loop,
even if abnormal, is valid SQL syntax, e.g, an
average of averages.

• For larger beam sizes (e.g, 8) we saw that
the aforementioned model hallucinations are
mainly present in the lower scored beams.

Listing 1: Invalid SQL generated by T5QL. For space
concerns we abbreviate the generated SQL.

from stadium select name , capacity
order by avg( avg( avg( avg(
avg( avg( avg( avg( avg( avg(
avg( avg( avg( avg( avg( avg(
avg( avg( avg( avg( max( avg(
min( min( min( min( min( max(
max( max( max( max( max( max(
max( max( max( max( max( max(
max( max( max( max( max( max(
max( max( max( max( ...

Next, we analyse whether model size reduces
the number of invalid SQL generated by T5QL.
We obtain the predictions in Spider’s development
set using T5QL-Base and T5QL-Large with and
without constrained decoding. We report results of
the four methods using 4 beams.

We observe that increasing the size of the model
also increases the ability of the model to gener-
ate parsable SQL: T5QL-Base wo/ CD generates
≈ 20% invalid SQLs, while T5QL-Large wo/ CD
generates only ≈ 5% invalid SQLs (Figure 4). No-
tice, however, that 5% is still a substantial amount
of invalid SQLs. On the other hand, when using
constrained decoding, T5QL always produces valid
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Figure 4: Percentage of parsable SQL, in the Spider’s
development set, in each model configuration. All meth-
ods use beam search with 4 beams and we report results
for the first beam.

SQLs when considering only the top-1 beam of
beam search with 4 beams; this is true for both
T5QL-Base and T5QL-Large.

A.2 Enforce existing table and column names

Finally, we analyse what is the impact of constrain-
ing the table and column names during SQL gen-
eration. When T5QL does not constrain column
and table names, it can generate examples such as
the one in Listing 2 where "song_id" is a column
name that does not exist in the schema. When con-
straining column and table names, T5QL always
generates existing column and table names, and, in
this case, predicts the correct SQL (Listing 3).

Listing 2: Invalid SQL generated by T5QL wo/ CD. In
this case the T5QL generated an non-existing column.

from singer as t1 join
singer_in_concert as t2 on
t1.song_id = t2.song_id
select t1.name , count( * )
group by t1.song_id

Listing 3: Valid and correct SQL generated by T5QL
with CD for the same example as Listing 2.

from singer as t1 join
singer_in_concert as t2 on
t1.singer_id = t2.singer_id
select t1.name , count( * )
group by t1.singer_id
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Figure 5: Comparison of EM accuracy in Spider’s de-
velopment between different model configurations. The
"Base" model refers to T5QL-Base with constraint de-
coding and reranking; models "wo/ CD" are the mod-
els without constraint decoding nor reranking, whereas
models "wo/ R" are the models without reranking.

B Larger models

Experiments shown for our proposed method,
T5QL, used T5-Base as the generator LM. We
make this choice since our focus is to show that
small LMs can have good performance even when
compared against very large LMs. Nevertheless,
evaluating if the proposed techniques, namely con-
strained decoding and reranking, scale to larger
LMs is an interesting research question. Thus, we
evaluate whether constrained decoding and rerank-
ing improve the performance of T5SQL-Large.

From Figure 5 we observe that the performance
of T5QL-Base (i.e., Base) is superior to T5-Large
(i.e., Large wo/CD) for 2–4 beams. When we add
the constrained decoding component to T5-Large
(i.e., Large wo/ R), the performance is significantly
superior. This results highlights the importance of
adding constrained decoding for SQL generation.
However, we do not observe gains of adding the
reranker model to T5-Large (i.e., Large), which
we observed in T5-Base. This might indicate, as
we pointed out in Section 3.3, that finding better
reranking strategies is an interesting research path.

We do not include results for T5QL-3B since our
main goal in this work is to increase performance
using multiple smaller components and domain-
aware techniques (e.g., constrained decoding) in-
stead of relying on very large models. Furthermore,
computing results for T5-3B is very costly in terms
of money and time.
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Abstract 1 

In this study, we evaluated a series of code 2 

generation models based on CodeGen and 3 

GPTNeo to compare the metric-based 4 

performance and human evaluation. For a 5 

deeper analysis of human perceiving within 6 

the evaluation procedure, we implemented 7 

a 5-level Likert scale assessment of the 8 

model output using a perceiving model 9 

based on the Theory of Planned Behavior 10 

(TPB). Through this analysis, we 11 

demonstrated an extension of model 12 

assessment as well as a deeper 13 

understanding of the quality and 14 

applicability of generated code for 15 

answering practical questions. The 16 

approach was evaluated with several model 17 

settings in order to assess diversity in the 18 

quality and style of answer. With the TPB-19 

based model, we showed a different level of 20 

perceiving of the model result, namely, 21 

personal understanding, agreement level, 22 

and readiness to use the particular code. 23 

With this analysis, we investigate a series of 24 

issues in code generation, namely, natural 25 

language generation (NLG) problems 26 

observed in the context of programming 27 

and question-answering with code.  28 

1 Introduction 29 

Recent advances in natural language generation 30 

(NLG) support rapid growth in potential areas of 31 

application. One of the significant successes of 32 

NLG is the possible generation of code in various 33 

settings (Lu et al., 2021; Zhong et al., 2022): the 34 

translation of explicit specification into code, 35 

fixing errors, suggesting short snippets, etc. The 36 

common practice in NLG problems is the usage of 37 

known metrics (BertScore, BLEU, etc.) to evaluate 38 

models. Moreover, specific metrics dedicated to 39 

                                                           
1 https://stackoverflow.com/  

code generation evaluation were developed, such 40 

as CodeBLEU (Ren et al., 2020), RUBY (Tran et 41 

al., 2019), and others. Still, recent studies 42 

(Evtikhiev et al., 2022) show that the direct 43 

application of metrics often leads to issues in code 44 

generation evaluation.  45 

With this in mind, investigated the applicability 46 

of human evaluation widely spread in NLG 47 

problems (De Mattei et al., 2021; Hämäläinen & 48 

Alnajjar, 2021) to assess an alternative approach to 49 

code evaluation and a deeper understanding of 50 

human perceiving of code generation (and NLG 51 

output in general). The study poses two research 52 

questions. First, how is human perceiving reflected 53 

by the text- or code-oriented NLP metrics? Second, 54 

what is the structure of human perceiving in the 55 

human evaluation procedure in the question-56 

answering scenario? Here we consider perceiving 57 

as an act of becoming subjectively aware and 58 

conscious of the observed information. 59 

The structure of the paper is as follows. The next 60 

section describes the datasets used in the study. The 61 

following section presets the details of code 62 

generation models’ selection and preparation.  63 

Section 4 describes human evaluation solutions 64 

and procedures. Section 5 discusses the study 65 

results and evaluation results. Finally, Sections 6 66 

and 7 provide a discussion and concluding remarks 67 

respectively. 68 

2 Dataset 69 

Within the study, we focused on question 70 

answering (QA) with a generation of short snippets 71 

as answers to real-world problems such as 72 

questions asked in Stack Overflow 1  (SO). For 73 

consistency, we added the following restrictions to 74 

the questions and answers considered within the 75 

study, taking SO as a reference for the analysis. 76 

Human perceiving behavior modeling in evaluation of code  

generation models 
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• We considered “conceptual” and “API usage” 77 

questions according to the taxonomy 78 

presented in (Beyer et al., 2020). 79 

• We selected the questions that mainly contain 80 

a short textual description without explicit 81 

code presented. 82 

• Contrarily, we use answers with explicit code 83 

snippets giving the solution to the proposed 84 

problem. 85 

• To further specify the scope of the study, we 86 

only considered one programming language, 87 

Python, as it is one of the most popular ones.  88 

To prepare an appropriate dataset we followed 89 

two steps. First, we used the publicly available 90 

dataset CoNaLa2 (Yin et al., 2018) with explicitly 91 

identified train (2379 entries) and test parts (500 92 

entries). The dataset originates from SO and 93 

contains explicit short questions and reference code 94 

snippets. 95 

Alternatively, we prepared our own dataset from 96 

the original data on SO questions available on 97 

Stack Exchange3. To follow our requirements, we 98 

selected questions with the tag “python”. For 99 

reference, we selected answers that earned 100 

maximum scores according to the SO data. To filter 101 

questions on presence or absence of code, we 102 

search the text for <pre><code> in HTML data. 103 

After that, we selected questions with no explicit 104 

code paired with answers with a single code 105 

snippet. Finally, we used regular expressions 106 

following (Beyer et al., 2020) to select 107 

“conceptual” and “API usage” classes of questions. 108 

Furthermore, we performed cleaning of the code 109 

(e.g. removing decorations inserted by software 110 

(“>>>”, “In [1]:”, etc.), comments, and checked the 111 

parsing status using Tree-sitter4. After these steps, 112 

we obtained a dataset containing 42292 entries 113 

(pairs of questions and answers). Out of them, we 114 

selected 1000 entries as a test dataset. The test 115 

dataset was built using questions from 2021 and 116 

beyond to lower possible data leaking as we are 117 

using models trained on publicly available data.  118 

3 Code generation models 119 

3.1 Model selection 120 

To select models for our study, we evaluated those 121 

which are publicly available, computationally 122 

                                                           
2 https://conala-corpus.github.io/  
3 https://stackexchange.com/  
4 https://tree-sitter.github.io/  

inexpensive, and applicable on our data with 123 

finetuning. First, we selected GPT-Neo(-J)5 (Black, 124 

Sid et al., 2021, p.), which shows high performance 125 

compared to Codex (Xu et al., 2022). Second, we 126 

chose CodeGen-mono-2B by Salesforce (Nijkamp 127 

et al., 2022), which was trained not only on the Pile 128 

dataset but also separately on the code from 129 

BigQuery and BigPython. CodeGen-mono-2B 130 

shows good results on HumanEval, which was 131 

similar to the Codex model of the same size (Chen 132 

et al., 2021). Additionally, we picked CoPilot by 133 

Microsoft as an industrial SOTA reference 134 

solution, which is also based on Codex (Chen et al., 135 

2021). 136 

3.2 Finetuning 137 

Finetuning was performed for the selected models 138 

on training datasets from both CoNaLa (further 139 

denoted as FT:C) and SO (further denoted as 140 

FT:SO). We used Transformers and DeepSpeed 141 

libraries with common hyperparameters (optimizer 142 

= AdamW, Adam betas = (0.9, 0.999), Adam 143 

epsilon = 1e-08, weight decay = 0.0, learning rate 144 

= 5e-06, learning rate decay = linear, batch 145 

size(#samples) = 40, fp16). Moreover, we 146 

performed experiments with various code 147 

wrapping for prompt preparation. A query wrapped 148 

as a multiline comment to the generated code was 149 

selected as a well-performing baseline. 150 

Additionally, we performed a series of experiments 151 

in prompt engineering and selected the best 152 

performing solution for further experiments 153 

(denoted as FT:C+).  154 

4 Human evaluation 155 

4.1 User interface implementation 156 

For performing the human evaluation, a user 157 

interface (UI) was developed as a web application 158 

using the Dash6 framework (see Figure 1). The UI 159 

enables the collection of feedback information in 160 

two ways.  161 

First (HF1 - human feedback 1), the UI shows a 162 

pair of answers generated for the same question by 163 

different models. The pairwise comparison of two 164 

answers was collected from the user by asking 165 

them to select the best answer with a 3 or 5 166 

(depending on configuration) levels Likert scale 167 

5 https://github.com/EleutherAI/gpt-neo 
6 https://dash.plotly.com/  
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from -2 (the left answer is the best) to +2 (the right 168 

answer is the best). This feedback is collected for 169 

further research purposes to improve model 170 

performance with human-centered prediction 171 

models (currently considered as future research 172 

plans following the works (Nakano et al., 2022; 173 

Stiennon et al., 2020)). 174 

Second (HF2), the user was asked to assess both 175 

answers (code snippets) with three scores using a 176 

5-level Likert scale (from -2 to +2) by estimating: 177 

• The general consistency of the code (whether 178 

the code is readable/understandable). The 179 

scale is considered to reflect how well the user 180 

understands the answer. 181 

• The correctness of the answer with respect to 182 

the proposed question. The scale is considered 183 

to reflect the user’s agreement with the 184 

answer. 185 

• The usability of the provided answer. The 186 

scale is considered to reflect the user’s 187 

expected intention to use. 188 

These scales analyze human behavior aspects by 189 

assessing the information perceiving in alignment 190 

with a model based on the theory of planned 191 

behavior (TPB) (Ajzen, 1991), widely used to 192 

quantify human behavior as reflected by attitude, 193 

subjective norms, and perceived control affecting 194 

target intention to use a considered technology. In 195 

our case, we consider “agreement” as the first 196 

criterion, reflecting the general user’s attitude, 197 

“understand” as the second one, reflecting 198 

correspondence to subjective norms and perceived 199 

control, and “use” as a final target criterion, the 200 

obtained intention to use the solution.  201 

The human feedback is collected for each pair of 202 

answers storing the scores provided by the user and 203 

his/her provided name. After each evaluation round 204 

(ended by clicking the “Submit” button), the 205 

interface is updated with a new pair of answers for 206 

further analysis. 207 

For evaluation purposes, the original and 208 

finetuned models were applied to test sets in the 209 

selected datasets (CoNaLa and SO) forming a 210 

collection of alternative answers to 1500 questions. 211 

Applying the selected models and filtering empty 212 

answers, we obtained 10013 answers of different 213 

origin and quality. On each round, a random sample 214 

of two different answers was presented to the user. 215 

With this approach, a subset of 1364 questions was 216 

selected, supported with two or more answers by 217 

different models. 218 

4.2 Human perceiving assessment 219 

Within the presented study, we focused on the 220 

internal structure of answer perceiving during 221 

human evaluation. Thus, we performed a deeper 222 

analysis of HF2 to understand the connections 223 

between different features. For this purpose, we 224 

consider three main groups of features. 225 

Figure 1. User interface for human evaluation 
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FG1 (feature group 1) includes the common 226 

metrics used for the NLG task. The selection of 227 

metrics includes general purpose metrics 228 

(BertScore, Rouge, SacreBLEU) and metrics 229 

specific to code generation problems (CodeBLEU, 230 

Ruby). The metrics were evaluated for each model 231 

applied for test datasets.  232 

FG2 includes votes collected from the users 233 

along three selected scores, namely, subjective 234 

consistency (understanding), subjective 235 

correctness (agreement), and subjective intention 236 

(use).  237 

FG3 includes simple test features (linguistic 238 

features), namely, question and answer length, 239 

average lines number in answer, and average lines 240 

number in question. 241 

To answer the proposed research questions, we 242 

analyzed the interconnection between the features 243 

in the three groups by assessing the pairwise 244 

mutual information (MI) between features. As we 245 

focused mainly on perceiving structure and 246 

interconnection, the main analysis and 247 

interpretation were applied to a) internal MI 248 

between features in FG2; b) MI between features 249 

in FG2 and features in other groups. 250 

5 Results 251 

5.1 Metric-based evaluation 252 

Weused a common train-eval-test split for 253 

evaluation. In the case of the CoNaLa dataset, the 254 

test dataset was pre-selected by the authors. In the 255 

case of the SO dataset, we composed the test 256 

dataset as random samples of 1000 answers dated 257 

2021 and beyond, while the answers dated 2020 258 

and earlier were used for training. In both cases, we 259 

split the training dataset into train and validation 260 

parts as 9:1 randomly. 261 

Table 1 shows the main evaluation results 262 

according to the selected NLP metrics. In the case 263 

of the CoNaLa dataset, the best results were 264 

obtained by CodeGen FT:C+, followed by CoPilot. 265 

In the case of the SO dataset, the best performance 266 

was achieved with CodeGen FT:C. 267 

 
BertScore Rouge CodeBLEU Ruby SacreBLEU 

Model mean std mean std mean std mean std mean std 

Dataset: CoNaLa 

CodeGen  0.8068 0.1827 0.3142 0.2638 0.2821 0.2379 0.2791 0.2363 0.1196 0.1493 

CodeGen 

FT:C 

0.9017 0.1132 0.5532 0.2976 0.4848 0.2861 0.5392 0.3151 0.2142 0.1759 

CodeGen 

FT:SO 

0.8326 0.0379 0.1707 0.1316 0.0918 0.1095 0.1014 0.1348 0.0522 0.0658 

CodeGen 

FT:C+ 

0.9235 0.0511 0.6070 0.2763 0.5802 0.2519 0.6246 0.2845 0.2571 0.1952 

GPT-Neo  0.7370 0.1688 0.0503 0.0688 0.0785 0.0670 0.1460 0.1190 0.0111 0.0151 

GPT-Neo 

FT:C 

0.8366 0.1518 0.2926 0.2648 0.2298 0.2401 0.2619 0.2759 0.0900 0.1096 

GPT-Neo 

FT:SO  

0.8251 0.0380 0.1453 0.1122 0.0749 0.0858 0.0909 0.1192 0.0400 0.0455 

CoPilot 0.8520 0.0398 0.3668 0.2075 0.2815 0.1554 0.2812 0.1899 0.1179 0.1162 

Dataset: SO 

CodeGen 0.7434 0.1838 0.0790 0.0951 0.1687 0.1549 0.0974 0.1025 0.0176 0.0331 

CodeGen 

FT:C 

0.8178 0.0923 0.1473 0.1447 0.3311 0.2488 0.1615 0.1935 0.0396 0.0572 

CodeGen 

FT:SO  

0.8099 0.0825 0.1298 0.1188 0.1729 0.1773 0.0933 0.1062 0.0327 0.0452 

GPT-Neo  0.7543 0.1286 0.0511 0.0577 0.1411 0.1074 0.0991 0.1101 0.0093 0.0123 

GPT-Neo 

FT:C 

0.7912 0.1488 0.1193 0.1265 0.2986 0.2295 0.1433 0.1606 0.0292 0.0419 

GPT-Neo 

FT:SO 

0.8003 0.1126 0.1156 0.1109 0.1574 0.1675 0.0953 0.1069 0.0275 0.0378 

Table 1. Metric-based evaluation 
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5.2 Human evaluation 268 

With the implemented UI and judgment collection 269 

procedure, the human evaluation was performed in 270 

a semi-open way by exposing the UI with a pre-271 

defined collection of answers to independent 272 

groups of users  of different backgrouds, but having 273 

a basic understanding of coding and the principles 274 

of software engineering. The user set includes 275 

MSc/PhD students and researchers in computer 276 

science and related areas, as well as professional 277 

software  developers. The diversity in experience 278 

of the users enables further deeper analysis of the 279 

nature of human perceiving , along with the 280 

possible assessment of experience influence. 281 

During a week-long evaluation period, the 282 

collection of votes for 614 answers in the HF2 part 283 

was collected from 43 different users. Within the 284 

analysis, we exclude the original models and only 285 

consider finetuned models. The average scores for 286 

FG2 with the selected pairs model/dataset are 287 

presented in Table 2. 288 

We observe the highest perceiving in CoPilot 289 

and finetuned CodeGen. The CoNaLa dataset 290 

shows slightly lower Understand scores compared 291 

to the SO dataset. At the same time, the SO dataset 292 

shows negative Agree and Use scores reflecting 293 

wrong (but consistent) answers generated by the 294 

model. A more interesting observation is the 295 

diversity in scores exhibited by the best CodeGen 296 

and CoPilot in the CoNaLa dataset: CoPilot shows 297 

slightly higher Understand and Agree scores, while 298 

the Use score is much higher for CodeGen. 299 

For the analysis of MI, we divided the selection 300 

of the connections between features (FG2-FG2, 301 

FG2-FG1, FG2-FG3) into four groups according to 302 

the quartiles of the MI distribution (the division 303 

levels correspond to MI of 0.1144, 0.1621, 0.2683 304 

for thresholds between Q4-Q3, Q3-Q2, Q2-Q1 305 

respectively). We dropped Q4 (lowest MI) 306 

connections as insignificant and considered the 307 

others for further analysis. Figure 2 shows the 308 

selection of features connected with the labels 309 

denoting MI level and the quartile to which the 310 

value belongs. Also, the quartiles are shown in 311 

color (Q1 – red, Q2 – blue, Q3 – black).  312 

As expected, the internal connections of 313 

perceiving features have high MI. The highest 314 

interconnection is observed between Agree and 315 

Use scores. Additionally, they are highly correlated 316 

(𝑐𝑜𝑟 = 0.8981). A simple linear regression model 317 

was estimated as 𝑈 = 0.8389𝐴 + 0.0764𝐶 +318 

0.0134 (𝑅2 = 0.8098) where 𝑈 is for intention to 319 

use, 𝐴  is for agreement, 𝐶  is for understanding 320 

(internal consistency). Thus, we expect that the 321 

intention to use is highly defined by the agreement 322 

to the answer. On the other hand, the dependency 323 

between understanding and agreement can also be 324 

observed, but is rather lower: 𝐴 = 0.6687𝐶 +325 

0.0376 (with 𝑅2 = 0.4358).  326 

We see that the connection of most of the NLP 327 

metrics is rather low (Q3), except for the Ruby 328 

metric showing a more significant (Q2) influence 329 

on the agreement and the intention to use. This can 330 

be interpreted as a good evaluation of code quality. 331 

The remaining features are mostly low and have 332 

Model N 
Under-

stand 
Agree Use 

Dataset: CoNaLa 

CodeGen 

FT:C 

58 0.5345 0.3966 0.4310 

CodeGen 

FT:SO 

68 0.0882 -0.1471 -0.1912 

CodeGen 

FT:C+ 

56 0.8571 0.4464 0.4286 

GPT-Neo 

FT:C 

62 0.0000 -0.4677 -0.5323 

GPT-Neo 

FT:SO  

55 -0.0364 -0.6364 -0.8364 

CoPilot 39 0.8974 0.4872 0.2308 

Dataset: SO 

CodeGen 

FT:C 

25 0.9200 -0.3200 -0.2000 

CodeGen 

FT:SO  

13 0.0769 -0.6154 -0.4615 

GPT-Neo  21 -0.9048 -1.8095 -1.8095 

GPT-Neo 

FT:C 

21 0.2381 -0.5238 -0.4286 

GPT-Neo 

FT:SO 

16 -0.6250 -1.1875 -1.1250 

Table 2. Human perceiving evaluation 

 

Figure 2. Mutual information and feature connection 
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interconnection with different perceiving scores. In 333 

general, the MI for interconnection with the 334 

intention to use is slightly higher.  335 

The analysis shows that basic linguistic features 336 

(FG3) mainly have low interconnection with 337 

perceiving votes (FG2) as the connections were 338 

assessed with low MI (Q4) with one exception for 339 

average line length having high (Q1 or Q2) impact 340 

on the perceiving features. Further analysis shows 341 

that there are weak results where a model failed to 342 

generate a structured answer and produce long 343 

(mainly erroneous) lines of code. 344 

6 Discussion 345 

The study focused on code generation problems. 346 

For this purpose, we used modern NLG models 347 

(CodeGen, GPT) and performed fine-tuning to 348 

obtain a higher quality of the results according to 349 

the common pipeline. The results we obtained with 350 

the CodeGen model look promising and produce 351 

high-quality results comparable to the industrial 352 

solutions (CoPilot). Still, we consider the further 353 

improvement of the code generation QA model as 354 

one of our future research directions. 355 

The main goal of the study is the investigation 356 

of the human perceiving structure in the NLG 357 

problem. The area of human evaluation is widely 358 

studied in different NLG settings including general 359 

assessment of natural language generation, as well 360 

as distinguishing model-generated from human-361 

generated answer. The common goal of most 362 

studies in the area is model improvement with 363 

collected evaluation feedback. Still, the question of 364 

how we can evaluate human feedback and which 365 

level of trust can be given to it is still open. This 366 

problem becomes more challenging if the 367 

evaluation is performed in a complex domain 368 

where a human annotator needs to be a domain 369 

expert. In that case, the human feedback collection 370 

could be more expensive and can provide more 371 

diversity in judgments. With this in mind, we 372 

considered a problem of NLG in programming QA 373 

and code generation, with programmers as experts 374 

evaluating high-level correspondence of the 375 

answer to a proposed question. Within the study, 376 

we focused on the general structure of human 377 

perceiving divided into three main parts: whether 378 

the human understands the model output; whether 379 

he/she considers it as correct; whether he/she is 380 

ready to use it in practice. This structure of human 381 

perceiving was considered previously in the 382 

expert-based evaluation of decision support 383 

systems (Kovalchuk et al., 2022) and showed good 384 

results in understanding human intentions in 385 

perceiving AI-based prediction in such complex 386 

domains as medicine. 387 

Within the study, we analyzed internal 388 

interconnection between human perceiving 389 

features in code generation and discovered that 390 

although the agreement and intention to use are 391 

highly correlated, the understanding (subjective 392 

correctness) and agreement show lower 393 

interconnections. This could be interpreted as a 394 

sign of existing issues in generated code properly 395 

recognized by a human, i.e., the answer generated 396 

by the model “looks like code” but doesn’t resolve 397 

the question properly. On the other hand, the high 398 

interconnection between agreement and intention 399 

to use could be treated as promising results for code 400 

generation problems: if the code answers the 401 

question, it is good enough to be used. 402 

An interesting result obtained in the analysis of 403 

external interconnection of perceiving score is a 404 

rather weak MI of connections to the common NLP 405 

metrics. The only metric showing medium 406 

interconnection is Ruby, intentionally developed 407 

for code evaluation with semantic comparison 408 

(Tran et al., 2019). We consider this result as a sign 409 

of the rather weak applicability of common NLP 410 

metrics to complex NLG problems.  411 

One of the questions raised during the evaluation 412 

is whether we can compare the syntactic 413 

correctness of the code to the subjective 414 

correctness (understanding) of the code. During the 415 

evaluation, we see several examples of code that 416 

was syntactically incorrect but may have been 417 

evaluated as useful (e.g. containing the correct line 418 

of code followed by an ill-formatted line). We 419 

believe that continuous Likert-scale-based 420 

evaluation may help to improve the model 421 

training/finetuning in further studies with human 422 

evaluation. Still, we consider this issue as one of 423 

the directions for the future development of the 424 

proposed approach. 425 

It is worth mentioning that CodeGen FT:SO 426 

shows lower performance compared to CodeGen 427 

FT:C even on the SO dataset. We suppose that a 428 

possible reason for such behavior is the fact that the 429 

CoNaLa dataset was manually curated and 430 

contains only one-line code answers. At the same 431 

time, the SO dataset was not filtered in that way 432 

and contains answers of diverse length, structure, 433 

and quality. A further investigation of this issue is 434 

one of the directions for further research. 435 
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The presented results can be used in two ways. 436 

First, to improve models by training with a deeper 437 

understanding of human perceiving structure. For 438 

example, the mentioned values could be considered 439 

as a sequential filter where the next step can be 440 

considered only by the answer passed from the 441 

previous one. In this way, the perceiving may be 442 

considered as a reward for the model in the 443 

generation of the answer.  444 

Second, the understanding of human perceiving 445 

may improve human-computer interaction in AI-446 

based applications. For instance, the separate 447 

prediction of human perceiving features may 448 

provide important information depending on the 449 

interaction scenario. In particular, the Agree score 450 

may be more influential in code automatically 451 

generated by explicit specification, while the Use 452 

score may be more important in direct human-453 

centered QA (e.g., in a form of an intelligent IDE 454 

assistant). 455 

7 Conclusion and future work 456 

The current study shows early results in the 457 

research of human perceiving understanding within 458 

the context of NLG human evaluation. Being 459 

aimed at a deeper understanding of the internal 460 

structure of human perceiving and interconnection 461 

with common metrics, the study shows that 462 

perceiving structure may be decomposed into a 463 

complex value with implicit interconnection 464 

directing from model-generated structure 465 

evaluation to subjective intention to use. The 466 

proposed structure of human perceiving may be 467 

further used for collecting judgments in complex 468 

domains where direct application of common NLP 469 

metrics gives rather weak results and where a high 470 

semantic diversity in the possible answer may be 471 

observed. 472 

We consider the further development of the 473 

proposed study in the following directions. First, 474 

we would like to continue collecting human 475 

feedback in order to advance the development of 476 

the perceiving model. Additionally, we would like 477 

to extend the research to analyze the personal 478 

characteristics of the human (in our case, it may be 479 

a personal experience, relevance to the question, 480 

etc.). Second, we would like to investigate the 481 

possible application of the decomposed human 482 

perceiving value to model training/finetuning. 483 

Third, we are interested in the extension of the 484 

model with technical characteristics of generated 485 

code (e.g. checking for syntactic errors, test-based 486 

evaluation). Finally, we are planning to investigate 487 

the influence of the context on human perceiving 488 

including the dependencies from the application 489 

scenario. 490 
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Abstract

Recent language modeling performance has
been greatly improved by the use of external
memory. This memory encodes the context
so that similar contexts can be recalled dur-
ing decoding. This similarity depends on how
the model learns to encode context, which can
be altered to include other attributes, such as
style. We construct and evaluate an architec-
ture for this purpose, using corpora annotated
for politeness, formality, and toxicity. Through
extensive experiments and human evaluation
we demonstrate the potential of our method to
generate text while controlling style. We find
that style-specific datastores improve genera-
tion performance, though results vary greatly
across styles, and the effect of pretraining data
and specific styles should be explored in future
work.

1 Introduction

Language models with external memory, like Khan-
delwal et al. (2020b)’s recent k-nearest neigbour
language model (kNN-LM), have demonstrated
impressive predictive performance. Great reduc-
tions in perplexity are achieved through storing
the encoding of contexts from the training data. A
sequence of tokens is encoded by the model and
stored as a key, which is paired with a value rep-
resenting the next token in the sequence. During
decoding, similar contexts are recalled based on
their key similarity, and values are interpolated
with the base language model’s predictions.

In this work, we augment the encoding with
stylistic attributes, such that the keys are more heav-
ily influenced by the style of the encoded text. By
explicitly encoding the style, the similarity is more
strongly affected by the stylistic attributes than pre-
vious models. When decoding, we can then pro-
vide a style (e.g. polite or formal) and the most
similar contexts are both relevant in content and
more likely to conform to the provided style. The

Baseline:
You install the name

as <command>?

kNN Polite Style:
Would you please

have a look?

Continuations

Prompt: Did you read my comments?

Figure 1: Example prompt continuations of the baseline
kNN language model and our model, which continues
generation in a specified style (e.g. polite). This exam-
ple is based on a real example from our human evalua-
tion but shortened for brevity and clarity. Full examples
are provided in Appendix A.

example in Figure 1 shows a prompt and two con-
tinuations, one with the baseline kNN language
model and one with our model given a polite style
value as input, signaling that it should continue the
prompt in a polite style.

Through our architecture implementation, we
show that we not only improve language modeling
performance over previous models, but that we can
control generation to produce text of a particular
style. We provide human evaluation of our stylistic
outputs and an analysis of the performance of our
approach and modeling decisions that affect how
style attributes are represented in memory. To the
best of our knowledge, this is the first work to
modify a language model’s external memory in
order to control generated style.

2 Related Work

Recent approaches to controllable generation have
included fine-tuning large models, such as Keskar
et al. (2019), who condition on 50 control codes
during training, which represent different styles,
topics, and languages. Other approaches avoid
retraining by modifying the predictions only at
decoding time. The FUDGE model predicts for
a sequence, the likelihood that possible genera-
tion steps will result in a sequence that satisfies
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a given constraint (Yang and Klein, 2021). The
DExperts model alters the probability distribution
of a language model (LM) based on the predictions
of other LMs that are fine-tuned on specific desired
or undesired attributes (Liu et al., 2021). Dathathri
et al. (2020) and others similarly modify gradients
directly during prediction.

Khandelwal et al.’s k-nearest neigbour language
model is based on the groundwork laid by previ-
ous work that augmented language models with a
cache memory of recent observations. Grave et al.
(2017b) captured local context of up to a few thou-
sands tokens to improve predictions. Grave et al.
(2017a) expanded upon this idea by storing all past
hidden activations in a memory. Khandelwal et al.
then replaced the recurrent network with a trans-
former to better model long-term dependencies.
Aspects of kNN-LMs have been improved upon,
in terms of performance, efficiency, and additional
functionality.

Even though kNN-LMs achieve state-of-the-art
predictive performance, the retrieval operation is
very computationally expensive. He et al. (2021)
and Alon et al. (2022) explored techniques to im-
prove inference speed, such as compressing em-
beddings, or training an additional model to dy-
namically disable retrieval for predictions where
the datastore is unlikely to improve the result. Wu
et al. (2022) implemented a similar model and fo-
cused on improving scalability. Yogatama et al.
(2021) extended the model with a gating mecha-
nism that learns to combine short and long term
memory with local context. Xu et al. (2021) im-
proved performance by leveraging structural local-
ity features such as topic clusters in text or project
hierarchies in source code repositories. Khandel-
wal et al. (2020b) also extended their model for use
in machine translation (Khandelwal et al., 2020a),
which has also received efficiency improvements
(Meng et al., 2021; Wang et al., 2021).

3 Methodology

The main goal of our work is to expand kNN-LM
functionality and we build off of Khandelwal et al.
(2020b), which we will refer to as the baseline ar-
chitecture. We modified this architecture to accept
additional style attributes as input, and concatenate
these to the input text encoding. This has the ef-
fect of modifying the embedding space such that
it encodes both semantic and stylistic properties
(see Appendix B). We will refer to this as the style

architecture.
After the input style and context are encoded,

they are stored in the datastore. We experimented
with separating datastores based on the distribution
of style values in the dataset. For this part we
take subsets with specific style values (e.g. only
toxic or only polite) from the datasets and construct
datastores containing only data from those subsets.
We refer to this as separate datastores. Datastores
containing examples of different style are referred
to as mixed datastores.

4 Datasets

We use 4 datasets, 3 of which contain style at-
tributes. Unless stated otherwise, we use the default
splits provided by the original work.

Wikitext-103 Wikitext-103 (WT103) is a col-
lection of Good and Featured Wikipedia articles
(Merity et al., 2017). It is provided in a tokenized
form, with case, punctuation and numbers, totalling
103B tokens. For better compatibility with our to-
kenization of other datasets we modified WT103’s
tokenization by replacing all occurrences of *n 't
(e.g. in “can’t”) with * n't.

Politeness The Stanford Politeness Corpus (SPC)
consists of 11k utterances from StackExchange and
Wikipedia Talk pages, annotated with politeness
scores, which we use as style attributes (Danescu-
Niculescu-Mizil et al., 2013). We created an 85-
7.5-7.5 split for training, validation, and test.

Formality Grammarly’s Yahoo! Answers For-
mality Corpus (GYAFC) is the largest available
corpus for formality style transfer, containing about
110K formal/informal sentence pairs (Rao and
Tetreault, 2018). It is divided into the domains En-
tertainment & Music and Family & Relationships,
which makes it suitable for training and evaluation
with in/out-of-domain data. We do not use the par-
allel nature of the corpus, but assign each sentence
a style attribute (−1 for informal- and 1 for formal
sentences) and re-split the training subset to obtain
an 80-10-10 train/validation/test split.

Toxicity For toxicity we use the Jigsaw Un-
intended Bias in Toxicity Classification dataset,
which contains comments from the Civil Com-
ments platform annotated with several binary toxic-
ity labels representing types of toxicity (e.g. insult,
identity attack, sexually explicit) (Borkan et al.,
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2019). We use only the toxic label as a style at-
tribute. We further use the Real Toxicity Prompts
dataset for human evaluation (Gehman et al., 2020).
This dataset contains the beginning of sentences
and has been used to test if models can continue
generation without toxicity.

4.1 Preprocessing

We largely follow Merity et al. (2017)’s prepro-
cessing of WT103 for all data. Additionally, we
perform the following replacements:

what replacement
inline/block code <code>

usernames <person>
hyperlinks [title](url) 7→ title

URLs <url>

Unlike Merity et al. (2017) we use spaCy.io for
normalization and tokenization, but perform the
same tokenization of infix punctuation and sym-
bols. This serves to differentiate number separator
punctuation from word punctuation, and hyphens
from minus signs or ranges.

5 Experiments

In preliminary experiments we examined the effect
of float precision on model performance. Using
WT103 and the setup of Khandelwal et al. (2020b)
we found that using half precision halves inference
time without hurting perplexity, and reduces infer-
ence time for the kNN-LM with a negligible 0.25
increase in perplexity. In the following sections we
use half-precision to speed up the experimentation
process.

In the main experiments we first examine the im-
pact on perplexity when incorporating style values
into the model. Then we compare our method to
the baseline through human evaluation.

5.1 Language Modeling with Style Attributes

We train the style model, S, using the modified
architecture, and baseline model, B, which uses
the original architecture. To achieve high predictive
performance on text, we first train both on WT103.

For each dataset we then fine-tune a copy of S
and B on the dataset. Using these fine-tuned mod-
els we generate and evaluate a datastore for each a
model, using the dataset the respective model was
fine-tuned on.

We additionally build and evaluate a datastore
on domain and style subsets, to test our model’s

performance on out-of-domain data and across sub-
sets with specific style. The subsets are listed in
Table 3 in the Appendix.

5.2 Setup & parameters

Unless stated otherwise, we use the default parame-
ters used by the transformer_lm_wiki103 archi-
tecture and Khandelwal et al. (2020b).

Vocabulary To avoid a high number of OoV to-
kens, we chose to use a shared vocabulary from
the union of all datasets. Tokens occurring less
than 3 times were mapped to <unk>. The resulting
vocabulary has a size of 375k tokens. Since Merity
et al. (2017) have shown that a large vocabulary
with adaptive input representation can outperform
a smaller BPE vocabulary, we chose the former
over the latter – although this choice has its own
limitations (see limitations section).

Training During pretraining on WT103, we use
random style values normally distributed around
the median, set patience to 5 epochs, and the style
embedding dimension to 96. During fine-tuning
we use Adam instead of the NAG optimizer and set
patience to 10 epochs.

Datastore We use half-precision vectors in the
datastore. Since the context embedding dimension
(1,120) must be divisible by the number of FAISS
index subquantizers, we use 70 instead of 64. For
smaller subsets of data we use 2,048 cluster cen-
troids, rather than the default 4,096.

5.3 Fine-tuning Results

The results of fine-tuning for each style attribute
are shown in Table 1. We find that simply encoding
the style value improves model performance on all
datasets, including the original WT103, though this
is likely due to the small increase in the number
of parameters. Fine-tuning predictably lowers per-
plexity on the style datasets and slightly increases
the WT103 perplexity as the model shifts away
from the corpus it was originally trained on. The
best performance is on formality, followed by po-
liteness, which we expect to more closely resemble
WT103. The addition of the style input allows for
much greater improvement on politeness as com-
pared to toxicity which shows near equal perfor-
mance without it. We also provide perplexity for
the kNN-LM in Appendix C.
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Baseline Style

Dataset PT FT PT FT

Politeness 218 126 164 78
Formality 161 77 148 60

Toxicity 212 125 186 93

WT103 31 35-64 29 32-59

Table 1: Perplexity before (using the pretrained model;
PT) and after fine-tuning (FT). All models were evalu-
ated on the FT dataset and on WT103. The value ranges
in the WT103 row indicate the performance range of
the FT models on the WT103 dataset.

5.4 Human Evaluation

We aimed to answer three questions; (1) do the
style-specific datastores outperform the mixed data-
store, (2) does the kNN-LM outperform the LM,
and (3) does the style architecture outperform the
baseline? To address these questions we asked a
group of 11 students to annotate model outputs.

Generating Output We follow the idea of
Gehman et al. (2020) and generate outputs by sup-
plying prompts of different styles to the models.
We use both non-toxic (toxicity = 0) and neutral
(0 < toxicity < 0.5) and created prompts from
the formality and politeness datasets by cutting off
the second half of randomly sampled sentences.
The prompts are then used as input to the models,
which generate continuations to the prompts. All
combinations of models and inputs are detailed in
Table 4 in the Appendix. For all kNN-LM outputs
we use λ = 0.8 as interpolation parameter.

Survey Setup We asked annotators to select
which of a pair of prompt continuations was more
fluent and which more closely followed one of the
given styles. The pair combinations are based on
the three comparisons listed at the beginning of
this section, but are fully listed in Tables 5-7 in the
Appendix and result in a total of 440 survey ques-
tions. The questions were presented to annotators
in random subsets of 20% of the full set. Each
output pair was rated by 2-4 people.

Results The results in Table 2 show which model
is preferred, in percentage of annotators, in terms
of fluency and style for each pair. We find that
when comparing mixed and specific datastores, the
specific datastores are preferred for style and even
more strongly for fluency. While the kNN-LM is
preferred over the LM in fluency, the style pref-

Fluency (%) Style (%)

Datastore Mixed 45.8 48.2
Specific 54.2 51.8

Model type LM 47.7 50.7
kNN-LM 52.3 49.3

Architecture Baseline 48.8 47.3
Style 51.2 52.7

Table 2: Human evaluation preferences for model pairs.
Column-wise percentage pairs sum to 100.0.

erence is more evenly split. When comparing the
style architecture to the baseline, we find that the
ours is preferred, with style more strongly preferred
to fluency.

These results are an aggregation over the styles,
however the performance on specific styles reveals
more varied results. The specific datastores give
more style control for politeness than for other
styles and for some combinations of the prompt
style and target style, the mixed datastore was pre-
ferred. We see that when we want to generate non-
toxic, polite, or formal text; those that more closely
resemble the pretraining data style, the preference
leans more toward the mixed datastore.

When comparing the LM to the kNN-LM,
we found that the LM style was often preferred
when provided an informal, non-toxic, or impo-
lite prompt, regardless of the target style. We also
found that the fluency of the LM is preferred when
generating polite or impolite text. Lastly, the style
architecture is not always preferred over the base-
line either. The baseline shows stronger fluency for
toxic and impolite prompts. The style architecture
has the best style control when generating formal,
toxic, and impolite text. Overall, there appears to
be a trade-off between style-control and fluency.
The full breakdown by prompt and input type is
shown in Figures 4-6 in the appendix.

6 Conclusion

We examined the use of kNN language models
for controllable stylistic generation using polite-
ness, formality, and toxicity as target styles. Our
findings show that simply encoding style in the
architecture improved perplexity of the language
model. A human evaluation further showed that
specific datastores for target styles outperform the
standard mixed datastore, and that our model gen-
erally outperformed the baseline kNN model in
terms of fluency and style control, though results
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on specific styles varied. Future work is needed
to fully understand the effect of pretraining and
benefits of the model variants for specific styles
and should also consider comparisons to other con-
trollable generation models, such as Keskar et al.
(2019).

Our code is available on Github at https://
github.com/d8xa/style-knnlm.

Limitations

Vocabulary Choice We chose a shared vocab-
ulary to reuse the same baseline model for fine-
tuning on multiple datasets. Since less frequent
tokens are assigned less parameters by the adap-
tive input representation, this could lead to under-
representation of rare, style-specific tokens in gen-
eral, and worse fine-tuning results for smaller
datasets or datasets with many rare tokens. The
same problem applies for single-dataset vocabular-
ies as well, when rare tokens are more prevalent
for a particular style. Byte-pair encoding would
avoid these problems, but make comparability to
the vanilla kNN-LM more difficult.

Sequence Length The original kNN-LM was
trained with sequences of up to 3,072 tokens in
length, which helps model long-term dependencies
in the WT103 dataset. Since all of our datasets with
style attributes contain much shorter sequences,
single-dataset training with shorter input sizes
might be better suited and achieve better perfor-
mance than pre-training on WT103 and fine-tuning
on the style dataset.

Comparability with Khandelwal et al. (2020b)
When training our style architecture, we had to
choose between a combined embedding dimension
of C + Semb = 1,024 (token- and style embedding
dimensions C and Semb), or to use C = 1,024.
In any case the resulting language model would
have a different number of parameters than in the
original kNN-LM . We chose to useC = 1,024 and
Semb = 96. FAISS requires the vector dimension to
be divisible by the number of subquantizers. Since
our combined embedding dimension is different
from 1,024, we had to choose 70 instead of 64
subquantizers.

Another difference is the choice of vocabulary.
The WT103-only vocabulary would make results
more comparable, but also lead to a high number
of UNK tokens for the style datasets, and therefore
reduce performance greatly.

Token to Style Embedding Dimension Ratio
To limit the scope of this work we did not perform
an analysis on the ratio between token- and style
embedding dimension. Other ratios might achieve
better fluency or style control.

Choice of Interpolation Parameter For our hu-
man evaluation we put λ = 0.8 weight on kNN-LM
probabilities. A lower λ, more close to the vanilla
kNN-LM, might achieve better fluency.

Ethics Statement

Work on controllable generation allows models to
generate text in styles such as those presented here,
which include polite/impolite, formal/informal, and
toxic/non-toxic. There may be applications where
each style is appropriate or desirable, but some
styles of text such as impolite and toxic, may be
undesired or even harmful. Application of our mod-
els should involve careful consideration of desired
styles and the context in which they are deployed.
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A Generation Examples

Here we include three examples of generation com-
paring the baseline LM to the kNN-LM where hu-
man annotators found our model to be both more
fluent and more closely aligned with the desired
target style.

B Modified Architecture

Our architecture, modified from Khandelwal et al.
(2020b), is shown in Figure 2. The left side of
the figure shows the original model and the right
shows our modification which incorporates style
attributes.

C Fine-tuning Experiment

The fine-tuning experiments in the main paper
summarize the performance of our models pre-
trained on WT103 and fine-tuned on one of the
style datasets each. Here we also include the per-
formance on other subsets of the finetuning dataset,
such as different toxicity levels for the toxicity data,
and domain subsets for the politeness and formality
data. A full list of subsets is given in Table 3.

D Human Evaluation

For the human evaluation task, we generated sen-
tences for different combinations of the model ar-
chitecture, target style, and prompt style. The high-
level summary of combinations is presented in Ta-
ble 4. For the three test conditions in §5.4, we have
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Target Style: Polite

Prompt: <person>: Yes. Did you read my
comments?

Baseline: Also, you install the name as
<unk> (”) <url>??

Our Model: Vote under the changed circum-
stances? Would you please have
a look?

Target Style: Formal

Prompt: ok let me answer u
Baseline: ’m not in pain, and I say ... gra-

ham understand your problem
Our Model: are alike. You should wait a little

longer to enter your full name
and play your live show.

Target Style: Formal

Prompt: THis is one way to keep it out of
your system ...

Baseline: sings u love bio <unk>
Our Model: with the following words com-

ing out of Gardisil ... Peter Pan,
or just those are some favorite
books that I am able to mail.

listed the model and style combinations that we
tested in Tables 5-7. Finally, the full breakdown
of the human evaluation for fluency and style pref-
erences are shown in Figures 4-6. The heatmaps
show the tendency of annotator choices, where ten-
dency is the mean model choice per question (−1
and 1 encode the choices), aggregated across all
questions in the survey and normalized to −100
and 100.

Tokens

AdaptiveInputEmbedding
Positionalencoding

MultiheadAttention
Layernorm

FeedForward
Layernorm

Linear

AdaptiveSoftmax

Probabilities

Tokens

AdaptiveInputEmbedding

Style attributes

Linear

Positionalencoding
Concat

MultiheadAttention
Layernorm

Feed Forward
Layernorm

Linear

AdaptiveSoftmax

Probabilities

Figure 2: Changes made to the LM architecture (left:
unmodified, right: our version).
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dataset subset size comment

samples (%) samples

WT103 all 100 1.8M

Formality

all 100 214 k
formal 49.8 106.7 k

informal 50.2 107.3 k
family & relationships 49.7 106.3 k
entertainment & music 50.3 107.7 k

Toxicity

all 1.4M Only used for evaluation; due to imbal-
ance not suited for training or Datastores
(DSes).

non-toxic 75.6 1M Toxicity score = 0 .
non-toxic-sample 11.8 159.8 k Sample from non-toxic.

toxic-gte-0.5 11.8 159.8 k Toxicity score ≥ 0.5.
toxic-gte-0.8 2.5 34.1 k Toxicity score ≥ 0.8.
toxic-gte-0.9 0.8 10.2 k Toxicity score ≥ 0.9.

all-sample 23.5 319.6 k Combination of toxic-gte-0.5 and non-
toxic-sample.

Politeness

all 100 11.1 k
neutral 30.3 3.4 k Center 30% of politeness scores.
polite 36.9 4.1 k Upper 36.9% of politeness scores.

impolite 32.8 3.6 k Lower 32.8% of politeness scores.
stackexchange 60.8 6.8 k

wikipedia 39.2 4.4 k

Table 3: List of dataset subsets. Note: Proportions of subsets within splits are subject to variations due to random
sampling. Not all subsets are presented in the results of the main paper. Some subsets are only shown in Figure 3.

Figure 3: Overview of test perplexity in the fine-tuning experiment across data subsets listed in Table 3.
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dataset source style target style LM datastore styles

Formality formal formal style none, formal, mixed
informal style none, informal, mixed
n.a. baseline none, informal, formal

informal formal style none, formal, mixed
informal style none, informal, mixed
n.a. baseline none, formal, informal

Toxicity neutral n.a. baseline none, non-toxic, toxic, mixed
non-toxic style none, non-toxic, mixed
toxic style none, toxic, mixed

non-toxic n.a. baseline none, non-toxic, toxic, mixed
non-toxic style non-toxic, none, mixed
toxic style none, toxic, mixed

Politeness impolite impolite style none, impolite, mixed
n.a. baseline none, polite, impolite, mixed
polite style none, polite, mixed

polite impolite style none, impolite, mixed
n.a. baseline none, polite, impolite, mixed
polite style none, polite, mixed

Table 4: Combinations of models and inputs used for generating the outputs for human evaluation. n.a. in the target
style column refers to the baseline LM architecture, since it has no style input.

dataset source style target style specific datastore style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral non-toxic non-toxic
toxic toxic

non-toxic non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
polite polite

polite impolite impolite
polite polite

Table 5: Model combinations for the human evaluation to address whether the style-specific datastores outperform
the mixed datastores.

dataset source style target style datastore style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral non-toxic non-toxic
toxic toxic

non-toxic non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
polite polite

polite impolite impolite
polite polite

Table 6: Model combinations for the human evaluation to address whether the kNN-LM outperforms the baseline
LM. Both models being compared use the style architecture.
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dataset source style datastore target style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral mixed non-toxic, toxic
non-toxic non-toxic
toxic toxic

non-toxic mixed non-toxic, toxic
non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
mixed impolite, polite
polite polite

polite impolite impolite
mixed impolite, polite
polite polite

Table 7: Model combinations for human evaluation to address whether the style architecture outperforms the
baseline kNN-LM.
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Figure 4: Survey results: Comparison of kNN-LM with mixed DS and style-specific DS. A tendency< 0 corresponds
to the mixed DS being preferred by annotators.
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Figure 5: Survey results: Comparison of LM to kNN-LM for both architectures. A tendency < 0 corresponds to the
LM being preferred by annotators.
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Figure 6: Survey results: Comparison of kNN-LM with baseline architecture vs. style architecture. Style input on
the x-axis refers only to the style LM, since the baseline LM has no style input. A tendency < 0 corresponds to the
the baseline architecture being preferred by annotators.
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Abstract

The work reported in this paper examines dif-
ferent ways of aggregating scores for error an-
notation in MT outputs: raw error counts, er-
ror counts normalised over total number of
words (‘word percentage’), and error counts
normalised over total number of errors (‘error
percentage’). We use each of these three scores
to calculate inter-annotator agreement in the
form of Krippendorff’s α and Pearson’s r and
compare the obtained numbers, overall and sep-
arately for different types of errors. While each
score has its advantages depending on the goal
of the evaluation, we argue that the best way
of estimating inter-annotator agreement using
such numbers are raw counts. If the annota-
tion process ensures that the total number of
words cannot differ among the annotators (for
example, due to adding omission symbols), nor-
malising over number of words will lead to the
same conclusions. In contrast, total number of
errors is subjective because different annotators
often perceive different numbers of errors in the
same text, therefore normalising over this num-
ber can be associated with lower agreement.

1 Introduction

Manual error annotation is an increasingly in-
vestigated component of assessing the quality of
automatically translated or otherwise generated
text (Federico et al., 2014; Costa et al., 2015; Caseli
and Inácio, 2020; Thomson and Reiter, 2020). Er-
ror annotation can be construed as a word-span
labelling task, and a variety of different error la-
belling schemes have been proposed (Vilar et al.,
2006; Lommel et al., 2014b; He et al., 2021; Belke-
bir and Habash, 2021; Al Sharou and Specia, 2022).
If annotators are instructed to assign a predefined
error type to given word-spans, the task is called
error classification (Vilar et al., 2006; Costa et al.,
2015; Lommel et al., 2014b). If annotators are
asked only to mark the erroneous word-spans with-
out assigning any particular error type, the task is

called error marking (Kreutzer et al., 2020; Popović
and Belz, 2021). Both for classification and mark-
ing, approaches differ in how they report the results
from error annotation, i.e. how they convert the
word-span labels obtained in the annotation pro-
cess to aggregated, quantified results on the basis
of which conclusions can be drawn. It is currently
unclear how the choice of aggregation method af-
fects conclusions, e.g. when comparing systems,
or assessing inter-annotator agreement and repro-
ducibility.

This paper aims to investigate three widely used
ways of aggregating error scores, namely (i) raw
error counts, (ii) error counts normalised by total
number of words (referred to in this paper as ‘word
percentage’), and (iii) error counts normalised by
total number of errors (referred to as ‘error percent-
age’). We carried out our experiments on a publicly
available data set consisting of annotated machine
translated outputs which was also used in previous
work (Popović, 2021).

2 Related Work

In an early paper reporting an approach to system-
atic error classification in MT outputs, Vilar et al.
(2006) analyse several MT systems for two lan-
guage pairs in order to obtain details about their
weakest points. The results are reported as error
percentages (in the above sense) for each defined
error type in order to see which error types are
predominant in each of the MT systems. Since in
this work different annotators evaluated different
texts, it was not possible to report inter-annotator
agreement in any manner.

Lommel et al. (2014a) specifically address IAA
for error classification in MT using the MQM1 error
scheme. IAA was calculated using both pairwise
matching/accuracy between assigned labels on the
word level as well as Cohen’s κ coefficient on the

1https://themqm.org/
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word level. Although the work did not aim to eval-
uate MT systems, some overall results are reported:
raw error counts as well as what might be called
‘sentence percentage’ – error counts normalised by
the total number of sentences. It should be noted
that the error counts did not take into account the
number of words in the error span, but each span is
counted as one error no matter how many words the
span comprises. Lommel et al. also investigated
sentence-level agreement, which led to much bet-
ter agreement since evaluators often identified the
same error types in a sentence although on different
spans. These differences in spans are mentioned as
the main reason for low κ coefficients, apart from
annotators’ personal preferences.

Another work which deals with IAA (Castilho,
2020) for error classification compares (a) IAA
when evaluators see only isolated sentences, with
(b) IAA when evaluators see larger portions of text
in context (paragraphs, “documents”). Since the
goal was not analysis of MT systems, a simple
scheme involving four error types was used. The
tool used for error annotation allowed only mark-
ing on the sentence level, so that Cohen’s κ is also
calculated on the sentence level. In addition, Pear-
son’s r calculated on error counts and percentage
of matched error types are reported as well. Since
the focus of the work was fully on IAA, no error
scores were reported.

Klubička et al. (2018) use the MQM error
scheme for error classification to compare phrase-
based and neural based systems for translating into
Croatian. They mention that there is no standard in
reporting numerical results for error classification
and discuss two possibilities: (1) counting only
error spans (without taking the word span into ac-
count), (2) counting number of words in error spans
and normalising this word count over the sentence
length (what we call word percentage). They argue
that although raw error counts provide useful in-
formation, they do not enable drawing statistically
meaningful conclusions about the results. They fur-
ther argue that different MT systems may generate
different sentence lengths which would make com-
parison of raw error counts unfair. Therefore, they
decide to report the word percentage. As for IAA,
Cohen’s κ on the sentence level was calculated and
compared across different error types. They ob-
tained higher agreement coefficients than (Lommel
et al., 2014c) and commented that the reason is cal-
culating κ on sentence-level instead of word-level.

Kreutzer et al. (2020) perform error marking (an-
notation without classification into types) for use in
a loss function in order to improve an MT system.
Therefore, no scores were reported, and IAA was
reported as Krippendorff’s α calculated on raw er-
ror counts. The same approach, error marking and
α calculated on error counts, was used by Popović
and Belz (2021), together with the percentage of la-
bel matches (F-score). The error annotation results
were reported in the form of word percentages.

Freitag et al. (2021) apply the MQM error
scheme on large amounts of texts for two language
pairs. They use raw span counts weighted with
the error severity so that each minor error span is
counted as 1 and each major error span as 5. A
restriction of a maximum of five errors per seg-
ment is applied, and evaluators are instructed to
choose the five most severe errors. As for IAA, for
each rater Freitag et al. report the score and the
ratio over the average score of all raters. They also
report pairwise agreement, and discuss that there
is no obvious best way to compute it, especially
since they take into account error severity. The
chosen approach groups the scores of each rater
into numeric intervals, and then compares these
intervals. The authors report average, minimum,
and maximum pairwise annotator agreements, but
do not specify how exactly these agreements were
calculated.

A previous investigation (Popović, 2021) also
concentrated on IAA, with the focus on pairwise
word level matches for different error types, and
reported overall Krippendorff’s α calculated on er-
ror counts. The work reported in this paper was
carried out on part of the same corpus, but with the
following differences: (i) we introduce Krippen-
dorff’s α and Pearson’s r calculated on three types
of numerical scores, and (ii) we compare all IAA
coefficients (including word overlap) and analyse
the differences in depth. Also, we choose a sub-
set of the corpus for which we have annotations by
four evaluators as a result of an earlier reproduction
study (Popović and Belz, 2021), in order to have
more variation.

3 Annotated Data Set

Our experiments were carried out on a subset of
the publicly available annotated QREV data set.2

The full set consists of English user reviews about

2https://github.com/m-popovic/
QRev-annotations
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QRev data set
language pair en→hr
domain user reviews
# of MT systems 3
# of unique
segments 1217
total # of
annotators 14
# of annotators
per segment 4
quality criterion Adequacy,

Comprehension

Table 1: Descriptive statistics for the data set used in
our analyses.

IMDb movies and Amazon products translated into
Croatian and Serbian by five different MT sys-
tems for each language pair. Each text was an-
notated by two different evaluators. In the sub-set
we used3 (Popović and Belz, 2021), we had addi-
tional annotations obtained in a reproduction study
(Popović and Belz, 2021); therefore in this subset
each text was annotated by four different evalua-
tors. The sub-set consists of Croatian MT outputs
generated by three systems (Amazon Translate, Mi-
crosoft Bing and Google Translate). In total, 14
different evaluators, computational linguistics stu-
dents and researchers as well as translation students
fluent in the source language and native speakers of
the target language, participated in the annotation
of this sub-set. Some descriptive statistics for the
data sub-set we used are shown in Table 1.

The annotation of MT outputs was carried out in
two stages. In the first stage, a group of annotators
provided error marks (Major, Minor and None for
correct words) according to two quality criteria:
Adequacy and Comprehension. For both quality
aspects, the evaluators were asked to concentrate
on problematic parts of the text and to highlight
them. For Adequacy, they were instructed to high-
light parts which entirely or partially change the
meaning of the source text. For Comprehension,
they were asked to mark parts which are impossible
or hard to understand. They were also asked to add
omission tags “XX” whenever necessary.

Since it was an error marking task, i.e. not guided
by any predefined error scheme, only by the qual-
ity criteria, the evaluators had more freedom in
annotating errors than in error classification tasks.
Therefore, this annotation represents a descriptive

3https://github.com/m-popovic/
QRev-annotations/tree/master/reproduction_
second-round_hr

type of evaluation (Rottger et al., 2022) which al-
lows and encourages subjectivity.

The annotators were also asked to distinguish
between major and minor errors, however we did
not use this distinction in the experiments reported
here. This could be an interesting direction for
future work.

Error types were assigned in the second stage
by the first author of this paper, a computational
linguistics researcher with expertise in translation,
who analysed the marked errors and assigned error
type labels according to their cause and/or origin.
The error types were not predefined by any partic-
ular error typology, but defined on the fly, while
looking at the annotated text. For some words, mul-
tiple error types were identified. Some of these er-
ror types have small word spans (1–2 words) while
others can involve a larger number of words, even
the entire sentence. Since the evaluation protocol
in the first stage allowed free annotation, evaluators
often perceived the same issue but marked different
words. This freedom also allowed evaluators to
express their individual stylistic preferences. More-
over, it led to evaluators often marking up many
consecutive words even in cases where only some
of the words were actually part of an error. In some
of these cases, the second-stage annotator was un-
able to identify an error type; to indicate this, such
cases were tagged as None.

4 Aggregated Error Scores

We investigated the following aggregated scores:

1. error count C(err_type)

• number of words marked as an error type
• ranges from 0 to total number of words

in the text

2. word percentage C(err_type)
C(all_words) · 100

• number of words marked as an error type
divided by the total number of words in
the text

• ranges from 0 to 100

3. error percentage C(err_type)
C(all_errors) · 100

• number of words marked as an error type
divided by the total number of errors in
the text

• ranges from 0 to 100
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5 Inter-Annotator Agreement

We estimated inter-annotator agreement in the fol-
lowing three ways:

1. word overlap (Popović, 2021)

• number of words marked as errors by
all annotators divided by number of all
words perceived as errors by any annota-
tor

• ranges between 0 and 100, higher value
indicating higher agreement

• not based on aggregated error scores,
only on actual words annotated as errors

2. Krippendorff’s α (Krippendorff, 2004)

• compares numerical scores obtained by
different annotators

• ranges between -1 and 1
• 0 indicates no agreement, and common

practice is to consider α≥0.667 as ac-
ceptable and α≥0.8 as strong agree-
ment (Krippendorff, 2004)

3. Pearson’s r

• compares numerical scores obtained by
different annotators

• ranges between -1 and 1
• absolute values from 0.8 to 1 are com-

monly considered as strong correlation,
between 0.6 and 0.8 as high correlation,
between 0.4 and 0.6 as moderate, be-
tween 0.2 and 0.4 as fair, and between 0
and 0.2 as weak (0 meaning no correla-
tion at all)

Since Krippendorff’s α and Pearson’s r are mea-
sures computed on numerical values, we compared
their values as obtained when using the three differ-
ent types of aggregated scores above (raw counts,
word percentage and error percentage). We addi-
tionally compared these values with word overlap
values as used in previous work and calculated in a
different way, independently of numerical scores.

Word overlap as well as Pearson’s r are calcu-
lated on all pairs of annotators (e1-e2, e1-e3, e1-e4,
e2-e3, e2-e4, e3-e4).

6 Results

As a first step, we calculated IAA measures for
all error types combined, taking into account only

whether a word is tagged as an error or not, inde-
pendently of the error type. We compared IAA
measures for all aggregation methods except calcu-
lating coefficients on error percentage (count of a
particular error type normalised over the total num-
ber of errors) because without distinguishing error
types it would simply be 100% and therefore does
not make sense.

After observed certain tendencies in this first
step, we calculated all values for each individual
error type and analysed all observations in depth.

6.1 Overall results

Table 2 shows error levels as perceived by each of
the four annotators in the two versions, raw count
and word percentage, together with the correspond-
ing agreement measures. As already mentioned,
word overlap is not based on the quantity of errors
but on actual tagged words.

First, it can be seen that agreement between an-
notators is higher in all cases when assessing Ade-
quacy than Comprehension, which confirms results
from previous work (Popović, 2021) where how-
ever only word overlap was reported. It should
be noted that word overlap is slightly different in
the present context, because it was calculated on a
different subset, but the tendency is the same.

As for comparing different IAA measures, it
can be noted that both coefficients, α and r, are
lower for word percentage than for raw count, in
all cases. Manual inspection revealed that the rea-
son lies in variations of sentence length between
annotators caused by different numbers of omission
tags and/or differences in tokenisation affected by
annotations.

Two examples are shown in Table 3, the sentence
in the top half of the table illustrates the effect of
omission tags and the sentence in the bottom half
the effect of altering tokenisation through anno-
tation. In the first sentence, all four annotators
marked two errors, so the agreement on the raw
error counts is perfect. However, since the fourth
annotator perceived one omission error while the
other three did not, this sentence became longer
than others due to the added omission tag, and the
word percentage became smaller. If omission tags
were excluded from sentence length, word percent-
ages for segments with omissions could become
overly high and difficult to interpret.

In the second sentence in Table 3, three annota-
tors marked two errors and one did not mark any.
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amount of errors coefficients
ev1 ev2 ev3 ev4 α ↑ r ↑ overlap ↑

Adequacy counts 3282 3377 3910 4310 .705 .714 59.6
word % 20.3 20.9 24.0 26.5 .567 .579

Comprehension counts 3380 3684 4336 5487 .659 .687 57.4
word % 20.9 22.8 26.6 33.5 .496 .523

Table 2: Results for all error types combined: error count and word percentage (count normalised by total number
of words) for each of four annotators together with coefficients of agreement: word overlap, Krippendorff’s α and
Pearson’s r.

original annotated MT output # errors # words word%
Usually a fan but not impressed Obično ventilator|AMBIGUITY , 2 5 40.0

ali neimpresioniran|NON_EXISTING
Obično ventilator|AMBIGUITY , 2 5 40.0
ali neimpresioniran|NON_EXISTING
Obično ventilator|AMBIGUITY , 2 5 40.0
ali neimpresioniran|NON_EXISTING
Obično ventilator|AMBIGUITY , 2 6 33.3
ali XX|OMISSION neimpresioniran

Wayne’s World is hardly a plot driven film. Wayneov|NE svijet|NE teško 2 8 25.0
da je film pokrenut zapletom.
Wayneov|NE svijet|NE teško 2 8 25.0
da je film pokrenut zapletom.
Wayneov svijet teško da je film 2 9 22.2
pokrenut|NOUN_PHRASE
zapletom|NOUN_PHRASE .
Wayneov svijet teško da je film 0 8 0.0
pokrenut zapletom.

Table 3: Examples of two sentences resulting in different lengths after annotation by inserting omission mark
(above) and separating punctuation mark (below). This leads to different word percentages for same error counts.

However, the first three annotators marked different
errors, one of them involved a word next to a punc-
tuation mark. Therefore, the annotator separated
the word from the punctuation mark increasing the
total number of words and decreasing the word
percentage.

6.2 Different error types

The next step in our experiment was to investigate
the effects on different error types. Here, we want
to compare the numerically based coefficients α
and r when calculated on counts vs. word percent-
age separately for each error type. In addition, we
want to investigate the error percentage (count of a
particular error type normalised over total number
of errors, see Section 4).

6.2.1 Aggregated error scores

The list of error types together with their quantifica-
tion in the three forms (raw count, word percentage
and error percentage) can be seen in Table 4, sorted
by the frequency in the analysed corpus. It can
be noted that the conclusions about their distribu-
tion will be exactly the same for each of the three
numerical scores. For example, ambiguity is one

of the predominant types according to raw count,
word percentage as well as error percentage.

The question is now what happens with agree-
ment coefficients for each of the error types when
we use each of the three different numerical scores?
Will word percentage be associated with lower
agreement for each error type? What will happen
when using error percentage?

6.2.2 Agreement measures for different error
types

Tables 5 and 6 present all agreement measures,
word overlap and both number-based coefficients
α and r, calculated on three types of scores: count,
word percentage and error percentage. The error
types are ordered from lowest to highest word over-
lap.

It can be noted that there is very low agreement
for the tag None, which could be expected since,
as explained in Section 3, these error marks are
related to evaluators’ stylistic preferences as well
as different perceptions of the word span.

As the results for rare error types are likely to
be less reliable we also mark the frequency of each
type in the first columns of Tables 5 and 6: ‘++’
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(a) Adequacy
Adequacy issue type count word% err%
REPHRASING 3197 4.93 21.49
AMBIGUITY 1841 2.84 12.37
NOUN PHRASE 1006 1.55 6.76
MISTRANSLATION 651 1.00 4.38
VERB FORM 618 0.95 4.15
NAMED ENTITY 561 0.86 3.77
CASE 529 0.82 3.56
GENDER 424 0.65 2.85
UNTRANSLATED 387 0.60 2.60
PRONOUN 338 0.52 2.27
NEGATION 333 0.51 2.24
OMISSION 288 0.44 1.94
ORDER 266 0.41 1.79
-ING 245 0.38 1.65
NON-EXISTING 216 0.33 1.45
SOURCE ERROR 207 0.32 1.39
PREPOSITION 189 0.29 1.27
POS AMBIGUITY 161 0.25 1.08
ADDITION 102 0.16 0.69
PASSIVE 101 0.16 0.68
NUMBER 84 0.13 0.56
CONJUNCTION 73 0.11 0.49
REPETITION 33 0.05 0.22
SR 18 0.03 0.12
HALLUCINATION 15 0.02 0.10
None 3755 5.79 25.24

(b) Comprehension
Comprehension issue type count word% err%
REPHRASING 3368 5.18 19.94
AMBIGUITY 1670 2.57 9.89
NOUN PHRASE 992 1.53 5.87
NAMED ENTITY 594 0.91 3.52
VERB FORM 567 0.87 3.36
MISTRANSLATION 553 0.85 3.27
CASE 539 0.83 3.19
GENDER 428 0.66 2.53
UNTRANSLATED 412 0.63 2.44
NEGATION 344 0.53 2.04
PRONOUN 322 0.50 1.91
ORDER 283 0.44 1.68
OMISSION 261 0.40 1.55
-ING 244 0.38 1.44
NON-EXISTING 219 0.34 1.30
SOURCE ERROR 212 0.33 1.26
PREPOSITION 179 0.28 1.06
POS AMBIGUITY 133 0.20 0.79
ADDITION 109 0.17 0.65
PASSIVE 100 0.15 0.59
CONJUNCTION 79 0.12 0.47
NUMBER 71 0.11 0.42
REPETITION 34 0.05 0.20
SR 20 0.03 0.12
HALLUCINATION 7 0.01 0.04
None 5904 9.08 34.96

Table 4: Error levels for different Adequacy and Comprehension error types annotated by all evaluators, in the form
of counts, word percentages and error percentages.

denotes error types accounting for more than 5%
of all errors, ‘+’ denotes error types accounting for
2–5%, ‘−’ for 1–2%, and ‘−−’ for less than 1%.

It can further be noted that for the majority of er-
ror types, the coefficients calculated on error counts
indicate the same level of agreement as the word
overlap. For several error types, however, the over-
lap is smaller (conjunction, negation, rephrasing),
but this could be expected: these error types have
long word spans, so annotators often perceive the
same number of errors but mark different words.

As for comparing numerically based coefficients
calculated on the three scores, bold values indi-
cate that the agreement is lower than the agreement
calculated on raw counts, while underlined values
indicate higher agreement than counts. Overall,
for a number of error types, using error percent-
age results in lower agreement than using word
percentage or raw counts. For some types, word
percentage is lower, too, as observed in the overall
values in Table 2. For a few types, however, word
percentage results in higher agreement. These are
the Adequacy-related omission and verb form er-
rors as well as the Comprehension-related noun-
phrase and source errors. For the Comprehension-
related conjunction error, the highest agreement is

obtained when using error percentage.
In order to understand these observations, we

further analysed all error types where conclusions
about IAA differ for different numerical scores.

7 Analysis of Differing Agreement Levels

Decreased agreement when using error percent-
age. For a large number of error types, calcu-
lating Krippendorff’s α and Pearson’s r on error
percentage results in much lower agreement com-
pared to using raw counts or word percentage. In
order to explain this phenomenon, further analysis
was carried out on these error types, and a system-
atic pattern was found: the total number of errors
marked by different annotators often varies notably
so that identical error counts become very different
error percentages.

Table 7 illustrates the phenomenon on two sen-
tences. In the first sentence (top half of the table),
two annotators perceived one mistranslation. How-
ever, for the first annotator, this was the only error
in the sentence, while the other spotted a problem
with the verb form. Therefore, the total number
of errors for the first annotator is one and for the
second one is two, resulting in double the error
percentage of mistranslations for the first annotator.
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word α ↑ r ↑
A issue type overlap count word % error % count word % error %
OMISSION− 26.6 .236 .645 .275 .238 .650 .275
CONJUNCTION− 53.0 .700 .767 .703 .706 .767 .860
ORDER− 58.1 .554 .558 .500 .577 .599 .500
NEGATION+ 59.0 .713 .744 .778 .714 .744 .783
NAMED ENTITY+ 66.9 .748 .617 .647 .748 .619 .647
PREPOSITION− 66.0 .689 .649 .503 .691 .649 .583
PRONOUN+ 66.5 .667 .562 .454 .667 .562 .454
REPHRASING++ 68.4 .772 .757 .747 .776 .762 .748
REPETITION−− 68.8 .879 .919 .841 .905 .933 .844
SR−− 70.4 .703 .698 .580 .703 .699 .581
NOUN PHRASE++ 70.8 .797 .757 .749 .798 .762 .749
GENDER+ 72.8 .758 .523 .580 .758 .543 .584
CASE+ 74.8 .800 .763 .703 .800 .766 .707
AMBIGUITY++ 75.2 .791 .744 .596 .794 .745 .596
POS AMBIGUITY− 75.4 .889 .799 .752 .890 .813 .752
NUMBER−− 76.2 .771 .767 .517 .772 .773 .519
ADDITION−− 76.5 .742 .736 .491 .743 .741 .496
VERB FORM+ 76.6 .764 .825 .650 .764 .825 .653
PASSIVE−− 77.2 .829 .754 .672 .831 .774 .690
MISTRANSLATION+ 85.0 .941 .885 .709 .941 .885 .718
UNTRANSLATED+ 87.3 .961 .939 .768 .964 .939 .771
-ING− 88.1 .899 .751 .707 .900 .751 .707
SOURCE ERROR− 88.6 .884 .879 .702 .885 .879 .704
NON-EXISTING− 90.7 .943 .933 .786 .943 .933 .791
HALLUCINATION−− 93.3 .982 .982 .997 .983 .983 .998
None 21.5 .233 .125 .131 .245 .138 .141

Table 5: Agreement coefficients for Adequacy error types (‘++’ denotes error types accounting for more than 5%
of all errors, ‘+’ denotes error types accounting for 2–5%, ‘−’ for 1–2%, and ‘−−’ for less than 1%) : word overlap
together with α and r calculated on counts, word percentages and error percentages. Bold values indicate lower
agreement than counts, underline values indicate higher agreement than counts.

In the second sentence (lower half of the table), all
four annotators perceived one ambiguity error, but
due to differences in perception of other error types
(in this case presence and span of negation errors)
the total number of errors, and therefore the error
percentage, are different.

This finding indicates that, regardless of which
score is considered best for reporting the results
of the analysis, error percentage is not suitable for
calculating agreement coefficients.

Increased agreement when using word percent-
age. For some error types, coefficients calculated
on word percentage are associated with higher
agreement than those calculated on raw counts
and error percentage. One of these error types
is Adequacy-related omission, which at first might
look contradictory to the findings in the overall
scores, where they contribute to decreased agree-
ment by changing sentence length. However, in-
creasing sentence length has another effect, namely
‘smoothing’ the number of omissions. An example
can be in Table 8: one annotator did not perceive
any omission, two perceived one omission, while

one perceived two. The resulting sentence lengths
are therefore different, and the increase of the sen-
tence length is larger in the sentence with more
omissions. Therefore, the difference between the
amounts of omissions are smaller for word per-
centage than for count: while one evaluator tagged
twice as many omissions than the other (2:1), the
difference between word percentages is only 1.6
(40:25).

Besides omission, such tendencies can be seen
in a few other error types (verb form error for Ad-
equacy, noun phrase and source errors for Com-
prehension). However, the analysis revealed that
in those cases, there are no reasons related to the
nature of the error type itself (as is the case for
omissions). The only reason is that these error
types often occur in sentences where lengths are
different due to tokenisation changes and/or omis-
sion annotations, as mentioned in Section 6.1.

Other differences in agreement. As previously
mentioned, we carried out a more in-depth analysis
of a few other kinds of differences in agreement
related to certain error types.
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word α ↑ r ↑
C issue type overlap count word % error % count word % error %
OMISSION− 17.9 .160 .116 .092 .161 .119 .094
HALLUCINATION−− 28.6 .320 .320 .331 .374 .374 .362
CONJUNCTION−− 50.6 .712 .718 .843 .712 .718 .847
PRONOUN− 58.4 .581 .404 .320 .590 .496 .322
ORDER− 59.3 .552 .534 .516 .575 .553 .520
NEGATION+ 63.2 .758 .712 .838 .760 .713 .838
NAMED ENTITY+ 64.3 .684 .600 .569 .690 .604 .570
PREPOSITION− 68.2 .694 .764 .582 .702 .764 .583
REPETITION−− 69.8 .879 .828 .731 .918 .875 .777
SR−− 70.0 .699 .719 .634 .702 .719 .658
GENDER+ 71.5 .727 .609 .533 .728 .617 .533
NOUN PHRASE++ 71.9 .791 .809 .737 .796 .812 .737
REPHRASING++ 72.0 .787 .748 .791 .794 .754 .791
VERB FORM+ 73.1 .776 .743 .627 .777 .745 .627
POS AMBIGUITY−− 73.7 .827 .226 .719 .827 .261 .720
AMBIGUITY++ 74.4 .783 .734 .586 .789 .744 .589
CASE+ 76.9 .784 .746 .685 .785 .748 .690
NUMBER−− 78.9 .789 .776 .465 .791 .777 .466
PASSIVE−− 79.3 .854 .866 .837 .858 .873 .837
SOURCE ERROR− 81.4 .787 .833 .708 .793 .837 .711
MISTRANSLATION+ 82.2 .918 .850 .646 .921 .854 .647
ADDITION−− 83.2 .842 .796 .607 .797 .731 .575
-ING− 85.8 .888 .824 .700 .893 .825 .700
UNTRANSLATED+ 87.7 .933 .870 .775 .934 .871 .775
NON-EXISTING− 89.8 .920 .938 .722 .920 .938 .725
None 29.1 .317 .190 .212 .355 .218 .235

Table 6: Agreement coefficients for Comprehension error types (‘++’ denotes error types accounting for more than
5% of all errors, ‘+’ denotes error types accounting for 2–5%, ‘−’ for 1–2%, and ‘−−’ for less than 1%): word
overlap together with α and r calculated on counts, word percentages and error percentages. Bold values indicate
lower agreement than counts, underline values indicate higher agreement than counts.

original annotated MT output # mistrans. # errors error%
Don’t waste your money. Nemoj|VERB trošiti novac. 0 1 0.00

Nemoj trošiti|MISTRANSLATION novac. 1 1 100.0
Nemoj trošiti novac. 0 0 0.00
Nemoj|VERB trošiti|MISTRANSLATION novac. 1 2 50.0

original annotated MT output # ambiguity # errors error%
Sadly, I can’t review them Nažalost, ne mogu ih pregledati|AMBIGUITY 1 1 100
as they were both non-responsive. jer oboje nisu reagirali

Nažalost, ne mogu ih pregledati|AMBIGUITY 1 3 33.3
jer oboje|NEGATION nisu|NEGATION reagirali
Nažalost, ne mogu ih pregledati|AMBIGUITY 1 3 33.3
jer oboje nisu|NEGATION reagirali|NEGATION
Nažalost, ne mogu ih pregledati|AMBIGUITY 1 2 50.0
jer oboje nisu reagirali|NEGATION

Table 7: Examples of sentences with identical error counts for a particular error type (mistranslation at the top and
ambiguity below) but different total number of errors perceived by different annotators. This leads to different error
percentages for same error counts.

One phenomenon is that both word percentage
and error percentage decrease the agreement for
certain error types including gender, case (Ade-
quacy), named entity (Comprehension), etc. We
have also observed cases where word percentage
notably decreases agreement while error percent-
age does not, e.g. for POS ambiguity (Comprehen-
sion); in fact, conjunction error percentage even

increases agreement (Comprehension).

Nevertheless, these differences in agreement are
not related to error type, but rather to the circum-
stances in which the majority of errors occur (varia-
tions in sentence length and total number of errors).
Moreover, many of the error types are relatively
rare, which makes these effects even stronger. For
example, conjunction errors are very rare, and al-
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original annotated MT output # omissions # words word%
...from other of the genre, ... ... od ostalih žanra, ... 0 3 0.0

... od ostalih XX|OMISSION XX|OMISSION žanra, ... 2 5 40.0

... od ostalih XX|OMISSION žanra, ... 1 4 25.0

... od ostalih XX|OMISSION žanra, ... 1 4 25.0

Table 8: Examples illustrating reduction in differences in omission error levels.

most all of them are marked by annotators which
assign a higher total number of errors, too, so that
error percentage is ‘smoother’ than raw error count.

It should also be noted that while the results
reported here indicate that error percentage is of-
ten associated with misleadingly low agreement, it
is theoretically possible to find misleadingly high
agreement (for example, if one annotator marks
twice as many errors in total than another, but the
proportions of error types are exactly the same, the
agreement on error percentages will be perfect).

8 Conclusions

This paper examined different ways of aggregating
scores for error annotation in automatically gener-
ated text, more specifically MT outputs: we com-
pared raw error counts, error counts normalised
over total number of words (word percentage), and
error counts normalised over total number of errors
(error percentage), and the associated difference in
inter-annotator agreement measures calculated on
the different aggregated scores. While reporting
each type of aggregated score as the evaluation re-
sult has its advantages depending on the goal of the
evaluation, our experiments indicate that the over-
all best way to estimate inter-annotator agreement
using such scores are raw counts. If the annotation
process ensures that the total number of words can-
not differ among the annotators (for example, due
to adding omission symbols or separating punctua-
tion marks), word percentage will lead to the same
conclusions.

In contrast, error percentage can be associated
with misleading agreements for a number of er-
ror types, chiefly because the total number of er-
rors is subjective as different annotators often per-
ceive different numbers of errors in the same text.
Therefore, normalising one subjective number (er-
ror count for a particular type) by another subjec-
tive number (total number of errors) can notably
influence the agreement.

Limitations

The work was carried out only on one language pair,
for one translation direction. The identification of
the error types in the second stage was carried out
by a single annotator.
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tations of the work presented in this paper in the
previous section. No new data or computational
resources were created, no computational exper-
iments were run, no human annotation or evalu-
ations were carried out for this paper. The work
computes and analyses scores obtained from a pre-
viously annotated corpus. Results are of potential
use in improving comparability and reliability in
quantified error reporting.
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Abstract

Most commercial conversational AI products
in domains spanning e-commerce, health care,
finance, and education involve a hierarchy
of NLP models that perform a variety of
tasks such as classification, entity recognition,
question-answering, sentiment detection, se-
mantic text similarity, and so on. Despite our
understanding of each of the constituent mod-
els, we often do not have a clear view as to how
these models affect the overall platform metrics.
To bridge this gap, we define a metric known as
answerability, which penalizes not only irrele-
vant or incorrect chatbot responses but also un-
helpful responses that do not serve the chatbot’s
purpose despite being correct or relevant. Ad-
ditionally, we describe a formula-based mathe-
matical framework to relate individual model
metrics to the answerability metric. We also
describe a modeling approach for predicting a
chatbot’s answerability to a user question and
its corresponding chatbot response.

1 Introduction

Conversational AI has been making great strides
in the past few years. Several commercial chat-
bots powered by NLP have been deployed for di-
verse sectors, ranging from banking to health care
(Adewumi et al., 2022). While end-to-end chat-
bots based on a single neural network architecture
have been proposed (Komeili et al., 2021; Adiwar-
dana et al., 2020), most commercial organizations
still deploy a hierarchy of machine learning models
working together in unison to come up with an an-
swer to a user’s question, rather than relying on the
output of a single end-to-end neural network, for

*Both authors contributed equally to this work
†
{anand.ar,anusua.trivedi}@flipkart.com

instance, the popular Rasa NLU framework used by
several industrial organizations (Bocklisch et al.,
2017). In such a case, it is important to have a
single unified metric that defines the effectiveness
of a conversational AI product, such as a chatbot.
Moreover, one needs to have a framework that links
individual model metrics to the overall chatbot ef-
fectiveness metric. This way, we can understand
the “weak links” in the entire chatbot workflow, i.e.,
models whose relative improvement can have the
maximum effect on the global chatbot effectiveness
metric. This is crucial for a commercial organiza-
tion, where business impact needs to be routinely
demonstrated, requiring teams to prioritize which
models they are going to focus on improving.

Moreover, by incorporating other business-
motivated factors such as helpfulness into the over-
all chatbot effectiveness metric, we are ensuring
that we are optimizing not just for peak perfor-
mance from each of the constituent machine learn-
ing models inside a chatbot, but also for the ability
of the chatbot to serve the organization’s business
goals. For example, if an e-commerce website does
not sell women’s Reebok shoes of size 10, its chat-
bot might answer “correctly” to a user who asked
if those shoes are available, by responding “No
we do not have women’s Reebok shoes of size 10."
However, this answer is not “helpful,” that is, a user
shown this answer will not be tempted to search for
other products on the website. A helpful answer
could not only acknowledge the lack of Reebok
shoes of the required size, but could also suggest
other similar shoes of size 10 from a similar brand,
say Skechers or Nike, so that an originally unhelp-
ful answer could potentially become helpful. In
this case, the answer is not only correct but also
helpful, just like how a salesperson in a brick-and-
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mortar store would be when they are asked about
the availability of a certain product. Similar exam-
ples apply to other use-cases of conversational AI
such as banking, governance, and health care. By
emphasizing such business-relevant expectations
from a task-oriented chatbot, we are encouraging it
to provide a more relatable experience to the user,
just like a human agent or salesperson.

This paper seeks to make 2 contributions: the
first is to define a stringent global effectiveness
metric for a task-oriented chatbot called “answer-
ability,” which penalizes not only incorrect or irrel-
evant responses but also unhelpful responses. Our
metric is quite general in its definition and can be
utilized in any chatbot application. Our second con-
tribution is to describe a framework to relate the
answerability metric to individual model metrics,
along with a modeling approach for predicting the
answerability for an individual user query-chatbot
response pair. We shall focus on the concrete ex-
ample of a pre-purchase e-commerce chatbot that
answers user questions about products sold on an e-
commerce marketplace to illustrate our ideas where
necessary. This example is ideal and instructive
for the concepts explained in this paper, given the
variety of NLP models it encompasses, such as
multi-class text classification, span detection-based
question answering, and semantic text similarity-
based retrieval of user-generated content such as
user-generated frequently asked questions (FAQs)
and user reviews for the product.

2 Related Work

We review the existing literature for chatbot evalu-
ation metrics below.

2.1 Metrics for evaluating chatbot
performance

While several metrics for evaluating chatbots have
been suggested, (Abd-Alrazaq et al., 2020; Shawar
and Atwell, 2007) we did not find any mathemat-
ical frameworks that relate chatbot effectiveness
metrics to individual model performances. Typi-
cally metrics have been based on response gener-
ation (Cameron et al., 2019), usability (Abdullah
et al., 2018), response understanding (Yokotani
et al., 2018), and global aesthetics (Wargnier et al.,
2018).

Other metrics proposed for chatbots such as per-
plexity, sensibleness and specificity average (SSA)
(Adiwardana et al., 2020), and percentage of per-

turn engaging responses (Xu et al., 2022) focus on
how closely the bot-user conversation resembles
a human conversation over multiple turns. While
these metrics are crucial for a general, open-domain
chatbot, most business applications measure the
success of their conversational AI products based
on not only the coherence within the chatbot re-
sponses but also the effectiveness of the chatbot
in helping the user’s specific needs. Metrics in-
tended for open-domain chatbots may not always
be appropriate for a business use case. General-
purpose NLG metrics such as ROUGE (Lin, 2004)
and BLEU (Papineni et al., 2001), despite having
the benefit of being automated, do not work for
cases where there could be multiple responses that
are equally effective.

2.2 Typical model hierarchies in a chatbot

Popular chatbot frameworks such as Daniel et al.
(2020); Bocklisch et al. (2017), and winning chat-
bots in competitions such as the Alexa Prize com-
petition (Serban et al., 2017), demonstrate that su-
perior chatbot designs comprise a collection of sev-
eral models, each geared towards a specific kind
of conversation. For instance, Serban et al. (2017)
consists of 22 response models, thus making it
crucial for a team of engineers to have clear visi-
bility into how sensitive the overall chatbot metrics
are to the metrics of each of the constituent mod-
els. As new use cases emerge and a chatbot grows
in complexity, having a quantitative view of the
contribution of each model to the overall chatbot
performance is crucial.

Most open-source chatbot designs begin with
an intent recognition layer that decides the cat-
egory of the user query before directing it to
an appropriate downstream model,(Adamopoulou
and Moussiades, 2020; Lokman and Ameedeen,
2018) whereas downstream models could include
question-answering and/or other information re-
trieval models.(Kulkarni et al., 2019)

3 Description of the chatbot architecture

As described in Fig. 1, the chatbot consists of an
intent classification model, which detects the over-
all intent of the user query. If the intent is not a
product-specific intent (e.g., stock availability, in-
troductory greeting, etc.), then we answer using
standard templates that do not involve any predic-
tive model. On the other hand, if the intent is a
product-specific intent, then we invoke a binary
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classifier that predicts whether the query is factual
or subjective.

Factual queries, such as “what is the battery ca-
pacity of this phone?”, “does this phone support
5G?” are sent first to a question-answering model
based on unstructured data such as product descrip-
tion text or structured data such as key-value speci-
fication pairs, e.g., “battery capacity: 5000 mAh”,
and “camera resolution: 48 megapixel”.

Subjective queries, such as “is the camera good?,”
“can I play PUBG on this phone without lag?” are
sent first to a semantic text similarity model that
retrieves the most similar user FAQ or user reviews
from the product webpage that can potentially an-
swer this subjective user query.

We define the chatbot answerability metric as
follows: for a given response by the chatbot to a
user’s question, we assign it a score between -1 and
+1 based on the criteria described in Table 1.

Note that the weights assigned to each answer
category in Table 1 could be modified as per prod-
uct objectives. One example in an e-commerce
setting could be to assign a weight proportional to
the probability of conversion, i.e., the user buys the
product they are consulting the chatbot about. The
answerability of the chatbot is then defined as the
mean of answerability scores over the entire dataset
of chatbot responses.

We describe two kinds of modeling approaches
in this paper:

- Section 5 describes a mathematical model for
connecting individual model metrics to an-
swerability.

- Section 6 describes a multi-class classification
approach where we train a model to classify
a query-response pair between one of the an-
swerability classes.

4 Data

For the modeling described in this paper, we
sampled actual user-chatbot conversations from the
production logs of the pre-purchase chatbot and
asked an in-house team of labelers, based in India
and familiar with the English-Hindi code-mixed
vocabulary used by the users of the pre-purchase
chatbot, to label each chatbot response with one of
the 7 labels described in Table 1. Labelers were
provided with explicit examples of correct and
incorrect labels in a detailed labeling guideline
document, so that they label user query-bot

response pairs consistently. Chatbot responses that
did not fall into any of these 7 categories were
not considered. Every data point was labeled by
two labelers. Whenever there was a disagreement
between the labels, the tie was broken by a third
labeler. Labelers used Taskmonk, a data labeling
platform specific to e-commerce applications1.
User queries are either in English or code-mixed
English-Hindi, written using the Roman script.
Examples from labelled dataset are listed below:

1) Product: ABC mobile phone
User question: Auto call recording available
Bot response: (from FAQs) Here is what I found-
Q: All call Auto call recording hogi kya2 A: yes
Label: Excellent Relevance, Helpful Answer

2) Product: XYZ mobile phone
User question: earphone support this phone
Bot response: (from the product description)
Here’s what you’ll get in the box: 1 Handset, 1
Battery, 1 Charger.
Label: Poor Relevance, Unhelpful Answer

In the first example, the chatbot returned a
relevant user FAQ, whereas in the next example,
the chatbot responded with information that was
not relevant to the question asked by the user.

5 Modeling for predicting the
answerability from individual model
metrics

5.1 Framework to link answerability to
individual model metrics

Now that we have defined the answerability metric,
let us formulate our framework for linking indi-
vidual model metrics to the answerability metric
defined in Section 3. For the purposes of this paper,
we shall use a simplified version of the chatbot to
describe our approach and results. This chatbot is
used for answering pre-purchase customer ques-
tions related to products listed on the e-commerce
platform. The components of the chatbot cover
the major categories of models typically used in
chatbot architectures, hence it is an ideal example
for illustrating our answerability framework.

1https://taskmonk.ai/about-us.html
2This code-mixed utterance translates to: "Will all calls be

automatically recorded?"
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Figure 1: Schematic of a simplified version of the e-commerce chatbot used for the purposes of this paper.

Type of response Answerability score Symbol
• Poor Relevance -1 Sp
• No Answer
• Transfer to a Human Agent 0 Sn
• Excellent Relevance, Unhelpful Answer
• Fair Relevance, Unhelpful Answer 0.5 Sr, uh
• Excellent Relevance, Helpful Answer
• Fair Relevance, Helpful Answer 1 Sr, h

Table 1: Criteria for answerability scores based on the relevance and helpfulness of the chatbot responses

5.2 Intent classification model
Let S = {ps, non-ps1, non-ps2, . . . } denote the
list of chatbot intents, where “ps” indicates the
“product-specific” intent, and “non-ps1”, “non-ps2”,
etc. indicate the non-product specific intents for
which there is no predictive model to be run down-
stream. For a text classification model, if the pre-
dicted label is correct, then the answerability will
be the true answerability associated with that class
of intent. Otherwise, we assume that the answer-
ability will be 0.

Therefore, the contribution of intent i ∈ S to the
answerability is given as fiAiPi, where fi denotes
the fraction of queries with the predicted intent la-
bel being i,Ai denotes the answerability associated
with queries with intent label i, and Pi denotes the
probability of correctly predicting a query with a
predicted intent label i (precision).

Thus, the overall chatbot answerability A is
given as:

A =
∑

i∈S
fiAiPi

= fpsPpsAps +Anon−ps,

(1)

where

Anon−ps =
∑

i=1,2,...

fnon−ps,iPnon−ps,iAnon−ps,i.

(2)
Note that

∑
i∈S fi = 1 here. When the intent

i is ps (product-specific), we can expand the an-
swerability in terms of downstream model metrics

from the semantic text similarity, factual-subjective
classifier, and question-answering models. How-
ever, when the intent is not the product-specific
(ps) intent, there is no dependence of the answer-
ability of that specific intent on any of the model
metrics. Therefore, we can substitute the answer-
abilities of those intents, namely {Anon−ps,i}, with
a constant, average answerability value Anon−ps,
calculated from labeled data corresponding to the
appropriate non-product specific intents, such as
stock availability, offers and discounts, etc.

5.3 Factual/subjective classifier

Just like the intent classification model, the factual-
subjective binary classifier, which is invoked for
product-specific queries, contributes to the chatbot
answerability in the following way:

Aps = ffactual Pfactual Afactual

+ fsubjective Psubjective Asubjective.
(3)

, where Pfactual and Psubjective denote the preci-
sions of the factual and subjective classes of the
factual/subjective binary classifier, and ffactual and
fsubjective denote the fraction of queries recognized
as product-specific (ps) by the intent model.

5.4 Question-answering model

The question-answering models based on prod-
uct features are called when the above-mentioned
factual-subjective classifier predicts the user query
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to the chatbot as factual. Thus, Afactual men-
tioned in Eqn. 3 can be further expanded in terms
of the metrics of the question-answering model.
While answering from product specifications, the
ground truth could be either null or non-null, de-
pending on whether the answer to the question
asked is actually available in the product specifi-
cations. Furthermore, for null or non-null ground
truth, we could have either null or non-null pre-
dictions from the question-answering model. The
question-answering model metrics we use are de-
scribed in Table 2. We also assume that the 2
models for question-answering from unstructured
product description text and structured key-value
specification pairs have the same model metrics,
thus effectively reducing the 2 models into a single
question-answering model.

Combining Tables 2 and 1, we can derive the
following formula for Afactual:

Afactual = Sr, h × CQnA × ρ× fH,QnA

+ Sr, uh × CQnA × ρ× (1− fH,QnA)

+ Sp × (1− CQnA)× ρ
+ Sp × FPRnull × (1− ρ)

(4)
Here Sr, h, Sr, uh, and Sp denote the answerability
scores for relevant and helpful, relevant but unhelp-
ful, and poor relevance answers respectively, as
described in Table 1. Terms in Eqn. 4 with coeffi-
cients Sr, h, Sr, uh, and Sp denote the contributions
of relevant and helpful, relevant but unhelpful, and
poorly relevant answers respectively to Afactual.
We exclude terms with Sn (no answer/agent trans-
fer cases) from these equations for simplification
purposes, because Sn = 0 according to Table 1.

Note that in case the question-answering model
cannot answer a question, there is a fallback to
semantic search-based retrieval models. However,
in this formula, we ignore this in order to simplify
our description.

5.5 Semantic-text similarity based retrieval
models

Among the queries detected as subjective by the
factual/subjective classifier, some queries are an-
swered by a retrieval model that searches for the
most relevant user review, whereas others are an-
swered by a retrieval model that searches for the
most relevant user FAQ. While there is a fallback on
the question-answering model in case the retrieval

models are unable to answer the user question, we
chose to ignore it in order to simplify our modeling.

We now expand Asubjective as

Asubjective = fFAQ AFAQ

+ fReviews AReviews, (5)

where AFAQ and AReviews are the answerabilities
of the FAQ and Reviews models, and fFAQ and
fReviews denote the fraction of user queries that
were detected as subjective answered by FAQ and
reviews retrieval models respectively. For the case
of retrieval models, we use model metrics as de-
scribed in Table 3.

We further expand AReviews and AFAQ in terms
of the model metrics described in Table 3 as fol-
lows:

AReviews = Sr, h × PReviews × CReviews × fH,Reviews

+ Sr, uh × PReviews × CReviews × (1− fH,Reviews)

+ Sp × (1− PReviews)× CReviews

(6)

Similarly,

AFAQ = Sr, h × PFAQ × CFAQ × fH,FAQ

+ Sr, uh × PFAQ × CFAQ × (1− fH,FAQ)

+ Sp × (1− PFAQ)× CFAQ.
(7)

5.6 Overall expression for the chatbot
answerability A

By combining Eqns. 1, 3, 4, 5, 6, and 7, we get
the expression for the overall chatbot answerabil-
ity A. The approach we describe does not require
any additional model training and can act as a sim-
ple, first-principles baseline for expressing A as a
function of the individual model metrics.

For a chatbot that is different from the pre-
purchase e-commerce chatbot we describe here,
we need to modify the expressions Eqns. 1, 3, 4, 5,
6, and 7 according to its specific architecture. For
example, if a chatbot does not have access to user-
generated content such as reviews or FAQs, we
could ignore the terms AFAQ and AReviews. How-
ever, in most multi-model chatbot architectures, we
should be able to derive similar expressions for an
answerability-like metric.

By differentiating the overall expression for A
with respect to each of the model metrics, we get
the sensitivity of A to the product metric. For ex-
ample, ∂A

∂PFAQ
tells us the sensitivity of A to PFAQ.

By using our mathematical model, we could know
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Metric Symbol Description
Coverage CQnA fraction of non-null ground truth cases the model answered

correctly
Answer rate ρ fraction of queries for which answer is available in product

descriptions
Helpful fraction fH,QnA fraction of answers that were helpful to the user
Null false positive rate FPRnull fraction of false positives within null ground truth cases

Table 2: Question-answering model metrics

Metric Symbol Description
Coverage of the FAQ retrieval
model

CFAQ fraction of queries for which the FAQ retrieval model
gave a non-null answer

Coverage of the reviews retrieval
model

CReviews fraction of queries for which the reviews retrieval
model gave a non-null answer

Precision of the FAQ retrieval
model

PFAQ fraction of non-null answers from the FAQ retrieval
model which have excellent or fair relevance

Precision of the reviews retrieval
model

PReviews fraction of non-null answers from the reviews re-
trieval model which have excellent or fair relevance

Helpful fraction of the FAQ re-
trieval model

fH,FAQ fraction of helpful answers from the FAQ retrieval
model

Helpful fraction of the reviews
retrieval model

fH,Reviews fraction of helpful answers from the reviews retrieval
model

Table 3: FAQ and reviews retrieval model metrics used for the answerability calculation

which metric from Tables 2 and 3 has the highest
sensitivity of A, and based on this we could prior-
itize model improvements focused on that metric.
This can be of immense help for complicated chat-
bot architectures where it is hard to accurately pre-
dict which model metric has the potential to have
the maximum positive impact on the bottom-line
business metric, such as answerability. Moreover,
our framework could be used as a way to estimate
the expected business impact before an improved
model is launched into production.

To illustrate this, let us take the example of the
answerability calculated by combining Eqns. 1,
3, 4, 5, 6, and 7, for the mobile phone product
category. Let us hold all the other metrics to be
constant, and change only the answer rate, ρ, and
the precision of the subjective class of the fac-
tual/subjective binary classifier, Psubjective. Ac-
cording to the model, the overall answerability A
increases from 0.3256 to 0.3324 when Psubjective

goes up by 0.1, from 0.8 to 0.9, whereas A in-
creases from 0.3256 to 0.3467 when ρ goes up by
0.1, from 0.5 to 0.6. This means that ρ could be
a better metric to invest in than Psubjective, given
that it has a higher positive impact on A. How-

ever, in some cases, a normalized sensitivity, for
example, PFAQ

A
∂A

∂PFAQ
, might be a more appropri-

ate measure.

5.7 Limitations of this approach
Our approach makes the following assumptions,
which could result in an inaccurate prediction of
the chatbot answerability:

• We assume that if the intent is wrongly pre-
dicted or the factual/subjective classifier mis-
classifies the user query, the answerability is
going to be 0, which is not necessarily true.

• We assume fractions such as fps, fsubjective,
and fH,QnA to be constant and not a function
of model metrics. In reality, as model metrics
change, these fractions will change too.

• We ignore the possibility that the chatbot has
a fallback to reviews/FAQ models when the
question-answering model cannot answer, and
vice-versa.

A query-wise answerability score prediction model
that predicts an answerability score for a user query-
bot response pair can help address these limitations.
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The overall answerability A is then defined as the
average of the model predictions of answerability
scores over the test dataset. However, a query-wise
answerability prediction model relates an individ-
ual query-response pair to the answerability score,
rather than connecting the model metrics to the
overall chatbot answerability as in Section 5. Thus,
the formula-based approach described in this sec-
tion should be used in cases where we wish to get
a rough estimate of how much a particular metric
improvement is expected to increase the chatbot
answerability, or know the sensitivity of a business-
motivated metric such as A to the product metrics.
Whereas the per-query approach should be used
when the goal is to get an accurate prediction of
the overall answerability A.

6 Per-query predictive model for the
chatbot answerability A

Apart from helping us understand the relative im-
portance of each constituent model used in a chat-
bot, the answerability labels described in Table 1
can also be used for training a model to predict
the relevance and helpfulness of chatbot response,
which in turn can be used to compute the answer-
ability directly. Also, detecting whether a chatbot
response is helpful or not can be used to modify
our planned response so that an originally unhelp-
ful response could potentially become helpful. For
example, if the model predicts that an answer is
not helpful, then we could provide recommenda-
tions of similar products, or alter the conversational
design in a way that helps the user. Moreover, as
described in Section 5.7, such a per-query model-
ing approach does not suffer from the limitations of
the formula-based approach described in Section 5.

6.1 Approach

We propose to model helpful/unhelpful answer
prediction as a multi-class classification task at
the query level by using the question and its cor-
responding response from the chatbot as the in-
put. We chose an in-house Large Language Model
(LLM) based on the BERT architecture (Devlin
et al., 2019) pre-trained on an approximately 50
GB in-house training corpus consisting of prod-
uct descriptions, catalog attributes, reviews, QnA
pairs, and addresses as our pre-trained model. The
maximum sequence length while training is limited
to 192 based on the distribution of the number of
tokens. This model has 12 Encoder layers with an

embedding size of 768. This model is trained on 3
A100 GPUs for 14 days with a batch size of 420
for 1M steps. This model gains significantly lower
perplexity on in-domain test sets, especially for
code-mixed data and noisy search queries. We fine-
tune this pre-trained model on the dataset described
in Table 4.

Let ai be the response given by the chatbot for
question qi. The question qi and the response ai

are concatenated, tokenized and passed to an em-
bedding layer. The word embeddings along with
their positional signals are passed to a transformer
encoder, whose head predicts the output probabili-
ties.

wi = tokenizer([qi; ai])

ŷi = BertClassifier(wi)
(8)

”; ” denote the appropriate concatenation of input
sentences as required by the pre-trained model, i.e,
the [SEP] token. The classification task is trained
to minimize the cross entropy loss,

Lnsp = −
1

N1

N1∑

i=1

yilogŷi (9)

where yi is the ground truth label indicating the
answer class and N1 refers to the number of data
points in the dataset.

6.2 Dataset

We train the multi-class answer classification
model using our in-house dataset consisting of an-
swered queries from mobile phone and fashion
product categories on the e-commerce platform
(see Section 4). We remove queries falling under
"No Answer" groups since they are unhelpful by
default. We group the remaining responses into 3
classes based on their corresponding labels. The
statistics of the dataset are presented in Table 4.

6.3 Results

We use Term Frequency - Inverse Document Fre-
quency (TF-IDF) scores to vectorize user queries
and chatbot responses before feeding them as in-
put to one-vs-all Logistic Regression (LR). This
method was used as the baseline for this task.
We also experimented with the publicly available
BERT model (bert-base-cased) for the dataset. Ta-
ble 5 shows the comparison results. Our in-domain
BERT-based classification method outperforms the
simple baseline (TF-IDF + LR) by a significant
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Train dataset Test dataset
Class 1 - Poor Relevance Unhelpful Poor relevance 2652 278

Class 2 - Excellent/Fair Relevance Unhelpful
Fair relevance 428 44

Excellent relevance 4661 479
Total datapoints 5089 523

Class 3 - Excellent/Fair Relevance Helpful
Fair relevance 1387 156

Excellent relevance 10197 1043
Total datapoints 11584 1199

Table 4: Helpful/Unhelpful answers dataset

Model Precision Recall F1-score
TF-IDF + LR 0.745 0.754 0.737
open-domain BERT 0.794 0.799 0.795
in-domain BERT 0.824 0.826 0.825

Table 5: Comparison of different models. Note that the
precision, recall, and F1 scores indicate the weighted
precision, recall, and F1 scores respectively.

margin. It also achieves an improvement of 3.77%
on weighted F1 score over the public BERT model.
The above result underlines the effectiveness of
in-domain pre-training of BERT. The detailed clas-
sification report of our model is presented in Figure
2.

6.4 Computing Answerability

We use the trained model to compute the product-
specific answerability Aps on the test dataset using
model predictions. We choose to focus on Aps

rather than the overall chatbot answerability A to
simplify our description, and also because Aps in-
cludes all the models present in the chatbot archi-
tecture described in Section 3 except the intent clas-
sification model. This is because the dataset consist
of queries where the intent has been identified as
product specification related. In order to compare
the approaches described in Sections 5 and 6, we
also compute an estimate of Aps using the mathe-
matical formulation in Section 5 and compare the
scores with the ground truth Aps from the human-
annotated test dataset. The results are tabulated in
Table 6. We observe that the BERT classifier is
able to match the ground truth answerability scores
closely.

For the mathematical formulation described in
Section 5, the predicted answerability underesti-
mates the ground truth answerability. This could
be due to distribution shifts between the evalua-
tion datasets used for calculating the model metrics
versus the test dataset used in Table 6, along with
the assumptions made by the mathematical model

Source Mobile Fashion
Ground Truth 0.546 0.637
BERT classifier 0.559 0.662
Mathematical formulation

0.326 0.308
(Section 5)

Table 6: Comparing the overall chatbot answerability
A for the BERT-based classifier and the mathematical
formulation from Section 5. The columns “Mobile” and
“Fashion” indicate mobile phone and fashion product
categories on the e-commerce platform respectively.

listed in Section 5.7. Given that the test dataset
used here ignores cases where the chatbot gave
a null response or transferred to a human agent,
we normalized the answerability appropriately by
a normalizing factor. Also, for all calculations
with the mathematical formulation, the fractions
in Eqns. 3, 4, 5, 6, and 7 such as fsubjective and
fH,QnA were calculated from the test dataset. To
simplify our description further through binary for-
mulation, we derived binary labels from the test
dataset where answerability score for helpful and
unhelpful is set as 1 and 0 respectively. We then
compute the answerability scores as per the mathe-
matical model described in Section 5, by choosing
Sr, uh = Sp = 0 and Sr, h = 1 in Table 1. For
this case, we get answerability scores of 0.469 and
0.442 for mobile phone and fashion product cat-
egories respectively. These scores are closer to
the respective ground truth answerability scores of
0.599 and 0.6 calculated for this binary formula-
tion of the answerability metric. This suggests that
the mathematical formulation of Section 5 shows
better agreement with the ground truth answerabil-
ity scores when we assume answerability to take a
binary value of either 0 or 1.

7 Conclusion

In this paper, we introduce answerability as a global
chatbot effectiveness metric and show how it can
be used to guide model development decisions for a
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Figure 2: Classification report of the in-domain BERT classifier

conversational AI product such as the pre-purchase
chatbot, by relating answerability to all the metrics
of all the models that are a part of the chatbot. Our
framework is general and can be easily extended
to chatbot metrics other than answerability depend-
ing on the domain of application, be it in finance,
governance, or health care, as long as there is a
concept of helpfulness associated with the chat-
bot’s responses. For example, a health care chatbot
helping patients understand their medical symp-
toms and pointing them to an appropriate health
care provider needs to not only provide accurate
information but also guide patients in the correct
direction when such information is not available.
The answerability metric will directly apply to such
a case, and help guide the development of individ-
ual models within the chatbot’s architecture in a
way that maximizes patient satisfaction.

Future work could involve the joint training of
all the models within a chatbot with a differentiable
version of the answerability objective. Further it-
erations of the formula-based modeling approach
described in Section 5 could involve the inclusion
of other upstream models such as spell checking,
automated speech recognition, and machine transla-
tion, which are used to interpret voice/multilingual
user input before the input is sent to the intent
classification model in the chatbot. We hope that
the answerability metric and the modeling meth-
ods described in this paper will help guide product
development and model prioritization in conversa-
tional AI products in the academic, government
and industrial domains.

8 Limitations and Ethical Impact

The answerability metric could inspire other
business-oriented metrics and also drive the de-
velopment of task-oriented chatbots across various
domains such as e-commerce, health care, and gov-
ernance. These use cases could have various so-

cial implications: dialog systems such as customer
support bots could bring in benefits such as cost
savings, convenience, and the availability of 24-
hour assistance, while decreasing the number of job
opportunities for human service agents and sales-
persons. Language models underlying such dialog
systems could reinforce social biases and impact
the environment negatively (Bender et al., 2021;
Schramowski et al., 2022). Moreover, any widely
used metric or benchmark carries the inherent risk
of biasing the research in a certain direction.
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Abstract
Source code summarisation is a vital tool for
the understanding and maintenance of source
code as summarisations can be used to explain
code in simple terms. However, source code
with missing, incorrect, or outdated summaries
is a common occurrence in production code.
Automatic source code summarisation seeks
to solve these issues by generating up-to-date
summaries of source code methods. Recent
work in automatically generating source code
summaries uses neural networks for generating
summaries; commonly Sequence-to-Sequence
or Transformer models, pretrained on method-
summary pairs. The most common method of
evaluating the quality of these summaries is
comparing the machine-generated summaries
against human-written summaries. Summaries
can be evaluated using n-gram-based trans-
lation metrics such as BLEU, METEOR, or
ROUGE-L. However, these metrics alone can be
unreliable and new Natural Language Genera-
tion metrics based on large pretrained language
models provide an alternative. In this paper, we
propose a method of improving the evaluation
of a model by improving the preprocessing of
the data used to train it, as well as proposing
evaluating the model with a metric based off a
language model, pretrained on a Natural Lan-
guage (English) alongside traditional metrics.
Our evaluation suggests our model has been
improved by cleaning and preprocessing the
data used in model training. The addition of a
pretrained language model metric alongside tra-
ditional metrics shows that both produce results
which can be used to evaluate neural source
code summarisation.

1 Introduction

Research producing models for neural source code
summarisation frequently uses metrics designed
for translation and Natural Language Generation
(NLG) tasks, such as BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), (Denkowski
and Lavie, 2014), and ROUGE-L (Lin, 2004).

These metrics are oriented to tasks such as trans-
lation and summarisation. Mahmud et al. (2021)
used these metrics and a shared dataset to com-
pare state-of-the-art models for neural source code
summarisation. These metrics are based on n-gram
matching, which compares the lexical similarity of
texts, but lacks a comparison of the meaning of the
texts - the semantic similarity. A lack of semantic
comparison means that machine-generated texts
which share sequences of n-grams with reference
texts score well regardless of their ability to convey
a similar meaning; whereas texts which convey a
similar meaning but don’t share many sequences
of n-grams with reference texts score poorly. For
summarisation tasks, the ability to replicate the se-
mantics of a text where the generated language may
be abstractive is more significant than the ability
to generate as many n-grams matching those in a
human-written summary as possible because the
purpose of a summary is to provide the reader with
an overview of the meaning of a larger text (or in
this case, a source code method).

NLG metrics based on Large Language Models
(LLM) aim to improve the reliability of evaluation
scores by capturing semantics through reliance on
contextual embeddings. However, these metrics
require large amounts of computational resources
- making them expensive to run in comparison to
traditional n-gram matching metrics. New efforts
in making these LLM-based metrics more acces-
sible attempt to reduce the number of parameters
compared to previous LLM-based models whilst
retaining similar accuracy. This allows for faster
calculation of LLM-based metrics. One such new
effort is the FrugalScore metric (Kamal Eddine
et al., 2022) for evaluating NLG tasks. FrugalScore
uses previous LLM-based metrics to train a minia-
ture language model which learns on the internal
mapping of the expensive metric. It is this model
which is used for generating scores for pairs of
sequences of text.
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In this paper, our aim is to train a state-of-the-art
neural network model (we use the NeuralCodeSum
model (Ahmad et al., 2020)) designed for source
code summarisation, using a dataset of source code
- summary pairs as described in Section 2. The
dataset we use is a modified version of the Funcom
dataset (LeClair and McMillan, 2019). We selected
this dataset to allow us to compare our model to pre-
vious research (Mahmud et al., 2021) which trains
NeuralCodeSum on the same dataset and evaluates
the results using traditional n-gram matching met-
rics. We then evaluate our trained model using the
FrugalScore metric (Kamal Eddine et al., 2022) to
show the ability of such a metric to evaluate neural
source code summarisation.

1.1 Research Questions

RQ1.1 What does a comparison of commonly
used metrics show about our model fol-
lowing our data cleaning?

We train our model and evaluate it using a series of
n-gram-based NLG metrics. We can then use these
results to compare to previous research.

RQ1.2 How does the model trained on our dataset
compare against previous experiments on
the same model?

We compare our results to previous research train-
ing NeuralCodeSum models. Comparing our
model to Mahmud et al.’s (2021) model will show
the effect of our improved pretraining of training
data on improving the evaluation of the model.

RQ2 How do the results of traditional metrics
compare to those of FrugalScore?

We present an alternative method of evaluating neu-
ral source code summarisation, by using a met-
ric based on a language model - FrugalScore (Ka-
mal Eddine et al., 2022). We show the difference
between traditional and LLM-based metrics and the
ability to use both for a more complete evaluation
of source code summarisation.

2 Dataset

The data we used comes from the filtered version of
the Funcom dataset (LeClair and McMillan, 2019).
Funcom was proposed in the paper “Recommen-
dations for Datasets for Source Code Summariza-
tion” as a dataset of Java methods with associated

English Javadoc comments including summaries.
There are three versions of the Funcom dataset:
raw, filtered, and tokenised. The filtered dataset
is chosen over the raw dataset as it removes auto-
matically generated code and code without English
summaries. We chose the filtered dataset over the
tokenised dataset for the purposes of this experi-
ment to give us greater control over the data pre-
processing; the tokenised dataset implements their
own removal of special characters, tokenisation,
splitting of camel case, and lowercasing. These are
all steps which we perform, but intend to control.

Mahmud et al. (2021) set out a method for pre-
processing the Funcom dataset for use with Neu-
ralCodeSum, alongside other neural networks for
neural source code summarisation. However, this
method does not require code to be compilable, and
the script provided by the authors for replicating
the experiment contains a flaw as described below
(also, see Listing 1 and Appendix A).

In attempting to remove comments, Mahmud
et al.’s (2021) method strips all lines containing the
string “//”. Whilst this is the identifier for an inline
comment in Java, the same string may be used
elsewhere. For example: “//” occurs numerous
times in our dataset as part of a URL.

Listing 1: Mahmud et al.’s (2021) method for removing
comments: pseudocode

f u n c t i o n remove_comments ( method )
{

c r e a t e an a r r a y ( o f s t r i n g s )
f o r each l i n e o f t e x t i n a

method :
{

i f t h e l i n e does n o t
c o n t a i n " / / "

add t h e l i n e t o t h e
a r r a y

}
combine t h e c o n t e n t s o f t h e

a r r a y i n t o a new method
r e t u r n t h e new method

}

We created a new method for preprocessing the
filtered version of the Funcom dataset (LeClair and
McMillan, 2019), based on that followed by Mah-
mud et al. (2021), with some changes to fix these
issues. The first of these changes is parsing the Java
code used to ensure that only compilable code is
included in the experiment. We did this using Java-
Parser (van Bruggen et al., 2020). The use of only
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Figure 1: Dataset Preprocessing

Parse the Java

Remove HTML tags

Extract summaries

Lowercase and remove special characters

Tokenise the source code

Remove repeat data

Trim the dataset to 500K

Split the dataset

compilable code focuses the model on “production”
code. Following the principle that we can disregard
code which cannot be used in a real-world system
to allow the model to focus solely on code used
in production. We then used JavaParser to remove
inline code comments written by the developers
without the risk of damaging the code itself. Re-
moval of natural language code comments from the
code removes bias due to encountering potentially
incorrect summaries written by the developers. Our
method of using JavaParser to remove only strings
the Java compiler would recognise as code com-
ments ensures that potentially useful data within
the Java source code which contains the string “//”
does not get removed. For example:

/ / Example A :
p u b l i c vo id p l a y ( ) {

/ / I f no sound f i l e i s t h e r e
n o t h i n g can be p l a y e d .

. . .

/ / Example B :
l o c a t i o n = l i n k U r l . t o S t r i n g ( ) .

r e p l a c e F i r s t ( " f i l e : / " , " f i l e
: / / " ) ;

Example A would have the string “// If no sound
file is there nothing can be played.” removed, but
Example B would not be affected.

As Figure 1 shows, the dataset is first parsed by
JavaParser, and method-comment pairs where the

methods cannot be interpreted are removed from
the data. During this parsing phase, comments
within the methods are stripped from the methods
to remove noise as described above.

HTML data is then removed from the comments,
as remnants of HTML tags in the comments used
for training may influence the predictions and skew
the results of the experiment. This is because af-
ter removing special characters, leftover text from
the HTML tags could be present in the training
data, and the model would - therefore - attempt to
replicate that pattern in evaluation.

Following this, we extract the section of each
comment in a method-comment pair most likely to
represent a basic summary. For example, from:

/ * *
* R e t u r n s t h e p us h e s lowerbound

o f t h i s board p o s i t i o n .
*
* @return t h e pu s h es lowerbound

* /

we extract the string “Returns the pushes lower-
bound of this board position.”. This is done by ex-
tracting the first line of non-whitespace (that is: not
composed entirely of space and/or tab characters)
text with more than 8 characters. As the comments
in the method-comment pairs are extracted from
method-level Javadoc, the first line of meaningful
text in our dataset is usually a method summary.

These summaries are lowercased and special
characters (characters which are not alphanumeric,
full-stops, or apostrophes) are removed from them,
in order to ensure each method has a plain natural
language summary with minimal noise which could
interfere with the neural network model. Much like
with the removal of HTML tags, these special char-
acters which may not add to the natural language
summary of the method would be replicated by the
model, potentially worsening results.

The source code methods are then tokenised. As
part of our tokenisation, camel case phrases are
split into individual words, punctuation is spaced
out from words, and the text is then lowercased.
This maintains the structure of the source code
(including any structural information), whilst re-
moving information which may be misleading. For
example, one camel case word may contain a string
of words which provide useful information to the
model when tokenised.

Repeat data is then removed to prevent any bias
on the final results. In our initial testing, we found
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our model scored highly on all metrics, but when
we generated a histogram of the results, we dis-
covered that this was due to an incredibly high
number of perfect matches, rather than a single
right-skewed peak. By comparing our test data to
our training data, we discovered multiple copies of
the same method in the dataset, which were present
in both testing and evaluation data. Removing these
repeats allows us to reduce this effect.

The size of the dataset is then reduced in order
to decrease the time and compute power needed
to run this experiment. The first 500,000 valid
method-comment pairs are used as the data for
this experiment. Selecting only the first 500,000
pairs is a technique used by Mahmud et al. (2021),
which means that our results are still comparable.
However, this means there is potential to improve
the model further in future by training it on a larger
dataset.

We further split our dataset into training, valida-
tion, and evaluation (80% / 10% / 10%) datasets.
We chose this split as that is the same split chosen
by both Ahmad et al. (2020) and Mahmud et al.
(2021) for training and evaluating their Neural-
CodeSum models. The data is split with a ran-
domised mixture of code from multiple projects
in each dataset to prevent the artificial inflation
of results due to any one dataset having a ma-
jority of code from a single project within the
larger dataset, which may cause artificial inflation
of performance due to data snooping in our eval-
uation which wouldn’t reflect real conditions (as
suggested by both LeClair and McMillan (2019),
and Mahmud et al. (2021)).

3 Research Methodology

We began by building our dataset, as described
in the Section 2. We used the Funcom dataset
(LeClair and McMillan, 2019), as this will al-
low us to compare our results to Mahmud et al.’s
(2021) evaluation of NeuralCodeSum, and added
our own preprocessing steps in order to improve
our model. The model was trained and evaluated
on a machine using an Intel i9-12900KF CPU,
128GB DDR4 RAM, and an Nvidia GeForce
RTX 3090 GPU, using the official implemen-
tation of NeuralCodeSum, PyTorch 1.3, and
Python 3.6. The result data from the evalua-
tion process is collected in JSON format. The
code used to process the dataset is available at
github.com/phillijm/JavaDatasetCleaner.

3.1 Methodology for RQ1.1

In testing our model using metrics, we selected
the metrics previously used for research on Neu-
ralCodeSum, Ahmad et al. (2020) and Mahmud
et al. (2021) both used Smoothed BLEU-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE-L (Lin, 2004) for the evaluation
of their NeuralCodeSum models. In using these
metrics, we can compare our results to previous re-
search more accurately. We also calculated BLEU-
1-4. By analysing the difference between these,
we can identify some strengths and weaknesses
of our model. The smoothing technique used for
Smoothed BLEU-4 was Lin and Och’s (2004) tech-
nique. METEOR was measured using the official
Java implementation of METEOR 1.5 (Denkowski
and Lavie, 2014). ROUGE-L was measured using
the Google Research python implementation of the
metric (Liu, 2022).

3.2 Methodology for RQ1.2

To establish whether our model has improved based
on our improvements to the preprocessing of train-
ing data, we compare our results from RQ1.1 to
those of Mahmud et al. (2021) in Table 2. Mahmud
et al. (2021) also trained a NeuralCodeSum Model
on the Funcom dataset, but with a simpler approach
to preprocessing. We hypothesise our model should
outperform Mahmud et al.’s (2021) model in evalu-
ation against the same metrics: Smoothed BLEU-4
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and ROUGE-L (Lin, 2004), due to the
improvements made in preprocessing the dataset
used to train the model, as detailed in the Dataset
Section, where we train the model on only com-
pilable code, with the training summaries heavily
sanitised.

3.3 Methodology for RQ2

Once this baseline comparison of our model against
Mahmud et al.’s (2021) model has been established,
we evaluate our model against the FrugalScore (Ka-
mal Eddine et al., 2022) metric, in order to com-
pare FrugalScore against traditional n-gram-based
metrics for a neural source code summarisation
task. Our aim in evaluating the model against Fru-
galScore is to see a FrugalScore value which is
comparable with traditional metrics and be able to
compare the distribution of FrugalScore to tradi-
tional metrics on a histogram. This will suggest
that the results produced by the model are able to
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be measured reliably using FrugalScore as a metric.

4 Result Analysis

Table 1: Comparison of n-gram based metrics against
FrugalScore, measuring summaries generated by our
NeuralCodeSum Model.

Metric Score
BLEU-1 37.70
BLEU-2 27.03
BLEU-3 19.94
BLEU-4 14.67
Smoothed BLEU-4 29.17
METEOR 19.93
ROUGE-L 45.82
FrugalScore 65.76

In answer to RQ1.1: how our model compares
against commonly used metrics; as seen in Table
1, our model scores well with lower n-gram BLEU

metrics, but that decreases with higher numbers of
n-grams. Lin and Och (2004) suggest that a drop
in BLEU from lower to higher orders of n-grams
could correlate a high degree of adequacy (the gen-
erated summary is still understandable), but a lower
degree of fluency in the language generated. A lack
of fluency in the text generated by our model would
also explain the lower METEOR score. Banerjee
and Lavie (2005) suggest that whilst higher order
n-gram BLEU scores can be used as an indirect mea-
sure of grammatical well-formedness, METEOR di-
rectly measures this. If the model were trained on
a larger dataset, we expect this would be improved.

Comparing our results to previous experiments
(RQ1.2), Table 2 shows an improvement in both
Smoothed BLEU-4 and ROUGE-L scores when
compared to Mahmud et al. (2021). These met-
rics suggest that our model has been improved in
its ability to generate source code summaries by the
improvements in Figure 1 in the preprocessing of
the dataset used, with an improvement in Smoothed
BLEU-4 of 7.67 and an improvement in ROUGE-L
of 12.11.

We compared the performance of our model to
previous experiments using the Smoothed BLEU-4,
ROUGE-L, and METEOR metrics - as these metrics
were presented by both Ahmad et al. (2020) and
Mahmud et al. (2021). A possible future work
would be to test these models against a wider range
of n-gram-based metrics and LLM-based metrics.

In answer to RQ2: when comparing traditional

n-gram-based natural language generation metrics
to FrugalScore (Kamal Eddine et al., 2022) for
the task of neural source code summarisation, our
model scored an average FrugalScore value of
65.76, as shown in Table 1. The distribution of
these can be seen in Figure 2, and more clearly in
Figures 3-6 in Appendix B. The distribution of Fru-
galScore is a bimodal distribution, with both peaks
to the right of the graph, and most results between
40 and 80. These second peak represents where
FrugalScore measures the machine-generated sum-
mary as being identical or near-identical to the orig-
inal human-written summary, which could poten-
tially show some degree of overfitting in the model.

It is notable that - when compared to traditional
metrics - FrugalScore gives far fewer “bad” results
(for example, 31.308% of Smoothed BLEU-4 re-
sults were above 30, compared to 99.998% of Fru-
galScore results). FrugalScore also gives fewer
“perfect” or “near-perfect” results than traditional
metrics (for example, 6.571% of Smoothed BLEU-
4 results were above 99, compared to 4.215% of
FrugalScore results). The difference between these
results suggests that FrugalScore gives more credit
to summaries which other metrics rank poorly and
less credit to summaries which other metrics rank
highly, with higher median and mean values. This
should be taken into account when directly com-
paring FrugalScore to traditional metrics.

Our results show that - on average - FrugalScore
ranks summaries more highly than traditional met-
rics. This is likely either due to the ability of LLM-
based metrics to take the semantics of a sentence
into account, where n-gram-based metrics do not,
or due to a possible overestimation of results. To
determine this would require further human evalua-
tion, as mentioned in the Limitations Section.

5 Related Work

5.1 Neural Source Code Summarisation Using
Transformer Models

The Transformer model was initially proposed by
Vaswani (Vaswani et al., 2017) and initially tested
on the WMT 2014 English-to-German translation
task. CodeBERT (Feng et al., 2020) and Neural-
CodeSum (Ahmad et al., 2020) both use the Trans-
former architecture to form a model for neural
source code summarisation, with NeuralCodeSum
being a simple Transformer model, and CodeBERT
being a larger bidirectional model, built on BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
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Table 2: Comparison of metrics against those reported by previous papers.

Model Smoothed BLEU-4 METEOR ROUGE-L
Ahmad et al. (2020)* 44.58 26.43 54.76
Mahmud et al. (2021) 21.50 27.78 33.71
Our Model 29.17 19.93 45.82

* Ahmad et al.’s (2020) original experiment used a different dataset for training, so there is little relevance in directly comparing
results.

Figure 2: Frequency Distribution of Metrics

2019).
Mahmud et al. (Mahmud et al., 2021) compare

both of these models, as well as the Code2Seq
(Alon et al., 2019) model when trained on the Fun-
com dataset (LeClair and McMillan, 2019).

5.2 Metrics for Evaluating Automatic Natural
Language Generation Systems

Whilst there are many metrics for evaluating nat-
ural language generation tasks BLEU (Papineni
et al., 2002) has become a common metric, with
other metrics, such as ROUGE (Lin, 2004) and
METEOR (Banerjee and Lavie, 2005) designed to
be used alongside it, addressing potential flaws in
BLEU itself. METEOR has been updated multiple
times, with the current version being METEOR 1.5
(Denkowski and Lavie, 2014). Other metrics, such
as ORANGE (Lin and Och, 2004) also suggest tech-
niques which can be used to improve BLEU, such
as the application of smoothing techniques.

Recent work in using language models as met-
rics to evaluate natural language generation tasks
have presented a potential leap forwards in our

ability to automatically evaluate such models.
BERTScore (Zhang et al., 2020) is one such met-
ric, as is MoverScore (Zhao et al., 2019). These
metrics use large language models which require
vast amounts of compute power, and may lead to
ethical concerns due to the impact of training large
language models on the environment. FrugalScore
(Kamal Eddine et al., 2022) aims to go some way
to solving this dilemma by reducing the environ-
mental impact of the metric, whilst maintaining
accuracy.

6 Conclusion

In testing a NeuralCodeSum model trained on a
dataset of source code which has been parsed and
had developer comments accurately removed, with
accurate tokenisation of both source code and sum-
maries, we have demonstrated the effect of ensur-
ing a higher quality of training data has on im-
proving the quality of a model - with our model
outperforming that of Mahmud et al. (2021). In
evaluating our model with FrugalScore alongside
traditional metrics, we have shown how the two
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can be used alongside each other to provide an im-
proved method of evaluating a model for neural
source code summarisation.

Limitations

The first limitation to our research is that we have
only tested the summarisation of Java source code
in English. Whilst this research was limited in this
aspect, it opens the possibility for future research,
not only in the evaluation of neural source code
summarisation, but also cross-language summari-
sation in general.

In this study, we used FrugalScore as a metric
using a language model. Other metrics, such as
BERTScore (Zhang et al., 2020) could be applied
to compare language model-based metrics for this
task, but this would require a far larger amount
of GPU resources, as FrugalScore is designed as a
lightweight metric. For this reason, we chose to use
FrugalScore instead of other LLM-based metrics.
Generating FrugalScore for our outputs took over
2 days and 18 hours using the HuggingFace imple-
mentation of the metric. Using more robust large
language models also has a larger impact on ethics
as the effect on the environment of these large lan-
guage models would be greater. The use of further
LLM-based metrics (potentially on smaller sam-
ples of data to reduce environmental impact and
processing time) in an effort to show how these
metrics compare to both n-gram-based metrics and
human evaluation of neural source code summari-
sation is possible future work to expand upon this
research.

The use of FrugalScore showed the possibility
for the use of LLM-based metrics in analysing neu-
ral source code summarisation. The difference in
distribution between FrugalScore and traditional
metrics suggests that further analysis is needed to
compare FrugalScore and traditional metrics with
human evaluation. Only then can we determine
whether FrugalScore better aligns with human eval-
uation or overestimates the quality of summaries.

This study also focused on the NeuralCodeSum
model (Ahmad et al., 2020), as one example of a
cutting edge model. However, other models, such
as Code2Seq (Alon et al., 2019), or CodeBERT

(Feng et al., 2020) have the potential to yield dif-
ferent results, something which could be explored
in future.

The use of NeuralCodeSum also limited us in
that to build the official implementation of the

model required us to use old versions of Python
(Python 3.6) and PyTorch (PyTorch 1.3), which
are now deprecated. As time passes, the use of
deprecated systems will produce an increased limi-
tation on the reproducibility of our results.

Ethics Statement

The primary ethical considerations of our research
are twofold: the environmental impact of our re-
search, and the use of a large dataset of code we
have not generated.

The dataset comes from LeClair and McMillan
(2019) and consists of methods and Javadoc com-
ments from publicly available Java source code.

Whilst in our research, we have taken precau-
tions to limit our environmental impact (the se-
lection of FrugalScore as a language model-based
metric due to its lower environmental impact com-
pared to BERTScore or MoverScore, and the selec-
tion of NeuralCodeSum as our test model, rather
than a larger model with more parameters, such
as CodeBERT), any research involving the train-
ing and evaluation of neural networks will have an
environmental impact.
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A Appendix A

Listing 2: Mahmud et al.’s (2021) method for removing
comments: official python implementation

d e f remove_comments_ ins ide_mthd (
mthd : s t r ) −> s t r :

l i n e s = mthd . s p l i t ( " \ n " )
e a c h L i n e = [ ]
f o r l i n e i n l i n e s :

i f " / / " i n l i n e :
c o n t i n u e

e l s e :
e a c h L i n e . append ( l i n e )

r e t u r n " \ n " . j o i n ( e a c h L i n e )

B Appendix B

Below, we have provided histograms showing 1-
to-1 comparisons of the frequency distribution of
the FrugalScore metric against BLEU-1, Smoothed
BLEU-4, METEOR, and ROUGE-L.
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Figure 3: Frequency Distribution of BLEU-1 vs FrugalScore

Figure 4: Frequency Distribution of Smoothed BLEU-4 vs FrugalScore
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Figure 5: Frequency Distribution of METEOR vs FrugalScore

Figure 6: Frequency Distribution of ROUGE-L vs FrugalScore
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Abstract
Many domains and tasks in natural lan-
guage generation (NLG) are inherently ‘low-
resource’, where training data, tools and lin-
guistic analyses are scarce. This poses a par-
ticular challenge to researchers and system de-
velopers in the era of machine-learning-driven
NLG. In this position paper, we initially present
the challenges researchers & developers of-
ten encounter when dealing with low-resource
settings in NLG. We then argue that it is un-
sustainable to collect large aligned datasets or
build large language models from scratch for
every possible domain due to cost, labour, and
time constraints, so researching and develop-
ing methods and resources for low-resource
settings is vital. We then discuss current ap-
proaches to low-resource NLG, followed by
proposed solutions and promising avenues for
future work in NLG for low-resource settings.

1 Introduction

Natural Language Generation (NLG) is the process
of generating text from structured or unstructured
data and has recently received renewed attention
due to the emergence of large pre-trained language
models (e.g. Brown et al., 2020) that promise to
generate output that is more natural, variable, and
adaptable to new domains as compared to rule-
based approaches. However, the development of
robust, controllable, and usable NLG systems de-
pends heavily on the availability of large, high-
quality, labelled datasets that are appropriate for
the task at hand (Fan and Gardent, 2020). Unfortu-
nately, for most domains such data is unavailable,
probably with the exception of weather, restaurant,
and sports domains. Even in the aforementioned
domains, data is fairly small compared to low-
resource tasks & languages in other areas, such
as in machine translation.

In this paper, we focus on controllable NLG
tasks that can be framed as data-to-text generation
tasks, rather than language prediction models. We

Language Domain Illustrative examples of
C A T C A T task or data availability
- - - - - - most languages, any domain
- - - - + - domains with linguistic analyses
- + - - - - well-studied minority languages
- + + - - - lg.s not very present online that are

well-studied and have, e.g., parsers,
etc, but few domain-specific resources

- + + + + + lg.s not very present online that are
well-studied & have parsers, etc, and
substantial domain-specific resources

+ + + - - - novel NLG domains in English
+ + + - + - domains with lots of analysis in a high-

resource language but little specialised
data or tooling (e.g. political rhetoric)

+ + + + + + Restaurant reviews, weather forecasts,
and sports reporting in English

Table 1: Dimensions of resource availability at the
language & domain level, sketching variation with re-
spect to C(orpora), A(nalysis), & T(ool) availability.
Plus/minus indicate relatively more/less availability, re-
spectively. Examples demonstrate the logical possibili-
ties associated with different combinations of language
and domain resource availability.

center our discussion around the low-resource na-
ture of controllable NLG, that is, on the limitations
to the creation of new NLG systems due to a lack
of corpora, analyses, or tools for a target domain
or language (illustrated in Table 1). Here, we de-
fine as corpora paired input representations and
texts which serve as reference outputs. Analyses
are linguistic analyses relevant to a domain of ap-
plication, including but not limited to grammars
of a target language or conversation analyses of a
target domain. Tools can then be automated means
of analysing linguistic data (e.g. parsers, part-of-
speech taggers, etc.), secondary resources based on
primary data (e.g. word embeddings), or software
libraries for different NLG (sub)tasks.

This position paper contributes:

• a discussion of the availability of NLG re-
sources in terms of Corpora, Analyses, &
Tools for different languages and domains and
the challenges this presents;
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• a high-level overview of mitigation strategies
for addressing low resource availability; and

• a call to focus future work on particularly
promising directions which we highlight.

2 Corpora for NLG

Corpora are essential to the development of both
data-driven and knowledge-driven NLG systems.
We focus here on NLG corpora for generating full
utterances of at least one complete sentence which
include input meaning representations (MRs, rang-
ing from raw sensor data to morphologically speci-
fied syntax trees)1 and corresponding texts, in sit-
uations where existing resources are limited. Cur-
rently, the most studied language for NLG is En-
glish (cf. Fan and Gardent, 2020) with few data-to-
text corpora available for other languages. The do-
mains with the most data-to-text corpora available
are restaurant descriptions, weather forecasts, and
sports reporting2. Corpora for the widely studied
restaurant domain range in size from 400 utterances
(Mairesse et al., 2010) to 50k utterances (Dušek
et al., 2020), some being based on hand-crafted
systems while the majority are crowdsourced. We
now highlight prominent strategies for building
NLG corpora; however, even with a simple MR
format (e.g. CUED slot value pairs (Young, 2007)),
collecting high-quality parallel MR-text corpora is
expensive so most such datasets remain small.

‘Found’ NLG Corpora Sometimes data-to-text
corpora can be adapted from existing sources of
semantic and textual data. For instance, Belz and
Kow (2010) assembled a parallel corpus of sets
of facts (from hobbyists) and corresponding texts
(from Wikipedia) about British hills. Similarly, the
WikiBio dataset (Lebret et al., 2016) pairs the first
sentence of each article in the WikiProject Biogra-
phy dataset with the facts reported in that article’s
‘infobox’. GenWiki extends these approaches even
further, aiming to provide an automatically aligned
corpus of texts from Wikipedia paired with graphs

1While we would like to see more emphasis on representa-
tions based on semantic, linguistic, or logical representations
of meaning and discourse structure, such as Montagovian se-
mantics, HLDS (Kruijff, 2001), DRS (Kamp and Reyle, 1993),
etc., common data-to-text MRs more commonly resemble tab-
ular data, taking the form of slot-value pairs plus an optional
dialogue act annotation or RDF triples. For simplicity, we
refer to the input to a data-to-text NLG system as an MR,
regardless of the degree to which the encoding is developed
as a representation of meaning per se.

2https://aclweb.org/aclwiki/Data_sets_for_NLG

from DBPedia identified based on overlapping enti-
ties for more than one million texts (Jin et al., 2020).
Apart from Wikipedia, researchers have collected
datasets from other online resources that contain
both data (in metadata) and (somewhat) aligned
text (e.g. Liang et al., 2009; Barzilay and Lapata,
2005). Note that these approaches rely on the fact
that others, such as domain experts, have already
chosen to create a semantic or tabular representa-
tion of important details; therefore, this method of
building new datasets is not generalisable.

Creating meaning annotations Some research
has annotated existing data-to-text corpora with
discourse structures, such as Balakrishnan et al.
(2019)—who semi-automatically added discourse
structures to the E2E Challenge corpus—and
Stevens-Guille et al. (2020)—who leveraged the
rule-based Methodius system (Isard, 2016) to cre-
ate a discourse-annotated corpus. Based on the
automatically derived Methodius Corpus, Maskha-
rashvili et al. (2021) observe that “discourse rela-
tions are enormously helpful when the dataset for
the domain is limited”, highlighting the importance
of fine-grained MRs in low-resource domains.

Other work has sought to address the issue of
content selection for corpus creation, independent
of the actual text to be associated with each MR
(see also Gkatzia, 2016). For example, Perez-
Beltrachini et al. (2016) leverage DBPedia to con-
struct trees of semantic triples based on their fre-
quency and relationship to one another in a large
ontology, with the goal of selecting content which
forms a natural unit that can be later associated
with a human-written text.

Eliciting texts for given meanings Early
datasets typically relied on domain experts or NLG
researchers directly, but most recent work uses
crowdsourcing to quickly collect texts from a va-
riety of speakers (e.g. Mairesse et al., 2010; Wen
et al., 2015, 2016; Juraska et al., 2019). Where
early work tended to use prompts similar to a set
of slot-value pairs, later work observed that such
prompts encouraged the use of particular words
& phrases—thus reducing textual diversity—and
found that using images (Novikova et al., 2016) or
full sentences (Howcroft et al., 2017) as prompts
resulted in better quality. Recent work has incorpo-
rated quality estimates and text suggestions to fill
gaps in datasets (Chang et al., 2020). While these
methods can quickly provide varied data, it remains
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impractical to create large, targeted datasets for all
domains, and most languages do not even have
these small datasets available.

3 Analyses & Tools

While the primary data for NLG are parallel cor-
pora, a variety of other resources can facilitate de-
velopment. Language models (LMs) can approxi-
mate fluency measures and can be used to produce
texts using sampling (Brown et al., 2020). Lin-
guistic analyses provide insight into what makes
a text well-formed and assist in the design of rule-
based systems and architectures for ML-based ap-
proaches. Finally, tools & resources such as parsers,
part-of-speech taggers, semantic role labellers, on-
tologies, morphological analysers, and word em-
beddings can help to decompose NLG subtasks and
make the problem more approachable.

3.1 (Large) Language Models

Statistical language models have been used since
the late 1990s to help rank potential NLG outputs
(Langkilde and Knight, 1998; Knight and Hatzivas-
siloglou, 1995). With the rise of large pre-trained
language models (e.g. BERT, GPT: Devlin, 2018;
Brown et al., 2020), there has been renewed interest
in sampling-based approaches to generation, where
an LM trained exclusively on text (i.e. without par-
allel MRs) generates a continuation for an initial
string. While the challenge of making sampling-
based NLG more controlled is an active area of
research3, these tools continue to be helpful to rank
texts with likelihood as a fluency approximation.

Unfortunately, good language models require
large collections of text in the target language in
order to perform well and only very limited dig-
itized data is available for most languages. For
example, Joshi et al. (2020) found that only seven
languages (of the world’s approximately 7000 lan-
guages) qualify as truly high-resource4. One major
factor in corpus availability is the cost of technol-
ogy relative to typical incomes in countries where
a language is spoken (Ahia et al., 2021). Given
the high cost of collecting & annotating data, this
observation is not surprising. Recent approaches to
text generation have emphasised the use of large-
pretrained LMs (see Section 3.1) and task-specific
fine-tuning in order to transfer general language

3e.g. https://ctrlgenworkshop.github.io/
4English, Spanish, German, Japanese, French, Arabic,

Mandarin

statistics to a particular task. Consider for instance
GPT3 (Brown et al., 2020), trained on 45TB of
text data in English. Training such a model for
any language requires an amount of data and com-
pute power unavailable in most regions, meaning
that such models can typically be used only for
low-resource domains in high-resource languages.

Candidate languages include the roughly 100
languages covered by mBERT (Devlin, 2018) and
mT5 (Xue et al., 2021). More often, though, avail-
able language models for lower resource languages
are often based on legal, journalistic, or govern-
mental language rather than everyday language,
resulting in a genre mismatch making them poor
off-the-shelf models for many applications. For
those cases where appropriate LMs do exist, Sec-
tion 4.2 covers their usefulness in transfer learning.

3.2 Analysis

With enough data, we can hope that a powerful
ML architecture might detect the patterns neces-
sary to produce good texts. However, when corpora
are not large enough for this, descriptive and au-
tomated linguistic analyses can help. Researchers
can use linguistic documentation to develop their
system, consulting formal grammars & lexica to
understand the kinds of constructions possible in
a target language. Researchers & developers can
also partner with speakers of their target language
to ensure that the system serves community needs
while working together to understand the language
they are generating (Hirmer et al., 2021).

Generally speaking, it is easiest to leverage these
linguistic resources when developing a rule-based
NLG system, where observations can be encoded
explicitly. For example, three grammars of Ra-
panui have been published in English in the past
110 years (Churchill, 1912; Du Feu, 2012; Kieviet,
2017), giving insight into word order, morphology,
and agreement phenomena.5 Such features can
then be input in grammar engineering tools like the
Lingo matrix grammar construction toolkit6 (Ben-
der et al., 2002, 2010), to provide a starting point
for building a rule-based NLG system.

Both rule-based and end-to-end ML approaches
benefit from tools for automated linguistic analy-

5We use Rapanui as an example of a very low-resource
language which, nevertheless, has been the subject of mul-
tiple grammars published as monographs. For more infor-
mation, see the cited grammars or https://en.wikipedia.
org/wiki/Rapa_Nui_language.

6https://matrix.ling.washington.edu
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sis, such as lemmatisers, part-of-speech taggers,
parsers, and semantic role labellers. To learn to
map input MRs to output texts, a system or de-
veloper must recognise useful generalisations and
abstractions. For example, part-of-speech tags and
constituency parses provide information about the
order in which words of a given class should ap-
pear, while dependency parses and semantic role
labels can relate individual words to each other.
Similarly, normalization diminishes the impact of
noise, lemmatization helps associate word ‘stems’
with meanings, morphological analysers/realisers
help with word forms, parsers help get words in the
right order, semantic role labellers & natural lan-
guage understanding systems help associate chunks
of form & meaning directly.

All of these individual analyses together help
decompose the task. Although data-to-text systems
have used modular architectures for decades (Re-
iter, 2007), there is now a shift towards end-to-end
architectures. However, we argue here that mod-
ular architectures are important for low-resource
settings, as they might require less training data
than end-to-end. This is an important promising di-
rection, therefore we discuss pipelines and problem
structuring further in Section 4.5.

3.3 NLG Libraries

Similarly to general NLP tools, NLG-specific tool-
ing shows variable availability. While SimpleNLG
has been adapted to at least eight other languages7

(English: Gatt and Reiter, 2009), this library still
requires significant effort to develop supporting
components. Other available tools for develop-
ing NLG systems include FUF/SURGE8 (Elhadad
and Robin, 1997, 1996) for surface realisation and
OpenCCG9 (White, 2006) for generation from hy-
brid logic dependency semantics, which can be
used to represent meaning at deeper and shallower
levels alike, using combinatory categorial grammar
(Steedman and Baldridge, 2006). For a recent sur-
vey of surface realisation systems for low-resource
languages, see (Mahlaza and Keet, 2022).

A number of neural NLG models are also pub-
licly available, such as Wen et al.’s (2015) SC-
LSTM10 and Dusek & Jurcicek’s (2016) TGen11.

7https://github.com/simplenlg/simplenlg
8https://www.cs.bgu.ac.il/~elhadad/

install-fuf.html
9https://github.com/OpenCCG/openccg

10https://github.com/shawnwun/RNNLG
11https://github.com/UFAL-DSG/tgen

While TGen has been widely used as a baseline for
end-to-end NLG tasks, these systems generally rep-
resent the outcome of a particular research project
rather than being intended to be used as a platform
for developing future NLG systems.

4 Mitigation strategies

So far we have discussed the corpora, analyses, &
tools that are often missing in low-resource settings.
We now turn to mitigation strategies for dealing
with this lack of resources, namely data augmen-
tation, transfer learning, meta-learning, feedback-
based learning, and rule-based methods. Table 2
gives an overview of the requirements for and out-
comes of using these different mitigation strategies.

4.1 Data Augmentation

Data augmentation (DA) describes a family of ap-
proaches that aim to increase the number of train-
ing examples automatically, without manual data
collection. Despite their popularity and demon-
strated efficiency in other areas such as computer
vision (Shorten and Khoshgoftaar, 2019) and NLP
(Dhole et al., 2021), this area is still relatively
under-explored in NLG, partly due to unique chal-
lenges. This section reviews existing approaches
to DA for text generation; for DA approaches to
NLP in general we refer the reader to the survey by
Feng et al. (2021).

DA methods promise to enrich current datasets,
potentially increasing the linguistic diversity of the
dataset (e.g., by enhancing stylistic traits as pro-
posed by Oraby et al. (2018)). In order to train
NLG models, we require text that is not only gram-
matically correct but also semantically correct, co-
herent, and appropriate for the task at hand (cf.
Dušek et al., 2019, on semantic noise). Therefore,
straightforward approaches used in computer vi-
sion, such as cropping and rotation are not appro-
priate, though adaptations of these techniques can
help with simpler NLP tasks like part of speech tag-
ging for low-resource languages (Şahin and Steed-
man, 2018). More elaborate approaches such as
back-translation & paraphrasing have been used
in other areas of NLP, such as MT, and are also
promising for NLG. Here, however, we only re-
view methods specifically developed and applied
in NLG settings.

There are two predominant DA methods used
in NLG: (1) generation of new examples with pre-
trained LMs; and (2) generation of new examples
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Mitigation Strategy Requirements Outcome
Data Augmentation labelled data, rules additional labelled data
Pre-training/Fine-tuning existing LM or high-resource data, low-

resource data
knowledge transfer to new domain

Zero-shot existing LM adapting to new scenarios with no labelled data
Few-shot existing LM, few training examples adapting to new scenarios with few labelled data
Prompt-based existing LM, prompts adapting to new scenarios with few or no labelled data
Meta-learning high-resource data, low-resource dataset weight initialisation for better training
Feedback-based small domain dataset better learning through interaction
Multi-task multiple auxiliary tasks learning more general representations, multiple tasks

Table 2: Summary of mitigation strategies for low-resource NLG, their requirements, and their outcomes.

with statistical or rule-based NLG systems.
An example of the former DA methods is Chang

et al. (2021a)’s approach to generating new sam-
ples for NLG using a pretrained LM, by firstly
creating an unannotated dataset with unlabeled MR
instances by randomly selecting MRs from a pre-
existing expert-annotated dataset and populating
them with existing values. This dataset is then
automatically annotated with noisy text labels gen-
erated by a pre-trained model, fine-tuned on joint
MR and text conditioned on samples from the aug-
mented MR set.

Examples of the latter include employing rule-
based systems to generate new examples for de-
veloping or evaluating other NLG methods. For
instance, Belz (2008) created an automatically gen-
erated version of SUMTIME meteo (Sripada et al.,
2008), an expert annotated data-to-text dataset in
the weather domain, which has been used to ex-
plore statistical NLG (Angeli et al., 2010, inter
alia). Similarly, Oraby et al. (2018) utilised a sta-
tistical natural language generator to create a cor-
pus of stylistic texts used to train seq2seq neural
NLG models. Other apporaches have proposed
utilising distant supervision can also be used to
create new NLG corpora. For example, Agarwal
et al. (2021) use distant supervision to verbalize
knowledge graph subgraphs centered on entities,
producing a large secondary dataset, a subset of
which they were able to clean to a sufficiently high
quality for fine-tuning their models.

4.2 Transfer Learning

Transfer learning uses the knowledge gained from
a previous task (in a high-resource setting) to im-
prove model performance for a related task in a
lower-resource setting (Torrey and Shavlik, 2009).
Typically, a model is trained with data from one or
more high-resource domains/languages and then
the model’s weights are used to initialise the model
to be trained in the low-resource setting through a

process called fine-tuning. Similarly, few-shot and
zero-shot approaches aim to develop general lan-
guage models which are applied to new tasks with
limited intervention (Zhao and Eskenazi, 2018).

Pre-training & Fine-tuning Transfer learning
via fine-tuning typically requires the adaptation of a
large pre-trained language model by updating and
storing all of the parameters, resulting in a new
language model for every task. One of the earliest
works in this setting involved training a model from
scratch in a related domain and then fine-tuning
it in a new domain (Dethlefs, 2017). Kale and
Roy (2020) propose transferring knowledge from
a NMT model trained on English-Czech, which
is then fine tuned for a data-to-text task in Czech.
Pasricha et al. (2020) proposed a transfer learning
approach which actually utilises one of the large
language models (see Section 3.1) which is fine-
tuned in the target task. In this setting, the data used
for fine tuning is pre-pended with tags describing
the part of speech as well as the type of the entity
and are included in the vocabulary. Ribeiro et al.
(2021) also show that pre-trained language models
perform well in graph-based MR to text generation,
even when the input is reduced to bags of nodes
and edge labels. Most works in this area generate
text in English. However, fine-tuning large models
also works in other languages. For instance, Naous
et al. (2021) propose fine-tuning AraBERT (Antoun
et al., 2020) for empathetic NLG in Arabic.

Although fine-tuning requires significantly less
computational power and time as compared to train-
ing models from scratch, it can still pose a consid-
erable deployment challenge as the magnitude of
pre-trained models continues to increase from mil-
lions to billions of parameters. As such, other data-
and compute-efficient transfer learning approaches
have been explored that try to minimize the number
of parameters that are fine-tuned. Such methods
include prompt-based, few- and zero-shot learning
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approaches which are discussed next.

Prompt-based, Few- and Zero-shot learning
To alleviate the need to update all parameters of
a pre-trained model, researchers have explored
prompt-based methods that keep the parameters
of a model frozen and instead use prompts as part
of the input (Liu et al., 2021) to perform down-
stream tasks without further training. Although no
training is required, prompt-based methods require:
1) a prompting function that converts the input into
some specific form; 2) template prompts, which
can be created manually or automatically; 3) corre-
sponding filled & answer prompts; and 4) answers.
In many cases, prompt methods do not require any
further training and providing the aforementioned
prompting elements is enough for a model to per-
form zero-shot learning (as in Dou and Peng, 2022).
In other settings, though, prompting can be used for
further training/fine-tuning a model, when at least
a small amount of data is available. For instance,
Li and Liang (2021) proposed an approach to NLG
that keeps pre-trained LM parameters fixed, while
employing a task-specific prefix vector, which is
tuned for the task at hand. Clive et al. (2021) ex-
tend this approach for controlled text generation.
Prompt-learning is a very recent paradigm, so we
expect to see more work in this promising area.

Similarly to prompting, zero- and few-shot learn-
ing aim to achieve learning with minimal train-
ing/new data instances. Transfer learning aims
to ‘learn’ transferable features that can be used
in downstream tasks. In few-shot learning, there
might be only a few examples to learn from (or zero
in zero-shot). Ma et al. (2019) proposed decompos-
ing table-to-text generation into content selection
and surface realisation, so that each subtask can
be trained with a smaller dataset than it would be
needed for the end-to-end task. Chen et al. (2020)
also proposed pre-training a model from scratch,
although their paradigm employed distant supervi-
sion before fine-tuning the model to specific tasks.
Finally, Chang et al. (2021b) focused on improving
few-shot NLG by prioritising informative training
instances to fine-tune the model.

4.3 Meta-learning

Meta learning can be thought of as the machine
learning process of ‘learning how to learn’ (Mi
et al., 2019a). Meta-learning approaches are
split into metric-learning (Koch et al., 2015),
model-based (Andrychowicz et al., 2016), and

optimisation-based approaches (Finn et al., 2017).
Most of recent meta-learning approaches to NLG
follow an optimisation approach, the Model-
Agnostic Meta-Learning (MAML) algorithm, orig-
inally proposed by Finn et al. (2017). MAML
aims to make models achieve good generalisation
performance by adapting quickly to a new task
during training in low-resource settings, despite
a low quantity of training data, by learning a bet-
ter initialization of model parameters that facili-
tates fast adaptation to new low-resource scenarios.
Mi et al. (2019b) explored different adaptation set-
tings based on domain similarity and showed that
‘nearer’ domains can adapt better through a meta-
learning setting, outperforming other optimisation
methods such as multi-task learning. Meta-learning
has also shown promising results in MT. Gu et al.
(2018) compared MAML to transfer learning (Zoph
et al., 2016) and showed that meta-learning leads
to further improvements, despite training data for
the low-resource language being limited to a sig-
nificantly smaller dataset. As the corpus size of the
low-resource language decreases, transfer learn-
ing approaches suffer significantly more than meta-
learning approaches, demonstrating the effective-
ness of MAML for low-resource languages. How-
ever, as corpus size increases, the differences be-
tween the two approaches are much less signifi-
cant. Exploring the trade-off between data size and
learning paradigm (meta-learning versus transfer
learning) is a promising direction for this line of
work.

4.4 Feedback-based Learning

Low-resource settings have always been a bottle-
neck for NLG. Earlier work in this area employed
reinforcement learning (RL) in dialogue systems
for NLG (Rieser and Lemon, 2011; Dethlefs and
Cuayáhuitl, 2011) to overcome the issue of limited
data, whereas more recent approaches showed that
RL can help train better NLG systems (Panagiaris
et al., 2021). Low-resource settings can manifest
themselves also in domains where large collections
of unlabelled data are available without parallel
inputs. For instance, in MT one might have access
to large monolingual datasets in both source and
target languages but not an aligned one. In this
case, feedback-based methods can help, such as
the dual-learning setup from Kim et al. (2019), pre-
sented as a two-agent communication game. In this
setting, the first agent only understands language A,
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and the second agent only understand language B.
The two agents communicate through translation
models and provide feedback on whether the trans-
lated message they received is a natural sentence in
their own language. They then use this feedback to
improve their individual models.

Similarly, Shen et al. (2019) propose treating
language production as a game between speak-
ers and listeners, where listeners must be able to
reconstruct the intended meaning. Their models
are trained to predict and avoid confusing outputs
based on either reconstruction or distraction prag-
matics (this is however not low-resource). Tran
and Nguyen (2018) propose an adversarial training
procedure for domain adaptation with two critics,
which guide the generator to generate outputs sim-
ilar to the sentences in the target domain, when
limited amount of target domain data exist.

4.5 Task structure & rule-based approaches
While ‘fully end-to-end’ machine learning mod-
els are always enticing, careful thought about how
to structure the task(s) can lead to significant im-
provements in outcomes. For example, in multitask
learning a single model is trained on multiple tasks,
allowing feedback from learning to perform well
on one task to influence the others. Even with-
out jointly learning to solve multiple tasks, decom-
posing generation into a sequence of stages in a
pipeline can improve performance by simplifying
what the model needs to learn.

Multi-task learning To our knowledge, there
is no related work in multi-task learning for low-
resource data-to-text generation. The closest work
in this area jointly learns a semantically con-
ditioned and unconditioned LMs for generation
across multiple datasets (Zhu et al., 2019). For text-
to-text generation, Magooda et al. (2021) showed
that abstractive summarisation can benefit from
being learnt in a multi-task framework, especially
when combined with paraphrase learning. In ad-
dition to their target task, they train their model
to perform extractive summarisation, concept &
paraphrase detection, and language modelling. In a
larger resource setting, Agarwal et al. (2020) adapt
T5 (Raffel et al., 2020) to data-to-text generation
for English and Russian while jointly learning text-
to-data semantic parsing for both languages.

Pipelines & Problem Structuring Where in
multitask learning the focus is on training a single
neural network to perform multiple tasks, pipeline

Castro Ferreira
et al. 2019

selected facts

Ordering

Chunking

Lexicalisation

REG

output text

Puduppully and
Lapata 2021

raw data

Selection
Ordering
Chunking

output text

Figure 1: Two neural pipelines: Castro Ferreira et al.
(2019) use four stages to produce a text based on chosen
facts; Puduppully and Lapata (2021) use two stages to
select & group facts and realise the text.

models use separate stages for each subproblem
and do not require a single unified neural network
(cf. Figure 1). This allows for specialisation, where
solutions to subproblems can be refined indepen-
dently. For example, a surface realisation module
could be trained on multiple domains regardless of
the handling required at the level of document or
sentence planning. Of course, modularity comes
with the risk of error propagation, as errors in an
early component can break later ones.

Recent work has explored various decomposi-
tions of data-to-text generation based on the con-
ventional NLG pipeline. For example, Howcroft
et al. (2018) proposed a model to learn sentence
planning rules for use with an off-the-shelf surface
realiser while Moryossef et al. (2019) reversed this
focus, using rule-based planning to handle content
ordering & chunking and training a surface realiser.

Figure 1 sketches two fully neural NLG pipelines
as examples. Castro Ferreira et al. (2019) de-
composed generation into content ordering, con-
tent chunking, lexicalisation, referring expres-
sion generation (REG), & textual realisation and
trained a neural model for each subtask, finding
that pipelines improve text quality. Both Perez-
Beltrachini and Lapata (2018) and Puduppully and
Lapata (2021) created higher level pipelines which
perform content selection (with the latter also per-
forming content ordering and sentence chunking)
before generating a text. Other work has used la-
tent variable models to learn ordering and chunking
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constraints instead of focusing on explicit pipelines
(Shen et al., 2020; Xu et al., 2021).

These models generally preserve the ‘fluency’
expected of modern neural network LMs and im-
prove semantic fidelity. This is especially encour-
aging for low resource NLG where the relative
pay-off for adding intermediate annotations to train
pipeline models is likely to be higher. Such ap-
proaches are further enhanced by ‘delexicalisation’,
e.g. replacing certain values with placeholders (Shi-
morina and Gardent, 2019) to limit spurious varia-
tion and facilitate training.

For low-resource domains in better resourced
languages, useful resources for AMR-to-text gen-
eration12 and UD-to-text13 generation (Mille et al.,
2018, 2019, 2020) could be used for the final stage
of generation, simplifying system development and
allowing researchers to focus on developing com-
ponents for document and sentence planning.

Complementary to these efforts are a number
of new corpora (van der Lee et al., 2020) and ex-
tensions of existing corpora (Castro Ferreira et al.,
2020, 2021) with annotations for intermediate rep-
resentations in an NLG pipeline.

5 Discussion & Promising directions

So far, we have highlighted the ways in which NLG
is influenced by the availability of data, analyses,
and tools at both the language and the domain level
and described a number of trainable approaches
which aim to learn an NLG system given different
resource limitations. It is clear that it is neither sus-
tainable to collect large aligned datasets for every
domain nor use general purpose language models
off-the-shelf for controlled NLG, so researching
and developing approaches for low-resource set-
tings that distill the strengths of pre-trained lan-
guage models while focusing on controllable ap-
proaches is vital. Here we outline some promising
directions in this area.

Data Augmentation Although it is clear that con-
trollable NLG approaches could benefit from as
large corpora as possible, data augmentation is
still under-explored for NLG. Approaches devel-
oped for other NLP tasks could be explored here
whereas others will not be applicable for structured
prediction problems. The potential future direc-
tions can be split into three main categories: (a)

12https://nert-nlp.github.io/AMR-Bibliography/
13Universal Dependencies (de Marneffe et al., 2021)

Data augmentation through paraphrasing where a
slot is replaced with another slot randomly: e.g.
‘cheapest’ is replaced with ‘most expensive’; (b)
using pre-trained models to distill knowledge; (c)
back-translation to create resources in different lan-
guages.

Prompt-based Learning Prompt-based learning
is a fairly novel direction for NLP (including NLG)
in general and our understanding is quite limited to
a few experimental works. Work on this area can
highlight limitations of current pre-trained models
and lead to potential improvements as well as can
reveal situations where large models are safe (and
might not need to be controllable) to use. Prompt-
based approaches might also call for novel eval-
uation metrics in order to better understand the
influence of prompts on the generated outputs.

Feedback-based approaches Although there
has been a lot of discussion in AI in general about
machines learning through feedback as humans can,
research focused on increasing a NLG system’s
capabilities have been limited to game-based set-
tings or simulation (as in the case of Reinforcement
Learning). More research in this area, might be use-
ful to endow models with new capabilities as in the
frameworks proposed by Gkatzia and Belvedere
(2021) and Wang et al. (2016).

Multitask learning & pipelines Very few of
the combinatorial possibilities for neural NLG
pipelines have been explored to date, so it remains
unclear which tasks are best solved in sequence
versus jointly. One especially promising direction
is to approach such pipelines in a multitask setting:
when annotated data exists for subtasks, the model
can receive feedback for individual tasks during
training while passing along the penultimate lay-
ers of the network to each subsequent task, thus
allowing later tasks in the pipeline to influence the
hidden representations learnt in earlier tasks.

When to use meta-learning and when to use
transfer-learning? There is some evidence from
MT that transferring models between related lan-
guages increases performance Zoph et al. (2016).
On the other hand, data size matters (Kocmi and
Bojar, 2018). Previous work has also shown that
once you start increasing the amount of data in the
target domain, transfer learning achieves better re-
sults. However, it is unclear where the ‘sweet spot’
lies, and more research in this area is required.
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Evaluation in low-resource NLG In addition
to the specific challenges and mitigation strategies
for system development above, evaluation has its
own challenges in the low-resource setting and is
a promising direction for future work in itself. For
instance, having less validation and test data re-
duces the applicability of automated, reference-
based evaluations, necessitating alternative evalua-
tion strategies such as an emphasis on error analysis
(van Miltenburg et al., 2021) or standardised hu-
man evaluations (Howcroft et al., 2020). Methods
for maximising the efficiency of input from domain
and language experts will also be necessary for hu-
man evaluations when access to these persons is
more limited than usual.

6 Conclusion

In this paper we have highlighted ways in which
NLG is often low-resource in data, analyses, or
tools with respect to either the target language or
domain. The number of corpora for data-to-text
generation remain limited, but there are a number
of strategies for adding meaning annotations to ex-
isting texts, or vice versa, and crowdsourcing new
data sets. Large language models are also not al-
ways available: they are typically only available
for relatively high-resource languages. Linguistic
analyses and automated analysis tools are more
widely available and can help decompose the gen-
eration task to make it easier to develop systems
in low-resource settings. Fortunately there are a
variety of mitigation strategies available, including
methods for data augmentation, transfer learning,
meta- and feedback-based-learning, and different
ways of structuring the task.

This makes for an interesting set of challenges
and an exciting set of opportunities to improve
the state-of-the-art for natural language generation
in low resource settings. Our own current work
is beginning to explore some of these promising
directions, including multi-task learning, pipeline
approaches to NLG, and transfer learning from re-
lated languages and general purpose LLMs. How-
ever, there is much work to be done, and we hope
the community embraces these challenges.

Ethics Statement

One goal of our paper is explicitly to encourage
further research in low-resource settings for nat-
ural language generation. While we have argued
that many ‘typical’ NLG settings can be thought of

as relatively low-resource compared to other areas
of NLP, it is worth noting that some topics (e.g.,
legal, medical) are especially sensitive and that
working with low-resource languages in particular
introduces challenges in privacy (for an extensive
discussion on this topic see (Hirmer et al., 2021)).
For work such as developing mental health sup-
port chatbots or developing systems for minoritised
language communities, we especially encourage
our fellow researchers to engage with their local
ethics boards and adopt a participatory approach
to data collection and system design to ensure that
their efforts work in collaboration with the affected
communities.

Limitations

While this position paper includes an overview of
the current literature, a systematic survey (e.g. fol-
lowing PRISMA, Moher et al., 2009) of all work
in low-resource NLG is beyond the scope of the
paper: the relative novelty of the topic makes it
difficult to determine appropriate selection crite-
ria for a systematic survey on this topic. Usually
a systematic survey would include papers based
on keyword searches in academic databases, but
almost no papers explicitly focus on natural lan-
guage generation in low-resource settings, making
it difficult to identify phrases which reliably indi-
cate all and only the relevant works. This limits the
coverage of the current paper, though we believe
this limitation is a reasonable trade-off when high-
lighting an area requiring more attention in future
work.
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Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–

1561, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Aleksandre Maskharashvili, Symon Stevens-Guille,
Xintong Li, and Michael White. 2021. Neural
methodius revisited: Do discourse relations help with
pre-trained models too? In Proceedings of the 14th
International Conference on Natural Language Gen-
eration, pages 12–23, Aberdeen, Scotland, UK. As-
sociation for Computational Linguistics.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings.
2019a. Meta-learning for low-resource natural lan-
guage generation in task-oriented dialogue systems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 3151–3157. International Joint Conferences on
Artificial Intelligence Organization.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Falt-
ings. 2019b. Meta-learning for low-resource natural
language generation in task-oriented dialogue sys-
tems. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI’19, page
3151–3157. AAAI Press.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham,
Emily Pitler, and Leo Wanner. 2018. The First Mul-
tilingual Surface Realisation Shared Task (SR’18):
Overview and Evaluation Results. In Proceedings of
the First Workshop on Multilingual Surface Realisa-
tion, pages 1–12, Melbourne, Australia. Association
for Computational Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham,
and Leo Wanner. 2019. The Second Multilingual
Surface Realisation Shared Task (SR’19): Overview
and Evaluation Results. In Proceedings of the 2nd
Workshop on Multilingual Surface Realisation (MSR
2019), pages 1–17, Hong Kong, China. Association
for Computational Linguistics.

Simon Mille, Anya Belz, Bernd Bohnet, Thiago Cas-
tro Ferreira, Yvette Graham, and Leo Wanner. 2020.
The third multilingual surface realisation shared task
(SR’20): Overview and evaluation results. In Pro-
ceedings of the Third Workshop on Multilingual Sur-
face Realisation, pages 1–20, Barcelona, Spain (On-
line). Association for Computational Linguistics.

D. Moher, A. Liberati, J. Tetzlaff, D. G Altman, and
for the PRISMA Group. 2009. Preferred report-
ing items for systematic reviews and meta-analyses:
The PRISMA statement. BMJ, 339(jul21 1):b2535–
b2535.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

348

https://doi.org/10.3115/980845.980963
https://doi.org/10.3115/980845.980963
https://doi.org/10/gf255w
https://doi.org/10/gf255w
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/P19-1197
https://doi.org/10.18653/v1/P19-1197
https://doi.org/10.18653/v1/P19-1197
https://doi.org/10.18653/v1/2021.findings-emnlp.142
https://doi.org/10.18653/v1/2021.findings-emnlp.142
https://doi.org/10.1145/3567594
https://doi.org/10.1145/3567594
https://aclanthology.org/P10-1157
https://aclanthology.org/P10-1157
https://aclanthology.org/2021.inlg-1.2
https://aclanthology.org/2021.inlg-1.2
https://aclanthology.org/2021.inlg-1.2
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.24963/ijcai.2019/437
https://doi.org/10.18653/v1/w18-3601
https://doi.org/10.18653/v1/w18-3601
https://doi.org/10.18653/v1/w18-3601
https://doi.org/10.18653/v1/d19-6301
https://doi.org/10.18653/v1/d19-6301
https://doi.org/10.18653/v1/d19-6301
https://aclanthology.org/2020.msr-1.1
https://aclanthology.org/2020.msr-1.1
https://doi.org/10/fmvxsp
https://doi.org/10/fmvxsp
https://doi.org/10/fmvxsp
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236


Tarek Naous, Wissam Antoun, Reem Mahmoud, and
Hazem Hajj. 2021. Empathetic BERT2BERT conver-
sational model: Learning Arabic language generation
with little data. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 164–
172, Kyiv, Ukraine (Virtual). Association for Compu-
tational Linguistics.

Jekaterina Novikova, Oliver Lemon, and Verena Rieser.
2016. Crowd-sourcing NLG data: Pictures elicit
better data. In Proceedings of the 9th International
Natural Language Generation conference, pages 265–
273, Edinburgh, UK. Association for Computational
Linguistics.

Shereen Oraby, Lena Reed, Shubhangi Tandon, Sharath
T.S., Stephanie Lukin, and Marilyn Walker. 2018.
Controlling personality-based stylistic variation with
neural natural language generators. In Proceedings
of the 19th Annual SIGdial Meeting on Discourse
and Dialogue, pages 180–190, Melbourne, Australia.
Association for Computational Linguistics.

Nikolaos Panagiaris, Emma Hart, and Dimitra Gkatzia.
2021. Generating unambiguous and diverse refer-
ring expressions. Computer Speech Language,
68:101184.

Nivranshu Pasricha, Mihael Arcan, and Paul Buitelaar.
2020. NUIG-DSI at the WebNLG+ challenge: Lever-
aging transfer learning for RDF-to-text generation.
In Proceedings of the 3rd International Workshop
on Natural Language Generation from the Semantic
Web (WebNLG+), pages 137–143, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

Laura Perez-Beltrachini and Mirella Lapata. 2018.
Bootstrapping generators from noisy data. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1516–1527, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Laura Perez-Beltrachini, Rania Sayed, and Claire Gar-
dent. 2016. Building RDF content for data-to-text
generation. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 1493–1502, Osaka,
Japan. The COLING 2016 Organizing Committee.

Ratish Puduppully and Mirella Lapata. 2021. Data-to-
text generation with macro planning. Transactions of
the Association for Computational Linguistics, 9:510–
527.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Ehud Reiter. 2007. An architecture for data-to-text
systems. In Proceedings of the Eleventh European
Workshop on Natural Language Generation (ENLG
07), pages 97–104, Saarbrücken, Germany. DFKI
GmbH.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

V. Rieser and O. Lemon. 2011. Reinforcement learn-
ing for adaptive dialogue systems: a data-driven
methodology for dialogue management and natural
language generation. Theory and Applications of
Natural Language Processing. Springer.
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Abstract

The Semantic textual similarity (STS) task is
commonly used to evaluate the semantic rep-
resentations that language models (LMs) learn
from texts, under the assumption that good-
quality representations will yield accurate simi-
larity estimates. When it comes to estimating
the similarity of two utterances in a dialogue,
however, the conversational context plays a par-
ticularly important role. We argue for the need
of benchmarks specifically created using con-
versational data in order to evaluate conver-
sational LMs in the STS task. We introduce
GiCCS, a first conversational STS evaluation
benchmark for German. We collected the simi-
larity annotations for GiCCS using best-worst
scaling and presenting the target items in con-
text, in order to obtain highly-reliable context-
dependent similarity scores. We present bench-
marking experiments for evaluating LMs on
capturing the similarity of utterances. Results
suggest that pretraining LMs on conversational
data and providing conversational context can
be useful for capturing similarity of utterances
in dialogues. GiCCS is publicly available to en-
courage benchmarking of conversational LMs.

1 Introduction

The Semantic Textual Similarity (STS) framework
is typically used for the extrinsic evaluation of NLP
models (Agirre et al., 2012), and in particular for
language models (LMs): if a model can success-
fully estimate the similarity between sentences, it’s
a good sign that it has learned good-quality se-
mantically meaningful representations. In natural
language generation, STS can provide a useful al-
ternative to word overlap measures to analyse sys-
tem output similarity (Dušek et al., 2020; Novikova
et al., 2016). STS has been used both for training

∗These authors contributed equally to this work.

(Reimers and Gurevych, 2019; Vulic et al., 2021)
and for evaluating LMs (Yang et al., 2018).

To the best of our knowledge, the majority of
STS benchmarks have been created from written
language resources using non-conversational data,
and are mainly in English. Conversational data,
however, has some peculiarities which make it po-
tentially challenging for the STS task: (1) ques-
tions and requests are frequent, (2) whether two
sentences are semantically similar may depend on
pragmatic factors triggered by the conversational
context. For example, it may be challenging for
human annotators to assess that Could you turn
it up a bit? and I’d like the AC to be colder ad-
vance the conversation in a similar way, without (1)
sufficient conversational context and (2) an opera-
tive definition of what it means for a question and
a declarative sentence to be semantically similar.
Moreover, STS datasets are typically annotated on
a rating scale, which may lead to inconsistencies in
annotation, scale region bias, and fixed granularity
issues (Kiritchenko and Mohammad, 2017).

In this paper, we introduce GiCCS, the first Ger-
man in-Context Conversational benchmark for eval-
uating LMs on the STS task. GiCCS is a multi-
domain dataset containing 300 items, each con-
sisting of a domain name, a multi-turn German
dialogue context (i.e., dialogue history) where the
last utterance is paired with a target utterance, and a
semantic similarity score between the paired utter-
ances. GiCCS contains data from German dialogue
resources as opposed to machine-translated data
(e.g. the GLUE benchmark for STS; Wang et al.
2018). The similarity scores were crowdsourced
using the Best-Worst Scaling (BWS) annotation
technique (Louviere et al., 2015), as it was shown
to address the limitations of the rating scales tech-
nique (Kiritchenko and Mohammad, 2017; Asaadi
et al., 2019). The dialogue history (the previous 3
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or 5 turns) was presented to the crowd-workers dur-
ing crowdsourcing for better similarity judgements
based on the conversational context.

Adopting BWS in order to overcome the limita-
tions of rating scales led to a high inter-annotator
agreement with an overall Krippendorff’s α of 0.74.
Furthermore, we present a reliability study of the
similarity scores obtained from the BWS annota-
tions and based on the conversational context.

Lastly, we present benchmarking experiments
to evaluate different LMs on the STS task using
GiCCS. Experiments show that pre-training LMs
on conversational data is beneficial for capturing
conversational representations in downstream tasks
and conversational applications, such as dialogue
systems. GiCCS has a wide range of further appli-
cations, such as the evaluation of dialogue genera-
tion models, answer selection and ranking systems,
and question answering based on dialogue history.

2 Background and Related Work

2.1 Semantic Textual Similarity
Agirre et al. (2012) introduced a large-scale STS
benchmark, consisting of pairs of sentences and
similarity scores on a 0− 5 ordinal scale (from se-
mantically unrelated to equivalent). Similar bench-
marks have been introduced and extended to mul-
tiple languages (Agirre et al. 2013; 2014; 2015;
2016; Cer et al. 2017). Sentences in these bench-
marks have been collected from news headlines,
video and image descriptions, glosses, machine
translation evaluation data, tweet news and com-
ments, questions and answers from Q&A forums,
and Wikipedia sentences. Annotations are crowd-
sourced in the form of similarity judgements on
a rating scale. The STS benchmark (Cer et al.,
2017) included in the GLUE benchmark (Wang
et al., 2018) has been translated to German using
machine translation systems.1

Generally, the STS task evaluates how well a
model has learned the semantic space and how se-
mantically meaningful the representations created
by the model are. It is widely used for evaluating
autoregressive and autoencoding language models.
Autoregressive LMs, such as GPT models (Radford
et al., 2018), can be tested on producing similar text
given a context and autoencoding LMs are tested
on creating semantically similar representations for
similar texts. Typically, STS is an approach for

1https://github.com/t-systems-on-site-services-
gmbh/german-STSbenchmark

evaluating conversational LMs, which are in turn
employed in the natural language understanding
(NLU) components of task-oriented dialogue sys-
tems (Yang et al., 2018; Henderson et al., 2019b,
2020; Casanueva et al., 2020; Vulic et al., 2021;
Henderson and Vulić, 2021).

To the best of our knowledge, the majority of the
benchmarks have been mainly created from written
language resources. This results in a sub-optimal
benchmark for the evaluation of conversational lan-
guage models in dialogue systems.

2.2 Conversational Datasets
In order to train, fine-tune or evaluate conversa-
tional models for task-oriented dialogue systems,
it is crucial to have datasets which are represen-
tative of the interaction in task-oriented dialogue.
Henderson et al. (2019a) introduce a repository of
three large and diverse datasets (Reddit, OpenSub-
titles, AmazonQA) for conversational tasks and
LM training, each consisting of context–response
pairs. Among these, the OpenSubtitles data con-
tains other languages, including German. Prior
to this work, Wang et al. (2013) present a dataset
of over 12K labeled post–response pairs from the
microblog domain. Moreover, Yang et al. (2018)
extracted pairs of input–response from a multi-turn
open-domain dialogue data, collected by Al-Rfou
et al. (2016) from Reddit. Given pairs of related
utterances, conversational LMs can be evaluated
on capturing the similarity of pairs of utterances by
generating semantically similar representations.

There are a few German conversational datasets
which are available for research purposes. Among
those, the BAS SmartKom corpus is a multi-modal
corpus, released in two versions (Schiel et al.,
2002; Schiel and Türk, 2006).2 The data has been
recorded in a Wizard-of-Oz setting and is labeled
with emotions, gestures, domains, noises, etc., and
therefore, it has a wide range of applications includ-
ing task-oriented dialogue systems. Frommherz
and Zarcone (2021) published 113 German dia-
logues, called CROWDSS3, collected using the
Wizard-of-Oz framework. Data is labeled with dia-
logue acts and covers one domain. Therefore, it can
be used for a variety of NLP tasks. These datasets
cannot be directly used as a German STS bench-
mark. In this paper, we use the audio transcriptions
of BAS SmartKom and the dialogues in CROWS-

2https://www.phonetik.uni-
muenchen.de/Bas/BasSmartKomPubliceng.html

3https://fordatis.fraunhofer.de/handle/fordatis/198
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DSS as our main resources for collecting multi-turn
German dialogues in our STS benchmark.

2.3 Conversational Fine-Tuning of LMs

Conversational learning tasks have been introduced
to adapt pretrained LMs to conversational models
in dialogue systems (Yang et al., 2018; Henderson
et al., 2019b, 2020; Casanueva et al., 2020; Vulic
et al., 2021; Henderson and Vulić, 2021). The core
idea in these tasks is to transform the pretraining
or target task into a language understanding task,
such as a pairwise STS task and a semantic relat-
edness task. For this purpose, pairs of queries and
responses are created from conversational data and
models are trained to score pair items. For instance,
Yang et al. (2018), Henderson et al. (2019b) and
Henderson et al. (2020) propose a pretraining re-
sponse selection task (Wang et al., 2013; Al-Rfou
et al., 2016; Yang et al., 2018) for learning con-
versational representations of dialogues. Vulic
et al. (2021) introduce CONVFIT, which is a two-
stage conversational fine-tuning approach. Similar
to previous approaches, first, pretrained LMs are
transformed into conversational encoders using the
response ranking task. Then, the target intent clas-
sification task is treated as a semantic similarity
task by pairing utterances in the same intent class
as positive pairs and in different classes as negative
pairs. Fine-tuning is therefore performed via the
STS task. A very recent generative language model,
PaLM (Chowdhery et al., 2022), is pretrained on
conversations, which is useful in conversational ap-
plications and dialogue systems. This model has
shown state-of-the-art performance on numerous
language understanding tasks.

3 The GiCCS Benchmark

3.1 Data Collection

Creating natural and diverse conversations is a ma-
jor challenge in the development of task-oriented
dialogue systems. It requires manual effort to
create such data by crowdsourcing or collecting
them from available resources. In this benchmark,
we leverage two crowdsourced conversational
datasets for German, CROWDSS4 (Frommherz
and Zarcone, 2021) and BAS SmartKom corpora
(Schiel et al., 2002; Schiel and Türk, 2006). Both
datasets have been collected via the Wizard-of-Oz
approach (Budzianowski et al., 2018) to simulate

4https://fordatis.fraunhofer.de/handle/fordatis/198

human-machine interaction and contain commonly-
used scenarios and domains in dialogue systems.

The CROWDSS dataset contains 113 multi-turn
dialogues in the restaurant booking domain and is
labeled with dialogue acts. We selected 24 unique
dialogues from the dataset starting with the ma-
chine’s first turn. We randomly split the collected
dialogues into two groups of size 12. Keeping all
turns would have resulted in a long dialogue his-
tory. Moreover, in some cases, the dialogue flow
changes from the initial intent after a few turns,
which is undesired in our benchmark. Therefore,
for the first group, we kept the first three turns of
12 dialogues and for the second group, we kept the
first five turns of the 12 dialogues. In a few cases,
we corrected some misspelled words or modified
the utterances to be more concise. We further ex-
tracted transcribed multi-turn dialogues from the
BAS SmartKom corpus along with their domain
labels for six out of eight domains: cinema, fax,
navigation, phone, tourist, and tv.5 From these,
we selected 6 unique multi-turn dialogues for each
domain, resulting in 36 unique dialogues in total.
Half of the dialogues contained three turns and
the second half contained five turns. In some dia-
logues, we shortened long utterances with multiple
sentences by removing irrelevant and unnecessary
information from the dialogue, resulting in more
focused dialogues.

After the dialogue collection process, we paired
the last turn of each dialogue with a set of five hand-
written utterances, which were produced by native
speakers of German language for this purpose. We
chose to hand-write the paired utterances, as pair-
ing randomly-selected sentences with the last turn
of each dialogue would have resulted in most sen-
tences being unrelated, which is sub-optimal for
benchmarking the models. We thus made sure that
the five utterances in the set had different relevancy
scores, ranging from unrelated to maximally simi-
lar. Following Cer et al. (2017), paired utterances
had to satisfy the following criteria to cover the
whole range of similarity scores: one paraphrase
of the last turn, one sentence that differs in some
unimportant details, one sentence that differs in
important details, one sentence that shares some
details with the last turn but it is not necessarily
on the same topic, and one completely unrelated
sentence. These similarity judgements on the utter-

5We extracted data from SK-Home, SK-Public,
and SK-Mobil corpora in the following link:
http://hdl.handle.net/11022/1009-0000-0001-231F-6.
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ances, based on above-mentioned criteria with the
main purpose of improving the diversity of the sim-
ilarity scores, were not used in the main annotation
task.

In the end, we obtained 60 dialogues, each paired
with five sentences, which resulted in 300 items for
the similarity score annotation.

3.2 Data Annotation

Best-Worst Scaling (BWS) (Cohen, 2003; Louviere
et al., 2015) is an annotation technique that ad-
dresses the limitations of rating scale techniques
by employing comparative annotations. In BWS,
annotators are presented with n items (n-tuple) at
a time and asked which item is the best, i.e., high-
est in terms of the property of interest (for exam-
ple, most similar in our study), and which is the
worst, e.g., least similar in our study. Annotations
are then aggregated to obtain real-valued scores
of association between the items and the property
(Orme, 2009). It has been practically shown that
forN items to be annotated, 1.5N to 2N tuples are
sufficient to obtain reliable scores (Louviere et al.,
2015; Kiritchenko and Mohammad, 2016). Tuples
have to be unique and the items in tuples are dis-
tinct. Moreover, each item occurs in approximately
the same number of tuples.

In this work, we used BWS to obtain the simi-
larity annotations in GiCCS. We created tuples for
each dialogue as follows: From N = 5 paired ut-
terances in each dialogue, we generated 2N = 10
distinct 3-tuples, where each tuple is a random set
of three paired utterances. The order of the terms in
the 3-tuples is not important, and (following BWS)
each term appears in six tuples. We obtained 600
distinct 3-tuples to be annotated.

We set up the annotation task on the crowdsourc-
ing platform Amazon Mechanical Turk (AMT). As
requirements for selecting crowd-workers on AMT,
we set the approval rate to greater than 98% and
the location to Germany. We provided a detailed
annotation instruction with examples and asked the
annotators to only participate in this study if they
were fluent in German. The annotators were pre-
sented with two dialogues at a time (one 3-turn dia-
logue and one 5-turn dialogue), each followed by
a 3-tuple for the best- and worst-questions (which
sentence is the most similar to the last utterance
in the dialogue? which is the least similar?). See
Appendix A.1 for details on the annotation instruc-
tions and a sample of the task presented to the

Dataset Dialogue turns α
BW Strong

question agreement

BAS
SmartKom

3-turn 0.87
best 99

worst 100

5-turn 0.80
best 98

worst 100

CROWDSS
3-turn 0.63

best 90
worst 94

5-turn 0.67
best 95

worst 97

Table 1: Krippendorff’s α and percentage of strong-
agreement cases for both source datasets.

workers. We also included an optional comment
section for workers. We collected five different
annotations for each 3-tuple.

3.3 Inter-Annotator Agreement

We computed inter-annotator agreement by con-
sidering cases where two annotators provided the
same answer to the best- and worst-questions as
cases of agreement and cases where two annotators
provided different answers to the best- and worst-
questions as cases of disagreement. The annotation
yielded an acceptable inter-annotator agreement
with an overall Krippendorff’s α of 0.74 (Artstein
and Poesio, 2008). Moreover, Table 1 shows the
Krippendorff’s α in each source dataset. As can be
seen, the overall agreement in BAS SmartKom is
higher than CROWDSS.

To provide a better overview of agreements, Ta-
ble 1 also shows the percentage of items in each
portion of the source dataset that had a strong agree-
ment. We define strong agreement as cases where
at least four out of five annotators selected the same
answer in the best and worst questions. Percent-
ages of strong agreement cases are high for both
source datasets, which speaks for the validity of
the best-worst scaling task. On the other hand, we
assume that the slightly lower percentages obtained
from the CROWDSS dataset might stem from the
fact that CROWDSS has a higher lexical diversity
and contains only one domain. This may result in a
more difficult comparison between best and worst
pairs for the annotators during the annotation pro-
cess. Results are also in agreement with the lower
inter-annotator agreement (α) for the CROWDSS
dataset.

3.4 Dataset Preparation

Annotation Aggregation. After the completion
of the annotation task, we calculated the final se-
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mantic similarity scores for dialogue–utterance
pairs from the BWS responses using a simple count-
ing method (Orme, 2009). For each pair, the seman-
tic similarity score is the proportion of times the
utterance was chosen as the best minus the propor-
tion of times the utterance was chosen as the worst
in the annotation task. This results in similarity
scores ranging from −1 to 1, which we normalized
to the interval [0, 1]. Finally, GiCCS includes 300
items, each containing a domain label, a multi-turn
dialogue context, a comparison utterance, and a
similarity score between the comparison utterance
and the last utterance in the dialogue.

Managing Domain Labels Since the domain
of some dialogues didn’t perfectly match the di-
alogues’ context (e.g., phone domain in the BAS
SmartKom corpora), we have relabeled some
of the dialogues from the original labels to ob-
tain a consistent domain labeling; also specified
in 3.1. The final dataset includes the follow-
ing domains: find_restaurant, find_tvProgram,
find_cinema, find_hotel, find_touristAttraction,
find_navigation.

3.5 The Dataset

Table 2 presents descriptive statistics about GiCCS.
We report the average turn length per domain, num-
ber of tokens per domain, and the unique count of
the lemmatized forms of the words. Tokens were
obtained by splitting text based on the whitespaces.
To obtain lemmas, i.e., the base form of words
that are present in a dictionary, we used the Ger-
man SpaCy model de_core_news_sm version 3.3.0
(Honnibal et al., 2020).6

In order to compare lexical richness between dia-
logues in each domain, we show root type-token ra-
tio (RTTR) as well as the measure of textual lexical
diversity (MTLD; McCarthy and Jarvis 2010) com-
puted with the threshold of 0.72 using the Lexical-
Richness library (Shen, 2022)7, as MTLD is more
robust to changes in text length. High RTTR and
MTLD in both 3-turn and 5-turn dialogues indicate
the lexical diversity of GiCCS. In particular, both
measures are high in the find_restaurant domain
suggesting that this domain may be more complex
and challenging for the annotators. This is re-
flected by lower agreement scores for CROWDSS
compared to BAS SmartKom (see Table 1) as most

6https://github.com/explosion/spacy-
models/releases/tag/de_core_news_sm-3.3.0

7https://github.com/LSYS/LexicalRichness

dialogues in the find_restaurant domain are from
the CROWDSS dataset.

4 Score Reliability Study

We now provide an analysis of the similarity scores
obtained with the BWS and of their reliability.

4.1 Score Distribution
Figure 1 shows the distribution of the obtained
similarity scores. As expected, the final scores
cover a wide range of similarity in the interval
[0, 1], which is useful for evaluating LMs on fine-
grained scoring and their ability on detecting the
nuances in semantics.
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scaled similarity scores
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Figure 1: Distribution of the final similarity scores in
the interval [0, 1].

A common issue in the rating scales technique
is the scale region bias, i.e., annotators have a bias
towards a portion of the scale, for instance, towards
the middle of the scale. The distribution of the
scores in our dataset exhibits that the scale region
bias issue was avoided using the BWS technique.

4.2 Split-Half Reliability
Another approach to measure the reliability of the
annotations is to assess the reproducibility of the
final scores. To measure this, we compute split-half
reliability (SHR; Cronbach 1951). To compute
SHR, we split the five annotations per tuple to two
halves of odd vs. even number of annotations ran-
domly. The first half (group A) includes two an-
notators, while the second half (group B) includes
three annotators. Then, similarity scores of paired
utterances are computed based on BWS responses
in each half. Finally, the Spearman correlation
between the scores obtained by these halves is cal-
culated as an estimate of the annotation reliability.
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Dialogue Domain RTTR MTLD Tokens Lemma Average turn
turns length

3-turn

find_restaurant 3.04 46.22 377 21 10.47
find_cinema 1.43 20.34 128 39 10.66
find_hotel 1.53 15.90 77 35 8.55
find_navigation 1.48 21.31 82 33 9.11
find_touristAttraction 1.78 29.60 114 30 12.66
find_tvProgram 1.81 30.06 165 28 11.00

5-turn

find_restaurant 3.01 36.91 739 47 11.36
find_cinema 2.08 25.06 297 66 11.88
find_hotel 1.53 17.56 106 76 7.06
find_navigation 1.62 21.80 122 27 8.13
find_touristAttraction 1.76 21.96 132 82 13.20
find_tvProgram 2.50 32.03 247 51 12.35

Table 2: Descriptive statistics of GiCCS (RTTR = root type-token ratio; MTLD = measure of textual lexical
diversity).

We repeat the SHR computation three times and re-
port the average correlations over the repeated runs
as shown in Table 3. A high Spearman correlation
in both datasets shows that the obtained similarity
scores are highly reliable. These results correspond
to the percentage of strong agreement cases in Ta-
ble 1. Slightly lower scores in CROWDSS are due
to the fact that the utterances from CROWDSS are
less varied in terms of domain diversity and an
agreement on the best and worst questions is more
challenging for the annotators.

Dataset Dialogue turns Spearman

BAS SmartKom
3-turn 0.975
5-turn 0.970

CROWDSS
3-turn 0.953
5-turn 0.946

Table 3: Average split-half reliability scores in each
source dataset.

4.3 Score Reliability Assessment with Expert
Annotation

We conduct an expert evaluation to ensure the final
scores per paired utterances match expert expecta-
tions. We presented the final dataset to a trained lin-
guist, excluding the final scores, and asked whether
the last turn of the dialogue and the paired utterance
showed either higher or lower than 0.5 similarity.

After assessing the results of the expert evaluation,
only two instances out of 300 items didn’t match
the evaluation (see Table 4). These are interesting
cases showing what it means for two utterances in a
conversational context to be similar or not: besides
a higher or lower degree of lexical overlap, the de-
gree of overlap in the intent behind the utterances
- only partial in one case but full in the other - is
what motivates the expert score.

5 Experiments

5.1 Evaluating Language Models on GiCCS

We conduct experiments on using GiCCS to evalu-
ate autoencoding and autoregressive multilingual
LMs, respectively. More specifically, we consider
two types of evaluation tasks for these models. The
first task, called pairwise STS, is about predicting
the similarity score for pairs of utterances, which
is a real-valued score between 0 and 1. This task
is used for examining autoencoding LMs, such as
BERT-based models (Devlin et al., 2019), on creat-
ing meaningful conversational representations for
utterances. The latter, called multiple-choice STS,
is about selecting the most similar utterance in a
multiple-choice question task. In this task, we eval-
uate autoregressive models, such as GPT models
(Radford et al., 2018, 2019), by considering the
dialogue history.

We focus on unsupervised STS, i.e., we evaluate
the performance of LMs without training or fine-
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Last turn of the dialogue Paired sentence Calculated score Expert evaluation

Die Innenstadt. Das Restaurant kann auf dem Land oder in der Stadt sein. 0.65 < 0.5
Downtown. The restaurant may be in the country or downtown.

Wie weit ist das? Wo befindet sich das Restaurant? 0.35 > 0.5
How far is it? Where is the restaurant located?

Table 4: Cases where the expert evaluation does not match the calculated score.

Model Pearson r Spearman ρ

STransformers
distiluse-base-multilingual-cased-v2 0.859 0.855
paraphrase-xlm-r-multilingual-v1 0.849 0.845
paraphrase-multilingual-MiniLM-L12-v2 0.842 0.842
paraphrase-multilingual-mpnet-base-v2 0.830 0.829
distilbert-multilingual-nli-stsb-quora-ranking 0.794 0.814

Encoder
deepset/gbert-large 0.666 0.680
deepset/gbert-large-sts 0.622 0.679

Table 5: Pearson and Spearman correlation results on all pairs in GiCCS.

tuning them on our data. All studied models are
downloaded from the Hugging Face Model Hub.8

5.1.1 Pairwise STS Evaluation Task
We examine the following LMs: 1) Multilingual
Sentence-Transformers (STransformers) (Reimers
and Gurevych, 2019), which are fine-tuned on Nat-
ural Language Inference (NLI) and STS tasks, and
2) German encoder-based LMs (Chan et al., 2020).
STransformers have been partly trained on spoken
text from the English MultiNLI corpus (Williams
et al., 2018) and extended to multilingual mod-
els using various datasets including conversational
data (Reimers and Gurevych, 2020). We conducted
experiments on five selected STransformer mod-
els, three of them have been trained on paraphrases
from conversational data, such as quora and Stack-
exchange9. Selected models can be found in Table
5. German encoder models have been pre-trained
partly on conversational corpora such as movie sub-
titles and one model was further fine-tuned on the
German STS benchmark10 (Cer et al., 2017).

In each model, the utterance embedding is com-
puted from the mean aggregation of its token em-
beddings. Then, the similarity score is obtained by

8https://huggingface.co/models
9Please refer to the following link for more information on

the training data: https://www.sbert.net
10https://github.com/t-systems-on-site-services-

gmbh/german-STSbenchmark

computing the cosine between the embeddings of
utterances in each pair. Following Cer et al. (2017)
and Reimers and Gurevych (2019), we measure
the performance of the models using the Spearman
rank r and Pearson ρ correlations of predicted and
gold scores. Table 5 shows the performance results
of different models on all dialogues.

As can be seen in Table 5, STransformers out-
perform pre-trained encoder models. In general,
since sentence transformers are finetuned on NLI
and STS containing spoken data and are trained to
specifically encode sentences, they can better cap-
ture the semantic similarity of utterances on sen-
tence level compared to pretrained models. Results
of the two encoder models indicate that finetuning
LMs on STS, which is a typical task for evaluating
language understanding through semantic similar-
ity, may not be always sufficient for improving the
model performance on conversations.

5.1.2 Multiple-Choice STS Evaluation Task
To examine autoregressive models, we follow the
prompting approach in GPT-3 (Brown et al., 2020)
and construct a prompt template for the multiple-
choice question task. For this purpose, each multi-
turn dialogue (containing the target utterance) is
followed by a question and five possible answers.
The question is to select the most similar utterance
to the last turn in the dialogue, and the possible an-
swers are the five utterances paired with the target
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Dialog:
Äußerung 1: Ich habe den Nachmittag in Heidelberg frei, möchte einen Bekannten treffen.

Informationen brauche ich über Sehenswürdigkeiten der Stadt. Kann ich bitte einen Plan haben?
Äußerung 2: Die Sehenswürdigkeiten von Heidelberg. Wenn du möchtest, kann ich auch einen Vorschlag machen.
Äußerung 3: Ich möchte gerne Museen, Kloster und Gebäude auch natürlich sehen. Aber zunächst Museen.

Frage: Wählen Sie die Äußerung, die der letzten Äußerung im Dialog am ähnlichsten ist.
Auswahl:
A. Ich habe vor, heute Reiten zu gehen.
B. Ich möchte gern zuerst Klöster sehen.
C. Ich würde gerne Kloster, Museen und Gebäude selbstverständlich auch sehen, aber zuerst Museen.
D. Ich würde gerne das Sportzentrum besuchen.
E. Ich würde gerne die Gebäude sehen, aber ich bin offen für andere Optionen, wie Klöster oder Museen.
Antwort:

Figure 2: A prompt example for the multiple-Choice STS evaluation task.

Model 3-turn Dialogue 5-turn Dialogue
w/ context w/o context w/ context w/o context

mGPT (Shliazhko et al., 2022) 0.133± 0.063 0.166± 0.069 0.100± 0.055 0.067± 0.046

Table 6: Zero-shot accuracy results on multiple-choice STS task for 3- and 5-turn dialogues.

sentence in GiCCS, among which the most similar
utterance is the correct answer. Figure 2 shows a
prompt example in our task. The model takes a
multi-turn dialogue followed by the question as the
input context. Then, it computes the likelihood of
generating each answer sentence, and the sentence
with the highest likelihood is selected as the cor-
rect answer. Since the STS task is reformulated as
a multiple-choice question with only one correct
answer, we compute the accuracy of predicting cor-
rect answers for all questions. We report the results
in the zero-shot setting.

Table 6 shows the evaluation results of a multi-
lingual autoregressive model, mGPT (Shliazhko
et al., 2022). We assume that the low performance
is due to the fact that the model is mainly trained
on written language data and is not focused on
conversational training. Providing the dialogue
history as the context for 5-turn dialogues resulted
in a slightly higher performance compared to an
evaluation without the dialogue history. This is not
the case for 3-turn dialogues. We speculate that
shorter dialogue history can be confusing for the
model and increasing the history helps in capturing
the context. Moreover, the task setup influences
the model performance. Therefore, the prompt
can be adapted to condition the LMs on the given
task to obtain a better performance.

6 Conclusion

We introduce GiCCS, a first German conversational
STS benchmark for evaluating language models
on semantic similarity. Each item in the benchmark
consists of a domain name, a multi-turn dialogue
history, a target utterance paired with the last utter-
ance in the dialogue, and a similarity score between
the paired utterances. We leveraged two German di-
alogue resources, BAS SmartKom and CROWDSS,
to collect our data as opposed to machine-translated
data. Annotations were crowdsourced using the
best-worst scaling technique, which shows a high
inter-annotator agreement with an overall Krippen-
dorff’s α of 0.74 and reliable annotations with an
average split-half reliability score of 0.973 for BAS
SmartKom and 0.949 for CROWDSS. Moreover,
the dialogue history was presented to the crowd-
workers for better similarity judgements based on
the conversational context. Final similarity scores
cover a wide range of similarities between 0 and
1 introducing a challenge for language models to
identify the nuances in semantics of different ut-
terances. Moreover, as the last utterance of each
dialogue is paired with five different utterances
each with its similarity score, GiCCS can be used
for evaluating ranking systems.

Results of evaluating LMs on the STS task using
GiCCS shows that pre-training LMs on conversa-
tional data brings benefits for the LMs on meaning-
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ful representations of conversations.
Overall, GiCCS is a useful resource for evaluat-

ing conversational models on capturing similarity
in conversational data. Moreover, due to the lack
of enough resources for evaluating conversational
models in non-English languages, we hope that
the annotation procedure described in this work
will foster an interest in creating more reliable and
high-quality resources similar to GiCCS.

7 Ethical Considerations and Licenses

The crowd-workers on Amazon Mechanical Turk
remain anonymous on AMT to adhere to the ethical
standards in the community. They were voluntarily
recruited, they provided their written informed con-
sent to participate in the study and were allowed to
opt out at any point in time .

To create GiCCS, two German dialogue re-
sources, BAS SmartKom and CROWDSS, were
used. In the BAS SmartKom resource, texts
were partly derived from the BAS SmartKom cor-
pora (corpus PID: 11022/1009-0000-0001-231F-6;
Schiel and Türk 2006)11 and we have received the
permission of the copyright holders of the BAS
SmartKom corpora to publish the derived text data
in our benchmark. CROWDSS corpora is licensed
under Attribution 4.0 International (CC BY 4.0).
GiCCS is released upon publication of this paper
and licensed under CC BY-NC-ND 3.0.12
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Yannick Frommherz and Alessandra Zarcone. 2021.
Crowdsourcing ecologically-valid dialogue data for
german. Frontiers in Computer Science, 3.

Matthew Henderson, Paweł Budzianowski, Iñigo
Casanueva, Sam Coope, Daniela Gerz, Girish Kumar,
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A Appendix

A.1 Annotation Instruction
By accepting the task, the workers are directed to
an interface where they are presented with a brief
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as well as a detailed instruction in German on how
to accomplish the task. The detailed instruction
contains a description of what the workers will ob-
serve in the actual HITS along with one example.
In the example, a dialogue history followed by two
questions are posed similar to what appears in the
actual experiment. The first question expects the
participants to choose an utterance from three given
options that is most similar to the last utterance of
the dialogue. Then, they are asked to choose an
utterance that is least similar to the last utterance
of the dialogue. In the instruction section, the right
answers are already selected. A sample of a dia-
logue and the two questions are presented in Figure
3.

Figure 3: A sample of the annotation task presented on
Amazon Mechanical Turk.
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Abstract

Prefix-tuning is a parameter-efficient and pow-
erful technique for adapting a pre-trained lan-
guage model to a downstream application.
However, it uses the same dataset-level tuned
set of parameters for all examples in the dataset.
We extend the framework with a dynamic
method, CONTROL PREFIXES, which allows
for the effective inclusion of input-dependent
information, thereby demonstrating how prefix-
tuning can be used for controlled text genera-
tion tasks. The method incorporates attribute-
level learnable representations into different
layers of a pre-trained Transformer, enabling
the generated text to be guided in a particular
direction. We provide a systematic evaluation
of the technique and apply it to five datasets
from the GEM benchmark for natural language
generation (NLG). Using only 0.1–2% addi-
tional trainable parameters, we show CON-
TROL PREFIXES can even outperform full fine-
tuning methods, and present state-of-the-art re-
sults on several data-to-text datasets, including
WebNLG. We also examine the common case
where input-dependent information is unavail-
able at test time and show CONTROL PREFIXES
can excel in this setting also.

1 Introduction

Approaches in text generation have been dominated
by adapting pre-trained language models (PLM) to
various downstream tasks. As the scale of PLMs
continue to climb, the cost of updating all the PLM
parameters per task, and resultant overhead of en-
tirely new parameter-sets per task becomes imprac-
tical. Furthermore, full fine-tuning has been shown
to result in catastrophic forgetting where knowl-
edge learnt from the pre-training task is lost and
natural language understanding overwritten (Peters
et al., 2019).

Recent work has demonstrated that it is possi-
ble to train these models by optimizing a negli-
gible fraction (0.01-2%) of additional parameters

while leaving the base PLM parameters unchanged
(Houlsby et al., 2019; Lester et al., 2021). Such
parameter-efficient transfer learning (PETL) can
achieve performance comparable to fine-tuning.
Prefix-tuning (Li and Liang, 2021), which trains a
prefix of additional key-value pairs at each layer,
and adapters (Rebuffi et al., 2017) are the two cur-
rent most popular PETL methods. Another alter-
native is in-context learning (ICL) (Brown et al.,
2020; Schick and Schütze, 2020), which supplies
hand-written prompts and requires no gradient-
based training. ICL has however shown to result
in poor performance as the number of fine-tuning
examples increases beyond a handful (Lester et al.,
2021). We therefore believe that PETL methods
provide a more promising direction for study.

A weakness of most PETL methods is that the
same additional parameters are used for all exam-
ples within a single task. As yet, there has been
little research exploring PETL methods that in-
corporate input-dependent parameters (Liu et al.,
2021a) for finer-grained control. Our work closes
this gap by introducing a novel framework which
extends prefix-tuning and demonstrates the util-
ity of controlling parameter-efficient learning for
data-to-text tasks. The method uses multiple mod-
ular control prefixes, trained simultaneously, which
can change alongside the input according to the
guidance signal. These dynamic prefixes operate
together with the static prefix parameters and allow
for finer-grained control over the frozen PLM. The
chosen attributes can provide additional context
about the input, for example, the sub-domain of a
data-to-text triple, or specify some aspect of the
desired output, such as the target length for text
simplification.

Controlled text generation aims to guide genera-
tion towards the desired attributes, by incorporating
various types of guidance (e.g. highlighted phrases
(Grangier and Auli, 2018)). Previous work has fo-
cused on directly updating all the existing model’s
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parameters (Keskar et al., 2019) or using a discrim-
inator to guide generation (Dathathri et al., 2020).
Other methods aim to generate text with specific
target qualities, independent of overall task perfor-
mance (Yu et al., 2021). In contrast, our proposed
method is designed for maximizing downstream
task performance through controlled text genera-
tion, while also doing it in a way that is parameter-
efficient and compatible with PETL.

The resulting parameter-efficient architecture
outperforms previous approaches, many of them
based on full fine-tuning, when evaluated on the
WebNLG (Gardent et al., 2017), WebNLG+ 2020
(Castro Ferreira et al., 2020), DART (Radev et al.,
2020) and E2E Clean (Dušek et al., 2019) data-to-
text datasets using the official evaluation scripts.
We also show that although these modular prefixes
are formed from shared reparameterizations and
operate at every layer, they provide a level of inter-
pretability, as similar control prefix representations
are learned by the model for semantically similar
attribute labels. This fact allows us to employ a
zero-shot technique to deal with the more common
case in controlled generation, where attribute-level
information is absent at inference time. In addi-
tion, we show the superiority of the architecture
to an alternative architecture of introducing iden-
tical guidance signal into prefix-tuning. In total,
we evaluate CONTROL PREFIXES on five popu-
lar datasets from the GEM benchmark (Gehrmann
et al., 2021, 2022) for natural language generation
and demonstrate the technique is easily extendable
to new tasks.1

2 CONTROL PREFIXES

2.1 Background

To evaluate our architecture, we focus on the data-
to-text generation task, where structured data (such
as database fields or tuples from a knowledge
graph) is transformed into natural language. The
objective is to model the conditional probability
P (Y |X) with X representing the structured input
and Y representing the tokenized output sequence.
As is done for current state-of-the-art (SOTA) sys-
tems (Ribeiro et al., 2020; Radev et al., 2020),
we linearize the structured table or graph input
into a tokenized sequence. For example, with the
WebNLG dataset, X is the linearized graph and Y
is a lexicalization of this graph—descriptive text

1We open-source CONTROL PREFIXES at https://
github.com/jordiclive/ControlPrefixes.

expressing all and only the information in the in-
put. However, the data also contains additional
information we can exploit: WebNLG is clustered
semantically into 15 different subdomains, and we
can use the subdomain of each example as an ex-
plicit input-dependent attribute for our model.

In this work, we experiment with T5-large (Raf-
fel et al., 2020) and BARTLARGE (Lewis et al.,
2020) as the underlying pre-trained LMs with pa-
rameters ϕ. As we consider fixed LM methods,
these parameters ϕ are always kept frozen. Both
are Transformer encoder-decoder where decoding
proceeds auto-regressively. They have been pre-
trained with the denoising objective, so they are
good candidates for the data-to-text task. They
have also been employed by top performers in pub-
lic challenges such as the WebNLG+ 2020 Chal-
lenge (Castro Ferreira et al., 2020).

2.2 Intuition
Using a frozen PLM that captures broad natural
language understanding provides the model with a
parameter-efficient starting point that already has
capacity for linguistic fluency. Combining these
frozen parameters with a trainable task represen-
tation for data-to-text allows the model to learn
how to use the LM to lexicalize graphs. More-
over, introducing attribute-level parameters, such
as the subdomain of the data-to-text input, allows
us to guide the generation further into a required
direction relevant to all inputs associated with that
domain.

The general task-specific parameters can them-
selves adapt to the modular control prefixes, which
change according to the guidance signal for each
input X . CONTROL PREFIXES can therefore
leverage input-level information while being a
parameter-efficient tuning method.2 For this work,
we only consider discrete labels as attributes for
the guidance signal.

2.3 Description
A prefix (Li and Liang, 2021) is a set of additional
learned key-value pairs at every layer. Our model
uses a general task prefix Pθ ("task-specific pa-
rameters") and also trains a set of control prefixes
Cθ that change depending on the input ("attribute-
level parameters"). This requires attribute-level
information or guidance G, to indicate which con-
trol prefixes to be used while processing a given

2We use the term parameter-efficient to denote methods
that update <2% of a base LM’s parameters.
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Prefix-tuning

Single Task Batch 

Control Prefixes Control Prefixes 
(70k - 400k params each)

1

Pre-trained Model 
(0.4B params)

i) guidance

General Task Prefix
 (400k - 8M params)

2

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 3

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 4

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 5

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit>

1P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit>

General Task Prefix
 (400k - 8M params)

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 2

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 3

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 4

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit> 5

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit>

ii) control prefixes

1

2

3

4

5

1

2

3

4

5

Single Task Batch 

CA
<latexit sha1_base64="dp8I+3Ays/IdWIzTgj7NaTxLXsE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstERpLDGRjwQuZG9ZYMPe3mV3zoRc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweT+txvP3FtRKQecRpzP6QjJYaCUbRSu17up7ezcr9YcivuAmSdeBkpQYZGv/jVG0QsCblCJqkxXc+N0U+pRsEknxV6ieExZRM64l1LFQ258dPFuTNyYZUBGUbalkKyUH9PpDQ0ZhoGtjOkODar3lz8z+smOLzxU6HiBLliy0XDRBKMyPx3MhCaM5RTSyjTwt5K2JhqytAmVLAheKsvr5NWteJdVaoP1VLtLosjD2dwDpfgwTXU4B4a0AQGE3iGV3hzYufFeXc+lq05J5s5hT9wPn8AUfeO5Q==</latexit>

CA
<latexit sha1_base64="dp8I+3Ays/IdWIzTgj7NaTxLXsE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstERpLDGRjwQuZG9ZYMPe3mV3zoRc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweT+txvP3FtRKQecRpzP6QjJYaCUbRSu17up7ezcr9YcivuAmSdeBkpQYZGv/jVG0QsCblCJqkxXc+N0U+pRsEknxV6ieExZRM64l1LFQ258dPFuTNyYZUBGUbalkKyUH9PpDQ0ZhoGtjOkODar3lz8z+smOLzxU6HiBLliy0XDRBKMyPx3MhCaM5RTSyjTwt5K2JhqytAmVLAheKsvr5NWteJdVaoP1VLtLosjD2dwDpfgwTXU4B4a0AQGE3iGV3hzYufFeXc+lq05J5s5hT9wPn8AUfeO5Q==</latexit>

CC
<latexit sha1_base64="XLIJiscLghWNQd8bo2OKSDycKDo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBlMYxnBfEByhL3NXrJkb+/YnRPCkR9hY6GIrb/Hzn/jJrlCEx8MPN6bYWZekEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGnO/88S1EbF6xGnC/YiOlAgFo2ilTqMyyBqzyqBUdqvuAmSdeDkpQ47moPTVH8YsjbhCJqkxPc9N0M+oRsEknxX7qeEJZRM64j1LFY248bPFuTNyaZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/9TKgkRa7YclGYSoIxmf9OhkJzhnJqCWVa2FsJG1NNGdqEijYEb/XlddKuVb3rau2hVq7f5XEU4Bwu4Ao8uIE63EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx9VA47n</latexit>

CB
<latexit sha1_base64="D6aQcaOGr1e7oHxF+ihRQ5BwItg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTQWGIiHwlcyN4ywIa9vcvungm58CNsLDTG1t9j579xgSsUfMkkL+/NZGZeEAuujet+O7mt7Z3dvfx+4eDw6PikeHrW1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8G0sfA7T6g0j+SjmcXoh3Qs+YgzaqzUaZQHaX1eHhRLbsVdgmwSLyMlyNAcFL/6w4glIUrDBNW657mx8VOqDGcC54V+ojGmbErH2LNU0hC1ny7PnZMrqwzJKFK2pCFL9fdESkOtZ2FgO0NqJnrdW4j/eb3EjO78lMs4MSjZatEoEcREZPE7GXKFzIiZJZQpbm8lbEIVZcYmVLAheOsvb5J2teLdVKoP1VKtnsWRhwu4hGvw4BZqcA9NaAGDKTzDK7w5sfPivDsfq9ack82cwx84nz9TfY7m</latexit>

CB
<latexit sha1_base64="D6aQcaOGr1e7oHxF+ihRQ5BwItg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTQWGIiHwlcyN4ywIa9vcvungm58CNsLDTG1t9j579xgSsUfMkkL+/NZGZeEAuujet+O7mt7Z3dvfx+4eDw6PikeHrW1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8G0sfA7T6g0j+SjmcXoh3Qs+YgzaqzUaZQHaX1eHhRLbsVdgmwSLyMlyNAcFL/6w4glIUrDBNW657mx8VOqDGcC54V+ojGmbErH2LNU0hC1ny7PnZMrqwzJKFK2pCFL9fdESkOtZ2FgO0NqJnrdW4j/eb3EjO78lMs4MSjZatEoEcREZPE7GXKFzIiZJZQpbm8lbEIVZcYmVLAheOsvb5J2teLdVKoP1VKtnsWRhwu4hGvw4BZqcA9NaAGDKTzDK7w5sfPivDsfq9ack82cwx84nz9TfY7m</latexit>

CA
<latexit sha1_base64="dp8I+3Ays/IdWIzTgj7NaTxLXsE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstERpLDGRjwQuZG9ZYMPe3mV3zoRc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweT+txvP3FtRKQecRpzP6QjJYaCUbRSu17up7ezcr9YcivuAmSdeBkpQYZGv/jVG0QsCblCJqkxXc+N0U+pRsEknxV6ieExZRM64l1LFQ258dPFuTNyYZUBGUbalkKyUH9PpDQ0ZhoGtjOkODar3lz8z+smOLzxU6HiBLliy0XDRBKMyPx3MhCaM5RTSyjTwt5K2JhqytAmVLAheKsvr5NWteJdVaoP1VLtLosjD2dwDpfgwTXU4B4a0AQGE3iGV3hzYufFeXc+lq05J5s5hT9wPn8AUfeO5Q==</latexit>

CC
<latexit sha1_base64="XLIJiscLghWNQd8bo2OKSDycKDo=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBlMYxnBfEByhL3NXrJkb+/YnRPCkR9hY6GIrb/Hzn/jJrlCEx8MPN6bYWZekEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGnO/88S1EbF6xGnC/YiOlAgFo2ilTqMyyBqzyqBUdqvuAmSdeDkpQ47moPTVH8YsjbhCJqkxPc9N0M+oRsEknxX7qeEJZRM64j1LFY248bPFuTNyaZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/9TKgkRa7YclGYSoIxmf9OhkJzhnJqCWVa2FsJG1NNGdqEijYEb/XlddKuVb3rau2hVq7f5XEU4Bwu4Ao8uIE63EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx9VA47n</latexit>

CB
<latexit sha1_base64="D6aQcaOGr1e7oHxF+ihRQ5BwItg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTQWGIiHwlcyN4ywIa9vcvungm58CNsLDTG1t9j579xgSsUfMkkL+/NZGZeEAuujet+O7mt7Z3dvfx+4eDw6PikeHrW1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8G0sfA7T6g0j+SjmcXoh3Qs+YgzaqzUaZQHaX1eHhRLbsVdgmwSLyMlyNAcFL/6w4glIUrDBNW657mx8VOqDGcC54V+ojGmbErH2LNU0hC1ny7PnZMrqwzJKFK2pCFL9fdESkOtZ2FgO0NqJnrdW4j/eb3EjO78lMs4MSjZatEoEcREZPE7GXKFzIiZJZQpbm8lbEIVZcYmVLAheOsvb5J2teLdVKoP1VKtnsWRhwu4hGvw4BZqcA9NaAGDKTzDK7w5sfPivDsfq9ack82cwx84nz9TfY7m</latexit>

hX,Y,Gi
<latexit sha1_base64="Kl0ZE5hyBPxabYIS6weKythRS50=">AAACCnicbVA9SwNBEN2L3/Hr1NJmNQgWIdxFQcughZYKxkRyIext5pIle3vH7pwQQmob/4qNhSK2/gI7/42bmEITHww83pthZl6YSmHQ876c3Nz8wuLS8kp+dW19Y9Pd2r41SaY5VHkiE10PmQEpFFRRoIR6qoHFoYRa2Dsf+bV70EYk6gb7KTRj1lEiEpyhlVruXiAhwkAy1ZFA60V6V6QXgRadLgZ6LLbcglfyxqCzxJ+QApngquV+Bu2EZzEo5JIZ0/C9FJsDplFwCcN8kBlIGe+xDjQsVSwG0xyMXxnSA6u0aZRoWwrpWP09MWCxMf04tJ0xw66Z9kbif14jw+i0ORAqzRAU/1kUZZJiQke50LbQwFH2LWFcC3sr5V2mGUebXt6G4E+/PEtuyyX/qFS+Pi5UziZxLJNdsk8OiU9OSIVckitSJZw8kCfyQl6dR+fZeXPef1pzzmRmh/yB8/EN94qZzg==</latexit>

hX,Y i
<latexit sha1_base64="GHFYXsGntUwf3+vO1neaY9T/v0Q=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBg4TdKOgx6MVjBPOQbAizk95kyOzsMtMrhJCbF3/FiwdFvPoL3vwbJ4+DJhY0FFXddHcFiRQGXffbySwtr6yuZddzG5tb2zv53b2aiVPNocpjGetGwAxIoaCKAiU0Eg0sCiTUg/712K8/gDYiVnc4SKAVsa4SoeAMrdTOH/oSQvQlU10JtHFK730tuj309URp5wtu0Z2ALhJvRgpkhko7/+V3Yp5GoJBLZkzTcxNsDZlGwSWMcn5qIGG8z7rQtFSxCExrOPljRI+t0qFhrG0ppBP198SQRcYMosB2Rgx7Zt4bi/95zRTDy9ZQqCRFUHy6KEwlxZiOQ6EdoYGjHFjCuBb2Vsp7TDOONrqcDcGbf3mR1EpF76xYuj0vlK9mcWTJATkiJ8QjF6RMbkiFVAknj+SZvJI358l5cd6dj2lrxpnN7JM/cD5/AI8qmR0=</latexit>

Pre-trained Model 
(0.4B params)

P<latexit sha1_base64="5IMIqFyp0CeZF3DYguVFocXb6B0=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIUJIEL2Vv2YMPe3mV3zoRc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwzGNzP/8YlrI2L1gJOE+xEdKhEKRtFK99VmtV+uuDV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophld+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNh2I0y</latexit>
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Figure 1: Prefix-tuning and CONTROL PREFIXES in the single-task setup for a PLM such as BARTLARGE . The
same single-task batch (examples 1,2,3,4 and 5) is considered for both setups. Left: Prefix-tuning has one general
prefix P for all examples. Right: CONTROL PREFIXES utilizes additional attribute information at the input-level, G,
in i). This conditional information is used in ii) to dictate which control prefix (CA, CB , CC ) to use for a particular
example in a batch. This takes advantage of prefix-tuning’s capacity to include different prefixes in one forward
pass.

input X .3 Let us consider the parallel corpus
Z =

{〈
Xj , Y j , Gj

〉}
j=1,..,N

, where Gj indicates
all the conditional attribute-level information for
the sample j. The goal is to optimize through gradi-
ent descent the final inference parameters, θ, whilst
the underlying ϕ parameters of the pre-trained LM
remain frozen:

θ∗ = argmax
θ

N∑

j=1

log p
(
Y j | Xj , Gj ;Pθ, Cθ, ϕ

)
.

(1)

Encoder-decoder We use d to represent the hid-
den state dimension and L the number of layers.
We use (E,Dc,Ds) to denote the three classes
of attention present in each layer: self-attention
in the encoder (E), decoder cross-attention (Dc)
and decoder self-attention (Ds). For an attention
computation in the l-th layer, the query, key and
value matrices are denoted Ql ∈ RN×d, and Kl,
Vl ∈ RM×d, where N is the number of tokens in
the series relating to queries, and M is the number
of tokens in the series relating to keys and values.

General Prefix For each attention class
(E,Dc,Ds), a distinct prefix of key-value pairs
is learnt, P = {P1, . . . , PL}, where Pl ∈
Rρ×2d ∀l ∈ {1, . . . , L}. P ∈ Rρ×2dL and ρ is
the prompt length, i.e. the number of additional
key-value pairs in each attention computation. In
prefix-tuning4, for an attention computation in the

3We discuss cases where G is not present in §5.2.
4There has been confusion in recent work concerning dif-

ferent forms of prefix-tuning (Li and Liang, 2021). For details
and observations of the benefits conferred by key-value pair
prefix-tuning, see Appendix C.

l-th layer, Kl and Vl are augmented to become

K ′
l = [Pl,K ;Kl] , V

′
l = [Pl,V ;Vl] (2)

where K ′
l , V

′
l ∈ R(ρ+M)×d. The overall

general prefix, parameterized by θ, is Pθ ={
PE , PDc, PDm

}
, where Pθ ∈ Rρ×6dL.

Control Prefixes In addition to the general pre-
fixes, we introduce control prefixes that change
depending on the input attribute value. Let us con-
sider one attribute, for example the domain of the
input table (e.g. sports team, athlete etc.) with R
possible values: Cθ = {Cθ,1, . . . , Cθ,R}, where
Cθ,r ∈ Rρc×6dL, ∀r ∈ {1 . . . .R}. Cθ,r represents
the control prefix learnt for the r-th attribute label
and the parameter ρc denotes the control prompt
length for this particular attribute.5 Let A be a
function which returns the corresponding control
prefix for the attribute label indicated by G. Using
CONTROL PREFIXES, the attention keys Kl and
values Vl are augmented to become:

K ′′
l = [A(G)l,K ;Pl,K ;Kl] ,

V ′′
l = [A(G)l,V ;Pl,V ;Vl]

(3)

where K ′′
l , V

′′
l ∈ R(ρc+ρ+M)×d.

Shared Re-parameterization Li and Liang
(2021) found that prefix optimization is stabilized
by increasing the number of trainable parameters.
This is achieved by introducing a feed-forward net-
work to re-parameterize the prefix. Rather than one
network, we use three distinct two-layered large

5The method can be generalized to multiple attributes, each
with control prefixes of different length.
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feed-forward neural networks for each attention
class, applied row-wise. For each attention class
(E,Dc,Ds), P = MLP(P̃ ) where P̃ ∈ Rρ×d is
smaller than the matrix P ∈ Rρ×2dL, and each
MLP has an intermediate dimension k which we
set to 800. Once training is complete, the output
of the MLP can be saved as the new prefix and the
MLP parameters themselves can be discarded.

As described for the general prefix, Pθ, each
control prefix, Cθ,r, comprises three constituents
for each attention class: Cθ,r =

{
CE
r , C

Dc
r , CDs

r

}
.

The re-parameterization of Cθ,r occurs in the same
manner as Pθ, sharing the same MLPE , MLPDc

and MLPDs. We found that using shared re-
parameterization matrices provided performance
improvements and led to more stable learning,
while also significantly reducing the total number
of parameters.

3 Experimental Setup

3.1 Datasets, Guidance and Metrics

Following Li and Liang (2021), we evaluate on the
data-to-text datasets DART (Radev et al., 2020) and
WebNLG (Gardent et al., 2017). In addition, we
report results on E2E Clean (Dušek et al., 2019)6,
a dataset focused on the restaurant domain. The
structured knowledge input in these datasets is in
the form of a graph or table and can be linearized
for sequence-to-sequence learning.

WebNLG contains graphs from DBPedia (Auer
et al., 2007) and the dataset is clustered semanti-
cally into different categories. The test set is di-
vided into two partitions: “Seen”, which contains
10 DBpedia categories present in the training set,
and “Unseen”, which covers 5 categories never
seen during training.7 These categories, such as
Airport or Food are used as a guidance attributes
for CONTROL PREFIXES (indicated by A1 in Ta-
ble 1); our approach for the unseen categories is
discussed in §5.2. The intuition of the category
providing useful information is supported by stud-
ies showing a clear disparity in the performance
of different model types between different cate-
gories (Moryossef et al., 2019; Castro Ferreira
et al., 2020). By providing the category explicitly,
the model is able to adjust its generation depending
on the required target domain.

6The same version as in GEM (Gehrmann et al., 2021).
7All the training category labels are visible in Appendix

D, where we visualize control prefixes, corresponding to each
training category.

DART is an open-domain, multi-source corpus,
with six sources: internal and external human an-
notation of both Wikipedia tables and WikiSQL,
as well as the two existing datasets WebNLG and
E2E Clean. Radev et al. (2020) showed fine-tuning
T5-large on the WebNLG dataset with only the hu-
man annotated portion of DART achieves SOTA
performance, whilst using the whole DART dataset
is not as effective. Nevertheless, this inspired the
idea of using the six DART sub-dataset sources
as a controllable attribute, represented by A2 in
Table 1. This strategy was inspired by previous
work which incorporates auxiliary scaffold tasks
in multitask learning to improve span-labeling and
text classification (Swayamdipta et al., 2018; Co-
han et al., 2019; Cachola et al., 2020). For E2E
Clean, which is itself a part of DART, our CON-
TROL PREFIXES model is trained on the additional
components of the DART dataset with the explicit
data source labels as guidance to act as scaffold
framework.

CONTROL PREFIXES incorporates the attribute
knowledge into a parameter-efficient architecture,
giving it greater control over the generation process
and allowing us to guide the output in a required
direction. This provides a way of incorporating
information about the data that would otherwise
be left unused (such as the source domain of the
input), or directing the generated output based on
user preferences (for example by specifying the
length of a simplified text).

We ensured that the attribute values used at in-
ference time are permitted by all the shared task
organizers corresponding to each dataset. In sec-
tion §5.2 we also investigate settings where the at-
tribute values are previously unseen or unavailable
during inference. Also, note that additional train-
ing data is permitted by the organizers of the E2E
Clean and WebNLG datasets. For example, the
SOTA for WebNLG is a T5-large model fine-tuned
on WebNLG and the human annotated portion of
DART (Radev et al., 2020).

3.2 Metrics and Evaluation using GEM

We use the official evaluation scripts and report
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), and TER (Snover et al., 2006)
metrics8. In support of thorough NLG evaluation,
we also report lexical similarity and diversity char-

8Additional evaluation script metrics, including machine-
learned are found in Appendix A
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acterization metrics, including machine-learned
metrics, from the GEM (Gehrmann et al., 2021)
evaluation suite in Appendix Tables 8,9.

Although we use data-to-text and text simpli-
fication datasets to demonstrate the technique is
effective, it can be applied to any generation task
cast as a sequence-to-sequence problem which sim-
ilarly benefit form parameter-efficient control.

3.3 Training Details

We implement prefix-tuning and CONTROL PRE-
FIXES for T5-large rather than GPT-2, as T5-large
provides a stronger baseline and enables compar-
ison with SOTA systems.9 For the data-to-text
datasets, we follow Ribeiro et al. (2020) and lin-
earize the triples that form the input graph, prepend-
ing the special tokens <H>, <R>, and <T> before
the subject, predicate, and object of an individual
triple. The embeddings relating to these special
tokens are the only embeddings we train, as our
work is focused on fixed LM methods. We also
prepend “translate Graph to English: ” to every
input (Raffel et al., 2020). We provide full training
and hyperparameter details in Appendix E.

4 Data-to-Text Results

We indicate the guidance signal(s) used by each
CONTROL PREFIXES model with A1 for the
WebNLG subdomain category and A2 for the
DART sub-dataset source.

Results in Table 1 show that for DART, both
CONTROL PREFIXES (A2) and prefix-tuning at-
tain higher performance than the current SOTA,
which is T5-large fined-tuned (Radev et al., 2020),
by 1.29 and 0.54 BLEU points respectively. Note
the results in the main body of the GEM paper
(Gehrmann et al., 2021) are reported on the valida-
tion set rather than the test set as is done here.

The SOTA for WebNLG is a T5-large model
fine-tuned on WebNLG and the human annotated
portion of DART (Radev et al., 2020). Compared
to this model, CONTROL PREFIXES achieves a 0.83
higher BLEU overall, and 1.33 on the Seen cate-
gories. Notably, CONTROL PREFIXES (A1) outper-
forms CONTROL PREFIXES (A1,A2) on the Seen
component of the dataset, but does not general-
ize as well to the unseen categories, indicating the
benefit of using both controllable attributes. The

9BARTLARGE exhibits inferior performance to T5-large on
data-to-text; for example, 9.7 BLEU points lower on WebNLG
Unseen (Ribeiro et al., 2020).

prefix-tuning model with additional DART data,
like the SOTA, is trained on only the human an-
notated portion and yields a minor performance
increase of 0.05 BLEU compared to prefix-tuning
solely trained on WebNLG. We believe this indi-
cates that for fine-tuning, training on a comple-
mentary type of additional data allows the PLM to
maintain more NLU by not over-fitting a narrow
distribution, leading to better LM generalization.
In contrast, for prefix-tuning, much of this gain
has already been realized by retaining the original
frozen parameters.

The SOTA (Harkous et al., 2020) for E2E Clean
consists of a fine-tuned GPT-2 with a semantic
fidelity classifier trained on additional generated
data. CONTROL PREFIXES (A2), which can lever-
age the heterogeneous DART datasets, outperforms
this model in terms of the BLEU score. We also
report results on the less popular WebNLG+ 2020
(Castro Ferreira et al., 2020) dataset (GEM), the
second official WebNLG competition, in Appendix
D.

5 Zero-shot Learning

5.1 Visualizing Control Prefixes

We experiment with visualizing the optimized con-
trol prefixes, in order to investigate what patterns
they have learned. For this, we train a model for the
task of text simplification, using the relative text
compression rate as an attribute for the control pre-
fix (additional details of this experiment in §7). Fig.
2 displays t-SNE (Maaten and Hinton, 2008) visu-
alizations of the learned control prefix parameters
in the decoder self-attention. A clear monotonic
pattern emerges, showing that control prefixes for
similar compression rate values are close to each
other in the representation space. This property
can be useful for investigating different attributes
or inferring representations for unseen attribute val-
ues. In Appendix F we present additional graphs
for control prefixes in the encoder and the cross-
attention of the model.

5.2 Unseen WebNLG Categories

The control prefix parameters are optimized during
training for each attribute value. However, in some
settings we may need to handle attribute values that
were not present in the training data and therefore
have no matching control prefixes available. For
example, the category attributes in the WebNLG
Unseen subset are all novel and were not repre-
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ϕ% DART ϕ% WebNLG ϕ% E2E Clean

BLEU METEOR TER ↓ S U A BLEU METEOR

T5-large fine-tuned 100 50.66 40 43 100 64.89 54.01 59.95 100 41.83 38.1
SOTA 100 50.66 40 43 100 65.82 56.01 61.44 100 43.6 39

Prefix-tuning 1.0 51.20 40.62 43.13 1.0 66.95 55.39 61.73 1.0 43.66 39.0
CONTROL PREFIXES (A1) - - - - 1.4 67.32 55.38 61.94 - - -

+Data: DART
Prefix-tuning 1.0 51.20 40.62 43.13 1.0 67.05 55.37 61.78 1.0 43.04 38.7
CONTROL PREFIXES (A2) 1.1 51.95 41.07 42.75 1.0 66.99 55.56 61.83 1.0 44.15 39.2
CONTROL PREFIXES (A1,A2) - - - - 1.4 67.15 56.41 62.27 - - -

Table 1: Data-to-text test set results reported on the respective official evaluation scripts. ϕ% denotes the trainable
parameters as a % of the fixed-LM parameters required at inference time. T5-large fine-tuned results for WebNLG
are from Ribeiro et al. (2020) and for DART are from Radev et al. (2020). Several of the baseline results were only
reported to the significant figures shown. A1 signifies models trained with control prefixes for the WebNLG category
attribute, and A2 with control prefixes for the DART sub-dataset source attribute. For WebNLG, S, U and A refer to
BLEU scores for the Seen, Unseen and All portions of the dataset. The DART results are reported on the official
evaluation script for v1.1.1, the same version as the official leaderboard. A CONTROL PREFIXES model attains
state-of-the-art results for each dataset.
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Figure 2: t-SNE visualizations for the decoder self-
attention constituent of the simplification model’s length
compression control prefixes. Each circle represents a
control prefix corresponding to each length ratio (bins
of fixed width 0.05, from 0 to 1.1).

sented in the training set. While no suitable control
prefixes exist for these categories, they each have a
textual label available in the dataset. Experiments
in Fig. 2 also established that similar attribute la-
bels learn similar parameter values in their control
prefixes. This gives us some prior on the properties
of the unseen categories, which we show is enough
to perform zero-shot transfer with control prefixes.

We first map the textual label of each WebNLG
category to a Glove embedding(Pennington et al.,
2014).10 Then for each Unseen category, we find

10Glove Common Crawl (840B tokens, 2.2M vocab, cased,

OOV Zero-shot

WebNLG 56.35 56.41

WebNLG+ 2020 50.02 50.39

Table 2: A comparison of the BLEU performance on
the Unseen portions for WebNLG test sets, with i) a
single OOV Control Prefix used for all samples from
unseen categories, or ii) the zero-shot transfer approach
outlined, utilizing the available textual labels.

the Seen category with the highest cosine similarity
in the embedding space, and use its learned control
prefix to also represet the corresponding Unseen
category. For example, the control prefix for the
seen category SportsTeam is used for examples
relating to the unseen category Athlete.11

Table 2 shows results for the zero-shot transfer
method on both WebNLG datasets. For compar-
ison, we also report results using a single out-of-
vocabulary (OOV) control prefix for all unseen
categories. This OOV control prefix is trained by
randomly selecting 2% of the categories in each
training batch and replacing them with a general
OOV category. These results indicate that zero-shot
transfer based on word embeddings and textual la-
bels provides an advantage over learning a single
OOV representation.

300d vectors).
11Appendix I displays model output for WebNLG along

with the zero-shot procedure.
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ϕ% ASSET TurkCorpus

SARI FKGL ↓ SARI FKGL ↓

Gold Reference - 44.87 6.49 40.04 8.77
BARTLARGE with ACCESS† 100 43.63 6.25 42.62 6.98
BARTLARGE fine-tuned 100 39.91∗ 7.73∗ 39.55∗ 7.73∗

Prefix-tuning 1.8 40.12 7.28 39.06 7.28
CONTROL PREFIXES 1.8 43.58 5.97 42.32 7.74

Table 3: Simplification results on ASSET and TurkCorpus test sets. †This model is from Martin et al. (2020), where
the authors fine-tuned BARTLARGE model alongside control tokens for the four attributes. The CONTROL PREFIXES
model is trained with control prefixes for these same four attributes. Prefix-tuning and CONTROL PREFIXES use
BARTLARGE as the fixed LM. The ∗ denotes baseline results calculated in this study—the model outputs of Martin
et al. (2020) are publicly available. The BARTLARGE with ACCESS and CONTROL PREFIXES model are the average
test set results over 5 random seeds. We bold the best results of parameter-efficient models in the results tables,
while fully fine-tuned models and human performance are reported for reference.

6 Token-level control

For comparison, we also investigated a simpler ar-
chitecture: prefix-tuning combined with control
tokens (Keskar et al., 2019). In this setting, the
model receives the same guidance signals as CON-
TROL PREFIXES, but instead uses trainable control
tokens for representing the attribute values. The
main model is kept frozen, while the general prefix
is optimized along with embeddings for the con-
trol tokens, allowing us to benchmark against a
different parameter-efficient architecture. Note, we
chose to compare against a prefix-tuning based ar-
chitecture as the fully fine-tuned models lag behind
prefix-tuning in Table 1.

The results for this experiment are included in
Appendix G. We found that CONTROL PREFIXES

consistently outperformed control tokens on all
three data-to-text datasets. This indicates that CON-
TROL PREFIXES is a superior parameter-efficient
framework for leveraging additional information,
whilst maintaining the fixed-LM property. Control
tokens lack the shared re-parameterization of static
and dynamic parameters. They are only able to
inject information at the embedding level, making
them less expressive than the CONTROL PREFIXES

method.

CONTROL PREFIXES fundamentally depends on
the strength of the guidance signal. This is re-
flected in the constraint of attribute information be-
ing available with the dataset. However, we show
that CONTROL PREFIXES is a powerful general
method which can utilize this signal to achieve a
consistent improvement across an array of tasks.

7 Applicability to other tasks

Finally, we investigate the application of CONTROL

PREFIXES to generation tasks beyond the data-to-
text setting. For these experiments, we integrate the
method with a sequence-to-sequence model trained
for text simplification on the WikiLarge (Zhang
and Lapata, 2017) dataset. Following Martin et al.
(2020), the model uses four simplification-specific
attributes as control prefixes: the length compres-
sion ratio, replace-only Levenshtein similarity, ag-
gregated word frequency ratio and dependency tree
depth ratio. 12

In Table 3 we report SARI (Xu et al., 2016)
and FKGL (Kincaid et al., 1975) metrics.13 For
comparison, we report results for BARTLARGE with
ACCESS (Martin et al., 2020), which is a fully
fine-tuned model that also integrates the same four
attributes but uses control tokens instead. The
results show that CONTROL PREFIXES is able
to outperform the fully fine-tuned BART on the
task of simplification, even though it optimizes
only 1.8% of the parameters. When compared to
BARTLARGE with ACCESS, the results for CON-
TROL PREFIXES are competitive while still being
substantially more parameter-efficient. Note this
model has the benefit of full fine-tuning and we are
already at maximum performance for the datasets
as assessed by these metrics. This is indicated by
the Gold Reference scores, which evaluates against
other human annotators.

12Refer to Martin et al. (2020) for full attribute details.
13We use the FKGL and the latest version of SARI imple-

mented in EASSE (Alva-Manchego et al., 2019) which is also
used by Martin et al. (2020).

369



8 Related Work

Controlled generation aims to incorporate various
types of guidance beyond the input text into the
generation model (Kikuchi et al., 2016). Johnson
et al. (2016) trained a translation model with con-
trol tokens to encode each language, and Keskar
et al. (2019) pre-trained a 1.63B parameter model,
alongside conditional control tokens demonstrating
these learnt to govern stylistic aspects. In addition
to having the benefit of updating all model parame-
ters, these methods only act at the embedding level.

Alternatives exist, such as using a plug-and-play
mechanism to perturb the LM hidden states towards
a target attribute (Dathathri et al., 2020). Strate-
gies such as these are computationally intensive,
resulting in a slow generation speed and the shift
in conditional probability has been shown to in-
crease text degeneration (Holtzman et al., 2020;
Gehman et al., 2020). GSum (Dou et al., 2020) is
an example of work that has explored using learned
guidance prediction models at test time. However,
both the prompt and LM parameters are tuned.

There has been little work using controlled gen-
eration in the data-to-text domain. Su et al. (2021)
were able control both the intra-text sentence and
inter-sentence structure of generated output. This
architecture exhibits inferior performance to our
method on the mutual evaluation dataset WebNLG.
Additionally, CONTROL PREFIXES uses fewer ad-
ditional parameters and can incorporate multi-
attribute control with prefixes of varying sizes.

Several successive works (Logeswaran et al.,
2020; Liu et al., 2021b; Lester et al., 2021) em-
ploy prompt tuning, where unlike the discrete text
prompts in ICL, trainable soft embeddings are
prepended to the input. Again the technique acts
only at the embedding level, thus limiting any con-
trol that can be exerted from data-point guidance.
This shortcoming also exists with ICL and multi-
task prompting (Sanh et al., 2021; Qin and Eisner,
2021). Prefix-tuning is more expressive and, along
with Vedd et al. (2021), serves as inspiration for
this work. However, prefix-tuning trains each pre-
fix separately and no relationship between prefixes
is modelled. The parameters are static with no
mechanism to incorporate guidance.

There have been few works exploring input-
dependent parameters trained alongside static
prompt parameters (Liu et al., 2021a). Perhaps
most similar to our work is Yu et al. (2021), who
use an attribute alignment function to encode to-

kens of attributes. Unlike our work, there are no
dedicated task parameters and the method aims
to generate text with specific target attributes, in-
dependent of task performance. With CONTROL

PREFIXES, the intention is to also maximize task-
specific performance, which is why we maintain
a large static component to specify the task itself,
which is directly learnt simultaneously with the
dynamic parameters in a shared framework.

9 Conclusion

We have proposed CONTROL PREFIXES, a general
framework for integrating attribute-level informa-
tion into pre-trained language models. In addition
to the general prefix for the overall task, special pre-
fixes are optimized for each attribute value and in-
corporated into different levels of the Transformer.
This allows for finer-grained control over generated
text, either by providing additional context about
each input example or by allowing the user to spec-
ify some aspect of the desired output. The main
language model parameters are kept frozen while
only the multiple prefixes are optimized for a par-
ticular task, providing a very parameter-efficient
method.

Our experiments show that CONTROL PREFIXES

outperforms all existing methods for several data-
to-text tasks including WebNLG and DART. This
is in spite of learning less than 2% of the base LM’s
parameters and using signal from attribute level in-
formation that is available for the tasks. CONTROL

PREFIXES also achieves higher results when com-
pared to an alternative prefix-tuning architecture
that makes use of the same attribute-level informa-
tion, showing that the proposed framework is better
able to integrate the additional signals with the rest
of the model.

We also saw that the method can still be applied
when suitable prefixes do not exist for a particular
attribute value, by constructing the required prefix
based on semantic similarity. Experiments on text
simplification also verified that CONTROL PRE-
FIXES can be applied on other tasks and datasets
beyond the data-to-text setting.

In future work, additional guiding attributes can
be investigated for text generation, such as the de-
sired formality and sentiment. In addition, this
method can be integrated with a wider range of
model architectures, beyond text generation appli-
cations, that require parameter-efficient methods of
control.
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10 Limitations & Ethical Impact

Evaluating NLG is notoriously challenging (Ce-
likyilmaz et al., 2020). For example, Freitag et al.
(2020) and Mathur et al. (2020) find that when
comparing two high-quality systems, differences
according to a metric may also reflect how the ref-
erences are written or flaws in the metric itself.
To combat this, in addition to using the official
task evaluation scripts, we report an array of GEM
Gehrmann et al. (2021) metrics that represent lex-
ical similarity and semantic equivalence in Table
8. We are also conscious that NLG models intrinsi-
cally trade off diversity and quality. We therefore
report diversity and system characterization results
in Table 9.

The technique described requires data-point in-
formation in the form of discrete categorical vari-
ables. Future work would look to investigate how
best to integrate continuous information. In ad-
dition, as highlighted throughout CONTROL PRE-
FIXES fundamentally depends on the strength of the
guidance signal. The success of the zero-shot pro-
cedure depends on how well the semantic category
labels are written for the unseen categories.

The technique is also limited by the predictive ca-
pabilities of the base frozen language model. One
benefit, however, is that optimizer states for the
base language model do not need to be stored dur-
ing training, making training more computationally
efficient.

We acknowledge that biases pose a huge prob-
lem in the Machine Learning and NLP commu-
nity. We conducted experiments with BART and
T5. Both models are trained on large amounts of
textual data such as news, books, and web text,
which may contain any kinds of biases. Although
our research is conducted under the purview of pa-
rameter efficient NLP methods, we still used up to
6 V100-SXM2-16GB GPUs. There is a responsi-
bility for the considerable CO2 emissions in the
NLP community and for developing more resource-
efficient training and inference methods.
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A Additional Results

Additional results using the official evaluation
scripts for the data-to-text datasets are reported
in Tables 4,5,6 to supplement the results in Table 1.

B GEM Automatic Evaluation

Supporting results using the GEM package
for model evaluation (https://github.com/
GEM-benchmark/GEM-metrics) are provided in
Tables 8,9.

C Prefix-tuning

We make two previously unremarked upon obser-
vations of the benefits conferred by using the key-
value pair prefix-tuning described in §2.3 com-
pared to prefix-tuning involving augmenting the
activations directly (Hu et al., 2021) or prompt-
embedding tuning of prompt length ρ. i) The
form discussed does not restrict the input length
of the base LM. ii) The time complexity at in-
ference time is reduced; for example, if we take
a multi-head self-attention computation (M =
N ), the time complexity at inference time is
O((N + ρ)Nd + Nd2) rather than the greater
O((N + ρ)2d+ (N + ρ)d2).

D WebNLG+ 2020 Results

WebNLG+ 2020 is not a component of DART—it
was used for the second official WebNLG com-
petition (Castro Ferreira et al., 2020). There are
16 training categories (the 15 categories from
WebNLG, but with new examples), alongside 3
unseen categories. Table 7 displays WebNLG+
2020 results using the same model architectures as
used for WebNLG. A similar pattern is revealed,
in that CONTROL PREFIXES outperforms prefix-
tuning with CONTROL PREFIXES (A1,A2) as the
top-performing model. This illustrates again the
benefit of using both controllable attributes.

In the WebNLG and WebNLG+ 2020 training
sets, for the same tripleset, multiple distinct lex-
icalizations exist. In our experiments, the exam-
ples sharing identical tripleset inputs have the same
triple order after linearization. This is to aid in com-
parison with current systems for WebNLG, DART
and E2E Clean. Permuting the triples for these ex-
amples will introduce a source of randomness for
result comparison.

Food

Airport

WrittenWork

Building

SportsTeam

Astronaut

University

Monument

ComicsCharacter

City

(a) WebNLG

Food

Airport

WrittenWork

Building

SportsTeam

Astronaut

University

Monument

ComicsCharacter

City

Artist

Athlete

CelestialBody

Company

MeanOfTransportation

Politician

(b) WebNLG+ 2020

Figure 3: t-SNE visualizations for the encoder con-
stituent of control prefixes representing WebNLG cat-
egories seen during training. Each circle represents a
category seen during training for the CONTROL PRE-
FIXES (A1) model. All 15 categories are seen categories
in WebNLG+ 2020, along with the category Company.
WebNLG+ 2020 has 3 additional unseen categories to
those shown.

E Additional Training Details

All implementations in this study are built on top
of the Transformers library (Wolf et al., 2020). As
T5 has relative position biases, we set these in all
layers pertaining to offsets where the key is part of
a prefix to zero. For BARTLARGE we adapt the orig-
inal implementation (Li and Liang, 2021). Table 11
displays the hyperparameters used when training
the models reported in this paper.

The general prompt length and each control
prompt length are architecture-specific parameters
that we choose based on performance on the val-
idation set. We use gradient accumulation across
batches to maintain an effective batch size above 64,
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a linear learning rate scheduler for all models and
beam-search decoding. AdamW (Loshchilov and
Hutter, 2017) and AdaFactor (Shazeer and Stern,
2018) were used for optimization. We chose the
checkpoint with the highest validation score using
BLEU for data-to-text and SARI for simplification.
For all tasks, we train our models on single Tesla
V100-SXM2-16GB machines, with mixed preci-
sion for BARTLARGE based models (fp16) and full
precision for T5-large based models (fp32).

The CONTROL PREFIXES models with the
DART sub-dataset source attribute (A2) use DART
as additional data and were trained in two stages:
i) on DART, ii) solely on the downstream dataset.
The WebNLG prefix-tuning model with DART data
shown in Table 11 uses only the human annotated
portion of DART. The prefix-tuning models using
all of the DART data for WebNLG and E2E Clean
were similarly trained in two stages, with identical
hyperparameters to CONTROL PREFIXES models
using A2. Training prefix-tuning on all of DART
for WebNLG yielded lower performance than with
only the human-annotated DART portion as addi-
tional data, so was not reported in Table 1.

Decoding specific parameters were not
tuned—we instead mirrored what the top-
performing fine-tuned based system used for the
particular LM and dataset. For example, a beam
width of 5 as in Ribeiro et al. (2020) for T5-large
on all data-to-text datasets.

F Simplification Length Control

Figure 4: Histogram illustrating the influence of different
target length ratios on the actual length compression ratio
output distribution for the simplification CONTROL PREFIXES
model on the TurkCorpus validation set.

Fig. 4 depicts the length compression ratio out-
put distribution on the validation set for CONTROL

PREFIXES, where a length control prefix of a spe-

cific attribute value (0.25,0.5,0.75,1.0) is specified.
This clearly demonstrates CONTROL PREFIXES is
capable of controlling the target length with respect
to the input. Table 12 displays example output gen-
erations with each of the 0.25,0.5,0.75,1.0 values
specified.
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Figure 5: t-SNE visualizations for constituents of the
length compression control prefixes learnt as part of
the simplification CONTROL PREFIXES model. Each
diagram depicts representations of control prefixes cor-
responding to each length value (41 bins of fixed width
0.05, from 0 to 2) for a particular attention mechanism.
The dimension represented on the x-axis is stretched
from a 1:1 to 2:1 aspect ratio for labelling clarity.

Fig. 5 is supplementary to §5.1, showing all con-
stituents of the length compression control prefixes
for all attribute values. In the WikiLarge training
data, there are far fewer training samples where the
simplified output is much longer than the complex,
original input in WikiLarge. This explains why the
representations are not as interpretable for values
greater than 1.2.
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G Prefix-tuning + Control Tokens

We propose another architecture ‘prefix-tuning +
control tokens’, where all of the original LM param-
eters, ϕ, still remain fixed, including the embedding
matrix. Control has to be exerted through the few
control embeddings and prefix-tuning’s ability to
steer the frozen ϕ parameters through < 2% addi-
tional parameters. We use this method to inform
the model of the same discrete guidance informa-
tion as in CONTROL PREFIXES, but with control
tokens instead of control prefixes.14 This alter-
native method is less expressive than CONTROL

PREFIXES, in much the same way as prefix-tuning
is more expressive than prompt-embedding tuning.
Prefix-tuning + control tokens also does not benefit
from the shared re-parameterizations (§2.3) that
we argue allow for more effective demarcation of
control of the fixed LM in each attention class sub-
space.

Table 10 reveals that CONTROL PREFIXES out-
performs prefix-tuning + control tokens on the data-
to-text datasets, while the results are both com-
parable to the Gold References on simplification
datasets. This indicates that CONTROL PREFIXES

is better able to integrate and leverage guidance
signal at the input-level, whilst maintaining the
fixed-LM property, than prefix-tuning + control to-
kens.

H Varying Prompt Length

Our research is not solely focused on parameter
efficiency, but also on the effectiveness of adapting
an already parameter efficient, fixed-LM method
(adding <2% additional parameters). The only way
to add parameters with prefix-tuning is to increase
the prompt length. XSum is the only dataset con-
sidered where performance does not plateau when
increasing prompt length15, therefore we ensure
CONTROL PREFIXES does not have more parame-
ters than prefix-tuning to ensure a fair comparison.
Fig. 6 illustrates how performance saturation is ob-
served—after a certain prompt length performance
plateaus. Different datasets require varying prompt
lengths to attain near maximum performance in a
parameter search for prompt length. For the data-to-
text datasets, near maximum performance (>99%

14Only the embeddings pertaining to the controllable at-
tributes and the prefix are trained.

15We do not observe performance degradation, such as
described by Hu et al. (2021), when utilizing different forms
of prefix-tuning. This is shown in H.

of the maximum validation score in the search) is
reached with a prompt length of 1 or 2.
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Figure 6: Prefix-tuning results of a model parameter
search on several datasets for the optimal prompt length
per dataset. These results are for the metric monitored
per task on the respective validation sets indicated in
the legend. ϕ% denotes the % of additional parame-
ters to the number of fixed-LM parameters required at
inference time. The y-axis is a relative measure: the
validation set performance as a % of the maximum at-
tained in the parameter search.

I Qualitative Examples

For data-to-text, Table 14 displays example CON-
TROL PREFIXES output for WebNLG input belong-
ing to unseen categories, along with the zero-shot
procedure. Table 14 depicts example CONTROL

PREFIXES (A1,A2) output alongside prefix-tuning
model output for WebNLG+ 2020 input. For sim-
plification, Table 13 compares the fixed-LM guided
generations of CONTROL PREFIXES to the fine-
tuned BARTLARGE with ACCESS (Martin et al.,
2020).
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ϕ% BLEU METEOR TER ↓ BERTScore(F1)

T5-large fine-tuned* 100 50.66 40 43 0.95

Prefix-tuning 1.0 51.20 40.62 43.13 0.95
CONTROL PREFIXES (A1) 1.1 51.95 41.07 42.75 0.95

Table 4: Detailed results on the DART test set to complement Table 1. T5-large fine-tuned is the current SOTA
(Radev et al., 2020). We report results on the official evaluation script for v1.1.1, the same version as the official
leaderboard, available here: https://github.com/Yale-LILY/dart. *Results for this model were only reported
to the significant figures shown. ϕ% denotes the % of additional parameters to the number of fixed-LM parameters
required at inference time.

ϕ% BLEU METEOR TER ↓
S U A S U A S U A

T5-large 100 64.89 54.01 59.95 46 43 44 34 41 37
SOTA 100 65.82 56.01 61.44 46 43 45 32 38 35

Prefix-tuning 1.0 66.95 55.39 61.73 46.73 42.71 44.87 31.34 39.01 34.86
CONTROL PREFIXES (A1) 1.4 67.32 55.38 61.94 46.78 42.77 44.92 30.96 39.01 34.65

+Data: DART
Prefix-tuning 1.0 67.05 55.37 61.78 46.69 42.82 44.90 31.36 38.79 34.77
CONTROL PREFIXES (A2) 1.0 66.99 55.56 61.83 46.67 42.87 44.91 31.37 38.53 34.65
CONTROL PREFIXES (A1,A2) 1.4 67.15 56.41 62.27 46.64 43.18 45.03 31.08 38.78 34.61

Table 5: Detailed results on the WebNLG test set to complement Table 1. S, U and A refer to the Seen, Unseen and
All portions of the WebNLG dataset. Several of the baseline results were only reported to the significant figures
shown.

ϕ% BLEU NIST METEOR R-L CIDEr

T5-large 100 41.83 6.41 0.381 56.0 1.97
SOTA 100 43.6 - 0.39 57.5 2.0

Prefix-tuning 1.0 43.66 6.51 0.390 57.2 2.04

+Data: DART
Prefix-tuning 1.0 43.04 6.46 0.387 56.8 1.99
CONTROL PREFIXES (A2) 1.0 44.15 6.51 0.392 57.3 2.04

Table 6: Detailed results on the E2E Clean test set to complement Table 1. The SOTA baseline result was only
reported to the significant figures shown.

ϕ% BLEU METEOR chrF++ TER ↓ BLEURT

T5-large*† 100 51.74 0.403 0.669 0.417 0.61

Prefix-tuning 1.0 54.74 0.417 0.693 0.399 0.62
CONTROL PREFIXES (A1) 1.6 54.97 0.417 0.693 0.398 0.62

+Data: DART
CONTROL PREFIXES (A2) 1.0 54.92 0.418 0.695 0.397 0.62
CONTROL PREFIXES (A1,A2) 1.6 55.41 0.419 0.698 0.392 0.63

Table 7: WebNLG+ 2020. The overall WebNLG+ 2020 test set results using the official evaluation script. *As
the model outputs are publicly available, we are able to run evaluation to achieve the same precision. †Results
from Pasricha et al. (2020), who before fine-tuning on the WebNLG+ data, further pre-train T5-large using a Mask
Language Modelling objective (with 15% of the tokens masked) on the WebNLG corpus and a corpus of DBpedia.
A1 signifies models trained with control prefixes for the WebNLG category attribute, and A2 with control prefixes
for the DART sub-dataset source attribute.
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Dataset Model Metrics (Lexical Similarity and Semantic Equivalence)
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

DART
Prefix-tuning 0.405 76.7 53.0 61.7 50.2 0.95 0.32
CONTROL PREFIXES (A2) 0.410 77.3 53.7 62.4 51.1 0.96 0.33

E2E Clean
Prefix-tuning 0.385 74.5 48.3 55.8 43.7 0.95 0.23
CONTROL PREFIXES (A2) 0.387 74.4 48.4 55.9 44.1 0.95 0.23

WebNLG 2017
Prefix-tuning 0.443 81.1 59.6 67.8 60.3 0.96 0.43
Prefix-tuning + DART 0.443 81.2 59.8 67.8 60.4 0.96 0.43
CONTROL PREFIXES (A1) 0.443 81.3 59.9 67.9 60.5 0.96 0.43
CONTROL PREFIXES (A2) 0.443 81.3 59.8 68.1 60.5 0.96 0.43
CONTROL PREFIXES (A1,A2) 0.444 81.4 60.0 68.0 60.8 0.96 0.43

WebNLG+ 2020
Prefix-tuning 0.417 79.6 56.2 64.8 56.2 0.96 0.32
CONTROL PREFIXES (A1) 0.417 79.5 56.3 65.1 56.3 0.96 0.32
CONTROL PREFIXES (A2) 0.418 79.6 56.5 65.3 56.4 0.96 0.33
CONTROL PREFIXES (A1,A2) 0.419 80.0 56.9 65.4 56.8 0.96 0.34

Table 8: The set of additional lexical similarity and semantic equivalence results on the official Data-to-text test sets.
These metrics are proposed by Gehrmann et al. (2021) and calculated using the GEM evaluation suite. The hash
for BERTScore used is roberta-large_L17_no-idf_version=0.3.8(hug_trans=3.0.1) and for BLEURT the
version is BLEURT-base-128.

Dataset Model Metrics (Diversity and System Characterization)
MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 |V| Output Len.

DART
Prefix-tuning 0.45 0.04 0.13 8.1 10.97 1.5k 5.2k 4.8k 21.2
CONTROL PREFIXES (A2) 0.45 0.04 0.13 8.11 10.98 1.5k 5.3k 4.8k 21.5

E2E Clean
Prefix-tuning 0.32 0.003 0.01 5.70 7.28 6 57 130 24.8
CONTROL PREFIXES (A2) 0.32 0.003 0.01 5.71 7.29 8 73 140 25.3

WebNLG 2017
Prefix-tuning 0.52 0.09 0.26 8.57 11.88 973 4.6k 3.4k 21.1
Prefix-tuning + DART 0.52 0.09 0.26 8.57 11.87 968 4.6k 3.4k 21.1
CONTROL PREFIXES (A1) 0.52 0.09 0.26 8.57 11.89 997 4.7k 3.4k 21.2
CONTROL PREFIXES (A2) 0.52 0.09 0.26 8.57 11.88 965 4.6k 3.4k 21.1
CONTROL PREFIXES (A1,A2) 0.52 0.08 0.25 8.52 11.81 962 4.4k 3.4k 21.3

WebNLG+ 2020
Prefix-tuning 0.66 0.04 0.13 8.05 10.94 327 1.8k 1.6k 23.0
CONTROL PREFIXES (A1) 0.66 0.04 0.13 8.05 10.92 326 1.8k 1.6k 23.0
CONTROL PREFIXES (A2) 0.66 0.04 0.13 8.04 10.92 326 1.8k 1.6k 23.1
CONTROL PREFIXES (A1,A2) 0.66 0.04 0.13 8.05 10.9 300 1.7k 1.5k 23.0

Table 9: The set of additional diversity and system characterization results on the official Data-to-text test sets. These
metrics are proposed by Gehrmann et al. (2021) and calculated using the GEM evaluation suite. These include the
Shannon Entropy over unigrams and bigrams (H1, H2), the mean segmented type token ratio over segment lengths
of 100 (MSTTR, Johnson (1944)), the ratio of distinct n-grams over the total number of n-grams (Distinct1,2), and
the count of n-grams that only appear once across the entire test output (Unique1,2, Li et al. (2016)), as well as the
vocabulary size over the output (|V|) and the mean output length of a system.
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DART WebNLG E2E Clean ASSET TurkCorpus

BLEU SARI QuestEval SARI QuestEval

Prefix-tuning + Control Tokens 51.72 61.89 43.57 43.64 0.63 42.36 0.66
CONTROL PREFIXES 51.95 62.27 44.15 43.58 0.64 42.32 0.66

Table 10: Prefix-tuning + Control Tokens. Comparison of our best CONTROL PREFIXES model for each dataset
with prefix-tuning + control tokens for the same attributes. The guided simplification models are the average test set
results over 5 random seeds.

Model Stage L-rate Opt Warmup-steps Epochs Batch Size Effective Batch Beam Width LN-α Min Target Max Target No Repeat Trigram

DART (T5-large)

Prefix-tuning - 7e-5 Ada 2000 40 6 96 5 1 0 384 No
CONTROL PREFIXES (A1) - 7e-5 Ada 2000 40 6 96 5 1 0 384 No

E2E Clean (T5-large)

Prefix-tuning - 8e-5 Ada 2000 50 6 96 5 1 0 384 No

CONTROL PREFIXES (A2) 1 7e-5 Ada 2000 30 6 96 5 1 0 384 No
2 5e-5 Ada 2000 50 6 96 5 1 0 384 No

WebNLG (T5-large)

Prefix-tuning - 7e-5 Ada 2000 30 6 96 5 1 0 384 No
CONTROL PREFIXES (A1) - 7e-5 Ada 2000 40 6 96 5 1 0 384 No

+Data: DART
Prefix-tuning - 7e-5 Ada 2000 40 6 96 5 1 0 384 No

CONTROL PREFIXES (A2) 1 7e-5 Ada 2000 30 6 96 5 1 0 384 No
2 3e-5 Ada 2000 30 6 96 5 1 0 384 No

CONTROL PREFIXES (A1, A2) 1 7e-5 Ada 2000 30 6 96 5 1 0 384 No
2 3e-5 Ada 2000 30 6 96 5 1 0 384 No

ASSET & TurkCorpus (BARTLARGE )

Prefix-tuning - 5e-5 AdamW 2000 30 8 64 6 0.8 3 100 ✓
CONTROL PREFIXES) - 4e-5 Ada 5000 30 8 64 6 1 3 100 ✓

Table 11: Hyperparameters. Detailed hyperparameter reporting for the models in this work. If the training
procedure is multi-stage, each stage is indicated. L-rate is the learning rate, all learning follows a linear learning
rate scheduler; Opt refers to the optimizer, Ada (Adafactor) or AdamW; Effective Batch = Batch size x # of gradient
accumulation batches; LN-α refers to the α in length normalization during beam search.
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ASSET Corpus
Source: The West Coast blues is a type of blues music characterized by jazz and jump blues influences, strong
piano-dominated sounds and jazzy guitar solos, which originated from Texas blues players relocated to California in
the 1940s.

Gold Reference† The West Coast blues has jazz and jump blues influences. It also has piano-dominated sounds and jazzy guitar solos,
which originated from Texas blues players who moved to California in the 1940s.

CONTROL PREFIXES (A1:4)
Length Control: 0.25 West Coast blues is a type of blues music from the United States.

CONTROL PREFIXES (A1:4)
Length Control: 0.5 The West Coast blues is a type of blues music made from Texas blues players who moved to California in the 1940s.

It has jazz and jump blues influences.

CONTROL PREFIXES (A1:4)
Length Control: 0.75 The West Coast blues is a type of blues music that originated in Texas in the 1940s. It is characterized by jazz and

jump blues influences, strong piano-dominated sounds and jazzy guitar solos.

CONTROL PREFIXES (A1:4)
Length Control: 1.0 The West Coast blues is a type of blues music characterized by jazz and jump blues influences, strong piano-

dominated sounds and jazzy guitar solos, which originated from Texas blues players who moved to California in the
1940s.

Table 12: Controlled text simplification: a qualitative example from the ASSET Corpus validation set, with our
corresponding CONTROL PREFIXES model outputs. Only the control prefix for the length control ratio is varied,
depicted in red. †Note, this is one random gold reference out of 10.

ASSET Corpus
Source: The Great Dark Spot is thought to represent a hole in the methane cloud deck of Neptune.

Gold Reference† The Great Dark Spot represents a hole in the methane cloud of Neptune.

CONTROL PREFIXES

It is thought that the Great Dark Spot is a hole in Neptune’s methane cloud deck.

BARTLARGE with ACCESS
The Great Dark Spot looks like a hole in the methane cloud deck of Neptune.

Source: Fives is a British sport believed to derive from the same origins as many racquet sports.

Gold Reference† Fives is a British sport developed from the same origins as many racquet sports.

CONTROL PREFIXES

Fives is a British sport. It is believed to have its origins in racquet sports.

BARTLARGE with ACCESS
Fives is a British sport. It is thought to come from the same as many racquet sports.

Source: Nevertheless, Tagore emulated numerous styles, including craftwork from northern New Ireland, Haida
carvings from the west coast of Canada (British Columbia), and woodcuts by Max Pechstein.

Gold Reference† Tagore copied many styles. These included craftwork from northern New Ireland, Haida carvings from western
Canada and woodcuts by Max Pechstein.

CONTROL PREFIXES

Tagore emulated many different styles of art, including Haida carvings from the west coast of Canada (British
Columbia), and woodcuts by Max Pechstein.

BARTLARGE with ACCESS
Tagore copied many styles. He copied craftwork from northern New Ireland, Haida carvings from the west coast of
Canada (British Columbia), and woodcuts by Max Pechstein.

Table 13: Fixed-LM vs fine-tuned controlled text simplification. CONTROL PREFIXES and BARTLARGE with
ACCESS (Martin et al., 2020) generated simplifications chosen from the ASSET Corpus test set. †Note, this
is one random gold reference out of 10 for each example. The examples shown for CONTROL PREFIXES and
BARTLARGE with ACCESS are also randomly selected from one of the five model outputs.
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WebNLG

Unseen Category: Athlete
Zero-shot -> SportsTeam Source: <H> FC Torpedo Moscow <R> season <T> 2014-15 Russian Premier League <H> Aleksandr Chumakov <R> club

<T> FC Torpedo Moscow <H> FC Torpedo Moscow <R> manager <T> Valery Petrakov <H> FC Torpedo Moscow <R>
chairman <T> Aleksandr Tukmanov

Gold Valery Petrakov is the manager of FC Torpedo Moscow and its chairman is Aleksandr Tukmanov. Aleksandr Chumakov
plays for the club which spent the 2014-15 season in the Russian Premier League.

Prefix-tuning
Aleksandr Tukmanov and Valery Petrakov are the managers of FC Torpedo Moscow. The club played in the Russian Premier
League in 2014-15 and their chairman is Aleksandr Tukmanov.

CONTROL PREFIXES (A1)
Aleksandr Chumakov plays for FC Torpedo Moscow which is managed by Valery Petrakov. The club’s chairman is
Aleksandr Tukmanov and they played in the Russian Premier League in the 2014-15 season.

Unseen Category:
MeanOfTransportation

Zero-shot -> Airport Source: <H> Costa Crociere <R> location <T> Genoa <H> Costa Crociere <R> parent Company <T> Carnival Corporation
& plc <H> AIDAstella <R> operator <T> AIDA Cruises <H> AIDAstella <R> builder <T> Meyer Werft <H> AIDAstella
<R> owner <T> Costa Crociere

Gold Carnival Corporation & plc is the parent company of Costa Crociere in Genoa, who own the AIDAstella. AIDAstella was
built by Meyer Werft and is operated by AIDA Cruises.

Prefix-tuning
Costa Crociere is located in Genoa and is owned by Carnival Corporation & plc. AIDAstella is operated by AIDA Cruises
and was built by Meyer Werft.

CONTROL PREFIXES (A1)
Costa Crociere is located in Genoa and is owned by AIDA Cruises. AIDAstella was built by Meyer Werft and is operated by
AIDA Cruises. The parent company of Costa Crociere is Carnival Corporation & plc.

Table 14: WebNLG example generations: sources are shown in their linearized form, as fed to the T5-large based
models, with prefix-tuning output and one of the gold references shown for comparison with CONTROL PREFIXES
output. Triplesets are from WebNLG unseen categories and the zero-shot procedure is depicted using the textual
category labels. As an example, for the unseen category Athlete, the closest Glove embedding belonging to a seen
category label in embedding space is SportsTeam. Therefore the trained control prefix relating to SportsTeam is
used for this example at inference time.

WebNLG+ 2020
WebNLG MeanOfTransportation

(Seen with Unseen Entities) Source: <H> Pontiac Rageous <R> production Start Year <T> 1997 <H> Pontiac Rageous <R> assembly <T>
Michigan <H> Pontiac Rageous <R> assembly <T> Detroit <H> Pontiac Rageous <R> production End Year <T>
1997 <H> Pontiac Rageous <R> body Style <T> Coupe <H> Pontiac Rageous <R> manufacturer <T> Pontiac

Gold The Pontiac Rageous was a car with a coupe body style manufactured by Pontiac. Assembled in both Michigan and
Detroit, it went into production in 1997, ending in the same year.

Prefix-tuning The Pontiac Rageous is a coupe manufactured by Pontiac. It is assembled in Detroit, Michigan and began production
in 1997.

CONTROL PREFIXES (A1,A2) The Pontiac Rageous is manufactured by Pontiac in Detroit, Michigan. Its production began in 1997 and ended in
1997. The Pontiac Rageous has a coupe body style.

WebNLG (Unseen)
Unseen Category: MusicalWork

Zero-shot -> Artist Source: <H> Bootleg Series Volume 1: The Quine Tapes <R> genre <T> Rock music <H> Bootleg Series Volume
1: The Quine Tapes <R> preceded By <T> Squeeze The Velvet Underground album <H> Bootleg Series Volume 1:
The Quine Tapes <R> record Label <T> Polydor Records <H> Bootleg Series Volume 1: The Quine Tapes <R>
recorded In <T> San Francisco

Gold
The Velvet Underground Squeeze album was succeeded by the rock album Bootleg Series Volume 1: The Quine
Tapes, recorded under record label Polydor Records in San Francisco.

Prefix-tuning
The record label of Bootleg Series Volume 1: The Quine Tapes is Polydor Records. It was recorded in San Francisco
and was preceded by Squeeze The Velvet Underground. Its genre is rock music.

CONTROL PREFIXES (A1,A2) Squeeze The Velvet Underground was preceded by Bootleg Series Volume 1: The Quine Tapes, which was recorded
in San Francisco and released by Polydor Records. The genre of the album is rock music.

Table 15: WebNLG+ 2020 generations: sources are shown in their linearized form as fed to the T5-large based
models. The DART sub-dataset Source control prefix is highlighted, along with the final Category control prefix.
The zero-shot procedure is depicted for the Unseen Category MusicalWork. The closest embedding belonging to a
Seen category in embedding space is Artist.
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Abstract

While automatically computing numerical
scores remains the dominant paradigm in NLP
system evaluation, error annotation and analy-
sis is receiving increasing attention, with sev-
eral error annotation schemes recently pro-
posed for automatically generated text. How-
ever, there is little agreement about what error
annotation schemes should look like, how many
different types of errors should be distinguished
and at what level of granularity. In this paper,
our aim is to map out work on annotating errors
in human and machine generated text, with a
particular focus on error taxonomies. We de-
scribe our paper selection process, and survey
the error annotation schemes reported in the
papers, drawing out similarities and differences
between them. Finally, we characterise the is-
sues that would make it difficult to move from
the current situation to a standardised error tax-
onomy for annotating errors in automatically
generated text.

1 Introduction

Error analysis and reporting is commonly encour-
aged in the natural language processing (NLP) field
to aid in understanding system weaknesses, most
recently those that are exhibited by state-of-the-art
neural systems (van Miltenburg et al., 2021), which
have led to renewed calls in NLP for error analysis
and building error taxonomies (Costa et al., 2015;
Rivera-Trigueros, 2021).

With the advancement of neural networks and
growing interest beyond pipeline-based approaches,
semantic errors are increasingly observed in gen-
eration scenarios. In data-to-text generation, for
example, about 40% of the E2E Generation Chal-
lenge system outputs contained erroneously omit-
ted or added semantic content (Dušek et al., 2020).
Ideally, the data-to-text systems that we develop
produce outputs that convey all and only the in-
put content (not omitting or arbitrarily adding any
content) (Dušek et al., 2019; Harkous et al., 2020),

so it is important to identify and understand what
kinds of semantic errors occur and for what rea-
sons, for which error annotation and subsequent
analysis provides a basis. However, there is cur-
rently little agreement on how the annotation part
of this should be done.

In this paper, we present a survey of different
error annotation schemes, with a particular focus
on error taxonomies, that have been proposed in
NLP. Our paper selection process yielded a set of
22 papers reporting error type annotations and error
taxonomies from the ACL Anthology. The scope
of this paper is limited to error annotation schemes
that include semantic errors (as well as, possibly,
other types of errors, e.g. syntactic and common-
sense errors).

The paper is organised as follows: Section 2
describes the paper selection and filtering process.
Section 3 provides summaries of the research pre-
sented in each paper. Section 4 presents a com-
parative survey of the papers in terms of shared
properties, Section 5 discusses our findings, and
Section 6 concludes with a summary and future
directions.

2 Paper Selection and Filtering

To select papers for our survey, we searched the
ACL Anthology1 with the query terms “error tax-
onomy” and “NLP,” and “error type annotation”
and “NLP” which yielded 84 results. After remov-
ing non-paper results and duplicates,2 we were left
with 27 papers. We manually examined the remain-
ing papers keeping only those that actually reported
an error taxonomy or error annotation scheme in-
cluding semantic errors, which left 18 papers. We
added four relevant papers from the related work

1https://aclanthology.org
2Search results included 39 author profiles, and 18 paper

duplicates, where papers are repeated in two places, e.g. when
the same paper is found both individually and as a part of
proceedings in the search.
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Figure 1: Number of papers reporting semantic errors
in the taxonomies.

sections of three of the 18 papers. Our survey re-
views the resulting 22 papers.

3 Paper Summaries

In this section, we provide high-level summaries of
each of the 22 papers in our survey.

Costa et al. (2015) propose a linguistically mo-
tivated taxonomy for machine translation (MT) er-
rors, classifying MT errors for English to European
Portuguese translation. At the top level, the taxon-
omy is divided into five categories: orthography,
lexis, grammar, semantic and discourse. It has five
levels and 25 leaf nodes. The taxonomy is shown
in full in Figure 3, alongside examples extracted
from the paper, in Appendix A.

Extend earlier work (Specia et al., 2021),
Al Sharou and Specia (2022) propose a an error
annotation scheme with seven categories of critical
errors, i.e. those with potential negative impact on
users where the meaning of the target text deviates
drastically from the source text. The work distin-
guishes three ways in which meaning can deviate
from the source sentence: mistranslation, hallucina-
tion and deletion. A few examples extracted from
the paper are in Appendix A.

Caseli and Inácio (2020) report an error analy-
sis for neural machine translation (NMT) system
outputs for Brazilian Portuguese in which errors
by the NMT system are compared with those by a
PBSMT system trained on the same corpus. The
paper adopts the error taxonomy from Martins and
Caseli (2015) which divides errors at the top level
into four broad categories: syntactic errors, lexi-

cal errors, errors involving n-grams and reordering.
The taxonomy has three levels and 12 leaf nodes.
The taxonomy can be found in Appendix A.

Federico et al. (2014) propose a statistical frame-
work for analysing the impact of different error
types based on the results from MT evaluation met-
rics and human perceptions with linear mixed ef-
fects models. Experiments are carried out for En-
glish as the source and other languages that are
distant from English as the target. This paper uses
a set of four general error classes: (i) reordering
errors (ii) lexicon errors, (iii) missing words and
(iv) morphology errors.

He et al. (2021) report an error-annotated dataset
called TGEA which has comprehensive annota-
tions for texts generated with pretrained language
models. It is also intended as a benchmark dataset
for automatic diagnostic tasks such as error detec-
tion, error classification etc. The error taxonomy
covers 25 error types in a 3-level hierarchy reflect-
ing linguistic knowledge as shown in Figure 4 in
the Appendix.

Belkebir and Habash (2021) report an automatic
error type annotation system called ARETA for
Modern Standard Arabic. ARETA aims to annotate
and evaluate the quality of system outputs. First,
it performs word alignment of the source and the
target sentence. Second, the alignment is fed to
the automatic error type annotation where the sys-
tem tries to extract the error type. The ARETA
taxonomy is based on the Arabic Learner Corpus
(ALC) error tagset (Alfaifi and Atwell, 2015) with
extended merge and split classes. The latter in-
cludes 29 error tags for Arabic of which 26 are
used for ARETA. The ARETA taxonomy has three
levels and 26 leaf nodes. The taxonomy can be
found in Figure 5 in Appendix A.

Huang et al. (2020) introduce PolyTope which
quantifies primary sources of errors for 10 represen-
tative models for text summarisation. While this
is not an error taxonomy paper, it reports primary
sources of errors with 8 ‘fluency’ and ‘accuracy’
type metrics. For PolyTope, (i) Accuracy-related
issues are defined as the summarisation not match-
ing or accurately reflecting the source text, whereas
(ii) Fluency-related issues are defined as problems
with the linguistic qualities of the text. Level of
severity is additionally marked as minor, major or
critical. The paper uses the CNN/DM Dataset (in
its non-anonymous version) for experiments. The
taxonomy has three levels and eight leaf nodes, as
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Error Types Definition(s)
Hallucinationa (h) An example definition in the context of NLP is “generated content that is nonsensical or unfaithful to

the source content.” This is a widely accepted term (Ji et al., 2022) to refer to content in the output that
does not have corresponding content in the input. The term comes from the field of psychology where
e.g. (Blom, 2010) defines hallucination as “a percept, experienced by waking individual, in the absence
of an appropriate stimulus from extracorporeal world.” Some other terms used for errors very similar
to hallucination are addition, insertion, extra words, unnecessary information.

Omission (o) Used so commonly in MT that a definition is not usually given, this term refers to content in the input
that should be rendered in the output not having corresponding content in the output (Weng et al., 2020)
Some alternative terms in use are deletion, absent word/n-gram, missing context/information.

Replacement (re) We use this term to refer to a range of error phenomena (given a variety of names in the literature) where
some content in the output is clearly intended to convey some part of the input, but does so incorrectly
(Subramaniam et al., 2009; Gouws et al., 2011; Han and Baldwin, 2011; Al Sharou and Specia, 2022).
We can also look at replacement errors from the perspective of a combination of omission and addition,
in the special case where what is added is the incorrect version of what is omitted. Some alternative
terms also in use are substitution, mistranslation, transposition.

Repetition (r) An example definition is “occurrence of the same words several times or syntactically similar units
unintentionally or on purpose” (Al Sharou et al., 2021). Some alternative terms in use are duplication,
redundancy.

Figure 2: Definitions of high-level semantic error types found in the literature (Col 1: semantic error types; Col 2:
definitions).

aWe generally prefer the term ‘arbitrary content addition’ but use the original term used in the literature to avoid confusion.

showin in Figure 6.
Di et al. (2019) report a detailed analysis of er-

rors from four morphological inflection systems for
Tibetan, using datasets developed by Cotterell et al.
(2018), and the error taxonomy reported by Gor-
man et al. (2019) for target errors and prediction
errors with a more detailed analysis on (i) errors
due to words that violate lexicographic or mor-
phophonetic constraints of the language, and (ii)
allomorphy errors. This latter taxonomy has three
levels and three leaf nodes, and can be found in
Appendix A.

Mahmud et al. (2021) report a qualitative inves-
tigation of errors made by neural models fro which
they create a taxonomy which consists of seven top
level categories each with multiple lower level sub-
categories as shown in Figure 7 in the Appendix.
Altogether there are three levels and 31 leaf nodes.

Costa et al. (2012) report a corpus of about 6,000
questions manually translated into Portuguese.
They provide translation guidelines which discuss
two types of problems: semantic level issues and
structure level issues. In addition, they report an
error taxonomy with four broad error categories
and carry out an error analysis. The taxonomy has
three levels and nine leaf nodes, and can be found
in Appendix A.

Macklovitch (1991) introduces an error taxon-
omy to help with post-editing operations. The er-
ror taxonomy distinguishes three broad categories
at the top level: (i) Morphology, (ii) Source lan-
guage analysis and (iii) Transfer and Generation.

Altogether there are three levels and 19 leaf nodes.
Figure 9 shows the taxonomy extracted from the
paper.

Lin et al. (2022) address automatic translation
error correction (TEC) where the goal is to pro-
duce an improved translation by correcting errors
found in a translation. The paper proposes a pre-
training approach for TEC and also introduces a
human-in-the-loop user study where it was found
that higher quality translations were achieved when
corrections are assisted by the TEC model. The
taxonomy used has three levels and five leaf nodes.
It can be found in Appendix B.

van der Goot et al. (2018) describe an error tax-
onomy for lexical normalisation replacements. The
work makes a clear distinction between intentional
and unintentional anomalies, and the taxonomy has
four levels and 14 leaf nodes.

Ng et al. (2014) provide an error annotation
scheme for grammar error types. The paper’s goal
is to evaluate algorithms and systems for automati-
cally detecting and correcting grammatical errors
present in English essays written by second lan-
guage learners of English. The error annotation
scheme has a set of 28 categories of grammati-
cal error corrections as a part of the CoNLL-2014
shared task. The authors report that it is often ac-
ceptable to have multiple and different corrections
in grammatical error correction. The dataset used
for training is the NUCLE corpus, the NUS corpus
for Learner English (Dahlmeier et al., 2013), and
the test data is collected as written essays from 25
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NUS students who are non-native speakers of En-
glish where each student was asked to write two
essays. Figure 12 in Appendix B shows the error
categories from the paper.

Dickinson and Herring (2008) report a computer-
aided language learning (ICALL) system for
beginner-level learners of Russian. The goal of
the system is to provide exercises supporting basic
grammar learning with contextualisation for mor-
phological errors. Considering the nature of the
learner’s language, an error taxonomy with four
broad categories for Russian verbal morphology is
reported. It has three levels and nine leaf nodes.
More details of the taxonomy can be found in Ap-
pendix B.

Dickinson (2010) reports work on generating
linguistically informed morphological errors for
Russian. An error taxonomy is reported that helps
in the error generation process. It has four levels
and 10 leaf nodes, and can be found at Figure 13
in Appendix B.

Nagata et al. (2018) explore the influence of
spelling errors on lexical variation measures like
Type-Token Ratio (TTR) and Yule’s K for learner
English. The error annotation scheme reported
presents two ways of spelling error correction: (i)
it identifies 13 errors in the corpora. (ii) it classifies
them into three groups: corrected, not corrected
and not counted. The scheme has 13 error types.
Figure 14 in Appendix B shows the list of errors
from the paper.

Gayo et al. (2016) propose the COPLE2 cor-
pus which is a new learner corpus for Portuguese.
Three different linguistic error types are defined
for error tagging: orthographic, grammatical and
lexical. The first error type covers spelling errors,
with errors here restricted to word form and punctu-
ation marks. The second error type is for when the
student has produced an ungrammatical utterance,
thus going beyond individual words and consider-
ing syntactic structures. The third error type covers
lexical/semantic errors. The work is mainly con-
cerned with errors that affects meaning. These error
types help in visualising the same text progressing
through corrections at different stages, from the ver-
sion closest to original (orthographic corrections)
to the most modified one (orthographical, grammat-
ical and lexical corrections). Note that the sub-error
types provided for this paper are unclear, and are
not counted in tables below.

Barbagli et al. (2016) present a collection of es-

says called CItA corpus written by Italian L1 learn-
ers (Corpus Italiano di Apprendenti L1) from the
first and second years of lower secondary school.
In addition, they report a three-level error annota-
tion scheme for errors made by L1 Italian learners:
(i) macro-class of error (grammatical, othrographic
and lexical); (ii) class of error (verb, prepositions,
monosyllables); and (iii) type of modification (mis-
use of verb with respect to verbal tense). There
are therefore four levels in the underlying taxon-
omy, and a total of 21 leaf nodes. Figure 15 in
Appendix B shows the taxonomy from the paper.

Himoro and Pareja-Lora (2020) propose a
spelling error taxonomy for Zamboanga Chaba-
cano (ZC) formalised as an ontology and an adap-
tive spell checking approach using character-based
statistical MT. First, an iterative process is applied
to samples of the CWZCC corpus for categorising
different spelling errors. Second, the errors are clas-
sified to create an error taxonomy. It is observed
that spelling errors get more complex as one goes
deeper down the tree. The taxonomy has eight lev-
els and 14 leaf nodes. and is shown in Figure 16 in
Appendix B.

Caines et al. (2020) introduce a corpus of one-
to-one online chatroom conversations from lessons
between teachers and learners of English which is
known as the Teacher-Student Chatroom Corpus
(TSCC). A set of 24 error types is determined on
the basis of the grammatical error correction of
texts in the corpus. The set is shown in Figure 17
in Appendix B.

Korre et al. (2021) introduce ERRANT which
is a toolkit that annotates texts and offers error
typing with detailed feedback for L2 learners of
Greek. Annotation is based on a rule-based error
type framework that distinguishes (i) error descrip-
tion (Unnecessary, Replacement and Missing), and
(ii) error type. The latter disinguishes 16 error
types.

4 Properties of Error Annotation
Schemes

In order to be able to compare different error
annotation schemes and draw conclusions about
their similarities and differences, we labeled each
scheme in terms of (i) whether it was designed for
machine or human generated text; (ii) whether it
contained error types related to semantic accuracy,
fluency or both; (iii) NLP system task; (iv) purpose
of the annotation that was carried out; and (v) de-
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tails of how many error labels and how many hierar-
chical levels there are in the scheme. We describe
the first two in Section 4.1 below, the third and
fourth in Section 4.3, and the last in Section 4.2.

The results of labelling the 22 annotation
schemes with these labels are presented in Sec-
tion 4.4.

4.1 Text type and error type

We categorise each paper in terms of the (i) text
type, and (2) error type addressed. Regarding the
former, we group the error annotation schemes
in our survey into those developed for machine-
generated text (MGT) and those developed for
human-generated text (HGT), according to the fol-
lowing definitions:

• Machine generated texts (MGT) i.e. syn-
thetic texts generated by a system or a model
based on pre-defined rules or algorithms, in-
cluding MT, text summarisation, story genera-
tion etc. Errors like mistranslation, omission
or arbitrary content addition, etc. are observed
frequently in annotation schemes for this text
type. Figure 7 in the Appendix provides ex-
amples of typical errors.

• Human generated texts (HGT) include refer-
ence texts for evaluating systems, and training
corpora for various downstream NLP tasks.
The nature of the text depends on its intended
purpose and oftentimes, they are used for eval-
uation of the models we build. Compared to
MGT, HGTs are less prone to semantic er-
rors. However, it cannot be generalised that
all human generated texts are of good quality,
and semantic errors do occur. Figure 16 in
the Appendix provides examples of errors in
human-generated texts.

We further categorise error annotation schemes in
terms of the broad error type(s) addressed. Here
we use ‘accuracy’ and ‘fluency’ as shorthand for
content type errors as per Figure 2, and non-content
type errors, respectively. These two terms are used
frequently in the MT literature, e.g. in the Multi-
dimensional Quality Metrics (MQM) framework
(Lommel et al., 2014) where they are defined as
follows:

• Accuracy: Errors where the target sentence
does not correspond to the source text due
to omission, distortion or addition to the

text. Error types include mistranslation, over-
translation, under-translation, untranslated,
omission, and addition.

• Fluency: Errors related to grammar and style.
Examples include errors relating to spelling,
punctuation, grammatical rules, inconsistent
style, unidiomatic style etc.

4.2 Structure of annotation scheme
We also categorised error annotation schemes in
terms of two structural properties:

1. The number of different error types in-
cluded in an annotation scheme, for which we
use a standardised definition as the number of
nodes in the tree including the root;

2. The depth of the hierarchical structure un-
derlying the scheme. If there is no underlying
hierarchical structure, then depth=1. Depth
= levels - 1, where levels are the number of
nodes in the longest path from root to the leaf
nodes.

4.3 NLP task and annotation scheme purpose
We distinguish the following NLP System Tasks,
abbreviated as indicated in square brackets in ta-
bles below: Machine Translation [MT], Text Sum-
marisation [TS], Textual Summarisation of source
code [TS(SC)], Type-level Universal Morpholog-
ical Reinflection Task [MI], Automatic Transla-
tion Error Correction [EC(T)], Text Normalisation
[TN], Grammar Error Correction [EC(G)], Morpho-
logical Error Detection and Classification [MDC],
Error Generation [EG], None (Corpus Linguistics)
[N(CL)], Dialogue [D], Error Type Classification
[ETC] and Spelling Error Correction [EC(S)].

NLP System Task also includes the following
automatic forms of error annotation: Automatic
Error Annotation for Dataset Creation [EA(D)],
Automatic Error Annotation of System outputs for
evaluation [EA(S)], Automatic Corpus Error an-
notation/analysis [CE]. The NLP System Task is
defined for what the error annotation scheme is
used for in its respective papers.

Inspired by Machine Translation (MT) research
which takes a very structured approach to error
analysis (Stymne and Ahrenberg, 2012; Kopo-
nen, 2010), error classification (Vilar et al., 2006;
Popović and Burchardt, 2011; Popović, 2021),
and building error taxonomies (Costa et al., 2015;
Al Sharou and Specia, 2022), we also categorise
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1. Costa et al. (2015) MGT MT D D 36 4 EAn+EA+EC
2. Al Sharou and Specia (2022) MGT MT D 8 1 EAn+E(S)
3. Caseli and Inácio (2020) MGT MT D D 17 2 EAn+EA+E(S)
4. Federico et al. (2014) MGT MT D D 5 1 EAn+EA
5. He et al. (2021) MGT EA(D) D 32 2 EAn+EA+E(S)
6. Belkebir and Habash (2021) MGT EA(S) D 34 2 EAn+EA
7. Huang et al. (2020) MGT TS D D 11 2 EAn+E(S)
8. Di et al. (2019) MGT MI D 5 2 EAn+EA+E(S)
9. Mahmud et al. (2021) MGT TS(SC) D 39 2 EAn+E(S)
10. Costa et al. (2012) MGT CE D D 11 2 EAn+EA+E(C)
11. Macklovitch (1991) MGT MT D D 23 2 EAn+E(S)
12. Lin et al. (2022) HGT EC(T) D 7 2 EAn+E(C)+E(S)
13. van der Goot et al. (2018) HGT TN D 20 3 EAn+E(S)
14. Ng et al. (2014) HGT EC(G) D 29 1 EAn+E(S)
15. Dickinson and Herring (2008) HGT MDC D 11 2 ED+EA
16. Dickinson (2010) HGT EG D 14 3 EAn+E(C)
17. Nagata et al. (2018) HGT EC(S) D D 14 1 EAn+E(C)+EC
18. Gayo et al. (2016) HGT CE D D 4 1 EAn+E(C)
19. Barbagli et al. (2016) HGT N(CL) D D 35 3 EAn+E(C)
20. Himoro and Pareja-Lora (2020) HGT EC(S) D 39 7 EAn+E(C)+EC
21. Caines et al. (2020) HGT D D 25 1 EAn+E(C)
22. Korre et al. (2021) HGT ETC D 17 1 EAn+E(C)+EC

Table 1: Overview table of properties of the error annotations schemes surveyed (for explanation of abbreviations
see Table 3 and in text).

our error annotation schemes in terms of the Pur-
pose for which an error annotation scheme was
created as follows: Error Classification is EC, Er-
ror Annotation is EAn, Evaluation for systems is
E(S), Evaluation for corpus errors is E(C), Error
Detection is ED and Error Analysis is EA. The
purpose is defined for what the error annotation
scheme that was created is used as in its respective
papers.

4.4 Labelled annotation schemes

Table 1 shows each of the 22 surveyed papers along-
side their individual labels. Columns 3 and 4 in-
dicate text type and NLP Task, Columns 5 and 6
whether Accuracy or Fluency is addressed, and the
last three columns show number of different Error
Types, Depth, and Purpose for which the scheme
was created, respectively, all as defined in the pre-
ceding section.

As can be seen, there is an even distribution of
papers over text type addressed (HGT vs. MGT).
Moreover, none of the 11 papers addressing HGT
address only accuracy errors, most address only
fluency (8 out of 11), and just three address both

accuracy and fluency errors. For the 11 MGT pa-
pers, we have a fair mix of different types of errors
i.e., three address only accuracy errors, two only
fluency errors, and six address both. Determining
the number of error types and the depth of the hi-
erarchy (if any) has been a challenge due to lack
of clarity within the papers. For example, Gayo
et al. (2016) do not mention the error sub-types in
the taxonomy clearly which makes counting them
difficult. This means we have provided an estimate
in some cases.

All 22 papers have a combination of purposes
for which the scheme was created (last column).

5 Discussion

5.1 Trends Observed

Table 2 presents the overall trend in different types
of semantic errors included in error annotation
schemes over the years in our surveyed papers. We
mark as 1 if we encounter any one of the semantic
error types from Figure 2 in a paper (each paper
can have more than one semantic error type). For
example, we have a count of 4 for arbitrary content
addition errors from 2020 which means four papers
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Arbitrary content addition (h) 1 1 1 1 1 1 4 4 1 15
Omission (o) 1 1 1 1 1 4 4 1 14
Replacement (re) 1 1 4 2 2 10
Repetition (r) 1 1 2 2 1 7
TOTAL 3 2 3 3 2 2 14 12 5 46

Table 2: Number of taxonomies that incorporated each of the four high-level semantic error types from Figure 2,
shown per publication year in our set of 22 papers.

Purpose (Paper)[Sem. Error] MGT HGT
Error Analysis & Error Annotation (EA+EAn) (4,6)[h,o,re] D
Error Detection & Error Analysis (ED+EA) (15)[n] D
Evaluation of systems & Error Annotation (E(S)+EAn) (2,7,9,11,13)[h,o],(2,11)[re],

(7,9)[r],(14)[n]
D D

Error Annotation & Error Analysis & Error Classification
(EAn+EA+EC)

(1)[h,o,r] D
Evaluation of corpus errors & Error Annotation (E(C)+EAn) (19,21)[o],(21)[h,re],

(16,18)[n]
D

Error Annotation & Error Analysis & Evaluation of systems
(EAn+EA+E(S))

(3,5)[h,o,r],(3)[re],(8)[n] D
Error Annotation & Error Analysis & Evaluation of corpus errors
(EAn+EA+E(C))

(10)[h,o] D
Error Annotation & Evaluation of corpus errors & Evaluation of systems
(EAn+E(C)+E(S))

(12)[re] D
Error Annotation & Evaluation of corpus errors & Error Classification
(EAn+E(C)+EC)

(20,22)[h,o,re], (17)[n] D
Table 3: For each (combination of) purpose(s) in the 22 surveyed papers, the taxonomies to which it applies (round
brackets), and the semantic error types covered by each of those taxonomies [square brackets]. We also show text
type to which each (combination of) purpose(s) applies.

address such errors in the year 2020. The paper
IDs are taken from Table 1.

Four out of the five papers in our survey pub-
lished more than ten years ago (2012 and ear-
lier) are categorised as HGT (except the paper by
Macklovitch (1991) which is categorised as MGT),
and do not report any semantic errors in their error
annotation scheme. In addition, another paper, by
Di et al. (2019), grouped under MGT, also does not
report any semantic errors. We observe a total of
46 semantic error types reported in the papers from
our survey.

Table 3 shows in the first column, all the combi-
nations of purposes for which an error annotation
scheme was created that we encountered in our 22
surveyed papers. The second column shows pa-
per number (e.g. "(15)"), type of semantic errors
addressed in each paper (e.g. "[h, o, r]") or none
("[n]"). The last two columns show text type (HGT
vs. MGT).

We observe that papers where text type is MGT
typically address one or more semantic errors (10

out of 11 papers), except for the paper by Di et al.
(2019) whose purpose is error analysis and evalua-
tion of systems. Half of the papers labelled HGT
do not address any semantic errors. The other half
of the papers with error annotation and evaluation
of corpus or error classification as purpose in HGT
addresses semantic errors. The statistics of how
many papers address each of the high-level seman-
tic error types in the MGT and HGT groups can
easily be seen in Figure 1.

Table 2 shows the high-level semantic error types
reported in each year in our survey. It is inter-
esting to observe that addressing semantic errors
has become increasingly frequent in very recent
years.3 One reason is likely to be the shift from
controlled pipeline approaches to end-to-end neural
approaches for many NLP tasks.

3Note that we performed the ACL Anthology search in
August, so we may be missing some papers from 2022.
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5.2 Observations
In this section, we discuss the issues we observed
in labelling the error annotation schemes and tax-
onomies in our survey. We summarise these obser-
vations from the perspective of semantic errors as
follows:

1. Lack of standardisation across schemes
(e.g., definition, examples) is observed which
hampers deriving a standardised framework
for semantic errors. We found that 11 out of
22 papers (50%) mention only the name of
an error type or its sub-type without defin-
ing them at all. It is highly observed in
the HGT group, with eight out of 22 pa-
pers. In some cases it is difficult to categorise
schemes/taxonomies in terms of the high-level
error type(s) from Figure 2.

2. Differing and/or incompatible error names
and definitions: In our survey, we encoun-
tered only two papers (Dickinson and Herring,
2008; Dickinson, 2010) with mutually com-
patible error type definitions and these are by
the same first author. For the remaining pa-
pers, either the error definitions means the
same but the error term is different, or vice
versa.

3. Borderline error types that cannot clearly
be assigned either to semantic accuracy or
to fluency. Categorising the error annotation
schemes for which this is the case in the sur-
vey as accuracy and/or fluency errors is some-
times difficult due to the (lack of) provided
definitions, examples, etc. We found 12 out of
22 papers (which is more than 50%) to be dif-
ficult to categorise which corresponds to three
out of 11 papers for the MGT group, and 9 out
of 11 papers for HGT. This difficulty implies
an unclear boundary between accuracy and
fluency types of errors.

Further interesting observations can be drawn from
Table 1 and Table 3 concerning the relationship
between semantic errors on the one hand, and text
types (MGT, HGT) and broad errors types (accu-
racy and fluency), on the other. Nine out of 11
papers in the MGT group address either accuracy
error types only (3/9), or accuracy error types to-
gether with fluency error types (6/9). Arbitrary
content addition (currently more commonly known
as hallucination) and omission are the most com-
mon semantic errors reported and we see them in

all nine papers under the MGT group. Repetition
(in combination with other semantic errors) is the
next frequently reported semantic error and we see
it in five out of nine papers under the MGT group.
Meanwhile, three papers in the HGT group address
both accuracy and fluency error types with only
one paper out of the three addressing omission.

Part of the motivation for conducting this survey
was to use it as a starting point in creating our own
semantic error taxonomy for annotating errors in
output text in data-to-text generation. Our original
aim was to base our taxonomy on common error
types found in the literature, but, as we have seen in
this paper, there is little agreement between existing
error taxonomies beyond a distinction at the high-
est level between accuracy and fluency type errors,
and accuracy further dividing into (a) arbitrarily
content addition (currently more commonly known
as hallucination), (b) omission, (c) replacement,
and (d) repetition. Our next step will be to take this
as a starting point and add lower taxonomy levels
as required for data-to-text generation, while try-
ing to incorporate as much common ground from
the literature as possible. Another consideration
will be that we wish to use the resulting error tax-
onomy both in performing manual error analysis,
and for providing the categories in automatic error
detection.

6 Conclusion

We conducted a structured survey of work on er-
ror type annotation schemes (with a focus on error
taxonomies), as reported in papers from the ACL
Anthology. We observed a number of issues while
analysing the papers in our survey which we char-
acterised in terms of (1) lack of standardisation,
(2) differing/incompatible error names and defini-
tions across different papers, and (3) borderline
error types which resist being classified as either
fluency or accuracy related. We found that the latter
is mostly observed in error annotation for human-
generated text rather than machine-generated. We
conducted our study from the perspective of seman-
tic error annotation, as we plan to build on it in
future work on developing an error taxonomy of
semantic error types for data-to-text generation.
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A Appendix: Error Annotation Schemes
for Machine Generated Text (MGT)

In this section, we present entire taxonomies and
examples of individual errors for error annotation
schemes developed for HGT and extracted from
the 22 surveyed papers briefly summarised in
Section 3.

Costa et al. (2015) present the taxonomy found in
Figure 3. Below are some error examples extracted
from the paper:

Example 1: Spelling error in Orthography level

Example: Spelling error

EN: Basilica of the Martyrs

EP: Basílica dos *Mátires

Correct translation: Basílica dos Már-
tires

Example 2: Omission error (content word) in
Lexis level

Example: Omission error (content
word)

EN: In his inaugural address, Barack
Obama

EP: No seu * inaugural, Barack Obama

Correct translation: No seu discurso
inaugural, Barack Obama

Example 3: Addition error (content word) in
Lexis level

Example: Addition error (content word)

EN: This time I’m not going to miss

EP: Desta vez *correr não vou perder

Correct translation: Desta vez não vou
perder

Figure 3: Figure of taxonomy extracted from (Costa
et al., 2015).

Al Sharou and Specia (2022) define seven main
categories as mentioned in Section 3. Here are
some error examples extracted from the paper:

Example 1: Deviation in toxicity (TOX)

ST: Your killing the fucking planet.

MT-ed text: May the damn planet kill
you.

Translation into Arabic by Systran

Example 2: Deviation in health/safety risks
(SAF)

ST: I Know two teenagers that suffer
from gerd it is a big problem for these
people!

MT-ed text: I Know two teenagers that
suffer from root disease it is a big prob-
lem for these people!

Translation into Chinese by GT.

Example 3: Deviation in named entities (NAM)

ST: Your fucking ass doesn’t know shit
about it AT ALL.Rocky.

MT-ed text: Your fucking ass doesn’t
know shit about it AT ALL.rock.

Translation into Italian by Bing
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Caseli and Inácio (2020) presents a taxonomy
found below:

1. Syntactic errors

• Number agreement
• Gender agreement
• Verb inflection
• PoS

|item Lexical errors

• Extra word
• Absent word
• Not translated word
• Incorrectly translated word

2. N-gram

• Absent n-gram
• Not translated n-gram
• Incorrectly translated n-gram

3. Reordering

• Order

He et al. (2021) present a taxonomy found in
Figure 4.

Figure 4: Figure extracted from (He et al., 2021) of
level-1 and level-2 error types in TGEA which is an
error annotated dataset.

Belkebir and Habash (2021) present a taxonomy
found in Table Figure 5.

Huang et al. (2020) show PolyTope with each er-
ror types on a three-coordinates for syntactic and

Figure 5: Figure of ARETA which is an error annotation
system extracted from (Belkebir and Habash, 2021).

semantic roles which is found in Figure 6 and some
examples extracted from the paper are found below.

Example 1: Inaccuracy Intrinsic

“Pittsburgh Union Station is 10 kilome-
ters from Exhibition Center and 3 kilome-
ters from the University of Pittsburgh” in
the source but “Pittsburgh Union Station
is 3 kilometers from Exhibition Center”
in the output.

Example 2: Inaccuracy Extrinsic

it is described as “Pittsburgh Union Sta-
tion, also known as Pittsburgh South
Station” in the output but “Pittsburgh
South Station” is neither mentioned in
the source text nor exists in the real
world.

Example 3: Positive-Negative Aspect

“push a button” summarized as “don’t
push a button”, “non-slip” summarized
as “slip”. This category applies only to
actions and modifiers and refers to omit-
ted or added negative particles.

Di et al. (2019) presents an error taxonomy found
below.

1. Target errors: Target word errors are ’due to
errors in the Wiktionary source data and incor-
rect extraction of paradigm tables.’

2. Prediction errors
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Figure 6: Figure of PolyTope with each error types
on a three-coordinates for syntactic and semantic roles
extracted from (Huang et al., 2020).

• nonce-word errors: Nonce word errors
are ’due to illegal words, i.e. situations
when the string generated by a system
does not exist in Tibetan.’

• allomorphy errors: Allomorphy errors
are considered for verb inflection and di-
acritics for Tibetan language.

Mahmud et al. (2021) present a taxonomy found
in Figure 7.

Figure 7: Figure of taxonomy of errors between the
generated summaries and ground truth extracted from
(Mahmud et al., 2021).

Costa et al. (2012) present a taxonomy and exam-
ples below:

The error taxonomy is as follows:

1. Missing words (when one or more words are
missing in the translation)

• Missing word fillers
• Missing content words

2. Word order (when reordering model is unable
to produce a reordering of the sentence)

3. Incorrect words (when a translation engine is
unable to produce a correct translation of a
word or expression)

• Lexical choice
• Disambiguation
• Incorrect form
• Extra words
• Idiomatic Expressions

4. Unknown words (when the translation engine
could not find the translation in the target lan-
guage and keeps the words or expressions in
the source language).

Example extracted from the paper in Figure 8:

Figure 8: Examples of word order error extracted from
(Costa et al., 2012)

Macklovitch (1991) presents an error tabulation
for its taxonomy in Figure 9.

B Appendix: Error Annotation Schemes
for Human Generated Text (HGT)

In this section, we present entire taxonomies and
examples of individual errors for error annotation
schemes developed for HGT and extracted from
the 22 surveyed papers briefly summarised in
Section 3.

Lin et al. (2022) present a taxonomy based on
error correction and each edit belongs to one of
the three types listed below. Figure 10 show error
types and examples extracted from the paper.

The error taxonomy in Lin et al. (2022) is

1. Monolingual edits (identifiable from the target
side of the text)

• typos (spelling, punctuation, spacing and
orthographic issues)

• grammar

395



Figure 9: Figure of taxonomy extracted from
(Macklovitch, 1991)

• fluency

2. Bilingual edits (mismatch between source
and target text) Eg, under-translation, mis-
translation.

3. Preferential edits (based on the preference of
the customer) Eg, terminology, style prefer-
ence.

van der Goot et al. (2018) present a taxonomy;
below are a few examples of errors.

Example 1: Typographical error

spirite|→spirit, com-
plaing|→complaining, throwg|→throw

Example 2: Repetition

soooo|→so, weiiiiird|→weird

Example 3: Unknown

Figure 10: Figure of error taxonomy for ACED corpus
with examples extracted from (Lin et al., 2022).

Figure 11: Figure of taxonomy extracted from (van der
Goot et al., 2018).

skepta|→sunglasses, putos|→photos

Ng et al. (2014) present an error annotation scheme
and a few examples below.

Figure 12 includes extracted error categories and
its examples from the paper. Here are some exam-
ples extracted from the paper:

Example 1: Verb tense (Vt)

Medical technology during that time [is
→ was] not advanced enough to cure
him.

Example 2: Word form (Wform)

The sense of [guilty → guilt] can be more
than expected.

Example 3: Unclear meaning (Um)

Genetic disease has a close relationship
with the born gene. (i.e., no correction
possible without further clarification.)

Dickinson and Herring (2008) presents a taxon-
omy for Russian verbal morphology:

1. Inappropriate verb stem

• Always inappropriate
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Figure 12: Figure of taxonomy extracted from (Ng et al.,
2014).

• Inappropriate for this context

2. Inappropriate verb affix

• Always inappropriate
• Always inappropriate for verbs
• Inappropriate for this verb

3. Inappropriate combination of stem and affix

4. Well-formed word in inappropriate context

• Inappropriate agreement features
• Inappropriate verb form (tense, perfec-

tive/imperfective, etc.)

Dickinson (2010) present an error taxonomy in
Figure 13.
Nagata et al. (2018) present a spelling error anno-
tation scheme in Figure 14.
Barbagli et al. (2016) present error annotations
and examples in Figure 15.
Himoro and Pareja-Lora (2020) present an error
taxonomy and examples in Figure 16.

1. Abbreviation (ABR) in Intentional errors are
due to omission of letters or use of homo-
phones letters and/or numbers to replace syl-
lables. Example, kme->kame.

2. Omission (OMS) in unintentional errors are
due to deletion of letter from a word without
an explanation. Example, Chaacano -> Chava-
cano.

Figure 13: Figure of taxonomy extracted from (Dickin-
son, 2010)

Figure 14: Figure of spelling error and corresponding
treatment extracted from (Nagata et al., 2018).

Caines et al. (2020) present the error types deter-
mined by grammatical error correction of texts in
TSCC in Figure 17.
Korre et al. (2021) present an error annotation
scheme in Figure 18.
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Figure 15: Figure of error annotations and examples
extracted from (Barbagli et al., 2016)

Figure 16: Figure of spelling error taxonomy for ZC
extracted from (Himoro and Pareja-Lora, 2020)

Figure 17: Figure of the error types determined by gram-
matical error correction of texts in TSCC extracted from
(Caines et al., 2020)

Figure 18: Figure of ELERRANT and human error type
annotation guide extracted from (Korre et al., 2021).
The error types with (*) do not exist for human annota-
tion scheme and the last two error types do not exist in
the ELERRANT annotation scheme.
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Abstract
Sharing datasets and benchmarks has been cru-
cial for rapidly improving Natural Language
Processing models and systems. Documenting
datasets’ characteristics (and any modification
introduced over time) is equally important to
avoid confusion and make comparisons reli-
able.

Here, we describe the case of BigPatent, a
dataset for patent summarization that exists in
at least two rather different versions under the
same name. While previous literature has not
clearly distinguished among versions, their dif-
ferences not only lay on a surface level but also
modify the dataset’s core nature and, thus, the
complexity of the summarization task.

While this paper describes a specific case, we
aim to shed light on new challenges that might
emerge in resource sharing and advocate for
comprehensive documentation of datasets and
models.

1 Introduction

Sharing models and datasets is essential for Natural
Language Processing (NLP). With the rise of trans-
fer learning in the last few years, releasing large
pre-trained models has become standard practice.
Consequently, several libraries have provided APIs
to access and work with those models efficiently.
Datasets have followed a similar trend: they are
often shared by their authors and stored in hubs
that expose APIs. Two notable examples of this
trend are the TensorFlow Datasets collection1 and
the Hugging Face dataset library2 (Lhoest et al.,
2021). These libraries allow accessing published
data, often with just a few lines of code. They dras-
tically ease the experimentation loop, and allow
users to download, experiment with, and probe ex-
isting resources. There is, however, another side to

1https://www.tensorflow.org/datasets
(Last accessed: September 2022)

2https://huggingface.co/docs/datasets/
(Last accessed: September 2022)

the coin: the dataset documentation is sometimes
insufficient, which might lead to inconsistencies
when performing experiments and comparing re-
sults to previous work.

This paper analyzes a somewhat extreme case:
the BigPatent dataset (Sharma et al., 2019).
BigPatent is a dataset for patent summarization,
first published in 2019. Patents have many pecu-
liar characteristics that might be challenging for
standard NLP systems: they span multiple pages,
have very long sentences, contain a mix of legal
and technical vocabulary, and are built out of noun
phrases instead of clauses, with a long lexical chain
(Casola and Lavelli, 2022). Thus, the dataset has
also become popular as a general benchmark for
summarization.

We show that the two popular TensorFlow and
Hugging Face dataset hubs expose different ver-
sions of BigPatent. These differences are not only
superficial (e.g., casing, tokenization) but regard
the very content of the source documents.

We first briefly describe this difference and its
impact on the dataset features (Section 2); then, we
examine previous work and show it hardly ever clar-
ifies the version of the dataset used in experiments
(Section 3); finally, we show how the difference
substantially impacts models’ performance (Sec-
tion 4).

While strongly advocating for resource sharing
and infrastructure that make them easier to use, we
hope that the discussion of this extreme case can
shed light on the importance of careful resource
documentation.

2 The BigPatent dataset

BigPatent is a dataset for the automatic summariza-
tion of patent documents.
Patents award inventors the exclusive right to use,
make, and sell their inventions for a specific time
and geographical area. Patents are structured legal
documents containing several sections. The De-
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scription section reports the technical characteris-
tics of the invention and its preferred embodiments
so that a person skilled in the art can understand
and reproduce it. The Description can be further
divided into subsections (e.g., Background, Field
of the Invention, Summary of the invention, De-
tailed Description, Description of the Drawings,
etc.). The patent document also contains a human-
written Abstract. It is thus somewhat natural to
construct a summarization dataset using the De-
scriptions (or part of them) as the source texts and
the Abstracts as the gold-standard summaries.

The dataset is not only interesting for a niche
of patent mining researchers: in fact, patent doc-
uments show several interesting linguistic charac-
teristics worth investigating (e.g., long sentences,
unusual vocabulary, specific syntactic structure).
Moreover, since many popular large-scale summa-
rization datasets are in the news domain (Nallapati
et al., 2016; Narayan et al., 2018; Fabbri et al.,
2019), gathering data from different sources opens
new challenges for NLP systems. For example,
patent documents are very long, and their Abstract
is not very extractive with respect to the Detailed
Description, as the original dataset shows (Sharma
et al., 2019).

In its original version, published by BigPatent’s
authors and accessible on GitHub3, only part of
the Description (typically the Detailed Description)
is included in the input document, and the source
does not contain any of the other subsections. The
published dataset is also cased and tokenized. The
Hugging Face dataset library exposes this version
of the dataset (described in the related paper)4.

With the advent of sequence-to-sequence trans-
former models for summarization (e.g., BART
(Lewis et al., 2020) or Pegasus (Zhang et al.,
2020))), however, using a strongly preprocessed
dataset is not ideal. It is common practice to pro-
cess the raw text with a model-specific tokenizer.
This is likely why the TensorFlow Datasets collec-
tion contains a different version of the dataset that
is cased and untokenized, with limited preprocess-
ing over the original raw text5.

However, a deeper look at the data reveals an-
other difference: the TensorFlow source documents

3https://evasharma.github.io/bigpatent/
(Last accessed: September 2022)

4https://huggingface.co/datasets/big_patent
(Last accessed: September 2022)

5https://www.tensorflow.org/datasets/catalog/big_patent
(Last accessed: September 2022)

contain a superset of the text contained in the origi-
nal version. All subsections in the patent Descrip-
tion are included. Thus, the input not only con-
tains the Detailed Description but often also the
Background, the Field of the invention, etc., and,
interestingly, a Summary of the invention6,7. Table
1 shows the first tokens of the input of some entries
in the corpus.

In the following, we compute some statistics on
the two dataset versions (we call the original ver-
sion BigPatentOriginal and the subsequent mod-
ified cased version BigPatentNew) and their dif-
ferent characteristics.

The dataset is divided into several subsets, fol-
lowing the Cooperative Patent Classification (CPC)
codes. Due to the large dataset size (over 1.3 mil-
lion examples), we restrict our analysis to its G
(Physics) subset: it includes patents of information
systems devices and processes, for which the au-
thors of this paper might be considered skilled in
the art. However, our considerations are general.

2.1 Dataset characteristics

Table 2 reports some statistics8 over BigPatent/G.
Note that the dataset split is identical in the
two versions (i.e., the train, validation, and test
splits contain the same documents). While the
summaries characteristics are very similar be-
tween the original and the new version (we at-
tribute the difference to errors in the tokenization,
since BigPatentOriginal is pre-tokenized, while
BigPatentNew is not), BigPatentNew clearly
contains more text than the original version (38%
more tokens, on average, in the training set), and
more sentences (68% more, on average, in the train-
ing set). The compression ratio (i.e., the ratio be-
tween the number of tokens in the source and the
number of tokens in the Abstract) is also higher in
BigPatentNew.

To get a closer look at the datasets’ abstractive-
ness, we compute their coverage and density, fol-
lowing Grusky et al. (2018).
Given a document D = ⟨d1, d2, . . . , dn⟩ where
di is a token of D and a summary S =
⟨s1, s2, . . . , sm⟩, with m ≤ n, where sj is a token
in the summary, F (D,S) is the set of their shared

6We will refer to this summary included in the document
(input) as Summary of the Invention and to the dataset gold-
standard as Abstract or gold standard.

7Note that this difference is not explicitly discussed on
the dataset page.

8we use NLTK for sentence and word tokenization.
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publication_number DescriptionOriginal DescriptionNew

US-2007088503-A1

referring now to fig1 and 2 , a service technician visiting a customer service
location is provided with a technician input device 2 for receiving and
transmitting information related to a disruption or interruption of service at
the service location . the input device 2 can be a wireless pc , for example
, a laptop , a personal digital assistant ( pda ), a wireless pager or any
other device suitable for receiving and transmitting data associated with
providing service at the customer service location . [+2858 tokens]

This is a continuation of application Ser. No. 10/445,861 filed May 27,
2003, which is a continuation of application Ser. No. 10/032,853 filed
Oct. 25, 2001 and now U.S. Pat. No. 6,772,064. The present methods
and systems generally relate to processing and transmitting information
to facilitate providing service in a telecommunications network. [+986
tokens] Referring now to FIG1 and 2 , a service technician visiting a
customer service location is provided with a technician input device 2 for
receiving and transmitting information related to a disruption or interruption
of service at the service location. [+2427 tokens]

US-2011144953-A1

in the following , the invention is described in more detail referring to
the attached figures by means of exemplary embodiments , wherein same
reference signs refer to same components . fig1 schematically shows the
system for compensating electromagnetic interfering fields . an object 2
to be protected against effects of the interfering field 1 is permeated by
the interfering field 1 . here , the interfering field 1 is assumed to be a
gradient field . the amplitude of the interfering field 1 is measured by two
real magnetic field sensors 3 , and 4 . the first real sensor 3 provides an
output signal right arrow over ( s ) 1 =[ x 1 ( t ), y 1 ( t ), z 1 ( t )], and the
second real sensor 4 provides an output signal right arrow over ( s ) 2 =[ x
2 ( t ), y 2 ( t ), z 2 ( t )]. [+1855 tokens]

This application claims benefit under 35 U.S.C. (a) of German Patent
Application No. 10 2009 024 826.9-32, filed Jun. 13, 2009, the entire
contents of which are incorporated herein by reference.The invention relates
generally to a system for compensating electromagnetic interfering fields,
and in particular to a system for magnetic field compensation having two
sensors and a digital processor. [+16010 tokens] In the following, the
invention is described in more detail referring to the attached figures by
means of exemplary embodiments, wherein same reference signs refer to
same components.FIG1 schematically shows the system for compensating
electromagnetic interfering fields. [+1427 tokens]

US-4830479-A

referring now to fig1 of the drawings , there is depicted a ray 12 entering
the paper plane perpendicularly along an axis z orthogonal to axes x and y .
ray 12 is deflected into the paper plane by a mirror 16 which is located at
the origin and is oriented upwardly at a forty five degree angle from the
paper plane . mirror 16 rotates with an angular velocity ω around axis z
which is in line with the arriving ray 12 . [+1579 tokens]

The invention described herein may be manufactured and used by or for
the Government for governmental purposes without the payment of any
royalty thereon.At radio frequencies, superheterodyne receivers typically
have sensitivities that are orders of magnitude higher than those of direct
detection receivers. [+1044 tokens] Referring now to FIG1 of the drawings,
there is depicted a ray 12 entering the paper plane perpendicularly along an
axis Z orthogonal to axes X and Y. Ray 12 is deflected into the paper plane
by a mirror 16 which is located at the origin and is oriented upwardly at a
forty five degree angle from the paper plane. [+1380 tokens]

Table 1: Some examples from the two versions of the dataset. We report the first tokens from the input in the
original version, and the first tokens in the new version of the dataset. Note that the new version might contain many
paragraphs before the content of the original input.

BigPatentOriginal BigPatentNew

# docs
(train, val, test)

258,935 258,935
14,385 14,385
14,386 14,386

Summary

# tokens (avg)
123.9 121
123.7 120.9
124.1 121.2

# sents (avg)
3.7 3.6
3.6 3.6
3.7 3.7

sent len (avg)
44.3 43.4
44.2 43.3
44.5 43.7

Source

# tokens (avg)
3,959.2 5,488.3
3,953.3 5,517.5
3,976.8 5,501.9

# sents (avg)
105.6 177.6
105.5 178.4
106.3 178.3

sent length (avg)
42.6 31.8
42.6 31.8
42.5 31.8

compression ratio
36.1 51.2
36.0 51.5
35.8 50.9

Table 2: Length statistics on the two BigPatent versions.
The number of tokens, sentences, tokens per sentence,
and the compression ratio are computed per document
and then averaged. The compression ratio is the ratio
between the number of tokens in the source and the
number of tokens in the Abstract.

fragments (shared sequences of tokens). The ex-
tractive fragment coverage measures the proportion
of tokens in the summary belonging to an extractive

BigPatentOriginal BigPatentNew

Coverage (avg) 0.87 0.95
Density (avg) 2.40 20.8

Table 3: The extractive fragment coverage and the den-
sity for the two versions of the dataset. Measures are
computed per document and then averaged.

fragment and qualitatively describes how much a
summary vocabulary is derivative of a text.

Coverage(D,S) =
1

|S|
∑

f∈F (D,S)

|f |

where |S| is the number of tokens in the summary.
The density also takes into account the length of
the extractive fragments: the higher the density, the
more a summary can be described as a series of
extractions.

Density(D,S) =
1

|S|
∑

f∈F (D,S)

|f |2

Table 3 shows the measures computed for the
two versions of the dataset, while Table 4 shows
their percentage of novel n-grams. Note that both
datasets have relatively high coverage (the increase
in BigPatentNew might be partially motivated by
the increased length of the source). However, the
extractive density is an order of magnitude higher
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in BigPatentNew, suggesting that the reference
summaries are significantly more extractive than
the original version.

BigPatentNew also has a lower number of novel
n-grams in the summary (and the difference with
BigPatentOriginal stays high even when account-
ing for the length of the source). We attribute this
difference to the presence of sections such as the
Summary of the invention, the Background, and the
Field of the invention in the input; these sections
already abstract the core features of the claimed
invention.

To investigate how similar the Abstract is to each
subsection in BigPatentNew, we compute their
ROUGE scores (Lin, 2004) with the summary9.
We report both ROUGE f1 and recall since we
want to quantify how much "information in the
Abstract" each section contains. BigPatentNew

does not include the name of the patent subsections
(an uppercase short header in the raw text). In fact,
short sentences (including subsection names) are
removed during the preprocessing. To divide the
text into subsections, we regenerate the dataset us-
ing the original TensorFlow script and remove the
portion of the code that gets rid of short sentences.
We use a regular expression to divide the text into
subsections and extract their headers. Since the
headers do not have normalized names (e.g., the
Background’s header might be indicated as "Back-
ground", "Background of the invention", etc.), we
use a simple key-based method to classify them
into 9 groups. Note that not all patents include
all subsection types. Table 5 reports the obtained
ROUGE score, the subsection average length, and
the percentage of patents that include each subsec-
tion type. Note that the Summary of the invention
(in 94% of the inputs in BigPatentNew) has the
highest scores; compared to the Detailed Descrip-
tion, the Summary of the Invention has a higher
ROUGE-recall even though it is much shorter.

In a nutshell, our analysis shows that the addi-
tional text in BigPatentNew decreases the need
for an abstractive model for the task. The additional
Description subsections – in some cases, already
a summary of the rest of the patent – contain the
most information in the patent Abstract.

9All ROUGE scores are computed using the Hugging
Face version of the metric, with stemming.

BigPatentOriginal BigPatentNew

Novel 1-grams (avg) 10.9% 4.21%
Novel 2-grams (avg) 46.9% 23.46%
Novel 3-grams (avg) 74.0% 42.25%
Novel 4-grams (avg) 87.1% 53.58%

Table 4: Percentage of new n-grams in the summary
in the two datasets. All percentages are computed per
document and then averaged.

3 How to compare to the previous
literature?

While the two versions of the dataset have different
characteristics, the vast majority of previous liter-
ature using BigPatent does not explicitly mention
the version used.

Zhang et al. (2020) mention they "updated the
BIGPATENT dataset to preserve casing, some for-
mat cleanings are also changed"; this operation
might have led to the creation of the new dataset
version now exposed by TensorFlow (whose differ-
ences with the original version are, however, not
limited to casing and minor format cleaning). Some
previous work (He et al., 2020) noticed a substan-
tial performance gap between models trained with
the original version and Pegasus and speculated
this difference might be due to the different pre-
processing (and, we add, possibly to the additional
content); these findings are compatible with our
experiments in the next section.

In the vast majority of cases, the reported statis-
tics are directly taken from the original publication
and not recomputed; in a few cases, the values
computed (e.g., in terms of document lengths) are
compatible with the use of the cased version (e.g.,
in Guo et al. (2022)).

BigPatent is widely used when testing systems,
often as an example of a dataset with a very long
source. The dataset was cited 115 times, according
to Google Scholar10. Since the used dataset version
is unknown, and authors are unaware of the two
different versions, it is impossible to understand if
comparing results to previous work is fair. Since
the Tensorflow version was updated on the 31st
Jan 202011, papers published after that date could
potentially use the new version of the dataset, with
likely better results. In fact, a simple BART model
results in a very different performance on the two
versions of the dataset, as shown in the next section.

10Checked on 27/10/2022
11See this github commit:

a708d506748870237eafa2bbb659dc64cd7cf04a

402



ROUGE-1 ROUGE-2 ROUGE-L
#Tokens

%
R f1 R f1 R f1 patents

SUMMARY 84.68 35.97 60.76 25.97 69.07 29.36 744.56 93.79%
FIELD 23.62 28.66 10.17 11.92 16.14 19.44 73.73 38.27%
BACKGROUND 66.04 24.45 25.38 8.60 41.42 14.70 710.04 94.85%
DRAWINGS 38.96 28.36 10.35 7.39 24.52 17.55 243.43 97.6%
EMBODIMENTS 81.39 8.58 42.44 4.14 59.21 5.92 3168.25 53.07%
REFERENCES 10.82 11.40 1.48 1.35 07.38 7.94 92.10 28.18%
RELATED ART 52.47 20.33 18.48 6.36 32.13 12.04 644.27 4.12%
OBJECTIVE 44.35 32.31 16.05 10.93 27.49 19.58 256.95 2.09%
DESCRIPTION 84.39 8.27 4.10 4.08 61.90 5.78 3404.91 55.23%

Table 5: The ROUGE score (recall (R), f1) between the different subsections of the patents and the patent Abstract.
The subsections are obtained from the BigPatentNew raw data. The scores are computed per document and
normalized by the number of documents that contain each subsection. The average length of each subsection and
the percentage of patents that contain the subsection are also reported.

4 Experiments

To understand if the version of the dataset impacts
models’ performance, we fine-tuned a pre-trained
BART (Lewis et al., 2020) base model on the two
versions of the dataset. We train using the Hugging
Face library with early stopping on the evaluation
loss (patience: 5) and the following hyperparame-
ters: max source length: 1000; max target length:
150; number of beams: 5; eval steps: 10k; max
steps: 500M. We leave all other parameters to their
default values. Table 6 reports the results. Note
how results on BigPatentNew are more than 11
points of ROUGE-L over BigPatentOriginal.

To corroborate the idea that the Summary of the
invention in the input improves the performance
on BigPatentNew, we trained a model using, as
input, only the text in the Summary of the Invention
subsection. In the few cases in which the patent did
not include the Summary subsection, we used the
Detailed Description or the Description of the em-
bodiments. As described in Section 2, we resorted
to the raw data to extract the text in the Summary
of the Invention subsection. This setting further im-
proves the performance, with an increase of almost
16 and almost 5 points of ROUGE-L with respect
to the original and the new version; note, however,
that sinceBigPatentNew does not contain the sub-
section headers, it is not directly possible to train
models using the Summary of the Invention only
as input.

5 Conclusions

We have discussed the case of BigPatent, a dataset
that exists in two very different versions. We have

shown that the updated version of the dataset lacks
some of the original characteristics (e.g., the high
level of abstraction in the reference summaries and
their high percentage of novel n-grams) and leads
to much higher results with a simple transformer.

To our best knowledge, this difference is not re-
ported elsewhere, either in published research or
in the dataset’s online documentation. In fact, pre-
vious work tends to ignore the difference between
the original and the new version, making it virtu-
ally impossible to understand experimental results,
reproduce, and compare them.

We believe BigPatent is an extreme case in
which the lack of clear documentation has led to
confusion – with two datasets so distant in their
characteristics that they might be considered two
different ones, used interchangeably. We always
advise reporting the dataset version and character-
istics when using BigPatent (and being aware of
the possible problems with the comparison with
previous work).

We hope that the analysis of this case underlines
the importance of clearly documenting datasets’
characteristics and any possible modifications in-
troduced over time.

Limitations and ethical impact statement

The dataset we analyzed is public and derives from
public patent data. We are not aware of any ethical
concerns related to the dataset.

In this paper, we have only analyzed a subset of
the dataset, but our considerations are general. We
have done so for computational concerns, including
trying to limit the requirement for energy resources.
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BigPatentOriginal BigPatentNew

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 29.54 7.95 18.15 23.15 7.27 15.42
Summary Lead-3 - - - 48.11 30.16 36.66
BART-base 42.25 15.99 27.58 50.18 29.46 38.64
BART-base (Summary) - - - 55.16 34.85 43.56

Table 6: Results (test set) on the two dataset versions for a BART-base model. The Lead-3 baseline considers
the first three sentences of the input text as a proxy for the generated summary. Summary Lead-3 uses the first 3
sentences of the Summary of the invention (obtained from the Summary of the invention as described in Section
2.1). We also trained a BART model that only uses the Summary of the Invention as input. The split is identical, i.e.,
the train, validation, and test splits contain the same documents in both versions.
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Abstract

The ability to compare the semantic similar-
ity between text corpora is important in a va-
riety of natural language processing applica-
tions. However, standard methods for eval-
uating these metrics have yet to be estab-
lished. We propose a set of automatic and
interpretable measures for assessing the char-
acteristics of corpus-level semantic similarity
metrics, allowing sensible comparison of their
behavior. We demonstrate the effectiveness
of our evaluation measures in capturing fun-
damental characteristics by evaluating them
on a collection of classical and state-of-the-art
metrics. Our measures revealed that recently-
developed metrics are becoming better in iden-
tifying semantic distributional mismatch while
classical metrics are more sensitive to perturba-
tions in the surface text levels.

1 Introduction

While there has been a long-standing interest in de-
veloping semantic similarity metrics1 (Rayson and
Garside, 2000), measuring how close two text cor-
pora are remains an open problem (Pillutla et al.,
2021). Specifically, the recent advances in gen-
erative language models have led to an increased
interest in the study of content similarity between
human and generated language, as a mean for com-
paring the quality of generative models (Mille et al.,
2021; Gehrmann et al., 2022).

The goal of a text corpus’ dissimilarity or dis-
tance metric is to provide a broad representation
of distance across specific linguistic aspects, such
as lexical, morphological, syntactic, and semantic
(Kilgarriff, 2001). Such metrics are essential for
measuring how well corpus-based linguistic analy-
sis generalizes from one data-set to another. This
work focuses on semantic similarity metrics.

∗ denotes equal contribution.
1In the context of this paper, a metric is a measure of differ-

ence (distance) in the general sense, and may not necessarily
satisfy the properties of a metric in mathematical terms.

While one can reasonably measure the semantic
distance between two individual sentences (e.g.,
by calculating the cosine distance between the sen-
tence embeddings), measuring the dissimilarity be-
tween two text corpora remains a challenge (Naeem
et al., 2020). Corpus-level metrics seek to assess
semantic similarity at the group level. for instance,
assessing generated text fidelity, diversity, and cov-
erage compared to the reference corpus (Sajjadi
et al., 2018). Thus, one common approach for mea-
suring the semantic dissimilarity between two cor-
pora is to compare the densities of their sentences
in the embedding space (Pillutla et al., 2021).

However, there are no standard automatic proce-
dures for evaluating the precision and robustness of
such similarity metrics. The semi-manual standard
approach is to correlate the results of these met-
rics for human judgement. However, leveraging
manual human judgements to construct numeric
metrics has significant weaknesses. As we explain
in Section 2, human judgements are expensive to
obtain, are difficult to aggregate consistently from
individual text instances into a corpus-level metric,
and can be subjective and non-robust.

To mitigate the dependence on human judge-
ment, controllable synthetic distributions have been
used in recent work to evaluate the metric quality
(Naeem et al., 2020). For instance, this was done
by calculating the distance of synthetic high di-
mensional samples generated by sampling from
Gaussian or mixture-of-Gaussian distributions rep-
resenting the reference P and target Q data, and
then calculating the distance measure by shifting
away the two distributions. In this paper, we adopt
a middle ground between validating the metric
against human judgement on real data and eval-
uating the metric with synthetic distributions by
building "controllable-distance real data corpora"
(Section 3). By precisely controlling the content of
test corpora, we devised a unified evaluation of de-
sired metric characteristics on real data. This tech-
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nique allows aggregation of many small-difference
judgements that should correspond to what a hu-
man would logically decide, to evaluate the dis-
tance metric overall in terms of desirable proper-
ties. The middle ground thus attempts to reflect
human logical judgement in an inexpensive way,
while avoiding some of the weaknesses described,
such as lack of consistency.

To summarize, our contributions are as follows.
First, we present a text similarity evaluation mea-
sures that allows researchers to compare the ro-
bustness of their newly proposed metrics against
existing metrics using the same standards. Sec-
ond, we evaluate classical and state-of-the-art sim-
ilarity metrics and show that our benchmark per-
forms well in capturing their known properties. Fi-
nally, we provide a pip-installable Python package
to compute an extensive set of text dissimilarity
metrics, using a unified and simple API2.

2 Literature Review

The most widely-used method to compute the qual-
ity of text similarity metrics investigates the corre-
lation between the scores given by the metric and
human judgements. However, human judgement,
even on the sentence level, has several shortcom-
ings, mainly that it is expensive and can be incon-
sistent and subjective (Popescu-Belis, 2003; Lin
and Och, 2004; Graham et al., 2017). Also, super-
ficial aspects of the sentences, such as text length
or syllables per sentence, may influence human
judgements of the semantic similarity (Novikova
et al., 2017). Furthermore, though humans may
be able judge the relative similarity of a pair of
sentences, they are usually limited in their ability
to make large-scale assessments of a similar type
when comparing two corpora (i.e., two distribu-
tions of sentences) consistently and reliably.

In an attempt to standardize metric evaluation,
several competitions and standard datasets contain-
ing compared data and human assessment were
created for specific tasks, such as translation (Guo
et al., 2018; Mathur et al., 2020). However, there
is currently a lack of benchmarks against which to
assess the semantic similarity between corpora.

Text similarity metrics can be thought of as be-
longing to several broad and overlapping classes
(see e.g., Wang and Dong 2020), which partially
depend on the form of the text representation (e.g.,
token-based or vector embedding). Here, we inves-

2https://github.com/IBM/comparing-corpora

tigate metrics from three of these classes, compar-
ing corpora based on these aspects: lexicographical
(statistical properties of words and tokens), distri-
bution ( densities of sentences represented in the
embedding space), and discriminatability (ability
to classify sentences as belonging to one corpus or
the other). The metrics we use are summarized in
Table 1.

Lexicographical Statistics These methods have
been developed to compare various distributional
properties of target text Q with respect to the ref-
erence samples P , based on some statistic mea-
sures T (P ) and T (Q), operating on the surface
text level, e.g., sentence, words, word-parts, tokens,
etc. Such commonly-used measures include resem-
blance in vocabulary distribution (Kilgarriff, 2001),
likelihood of repetition (Pillutla et al., 2021), and
n-gram matching (Papineni et al., 2002). However,
these metrics tend to be overly sensitive or easily
misled by adversarial samples or text peculiarities.
In general, χ2-based metrics calculate distance be-
tween observed and expected frequencies of cate-
gorical variables. The metric in (Kilgarriff, 2001),
denoted here as CHI, calculates E, the average
(between P and Q) frequencies of the n most com-
mon tokens in the combined vocabulary of P and
Q, then sums the χ2 statistics comparing each of P
and Q to the expected E, across tokens. Here, for
both CHI and ZIPF, below, we use the top n = 5000
tokens.
In contrast, the ZIPF metric (Holtzman et al., 2019)
compares the use of vocabulary using Zipf’s law,
which suggests that the frequency of a given word
in human text is inversely-proportional to its fre-
quency rank. The Zipfian coefficient is fitted on a
given corpus and the further it is from 1, the more
the observed corpus differs from the ‘ideal’ the-
oretical distribution (Holtzman et al., 2019). We
can thus use ∣zP − zQ∣ as a distance metric between
corpora P and Q.

Distributional Metrics These metrics are based
on quantifying the distributional relationship be-
tween the reference and target corpora in the em-
bedded vector space, thereby capturing semantics
beyond superficial token-level statistics. Here P
and Q denote the reference and target corpora in
the embedding space. Given samples from these,
we can use the sample density estimates P̂ and Q̂ to
approximate the true unknown corpus population
distributions P and Q.
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Type Metric Measures
Lexicographical CHI (χ2) (Kilgarriff, 2001) Word/Token count comparison.
Statistics ZIPF (Holtzman et al., 2019) Unigram rank-frequency statistics.

FID (Heusel et al., 2017) Wasserstein distance between densities.
Distributional PR (Sajjadi et al., 2018) Assessing distributional precision & recall.

DC (Naeem et al., 2020) Estimating manifolds density and coverage.
MAUVE (Pillutla et al., 2021) Quality & diversity via divergence frontiers.

Discriminative CLASSIFIER (2016) Classifiability between reference and target.
IRPR (Zhao et al., 2017) Average distance between closest samples pairs.

Table 1: Summary of investigated text similarity metrics.

The Fréchet Inception Distance (FID, Heusel et al.
2017) is computed by fitting a continuous multi-
variate Gaussian to the P and Q, and then calcu-
lating the Wasserstein-2 distance between them.
However, FID is sensitive to both the addition of
spurious modes as well as to mode dropping (Lucic
et al., 2018). Also, while FID is able to detect dis-
tributional distances in the high-dimensional space,
it cannot shed light upon the nature of this distance.
Due to these weaknesses of FID, we additionally
consider a metric denoted PR proposed in com-
puter vision (Sajjadi et al., 2018; Kynkäänniemi
et al., 2019), which is inspired by the notion of pre-
cision and recall in machine Learning. Intuitively,
the precision captures the average resemblance of
the individual target samples to the reference set
(i.e., fidelity), while the recall measures how well
the target samples "cover" the full variability of the
reference samples (i.e., diversity). To obtain a sin-
gle distance value using the method in (Kynkään-
niemi et al., 2019), we calculate the F1 measure
based on the returned precision and recall, denoted
here by PR.
Naeem et al. (2020) proposed an improved estima-
tion of these precision and recall notions (called,
density and coverage) by mitigating the overestima-
tion of manifolds caused by outliers and underesti-
mating the similarity when the target and reference
are taken from the same distribution. Similarly to
PR, we calculate the F1 to obtain a similarity value
using this method, denoted as DC3.
MAUVE (Pillutla et al., 2021) is a recently-
developed metric that estimates the gap between hu-
man and generated text by computing the area un-
der the information divergence frontiers in a quan-
tized embedding space using the KL-divergence4.

3To calculate both PR and DC, we employed the imple-
mentation provided in the prdc Python package.

4We used the mauve-text Python package for calculating
MAUVE as well as ZIPF.

Discriminatability Metrics Similar to the distri-
butional metrics, discriminative metrics calculate
the distance using the embedding of the individual
sentences in the two corpora. However, they do
not aim to specifically capture the overlap between
the distribution induced by the compared corpora.
Rather, they calculate the relationship in classifica-
tion terms, i.e., to what extent can sentences in one
corpus be distinguished from the sentences in the
other corpus, using a discriminative model.
CLASSIFIER: Following (Lopez-Paz and Oquab,
2016), we measure the similarity between corpora
using a binary classifier. We used SVM (Cortes and
Vapnik, 1995) trained on samples of both source
corpora to predict corpus membership in a test set
of unseen samples. A higher test accuracy indicates
higher inter-corpora distance.

While CLASSIFIER is a model-based metric
that uses the entire corpus distribution, IRPR
(information-retrieval precision and recall) is an ex-
ample of an instance- (individual sentence) based
corpus distance metric. Inspired by Zhao et al.
(2017), we calculate the dissimilarity between cor-
pora as follows. For each embedded sentence in
corpus A, we find its closest neighbor in B by co-
sine distance. The average of these distances is
then computed to find the "precision" value. The
same procedure in reverse, from B to A, gives
the "recall" value. We calculate the F1 score of
the recall and precision to obtain a single value.
Note that the CLASSIFIER metric is used to repre-
sent model-based discriminative approaches, while
IRPR is used to represent instance-based discrimi-
native methods.

The values calculated by CHI, IRPR, PR, DC and
Mauve capture the similarity rather than the dis-
tance between two corpora (for all metrics v ∈[0,1]). To make these metrics represent distances,
we take 1 − v.

Our model selection was based on considering the
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Figure 1: Construction of a k = 6 known similarity
corpora (KSC) collection from source corpora A and
B. The corpus ci is constructed by drawing n ( k−i

k−1
)

and n ( i−1
k−1

) samples from A and B, respectively. The
adjacent densities illustrate the text distributions in the
semantic space of the source and the KSC corpora.

trade-off between embedding quality and calcu-
lation time. The code as well as the scripts to
reproduce the experiments are available online.5

3 Known Similarity Corpora

Most of the metric quality measures we pro-
pose are primarily based on the notion of known-
similarity corpora (KSC) introduced by Kilgar-
riff (2001). The KSC set is created by mixing
samples from two different source corpora A and
B in gradually-changing proportions. The KSC
set, denoted KSC(A,B), consists of k corpora{c1, c2, . . . , ck}, each of size n ≥ k − 1, where cor-
pus ci, i = 1, . . . , k is constructed by sampling
n ( k−i

k−1) observations from A, and the remaining
n ( i−1

k−1) from B (see Figure 1). The sampling reso-
lution gradation between corpora is a fixed 1

k−1 .
We now introduce some notation on the KSC

set, which are used to define the measures in Sec-
tion 4. Let [k] = {1,2, . . . , k}. For given source
corpora A and B, for each ` ∈ [k−1] we define the
`-distant corpora set as follows:

KSC`(A,B) = {(ci, cj)∶ i, j ∈ [k], j − i = `}
(1)

Let d(a, b) denote the distance from corpus a to b,
according to metric d. Let D`(A,B, d)— D` for
short—be the set of values of distance d for corpora
pairs in KSC`(A,B);

D`(A,B, d) = {d(ci, cj)∶ (ci, cj) ∈KSC`(A,B)}
(2)

To pool results across `, we further define:

D(A,B, d) = {D`(A,B, d)∶ ` ∈ [k − 1]} (3)
5https://github.com/IBM/meme

Name Size Description
atis 4978 Utterances to a flight

booking system.
yahoo 20000 Yahoo non-factoid

questions in 21 categories.
clinc150 22500 Utterances in 10 domains

classified into 150 classes.
banking77 10000 Online banking queries.

Table 2: Datasets used as source corpora in our bench-
mark. Although some of the datasets are partitioned
annotated with labels, in our experiments, if not men-
tioned otherwise, we ignored those labels.

Some of the metrics d have a pre-defined range
(e.g., CHI, MAUVE, DC, PR only return values in
the range [0,1]) while others have no preset scale
or operation range. Therefore, to allow sensible
comparison of distance metrics with different oper-
ation ranges and across source corpora, we obtain
z-scores by normalizing the metric values, pooled
across all D`(A,B, d). In the following analysis,
if not specified otherwise, D` will always be the
normalized rather than raw distances.

Datasets Selection The measures described in
Section 4 are applicable to any pair of textual
datasets with differently-distributed textual con-
tent, allowing the corpora in the KSC set to be
distinguishable. To ensure that each pair of source
corpora were in fact different enough, in the fol-
lowing experiments we use pairs of human text
corpora from different domains, rather than pairing
a human corpus with a machine-generated version
of itself. For our experiments we selected four pub-
lic datasets (ATIS, Hemphill et al. 1990; yahoo6;
banking77, Casanueva et al. 2020; clinc150, Lar-
son et al. 2019) containing short user utterances
from different domains summarized in Table 2.

4 Metric Robustness Measures

We now describe our measurements of desirable
properties for distance metrics, given the normal-
ized D` on the KSC sets. In the three following
measures (Monotonicity, Separability, and Linear-
ity), we aim to capture three attributes of well-
behaved metrics that can be understood by consid-
ering the top line scatter plots of Figure 2; these
show the relation between the D` sets and `. In
these scatterplots, a high angle of the regression
line, low vertical variability around it, and linearity

6https://ciir.cs.umass.edu/downloads/nfL6/
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are all desirable properties for the distance metric,
and are captured in these measures.

4.1 Metric Monotonicity
A well-behaved distance metric d should have a
natural monotonic relationship with the separation
levels ` of the KSC. We use Spearman’s rank cor-
relation between ` and D`, which we denote ρ(d),
to assess the monotonicity. Spearman’s correla-
tion is defined as the Pearson correlation between
the order ranks of two variables, and measures the
strength of their monotonic, rather than linear, as-
sociation. As can be seen in Table 3, MAUVE
and CHI achieve the best monotonicity results, fol-
lowed by DC and FID.

4.2 Metric Separability
It is desirable that (1) for a given `, D` has low vari-
ability, and (2) for different `2 > `1, the samples
D`1 and D`2 are distinguishable (e.g., by a two-
sample difference test), particularly as `2−`1 grows.
Here, we measure how grouping by ` explains the
variability in D` across `. We perform a one-way
fixed-effects analysis of variance (ANOVA) with
` as the unordered categorical treatment and D`

as the numeric response. Often, an F-test is per-
formed; if its p-value is low, it means a significant
amount of the variance in the response (D`) can be
explained by the treatment (`). Since the F-test for
any reasonable d metric should be significant, we
instead use the similar ω2 effect-size metric (Hays,
1963), which is bounded by ±1, to better assess
them. It is defined as

ω2 = SStreatment − dftreatment ×MSresidual

SStotal +MSresidual
(4)

where SS and MS are the sum and mean sums
of squares, and df is the degrees of freedom, on a
dataset of size n (here, n = ∣D(A,B, d)∣). In the
following we denote this measure asW(d).

4.3 Metric Linearity
Here we examine to what extent linear changes
in the corpus content (`) are manifested in linear
changes in the distance function. To do so, we cal-
culate the coefficient of determination (R2), where
higher values indicate stronger linearity. This mea-
sure is denoted by L(d). Looking at the results
in Table 3, we see that MAUVE achieves the best
results followed by DC and FID. It appears that
this measure is more affected by the source corpora
and by the resolution than other metrics.

4.4 Metric Time Efficiency

The time complexity of the metric is commonly
perceived as less important, thus seldom reported
(Sai et al., 2022). This aspect is becoming ever
more important, especially due to the growing in-
terest in time-consuming divergence frontier meth-
ods (Djolonga et al., 2020). Such metrics perform
multiple measurements to estimate the area under
the curve (similar to precision-recall curves for bi-
nary classification), with tune-able but increasing
resolution. We measure the time performance of
the metric T (d) in terms of 100 similarity mea-
surements operations per second ([100op/sec]) on
a standard CPU machine7. Note that the measure-
ments reported in Table 3 do not include the sen-
tences’ embedding time. Predictably, methods that
operate on the token level and avoid complex den-
sity estimation tend to achieve the best time perfor-
mance. Among the distributional metrics, MAUVE
achieves the best results, followed by FID. PR and
DC produce similar results since both are based on
similar manifold calculations.

4.5 Metric Accuracy

The assessment measures described earlier in Sec-
tion 4 use the observed values of the metric dis-
tances (or similarities) between the KSC corpora;
however, the actual values of the distance may not
be known. Nevertheless, we still have some par-
tial information about the ordering of these values,
which we will use to define an accuracy measure.

4.5.1 Comparing paired corpora distances

Even though we do not have the true distance be-
tween any two corpora in the KSC set, we can still
assume that certain pairwise distances are larger
than others. For instance, it should be true that, say,
d(c2, c3) ≤ (c1, c4) in expectation (across repeated
random sampling). This is because the proportions
of observations from A in c2 and c3 are more simi-
lar than the respective proportions between c1 and
c4. Moreover, the interval of the first pair is ‘con-
tained’8 in the second, and thus the first pair should
have smaller distance. Thus, In general, whenever
the interval of one corpus pair contains (⊂) the in-
terval of another, we expect the contained pair to
have a smaller distance.

7CPU: 2.3 GHz 8-Core Intel Core i9. Memory: 64 GB
DDR4 (2667 MHz)

8(ci, cj) contains (cq, cr), i.e., (q, r) ⊂ (i, j), if i ≤ q and
r ≤ j and i < r.
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Figure 2: Top: Distance values (non-normalized) of corpora pairs in D` versus `. (n = 100, k = 12, ∣J ∣ = 6053),
pooled across 5 repetitions of KSC samples. Blue line indicates regression and confidence interval at 95%. Middle:
Distance values calculated on increasing s size corpora as and bs sampled from sources A and B, correspondingly.
Bottom: Distance between imbalanced corpora as and bs̄ where ∣bs̄∣ = N − s and N = 2900. The x-axis represents
s ∈ {50,250,450, . . . ,2850} (repetitions = 10). In middle and bottom figures, green horizontal line indicates the
asymptotic distance d(A,B). In all figures A=clinc150 and B=banking77.

A(d) Aw(d) T (d) ρ(d) W(d) L(d) S(d) I(d)
k 7 12 7 12 7 12 7 12 7 12 7 12

CHI .945 .852 .913 .774 4.68 3.29 .875 .866 .684 .702 .810 .767 .989 .994
CLS. .789 .701 .731 .618 1.26 1.10 .704 .735 .544 .562 .767 .767 .972 .918
DC .958 .863 .936 .805 .031 .031 .913 .892 .908 .879 .946 .919 .832 .808
FID .949 .810 .923 .753 .067 .066 .764 .695 .563 .537 .81 .759 .821 .877
IRPR .832 .710 .784 .638 4.39 2.35 .571 .543 .258 .275 .645 .598 .949 .856
MUV. .976 .888 .963 .828 .079 .071 .938 .906 .883 .885 .947 .926 .977 .943
PR .820 .688 .767 .608 .031 .031 .649 .592 .577 .566 .716 .667 .909 .934
ZIPF .886 .726 .851 .657 4.65 2.668 .751 .633 .514 .413 .785 .667 .852 .913
CHI .953 .935 .936 .891 5.58 3.33 .960 .962 .835 .900 .83 .858 1.00 1.00
CLS. .931 .827 .902 .751 1.29 1.21 .843 .836 .671 .702 .847 .847 .993 .989
DC .773 .601 .702 .552 .031 .031 .707 .615 .763 .717 .825 .759 .988 .986
FID .967 .904 .947 .848 .071 .067 .793 .754 .634 .636 .845 .816 .922 .898
IRPR .697 .587 .642 .570 3.91 2.69 .382 .264 -.02 -.001 .433 .341 .951 .834
MUV. .999 .977 .998 .961 .084 .067 .936 .943 .856 .904 .932 .950 .999 .994
PR .722 .467 .666 .446 .031 .030 .459 .240 .488 .394 .658 .523 .890 .899
ZIPF .854 .783 .817 .736 4.77 3.02 .660 .635 .309 .352 .687 .661 .735 .904

Table 3: Summary of metrics evaluation scoring on two pairs of source datasets in low (k = 7) and high (k = 12) res-
olution KSC (n = 100). Best results with differences below .015 are marked in bold. T (d) units are [100op/sec].
MUV. stands for MAUVE and CLS. for CLASSIFIER. In the top table, A=clinc150 and B=banking77. In the
bottom table A=atis and B=yahoo. The average results of 5 repetitions are reported for all measures except size
and imbalance robustness, in which the number of repetitions is 10. More statistical details are provided in Figure
6 in the Appendix.
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Given two pairs, (ci, cj) and (cq, cr), of paired
corpora, we can only reliably predict which of
d(ci, cj) or d(cq, cr) is larger in expectation (a de-
cision we call a ‘judgement’) if the interval of one
pair contains the other’s. The set J contains all and
only such judgements:

J = {((cq, cr), (ci, cj))∶ (q, r) ⊂ (i, j)} (5)

The judgement d(cq, cr) ≤ d(ci, cj) is correct
when the second interval contains the first. This
gives the most probabilistically-logical partial or-
der on the similarities between corpora in a KSC
collection, that can be obtained without knowledge
of the true pairwise d-distances between corpora9.
Figure 3 shows a tree representation of KSC-set
pair containment relations, from which the set of
judgements J can be extracted.

Figure 3: A tree representation of the judgements per-
formed on the KSC collection given a metric d(⋅, ⋅),
for calculating the accuracy (A, Section 4.5) measures.
The leafs are the KSC collection and the inner nodes
(circles) represent the corpora tuples (ci, cj). The set
J contains all judgements such that each node (i, j) is
judged against all descended nodes. Namely, if there
is a path from node a to node b, there is a judgement
between the two nodes, and the judgement is correct if
d(b) ≤ d(a). The size of the judgements set can be ex-
pressed as: ∣J ∣ = ∑k

i=1(k − i)( i(i−1)
2

− 1). For instance,∣J ∣ = 339 if k = 7, and 6053 if k = 12.

4.5.2 Accuracy
The metric accuracy is defined as the rate of correct
judgements, formally:

A(d) = 1∣J ∣∑∈J 1(d(cq, cr) ≤ d(ci, cj)) (6)

9For instance, say we compare pairwise distances between(c1, c6) and (c5, c7). Even though the second interval length
(7 − 5 = 2) is smaller than the first (6 − 1 = 5), because it
is not contained in the first, we cannot necessarily say that
d(c5, c7) ≤ d(c1, c6) since inter-corpus distance may not be
proportional to the interval length.

where  = ((cq, cr), (ci, cj)) is a judgement in J
and 1(⋅) is the indicator function. Further, we
propose a weighted version of the accuracy metric
that assigns more weight to harder judgements. We
define the hardness of judgement  as w() = 1

`2−`1
where `2 = j − i and `1 = r − q, and `2 > `1 by
definition of J . Formally,

Aw(d) = C∑
∈J w() ⋅ 1(d(cq, cr) ≤ d(ci, cj)))

(7)
where C = (∣J ∣ ⋅∑∈J w())−1. While A and Aw

are correlated, as one may expect, Aw typically
returns lower values (see Table 3).

In our implementation, the set of samples in
each ci is disjoint, namely, ci ∩ cj = ∅,∀ci, cj ∈
KSC(A,B). This was done to prevent perfect
judgements by naively counting the number of
common instances (e.g., by defining d(ci, cj) =∣ci∆cj ∣ where ∆ denotes the symmetric difference).
MAUVE, followed closely by FID, CHI and DC,
achieves the highest accuracy results across resolu-
tions and source corpora.

4.6 Size Robustness
We are also interested in capturing the sensitiv-
ity of a metric to sample sizes. To accomplish
this, we need to quantify the convergence pace
of d(as, bs) to the asymptotic distance d(A,B),
where as, bs are samples from corpora A,B of in-
creasing size s. Specifically, in our experiments
s ∈ S = {50,250,450, . . . ,2850}. The middle
plot in Figure 2 shows convergence patterns of the
different metrics to the asymptotic distance. The
asymptotic distance is estimated by the mean of
repeated (10) calculations of the distance on sam-
ples of size 3000 each from A,B, rather than on
the full corpora. To quantify the metric size robust-
ness, (S), we calculate the mean absolute error,∣d(as, bs) − d(A,B)∣, for all s ∈ S, normalized by
the asymptotic distance:

S(d) = 1 −∑
s∈S

∣d(as, bs) − d(A,B)∣
d(A,B) (8)

Similar to previous measures, the normalization is
performed to omit the influence of metric scale and
operation ranges.

While our results demonstrate (Figure 2) that
most of the metrics examined require around 1000
samples to closely estimate the asymptotic distance
between the source corpora, their measured accu-
racy (A(d) and Aw(d)) is still fairly high even on
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small corpora within the KSC, and can capture
relative differences in corpus content.

4.7 Imbalance Robustness
Similarity metrics are frequently used to compare
datasets with unequal sample size. Especially when
comparing real and generated corpora, the size of
a generated corpus is usually much larger than the
real corpus. The imbalance robustness measure
quantifies the effect of corpora size imbalance on
the metric’s performance (see Figure 2, bottom).

Unsurprisingly, asymmetric metrics such as PR
and DC are most affected by size imbalance. While
PR, DC, and MAUVE were all originally designed
to measure the disparity between human and gener-
ated data (and thus asymmetric in the referenceP
and target Q), it seems that MAUVE overcomes
the sensitivity to datasets of very unequal sizes. In-
terestingly, imbalance causs some metrics (CLAS-
SIFIER and MAUVE) to underestimate the dis-
tance, while others (FID) overestimate it. When
we compare the convergence patterns of PR and
DC, both are similarly asymmetric, maintaining
d(P,Q). When we increase the reference size, PR
diverges from the true asymptotic distance, while
DC converges to it. The Imbalance Robustness
score I(d) is calculated similarly to the size ro-
bustness score, only that ∣bs∣ = N − ∣as∣.

Figure 4: Leading metrics characterization radar
chart. Mean results from Table 3 for A=clinc150,
B=booking77 and for k = 12, excluding time efficiency
to maintain scale.

KSC Parameters As shown in Section 4.6, most
metrics require at least n = 1000 samples to cap-
ture the true distance between two source domain
corpora; however, our experiments use n = 100.
This is because our measures are relative, i.e., we
do not aim to calculate the true asymptotic distance
between two domains, but to measure the metrics’

robustness in detecting small changes in the com-
pared corpora. Furthermore, if n is large, k must
also be large to ensure the k corpora in the KSC
set have small enough absolute consecutive differ-
ences.
Note that small consecutive differences in KSC
corpora are needed so that the measures in
Section 4 will have a high enough resolution
and large enough sample size of D` to properly
differentiate the metric properties. In particular,
this ensures the judgements (Section 4.5.1) used
in the accuracy measures (A and Aw) are not too
‘easy’ to make correctly, in which case they would
be less useful as a tool. For instance, a metric
with 100% accuracy makes all correct judgements,
e.g., that d(c2, c3) ≤ d(c1, c4). If k = 5, the
gap (in expectation) between the pair distances
compared is large, so the judgement is easy, and
thus all metrics may have full accuracy. When
k increases, the absolute consecutive differences
in corpora fall, and thus the difficulty of the
judgement increases. Some metrics will fail to
make the judgement correctly (in a given random
KSC), decreasing their accuracy; this allows us
to better differentiate between the more and less
accurate metrics. However, setting k too high
results in a computationally prohibitive number∣J ∣ of judgements. Therefore, we opted to use the
smaller n that are still sufficient to capture the
quality and robustness of the investigated metrics.

5 Increasingly Fine-tuned Corpora

Here, we qualitatively investigate the metrics’ abil-
ity to discriminate between generated and human
text using the following procedure: We gener-
ated a sequence of equal-size synthetic corpora
IFC = (g1, g2, . . . , gn) by sampling from a gradu-
ally fine-tuned language model on a specific source
corpus A. Namely, in each iteration, a fine-tuning
step is performed by training the language model
on a single epoch containing 1000 sentences ran-
domly drawn from A, followed by a generation
process to synthesize a corpus gi containing around
1000 sentences. The name IFC, or "Increasingly
Fine-tuned Corpora", was chosen to parallel the
name KSC ("Known Similarity Corpora").

For each generated corpus gi, we estimated the
distance from A, i..e, di = d(A,gi), ∀i ∈ [n].
While the true distance between those synthetic cor-
pora andA are unknown, an effective metric should

412



Figure 5: Similarity between reference corpus and iteratively fine-tuned corpora gi samples. Orange dots show the
similarity between samples of generated text in iteration i and the source dataset. The blue line indicates regression
and confidence interval at 95%. The green horizontal line specifies the mean estimation of the distance between
two random samples of the original corpus. The top figure shows iterative generation on unlabeled news headlines
dataset. The bottom shows the iterative conditional generation using LAMBADA (Anaby-Tavor et al.) trained on
banking77 dataset.

capture the decreasing distance between A and gi
with increasing i, namely d1 ≺ d2 ≺ ⋅ ⋅ ⋅ ≺ dn. Due
to our results, which show low imbalance robust-
ness of some metrics, we maintained the same-size
corpora when calculating corpora distance.

The results presented in Figure 5 show the gap
between human and generated text captured by
each metric in each iteration. To calculate the av-
erage self-distance of the reference corpus (A), we
take the mean distance between two randomly sam-
pled sub-corpora r1 and r2 from A, i.e. d(A,A) =
Er1,r2∼A[d(r1, r2)]).

In our experiments we used two datasets, the
banking77 dataset, mentioned above and the news
dataset10, representing different domains of text
corpora. The IFC set for the banking77 dataset was
generated in an iterative two-step procedure similar
to the one described in LAMBADA (Anaby-Tavor
et al.). This procedure first generates sentences con-
ditioned on the label, then filters out sentences that
are out-of-domain or incorrectly labeled. However,
the IFC set for the news dataset was generated by
finetuning the pre-trained GPT-2 medium model
(Radford et al., 2019).

The results in Figure 5 show that CHI is less
effective than the other metrics in capturing the
gradual nature of the IFC. Also, they show that
FID and IRPR are sensitive in discriminating be-
tween the original and generated corpora, even af-
ter many fine-tuning iterations. Interestingly, the
ZIPF distance increases with the iteration. This
indicates that the generated text, despite becoming

10HuffPost (www.huffpost.com) news headlines col-
lected from 2012 to 2018 containing around 200k
headlines.(www.kaggle.com/rmisra/news-category-dataset
(https://www.huffpost.com)

semantically closer to the original with the increas-
ing iterations, becomes less ‘natural’ in that the
token frequencies deviate from that of human text
and the reference corpus. This can be explained,
at least in part, by the TTR measure. TTR is a
standard word diversity measure, calculated by di-
viding the number of unique words in a text by the
total word count. A high TTR indicates significant
lexical variation. Indeed, in the IFC of banking77,
g1’s TTR is 0.295 which is closer to the original
dataset’s TTR of 0.299 than g40’s TTR of 0.322.

6 Conclusions

In this work, we propose a principled set of auto-
matic measures for evaluating the quality of text
dissimilarity metrics. By testing various metrics
using our measures, we show that they do a good
job of capturing their known characteristics, hence
increasing our confidence in these measures; also,
overall, recent metrics exhibit more favorable traits
than their predecessors. The radar chart in Fig-
ure 4 shows that our measure scores correlate well
with the compared distributional metrics recency
MAUV E ≻ DC ≻ PR ∼ FID as well as their
known relative strengths.

7 Limitations

Although one of the main motivations for compar-
ing corpora is to measure the semantic gap between
human and generated short text, we used pairs of
human text corpora from different domains to main-
tain controllably-distinct corpora in the KSC set.
Despite this, future efforts to develop human and
machine-generated benchmark pairs (Mille et al.,
2021) will allow for future work to quantitatively
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measure the characteristics of semantic metrics on
pairs of human and generated corpora using the
approach devised in this paper.

Also, for more straightforward comparisons,
we used only a single sentence-embedding model.
However, as other studies (e.g., GPT-2 (Radford
et al., 2019) in Pillutla et al. (2021) and Bert (De-
vlin et al., 2018) in Lo (2019)) have shown, the
quality of a corpus distance metric can be affected
by the embedding choice. In future extensions of
our work, we plan to allow for multiple embed-
dings to obtain a more refined evaluation of the
metrics.

An important limitation of this work is that it
considers only English corpora of short text sam-
ples. We examined only a limited set of metrics
and datasets, both of which we intend to extend.

In addition, we note that while our experiments
calculate all KSC-based measures using a single
KSC collection (same n and k values), it could be
favourable to use different n and k for different
measures. For instance, the time performance is
calculated using a single size small dataset n = 100.
In future work, the time scalability of metrics can
be more closely investigated by comparing their
time performance on increasing corpora sizes.

As indicated in Section 4, creating KSC collec-
tions with large k creates an excessive number of
judgements (e.g., for k > 15, ∣J ∣ > 50000), thus
limiting the scalability of our method to smaller k
and thus smaller n, if high resolution is required.
This would preclude comparing the robustness of
metrics that require large samples. We intend to
rectify this in future work by creating representa-
tive smaller judgement sets by carefully sampling
from the complete set.

As mentioned in Section 2, some of the investi-
gated metrics were adapted to return a single value
summarizing the distance between two corpora
(e.g., averaging the precision and recall by the F1
score). Further work is required to build measures
that can compare metrics returning multiple values.
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A Appendix

Figure 6: Distributional information of the results shown in Table 3. The top two figures showing the results for
(A=clinc150 B=banking77), for k = 7 and k = 12, respectively. The bottom two figures are for (A=yahoo B=atis),
for k = 7 and k = 12, respectively. Colored boxes depict the interquartile (25th to 75th) range. The mean is
indicated by a horizontal line. All data points within 1.5 of the corresponding limits of the interquartile range are
depicted by whiskers. Data points outside this range are plotted individually. CLS. indicates the CLASSIFIER
metric.
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Abstract
This work adapts large language models001
to generate multilingual social media text002
that meets several objectives simultane-003
ously: topic relevance, author style consis-004
tency, and reply validity. Leveraging exist-005
ing online information behavior simulators,006
which currently only forecast activities but007
not content, our approach comprised of gen-008
eralizable prompt formation and efficient009
evaluation to produce a believable, per-010
sonalized, and responsive synthetic social011
network. According to some preliminary012
experiments, our multi-objective prompt013
formation and automatic evaluation/selec-014
tion methods are able to yield a significant015
number of high-quality synthetic texts ac-016
cording to both standardized and trained017
metrics.018

1 Introduction019

Our work on generation of synthetic social me-020

dia text is motivated by existing technologies021

to simulate and forecast behavioral phenom-022

ena and information spread on social media023

platforms as part of the DARPA SocialSim024

program (Murić et al., 2020). While these sim-025

ulators can forecast social media activity such026

as who will post on which topic or who will re-027

ply to whom at what time, they do not produce028

any text values for simulated activities. Our029

work fills this gap with text generation and030

provides a complete picture of simulated social031

network landscape. Novel methods for text032

generation are frequently explored; however033

our task involves the unusual aspect of gener-034

ating convincing social media posts and replies035

in multiple languages for simulated online dia-036

logue without human involvement and targets037

specific topics, author styles, and responses.038

In order to achieve these multiple objectives,039

traditional approaches like transfer learning040

(Raffel and Liu, 2020) make separate calls to041

large languages models; we leverage few-shot 042

prompting to reduce such computing expen- 043

sive calls and developed efficient automated 044

evaluation metrics for synthetic text selection. 045

We employ commonly used text generation 046

metrics (Sai et al., 2020) including BLEU scores 047

and find that they only capture some aspects 048

of what makes a text high-quality in our con- 049

text. In general, most existing evaluation meth- 050

ods for synthetic text have limitations of some 051

kind (Huang and Huang, 2020). Some syn- 052

thetic texts can achieve metrics higher than 053

real ground-truth text according to these stan- 054

dard metrics. Some newer metrics are too 055

computational expensive and not suitable for 056

supporting large scale text evaluation and selec- 057

tion. Therefore, we implemented three general- 058

izable and runtime-efficient evaluation methods 059

to measure generated text for their topic and 060

author relevance as well as reply flow within 061

a network, and also evaluated against more 062

standard metrics. 063

Our social media text generation approach is 064

efficient, language agnostic and generalizable, 065

and can be used at scale to mimic social media 066

networks with millions of simulated activities. 067

The resulting synthetic information networks 068

can support media analysts’ training exercises, 069

or provide large-scale datasets for AI/ML mod- 070

eling studying online information behavior. 071

2 Related Work 072

There has been a significant amount of work on 073

the use of prompts to generate desired types 074

of text using language models such as GPT- 075

NEO (Black et al., 2021). Multi-prompt learn- 076

ing incorporates multiple prompts, either an- 077

swered or unanswered, into the text genera- 078

tion model prompting paradigm (Brown et al., 079

2020). Prompt augmentation uses multiple an- 080

swered prompts (Liu et al., 2021). Our dataset 081

1
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Figure 1: Text Generation and Evaluation Pipeline.
In chronological order, each simulated activity is
fed into this pipeline and the output is an enriched
social media activity with generated text. Historical
real and generated text are sampled for prompt
formation.

contains many real world examples matching082

the multi-objective goals and many statement-083

reply pairs, so few-shot learning and prompt084

augmentation are good fits for our use case.085

While we are able to collect large volumes of086

social media text, manual annotation of text087

with specific labels is much more intensive, and088

few-shot learning allows us to utilize a smaller089

manually-annotated set.090

3 Approach091

,092

3.1 Text Generation from Simulated093

Social Media Activities094

Figure 1 depicts the high level pipeline. In095

chronological order, this pipeline sequentially096

generates and selects text for each simulated097

online activity. For any given simulated activ-098

ity, the pipeline follows 4 steps:099

1. Create a prompt that includes examples100

of real world historical texts (i.e., ground-101

truth) by the same author, followed by102

ground-truth texts on the same topic. Ex-103

ample texts were selected randomly. When104

the simulated activity is intended to be a105

reply, the prompt also includes examples106

of ground-truth statement-reply pairs, fol-107

lowed by the text of the parent text that 108

the activity is meant to be responding to. 109

2. Feed formed prompts into a language 110

model which returns generated text. We 111

selected GPT-NEO because it has the best 112

performance for text generation upon open 113

sourced language models at the time when 114

we were working on this project. 115

3. Evaluate and select generated text based 116

on both standard and task-specific met- 117

rics to measure the three objectives: Topic 118

relevance, authorship verification, and 119

sentence-pair classification models (see 5). 120

4. Fill the simulated activities with generated 121

text and move onto next simulated event 122

on the timeline. 123

This pipeline for synthetic text evaluation 124

and selection operates at scale and for multi- 125

lingual/styled generation as well. 126

3.2 Prompt Formation 127

Single objective Few-Shot Prompts To 128

generate text that is on-topic, in the style 129

of a particular author, or responding to a 130

particular statement, we use prompts that 131

incorporate multiple examples of real-world 132

text with these desired attributes. Specif- 133

ically, on-topic prompts are selected from 134

historical tweets based on their manual 135

topic annotation described in section 5.2.3; 136

user-focused prompts consist of real tweets 137

by the same user with Twitter user’s bio 138

where available; Reply-focused prompts 139

are more complicated and consist of exam- 140

ples of statement-response pairs as reference: 141

”The following is a list of tweet and response
pairs:
{{gold statement 1}} ||| {{gold response 1}}
===
{{gold statement 2}} ||| {{gold response 2}}
===
{{gold statement 3}} ||| …”

142

143

The parent tweet will also be incorpo- 144

rated into the prompt for generation of a reply. 145

Because we are generating text for large-scale 146

simulations of social media, a simulated reply 147

can be corresponding to either a real tweet 148

or a simulated tweet. In the latter, we look 149

2
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Language Code Count
en 2,065,581
ur 504,485
hi 196,362
la 44,959
sw 21,410
ms 20,993
zh 17,722
id 15,853
mr 14,500
xh 12,292

Table 1: Count of each of the top ten languages as
detected by the langid library

up the specific synthetic text for the parent150

tweet. Because of this, text generation occurs151

sequentially in the chronological order of the152

simulated activities.153

154

Multi-Objective Few-Shot Prompts155

In addition to evaluations of text generated156

with a single objective, we also generate and157

evaluate texts with two objectives or three158

objectives at once in the case of synthetic159

replies. Multi-objective prompts are formatted160

by concatenating multiple single-objective161

prompts.162

4 Dataset163

4.1 Social Media Collection164

For the DARPA SocialSim program, we col-165

lected online discussions relevant to the China-166

Pakistan Economic Corridor (CPEC) from mul-167

tiple social media platforms. The primary plat-168

forms by data volume are Twitter and YouTube,169

and we will focus on Twitter for the rest of the170

paper. Due to the nature of the event, we cre-171

ate a list of keywords in English, Hindi, Urdu,172

Chinese and several other regional languages173

to query tweets and replies or YouTube video174

titles and description. Some keyword exam-175

ples are: ”china pakistan economic corridor”,176

”cpec”, "ਇਕ ਬੈਲਟ ਇਕ ਰੋਡ", and 177نوٹلیبکیا"

"ڈور . The counts of each of the top ten lan-178

guages in the dataset as detected by the langid179

python library (Lui and Baldwin, 2012) are180

shown in table 1. The top three languages by181

volume are English, Urdu, and Hindi.182

Annotation From the collected social me-183

dia data covering almost 5 million Tweets and184

YouTube comments, we selected roughly 5,000 185

of the most-interacted with texts to pass to 186

three in-house manual annotators, who anno- 187

tated for 21 distinct topic labels with a cross- 188

label average Cohen’s Kappa inter-annotator 189

agreement of 0.78. Detailed annotation proce- 190

dure can be found in (Blackburn et al.). As 191

examples of topic labels, the label ”benefits/de- 192

velopment/jobs” refers to discussion of jobs 193

brought by the CPEC program, and the la- 194

bel ”controversies/china/border” refers to dis- 195

cussion of border disputes in the China-India- 196

Pakistan region. The set of annotated texts 197

were used to train a supervised text classifier 198

(F1 score of 0.73 across all 21 topics). While 199

the manually-annotated examples have been 200

leveraged to provide few-shot prompt examples 201

for text generation, the classifier was used to 202

evaluate the topic relevance of generated text, 203

see 5.2.3. 204

4.2 Simulated Social Media Activities 205

We use simulated social media activities gener- 206

ated by SocialCube (Tarek Abdelzaher, 2020) 207

as a template for the time, author, and topic 208

of synthetic social media activities, and fill in 209

the text value with synthetic texts that fit the 210

desired attributes. SocialCube takes real world 211

social media activity and news event data in 212

the training phase, and returns social media ac- 213

tivity simulation for the following testing phase. 214

We used one of the simulation results that con- 215

tains 1,037,782 simulated activities for a total 216

span of 27 days. After removing retweets that 217

do not require unique text, 149,829 activities 218

left require synthetic text values (e.g. new 219

tweets and replies). 220

5 Evaluation and Metrics 221

Ground Truth In our tests, the ground truth 222

used for evaluation contains real social media 223

texts with specific attributes. There are three 224

groups of ground truth: one group of texts 225

manually annotated with topic labels (the test 226

set of the manual annotation process in section 227

5.2.3), a group of texts by specific authors (the 228

test set of the data used to train the authorship 229

verification model in section 5.2.1), and a group 230

of valid and invalid statement-response pairs 231

(the test set of the dataset in section5.2.2). 232

3
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5.1 Standardized Metrics233

Median Sentence BLEU Sentence BLEU234

calculated with the sacrebleu library (Post,235

2018) for generated message, treating the236

ground truth texts with the same class (i.e.,237

topic or author/user) as reference. Median238

is calculated over distribution of scores. We239

choose median because mean can be effected240

by outliers, and we are concerned with the241

quantity of texts with high scores rather than242

overall average. (Papineni et al., 2002)243

244

Self-BLEU Sentence BLEU calculated with245

the sacrebleu library for generated message,246

treating all texts with the same class and247

generation method as reference. Median is248

calculated over distribution of scores.(Zhu249

et al., 2018)250

251

GEM Metrics Library We also run252

evaluation with multiple metrics from the253

GEM metrics library trying to covering254

different aspects of generated text: descriptive,255

diversity,lexical and semantic measurements.256

Some examples include BLEURT, Distinct-1257

(the ratio of distinct unigrams over the total258

number of unigrams), Entropy-1 (the Shannon259

Entropy over unigrams), and text length260

metrics (Gehrmann et al., 2021).261

5.2 Trained Metrics262

Since none of the standardized metrics for text263

generation directly measure the three objec-264

tives of our use case, we also develop three265

specific evaluation methods respectively lever-266

aging the ground truth data.267

5.2.1 Authorship Verification for268

Author Style269

Using ground-truth social media data, we iden-270

tify all users with over 20 unique text-valued271

posts, and store those users’ posts into train272

and test sets with the ratio 0.7 to 0.3. From the273

stored posts, we construct 50,000 training and274

10,000 test pairs, where pairs of texts by the275

same user are in the ”1” class and pairs of texts276

by two separate users are in the ”0” class. We277

then finetune the distiluse-base-multilingual-278

cased language model on the pairs using con-279

trastive loss with cosine for 5 epochs (Sanh280

et al., 2019). Training of the model uses the281

SentenceTransformers library with default pa- 282

rameters (Reimers and Gurevych, 2019). When 283

using cosine similarity of the embeddings of the 284

fine-tuned model as an indicator for authorship 285

on the test set, we find a ROC-AUC of 0.94. 286

The ROC-AUC of 0.94 is an evaluation of how 287

well the cosine similarity metric distinguishes 288

between texts by different authors in the test 289

set. 290

We apply the author fine-tuned language model 291

to each generated text, and measure the cosine 292

similarity of the vector of each text to the cen- 293

troid of the vectors for the ground truth texts 294

by the intended author. The cosine similarity is 295

used as an indicator of the degree to which the 296

synthetic text matches the style of the intended 297

author. 298

5.2.2 Statement-Response Pair 299

Classification for Reply Detection 300

Data Preparation We train a sentence pair 301

classifier to determine whether a response 302

replies coherently to an original sentence. 303

We begin by extracting around 350,000 real 304

tweet-response pairs from our curated Twitter 305

dataset. Roughly 15 percent of the data is 306

set aside as holdout data, while the rest is pro- 307

cessed for training. The training data is halved, 308

with the first half being true pairs and receiv- 309

ing a label of 1. The second half of the training 310

data is then halved again, and either shuffled 311

row wise or column wise, providing “untrue” 312

or 0-labeled tweet-response pairs while still 313

maintaining contextual relevance. The pairs is 314

then concatenated, shuffled, and set aside for 315

training and evaluation. 316

Classification For the sentence-pair classifica- 317

tion task, we utilize the Simple Transformers 318

library (Rajapakse, 2020). Our final configura- 319

tion is set up for a maximum sequence length 320

of 512 to be trained over 2 epochs with an 321

Adam optimizer and learning rate of 4e-5. Our 322

trained model is evaluated on our evaluation 323

dataset and returns a F1 score of .81, accu- 324

racy of .79, AUROC of .84 and AUPRC of 325

.77. We test several model types including 326

BERT (Devlin et al., 2018), RoBERTa (Liu 327

et al., 2019), distilbert (Sanh et al., 2019) and 328

xlnet (Yang et al., 2019). BERT, and specif- 329

ically bert-based-multilingual-cased, provides 330

the strongest results for our use case. 331
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Model Precision self-BLEU Mean Topic Similarity median BLEU
Ground Truth 0.91 38.83 0.64 38.83
gpt-neo-1.3B 0.35 67.03 0.55 43.07
gpt-neo-125M 0.33 57.59 0.46 39.18

Table 2: Topic-Relevance Evaluation Metrics, Across all Languages

5.2.3 Topic Classification Precision332

We train a supervised topic classifier using the333

manually-annotated set described in section334

4.1. Given a piece of generated text, if this335

classifier actually labels it with the intended336

topic, we assume the generated text is relevant337

to the intended label.338

Topic Relevance In addition to the339

classifier precision metric, we also use the340

”distiluse-base-multilingual-cased” language341

model, which is appropriate for our multilin-342

gual dataset, and is specifically well-suited to343

measure semantic similarity with cosine (Cer344

et al., 2018). Vectors are extracted for each345

generated text and each ground-truth text.346

Ground-truth texts are grouped by topic class347

and an average vector for each class is com-348

puted. For each generated text, the cosine sim-349

ilarity of its vector to the ground-truth vector350

of the same class is measured. Cosine similari-351

ties are averaged across texts.352

6 Evaluation and Discussion353

6.1 Single-Objective Text Generation354

Evaluation355

Topic Relevance Table 2 shows topic-356

relevance metrics for GPT-NEO 125M and357

1.3B compared to the same metrics for real358

ground truth texts. For the ground truth, self-359

BLEU is the same as median BLEU, because360

median BLEU always uses the ground truth as361

references for computation. For some metrics362

such as BLEU there is an acceptable range363

rather than strictly ”higher is better”. The364

lower precision score of GPT-generated text365

compared to ground truth may show that gen-366

erating text exactly on an exact topic is still a367

challenge.368

Author Style As shown in table 3, GPT-369

NEO 1.3B with prompts incorporating the text370

of a user’s self-reported social media bio and371

example texts by the user generated synthetic372

texts most similar to real ground truth texts373

by the same authors, according to our metric.374

Method Mean Author
Similarity±Std
Dev.

Ground Truth 0.93±0.08
GPT-NEO-1.3B + User Bio 0.86±0.14
GPT-NEO-125M 0.85±0.14
GPT-NEO-125M + User
Bio

0.84±0.11

GPT-NEO-1.3B 0.82±0.13
Inverse Ground Truth 0.64±0.20

Table 3: Author Style Evaluation. ”Mean author
similarity” shows the mean of the cosine similarities
between texts and the centroid of the vectors for the
user’s ground-truth texts. ”Inverse Ground Truth”
shows this metric computed on ground truth texts
compared to texts by different authors, across all
languages.

Synthetic Reply Evaluation Based on our 375

evaluation shown in table 4, generating realistic 376

synthetic replies is possible, but a significant 377

portion of the synthetic texts generated may 378

not be properly coherent or satisfactory replies. 379

Model Mean Reply
Score±Std Dev.

Ground Truth 0.89±0.31
GPT-NEO-125M 0.47±0.50
GPT-NEO-1.3B 0.41±0.49
Inverse Ground
Truth

0.33±0.46

Table 4: Reply Evaluation. ”Mean reply score”
shows the averaged predictions of the reply classifier
model. Ranged 0-1 where 0 is 0% valid replies and 1
is 100%. ”Inverse Ground Truth” shows this metric
computed on non-reply ground truth text pairs.
Computed across all languages.

380

6.2 Multi-Objective Prompting 381

Evaluation 382

As shown in table 5, the mean scores of most 383

metrics degrade on the multi-objective task as 384

compared to the single-objective tasks. How- 385

ever, we are still able to use our evaluation 386
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Metric GPT-NEO-
1.3B

GPT-NEO-
125M

Mean Topic Simi-
larity ±Std Dev.

0.33±0.24 0.29±0.21

Mean Reply Score
±Std Dev.

0.37±0.48 0.39±0.49

Mean Author Sim-
ilarity ±Std Dev.

0.76±0.14 0.76±0.18

Table 5: Evaluation of Texts from Multi-Objective
Prompt, Across all Languages.

metrics as a filter to separate higher quality387

texts from lower quality ones, and still generate388

a relatively large number of high-quality syn-389

thetic texts, as described in section 6.3. Texts390

with a topic relevance score above 0.6, a user391

similarity score above 0.7, and a reply validity392

score above 0.6 are marked, and stored for use393

as text values of the simulated social media394

activities.395

GEM Metrics Evaluation We use sev-396

eral metrics from the GEM metrics repository397

(Gehrmann et al., 2021) to measure the gener-398

ated text from more perspectives. Some results399

are shown in table 6. Looking at some of the400

descriptive metrics, mean text length for GT401

and language models are similar. This is not402

surprising given the character limit for tweets.403

However, the range of generated tweet length404

varies much more than ground truth: as short405

as 1 and as long as 60+. Text length limit406

information can be introduced in the future to407

avoid generating text longer than allowed. Not408

included in the result table, the vocabulary409

size of ground truth, for topic or user relevance,410

is always much smaller than generated text.411

This suggests that machine generated text may412

contain terms that are not used often for so-413

cial media. Conducting domain adaptation414

on the pre-trained language model to make it415

more relevant to social media data may help416

reduce this difference. Looking at some of the417

diversity metrics, the Distinct-1 metrics indi-418

cates ground truth text is much more diverse419

than generated text. This could due to the420

high creativity of language expression in social421

media. When it comes to semantic metrics,422

even ground truth tweets achieve pretty low423

BLUERT score. Generated text is worse, with424

bigger GTP-neo model performs slightly better.425

BLUERT is calculated for a small set of eval-426

uation set due to its high computing demand, 427

and we will look at this again when calculate 428

it against the complete evaluation set. 429

Multi-Lingual Evaluation Because our 430

dataset is multilingual, we also report the 431

GEM metrics across the top 5 languages in 432

our dataset: English, Farsi, Hindi, Urdu, and 433

Chinese in table 7. Additional multilingual 434

metrics are reported in appendices A, B, and 435

C. English has the best performance in terms 436

of BLEURT, followed by Hindi and Chinese. 437

This could due to lack of real world data in our 438

collection for other languages to create good 439

prompts or the lack of explicit multilingual ca- 440

pabilities of GPT-NEO. All other evaluations 441

reported in this paper are computed on texts 442

regardless of language, including English and 443

others. 444

6.3 Scalability and Runtime 445

We use a single-GPU instance on AWS (16vC- 446

PUs, 1 GPU, 64GB Memory) for generation 447

and evaluation. The single-GPU machine was 448

able to generate 29,150 synthetic texts per hour 449

in total using GPT-NEO 125M, but after evalu- 450

ation and selection of higher-quality texts, that 451

number comes to 5,658 high-quality synthetic 452

texts per hour. 453

7 Limitation 454

Due to the shortage of time and comput- 455

ing resource, we didn’t finish running some 456

of the heavy metrics such as NUBIA(Kane 457

et al., 2020) for measuring faithfulness and 458

BERTScore(Zhang* et al., 2020) for better se- 459

mantic measurement. We also didn’t measure 460

the entire pipeline, e.g., comparing generated 461

text and real text in the same simulation time 462

frame and measuring the impact of generated 463

and filtered text in simulation. We will address 464

some of these limitations in our next steps. We 465

will also try to evaluate the filtering step with 466

manual review of filtered texts, and by testing 467

the impact of synthetic texts on social media 468

simulations. 469

8 Conclusions and Future Work 470

We show that it is feasible to generate and 471

evaluate synthetic social media texts which 472

not only focus on a desired topic, but also 473

mimic an author style and properly respond to 474
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Model Mean Topic
BLEURT

Mean User
BLEURT

Distinct-1 Entropy-1 Mean Text
Length

gpt-neo-1.3B 0.15±0.08 0.15±0.1 0.61±0.11 6.62±0.48 23.38±19.48
gpt-neo-125M 0.15±0.08 0.15±0.09 0.59±0.13 6.32±0.63 23.51±19.62

GT 0.21±0.06 0.25±0.09 0.85±0.12 4.59±0.85 27.03±1.39

Table 6: Selected GEM Metrics Across all Languages

Model Lang Mean Topic
BLEURT

Mean User
BLEURT

Distinct-1 Entropy-1 Mean Text
Length

gpt-neo-1.3B

en 0.17 0.18 0.58 6.72 286.86
fa 0.06 0.05 0.7 6.54 192.87
hi 0.1 0.11 0.7 6.45 176.78
ur 0.07 0.06 0.74 6.4 151.74
zh 0.13 0.11 0.67 6.22 171.28

gpt-neo-125M

en 0.17 0.17 0.55 6.39 261.49
fa 0.07 0.06 0.73 6.22 148.14
hi 0.11 0.11 0.68 6.16 159.2
ur 0.08 0.08 0.75 6.24 144.86
zh 0.13 0.11 0.63 6.07 176

GT

en 0.22 0.27 0.85 4.61 38.86
fa 0.04 0.17 1 4 16
hi 0.18 0.17 0.75 5.45 65
ur 0.12 0.13 0.85 4.79 44.91
zh 0.12 0.09 0.86 4.92 37

Table 7: GEM Metrics by Language

existing text. We accomplish this with multi-475

objective few-shot prompting and automated476

evaluation metrics for multiple aspects of text477

quality. While it is clear that even in best-case478

scenarios language models like GPT can gener-479

ate a percentage of text that does not match480

the given objectives, we believe that a filter-481

ing step including multiple evaluation metrics482

is a good approach to overcoming this limi-483

tation. Future plans include the application484

of domain-adaptive pre-training and platform485

business rules to improve relevance to social me-486

dia genre, continuous/soft prompting instead487

of discrete/hard prompting to further improve488

the quality of generated text, real world events489

prompting similar to reply prompting, and490

multimedia data generation. Other work in491

this domain could involve testing other, poten-492

tially smaller language models, or assessing the493

threat posed by adversarial or malicious infor-494

mation campaigns that utilize text generation495

methods, and how best to detect them.496
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A Appendix: Authorship 660

Verification Scores by Language 661

Chart 2 shows the average of the score used 662

for authorship verification on GT positive (real 663

texts by the same user), GT negative (real 664

texts by different users) and synthetic texts, of 665

various languages. 666

B Reply Validity Scores by 667

Language 668

Chart 3 shows the average of the score used for 669

reply validity on GT positive (real statement- 670

reply pairs), GT negative (mismatched real 671

texts that are not statement-reply pairs) and 672

synthetic replies, of various languages. 673

C Statement-Reply Language 674

Counts 675

Chart 4 shows the count of tweet-reply pairs 676

by language of original tweet and reply. The 677

high count on the diagonal means that tweets 678

in one language are frequently replied to with 679

replies in the same language. 680

D Synthetic Text Examples on 681

Topic 682

Synthetic text with intended topic ”contro- 683

versies/china/border” (India-China border 684

disputes) with Topic BLEURT score 0.38: 685

”The Tension continues between India and 686

Beijing A #ChinaComesModiRuns official 687

tweet says that Beijing is the only government 688

in the world that is trying to bully India into 689

giving way to China’s agenda. @Modi ran a 690

tweet saying that China will not be allowed 691

to gain a better foothold in the Indian Ocean. 692

@Modi ran a tweet saying that China will not 693

be allowed to gain a better foothold in the 694

Indian Ocean.” 695

696

Synthetic text with intended topic ”bene- 697

fits/development/energy” (energy development 698

projects in Pakistan) with Topic BLEURT 699

score 0.27: 700

”by @Carr-Ebrahim @JaxyIvan 2069 701

@Manssazh 2069 This project is to pro- 702

vide for power generation facility from PJM. It 703

will provide thermal power system from PJM. 704

The project will be the first industrial power 705

plant in the world to be operated by either one 706

9
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Figure 2: Authorship Verification Scores by Language

Figure 3: Reply Validity Scores by Language
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Figure 4: Statement-Reply Language Counts

company. #Pakistan#Polarity #UK-Indian707

Union of Petroleum, Air and Chem”708

709

710

E Synthetic Text Examples in a711

User Style712

Real user bio:713

”News. Views. Analysis. Conversations.714

India’s No.1 digital news destination, world’s715

largest-selling English newspaper - A Times716

Internet Limited Product”717

Real tweet from user:718

”Pakistan PM Imran Khan claims PM Modi719

apologised for lockdown, Pak media corrects720

him url: https://t.co/m4vAITPOTGhdHATzA-721

KxaIg ”722

723

Synthetic tweets:724

1. ”India’s Prime Minister Narendra Modi725

apologises to Pakistan PM Imran Khan after726

a video clip of him being filmed during the727

crisis. The video has gained support from728

international organisations url: https://t...”729

2. ”The Government of Pakistan has made730

efforts, I am pleased to say, to ensure that731

the Indian government did not see the rise of732

Pakistans internal tensions,” Foreign Minister733

Shah Mehmood Qureshi tells the New York734

Times. ”The two nations have a very good735

relationship.” He also claims Pakistan has736

never asked for India’s ”aid and support”737

Read: https://t.co/eMhXC7Lr1mDnT3fJL”738
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Abstract

Recent advances in automatic text summariza-
tion have contemporaneously been accompa-
nied by a great deal of new metrics of auto-
matic evaluation. This in turn has inspired re-
cent work to re-assess these evaluation met-
rics to see how well they correlate with each
other as well as with human evaluation, mostly
focusing on single-document summarization
(SDS) paradigm. Although many of these
metrics are typically also used for evaluating
multi-document summarization (MDS) tasks,
so far, little attention has been paid to study-
ing them under such a distinct scenario. To
address this gap, we present a systematic anal-
ysis of the inter-metric correlations for MDS
tasks, while comparing and contrasting the re-
sults with SDS models. Using datasets from
a wide range of domains (news, peer reviews,
tweets, dialogues), we thus study a unified set
of metrics under both the task setups. Our
empirical analysis suggests that while most
reference-based metrics show fairly similar
trends across both multi- and single-document
summarization, there is a notable lack of corre-
lation between reference-free metrics in multi-
document summarization tasks.

1 Introduction

Summarization systems, which aim to preserve
salient information from the source text in a more
concise form, are being applied to an increasingly
diverse range of domains, such as summarizing
news articles, messenger-style text conversations,
tweets, and so on (Nallapati et al., 2016; Nguyen
et al., 2018; Gliwa et al., 2019). Evaluating the
performance of these systems is still challenging,
and since human evaluation is expensive to obtain,
automatic evaluation metrics continue to provide
an effective way of evaluating summary quality.

Since no single metric can comprehensively mea-
sure every aspect of a summary, it is becoming in-
creasingly common to report system performance

in terms of multiple metrics (Fabbri et al., 2021b).
As such, it becomes desirable to find a small set
of metrics that each reflect different aspects of sys-
tem performance without redundantly repeating
information. Conversely, if a metric is highly corre-
lated with another metric but outperforms it when
compared with human evaluation, then that per-
formance difference is more significant (Graham,
2015; Bhandari et al., 2020; Pagnoni et al., 2021).
However, in order to do this, one must first under-
stand how these different metrics correlate with
each other.

Previous work has focused on studying these
metrics under the single-document summarization
(SDS) setup, especially news (Bhandari et al., 2020;
Fabbri et al., 2021b). However, it is well known
that news summarization datasets contain a strong
sentence position bias where the most salient infor-
mation tends to be at the beginning of the article
(Nenkova, 2005), which has been shown to have
a strong impact on the behavior and performance
of some summarization systems (Kryscinski et al.,
2019), but does not hold in other domains (Kedzie
et al., 2018). Evaluation metrics have also been re-
evaluated in the context of scientific articles (Cohan
and Goharian, 2016), and more recently, dialogues
(Gao and Wan, 2022), both using single documents
as input.

In contrast to SDS, multi-document summariza-
tion (MDS) is the task of generating a summary
from several related documents (Li et al., 2020;
Pasunuru et al., 2021; Xiao et al., 2022). Under-
standing how these metrics estimate MDS tasks,
however, remains unexplored. This is notable be-
cause many reference-free metrics in particular rely
on the source document to evaluate the summary,
and when the source consists of stylistically diverse
multiple documents, we postulate that it makes the
task especially challenging for reference-free met-
rics. It is unclear whether the automatic evaluation
metrics will correlate with each other in the same
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way in MDS as they do in SDS tasks. To address
these gaps, we present a systematic study on assess-
ing the inter-metric correlations between evaluation
metrics for multi-document summarization. Our
findings suggest a striking lack of correlation be-
tween the reference-free metrics under the MDS
paradigm.

Our contributions include the following: (1) We
conduct a comprehensive set of experiments for
multi-document summarization using several sum-
marization models and datasets from different do-
mains and evaluate them over a unified set of 16
metrics; (2) We contextualize our results by draw-
ing comparable insights under the single-document
summarization paradigm. (3) Lastly, we summa-
rize our key takeaways and discuss some potential
implications of our findings.

2 Related Work

Conventionally, automatic metrics for evaluating
summarization systems are mostly reference-based
which require human-written reference summaries
against which system-summaries can be compared
(Lin, 2004; Banerjee and Lavie, 2005). However,
since human annotation remains expensive to ob-
tain, automatic evaluation metrics that rely on the
source document(s) rather than human-generated
reference summaries are becoming increasingly
popular (Vasilyev et al., 2020; Scialom et al., 2021).

In parallel to this, researchers have re-assessed
how effective these different types of evaluation
metrics are, with almost all prior work focused
on the single-document framework. Cohan and
Goharian (2016) find that ROUGE is not effec-
tive at evaluating the performance of summariza-
tion systems in the domain of scientific articles.
More recently, Bhandari et al. (2020) collect hu-
man pyramid-score evaluations (Nenkova and Pas-
sonneau, 2004) of sets of 100 summaries generated
from 25 top-scoring summarization systems on the
CNN/DailyMail dataset (Hermann et al., 2015; Nal-
lapati et al., 2016). They then assess how well
8 different automatic evaluation metrics correlate
with the human annotations using the William’s
test (Williams, 1959), and they also see how well
these metrics perform on the shared tasks from the
Text Analysis Conferences (TAC). Their analysis
finds that most of the metrics fail to generalize
well to all the datasets they tested, and that dif-
ferent metrics perform well on different datasets:
MoverScore (Zhao et al., 2019) is found to correlate

Type Dataset Domain #Docs/Input

MDS
Multi-News news ∼2.75
PeerSum v2 peer reviews ∼7.75
TSix tweets ∼35.7

SDS CNN/DM news 1
SAMSum dialogues 1

Table 1: Statistics of summarization datasets

well with human evaluation on TAC-2008, Jensen-
Shannon divergence on TAC-2009, and ROUGE-2
on CNN/DM. Similarly, Fabbri et al. (2021b) col-
lect human Likert ratings of 16 systems summariz-
ing 100 documents from CNN/DailyMail, and then
use this to assess 14 evaluation metrics. They also
find that reference-free metrics are loosely corre-
lated with other metrics. The most recent work is
by Gao and Wan (2022) that assesses 18 metrics on
14 systems, generating summaries from the SAM-
Sum dataset (Gliwa et al., 2019) which comprises
of messenger-style text conversations.

We also collect system summaries and evaluate
them with automatic metrics in our work, except
we focus on the correlation between metrics, rather
than comparing with human evaluation which is in-
famously difficult (Gehrmann et al., 2022). While
prior work has focused on SDS, our analysis con-
siders both MDS and SDS frameworks, a first such
study to our knowledge, across datasets from four
different domains.

3 Experimental Setup

3.1 Data

For our experiments, we use three MDS datasets:
Multi-News dataset from the news domain (Fabbri
et al., 2019), PeerSum which involves summariz-
ing peer reviews of scientific publications (Li et al.,
2022), and TSix dataset from the tweets domain
(Nguyen et al., 2018). While the first two contain
abstractive summaries, the third one contains ex-
tractive summaries. Some sample instances from
the datasets are included in Appendix A.

As comparison, we also include two abstractive
SDS datasets: CNN/DM from the news domain
(Hermann et al., 2015), and SAMSum which in-
volves summarizing chat dialogues (Gliwa et al.,
2019). Table 1 presents statistics of the five sum-
marization datasets.
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3.2 Metrics

In reference-based evaluation, the system-
generated summaries are compared to human-
written reference summaries, while in unsupervised
reference-free evaluation, the system summaries
are evaluated using the input source document(s)
without relying on human annotations. In this
work, we consider a total of 16 widely reported
evaluation metrics, 8 each from the reference-based
(RB) and reference-free (RF) categories of metrics,
which we further group as follows:

1. (RB) Metrics that measure n-gram overlap
between the system summary and reference
summary: BLEU1 (Papineni et al., 2002),
ROUGE2 (Lin, 2004), METEOR (Banerjee
and Lavie, 2005).

2. (RB) Metrics that use static word embeddings
to compare the system and reference sum-
maries: Embedding Average (Landauer and
Dumais, 1997), Greedy Matching (Rus and
Lintean, 2012), Vector Extrema (Forgues
et al., 2014).

3. (RB) Metrics that use contextual representa-
tions to compare the system and reference
summaries: MoverScore3 (Zhao et al., 2019),
BERTScore4 (Zhang* et al., 2020).

4. (RF) Metrics that directly compare the sys-
tem summary and source document: Jensen-
Shannon divergence5 (Lin et al., 2006),
BLANC6 (Vasilyev et al., 2020), SUPERT7

(Gao et al., 2020), and ESTIME8 (Vasilyev
and Bohannon, 2021).

5. (RF) Metrics that use question-answering to
compare the system summary and source doc-
ument: SummaQA (Scialom et al., 2019),

1https://github.com/Maluuba/nlg-eval is
used for BLEU, METEOR, and the word embedding-based
metrics

2https://github.com/Diego999/py-rouge
3https://github.com/AIPHES/

emnlp19-moverscore
4https://github.com/Tiiiger/bert_score
5github.com/UKPLab/

coling2016-genetic-swarm-MDS
6BLANC-tune, which uses the summary to first fine-tune

the model
7https://github.com/Yale-LILY/SummEval

is used for SUPERT and SummaQA
8https://github.com/PrimerAI/blanc is

used for ESTIME, BLANC, and Information Difference

QuestEval9 (Scialom et al., 2021).

6. (RF) Metrics that use text generation to mea-
sure the conditional probability of generating
the summary given the source document, or
vice versa: BARTScore10 (Yuan et al., 2021),
Information Difference (Egan et al., 2021).

3.3 Models
For generating extractive summaries, we use
Lead, LexPageRank (Erkan and Radev, 2004),
TextRank (Mihalcea and Tarau, 2004), Cluster-
CMRW (Wan and Yang, 2008), BERT-Ext and
Longformer-Ext (Miller, 2019). For generating
abstractive summaries, we use BART (Lewis et al.,
2019), T5 (Raffel et al., 2019), LED (Longformer
Encoder-Decoder) (Beltagy et al., 2020), and Pe-
gasus (Zhang et al., 2020).

In our experiments on the Multi-News dataset
(Fabbri et al., 2019), we use a combination of ex-
tractive and abstractive models because both types
of models were used in the original paper. For com-
parable results, for the CNN/DM (Hermann et al.,
2015) and SAMSum (Gliwa et al., 2019) datasets,
we use the model outputs from the SummEval (Fab-
bri et al., 2021b) and DialSummEval (Gao and
Wan, 2022) collections of system summaries, re-
spectively, rather than generating summaries from
scratch. Detailed descriptions of these models and
the system outputs are included in Appendix B.

3.4 Correlation Analysis
With each dataset we collect system summaries
for a set of 100 randomly selected samples from
the test set, following recent work on measuring
correlations between metrics (Bhandari et al., 2020;
Fabbri et al., 2021b; Gao and Wan, 2022). For each
sample di, i ∈ {1...N} in a dataset D we generate
J summaries from J models, and we denote each
summary as sij , j ∈ {1...J}. We use Pearson’s r
to compute the system-level correlation between
two metrics m1 and m2 as follows:

rsysm1m2
= r([

1

N

N∑

i=1

m1(si1), ...,
1

N

N∑

i=1

m1(siJ)],

[
1

N

N∑

i=1

m2(si1), ...,
1

N

N∑

i=1

m2(siJ)]).

9https://github.com/ThomasScialom/
QuestEval

10https://github.com/neulab/BARTScore is
used for BARTScore (source -> hypothesis)
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(a) Multi-News (b) PeerSum (c) TSix

(d) CNN/DM (e) SAMSum

Figure 1: Pearson’s r correlation between metrics on the system level for the MDS datasets in the top row – (a)
Multi-News, (b) PeerSum, and (c) TSix, followed by the SDS datasets in the bottom row – (d) CNN/DM, and (e)
SAMSum. Note that only statistically significant correlations are displayed (p ≤ 0.05), and reference-based and
reference-free metrics are delineated by a line.

4 Results and Analysis

In this section, we discuss the results of two main
experiments where we investigate the inter-metric
correlations across two types of summarization
(multi-document and single-document) over four
different domains (peer reviews, tweets, news, and
dialogues). In each experiment we calculate the
Pearson’s r correlations between metrics and report
statistically significant values (p ≤ 0.05).

4.1 Multi-document summarization
Figures 1a, 1b, and 1c present the results of cor-
relation analysis on the Multi-News, PeerSum,
and TSix multi-document summarization datasets.
Across all three datasets the reference-based met-
rics correlate positively with each other, whereas
correlations within the reference-free metrics are
noticeably fragmented, with PeerSum exhibiting
the most fragmentation. This is likely due to the
higher diversity in the source documents that is
intrinsic to these MDS tasks, especially in Peer-
Sum where roughly 9% of ICLR paper reviews
have a rating difference ≥ 5 (Li et al., 2022). This
makes it harder to compare the source documents
to the summary in a consistent manner. More-

over, between the two broad categories of metrics,
reference-based and reference-free, no consistent
correlation can be observed.

4.2 Single-document summarization

Figures 1d and 1e present the results of eval-
uating single-document summarization datasets
(CNN/DM and SAMSum, respectively) on the
same set of metrics as used in the previous sec-
tion for a comparable discussion. In contrast to
the observations made on the MDS datasets, here
we see a strong positive correlation within almost
all reference-free metrics, on both the datasets.
Futhermore, it is easy to see, especially on SAM-
Sum dataset, that reference-based and reference-
free metrics are highly correlated to each other
within their respective groups, but there is little
positive correlation between groups (we see some
statistically significant anti-correlation), confirm-
ing the results found in Gao and Wan (2022). On
CNN/DM, although the results appear to be a bit
more mixed, clusters of high correlation within
fine-grained categories of evaluation metrics are
clearly observed – metrics based on static or con-
textual representations (Vector Extrema, Greedy
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Matching, BERTScore), metrics that use question-
answering or other means to compare the system
summary and source document (QuestEval, Sum-
maQA, BLANC, Jensen-Shannon, ESTIME, SU-
PERT), and the metrics that use text generation
(BARTScore and Information Difference) are all
strongly correlated.

4.3 Discussion
In comparing all the results of Figure 1, several
observations are made, thus allowing us to put for-
ward some recommendations.

• Reference-based vs. Reference-free met-
rics. First, given almost no agreement be-
tween reference-based and reference-free met-
rics, it appears that these families of metrics
measure distinct qualities of a summary, sug-
gesting the need for reporting some metrics
from each category, regardless of the summa-
rization framework or dataset domain.

• Domain-based observations. Most notice-
ably, both the datasets from the news do-
main, whether MDS (Multi-News) or SDS
(CNN/DM), exhibit similar and arguably more
fragmented heatmaps. This is in sharp con-
trast to the results from the other three do-
mains (peer reviews, tweets, and dialogues),
all of which show similar trends. This indi-
cates that conclusions drawn for these evalua-
tion metrics under one domain may not hold
true for another. Thus it is important to con-
sider the differences in domain while intro-
ducing and re-assessing evaluation metrics.

• Similarities between MDS and SDS analy-
sis. Across both paradigms of MDS and SDS,
the reference-based metrics tend to behave
similarly, i.e., correlate significantly positively
with each other (with CNN/DM being some-
what of an exception).

• Differences between MDS and SDS analy-
sis. In SDS tasks, in general reference-free
metrics tend to show high correlation with
each other suggesting that reporting a small
subset of them might be adequate. How-
ever, rather interestingly, in the case of MDS
datasets, the reference-free metrics indicate
little to no correlation. We hypothesize that
this is likely due to the unique construction of
multiple source documents being so diverse.

The striking differences between the behav-
ior of reference-free metrics under SDS and
MDS paradigms, therefore, motivate the need
for further investigation into how reference-
free metrics are applied to MDS tasks.

5 Conclusions and Future Work

We conduct an in-depth assessment of the correla-
tions between numerous evaluation metrics, includ-
ing those that use reference summaries and those
that do not, in the context of multi-document sum-
marization tasks. As a further investigation, we also
evaluate single-document summarization datasets
on the same set of metrics. Our results indicate that
evaluation metrics behave noticeably differently
when studied under MDS and SDS paradigms,
which makes metrics for MDS an interesting av-
enue of research to be explored further. Moreover,
measuring how these metrics correlate with differ-
ent dimensions of human evaluation on MDS might
be beneficial.

Limitations

As has been recently pointed out in Deutsch et al.
(2022), using system outputs on the full test set
rather than just 100 samples can make these re-
sults much more robust by giving a lower-variance
estimate of the inter-metric correlations.
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A Dataset Samples

Table 2 presents a sample instance of input docu-
ments and corresponding reference summary from
the Multi-News dataset, Table 3 presents a sample
from the PeerSum dataset, and Table 4 presents a
sample from the TSix dataset. Reference-free met-
rics used the full source documents (no truncation)
for evaluation.

B Model Details

B.1 Multi-News dataset
We generate summaries with BART (Lewis et al.,
2019), T5 (Raffel et al., 2019), LED (Beltagy
et al., 2020), Pegasus (Zhang et al., 2020), and
Longformer (Beltagy et al., 2020). Additionally,
we used the system outputs provided by (Fabbri
et al., 2019), which includes LexPageRank (Erkan
and Radev, 2004), TextRank (Mihalcea and Tarau,
2004), MMR (Fabbri et al., 2019), Transformer
(Vaswani et al., 2017), PG-BRNN (See et al., 2017),
and Hi-MAP (Fabbri et al., 2019). 11

B.2 PeerSum dataset
For generating abstractive summaries, we use four
neural-based abstractive summarization systems.
We concatenate the input documents. All pre-
trained model checkpoints accessed from the Hug-
gingface library (Wolf et al., 2019) were further
fine-tuned on PeerSum dataset (Li et al., 2022),
except for Pegasus. The systems include BART
(Lewis et al., 2019) which combines a bidirectional
encoder with an auto-regressive decoder, T5 (Raf-
fel et al., 2019) which is an encoder-decoder model
trained using teacher forcing, LED (Longformer
Encoder-Decoder) (Beltagy et al., 2020) which is
a variant of the Longformer model with both en-
coder and decoder transformer stacks, also scaling
linearly with the input, and Pegasus (Zhang et al.,
2020) which is a sequence-to-sequence model with
gap-sentences generation as a pretraining objective.
The system outputs we use in our experiments were
generated from 100 samples from the test set. Re-
views, comments, and replies were used to generate
the summaries.

B.3 TSix dataset
For generating extractive summaries, we use sys-
tems representing a mixture of traditional meth-
ods and state-of-the-art neural-based architectures.

11https://github.com/Alex-Fabbri/
Multi-News
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Our models consist of Lead12 which extracts the
first n-tweets, LexPageRank (Erkan and Radev,
2004) and TextRank13 (Mihalcea and Tarau, 2004)
which are unsupervised graph-based ranking meth-
ods, ClusterCMRW (Wan and Yang, 2008), BERT-
Ext (Miller, 2019), an extractive summarization
model14 built on top of BERT (Devlin et al., 2018)
which uses K-means clustering to select sentences
closest to the centroid as the summaries, and sim-
ilarly, Longformer-Ext which uses embeddings
from the pretrained Longformer model (Beltagy
et al., 2020). The 100 system outputs we use in
our experiments are roughly 15 tweets long on av-
erage and were generated from samples that have
between 50-100 tweets as input.

B.4 CNN/DM dataset

For the CNN/DM dataset (Hermann et al., 2015),
we used the system outputs provided by (Fabbri
et al., 2021b). This consists of 16 models, each
with 100 outputs.15

Models: LEAD-3, NEUSUM (Zhou et al., 2018),
BanditSum (Dong et al., 2018), RNES (Wu and
Hu, 2018), Pointer-generator (See et al., 2017),
Fast-abs-rl (Chen and Bansal, 2018), Bottom-Up
(Gehrmann et al., 2018), Improve-abs (Kryściński
et al., 2018), Unified-ext-abs (Hsu et al., 2018),
ROUGESal (Pasunuru and Bansal, 2019), Multi-
task (Ent+QG) (Guo et al., 2018), T5 (Raffel et al.,
2019), GPT-2 (zero-shot) (Radford et al., 2019),
BART (Lewis et al., 2019), Pegasus (C4) and Pega-
sus (dynamic mix) (Zhang et al., 2020).

B.5 SAMSum dataset

For the SAMSum dataset (Gliwa et al., 2019), we
used system outputs provided by (Gao and Wan,
2022). This consists of 14 models, each with 100
outputs.16 The dataset includes the human-written
reference and two extractive models in the sys-
tem outputs; excluding these increases correlation
between reference-free and reference-based met-
rics but does not significantly change correlations
within those groups.

12https://github.com/PKULCWM/PKUSUMSUM is
used for Lead, LexPageRank, and ClusterCMRW

13https://github.com/RaRe-Technologies/
gensim

14https://pypi.org/project/
bert-extractive-summarizer/

15https://github.com/Yale-LILY/SummEval
16https://github.com/kite99520/

DialSummEval

Models: LEAD-3, LONGEST-3, Pointer-
generator (See et al., 2017), Transformer (Vaswani
et al., 2017), BART (Lewis et al., 2019), Pegasus
(Zhang et al., 2020), UniLM (Dong et al., 2019),
CODS (Wu et al., 2021), ConvoSumm (Fabbri
et al., 2021a), MV-BART (Chen and Yang, 2020),
PLM-BART (Feng et al., 2021), Ctrl-DiaSumm
(Chen et al., 2021), S-BART (Chen and Yang,
2021).
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Input Documents (News Articles)
d1: after a year in which liberals scored impressive, high-profile supreme court victories, conservatives could be in line for wins
on some of this term’s most contentious issues, as the justices consider cases that could gut public sector labor unions and roll
back affirmative action at state universities. however, as the court’s new term kicks off monday, uncertainty surrounds several
other politically potent cases that could wind up on the court’s agenda ...
d2: the new term’s biggest rulings will land in june, as the 2016 presidential campaign enters its final stretch, and they will help
shape the political debate. “constitutional law and politics are certainly not the same thing, but they are interrelated, never more
so than in a presidential election year that will likely determine who gets to appoint the next justice or two or three, ” said vikram
d. amar, dean of the university of illinois college of law...
d3: the death penalty is shaping up to be a big issue for the supreme court as it begins a new term monday, with at least six
capital-punishment cases on the docket and a recent wave of executions keeping the justices up late to field last-minute appeals.
in the weeks ahead , the court is set to hear arguments over the constitutionality of capital sentences in florida, georgia, kansas
and pennsylvania...

Reference Summary
the supreme court is facing a docket of high-profile political cases that will test whether recent liberal victories were more fluke
or firm conviction, the new york times reports. the court — which is divided 5-4 for conservatives, but saw justice roberts vote
liberal on obamacare and same-sex marriage — will look at cases including unions, affirmative action, and possibly abortion...

Table 2: Example instance from Multi-News dataset

Input Documents (Reviews)
d1(review): This paper proposes a method to train neural networks with low precision. However, it is not clear if this work
obtains significant improvements over previous works.
Note that: 1) Working with 16bit, one can train neural networks with little to no reduction in performance. For example, on
ImageNet with AlexNet one gets 45.11% top-1 error if we don’t do anything else, and 42.34% (similar to the 32-bit result) if we
additionally adjust the loss scale...
d2(reply): We sincerely appreciate the reviewer for the comments, which indeed helps us to improve the quality of this paper.
In our revised manuscript, we keep the last layer in full precision for ImageNet task (both BNN and DoReFa keep the first and
the last layer in full precision). Our results have been improved from 53.5/28.6 with 28CC to 51.7/28.0 with 2888 bits setting.
Results of other patterns are updated in Table4...
...
...
d5(review): The authors propose WAGE, which discretized weights, activations, gradients, and errors at both training and
testing time. By quantization and shifting, SGD training without momentum, and removing the softmax at output layer as well,
the model managed to remove all cumbersome computations from every aspect of the model, thus eliminating the need for
a floating point unit completely. Moreover, by keeping up to 8-bit accuracy, the model performs even better than previously
proposed models. I am eager to see a hardware realization for this method because of its promising results...

Reference Summary (Meta-Review)
High quality paper, appreciated by reviewers, likely to be of substantial interest to the community. It’s worth an oral to facilitate
a group discussion.

Table 3: Example instance from PeerSum dataset

Input Documents (Tweets)
d1: Tech company Nanoco says #Brexit could limit supply of talent.
d2: #Pound closes at another 30 year low. Down to $1.21, fallen 7% in 10 days since #TheresaMay’s ”hard #Brexit” speech.
#GBP. . . .
d3: I hope this radio host has a lot of mics, because he keeps dropping them. #brexit.
d4: Today’s guest article: Gerald Stubbs laments #Britain losing 40 years of progress because of #Brexit. Please share: htt. . . .
d5: Perhaps we should be pleased and encouraged to see that they’re worried and anxious enough about derailment of #Brexit to
resor. . . .
d6: How to save what is left of #Greece? Here’s one hint: #Brexit..
d7: Jacob Rees Mogg’s ’Ladybird Constitution’. via #Brexit #jacobreesmogg.
....
....
....
d62: . ’Leaked Treasury papers show UK Government #brexit chaos will damage Scottish economy’.
d63: GBPUSD Rallying on Back of Potential Brexit Turn Around.
d64: Brexit ’will stunt national living wage growth by 10p an hour’.
d65: UK Prime Minister May backs down on parliament vote over her Brexit terms — South China Morning Post.

Reference Summary
Prof Patrick Minford:: EU and trade #EU #brexit #referendum #voteleave 9..
Good Ganeha you think you have an understanding how dim #Brexit vote leave people are... And then you see new evidence. . . ..
Now Dutch wants own EU vote & Czechs say they might leave #EU #brexit #referendum #voteleave 4..
Pound Soars as Hard Brexit Fears Recede, US Dollar Aims Higher DailyFX on #GBPUSD..
UK Prime Minister May backs down on parliament vote over her Brexit terms: Prime Minister Theresa May has acc....
IEA cuts oil demand forecast for 2017 #healthinnovations #pharma #banking #stocks #Brexit #oil. . . ..
Leave EU and we’ll make your lives a misery: Juncker’s warning to Britain #EU #brexit #referendum #voteleave 3..
Still would be less crazy than hard Brexit.... . . ..

Table 4: Example instance from TSix dataset
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Abstract

Despite the recent advancements in abstractive
summarization systems leveraged from large-
scale datasets and pre-trained language mod-
els, the factual correctness of the summary is
still insufficient. One line of trials to mitigate
this problem is to include a post-editing pro-
cess that can detect and correct factual errors
in the summary. In building such a system, it is
strongly required that 1) the process has a high
success rate and interpretability and 2) it has a
fast running time. Previous approaches focus
on the regeneration of the summary, resulting
in low interpretability and high computing re-
sources. In this paper, we propose an efficient
factual error correction system RFEC based
on entity retrieval. RFEC first retrieves the evi-
dence sentences from the original document by
comparing the sentences with the target sum-
mary to reduce the length of the text to analyze.
Next, RFEC detects entity-level errors in the
summaries using the evidence sentences and
substitutes the wrong entities with the accurate
entities from the evidence sentences. Experi-
mental results show that our proposed error
correction system shows more competitive per-
formance than baseline methods in correcting
factual errors with a much faster speed.1

1 Introduction

Text summarization is a task that aims to generate
a short version of the text that contains the impor-
tant information for the given source article. With
the advances of neural text summarization systems,
abstractive summarization systems (Nallapati et al.,
2017) that generate novel sentences rather than
extracting the snippets in the source are widely
used (Lin and Ng, 2019). However, factual incon-
sistency between the original text and the summary
is frequently observed in the abstractive summa-
rization system (Cao et al., 2018; Zhao et al., 2020;
Maynez et al., 2020). As in the example of Figure 1,

1https://github.com/hwanheelee1993/RFEC

Article: Singer-songwriter David Crosby hit a jogger with his car
Sunday evening, a spokesman said. The accident happened in Santa
Ynez, California, near where Crosby lives. Crosby was driving at
approximately 50 mph when he struck the jogger. The posted speed limit
was 55. The jogger suffered multiple fractures, and was airlifted to a
hospital in Santa Barbara, Clotworthy said.,...

System Summary with Factual Error: Don Clotworthy hit a jogger
with his car Sunday evening. The jogger suffered multiple fractures and
was airlifted to a hospital.

After Correction: David Crosby hit a jogger with his car Sunday evening.
The jogger suffered multiple fractures and was airlifted to a hospital.

Figure 1: An example of generated summary with fac-
tual errors and the correct summary after minor modifi-
cation.

many of these errors in the summaries occur at the
entry-level such as person name and number. But
these types of errors are sometimes trivial and can
often be easily solved through simple modification
like changing the wrong entities, as shown in Fig-
ure 1. For this reason, previous works (Cao et al.,
2020; Zhu et al., 2021; Thorne and Vlachos, 2021)
have introduced post-editing systems to alleviate
these factual errors in the summary. However, all
of those works adopt the seq2seq model, which re-
quires a similar cost to the original abstractive sum-
marization systems, as a post-editing. Therefore,
using such systems based on seq2seq doubles the
inference time for performing post-editing, result-
ing in significant inefficiency. In addition, seq2seq
based post-editing model can be affected by the
model’s own bias to the input summary.

To overcome this issue and develop an effi-
cient factual corrector for summarization systems,
we propose a different approach, RFEC(Retrieval-
based Factual Error Corrector) that efficiently cor-
rects the factual errors with a much faster running
time compared to seq2seq model. RFEC first re-
trieves the evidence sentences for the given sum-
mary for correcting and detecting errors. By doing
so, we shorten the input length of the model to
obtain computational efficiency. Then, RFEC ex-
amines all of the entities to determine whether each
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The partnership started as a 
single shop on Oxford Street in 
London , opened in 1864 by John 
Lewis . Today the partnership is 
an organization with bases 
throughout the UK , with 
supermarkets and department 
stores, …,

[1] The partnership started as a single 
shop on Oxford Street in  London, 
opened in 1864 by John Lewis. 
[2] All  67,100 permanent staff are 
partners who own  26 John Lewis  
department stores, 183 Waitrose 
supermarkets, an online and 
catalogue business. 

Article  𝐴𝐴 Evidence Sentences 𝑽𝑽

John Lewis Partnership began as 
a shop on London 's Oxford
street in the last financial year . 
All 67,100 employees are 
partners in the organization and 
own shares.

Summary  𝑆𝑆 [𝑆𝑆; <Is Error>; 𝑉𝑉] BERT

John Lewis 
Partnership

London

Oxford

the last 
financial year

67,100

Summary Entities: 𝐸𝐸𝑆𝑆 Evidence Entities: 𝐸𝐸𝐸𝐸

<Is Error> Oxford Street

1864

John Lewis

67,100

London

26

John Lewis 
department 

stores

0.01

183

0.70

0.95

0.08

Special Token

<s> John Lewis Partnership <e> began as a shop on <s> London <e> ‘s <s> Oxford street <e> in <s> the last financial 
year <e> . ,…, <Is Error> ,…, The partnership started as a single shop on <s> Oxford Street <e> in  London, opened in 
<s> 1864 <e> by <s> John Lewis <e> . All <s> 67,100 <e>  permanent staff are partners who own <s> 26 <e> ,…,

② Error Detection ③ Error Correction

①

Figure 2: Overall flow of our proposed RFEC. Given a summary S and an article A, we first retrieve evidence
sentences V . Using S and V , we compute BERT embeddings for entities in summary ES and evidence sentence V .
If the erroneous score computed using a special token <Is Error> is above threshold, we regard those entity as an
error and substitute it with one of the entities in the evidence sentences that obtains highest score.

entity has a factual error. If any entities have a
factual error, RFEC substitutes these wrong en-
tities with the correct entity by choosing them
among the entities in the source article. Through
these steps, we do not create a whole sentence as
in the seq2seq model, but decide whether to fix
and correct it through the retrieval, resulting in
higher computational efficiency. Experiments on
both synthetic and real-world benchmark datasets
demonstrate that our model shows competitive per-
formance with the baseline model with much faster
running time. Also, as shown in Figure 2, RFEC
has a natural form of interpretability through the
visualization of the erroneous score and the scores
of each candidate entity for correcting the wrong
entities.

2 Related Work

With the advancement of pre-training language
models such as BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020), abstractive summa-
rization systems have adopted these models to use
the rich information inherent in parameters. While
these models improved the performance, the gener-
ated summaries are still often factually inconsistent
with the source article. (Pagnoni et al., 2021).

To solve the factual inconsistency in abstrac-
tive summarization systems, FASUM (Zhu et al.,
2021) adopted graph attention network (Veličković
et al., 2018) for generating the correction summary.
Chen et al. (2021) studied contrast candidate gener-
ation and selection by ranking approach as a model-
agnostic post-processing technique to correct the
extrinsic hallucinations.

Another line of mitigating factual errors is to

develop a post-editing system to fix the errors. Cao
et al. (2020) presented a post-editing corrector mod-
ule using a BART-based auto-regressive model.
The study generated a corrupted summary to train
the correction system by substituting the key infor-
mation, such as an entity or a number, to construct
a training dataset. Thorne and Vlachos (2021) also
develop a seq2seq based error correction system in
the claim of FEVER dataset (Thorne et al., 2018)
by correcting the words after masking some words.
Different from seq2seq based previous works, we
develop a faster retrieval based factual error cor-
rection system that does not generate the whole
summary, only corrects the entity-level errors by
substituting them with one of the entities in the
article.

3 Method

3.1 Problem Formulation

For a given summary S and an article A, we aim
to develop a fast retrieval-based factual error cor-
rection system that can fix the possible factual er-
rors in S. Since factual errors frequently appear in
entity-level (Goyal and Durrett, 2021), we develop
a system that is specialized in correcting entity-
level errors. Specifically, we define this problem
as two steps, entity-level error detection and entity-
level error correction as shown in Figure 2. For
given ns entities ES = {es1, es2, ..., esns} in a
summary S, we first classify whether each entity
is factually consistent with the article A. If any
entity eSi is factually inconsistent, the system sub-
stitutes it with one of the na entities in the article
EA = {ea1, ea2, ..., eana}.
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3.2 Training Dataset Construction

To train a factual error correction system, we need
a triple composed of an input summary S1 that
may have factual errors, an article A and a target
summary S2 that is a modified version of S1 with-
out factual errors. However, it is difficult to obtain
S1 that has the errors with the position annotated
and the right ground truth correction of such errors.
Hence we construct a synthetic training dataset
by editing the reference summaries following pre-
vious works (Cao et al., 2020; Zhu et al., 2021;
Kryscinski et al., 2020). We corrupt reference sum-
maries in CNN/DM dataset (Nallapati et al., 2016)
by randomly changing one of the entities with the
same type of other entities in the dataset to make a
corrupted summary. Finally, we construct a triple
(S1, A, S2). Meanwhile, in the real-world dataset,
a significant number of summaries are factually
consistent, so we only make errors for 50% of the
summaries and set S1 = S2 for the rest of the
summaries in the dataset.

3.3 Evidence Sentence Retrieval

Generally, a summary does not treat all of the con-
tents in the article but only contains some important
parts of the article. Hence, in most cases, checking
for errors within the summary and correcting them
does not require the entire article, and using the
part related to the summary is sufficient, as shown
in Figure 2. Inspired by this observation, we extract
some of the sentences in the article according to
the similarity with the summary to increase the effi-
ciency of the system by shortening the input length.
We use ROUGE-L (Lin, 2004) score as a similar-
ity measure to extract top-2 evidence sentences for
each sentence in the summary. Then, we remove
the duplicate sentences and sort them according to
the order in which they appear in the article, and
combine them to form V = {V1, V2, ..., VM}, a set
of evidence sentences for detecting and correcting
errors in the summary S.

3.4 Entity Retrieval Based Factual Error
Correction

Computing Embedding Using summary S and
the evidence sentences V , we first extract entities
ES and EV respectively with SpaCy2. And we in-
sert special tokens <s> and <e>, before and after
each extracted entity. Then we also insert an ad-
ditional token <Is Error>, which is later used for

2https://spacy.io/api/entityrecognizer

checking the factual consistency between S and
V and concatenate them to make an input for the
BERT (Devlin et al., 2019). Using BERT, we ob-
tain the contextualized embedding of each entity in
S and V as follows:

H=[h1,h2,...,hl]=BERT ([S;<IsError>;V ]), (1)

where l is the maximum sequence length of the
input.

And we get the embedding of start token
<s> for each entity as the entity embeddings
HEV = {hev1 , hev2 , ..., hevnv

} and HES =
{hes1 , hes2 , ..., hesns

} for V and S respectively.
We also get her, an embedding of <Is Error>.

Error Detection Using the computed embed-
dings, we compute the erroneous score for all of
the entities in summary using her as follows.

ŝeri=P (Err|esi)=σ(h⊺
esi

Wdther+bdt), (2)

where i = 1, 2, 3, ..., ns. The Wdt and bdt are
model parameters.

Error Correction For the entities that are factual
errors, we compute the correction score between
the entities and all of the entities in the evidence
sentences similar to error detection as follows.

ŝcrij=P (Cor|esi,evj)=σ(h⊺
esi

Wcrhevj+bcr), (3)

where i = 1, 2, 3, ..., nser , j = 1, 2, 3, ..., nv. nser
is the number of errors in the summary. The Wcr

and bcr are model parameters.

Training Objective We train the model using
binary cross entropy loss for both detection and
correction through multi-task learning as follows.

Ldt=−
∑ns

i=1
(seri log(ŝeri )−(1−seri ) log(1−ŝeri ))

ns
(4)

Lcr=−
∑ns

i=1

∑nv
j=1

(scrij log(ŝcrij )−(1−scrij ) log(1−ŝcrij ))

ns·nv

(5)

L=Ldt+Lcr, (6)

where seri ∈ {0, 1} and scrij ∈ {0, 1}, which are
the ground truth labels for detection and correction.
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Inference For the inference stage, we do not have
the label as to whether each entity is an error. There-
fore, we calculate the two results sequentially, er-
ror detection and error correction, using the same
BERT embeddings. For each entity, if an erroneous
score is above thrdt, then we let that entity be an
error as shown in Figure 2. And then, we search
the candidate of correction among the evidence en-
tities HEV , and substitute it with the entity that
gets the maximum score as in Figure 2. We conduct
correction only when the maximum score is higher
than thrcr to prevent unnatural correction caused
by failure to find the appropriate entity within the
candidate.

4 Experiments

To evaluate the performance of the proposed error
correction system, we measure the success rate
of correction for the systems by comparing the
correction results with the ground-truth summaries
or conducting a human evaluation for the corrected
summaries as follows.

4.1 Benchmark Datasets

We evaluate our proposed factual error correction
method on one synthetic testset and one real-world
testset, based on CNN/DM. For the synthetic test-
set, we use the same method in Section 3.2 to
make separate 3k samples using the test split of
CNN/DM. For this dataset, we measure the suc-
cess rate of the correction by comparing the cor-
rected summary from the model with the ground
truth summary. In addition to this synthetic data,
we also use the FactCC-Test set (Kryscinski et al.,
2020) that has labels on the 503 system-generated
summaries whether they are factually consistent or
not, as in (Cao et al., 2020). There are 62 incon-
sistent summaries, and 441 consistent summaries
in this dataset. Different from the synthetic testset,
FactCC-Test dataset does not provide the ground
truth correction for the inconsistent summaries.
Hence, we manually conduct a blind test to check
the factual consistency of each summary after the
correction for all of the systems as in the example
of Figure 3.

4.2 Implementation Details

For our experiments, we use bert-base-cased3 for
RFEC. We train the model for five epochs with a
learning rate of 3e-5. For baseline seq2seq model,

3https://huggingface.co/bert-base-cased

we use bart-base4 following the settings in the pre-
vious work (Cao et al., 2020) and train the model
using the same dataset to correct the errors in
the input summary. We search the hyperparmeters
through the correction accuracy in the validation set
among the five epochs. We set batch size of 32 for
RFEC and 64 for BART models. We set both thrdet
and thrcor for 0.5 using the validation set. For max-
imum sequence length, we set 1024 for BART, 256
for BART with evidence selection, 256 for RFEC,
and 512 for RFEC without evidence sentence selec-
tion. We measure the running time, including the
preprocessing time of each method using a single
A5000 GPU and Intel(R) Xeon(R) Silver 4210R
CPU (2.40 GHz). We make the best effort to set
the maximum batch size for each method using the
same environment for a fair comparison.

4.3 Performance Comparison
Synthetic Dataset We present the results for the
3k synthetic testset in Table 1. We measure the cor-
rection accuracy by checking whether the corrected
summary is same as the ground-truth summary for
this dataset. We observe that the performance of
BART is slightly better than RFEC, but our pro-
posed retrieval-based model has a higher efficiency
from the eight times faster running time. Also,
we find that using only evidence sentences shows
slightly less performance, but has advantages in
computing speed for both systems. Especially for
RFEC, it does not take much time to calculate the
model output, but it costs relatively much time on
preprocessing mostly on named entity recognition.
And reducing the input length through the sentence
selection also reduces the running time with a slight
decrease in performance as shown in Table 1.

Method Sample/min Accuracy

Seq2seq - BART 933 90.93
- sentence selection 629 92.20
RFEC 4024 91.06
- sentence selection 1810 91.15

Table 1: Factual error correction results on test split of
synthetic Test Dataset with the average running time.

FactCC-Test Dataset We present the results for
the FactCC-Test dataset through the changes in
factual consistency after the correction in Table 2.
Compared to the results in the synthetic dataset,
both seq2seq and RFEC do not correct many errors,

4https://huggingface.co/facebook/bart-base
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only 9 and 7 for the best settings in both systems
among 62 errors. As in the synthetic dataset, our
proposed method shows almost the same results
with less running time compared to the seq2seq
method. Also, we can observe that using the cor-
rection model also creates a significant number of
new errors (i.e. consistent->inconsistent) especially
for the seq2seq model without sentence selection.

Method
Inconsistent(62) Consistent(441)

Changed Edited Changed Edited

Seq2seq - BART 8 15 2 14
- sentence selection 9 23 7 78
RFEC 7 9 2 23
- sentence selection 6 8 3 31

Table 2: Factual error correction results on FactCC-
Testset. Each column represents how many corrections
each system has performed for the sample of each label,
and how many labels have changed from the correction.

4.4 Qualitative Analysis

We present the representative success and failure
cases of our proposed retrieval-based factual error
correction system with the top-3 retrieved entities
for the errors in Figure 3. For the first example,
RFEC successfully corrects the error Valerie Bra-
ham by substituting it with Philippe Braham which
gets a higher correction score among the entities
in the evidence sentences. Also, as the object to
be corrected is a person’s name, we can observe
that other correction candidates are also names. On
the other hand, for the second example, although
RFEC detects the error Raymond, but does not find
the correction candidates whose correction score
is above thrcr. For this example, Raymond should
be changed to the front bench, but the named entity
recognition model fails to capture it and leads to
missing it from the correction candidate.

5 Conclusion

In this paper, we proposed an efficient factual
error correction system RFEC based on two re-
trieval steps. RFEC first retrieves evidence sen-
tences based on textual similarities between the
summary and the article for detecting and correct-
ing factual errors. Then, if there is an entity that
is a cause of factual errors, RFEC substitutes it
with one of the entities in the evidence sentences
as a retrieval-based approach. Experiments on two
benchmark datasets demonstrate that our proposed
method shows competitive results compared to

Example 1) - Success

Evidence Sentences: Her husband, Philippe Braham, was one of 17
people killed in January’s terror attacks in Paris. One month after the
terror attacks in Paris, a gunman attacked a synagogue in Copenhagen,
Denmark, killing Dan Uzan, who was working as a security guard for a
bat mitzvah party.

Input Summary:
Valerie Braham was one of 17 people killed in January
’s terror attacks in Paris

Corrected Summary: Philippe Braham was one of 17 people killed in
January’s terror attacks in Paris.

Top3 Correction Candidates for Valerie Braham:
Philippe Braham, Dan Uzan, bat mitzvah

Example 2) - Failure

Evidence Sentences: Sawyer Sweeten grew up before the eyes of
millions as a child star on the endearing family sitcom " Everybody
Loves Raymond." Sweeten , best known for his role Geoffrey Barone
, was visiting family in Texas, entertainment industry magazine
Hollywood Reporter reported, where he is believed to have shot himself
on the front porch.

Input Summary:
He is believed to have shot himself on Raymond

Corrected Summary: He is believed to have shot himself on Raymond.

Top3 Correction Candidates for Raymond:
Everybody Loves Raymond, Geoffrey Barone, Sawyer Sweeten

Figure 3: Case study on our proposed factual error cor-
rection system. The entities in the evidence sentences
are highlighted. The blue color on each entity in each
input summary represents the erroneous score, and the
darker the color, the higher the erroneous score.

strong baseline seq2seq with a much faster infer-
ence speed.
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Abstract

Improving the coherence of long text genera-
tion is an important but challenging task. Ex-
isting models still struggle to generate a logi-
cal and coherent sentence sequence. It is dif-
ficult for a model to plan long text generation
and avoid generating incoherent texts from a
high-level semantic perspective. We conjec-
ture that this is due to two factors: (1) current
training methods mainly rely on maximum like-
lihood estimation computed from token-level
probability prediction; (2) the role of incoher-
ent texts has been largely under-explored, thus
the noised generated texts with errors are out-
of-distribution for the model. To address these
issues, in this paper, we propose a Contrastive
Soft Prompt (CSP) model for improving the
coherence of long text generation. It learns text
representations in the hidden space for better
planning long text generation. To this end, it
jointly learns to generate a text representation
close to representations of coherent texts and
away from incoherent ones, and then generates
long text taking this representation as the soft
prompt. We conduct experiments on two public
story generation datasets, and experimental re-
sults show that our method can generate more
coherent stories than the state-of-the-art model.

1 Introduction

Generating coherent long text plays a key role
in many applications, e.g. news report gen-
eration (Leppänen et al., 2017), story gen-
eration (Guan et al., 2021), text adventure
games (Hausknecht et al., 2020). Taking story
generation as an example, it requires the model
to generate a reasonable story for a given prompt
or a given leading context.

In recent years, pre-trained language models
(Lewis et al., 2020; Radford et al., 2019) have
demonstrated their scalability to large-capability
and datasets, becoming a de-facto standard for text
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Input (Leading Sentence):
FEMALE baked a cake for her boyfriend’s birthday.
Output 1:
She put the cake in the oven. When the cake was done, she
frosted it. Then she frosted it. She forgot to put sugar in
it.
Output 2:
She spent the morning preparing the cake and putting it in
the oven. She left the oven on too long. When she came
back the cake was ruined. FEMALE was very sad she ’d
wasted her birthday.

Table 1: Some stories written by text generation models
(The name is replaced with "FEMALE".). The gener-
ated stories suffer from incoherence issues (in bold), i.e.
repeating "frosted it", "for her boyfriend ’s birthday"
but "wasted her birthday".

generation tasks. These state-of-the-art models al-
ready closely resemble humans in the generation
of short sentences (Pu et al., 2022). However, as
table 1 shows, even with a pre-trained language
model, it is still difficult to generate a coherent
long text, which indicates that generating a coher-
ent and logical long text is a challenging task. It is
observed that pre-trained language models are ca-
pable of generating related keywords and achieving
good intra-sentence coherence, but still struggle to
generate coherent long texts, suffering from gen-
erating repetitive plots (Xi et al., 2021), unrelated
events, or conflicting logic (Holtzman et al., 2019),
e.g. "for her boyfriend’s birthday" but "wasted
her birthday" in table 1. We conjecture that above
mentioned issues are mainly caused by two rea-
sons. Firstly, current training methods mainly rely
on maximum likelihood estimation which is com-
puted from token-level probability prediction. It
hinders the model from understanding and plan-
ning the generation in the entire text perspective.
Secondly, the role of negative samples has been
largely under-explored, especially hard negative
samples. Thus, the noised generated texts with
errors are out-of-distribution for the model.

To alleviate the above issues, in this paper, we
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propose CSP, a Contrastive Soft Prompt based text
generation model. It learns long text representa-
tions in a hidden space, and the model can plan
long text generation and distinguish coherent long
text and incoherent texts in this hidden space. To
this end, we design losses to jointly learn long text
representations as well as the ability to plan text
generation and distinguish coherent and incoher-
ent texts from the hidden space, specifically, (1)
contrastive loss for distinguishing positive samples
which are human written texts and negative samples
which are generated by applying perturbations to
positive ones; (2) contrastive loss for distinguishing
different texts; (3) the generation loss for surface
realization in text taking representations in hid-
den space as the soft prompt (Lester et al., 2021).
These losses are designed to help the model to learn
text representations useful for planning coherent
long-text generation. In addition, by taking the gen-
erated representations as the soft prompt for text
generation, we adopt a language model to learn
text representations, and the generated representa-
tions serve as extra information for the language
model to condition on (Lester et al., 2021). Our
contributions are twofold. First, we propose a
novel generation model named CSP for improving
the coherence of long text generation. CSP learns
high-level representations for long text in hidden
space, and jointly learns to plan text generation and
distinguish between coherent and incoherent texts
utilizing the high-level representations. Secondly,
we conduct extensive experiments on two-story
generation tasks. Experimental results demonstrate
that our method can generate more coherent stories
than the state-of-the-art model.

2 Method

Our task aims at generating a multi-sentence text
Y = (y1, y2, ..., ym), given a text input X =
(x1, x2, ..., xn). Figure 1 shows the structure of
our proposed model. Our proposed model consists
of three parts, prompt generator, prompt posterior
generator, and text generator. The prompt generator
aims at generating a soft prompt that represents the
hidden representation of the text to be generated.
The prompt posterior generator is used to help train
the prompt generator, which provides the hidden
representations of positive and negative samples so
that the prompt generator is trained to generate soft
prompts close to positive samples and away from
negative ones. The text generator generates the text

using the soft prompt and the input.

2.1 Prompt Generator
Soft prompt serves as extra information for the lan-
guage model to condition on (Lester et al., 2021).
The prompt generator aims at generating a soft
prompt which is used by the text generator for gen-
eration. To improve the coherence of long text gen-
eration, the model learns to generate soft prompts
close to the representations of coherent texts and
away from incoherent texts in hidden space, which
is introduced in the following subsections.

The prompt generator takes the concatena-
tion of X and a special token sequence P =
([P1], [P2], ..., [Pk]) as the input, and outputs a soft
prompt S = s1, s2, ..., sk, where P represents
the placeholders for generating the soft prompt,
S ∈ Rk×d is the soft prompt, k is the length of soft
prompt, d is the hidden dimension. The prompt
generator can be any sequence-to-sequence model,
e.g. a Transformer model (Vaswani et al., 2017).
In our experiment, we use GPT-2 (Radford et al.,
2019) as the backbone for the prompt generator.
Specifically, let X ′ be the concatenation of X and
P , and we denote the GPT-2 as a function f . We
take the hidden states of GPT-2 as the output, which
is a sequence with length n + k, we use the sub-
sequence of the output sequence corresponding to
P as the soft prompt, i.e.

X ′ = X ∥ P
Y ′ = f(X ′) (1)

S = Y ′
n+1:n+k

where ∥ is the concatenation operation, and
Y ′
n+1:n+k represents the sub-sequence from n+ 1

to n+ k elements, i.e. the hidden states of f corre-
sponding to P .

2.2 Posterior Prompt Generator
In analogy to the prompt generator, the posterior
prompt generator is also a seq2seq model. Its input
is the concatenation of three parts, (1) the input X;
(2) the output Y or a negative sample Y−, and we
will introduce the construction of negative exam-
ples in the following subsection; (3) a special token
sequenceQ = ([Q1], [Q2], ..., [Qk]). The posterior
prompt is computed from

X ′′
+ = X ∥ Y ∥Q
Y ′′
+ = f(X ′′

+) (2)

S+ = Y ′′
n+m+1:n+m+k
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Figure 1: The structure of our proposed model. Prompt generator aims at generating a soft prompt closed to coherent
texts and away from incoherent texts in the hidden space. Posterior prompt generator encodes positive and negative
samples into representations in the hidden space, and helps to train prompt generator. Memory bank stores the text
representations produced in previous training steps, and also help to train prompt generator. Note that the posterior
prompt generator and memory bank are only used during training and can be dropped during inference. The prompt
generator and posterior prompt generator share most of parameters except for embeddings of [P1], [P2], ...,[Pk], and
[Q1], [Q2], ...,[Qk]. Text generator aims at generating text given the soft prompt and the input in auto-regressive
manner. The special token <eos> represents the end of the text.

where Y ′′
n+m+1:n+m+k is the hidden states of f

corresponding to Q, S+ represents the posterior
soft prompt for a sample in the training dataset.
The posterior soft prompt for a negative sample S−
can be generated similarly. Both S+ and S− will
be used to train the prompt generator, which will
be introduced in the subsection of contrastive loss.

2.3 Negative Sample Generation

We construct negative samples to cover unfavored
incoherent texts. To enable the model to learn to
distinguish both intra-sentence and inter-sentence
errors, we construct negative samples from both
the N-gram level and sentence level. To construct
negative samples, we randomly apply the following
perturbations to texts:

Repetition. In recent studies, it is observed that
many NLG models produce repeated text contents,
particularly with maximum-likelihood-based de-
coding strategies (Holtzman et al., 2019). Thus we
generate negative samples by randomly repeating
N-grams or sentences, aiming at telling the model
to not repeat content when generating texts.

Deletion. We randomly delete sentences or N-
grams from the original text, to let the model dis-
tinguish a coherent text and an incoherent text with
missing content.

Insertion. We randomly insert sentences or N-
grams into the random positions of the original text.
In this way, the model learns to distinguish negative
samples with extra text contents.

Substitution. We randomly substitute sentences
or N-grams with a random sentence or N-gram in
the training corpus.

Reorder. We randomly shuffle the order of the
sentences in a text. This will produce stories with
wrong temporal order or wrong causality.

2.4 Contrastive Loss

Given the soft prompt S and positive posterior soft
prompt S+ and negative posterior soft prompt S−,
we design the contrastive loss to let S be closed to
the positive posterior soft prompt and away from
negative ones, to avoid generating incoherent texts.
We also adopt extra negative samples from a mem-
ory bank inspired by previous contrastive learning
methods (Wu et al., 2018; He et al., 2020). We
sample extra negative samples S′

− from a memory
bank B. After each training step, S and S+ are
stored in the memory bank B. We map S, S+, S−,
and S′

− to a hidden space, e.g. for S, we have

v =Wprojpool(S) (3)
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Dataset #Input tokens #Output tokens #Train sample #Val sample #Test sample
ROCStories 14.5 56.3 88344 4908 4909
WritingPrompts 30.0 185.7 26758 2000 2000

Table 2: Statistics of the datasets.

where pool 2 represents a function which average
the matrix with dimension k × d into a vector with
dimension d. We use a Wproj to map the origin
pool(S) into a hidden space. Similarly, we map
S+, S−, S′

− to v+, v−, v′− respectively.
In this paper, infoNCE (Oord et al., 2018) is

considered as the contrastive loss function:

Lc = − log
exp(

v · v+
τ

)

∑
v−
exp(

v · v−
τ

) +
∑
v′−

exp(
v · v′−
τ

)

(4)

where τ is a temperature hyperparameter.

2.5 Text Generator
Given a soft prompt S and the input X , the text
generator aims at generating a text Y . We also
use GPT-2 as the backbone of the text generator.
Following GPT-2, we learn the text generation in
an auto-regressive manner. It is learned from cross-
entropy loss, i.e.

Z = f(S ∥X ∥ Y )

H = Zk+n+1:k+n+m

P (yt|y < t,X) = softmax(HtW + b) (5)

Lce = −
m∑

t=1

logP (yt|y < t,X)

where Z is the hidden states of the text generator,
and H is the hidden states corresponding to the
output, W and b are trainable parameters.

We also introduce a text reconstruction loss sim-
ilar to autoencoder, i.e.

Zae = f(S+ ∥X ∥ Y )

Hae = Zae
k+n+1:k+n+m

P ae(yt|y < t,X) = softmax(Hae
t W + b) (6)

Lae = −
m∑

t=1

logP ae(yt|y < t,X)

2We also tried to flatten operation in our experiments, it
has similar performance with pool operation while flatten rep-
resents a function which reshapes the matrix with dimension
k × d into a vector.

By optimizing Lae, the model tries to learn a hid-
den representation for a whole text, and the text
content can be reconstructed from this hidden rep-
resentation.

The loss function for our model combines Lc,
Lce, and Lae, i.e.

L = λcLc + λceLce + λaeLae (7)

where λc, λce and λae are hyper-parameters.

3 Experiments

3.1 Dataset

We evaluate our model on two publicly avail-
able story generation datasets, named ROCSto-
ries (Mostafazadeh et al., 2016) and Writing-
Prompts (Fan et al., 2018). We use the same prepro-
cessing method as the previous work (Guan et al.,
2020, 2021), i.e. all the names are replaced with
special placeholders for better generalization. For
ROCStories, we use the first sentence as the input
and expect the model to generate the remaining
content of the story. For WritingPrompts, the input
is the writing prompt, and the model is expected to
generate a story according to the writing prompt.
We use the same filter strategy and validation and
test split as the previous work (Guan et al., 2021).
Table 2 shows the statistics of these two datasets.

3.2 Baselines

We compare our method with several baselines, in-
cluding fine-tuning pre-trained language models,
the previous state-of-the-art method, and variants
of our method.
BART (Lewis et al., 2020): It is fine-tuned on the
ROCStories and WritingPrompts datasets based on
the publicly available BART model checkpoint.
GPT-2 (Radford et al., 2019): It is fine-tuned on
the ROCStories and WritingPrompts datasets based
on the pre-trained GPT-2 model.
HINT (Guan et al., 2021): It is the previous state-
of-the-art method on ROCStories and Writing-
Prompts datasets, which continue the pretraining
of BART on book corpus with two additional ob-
jectives, i.e. inter-sentence semantic similarity and
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Figure 2: The structures of some baseline methods, including VAE-like, GOG, and GOG (w/ CL).

distinguishing between normal and randomly shuf-
fled sentence orders.
VAE-like: Similar to VAE (Kingma and Welling,
2013), it uses Gaussian distribution as the prior
probability distribution for the soft prompt S. Com-
pared to our method, it replaces the contrastive loss
with the ELBO loss function. The left of figure 2
shows the structure of VAE-like.
GoG: It stacks two GPT-2 models, and is fine-tuned
on ROCStories and WritingPrompts datasets. The
middle of figure 2 shows the structure of GoG.
GoG (w/ CL): It also stacks two GPT-2 models,
and is fine-tuned on the downstream datasets with
language modeling objective and contrastive loss.
Compared to our method, the hidden representa-
tions used to compute contrastive loss are the linear
mapping of the average of hidden representations.
The right of figure 2 shows the structure of GoG
(w/ CL).
CSP (w/o CL): It is a variant of our model, which
removes the contrastive loss Lc.
CSP (w/o AE): It is a variant of our model, which
removes the reconstruction loss Lae.
CSP (w/ PT): It has the same structure and loss
function as our method, but based on model pa-
rameters which are continue pre-trained on book
corpus. We use the same loss as our model during
continue pretraining.

3.3 Automatic Evaluation

Evaluation Metrics We adopt several commonly
used metrics to evaluate the performance, includ-
ing (1) UNION: It is a learnable metric proposed
by Guan and Huang (2020), which adopts a classi-
fier trained from human-written texts and negative
samples constructed by applying perturbations to
human-written texts. The UNION score is the av-

erage classifier score of texts and measures the
coherence and context-relatedness of the generated
texts. (2) Orderness: It is also a learnable metric.
It relies on a classifier trained to distinguish human-
written texts and randomly shuffled sentences. This
metric reflects the degree to which texts are in rea-
sonable sentence order. Both UNION and Order-
ness are trained on the training sets of ROCSto-
ries or WritingPrompts. (3) Perplexity (PPL): It
measures how well a probability model predicts
the ground-truth samples. (4) BLEU (B-n): It re-
flects the n-gram overlap ratio between generated
texts and ground-truth texts (Papineni et al., 2002).
(5) Lexical Repetition (LR-n): It is the percentage
of generated texts which repeat 4-gram at least n
times (Shao et al., 2019a). (6) Distinct-4 (D-4): It
is the ratio of distinct 4-grams in all 4 grams in the
texts.

Results on ROCStories. As shown in the ta-
ble 3, our proposed method outperforms all the
baselines on 6 out of 7 metrics on the ROCSto-
ries dataset. As for the structure and coherence
of generated texts, our model achieves the best
UNION and Orderness metrics. Our model has
higher PPL compared to GPT-2, and it is because
the contrastive loss Lc provides a regularization,
and the model may allocate more probability to
diverse texts. This conjecture can be supported by
diversity-related metrics. Our model will generate
more diverse texts and thus has higher distinct and
lower lexical repetition. Although our model im-
proves diversity, it still has better BLEU than base-
lines, indicating that our model is inclined to gener-
ate diverse but reasonable n-grams. With continued
pretraining on book corpus, our model improves
UNION and distinct metrics further and decreases
repetition metrics. As both HINT and CSP (w/PT)
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Models UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
BART 0.684 0.906 10.72 0.293 0.131 0.312 0.651
GPT-2 0.767 0.935 8.72 0.315 0.143 0.239 0.695
HINT 0.772 0.920 9.20 0.331 0.154 0.263 0.678
VAE-like 0.805 0.938 9.16 0.316 0.143 0.231 0.693
GoG 0.828 0.946 9.32 0.318 0.146 0.197 0.710
GoG (w/ CL) 0.838 0.945 9.30 0.322 0.148 0.200 0.706
CSP 0.853 0.952 12.18 0.332 0.158 0.186 0.747
CSP (w/o CL) 0.837 0.945 9.31 0.315 0.144 0.202 0.714
CSP (w/o AE) 0.848 0.949 12.64 0.327 0.149 0.172 0.757
CSP (w/ PT) 0.863 0.950 11.72 0.333 0.151 0.160 0.772

Table 3: Automatic evaluation results on the ROCStories dataset.

Models UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-5↓ D-4↑
BART 0.302 0.909 32.02 0.219 0.079 0.381 0.409
GPT-2 0.325 0.769 27.11 0.209 0.075 0.558 0.418
HINT 0.353 0.909 30.71 0.221 0.083 0.323 0.445
VAE-like 0.387 0.935 27.98 0.242 0.090 0.384 0.463
GoG 0.394 0.926 28.71 0.245 0.091 0.326 0.483
GoG (w/ CL) 0.393 0.924 28.99 0.244 0.092 0.361 0.460
CSP 0.520 0.936 32.01 0.255 0.097 0.230 0.555
CSP (w/o CL) 0.382 0.929 27.76 0.245 0.091 0.385 0.454
CSP (w/o AE) 0.449 0.932 33.26 0.246 0.092 0.274 0.537
CSP (w/ PT) 0.711 0.940 32.08 0.278 0.102 0.154 0.682

Table 4: Automatic evaluation results on the WritingPrompts dataset.

use book corpus, the comparison of these two mod-
els further shows the effectiveness of our model.

Results on WritingPrompts. Table 4 shows
the results on the WritingPrompts dataset. Texts
in the WitingPrompts dataset are longer than texts
in ROCStories, and most baseline methods tend
to repeat texts, with low distinct and high repeti-
tion metrics. However, our model can alleviate this
issue evidenced by lexical repetition and distinct
metrics. Our model can increase the distinct metric
up to nearly 10 percents. In addition, the improve-
ment of UNION is much more significant than on
ROCStories, with about 50% relative improvement
compared to HINT, although HINT also adopts spe-
cially designed loss for improving coherence. Our
model also achieves 1 point BLEU improvement
compared to best baseline method. With continue
pretraining on book corpus, our model can further
improve coherence and diversity, specifically, im-
prove UNION from 0.520 to 0.711 and B-1 from
0.255 to 0.278, and also significantly improve dis-
tinct and decreases repetition metrics.

The comparison of GOG and CSP shows that
our model structure for computing text representa-

tion is more effective than simply averaging hidden
states. Furthermore, the experimental results of
CSP (w/o CL) and CSP (w/o AE) show that the con-
trastive loss and reconstruction loss can improve
the performance of our model.

3.4 Manual Evaluation

For manual evaluation, we conduct a pair-wise
comparison on two aspects, namely fluency and
coherence, following recent studies (Guan et al.,
2021; Xu et al., 2020). The metric fluency measures
linguistic quality while coherence focuses on logi-
cality, e.g. causality and temporal relationship. We
randomly sample 100 generated texts from the test
set of ROCStories and invite three annotators (they
are all volunteers) to give a preference concern-
ing fluency and coherence respectively (win, lose
or tie). As table 5 shows, our model outperforms
all the baselines on both fluency and coherence
aspects. We use Fleiss’s kappa (Fleiss, 1971) to
measure the inter-annotator agreements, most of
the results are moderate (0.4 ≤ κ ≤ 0.6) or sub-
stantial (0.6 ≤ κ ≤ 0.8). However, our model still
generates some incoherent texts and is judged to
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Models
Fluency Coherence

Win Lose Tie κ Win Lose Tie κ

CSP vs. GPT-2 27 3 70 0.75 58 5 37 0.76
CSP vs. HINT 22 7 71 0.72 57 4 39 0.61
CSP vs. VAE-like 15 4 81 0.69 62 10 28 0.59
CSP vs. GOG 20 5 75 0.66 57 9 34 0.55
CSP vs. GOG (w/ CL) 35 3 62 0.84 52 6 42 0.79
CSP vs. CSP (w/o CL) 14 2 84 0.64 62 6 32 0.60

Table 5: Manual evaluation results on the ROCStories dataset. κ is the Fleiss’ kappa (Fleiss, 1971), measuring the
inter-annotator agreement (most of them are moderate or substantial).

Noise type UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
N-gram 0.853 0.951 11.40 0.324 0.149 0.185 0.747
Sentence 0.869 0.951 11.43 0.320 0.147 0.166 0.749
N-gram+Sentence 0.853 0.952 12.18 0.332 0.158 0.186 0.747

Table 6: Effectiveness of different types of noise on the ROCStories dataset.

"lose" compared to baselines.

3.5 Effectiveness of different negative samples

Table 6 shows the effectiveness of different types
of noise on the ROCStories dataset. Using negative
samples constructed from sentence noise is more
effective than N-gram noise in lexical repetition
and UNION metrics, and achieves similar PPL,
BLEU, distinct and Orderness metrics. Combining
N-gram and sentence noise will achieve about 1
point BLEU improvement.

3.6 Influence of different memory bank sizes

Table 7 shows the performances of our models with
different memory bank sizes. When the memory
bank size is 0, the model only needs to distinguish
between human-written texts and negative samples
constructed by applying N-gram noise and sentence
noise, which has better PPL and distinct metrics.
We also observed that without a memory bank, the
soft prompts mainly lie in two areas, one for posi-
tive samples and the other for negative samples. By
adding a memory bank, the model learns better text
representation that could encode the differences be-
tween different texts, and achieves better UNION
and BLEU metrics. However, PPL increases when
we use a memory bank, and we conjecture that it is
mainly because the model allocates more probabil-
ity to some other reasonable stories.

3.7 Case Study

We present a case in table 8 to demonstrate that
CSP can generate texts with better coherence than

the previous SOTA model HINT.

4 Related Work

Long Text Generation Many recent long text
generation studies try to tackle the incoherence
problem by designing model structures, training
methods and incorporating extra knowledge. Li
et al. (2015) propose a hierarchical RNN model to
learn the sentence-level representation. Fan et al.
(2018) propose a hierarchical CNN model, and they
also adopt a gated multi-scale self-attention mech-
anism to capture long-range context information.
These two methods focus on modeling both word-
level and sentence-level representations aiming at
capturing long-range dependency. Another line
of work adopts plan-then-generate methods (Yao
et al., 2019; Shao et al., 2019b; Tan et al., 2021;
Goldfarb-Tarrant et al., 2020). They first gener-
ate a high-level plan, and then generate the whole
text according to the plan. The main problem of
these works is that the models are biased to the
plans extracted from human-written texts during
training and lack of exposure to generated plans
(Tan et al., 2021). There are also some works that
try to incorporate knowledge base into text gener-
ation models (Guan et al., 2020; Xu et al., 2020)
to improve the ability to generate commonsense
stories. However, these methods mainly focus on
commonsense stories, and may not be effective
for generating other types of stories. Guan et al.
(2021) propose the HINT model, which is the pre-
vious state-of-the-art method. HINT adopts two
extra losses for training, i.e. inter-sentence seman-
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Memory bank size UNION↑ orderness↑ PPL↓ B-1↑ B-2↑ LR-2↓ D-4↑
0 0.832 0.948 9.21 0.322 0.147 0.164 0.760
600 0.851 0.948 11.15 0.319 0.146 0.183 0.735
65536 0.853 0.952 12.18 0.332 0.158 0.186 0.747

Table 7: Influence of different memory bank sizes on the ROCStories dataset.

Input (Leading Sentence):
MALE had a roommate.
Output of HINT:
MALE was a hard worker and a great student. MALE
knew MALE was very smart and smart. MALE chal-
lenged MALE to a game of basketball. MALE beat
MALE by a landslide.
Output of CSP:
he was very messy. MALE’s roommate’s mom said he
needed to be more organized. MALE’s roommate agreed
to do so. MALE’s roommate was much more organized.

Table 8: Generated stories by the previous SOTA model
HINT and our model CSP (Names are replaced with
"MALE"). In this case, CSP generates a more coherent
text than HINT (incoherent issues are in bold).

tic similarity and discrimination between normal
and random shuffled sentence orders. Compared
to HINT, our method focuses on learning a better
representation in a hidden space for better planning
long text generation.

Contrastive Learning In recent years, con-
trastive learning has made great advances in com-
puter vision (Tian et al., 2020; He et al., 2020;
Chen et al., 2020; Misra and Maaten, 2020), natu-
ral language processing tasks (Wang et al., 2021a;
Pan et al., 2021; Zhang et al., 2021a; Gao et al.,
2021; Kim et al., 2021), as well as multi-modal
tasks (Radford et al., 2021; Wang et al., 2021b). In
the NLP domain, contrastive learning is adopted
for sentence representation (Zhang et al., 2021a;
Gao et al., 2021; Kim et al., 2021). Pan et al.
(2021) use contrastive learning to learn a universal
cross-language representation for better multilin-
gual translation performance. Inspired by these
works, we adopt contrastive learning to learn a bet-
ter text representation, aiming at helping the model
to plan long text generation from a high level and
avoid generating incoherent texts.

Prompt Tuning Recently, some works have
shown the effectiveness of prompt tuning in zero-
shot and few-shot tasks (Brown et al., 2020; Gao
et al., 2020). By designing or automatically search-
ing templates and demonstrations, prompt tuning
provides effective techniques for fine-tuning lan-
guage models using only a few examples. Further-

more, the soft prompt is proposed as a parameter-
efficient finetuning method (Li and Liang, 2021;
Liu et al., 2021; Lester et al., 2021; Zhang et al.,
2021b), i.e. the parameters of the pretrained lan-
guage model remain fixed, and we add only a
few trainable parameters as a prefix to the input
sequence. Our work is inspired by recent soft
prompt works, however, these works mainly focus
on parameter-efficient finetuning, while our work
aims at improving the coherence of long text gen-
eration. We jointly learn high level text represen-
tations in hidden space and take the representation
as the soft prompt for better long text generation.

Learning from Negative Examples Welleck
et al. (2019) have tried to avoid the model gener-
ating repetitive, dull text by unlikelihood training.
Li et al. (2019) use unlikelihood training to gener-
ate text consistent with persona information. Un-
likelihood loss is computed from tokens, and our
method mainly focuses on high level representa-
tions in hidden space. Another line of studies on
employing negative examples is adversarial learn-
ing (Yu et al., 2017; Li et al., 2017), which plays
a minimax game between a generative model and
a discriminative model to generate texts that can
not be distinguished from human-written texts. We
anticipate that unlikelihood training and adversarial
training are largely complementary to our method.

5 Conclusion

In this paper, we propose a contrastive soft prompt
method for improving the coherence of long text
generation. It learns long text representations in the
hidden space for better planning long text genera-
tion. To this end, it jointly learns to generate a text
representation close to representations of coherent
texts and away from incoherent ones and gener-
ates long text taking this representation as the soft
prompt. We conduct experiments on two public
story generation datasets, and experimental results
show that our method can generate more coherent
stories than the state-of-the-art model.

452



References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. arXiv preprint arXiv:2009.09870.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Jian Guan and Minlie Huang. 2020. Union: An un-
referenced metric for evaluating open-ended story
generation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 9157–9166.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gener-
ation by modeling sentence-level and discourse-level
coherence. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7903–7910.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for bert sentence
representations. arXiv preprint arXiv:2106.07345.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Leo Leppänen, Myriam Munezero, Mark Granroth-
Wilding, and Hannu Toivonen. 2017. Data-driven
news generation for automated journalism. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 188–197.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan
Ritter, and Dan Jurafsky. 2017. Adversarial learn-
ing for neural dialogue generation. arXiv preprint
arXiv:1701.06547.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck,
Y-Lan Boureau, Kyunghyun Cho, and Jason Weston.
2019. Don’t say that! making inconsistent dialogue
unlikely with unlikelihood training. arXiv preprint
arXiv:1911.03860.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Ishan Misra and Laurens van der Maaten. 2020. Self-
supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6707–6717.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of

453



commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li.
2021. Contrastive learning for many-to-many mul-
tilingual neural machine translation. arXiv preprint
arXiv:2105.09501.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Jiashu Pu, Ziyi Huang, Yadong Xi, Guandan Chen, Wei-
jie Chen, and Rongsheng Zhang. 2022. Unraveling
the mystery of artifacts in machine generated text. In
Proceedings of the Language Resources and Evalua-
tion Conference, pages 6889–6898, Marseille, France.
European Language Resources Association.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019a. Long and diverse text gen-
eration with planning-based hierarchical variational
model. arXiv preprint arXiv:1908.06605.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019b. Long and diverse text gen-
eration with planning-based hierarchical variational
model. arXiv preprint arXiv:1908.06605.

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric
Xing, and Zhiting Hu. 2021. Progressive generation
of long text with pretrained language models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4313–4324.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive multiview coding. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16,
pages 776–794. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Dong Wang, Ning Ding, Piji Li, and Hai-Tao Zheng.
2021a. Cline: Contrastive learning with semantic
negative examples for natural language understand-
ing. arXiv preprint arXiv:2107.00440.

Mengmeng Wang, Jiazheng Xing, and Yong Liu. 2021b.
Actionclip: A new paradigm for video action recog-
nition. arXiv preprint arXiv:2109.08472.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. arXiv
preprint arXiv:1908.04319.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 3733–3742.

Yadong Xi, Jiashu Pu, and Xiaoxi Mao. 2021. Tam-
ing repetition in dialogue generation. arXiv preprint
arXiv:2112.08657.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. Megatron-cntrl: Controllable story
generation with external knowledge using large-scale
language models. arXiv preprint arXiv:2010.00840.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7378–7385.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of the AAAI
conference on artificial intelligence, volume 31.

Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu,
Ramesh Nallapati, Andrew O Arnold, and Bing Xi-
ang. 2021a. Pairwise supervised contrastive learn-
ing of sentence representations. arXiv preprint
arXiv:2109.05424.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen.
2021b. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

A Appendix

A.1 Details of experiments
The model structure of the prompt generator, pos-
terior prompt generator, and text generator are the
same with GPT-2, and the parameter weights are
initialized with a pre-trained GPT-2 checkpoint.
The soft prompt length is 20 in our experiment.
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Instruction
1. Read the input (a leading sentence or prompt), and 
compare two stories.
2. Select the story  which is better with regard to 
fluency and coherence. Where fluency measures 
linguistic quality while coherence focuses on 
logicality, e.g. causality and temporal relationship. 
These two aspects are evaluated independently.

Input: 
MALE had a roommate.

Text 1:
MALE was a hard worker and a great student…

Text 2:
he was very messy…

1 wins 
2 wins
tie

1 wins 
2 wins 
tie

fluency coherence

Figure 3: Manual annotation instruction.

The memory bank size is 65536. We set λc = 1.0,
λce = 0.1 and λae = 0.1. We finetune the model
on ROCStories and WritingPrompts for 22000
steps respectively. We use adam optimizer, and
the learning rate is set to 5e−5, no weight decay,
and the batch size is 16. During generation, we
use nucleus sampling with p=0.9, and the softmax
temperature is 0.7. Our model contains 234 mil-
lion parameters. We run our experiments on one
GeForce RTX 3090, and it takes about 34 and 39
hours for training models on ROCStories and Writ-
ingPrompts datasets respectively.

A.2 Annotation Instruction
Figure 3 shows the annotation instruction. we con-
duct pair-wise comparison on two aspects, namely
fluency and coherence. The metric fluency mea-
sures linguistic quality while coherence focuses on
logicality, e.g. causality and temporal relationship.
We randomly sample 100 generated texts from the
test set of ROCStories and invite three annotators
(they are all volunteers) to give a preference about
fluency and coherence respectively (win, lose or
tie). The comparison pair of texts are presented in
random order.
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Abstract

We report error analysis of outputs from four
Table-to-Text generation models fine-tuned
on ToTTo, an open-domain English language
dataset. We carried out a manual error annota-
tion of a subset of outputs (a total of 3,016 sen-
tences) belonging to the topic of Politics gener-
ated by these four models. Our error annotation
focused on eight categories of errors. The error
analysis shows that more than 46% of sentences
from each of the four models have been error-
free. It uncovered some of the specific classes
of errors; for example, WORD errors (mostly
verbs and prepositions) are the dominant er-
rors in all four models and are the most com-
plex ones among other errors. NAME (mostly
nouns) and NUMBER errors are slightly higher
in two of the GeM benchmark models, whereas
DATE_DIMENSION and OTHER categories
of errors are more common in our Table-to-
Text model. This in-depth error analysis is
currently guiding us in improving our Table-
to-Text model.

1 Introduction

End-to-end neural Table-to-Text models produce
outputs that suffer from hallucination (output texts
contain parts that are not supported by input data).
This may be because these models learn the noise
from complex examples during the training process
and produce more errors than rule-based systems
(Rebuffel et al., 2021). The automatic metrics such
as BLEU and ROUGE do not uncover common
classes of errors and are therefore less helpful to
improve the models (Gehrmann et al., 2021a). The
accuracy evaluation shared task by Thomson and
Reiter (2021) using the gold standard methodol-
ogy proposed by Thomson and Reiter (2020) was
successful in identifying errors that are difficult to
detect using automatic metrics (Gehrmann et al.,
2022).

In this paper, we performed a detailed error
analysis, adopting the Thomson and Reiter (2020)

methodology on four Table-to-Text model outputs
(trained on the ToTTo dataset) to identify and group
the errors these models make in the output text.
We created one of these Table-to-Text models by
fine-tuning a t5-base Text-to-Text model with the
ToTTo dataset using BLEU as a validation metric
with the standard cross-entropy objective function,
and we will be applying error corrections to this
model in our future work. The other three model
outputs came from GEM benchmark Table-to-Text
models fine-tuned from t5-small, t5-base, and t5-
large Text-to-Text models (Gehrmann et al., 2021a).
Previous research studies for error analysis predom-
inantly focused on Machine Translation (MT) sys-
tems using a simple framework by (Stymne and
Ahrenberg, 2012) and extensively using Multidi-
mensional Quality Metrics (MQM) framework by
Freitag et al. (2021), and on other NLG tasks (Cai
et al., 2020; Thomson and Reiter, 2020). Other
annotation methods have been used to check for
errors in the ToTTo dataset. Yin and Wan (2022)
use a method based on MQM, assigning multiple
labels to individual sentences. We take a different
approach, annotating at the more granular level of
token spans, i.e., words or phrases.

2 Table-to-Text

Table-to-Text generation is an important and chal-
lenging task in Natural Language Generation
(NLG), which focuses on producing a factual,
meaningful, and fluent output from structured tabu-
lar data. Most domains (viz. journalism, medical
diagnosis, sports broadcasting and weather reports)
are data-rich, and the information required for criti-
cal decision-making in these domains comes from
the dataset, which is better represented as textual
narratives than represented in structures such as
indexes, tables and key-value pairs (Rebuffel et al.,
2019).
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Input Table data from ToTTo (includes metadata such as Title, Highlighted cells in yellow and their headers):
Page Title: List of ambassadors of the United States to Germany
Section Title: Heads of the U.S. Embassy at Bonn (1955–1999)
Name and Title Presentation of Credentials Termination of Mission
James B. Conant, Ambassador May 14, 1955 February 19, 1957
David K. E. Bruce, Ambassador April 17, 1957 October 29, 1959
Walter C. Dowling, Ambassador December 3, 1959 April 21, 1963
George C. McGhee, Ambassador May 18, 1963 May 21, 1968

Input Source/Linearized representation of the above Input Table data in Text format:
<page_title> List of ambassadors of the United States to Germany </page_title> <section_title> Heads of the U.S. Embassy at
Bonn (1955–1999) </section_title> <table> <cell> David K. E. Bruce, Ambassador <col_header> Name and Title </col_header>
</cell> <cell> April 17, 1957 <col_header> Presentation of Credentials </col_header> </cell> <cell> October 29, 1959
<col_header> Termination of Mission </col_header> </cell> </table>
Output/Reference Text faithful to the above Input Table data in Text format:
David K. E. Bruce served as the United States Ambassador to Germany from April 17, 1957 to October 29, 1959.

Table 1: Input Table sample from ToTTo (Parikh et al., 2020), Linearized representation of the Input Table data and
Reference Text

2.1 ToTTo

Table 1 shows an example from a controlled
Table-to-Text generation dataset (ToTTo) (Parikh
et al., 2020) where a subset of the cells from the
Wikipedia tables are taken as Input and paired
with a relevant sentence description from the same
Wikipedia page. This dataset was created using
crowdsourcing to mark relevant cells from the table
(shown in yellow) along with their corresponding
row and column headers as inputs (removing the
need for the content selection sub-task followed in
the rule-based NLG systems).

As part of the Input Table data in Table 1, Page
Title, Section Title and Section Text (if available)
are called metadata. The ToTTo Table-to-Text task
is to fine-tune neural NLG models to auto-generate
output texts that describe the highlighted table cells
along with their metadata faithfully and are simi-
lar (similarity measured using both automatic met-
rics as well as human judgement) to the reference
text(s), example, the Reference Text in Table 1.
Training Table-to-Text models with the more con-
trolled ToTTo training dataset is expected to gen-
erate high-quality outputs (Parikh et al., 2020) be-
cause it focuses on addressing a simplified task
instead of end-to-end Table-to-Text.

The ToTTo dataset covers a diverse distribution
of topics such as Sports, Politics, Entertainment,
Literature, Performing Arts, Broadcasting and so
on. This dataset helps to understand how the gen-
erations differ for each domain and accordingly
identify any pattern of errors made by the models.

This level of insight would be helpful to improve
our Table-to-Text model.

The ToTTo dataset has three splits based on the
83,141 unique Wikipedia tables: i. Train with
120,761 samples, ii. Validation with 7,700 samples
and iii. Test with 7,700 samples1.

The validation and test split samples are further
categorised into overlap and non-overlap. Overlap
split refers to the data (i.e. set of header values)
already seen in training samples. Non-overlap split
refers to the set of header values not seen in the
training split and increases the generalization chal-
lenge (Parikh et al., 2020). In the validation split,
we have 3784 overlap and 3916 non-overlap sam-
ples as further discussed in section 4.12.

2.2 Linearized Representation of the Input
Table data

The relevant contents from the Input Table data
as mentioned in section 2.1 are converted to the
linearized representation i.e., metadata and high-
lighted texts with headers as mentioned in Ta-
ble 1 for each of the training samples. The Ref-
erence Text is already ‘in the text’ format. The
pre-trained transformer model we used takes the
source-reference (input-output) pairs in a Text-to-
Text format. Hence, the preprocessed Input Table
data in Text format (linearized representation) and

1Since the output of each sample in ToTTo generates only
one sentence as output, we used the term sentence(s) and
sample(s) interchangeably in this paper.

2The test split reference outputs are not open-source and
not considered in our error analysis.
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its corresponding Reference Text, as shown in Ta-
ble 1 for one sample, has been applied for all the
training samples (120,761).

3 Table-To-Text Models included in our
Error Analysis

3.1 Our Model

The Text-to-Text Transfer Transformer (T5) model
pre-trained on Colossal Clean Crawled Corpus (C4)
(Raffel et al., 2019) is taken to fine-tune our model
with the ToTTo dataset. The T5 model is said to
outperform GPT-2 and BERT models and is robust
to handle out-of-domain inputs (Kale and Rastogi,
2020). The linearized representation of the Input
Table data and its Reference Text pair, as shown in
Table 1 and elaborated in section 2.2, are used for
fine-tuning our Table-to-Text task.

The M1: BLEU model is a Table-to-Text model
created by us by fine-tuning t5-base Text-to-Text
models (220 million parameters) with the ToTTo
dataset using BLEU as validation metric with the
standard cross entropy objective function. The in-
put or the encoder’s maximum length of our model
is 512 tokens to align with the limit of the pre-
trained models. It is fine-tuned with a constant
learning rate of 0.0001 and a beam size of 10 to
generate the target text with at most 128 tokens
(i.e., the decoder’s maximum length). The batch
size used for this M1: BLEU model is 2 and trained
on a commodity server with GeForce RTX 2080 Ti
with 11G memory using Single-precision Floating-
point format (FP32). It took approximately seven
days to train this model for 180,800 training steps.

3.2 GeM Benchmark Models

The error analysis also uses outputs from three
GeM benchmark (Gehrmann et al., 2021a) Table-
to-Text models that are fine-tuned from t5-small
(GM2), t5-base (GM3) and t5-large (GM4) Text-
to-Text models. These three variants of pre-trained
t5 models come in different sizes. GM2: t5-small
is pre-trained with 60 million parameters, GM3:
t5-base is pre-trained with 220 million parameters
and GM4: t5-large is pre-trained with 770 million
parameters. Other specific fine-tuning or config-
uration details of these three benchmark models
are unknown. In contrast, since we know these
fine-tuning and configuration details for our model
as described in section 3.1, the error analysis re-
ported in this paper could be exploited to improve
our model in future.

4 Evaluation and Results

4.1 Metric Based Evaluation
The best practice for evaluation choices (Gehrmann
et al., 2021b) is to use a combination of metrics
from at least two different categories. Hence, the
scores of four Table-to-Text model outputs are
computed using different types of metrics such as
BLEURT (Sellam et al., 2020) and BERTScore
(Zhang* et al., 2020) for semantic measure, BLEU
(Papineni et al., 2002), ROUGE-2 (Ganesan, 2015)
and METEOR (Banerjee and Lavie, 2005) for lexi-
cal measure and PARENT metric (Dhingra et al.,
2019) that is relevant for Table-to-Text systems.

Table 9 and Table 11 in Appendix A shows
the metric scores for the overall validation set of
ToTTo (7,700 samples). The overall scores im-
ply that GM3: t5-base (benchmark model) has
the best scores for BLEU, BLEURT, ROUGE2,
BERTScore and METEOR. Whereas our model
M1: BLEU has the best score for PARENT (over-
all).

Table 10 and Table 12 in Appendix B shows
the metric scores for the Politics domain (754 out
of the 7,700 samples) in the validation set. The
best scores slightly differ for this domain, where
GM3: t5-base (benchmark model) scored well
only for the overlap samples of BLEU, ROUGE2,
BERTScore and METEOR. Whereas GM4: t5-
large (benchmark model) has a better score for
the non-overlap (challenging samples) for BLEU,
BLEURT, BERTScore and METEOR. Our model
M1: BLEU scored well for PARENT (both in over-
all and non-overlap samples).

These scores do not provide complete guidance
on the actual performance of the neural models
and cannot measure factual accuracy. To verify the
performance of the system, we carried out a manual
error analysis by focusing on eight categories of
errors for the Politics domain (because this topic
covers only 4% of the ToTTo data which is easier
to error annotate) as detailed in section 4.2.

4.2 Human Evaluation
Performing a human evaluation in Amazon Me-
chanical Turk through crowdsourcing is expensive
and is also time-consuming to screen with a qualifi-
cation task before the actual experiment. Thomson
and Reiter (2020) proposed a gold standard method-
ology for evaluating similar Table-To-Text tasks.
We adapted this gold standard evaluation technique
for the ToTTo dataset. The annotation procedure is
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discussed in section 4.2.1, and some examples are
detailed in section 4.3 and Appendix C.

4.2.1 Error Categories for Annotation
Below are the eight categories of errors we used
for annotating Politics domain outputs in ToTTo.

• WORDW: when incorrect words such as
verbs, prepositions, adjectives and adverbs are
found in the output.

• NAMEN: when names of the Party, Leader,
place (Electorate), Ambassador etc., are
wrong (mostly nouns).

• DATE_DIMENSIOND: when the Date
and/or Month and/or Year are wrong.

• NUMBERU: when the number of seats and/or
the number of votes and/or % of votes are
incorrect.

• OTHERO: It includes mistakes in any of the
below sub-categories.

– GRAMMATICAL: when simple gram-
matical mistakes are identified in the out-
put text. For example, missing articles
such as ‘a’, ‘the’, and ‘an’, and the link-
ing verb used for singular pronouns such
as ‘is’ and ‘was’. Any other verb mis-
takes belong to the WORD error. Other
complex grammatical mistakes are not
considered.

– PUNCTUATION: when punctuation
symbols are placed at inappropriate
places, an apostrophe is missed for the
Name of the Leader or Place.

– GARBAGE: when the table data has the
Politics party name in the abbreviation,
it tries to produce garbage output.

– Unclear: when the information is un-
clear.

• CONTEXTC: when the people will misunder-
stand a sentence i.e., the generated sentence is
misleading, given the input data.

• NOT-CHECKABLEX: when the output has
details that are not available in the Input Table
data (i.e., relevant contents such as metadata,
highlighted cells and their headers). The infor-
mation may be right, but it requires checking
other online resources to validate.

• NON-ENGLISHNE: when the Unicode char-
acters in non-English names are either re-
placed with special characters or when these
Unicode characters are omitted.

Our annotation scheme differs from Thomson
and Reiter (2020) in terms of how the Date,
Month and Year are handled. We introduced
DATE_DIMENSIOND category for ToTTo as the
specific Politics domain had Date, Month and Year
errors. There are also more NON-ENGLISHNE

errors in the Unicode characters for the NAMES of
a leader, place and/or party.

4.2.2 Other points for annotation
A single distinct token (i.e., word) is marked
by highlighting that specific span of text for
WORD, NAME, DATE_DIMENSION, NUMBER,
OTHER (except GARBAGE sub-category) and
NON-ENGLISH errors. For CONTEXT, OTHER-
GARBAGE and NOT-CHECKABLE category of
errors, it is difficult to reliably identify distinct to-
kens and therefore a group of tokens or relevant
span of text can be marked as shown in the example
annotations in Table 20, Table 21 and table 22 in
Appendix C.

4.3 Results
Following the annotation guidelines defined in sec-
tion 4.2.1, Table 2 and Table 3 provide the results of
the manual error analysis made. Table 2 shows the
overview of the error analysis identified in all four
Table-to-Text models for a subset of 754 samples
(Politics domain).

• ‘NO ERROR’: Around 46% of the samples
out of this subset is error-free in all four mod-
els.

• ‘OMISSIONS’: Around 29% to 32% of the
samples had omissions. However, these sam-
ples are not further analysed in the Table 3
(Individual Error Annotation count) due to the
difficulty in objectively annotating omissions.
We will independently study Omissions cate-
gory of annotations in our future work. If a
particular sample has both omission and error,
the preference is given to the error alone, and
its corresponding error count is included only
in the Errors Annotated category in Table 2.

• ‘META-DATA ISSUES’: Around 6% of the
samples required changes to the input records
(Table metadata, cells and header) i.e., few
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Category M1: BLEU GM2: t5-small GM3: t5-base GM4: t5-large
Count % Count % Count % Count %

NO ERROR 346 46 355 47 371 49 387 51

OMISSIONS 244 32 218 29 240 32 232 31

META-DATA ISSUES* 46 6 43 6 40 5 37 5

ERRORS ANNOTATED 118 16 138 18 103 14 98 13

TOTAL COUNT 754 754 754 754

Table 2: Sample/Sentence Count: Error Analysis of the model outputs for Politics domain of ToTTo. This table has
the count of the samples with errors. Meta-data issues* are either i. when the right cells from table are not passed to
the Input Data, or ii. when irrelevant cells (not highlighted in yellow) are passed as Input Data for few complex
table structure.

Category M1: BLEU GM2: t5-small GM3: t5-base GM4: t5-large

WORD 63 74 49 47

NAME 14 23 24 10

DATE_DIMENSION 12 15 9 0

NUMBER 10 7 12 10

OTHER 10 11 6 6

CONTEXT 8 10 3 5

NOT-CHECKABLE 2 3 2 3

NON-ENGLISH 20 19 19 22

TOTAL ERROR COUNT 139 162 124 103

Table 3: Individual Error Annotation Count based on the Errors Annotated category taken from table 2. This table
has the count of individual errors annotated from the samples. Hence, the total error count is higher in this table
than table 2 (since each sample/sentence can contain multiple errors).

samples did not have the exact cell highlighted
in the Table (compared to the Reference sen-
tence), and few other samples had irrelevant
cells passed in the Input. These samples are
excluded from the Table 3 error annotations.

• ‘ERRORS ANNOTATED’: The error anno-
tations in all four models ranged between 13%
and 18%. This category is the main focus of
this paper and is restricted to the eight cate-
gories of errors as presented in the Table 3.

Table 3 error analysis uncovered eight common
classes of errors in all four models, which is elabo-
rated further in each subsection along with exam-
ples 3.

4.3.1 WORDW errors
This error is the dominant one committed by all
four models. Our model had more WORD errors

3For better readability, the reference sentence and correct
prediction sentence that have the right token without any errors
are either marked with the superscript R (example, right-
tokenR) or in green colour (example, right-token) in the
example annotations (i.e., in section 4.3 and Appendix C).

than two GeM Benchmark models (GM3: t5-base
and GM4: t5-large). They belong to the below
sub-groups.

• Most of them are VERB errors such as
‘defeated’ versus ‘succeeded’, ‘won’ versus
‘lost’, ‘elected’ versus ‘contested’, ‘appointed’
versus ‘nominated’ and so on.

• Some of them include errors in prepositions
such as ‘from’, ‘with’, ‘by’, ‘to’, ‘until’ and so
on.

• Few errors are specific to the Politics related
words. For example, ‘swing’ that has a pos-
itive or negative percentage versus ‘normal
percentage of votes’.

In Table 4, all four models made the WORD
error. The word ‘longest-lived’ is the main er-
ror where the sentence semantic requires access to
other data to compute the right word i.e., longest-
lived or shortest-lived. The input header only has
the term ‘longevity’ and could be the reason for all
models to generalise it as longest-lived. ‘Sanj Sane-
tomi’ is a NON-ENGLISH error that is uniform in
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(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: List of Japanese prime ministers by longevity
Section Title: Longevity of Japanese prime ministers
No Prime Minis-

ter
Total time
in Office

Date of
Death

Lifespan

3 Sanetomi Sanjō 60 days 28 Feb
1891

53 years,
352 days

(b) Output: Prediction with Error Annotations and Refer-
ence

M1: BLEU prediction: Sanj SanetomiNE was the
longest-livedW prime minister in Japan at 53 years, 352
days.

Reference: The shortest-livedR Prime Minister was
Sanetomi Sanjō, who died at the age of 53 years and
352 days.

Table 4: WORD error made by all models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: Members of the Australian House of
Representatives
Section Title: None
Member Party Electorate State Term in Of-

fice
Hon Les
Johnson

Labor Hughes NSW 1955-1966,
1969-1984

Robert
Tickner

Labor Hughes NSW 1984-1996

(b) Output: Prediction with Error Annotations and Refer-
ence

GM3: t5-base prediction: Hughes Labor MHAN Les
Johnson served until 1984 and Robert Tickner served
from 1984 to 1996.

Reference: The Labor member for Hughes (NSW), Les
Johnson in 1984 was replaced by Labor candidate Robert
Tickner as Member of the Australian House of Repre-
sentativesR.

Table 5: NAME error made by our model and two benchmark models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title:1901 Bulgarian parliamentary election
Section Title: Results
Party Votes % Seats ±
People’s Party 66,910 22.8 29 +27
People’s Liberal Party 65,680 22.4 24 +5
Progressive Liberal Party 58,860 20.1 40 +32
Total 344,787 100 164 -5

(b) Output: Prediction with Error Annotations and Refer-
ence

GM3: t5-base prediction: The result was a victory for
the Progressive Liberal Party, which won 58,860U of the
164 seats.

Reference: Despite receiving the third highest number
of votes, the Progressive Liberal Party emerged as the
largest party in the 1901 Bulgarian parliamentary election
with 40R of the 164 seats.

Table 6: NUMBER error made by all models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: 67th United States Congress
Section Title: Senate
Senator Reason for Va-

cancy
Successor Date of Suc-

cessor’s In-
stallation

Philander
C. Knox
(R)

Died October 12,
1921. Successor
was appointed.

William E.
Crow (R)

October 24,
1921

William E.
Crow (R)

Died August 2,
1922. Succes-
sor was appointed
and subsequently
elected.

David A.
Reed (R)

August 8,
1922

(b) Output: Prediction with Error Annotations and Refer-
ence

M1: BLEU prediction: Philander C. Knox (R) served as
senator until October 12, 1921 which was later served by
William E. Crow, Jr. from October 24, 1922D to August
2, 1923D and later succeeded by David A. Reed, R, from
August 8, 1932D.

Reference: Philander C. Knox (R) served until October
12, 1921 and William E. Crow (R) served from October
24, 1921R until August 2, 1922R, after whom David A.
Reed (R) served from August 8, 1922R.

Table 7: DATE_DIMENSION error made by our model
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all four models because of the tokenization used in
t5-base transformers. One solution could be to use
a multilingual tokenizer in our future work.

In Table 14, all models except GM4: t5-large
could not predict the right WORD ‘lost to’ or the
‘right leader name’ for the verb ‘defeated’. One
of the reasons the GeM t5-large model predicted
the right WORD could be from the huge parame-
ters it learned during pre-training. Being certain
about the configuration details of our Table-to-Text
model (M1: BLEU), it does not have any arith-
metic reasoning abilities to predict the right verb

‘defeated’ or ‘lost to’ based on the number of votes.
In Table 13, the more obvious reason for WORD

errors ‘from’ and ‘to’ is because the input table had
both years (1987 and 1992) in a single field. One
reason for this error is that the table does not com-
ply with the First Normal Form (1NF) in relational
databases (one of the common patterns identified in
our analysis). Another reason is that the table does
not have access to the additional insight semantic
of ‘re-elected’ as mentioned in the Reference.

4.3.2 NAMEN and NUMBERU errors
These two errors are slightly higher in the Bench-
mark models (GM3 and GM4) than in the model
(M1: BLEU).

NAME in the prediction got jumbled/swapped
when two or more names are present in the Input
Table data as shown in Table 15 in Appendix C. The
Table 5 shows NAME hallucinations, where the
GeM benchmark models (GM2: t5-small and GM3:
t5-base) and our model (M1: BLEU) hallucinated
the NAME ‘MHA i.e., Member of the House of
Assembly’ instead of the right NAME ‘Member of
the Australian House of Representatives’.

NUMBER is a common error made by all mod-
els, where ‘number (or %) of seats’ versus ‘number
(or %) of votes’ got swapped in the prediction as
shown in Table 6. For other cases, the Table 16 and
Table 17 show NUMBER hallucinations, where the
two GeM benchmark models tried to hallucinate
and compute the incorrect margin of votes even
when the input table data did not explicitly pass
this value.

4.3.3 DATE_DIMENSIOND errors
DATE_DIMENSION errors are more common in
our model. As shown in Table 7, our model had
the year hallucinated even when the right values
(i.e., date dimension fields) are passed to the input
data. GeM Benchmark models did not face this

error except for few complex samples. Even when
it had multiple date-dimension fields as shown in
Table 18 in Appendix C, the GeM models predicted
the year correctly but they committed a different
error category (NAME error) in this example. The
date-dimension errors will be the first class of er-
rors we intend to address when we improve our
model.

4.3.4 OTHERO errors
This error is slightly higher in our model and GM2:
t5small model. A few of the miscellaneous errors
we encountered in all four models are missing apos-
trophe (’s), missing article (‘the’, ‘a’) and other
spans of text that does not imply any meaning,
for example, ‘GSSSDULSVDHSS’ as shown in
Table 20 in Appendix C. Table 21, Table 22 and
Table 19 in Appendix C present the error annota-
tions for the remaining three errors (CONTEXT,
NOT-CHECKABLE and NON-ENGLISH).

4.4 Agreement between annotators

One of the authors (the first annotator) annotated
754 predicted outputs for four systems (i.e., 3,016
sentences). In addition, the second annotator an-
notated predicted outputs for a random 10% of the
Politics domain of ToTTo by following the defined
guidelines.

The second annotator was given a word docu-
ment with the screenshot of the Input Table data
with highlighted cells as shown in Table 1 exclud-
ing the Linearized representation of the input and
Reference Text (to focus the attention of the Anno-
tator 2 on the underlying table to annotate errors
rather than being guided by the Reference Text).
We provided four model outputs for each Input
Table data. The second annotator annotated 80
predicted outputs (i.e., 320 sentences for four mod-
els), and it took approximately 5 hours to complete
this experiment. The annotator marked each er-
ror with the corresponding category and provided
remarks/corrections where ever possible.

The confusion matrix for the annotations made
between the first annotator (A1) and second an-
notator (A2), along with Cohen’s Kappa coeffi-
cient (K value), is presented in Table 8. The
NUMBER, DATE_DIMENSION, CONTEXT, and
NON-ENGLISH categories have a complete agree-
ment. We have a high agreement for both the
WORD (the most dominant error) and the NAME
errors. NOT-CHECKABLE errors tend to be sub-
jective and have a weak agreement. The average
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Category Both agree: error Both agree: no error A1-error A2-error K value

WORD 25 245 7 6 0.77
NAME 7 245 0 4 0.77
DATE_DIMENSION 4 245 0 0 1
NUMBER 8 245 0 0 1
OTHER 2 245 0 0 1
CONTEXT 3 245 0 1 0.80
NOT-CHECKABLE 2 245 0 4 0.49
NON-ENGLISH 7 245 0 0 1

TOTAL COUNT AND
AVERAGE K VALUE

58 245 7 15 0.79

Table 8: Cohen’s Kappa coefficient (K value): Confusion Matrix for the agreement between two annotators

Cohen’s Kappa coefficient (K value) is 0.79, indi-
cating a high agreement between two annotators.

5 Related Work

In the field of Machine Translation, error analysis
has been carried out for a long time (Stymne and
Ahrenberg, 2012). More recently, the Multidimen-
sional Quality Metrics (MQM) framework based
on a hierarchy of errors was applied to carry out
error analysis of WMT data (Freitag et al., 2021).
This analysis identified error types (error classes)
responsible for the difference in output quality be-
tween human and machine-generated translations.

Within the NLG context, Cai et al. (2020) per-
formed error analysis for the Topic-to-Essay NLG
task and proposed a human annotation framework
for evaluating sub-sentence grammar, sentence
logic, repetition, semantic coherence and contex-
tual consistency. Their experiment results show
that the neural models produced relatively high se-
mantic errors compared to the grammatical and
repetition errors.

Within the Table-to-Text context, Thomson and
Reiter (2020) designed a gold-standard error analy-
sis methodology with a taxonomy of simple errors
for the annotators to evaluate the factual accuracy
of Table-to-Text NLG models. They apply this
methodology to system-generated basketball sum-
maries from the Rotowire dataset (Wiseman et al.,
2017). Thomson and Reiter (2021) described a
shared task where different evaluation techniques
for basketball summaries from the Rotowire dataset
were submitted and their results show that metric-
based techniques struggled to detect factual errors.

van Miltenburg et al. (2021) suggested expand-
ing Wiseman et al. (2017) taxonomy to include

other taxonomies such as the SCARECROW an-
notation schema (Dou et al., 2021) and image cap-
tioning specific taxonomy by van Miltenburg and
Elliott (2017), making the resulting expanded tax-
onomy aligned to the quality criteria recommended
by Belz et al. (2020). van Miltenburg et al. (2021)
emphasised avoiding complex terms such as ‘hallu-
cinations’ and ‘omissions’ for error categories be-
cause these are process-level (system) rather than
product-level (output) descriptions of the errors.
Analysing the errors using process-level descrip-
tions cannot be reliable. We, therefore, adhered
to the simple category of errors based on product-
level (output) descriptions in our error analysis.

6 Conclusion

We fine-tuned our neural Table-to-Text model (M1:
BLEU) with the known configuration details and
compared its outputs with the GeM benchmark
model outputs. This analysis provided additional
insights of error classes (such as incorrect VERB
predictions for WORD errors, NAME and NUM-
BER swap when two or more of these details are
in the Input Table, hallucinations for NUMBER
and DATE_DIMENSION), which is not possible
to determine from evaluation metric scores. Our
analysis shows that these four Transformer based
models can perform textual reasoning to some ex-
tent but lack a deeper level reasoning capabilities
(for example, mathematical reasoning and for more
complex table structure when multiple inputs are
present). This level of insights from the manual
error analysis will provide opportunities to over-
come this reasoning capabilities in our model in
the future work.

463



Limitations

This error analysis is focused only on the Poli-
tics domain of the ToTTo dataset. It needs to be
expanded to other domains such as Sports, Arts,
Entertainment and others from the ToTTo dataset.
This is the first stage of our error analysis and is
restricted to the eight common classes (categories)
of errors. Omission-related errors need to be bet-
ter developed with different severity levels, and
meta-data issues have to be corrected.

Ethics Statement

This work seeks to perform error analysis for
our model and three benchmark models from
GeM, which are trained using the open-source
ToTTo dataset. The ground-truth generation re-
mains the same as the original dataset, and we
did not introduce any further social bias to this
dataset. The three benchmark model outputs are
open-source and downloaded from GeM (https:
//gem-benchmark.com/resources). We did not
modify any of these three model outputs while an-
notating errors in our experiment. We sought con-
sent from our second annotator (Craig Thomson),
who was provided with the necessary guidelines
before performing the error annotations.
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Appendices
A Standard Metrics Evaluation for

ToTTo

The standard metrics computed for the ToTTo
dataset are BLEU, PARENT and BLEURT. Table 9
is computed for the overall validation dataset and
Table 10 is specifically computed for the Politics
domain of ToTTo.

B Additional Metric Evaluation for
ToTTo

We computed three additional metrics (BERTScore,
METEOR and ROUGE2) in Table 11 and Table 12.
BERTScore is taken from the official repository
(Zhang* et al., 2020), METEOR and ROUGE2 met-
rics are taken from https://huggingface.co/
datasets library. Best performing metric scores
are in bold.

C Example Annotations

Example annotations for different types of error
categories are annotated in this section, as per the
guidelines defined in section 4.2.1 for the Politics
domain of the ToTTo dataset.
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Overall Overlap Non-Overlap
Model BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT

M1: BLEU 45.9 56.49 0.1539 53.2 61.04 0.2705 38.4 52.10 0.0412
GM2: t5-small 43.7 54.46 0.1203 51.0 58.43 0.2376 36.6 50.63 0.0070
GM3: t5-base 46.2 56.20 0.1651 54.0 60.33 0.2773 38.7 52.20 0.0566
GM4: t5-large 44.7 55.28 0.1434 52.5 59.73 0.2591 37.2 50.97 0.0316

Table 9: Standard Metric Evaluation for the overall ToTTo Validation dataset

Overall Overlap Non-Overlap
Model BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT

M1: BLEU 49.5 59.67 0.1370 55.0 63.12 0.2130 41.7 55.08 0.0362
GM2: t5-small 48.0 57.80 0.1530 53.0 60.77 0.2372 41.0 53.17 0.0413
GM3: t5-base 49.9 57.80 0.1518 55.9 61.16 0.2334 41.3 53.33 0.0435
GM4: t5-large 49.6 57.39 0.1635 54.6 60.94 0.2416 42.7 52.67 0.0598

Table 10: Standard Metric Evaluation for Politics Domain of ToTTo Validation dataset

Overall Overlap Non-Overlap
Model BERT-

Score
METEOR ROUGE2 BERT-

Score
METEOR ROUGE2 BERT-

Score
METEOR ROUGE2

M1: BLEU 0.9330 0.6145 0.4713 0.9418 0.6697 0.5398 0.9246 0.5611 0.405
GM2: t5-small 0.9295 0.5972 0.4562 0.938 0.6488 0.5187 0.9212 0.5474 0.3956
GM3: t5-base 0.9332 0.6189 0.4767 0.9415 0.6707 0.5433 0.9252 0.5688 0.4123
GM4: t5-large 0.9318 0.6151 0.4674 0.9404 0.6689 0.5359 0.9234 0.5631 0.4012

Table 11: Additional Metric Evaluation for the overall ToTTo Validation dataset

Overall Overlap Non-Overlap
Model BERT-

Score
METEOR ROUGE2 BERT-

Score
METEOR ROUGE2 BERT-

Score
METEOR ROUGE2

M1: BLEU 0.9364 0.6295 0.4841 0.9434 0.6672 0.5269 0.9280 0.5793 0.4272
GM2: t5-small 0.9361 0.6162 0.4669 0.9428 0.648 0.5055 0.9272 0.5739 0.4168
GM3: t5-base 0.9372 0.6304 0.4858 0.9445 0.6704 0.5298 0.9275 0.5774 0.4276
GM4: t5-large 0.9369 0.6293 0.4758 0.9435 0.6650 0.5135 0.9283 0.5820 0.4267

Table 12: Additional Metric Evaluation for Politics Domain of ToTTo Validation dataset

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: List of heads of state of Trinidad and
Tobago
Section Title: President of Trinidad and Tobago
No President

(Birth - Death)
Took Of-
fice

Left Of-
fice

Elected

2 Noor Hassanali
(1918 - 2006)

20 March
1987

17 March
1997

1987,
1992

(b) Output: Prediction with Error Annotations and Refer-
ence

GM3: t5-base prediction: Noor Hassanali (1918 – 2006)
was the President of Trinidad and Tobago fromW 1987
toW 1992.

Possible correction: fromW - in ; toW - and in

Reference: Noor Hassanali was re-electedR as the presi-
dent in 1992.

Table 13: WORD error made by all four models
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(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: Dan Maffei
Section Title: Electoral history
Party Candidate Votes % ±
Republican Ann Marie

Buerkle
104,374 50.2 + 8.0

Democratic Dan Maffei 103,807 49.8 -4.7
Majority 567 0.4 -10.4
Turnout 208,181 100 +23.4

(b) Output: Predictions with Error Annotations and Ref-
erence

M1: BLEU prediction: Maffei defeatedW Republican
Ann Marie Buerkle by a margin of 567 votes orW 208,181
votes.

GM3: t5-base prediction: Maffei defeatedW Repub-
lican Ann Marie Buerkle by a margin of 567 votes, a
differenceW of 208,181 votes.

GM4: t5-large prediction: Maffei lost toR Republican
Ann Marie Buerkle by a 567-vote margin with 103,807
votes out ofR 208,181 votes castR.

Reference: Republican Ann Marie Buerkle defeated
Maffei with a 567-vote majority of over 200,000 ballots
cast.

Table 14: WORD error made by all models except GM4: t5-large

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: Canterbury, New Zealand
Section Title: None
Members of Parliament for Canterbury
Electorate Established MP Party
Rangitata 2008 Andrew Falloon National
Selwyn 2008 Amy Adams National
Waitaki 2008 Jacqui Dean National

(b) Output: Predictions with Error Annotations and Ref-
erence

M1: BLEU prediction: The National MPs for Canter-
bury are Amy Adams for Selwyn and Jacqui Dean for
Waitaki and RangitataN.

GM2: t5-small prediction: The National Party has rep-
resented Rangitata, Selwyn, Amy AdamsN, Waitaki and
Jacqui DeanN.

GM4: t5-large prediction: National’s Amy Adams of
SelwynR and Jacqui Dean of WaitakiR were the MPs
for Canterbury.

Reference: Rangitata and Selwyn are held by National
MP’s where Selwyn is represented by Amy AdamsR

while Waitaki is represented by Jacqui DeanR.

Table 15: NAME error made by all models except GM4: t5-large

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: 2010 Wellington City mayoral election
Section Title: Result
2010 Wellington City mayoral election
Candidate Count-

1
Count-
2

Count-
3

Count-
4

Count-
5

Celia Wade-
Brown

18,560 18,675 19,002 21,422 24,881

Kerry Pren-
dergast (in-
cumbent)

21,809 21,863 22,021 22,899 24,705

Jack Yan 5,817 5,924 6,144 7,426 0 (No
count)

(b) Output: Predictions with Error Annotations and Ref-
erence

GM3: t5-base prediction: Wade-Brown won the 2010
Wellington City mayoral election by a margin of 1,354U

votes.

GM4: t5-large prediction: Wade-Brown was elected
mayor with 24,705U votes over a third of a secondO.

M1: BLEU prediction: Wade-Brown received 24,881
votes out ofW 24,705 in the 2010 Wellington City mayoral
election.

Reference: Celia Wade-Brown won the 2010 Wellington
City mayoral election in the final round of the vote count
by 24,881 to 24,705R.

Table 16: NUMBER error made by two benchmark models and WORD error made by other two models
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(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: 2016 United States presidential election in Michigan
Section Title: Results
2016 United States presidential election in Michigan
Party Candidate Running

mate
Votes % Elec-

toral
votes

Republican Donald
Trump

Mike
Pence

2,279,543 47.50% 16

Democratic Hillary
Clinton

Tim
Kaine

2,268,839 47.27% 0

(b) Output: Predictions with Error Annotations and Ref-
erence

GM4: t5-large prediction: Trump won the state of
Michigan with 47.50% of the vote to Clinton’s 47.27%, a
margin of 17.13%U.

GM3: t5-base prediction: Donald Trump won the
2016 United States presidential election in Michigan with
47.50% of the vote to Hillary Clinton’s 47.27%, a margin
of 2.94%U.

M1: BLEU: In the 2016 United States presidential elec-
tion in Michigan, Trump took 47.50 percent of the vote
over Hillary Clinton’s 47.27%R.

Reference: The 2016 United States presidential election
in Michigan was won by Donald Trump with 47.50% of
the total votes over Hillary Clinton’s 47.27%R.

Table 17: NUMBER error made by two benchmark models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: Ashoknagar (Vidhan Sabha constituency)
Section Title: Members of Legislative Assembly
Election
Year

Constituency Name of
M.L.A.

Party Affiliation

1967 Ashoknagar Sadhan Kumar
Sen

Communist Party
of India

1969 Sadhan Kumar
Sen

Communist Party
of India

1971 Nani Kar Communist Party
of India (Marxist)

1972 Keshab
Chandra Bhat-
tacharya

Independent

(b) Output: Predictions with Error Annotations and Ref-
erence

M1:BLEU prediction: Sadhan Kumar Sen of CPI won
the seat in 1967, 1969, 1971D, and Keshab Chandra Bhat-
tacharya of Independent won in 1972.

GM4: t5-large and GM3: t5-base predictions: Ashok-
nagar was represented by Sadhan Kumar Sen of CPI(M)N

in 1967 and 1969, Nani Kar of CPI(M) in 1971, and Ke-
shab Chandra Bhattacharya of Independent in 1972.

Reference: Keshab Chandra Bhattacharya of Indepen-
dent, won in 1972, Nani Kar of CPI(M) won in 1971R,
and Sadhan Kumar Sen of CPIR won in 1969 and 1967.

Table 18: DATE_DIMENSION error made by our model
NAME errors made by other two benchmark models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: List of political parties in Norway
Section Title: Parties currently in Parliament
Name Ideology Position Leader Affiliation

International
Miljøpartiet
de Grønne
Green Party

Green
politics

Centre-
left

Rasmus
Hansson,
Une Aina
Bastholm

Global
Greens

(b) Output: Predictions with Error Annotations and Ref-
erence

M1: BLEU prediction: The Miljpartiet de GrnneNE

Green Party is a political party in Norway.

GM3: t5-base and GM4: t5-large predictions:
The Milj ?? partiet de Gr ?? nneNE Green Party is a
political party in Norway.

Reference: The Green Party Miljøpartiet De Grønne is
a green political party in Norway.

Table 19: NON-ENGLISH error made by all models
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(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: Liberal Democratic Party (Serbia)
Section Title: Parliamentary elections
Year Popular

vote
% of
popu-
lar vote

# of
seats

Seat
change

Coalitions

2007 214,262 5.31% 6 / 250 6 With
GSS-
SDU-
LSV-
DHSS

(b) Output: Predictions with Error Annotations and Reference

M1: BLEU prediction: In the 2007 parliamentary elec-
tion, the Liberal Democratic Party (Serbia) with GSSS-
DULSVDHSSO wonW 5.31% of the vote.

GM3: t5-base and GM4: t5-large predictions:
In the 2007 parliamentary elections, the Liberal Democratic
Party wonW 5.31% of the vote.

Reference: The LDP’s first electoral performance was during
the 2007 Serbian parliamentary election, where the LDP
ran in a coalition together with the Civic Alliance of Ser-
bia, the Social Democratic Union and the League of So-
cial Democrats of VojvodinaR which collectively receivedR

5.31% of the popular vote.

Table 20: OTHER and WORD errors made by our model; WORD error made by benchmark models

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: List of Governors of Guam
Section Title: Elected governors (1971 - present)
Democratic (4) Republican (5)
Governor Served Party Elected Previous

Office
Lieutenant
Gover-
nor

Joseph
F. Ada
(1943–)

January
3, 1987
– Jan-
uary 2,
1995

Republican 1986
1990

Lieutenant
Gover-
nor of
Guam

Frank F.
Blas

(b) Output: Predictions with Error Annotations and
Reference

GM3: t5-base and GM4: t5-large predictions:
Joseph F. Ada served as Governor of Guam from 1987
to 1995 and as Lieutenant Governor from 1986 to
1990 under Governor Frank F. BlasC.

Reference: Blas served as the Lieutenant Governor
of GuamR from 1987 until 1995 for two consecutive
terms under Governor Joseph Franklin AdaR.

Table 21: CONTEXT error made by all models
Complex sample: Joseph F. Ada got elected for two consecutive terms, in 1986 and 1990. Frank F. Blas
was Lieutenant Governor during the same period. All the models struggled to predict the factual output.
As the Input Table for this complex sample has multiple names, multiple date-dimension fields and does
not comply with the First Normal Form (1NF), the predicted outputs are misleading.

(a) Input: Table with Title, Highlighted cells and their
headers

Page Title: 1998 United States Senate elections
Section Title: Elections leading to the next Congress
Democratic (4) Republican (5)
State Incumbent

Senator Party Results Candidates
Georgia Paul

Coverdel
Republican Incumbent

re-
elected.

Paul Coverdell (Re-
publican) 52.3%
Michael Coles
(Democratic)
45.3%
Bertil Armin Loft-
man (Libertarian)
2.5%

(b) Output: Predictions with Error Annotations and
Reference

M1: BLEU prediction: Incumbent Republican Paul
Coverdell won re-election to a second termX in Geor-
gia.

GM3: t5-base prediction:
Incumbent Republican Paul Coverdell won re-election
to a second termX over Democrat Michael Coles.

Reference: In Georgia, Incumbent Republican Senator
Paul Coverdell defeated Michael Coles in the 1998
United States Senate electionsR.

Table 22: NOT-CHECKABLE error made by our model and GM3: t5-base model
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Abstract

We present our work on augmenting dialogue
act recognition capabilities utilizing syntheti-
cally generated data. Our work is motivated by
the limitations of current dialogue act datasets,
and the need to adapt for new domains as well
as ambiguity in utterances written by humans.
We list our observations and findings towards
how synthetically generated data can contribute
meaningfully towards more robust dialogue act
recognition models extending to new domains.
Our major finding shows that synthetic data,
which is linguistically varied, can be very use-
ful towards this goal and increase the perfor-
mance from 0.39, 0.16 to 0.85, 0.88 for AF-
FIRM and NEGATE dialogue acts respectively.

1 Introduction

Virtual assistants have been deployed towards help-
ing users perform various tasks, such as setting
up a credit card. Behind the scenes, most dia-
logue systems powering these virtual assistants are
built of various components which facilitate Natu-
ral Language Understanding (NLU). One such crit-
ical component is dialogue state tracking (DST),
which helps systems recognize the current state and
intent of the user in the conversation. DST often
consists of three main sub-components - intent clas-
sification, slot filling and dialogue act recognition
(DAR). Dialogue acts describe how the dialogue
state should be modified from a system perspective,
whereas the intents and slots help identify the user’s
intent in an utterance. These sub-components are
usually built separately for industrial applications,
since DAR could be generalizable, while intents
and slots vary with the intended task or service.

Since DST can be subjective, large-scale indus-
trial applications need to rise to many challenges,
including supporting heterogeneous services and
APIs. The Schema-Guided Dialogue (SGD) State

∗Work conducted during an internship at ServiceNow, Inc.

Tracking task at the Eighth Dialogue System Tech-
nology Challenge (DSTC8) (Rastogi et al., 2020)
introduced a dataset which could help handle these
challenges, towards being able to handle multiple
services and APIs while not requiring the collec-
tion of new data or retraining models. The SGD
dataset includes various dialogue acts as well as
intents, one of the first to allow multiple APIs with
overlapping functionality in each domain.

Out of the 3 sub-components for DST, we ob-
serve that training models separately towards dia-
logue act recognition allows better internal utiliza-
tion, since dialogue acts are similar across virtual
assistant tasks and customers, whereas intent recog-
nition and slot filling can vary across customers as
well as customer specific tasks. Keeping this in
mind, we focus our research towards developing
robust, generalizable DAR models.

Since SGD is one of the most dialogue act-rich
datasets, we explore its applications towards train-
ing dialogue act recognition models for confidential
internal data. However, during our experiments, we
observe that the performance drops significantly
(from 0.98 to 0.39 F1 for ‘AFFIRM’). Digging
deeper, we observe that the form of responses
for certain dialogue acts could be improved with
adding variations. For example, majority of ‘AF-
FIRM’ utterances include or start with the word
‘yes’. We conduct more experiments for ‘AFFIRM’
and ‘NEGATE’, and present our observations fur-
ther details in Section 5.

We study the limitations of the dialogue act
recognition models trained on SGD and tested on
confidential internal data. We focus our study on
understanding the performance for AFFIRM and
NEGATE, and looking for the existence of simi-
lar patterns in existing data which could lead to
overfitting. To bolster the generalizability of the
model to new domains, we explore and implement
data augmentation strategies which help add more
variety to the form of the utterances in the dataset.
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We present all our findings in this paper, focusing
mainly on our data augmentation techniques which
utilize synthetic text generation methods. Over-
all, our main contributions thus focus around the
following studies:

1. We observe shortcomings of the variation of
forms in the utterances within the Schema
Guided Dialogue (SGD) dataset.

2. We study the limitations of dialogue act recog-
nition models trained on SGD and their poor
generalization on internal data (generated by
linguists).

3. We present synthetic data generation tech-
niques employed towards overcoming the
aforementioned shortcomings, built with Ope-
nAI’s GPT-3 (Brown et al., 2020). We also
showcase their effectiveness towards better
generalization for new domains with the afore-
mentioned dialogue act models.

2 Related Work

Dialogue state tracking, and consequently dialogue
act recognition, are integral components of task-
oriented dialogue systems. Recent research of-
ten focuses on utilizing neural methods towards
approaching these tasks (Balaraman et al., 2021;
Jacqmin et al., 2022), and both surveys find that
generalizability in dialogue state tracking is under-
studied. They both also present various strategies
towards data augmentation, including but not lim-
ited to training on resource-rich domains and ap-
plying to unseen domains (similar to SGD), using
weak supervision to identify slots, reformulating
dialogue state tracking as dialogue summarization
to leverage external annotated data, using reinforce-
ment learning towards generating relevant data, and
prompting generative models to address unseen do-
mains. Many of the aforementioned methods focus
on the intent slot values, and not the dialogue acts.
Since our work focuses mainly on dialogue act
recognition, we include relevant work towards this
task in this section.

2.1 Dialogue Act Recognition

Research in dialogue act modeling and recogni-
tion (DAR) has employed both statistical methods
such as Bayesian classification (Grau et al., 2004),
Conditional Random Fields (CRFs) (Stolcke et al.,
2000), Hidden Markov Models (HMMs) (Boyer
et al., 2010), and Support Vector Machines (SVMs)
(Tavafi et al., 2013). Recent studies utilize neural

methods such as LSTMs (Kumar et al., 2018) and
structured attention network (Chen et al., 2018)
with a CRF classification layer. Since most re-
search utilizes different corpora and dialogue acts,
it is difficult to compare performance across litera-
ture. However, recent research has moved further
into utilizing neural methods, showing their viabil-
ity of adapting to a wide range of dialogue acts as
well as corpora, such as seq2seq models with atten-
tion (Colombo et al., 2020; Raheja and Tetreault,
2019).

Most recent research utilizes contextual mod-
els towards DAR (Ahmadvand et al., 2019; Saha
et al., 2019), moving further towards utilizing neu-
ral methods. More recently, Noble and Maraev
(2021) experiment with BERT towards DAR, and
find that while pre-trained models like BERT per-
form well, the performance is much better with
fine-tuning.

Learning from these studies as well as drawing
takeaways from the Dialogue State Tracking Chal-
lenge 8 (DSTC 8) (Rastogi et al., 2020), we im-
plement a BERT-based model in our DAR, which
is also fine-tuned on the training dataset. We also
keep in mind the class imbalances involved since
DAR is a multi-class classification task, and de-
scribe our experiments and results in Section 5.

(a) Histogram of lengths of training set dialogues

(b) Distribution of dialogue acts in training set

Figure 1: Statistics for SGD (Rastogi et al., 2020)

2.2 Synthetic Data Generation

We utilize synthetic data generation to boost the
capabilities of our DAR model. We follow this
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method since it has been shown in the past to aug-
ment the performance of NLP classification in var-
ied applications (Whitfield, 2021; Bartolo et al.,
2021; Bonifacio et al., 2022), and since it can also
help boost the performance on our private, confi-
dential data towards better DAR. Towards this goal,
we look at various strategies for data generation.

Apart from learning from the OpenAI Comple-
tions guidelines, we also draw from findings of re-
cent work on synthetic data generation (Reynolds
and McDonell, 2021). We choose to work with
GPT-3 mainly since it is the current state-of-the-
art for off-the-shelf text generation, and we aim to
generate synthetic data with varied linguistic forms
which GPT3 is highly suitable for. Thus, GPT-3
provides us a method to generate relevant and ro-
bust synthetic data without the need to fine-tune a
text generation model.

We refer to current literature for further guide-
lines and useful strategies. There exist various
paradigms which intend to help with text genera-
tion based on the generations goals, such as uti-
lizing Reinforcement Learning (RL) techniques or
Q-learning (Guo et al., 2021), and AutoPrompt
(Shin et al., 2020) which uses a gradient-based
search. However, these lack the interpretability
which applies to our goal, and secondly they re-
quire a specified goal towards which to tune the
generations. Thus we focus more on manual ex-
perimentation which could provide us with clearer
takeaways for future, more subjective generations
(presented in Section 4.3).

SGD Internal data Test set

# of dialogues 16142 161 296
# of utterances 164982 1980 1629
# of AFFIRM 25054 1375 808
# of NEGATE 16715 605 821

Table 1: Details for each dialogue act in each dataset
used for training the dialogue act recognition model.
The test set is hand written by linguists.

3 Datasets

This section details the datasets we utilize in our ex-
periments, and provides aggregate details for each
without revealing private and protected information
for confidential internal data. For the purposes of
our research, we focus mainly on a few dialogue
acts relevant towards confidential internal appli-
cations - namely AFFIRM and NEGATE. Each
section describes how we build the utterance and

associated dialogue act pairs towards dialogue act
recognition. The final statistics for each dataset is
presented in Table 1.

3.1 Schema Guided Dialogue (SGD)
The Schema Guided Dialogue (SGD) dataset con-
sists of over 20k annotated multi-domain, task-
oriented conversations between a human and a vir-
tual assistant, spanning 20 domains such as banks,
events, media, calendar, travel, and weather (Shah
et al., 2018; Rastogi et al., 2020). Figure 1a shows
the distribution of dialogue lengths across single-
domain (average 15.3 turns) and multi-domain di-
alogues (average 23 turns). Figure 1b shows the
frequency of the different dialogue acts contained
in the dataset. The dataset also contains a signif-
icant number of unseen domains/APIs in the dev
and test sets. 77% of the dialogue turns in the test
set and 45% of the turns in dev set contain at least
one service not present in the training set.

Each utterance in the SGD dataset comes with
relevant information including a breakdown of all
the dialogue acts and slots present in the utterance.
Our model predicts all the dialogue acts associated
with each frame. The final statistics for the dataset
thus built is presented in Table 1.

3.2 Confidential Internal Data
The confidential internal data we utilize for re-
searching the transferability and generalizability
of the SGD dataset follows the same structure as
the SGD data. This data reflects the services built
on our virtual assistant which are similar to SGD
but are specific to our customer domains.

The training set for the internal data is synthet-
ically generated using GPT-3. We used different
prompts to generate synthetic data with a large va-
riety of dialogue act patterns. We expect that this
variety will help our dialogue act models generalize
well to unseen domains and use cases. There is evi-
dence of this as shown by experiments described in
5. Our test set, modeling real user traffic, is created
separately and annotated by Subject Matter Expert
(SME) linguists. The statistics for this dataset are
presented in Table 1.

This dataset has a much greater variety on the
dialogue acts we experiment with in this paper com-
pared to SGD. For example, almost all AFFIRMs
in the SGD dataset have a ‘yes’ or a very similar
strong affirmative word. In our test set, we have a
rich variety of patterns, including explicit affirma-
tives, implicit affirmatives using context from the
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Prompt Type Prompt Prefix Prompt Sub-type Prompt Affix Generated Text

Fe
w

-s
ho

t Full context
Example 1:
Bot: Here are the available rooms near you.
Do you want to book selected conference room?
User: [PROMPT AFFIX]
[2 more examples]
Example 4:
[conversation context]
Bot: Do you have the account number?

[with context] Yes, please book the
room yes i do

[without context] Yes, please go ahead. yes

[only context] Book selected room. i have the number.

Immediate context
Example 1:
Question: Here are the available rooms near you.
Do you want to book selected conference room?
Affirm: [PROMPT AFFIX]
[2 more examples]
Example 4:
Question: Do you have the account number?

[with context] Yes, please book the
room yes

[without context] Yes, please go ahead. yes

[only context] Book selected room. yeah

Z
er

o-
sh

ot Full context

Generate multiple positive responses
to the question using only words
from the question.
[conversation context]
Bot: [QUESTION]
User:

- -

• Yes I do.
• Yes, I have the
account number.
• Yes, I can give you
the account number.
• The account number
is ___ .

Immediate context

Generate multiple positive responses
to the question using only words
from the question.
Bot: [QUESTION]
User:

- -

• Yes, I have the
account number.
• Great, what is the
account number?
• The account number
is ___.
• Thank you for providing
the account number.

Table 2: Prompt experiments, listing all the types of prompts we used and samples from the text GPT3 generated

conversation with a virtual agent as well as a mix
of the two. This is further described in 4.

3.3 Observations

As discussed earlier, we observe that there exist a
few shortcomings in the SGD data, mainly related
to the variety in the form of utterances in each dia-
logue act. Out of 15k utterances with AFFIRM or
AFFIRM_INTENT as the sole dialogue acts, only
4k of them are unique. Moreover, over 70% of
all AFFIRM utterances contain the word ‘yes’ or
its variations like ‘yup’, ‘yep’, ‘yeah’ or start with
‘sure’. Similarly, more than 80% of all NEGATE ut-
terances start with ‘no’ or ‘nope’ and out of 2.7k ut-
terances in NEGATE or NEGATE_INTENT, only
1.2k are unique. We see a similar distribution in
test and validation sets as well, leading us to believe
that the existence of this predictable pattern is what
contributes to the strong performance baselines.

Acting on our findings, we experiment with
adding synthetically generated data to our dataset.
We choose this augmentation method since it al-
lows us to contribute relevant yet original data,
while generating varied forms and structures for
each utterance. We first experiment with an SGD-
fine-tuned data (Section 5.1, and find that this lack
of variety does indeed lead to worse predictions
on our rich SME linguist generated test set. We
present methods and evaluation techniques used to
overcome these shortcomings by generating syn-

thetic data (Section 4).

4 Synthetic Data Generation

We aim to augment our dataset using synthetic data
generated by prompting GPT-3, as described in
Section 2. We detail our experiments and their
results in this section.

4.1 Experiments

We utilize OpenAI’s GPT-3 Completions API to
generate synthetic data which could be useful to-
wards mitigating the effects of the presence of pat-
terns in the training data. We experiment with
different kinds of prompts, following guidelines
laid out by OpenAI1 for text generation (detailed
in Table 2).

The main prompt types we experiment with in-
clude few-shot and zero-shot. In the few-shot set-
ting, the prompt consists of a few examples (3
to 5 examples) which can help demonstrate the
completions we expect. In the zero-shot setting,
the prompt includes an instruction along with the
question. Additionally, we frame prompts so as
to generate different kinds of responses for both
AFFIRM and NEGATE. For example, each yes/no
question (such as “Would you like to continue?")
can be answered by a human in 3 different ways,

1https://beta.openai.com/docs/guides/
completion
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1) with-context (such as “Yes, I would like that"),
2) without-context (such as “Yes please"), and 3)
only-context (such as “Please continue").

In addition to various framing, we also experi-
ment with both the Curie and Davinci engines, al-
though we conclusively find that Davinci performs
better in initial experiments. Thus, the results in-
cluded in this paper are all generations using the
Davinci engine.

We find that some prompts perform better than
others for different kinds of expected generations.
We discuss our evaluation strategies next, and
present our findings and takeaways in Section 4.3.

4.2 Evaluation

We employ multiple strategies for evaluating the
generated synthetic data, consisting of both auto-
matic and human evaluation methods. We employ
custom automatic evaluation metrics, such as the
presence of key words, to ensure that we generate
different kinds of variations. For human evalua-
tions, we work with subject matter experts (SMEs),
who hand annotate each synthetic generation as
good, alright, or bad generations, depending on our
generation goal with a specific prompt. Further
details for our evaluation strategies is presented in
Table 3.

Tables 4 and 5 list the performance of our major
experiments. We required fewer experiments for
NEGATE since we were able to learn from our
takeaways stemming from our experiments with
AFFIRM.

For AFFIRM, the few-shot examples are listed
in Table 2. With zero-shot prompts, Type 1 con-
sisted of the instruction “Generate multiple positive
responses as a human would to the following ques-
tion asked by a bot:", Type 2 consisted of “Imagine
a conversation between a bot and a human. Gen-
erate multiple positive responses to the following
question asked by the bot:", Type 3 consisted of
“Generate multiple positive responses as a human
would to the following question asked by a bot:",
Type 4 consisted of “Generate multiple affirma-
tive responses as a human would to the following
question asked by a bot:", and Type 5 consisted
of “Generate multiple responses that agree with
the question using only words from the question.
Do not use the word “yes".". Evaluations for how
well each of the generations perform are shown in
Table 3. Few-shot, full context prompts do perform
the best, however these require a heavy payload

to the API and thus cost more (compared to zero-
shot prompts). Thus, we focus more on improving
the zero-shot prompts, and find that instructions
which include multiple yet simple asks perform
best. Further takeaways are discussed in the next
section.

For NEGATE, Type 1 consisted of “Generate at
least 5 negative responses as a human would to the
following question asked by a bot. Do not gener-
ate positive responses:", while Type 2 consisted of
“Generate at least 5 responses that disagree with the
following question asked by a bot. Do not generate
positive responses:". As shown, the performance is
comparable for both prompts.

Combining the automatic and human evaluation
metrics allows us to better gauge the effectiveness
of our prompts. The SME linguists also provided us
with deeper insights into patterns associated with
prompt wording. In general, we find that utilizing
both instructions and examples can help generate
more relevant data.

4.3 Discussion

We observe that many data points in the SGD
dataset consist of utterances which contain a key-
word like ‘yes’ or ‘yeah’, which can become a
pattern that signifies the dialogue act for AFFIRM,
and similarly for NEGATE. Therefore, our prompts
aim to generate data points which could serve as
utterances which have the context of the preced-
ing utterance (generally a REQUEST). Through
our experiments, we observe a number of relevant
takeaways for generation with GPT-3.

Firstly, we discover that if a REQUEST is posed
as a statement and not a question, ie if the RE-
QUEST does not end with a question mark, then
the Completions API tends to hallucinate wildly,
even if relevant contextual information (such as the
preceding conversation) is available. For example,
if a prompt asking for a laptop replacement ends
with “requesting a loaner”, the output first halluci-
nates and generates completions such as “vehicle
of make and model?”. We also experiment with
removing question marks in a few cases where we
observe good synthetic generations, and find that
we are able to replicate this problem. Therefore,
there is a need to ensure that prompts end with a
question mark if the objective is to generate rele-
vant responses.

Secondly, it is always better to show the com-
pletions API that a question was spoken by a bot,
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Dialogue Act Automatic Human

Both

1. Word count
2. Jaccard similarity with REQUEST
3. GUSE similarity with REQUEST
4. All scores averaged

1. Grammaticality & Fluency
2. Follows dialogue constraints

(ex, conversation flow)
3. Follows cooperative principle

(effective communication)

AFFIRM Presence of ‘yes’ and related words Variety in form and linguistic features

NEGATE Presence of ‘no’ and related words Variety in form and linguistic features

Table 3: Evaluation metrics used for evaluating synthetically generated data

Prompt
Type

Generation
Type

Good
Generations

Few-shot,
full context

with-context 7
without-context 37

only-context 75

Zero-shot

Type 1 48
Type 2 49
Type 3 56
Type 4 58
Type 5 67

Table 4: AFFIRM prompts and performance for a total
of 81 data points - bold text shows best performance

Prompt
Type

Generation
Type

Good
Generations

Zero-shot Type 1 48
Type 2 47

Table 5: NEGATE prompts and performance for a total
of 67 data points

rather than instruct the API to generate comple-
tions for questions posed by a bot. This becomes
important for our use-case since we are aiming to
generate responses that sound like they are com-
ing from a user who is interacting with the bot.
Therefore, we want succinct yet easy to understand
responses which can be easily understood by a di-
alogue system, coming from the user’s point of
view. Thus, it is useful to have prompts such as
“Generate responses to the following question. Bot:
Would you like me to proceed? User:” as compared
to “Generate responses for the following question
asked by a bot. Would you like me to proceed?”.

Lastly, we observe that using simple, small but
multiple instructions works better than using long
and complex instructions. For example, the prompt
“Generate at least 5 negative response to the fol-
lowing question. Be polite. Do not use no” works
better than “Generate multiple polite negative re-
sponses to the following question without saying
no”.

Overall, our findings echo many of the guide-
lines suggested by OpenAI while also showcas-
ing that prompt design requires experimentation to
fit into specific use-cases. Especially in scenarios
where there is a need to report on which prompts
worked better and to understand why, as well as
a subjective view of which synthetic generations
would be the best addition to training data, soft
prompting and prompt tuning become difficult to
implement. We therefore focus our efforts on under-
standing the underlying conditions and guidelines
under which we are able to generate synthetic data
which eventually can boost dialogue act recogni-
tion.

5 Dialogue Act Recognition

We show how our synthetically generated data can
boost the capabilities of dialogue act recognition
models in this section. We detail each step in our
experiments as well as our findings.

5.1 Experimental Setup
We utilize the SGD training set, synthetic genera-
tions using OpenAI and a fraction of hand-written
generations produced by our SME linguists as
training data. For the synthetic data, we generate
AFFIRM and NEGATE utterances using various
prompts which are then filtered by human experts
as relevant or not. Unless otherwise mentioned,
we only use the relevant synthetic generations for
training.

We evaluate the model on both SGD test set
and gold standard SME linguist generated test data,
specifically written to include several forms of ut-
terances for each dialogue act, making it difficult
to achieve perfect performance on them. We report
the F1 score computed separately for each dialogue
act, averaged across 3 training runs with different
random seeds.

For all our experiments, we fine-tune the BERT-
small model to predict dialogue acts. We train the
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model for 4 epochs with a learning rate of 1e-5
and a batch size of 64. As input to the model, we
concatenate the previous and current utterance with
a [SEP] token. Predicting dialogue acts is a multi-
label task and hence we use a sigmoid activation
for the last layer and Binary Cross Entropy as the
loss function.

5.2 Adding synthetic data to SGD
Table 6 shows the results from adding synthetic
data to the training set. Here we use all of
SME dataset for evaluation. Synthetic-all
consists of all synthetic utterances whereas
Synthetic-Dis is the subset of synthetic utter-
ances taken from conversations which are disjoint
from the ones used in SME dataset (test set). We
see a significant increase in the performance upon
adding just a few hundred synthetic utterances. The
size of synthetic dataset is quite small when com-
pared to the size of the SGD dataset which can
inhibit the model from learning from the synthetic
generations. Owing to this, we experiment with
various sampling factors, where a sampling factor
of k means we duplicate the synthetic dataset k
times. As an example, an affirming utterance for
the request “Do you want to setup okta mfa? I’d
like to" gives no prediction when trained only on
SGD, whereas SGD + Synthetic-all predicts
AFFIRM. Similarly, a negating utterance to the
same request “I’d like to skip" also gives no predic-
tion for SGD, whereas SGD + Synthetic-all
predicts NEGATE.

Table 7 shows how performance varies with the
sampling factors. The performance increases with
sampling factor up to a certain point after which
it degrades, indicating that a balance between the
SGD dataset and synthetic dataset is essential for
good performance. More notably, we see that
with adequate oversampling we can bridge the
gap in performance between Synthetic-dis
and Synthetic-all for NEGATE and bring F1
score for AFFIRM within 0.03 points.

5.3 Adding linguist data
Next, we check the performance upon adding
a small amount of SME data to the training
mix to get an idea of the gap between syn-
thetic and human generated data. We use 20%
of the SME data for training (SME-train)
and use the remaining 80% for evaluation
(SME-test). To have a fair comparison, we com-
pare SME-train with Synthetic-dis since

SGD-test SME

AFFIRM NEGATE AFFIRM NEGATE

SGD-train 0.98 0.98 0.39 0.16
SGD-train,

Synthetic-dis 0.98 0.98 0.71 0.46

SGD-train,
Synthetic-all 0.98 0.98 0.76 0.62

Table 6: F1 scores for the Dialogue Act Recognition
models with and without synthetic data

sampling
factor

SGD-train, Synthetic-dis SGD-train, Synthetic-all

AFFIRM NEGATE AFFIRM NEGATE

1 0.71 0.46 0.76 0.62
2 0.73 0.51 0.78 0.65
4 0.75 0.53 0.79 0.69
8 0.76 0.58 0.8 0.72

16 0.76 0.62 0.78 0.71
32 0.77 0.64 0.77 0.69
64 0.77 0.66 0.76 0.71

128 0.77 0.73 0.77 0.71
256 0.76 0.71 0.75 0.69

Table 7: F1 scores for the Dialogue Act Recognition
models with different oversampling factors applied to
the synthetic training sets - bold text shows best perfor-
mance

using Synthetic-all would have overlapping
conversations with SME-test.

Table 8 shows that both with and without over-
sampling, using SME data performs better than
synthetic data, especially for NEGATE. However,
using both SME and synthetic data performs better
than using just SME data, showing the value of
augmenting human-generated data with synthetic
data.

5.4 Filtered vs unfiltered data

So far we have used AFFIRM and NEGATE gener-
ations from various LLM prompts which have been
vetted by humans. However, this approach is not
scalable and we thus check the value of using syn-
thetic generations without any human intervention.

We select 2 prompts for each AFFIRM and
NEGATE which work the best according to hu-
man evaluation and take all generations from those
prompts across all conversations. This covers more
conversations but since we restrict the synthetic
data to only 2 prompts per dialogue act, we end
up with 1k (only 2 prompts each for AFFIRM and
NEGATE) utterances as opposed to 1.9k (human
annotated data from all prompts) earlier.

We report the results from the best oversam-
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sampling
factor

SGD-train, Synthetic-dis SGD-train, SME-train SGD-train, Synthetic-dis, SME-train

AFFIRM NEGATE AFFIRM NEGATE AFFIRM NEGATE

1 0.73 0.54 0.69 0.78 0.86 0.84
2 0.75 0.58 0.77 0.83 0.88 0.88
4 0.77 0.58 0.81 0.86 0.88 0.87
8 0.78 0.62 0.83 0.87 0.88 0.89

16 0.79 0.67 0.80 0.86 0.86 0.86
32 0.79 0.66 0.80 0.83 0.88 0.87
64 0.79 0.68 0.80 0.84 0.85 0.84
128 0.79 0.74 0.77 0.80 0.83 0.84
256 0.79 0.72 0.75 0.79 0.83 0.83

Table 8: F1 scores for the Dialogue Act Recognition models with synthetic and SME data - bold text shows best
performance

pling factor using filtered and noisy synthetic data
in Table 9. With the disjoint synthetic dataset,
noisy utterances give the same performance as
filtered utterances. Using noisy utterances from
just 2 good prompts we get significantly better per-
formance than using filtered utterances across all
prompts. This shows the importance of choosing
good prompts for data generation. With careful
prompt selection, LLMs can generate high quality
data without the need for human intervention.

sampling factor AFFIRM NEGATE

SGD-train,
Synthetic-dis 256 0.77 0.73

SGD-train,
Synthetic-dis-noisy 128 0.79 0.7

SGD-train,
Synthetic-all 16 0.8 0.72

SGD-train,
Synthetic-all-noisy 16 0.85 0.88

Table 9: F1 scores for the Dialogue Act Recog-
nition models with filtered and unfiltered synthetic
data. Synthetic-dis, Synthetic-all denote
the filtered versions and Synthetic-dis-noisy,
Synthetic-all-noisy denote the unfiltered ver-
sions

6 Conclusion

We present shortcomings of existing datasets uti-
lized towards Dialogue Act Recognition, such as
the Schema-Guided Dialogue (SGD) datasets and
propose using LLMs to generate data for overcom-
ing the issues. We find that data generated synthet-
ically helps with generalization to new domains
without the need for human labeling. Moreover,
in presence of labeled domain data, the syntheti-
cally generated data complements the variety of
forms and linguistic properties present in training

data and improves performance for Dialogue Act
Recognition.

We utilize OpenAI’s GPT-3 Completions API
to generate the synthetic data, and find some inter-
esting general takeaways for †ext generation. We
present our findings in detail in Section 4.3. Mainly,
we find that 1) questions should end in a question
mark; 2) instead of saying a question was posed by
a bot, it is better to append “Bot:" to the beginning
of an utterance; and 3) multiple, simple instructions
work better than a single, long instruction.

We find that even a small number of synthetic
generations which are more varied in forms lead
to better generalizability and performance for dia-
logue act recognition. We detail the findings in Sec-
tion 5. We find that adding synthetic data is helpful,
especially once we are able to class balance with
oversampling. Synthetic data also complements
human generated well, and used together help with
making a model more robust - we find that using a
few good prompts for generation without filtering
can perform as well as (or even better than) using
multiple prompts with human filtering.
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Abstract

This paper describes insights into how different
inference algorithms structure discourse in im-
age paragraphs. We train a multi-modal trans-
former and compare 11 variations of decod-
ing algorithms. We propose to evaluate image
paragraphs not only with standard automatic
metrics, but also with a more extensive, “under
the hood” analysis of the discourse formed by
sentences. Our results show that while decod-
ing algorithms can be unfaithful to the refer-
ence texts, they still generate grounded descrip-
tions, but they also lack understanding of the
discourse structure and differ from humans in
terms of attentional structure over images.

1 Introduction

What are the properties of the well-generated text?
This question has been in the centre of many de-
bates in the natural language generation community
(Dale and White, 2007; Gatt and Krahmer, 2018).
While human evaluation has always been the gold
standard in the quality assessment of generated
texts, the field is often reluctant to run such evalua-
tion due to the lack of standardisation in evaluation
reports and generally high cost (Howcroft et al.,
2020). Therefore, a number of simpler and cheaper
automatic metrics were introduced, specifically in
the field of machine translation, although their va-
lidity has been questioned (Reiter and Belz, 2009).

As computer vision and NLP started to merge,
automatic metrics became an important part of the
evaluation process of image descriptions. In gen-
eral, image descriptions are evaluated with means
of BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), ROUGE (Lin, 2004), CIDER

(Vedantam et al., 2015) and WMD (Kusner et al.,
2015). However, Kulkarni et al. (2011) and Elliott
and Keller (2014) have demonstrated that such met-
rics only weakly correlate with human judgements
in the context of image description generation task.
The discrepancy between human and automatic

evaluation is deeply rooted in the differences be-
tween the fields of machine translation which orig-
inally introduced aforementioned metrics and im-
age captioning, which adopted them. In principle,
text-only evaluation is highly constrained: the key
requirement for high-quality translation is the per-
severance of semantics between two parallel texts.
In comparison, evaluation of texts generated in
multi-modal tasks is influenced by many factors
as the generated texts might mention a different
set of objects, attributes and relations which are
not described in reference texts. Such generations
would cause low values from reference-based met-
rics, although they could be completely plausible
and truthful to the image. As such, the tasks of
machine translation and image captioning are in-
herently dissimilar in terms of evaluation. To mit-
igate this problem, metrics that directly compare
texts against image objects have been proposed
(Jiang et al., 2019; Madhyastha et al., 2019; Wang
et al., 2021; Hessel et al., 2021). They are typi-
cally better than BLEU in that they assign a more
accurate score to image-correct descriptions. A
relatively recent trend has been to develop a set
of metrics that would evaluate goal-oriented cap-
tions, produced with specific communicative intent
(Inan et al., 2021) or for a specific group of users
(Fisch et al., 2020), for example, if an image of a
snowdrop is described as “the spring flower”.

A notable feature of the aforementioned met-
rics is their sole focus on evaluation of image cap-
tions. Different from captions, multi-sentence im-
age descriptions impose additional challenges for
generation systems including understanding of the
textual discourse in the multi-modal context. Anal-
ysis of discourse has been in the focus of both
text-only (Poesio et al., 2004; Poesio, 2004) and
language-and-vision tasks (Takmaz et al., 2020;
Dobnik et al., 2022). However, given a huge in-
terest in generation of longer image descriptions,
e.g. image paragraphs (Kong et al., 2014; Krause
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et al., 2017; Ilinykh and Dobnik, 2020), recipes
(Nishimura et al., 2019) and stories (Huang et al.,
2016), we believe it is important to gain a deeper
insight into how humans and models structure and
realise discourse in such descriptions. In this pa-
per, we understand discourse as a match between
linearisation of the semantic knowledge (e.g., a fit
of non-linear concepts into linguistic linear order)
and underlying planning (Reiter and Dale, 1997).
We build on previous intuitions about evaluation
in NLG and look under the hood of how differ-
ent decoding algorithms build discourse in image
paragraphs. We compare a number of decoding
strategies for correspondence with how humans
distribute and describe objects in longer texts. The
main purpose of this study is to gain insights into
whether decoding strategies generate texts similar
to humans and whether these texts exhibit the corre-
sponding discourse structure. There is a limitation
on what and how things can be communicated and
decoding algorithms have a direct control over it.
The choice of decoding algorithm also has an effect
on how information is expressed in the communica-
tive channel (Shannon, 1948) and how successful
its reconstruction by the perceiver will be (Lazari-
dou et al., 2017). Our results shed more light on the
differences between decoding algorithms in terms
of (i) the discourse structure, (ii) faithfulness to the
reference texts, (ii) groundedness into the image
and (iv) attentional structure.

2 On the importance of decoding

It is impossible to neglect the impact of the choice
of the decoding on the structure of the generated
texts1. Discourse in multi-modal descriptions can
be affected by many factors, including scene struc-
ture (Linde and Goguen, 1980), the desire to have
more accurate or more diverse texts (Massarelli
et al., 2020; Zhang et al., 2021) and aspects of the
task (Kiddon et al., 2016; Narayan et al., 2022).
Other constraints include adherence to a specific
topic as in poetry generation by controlling for
content and form (Hopkins and Kiela, 2017) and
incorporating pragmatic reasoning when describing
images with text (Cohn-Gordon et al., 2018; Vedan-
tam et al., 2017) or optimising model’s predictions
for a specific metric (Rennie et al., 2017; Gu et al.,
2017; Zarrieß and Schlangen, 2018) in the spirit
of reinforcement learning. Notably, Balakrishnan

1For a broader overview of the factors that influence infer-
ence in generation we refer the reader to Zarrieß et al. (2021).

et al. (2019) have shown that using tree-structured
semantic representations, similar to those used in
traditional rule-based NLG systems, helps to evalu-
ate generated texts during decoding for the specific
discourse. In this work, we describe analysis on
what and when different algorithms generate, com-
paring their outputs with the human gold standard.

3 Task and model

As our modelling task, we choose the task of image
paragraph generation and the Tell-me-more corpus
described in (Ilinykh et al., 2019). In this task, a hu-
man is given an image and five (5) text fields. The
describer writes sentences about the image so that
they help a potential listener to identify it within a
set. The describer is also asked to write sentences
in a sequence, keeping in mind that after each sen-
tence the listener needs more information to iden-
tify the image, e.g. thus, tell-me-more. Ilinykh
et al. (2019) show that collected multi-sentence de-
scriptions have a fixed intentional structure, in the
sense of Grosz et al. (1995), but attention structure
demonstrates a different behaviour as supported by
the analysis in (Dobnik et al., 2022).

As our model, we use the architecture of the
object relation transformer proposed by Herdade
et al. (2019)2. This is a two-stream multi-modal
transformer, which consists of three self-attention
blocks, operating on the image, text and across
modalities. Each block has the standard parts of
the transformer (Vaswani et al., 2017): multi-head
self-attention followed by a feed-forward network,
residual connection and layer normalisation.

On the vision side, the model takes the set of
pre-extracted visual features of detected objects,
which we receive by using the object detector re-
leased by Anderson et al. (2018)3 and pre-trained
on Visual Genome (Krishna et al., 2016). Specif-
ically, every object oj in the the set of detected
image objects O = (o1, . . . , o|O|) has a visual fea-
ture vn ∈ R1×D, where |O| = 36 and D = 2048.
In addition, we store other outputs of the object
detector, including object labels, attributes and con-
fidence scores. They will be used in later stages
to link paragraphs with objects in the image. The
benefit of the object relation transformer is its abil-
ity to encode complex geometric relations between
bounding boxes. Thus, we also extract the set of

2https://github.com/yahoo/object_relation_
transformer

3https://github.com/peteanderson80/
bottom-up-attention
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geometric features G = {x, y, w, h}, which are
fused with visual features inside the model4.

On the textual side, the model generates a para-
graph word by word in auto-regressive fashion.
Specifically, it takes the current token wj and con-
structs its representation based on previously gen-
erated tokens w1, . . . ,wj−1. All the future tokens
in the paragraph wj+1, . . . ,w|W| are replaced with
the MASK token, framing the task as the classic
next word prediction task. The generation starts
with the START token and ends when either the
maximum length of the paragraph L is reached or
when the END token is generated. As the last step,
representation from two self-attention blocks are
processed by the cross-attention which outputs the
probability of all tokens from the vocabulary V .

In terms of model’s parameters, we keep all of
them untouched, thus they correspond to the orig-
inal set of parameters described in Herdade et al.
(2019). We train the model on the full Tell-me-
more dataset, consisting of 3590 image-paragraph
pairs in the train set and 410 pairs in both vali-
dation and test sets. The analysis in this paper is
performed on the test set only.

4 Decoding algorithms

Given the model vocabulary V and L as the maxi-
mum length of the generated sequence, the space
of possible sequences has |V|L members, thus, be-
coming intractable. Rather than traversing through
such space, a number of different decoding meth-
ods are used to find the most likely sequence. The
most straightforward heuristics is to take the most
probable word w at timestamp j until either the
maximum length of the generated sequence w is
reached (L = 100) or the END token is generated.
We employ standard greedy search:

wj = argmax
w′

j

log p(w′j | w<j ,O; θ), (1)

where w<j = (w1, . . . ,wj−1) is the sequence of
previously predicted words, O = (o1, . . . , o|O|) is
the set of detected image objects and θ is the set
of model parameters. Despite its simplicity and
low complexity, greedy search is known for its sub-
optimality on the global sentence level (Gu et al.,
2017; Chen et al., 2018), often leading to gener-
ation problems such as the garden path sentence
issue (Gibson, 1991).

4We refer the reader to (Herdade et al., 2019) for more
details.

A more popular and standardized approach is
to use beam search, a version of the breadth-first
search, that tracks multiple candidate sequences
W = (w1, . . . ,wk) and chooses the one with the
highest cumulative probability score, frequently
computed as summation of word scores in each
sequence. Typically, the most probable sequence
is picked as the final one, but other sequences can
also be considered. The search starts with the word
sequence w1 = {START} and continues until the
length of every predicted sequence reaches the max-
imum length L or all of them are completed with
the END token:

wj = argmax log
w′

j ⊆Bj ,
|w′

j |= k

p(w′j | wj−1,O; θ). (2)

In beam search, the parameter k denotes the num-
ber of desired sequence candidates and B stands
for the set of sequences currently under generation.
Beam search is computationally more expensive,
but it is also more efficient in finding the optimal
sequence due to more sophisticated exploration of
the word space. However, bigger k often leads to
“safe” and generic texts and candidate generations
themselves can resemble each other a lot, lacking
diversity (Li et al., 2016) or becoming repetitive
(Holtzman et al., 2020).

The problems of beam search have been ad-
dressed by many different approaches, mostly fo-
cused on increasing intra-set diversity of gener-
ated sequences (Kulikov et al., 2019; Meister et al.,
2021). In one of such approaches, Vijayakumar
et al. (2018) propose to extend beam search by in-
corporating a dissimilarity term in the objective
function. Specifically, diverse beam search splits
beam sets into G groups W 1, . . . ,WG and at each
word generation timestamp j for every sequence in
the current group wg

j ∈ W g, it encourages diver-
sity with sequences from previous groups W h, h≤g

using a metric of dissimilarity ∆:

W g
j = argmax

∑

k∈ [B′]

log p(wg
k,[j])

+λ

g−1∑

h=1

∆(wg
k,[j], W

h
[j]), (3)

where B′ is the number of beams in each group,
λ is the parameter that controls the diversity, ∆ is
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the Hamming distance, which negatively penalises
sequences sharing identical n-grams. Diverse beam
search has been specifically designed to boost di-
versity in the multi-modal description generation
task, where focus is to mimic human texts with
shifts between many objects, relations and specific
details. However, as reported by the authors, the
best results in terms of diversity are achieved by
using a simple n-gram-based heuristics, which does
not take the multi-modal nature of the task into ac-
count. In addition, diversity is encouraged between
beam sets on the group level rather than between
sentences within a single group, limiting the scope
of diversity on the sentence level. Finally, the look-
up over groups is constrained to the current word
position at each generation step, shrinking the con-
text window for the currently generated word and
possibly capping the number of satisfactory gener-
ations at this timestamp.

A very different method to encourage more di-
verse output is to sample from the word distribution.
For obvious reasons pure sampling leads to incoher-
ent and grammatically incorrect texts. Therefore,
top-k sampling has been proposed by Fan et al.
(2018): the method cuts the probability distribution
and keeps the distribution p′ consisting of top k
tokens with the highest probability:

wj ∼ log p′(wj | w<j ,O; θ). (4)

A known issues with the top-k sampling algo-
rithm is that it is hard to find the optimal value
for the parameter k since setting it too low could
remove highly probable words or, on the contrary,
keep the less probable words if it is too high.

Instead of relying on pre-defined number of to-
kens, nucleus sampling (Holtzman et al., 2020)
takes words from the subset of the vocabulary in
which the defined probability mass is concentrated:

p′ =
∑

wj ∈V ′
log p(wj | w<j ,O; θ) ≥ p, (5)

where V ′ is the top-p part of the vocabulary V , in
which only the words that accumulate most of the
probability mass are kept. Parameter p is typically
used to define the maximum value of accumulated
probability. The original distribution is then re-
scaled and the next word is sampled from the new
distribution P :

P =

{
log p(wj | w<j ,O; θ)/p′ if wj ∈ V ′
0 otherwise.

(6)

The main advantage of nucleus sampling is its
ability to track the shape of the probability distribu-
tion, allowing for dynamic control of the number
of candidates at each timestamp. A different, but
related method to introduce controlled randomness
is to use temperature scaling. The diversity is
achieved by controlling the peaks in the distribu-
tion and dividing it by the parameter τ :

p(wj | w<j ,O; θ) =
exp(ϕj/τ)∑

wj∈V
exp(ϕj/τ)

, (7)

where ϕj is the logit for a word wj in the vocab-
ulary. Lower temperatures are known to enforce
the high probability events and choosing a proper
value for this parameter can lead to better texts in
terms of quality and diversity (Caccia et al., 2020).

We note that in this work we mainly focus on the
most frequently used decoding strategies, exclud-
ing analysis of the result of more direct manipula-
tions with texts such as length normalisation and
coverage penalty (Wu et al., 2016), n-gram block-
ing or introduction of the noise model (Hill et al.,
2016; Lample et al., 2018).

For our experiments with decoding algorithms,
we set the following set of parameters. We set the
beam size k = 2. Vijayakumar et al. (2018) argue
that setting setting G = k leads to the best results
in terms of generation with diverse beam algorithm,
therefore, we set G = k = 2 and λ equals 0.5. For
top-k sampling, we try multiple values for k, aiming
to investigate the impact of this parameter on gener-
ation. Specifically, we generate texts with k being
the value from the following set: {25, 50, 75, 100}.
For nucleus sampling, we set p to one of the fol-
lowing values: {25, 50, 95}. We also run pure sam-
pling with k = 100 and temperature scaling with
τ = 0.5. Our parameters for different inference
algorithms are chosen based on experiences from
the corresponding research that introduces these
algorithms. They also reflect our goal of evaluating
how results generated by different searches can be
affected by a single hyperparameter.

5 Linking

In the context of the image paragraph generation
task, discourse structure in texts is affected by both
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Metric g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

BLEU-1 37.16 30.79 33.82 34.57 33.84 33.91 36.48 34.11 34.36 33.61 37.08
BLEU-2 23.90 19.86 18.54 19.20 18.54 18.29 22.20 18.70 19.07 18.46 23.85
BLEU-3 15.53 13.13 10.07 10.77 10.09 9.99 13.67 10.30 10.67 10.25 15.51
BLEU-4 9.54 8.02 4.81 5.40 4.95 5.00 7.89 5.29 5.62 5.15 9.52
METEOR 14.22 12.97 12.53 12.79 12.53 12.46 14.00 12.67 12.80 12.58 14.20
ROUGE-L 30.64 30.71 23.86 23.77 23.56 23.29 28.48 23.15 23.75 23.79 30.55
CIDER 16.62 12.30 10.48 11.30 9.78 9.54 16.51 10.54 10.76 10.56 16.80
WMD 39.80 39.10 38.40 38.41 38.17 38.06 40.26 38.28 38.34 38.33 39.84

Table 1: Scores of automatic metrics for different inference algorithms. The best scores per metric are in bold,
while second best scores are in italics. The notation for searches should be read as follows throughout the paper:
“g” - greedy, “b2” - beam search with the width k = 2, “sk” - sampling, where k is the top tokens from which the
prediction is sampled, “st50” - sampling from the full probability distribution with temperature scaling τ = 0.5,
“np” - nucleus sampling with p denoting the part of the vocabulary with the most probability mass, “db2” - diverse
beam search with the width k = 2.

text and image. To evaluate such structure, we re-
quire a mapping between object descriptions and
objects in the image. While images in the Tell-me-
more corpus were originally annotated with objects
as part of the ADE20k corpus of house environ-
ments (Zhou et al., 2017), the descriptions were
collected separately, hence, there are no annota-
tions between texts and images. We decided to
map noun phrases and image objects automatically,
using linking, which is based on similarity between
object labels and noun phrases in texts5.

Primarily, linking is performed by taking both
attribute and object label from the object detector
and merging them into a single string, e.g. “white
couch”. Next, spaCy (Honnibal et al., 2020) is used
to extract noun phrases from image paragraphs, and
we seek to connect each noun phrase with one of
the objects in the image on ∈ O by embedding
them both with a Sentence Transformer (Reimers
and Gurevych, 2019) and comparing them based
on the cosine similarity with the threshold of 0.56.
If there are multiple similarity values that exceed
these threshold for a single noun phrase, we map
this phrase with the object that has the highest sim-
ilarity value. Otherwise, if the noun phrase is in
plural form, we map multiple objects that also share
the same lemma. We perform linking for both ref-
erence texts and texts generated by each of the
decoding algorithms.

6 Automatic evaluation

Table 1 shows scores for the most common met-
rics in multi-modal automatic evaluation. As we

5We use the linking from Dobnik et al. (2022).
6Different methods of linking noun phrases and object

labels have been evaluated in Ilinykh and Dobnik (2022).

can see, greedy search and diverse beam perform
the best. The worst performance is demonstrated
by a variety of sampling algorithms and, some-
what surprisingly, nucleus sampling. Beam per-
forms relatively well, achieving the highest score
in ROUGE-L. When looking at the example gener-
ations in Table 2, we see that beam search generates
very short sentences with fewer mentions of differ-
ent objects, which definitely has an effect on the
performance with n-gram-based metrics. Top-k
sampling generally performs worse when the sam-
pling size is increasing: CIDER score drops to
9.54 with sampling from the full distribution. Inter-
estingly, setting k to 50 improves the performance,
indicating that this value might be the optimal one
for this parameter. Nucleus sampling has a very sta-
ble performance with n50 showing the best scores.
We note that temperature scaling has a huge pos-
itive impact on the scores of sampling algorithm,
pushing it towards the performance of greedy and
diverse beam search. This might indicate that sam-
pling and its randomness can be successfully con-
trolled with the proper value for temperature.

The reason for a high performance of greedy
search could be its ability to generate the “safest”
words combined with the simplicity of the images
and the lack of surprisal in them. For example,
images in the dataset correspond to standard room
types and thus contain standard objects. This is a
blessing if we care about model’s ability to gener-
alise over the house environments, but also a curse
since occasionally a highly salient and surprising
object might appear in the images and searches will
not be able to describe it. We believe that our re-
sults show the inadequacy of automatic metrics in
measuring the sensitivity of inference algorithms
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ref there is a very large well made bed on the left. this looks like a hotel room. two lamps are on a
table on the right side. a window that you can barely see out of can be seen if you look straight
ahead. there is a picture on the wall to the left and another on the right side wall.

g this is a living room with a white couch and love seat. there is a white couch with a white and
white pillow. there is a coffee table in front of the couch. there is a glass coffee table in the
middle of the room. there is a picture hanging on the wall.

b2 this is a living room. there is a white couch. there is a white couch. there is a white coffee table.
there is a couch.

s25 this is a tv in UNK. the couches match the couches and bedspread is white. there are two green
UNK and there is a sofa table with pillows. there are two different decorative beige feet couch.

s50 a large room with a sofa for a coffee table. a four drawer rectangular coffee table sits full of glass
roses loveseat. a fireplace is on the left hand wall. a large telephone is near the couch. there are
two brown chairs sitting at the far end of the couch.

s75 its a formal living room. a glass sofa and ottoman. a glass table is behind the couch. the tv is
behind the sofa. a patterned sofa is on the right side of the one sofa.

s100 living room with a black couch with white print pillows underneath. coffee table piece of 2
candles hang on the back wall. green coffe coffee table lobby is sitting in the middle of the couch
by chair and books. decorative and an condition painted on the floor in color. light brown seat at
the back end of the room.

st50 this is a living room. the couches are white. there is a white couch. there is a coffee table. there is a white couch.

n25 this room is very neat and space. the couches have orange felt UNK around the mantel. on the right side of the picture contains red flowers.
theres a picture on the wall facing the sofa. theres a sofa on the wall.

n50 its a living room with a grey couch and upholstered sofa. theres a tv on the right side next to the couch. two dining chairs UNK facing the couch.
theres a coffee table in front of the couch and chair. theres a glass coffee table cloth and robe hanging in the middle.

n95 there is a stone seat in the photo. the sofa is white with UNK upholstery. a beige chair and orange chair chair a round coffee table but its not sailboat.
the couches fabric cover match the white accent pillows with a picture on the wall alongside them as the black chair and tan carpet.

db2 this is a living room with a white couch and love seat. there is a white couch with a white and white pillow. there is a coffee table in front of the couch.
there is a glass coffee table in the middle of the room. there is a picture hanging on the wall.

Table 2: Example of the image and paragraphs generated with different inference algorithms.

R

g b2 s50 st50 n50 db2
P S K P S K P S K P S K P S K P S K

BLEU_1 0.23 0.18 0.13 0.3 0.28 0.22 -0.01 -0.06 -0.03 -0.06 -0.03 -0.02 0.25 0.21 0.15 0.27 0.19 0.15
BLEU_2 0.21 0.17 0.12 0.34 0.28 0.2 -0.04 -0.16 -0.1 -0.13 -0.15 -0.11 0.14 0.1 0.06 0.3 0.19 0.14
BLEU_3 0.14 0.16 0.1 0.29 0.22 0.17 -0.05 -0.12 -0.07 -0.15 -0.2 -0.14 0.11 0.1 0.07 0.27 0.21 0.16
BLEU_4 0.01 0.1 0.07 0.26 0.24 0.18 0.04 -0.1 -0.04 -0.12 -0.16 -0.12 0.19 0.11 0.08 0.2 0.22 0.16
METEOR -0.21 -0.18 -0.13 0.14 0.12 0.09 -0.21 -0.22 -0.16 -0.22 -0.32 -0.22 -0.05 -0.09 -0.06 -0.26 -0.24 -0.19
ROUGE_L 0.18 0.15 0.11 0.22 0.23 0.16 0.06 0.02 0.02 -0.19 -0.22 -0.15 0.19 0.16 0.11 0.28 0.21 0.15
CIDER 0.02 0.15 0.1 0.33 0.17 0.12 -0.06 -0.17 -0.1 -0.15 -0.18 -0.11 0.23 0.23 0.17 0.16 0.19 0.14
WMD -0.0 0.0 -0.0 0.2 0.16 0.1 -0.14 -0.09 -0.06 -0.12 -0.14 -0.1 -0.09 -0.09 -0.06 -0.14 -0.12 -0.09

C

BLEU_1 0.14 0.13 0.09 0.11 0.12 0.09 0.02 0.01 0.0 0.06 0.11 0.07 0.22 0.19 0.13 0.19 0.18 0.12
BLEU_2 0.12 0.08 0.06 0.15 0.15 0.12 -0.05 -0.12 -0.09 0.09 0.13 0.09 0.13 0.1 0.06 0.21 0.18 0.12
BLEU_3 0.02 0.05 0.03 0.09 0.11 0.08 -0.09 -0.12 -0.09 0.11 0.13 0.08 0.12 0.1 0.06 0.18 0.18 0.13
BLEU_4 -0.12 -0.02 -0.03 0.02 0.09 0.06 -0.0 -0.13 -0.1 0.1 0.14 0.09 0.22 0.15 0.11 0.17 0.22 0.16
METEOR -0.15 -0.13 -0.08 0.09 0.08 0.06 -0.19 -0.17 -0.13 -0.09 -0.1 -0.07 -0.16 -0.24 -0.16 -0.27 -0.27 -0.2
ROUGE_L 0.13 0.19 0.14 0.06 0.08 0.05 -0.07 -0.09 -0.07 -0.02 0.02 0.02 0.22 0.19 0.14 0.16 0.17 0.11
CIDER 0.03 0.12 0.09 0.14 0.1 0.05 -0.0 -0.01 -0.01 -0.07 0.09 0.08 0.22 0.26 0.17 0.12 0.21 0.16
WMD -0.02 -0.03 -0.02 0.16 0.13 0.1 -0.22 -0.17 -0.12 -0.09 -0.07 -0.05 -0.22 -0.28 -0.21 -0.1 -0.09 -0.08

F

BLEU_1 0.41 0.37 0.27 0.42 0.4 0.31 -0.22 -0.24 -0.19 0.01 0.0 0.01 0.13 0.08 0.06 0.32 0.32 0.24
BLEU_2 0.39 0.36 0.28 0.38 0.29 0.23 -0.18 -0.27 -0.21 -0.01 -0.04 -0.03 0.07 0.05 0.03 0.32 0.31 0.22
BLEU_3 0.29 0.32 0.23 0.35 0.25 0.19 -0.22 -0.25 -0.18 0.01 -0.0 0.0 0.12 0.07 0.05 0.3 0.3 0.22
BLEU_4 0.15 0.24 0.18 0.23 0.2 0.14 -0.01 -0.17 -0.12 0.03 0.05 0.03 0.19 0.06 0.04 0.22 0.24 0.17
METEOR -0.07 -0.07 -0.08 0.12 0.09 0.06 -0.11 -0.14 -0.1 -0.0 -0.06 -0.03 -0.12 -0.2 -0.16 -0.01 -0.01 -0.01
ROUGE_L 0.31 0.29 0.22 0.24 0.24 0.18 -0.06 -0.1 -0.08 -0.08 -0.07 -0.05 0.16 0.12 0.09 0.28 0.29 0.19
CIDER 0.16 0.27 0.2 0.36 0.27 0.21 -0.35 -0.37 -0.28 0.01 0.02 0.02 0.02 0.1 0.07 0.13 0.29 0.23
WMD 0.04 0.03 0.02 0.19 0.22 0.14 -0.14 -0.16 -0.12 -0.03 -0.02 -0.03 -0.02 -0.03 -0.03 0.1 0.05 0.03

Table 3: Correlation scores between automatic metrics and human judgements across three criteria. R, C and F on
the left side stand for relevance, correctness and composition (flow), corresponding to the type of questions that
the crowdworkers were provided with. P, S and K stand for Pearson’s, Spearman’s and Kendall’s correlations. We
report correlation scores per search and per correlation metric. The scores coloured in red have p < 0.05.

to the type of objects and their salience.

7 Human evaluation

To support our hypothesis that automatic metrics
are not enough to measure fine-grained differences
between various decoding algorithms, we conduct
a human evaluation on Amazon Mechanical Turk.
We randomly sample 10% of images from the test
set, which equals 41 items. For each of these im-
ages, we take generated texts from the top-6 de-
codings based on the CIDER score. We get 287
different image-text pairs to evaluate. During the
evaluation, we provide workers with an image and
its description and ask them to answer 3 (three) dif-

ferent questions, aiming to evaluate (i) relevance:
does the text describe relevant and essential objects,
(ii) correctness: does the text describe objects cor-
rectly (e.g., using correct words), (iii) composition:
do object descriptions naturally follow each other.
The example item for human evaluation is shown
in Appendix A. Each judgement is a score on a
scale between 1 and 5, where 1 is the lowest rank.
We collect three different judgements per item and
average them. We pay 0.17 US dollars for a single
assignment and restrict the location of the workers
to the US, the UK, Canada, Ireland or Australia.
We also ran our experiments with Master workers
only (25 different human participants). We follow
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ref g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 2.9 0.9 0.3 1.0 1.1 1.1 1.0 0.9 1.1 1.1 1.1 0.9
s2 1.6 1.7 1.5 1.7 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8
s3 1.4 1.6 1.4 1.7 1.8 1.8 1.8 1.6 1.8 1.8 1.8 1.6
s4 1.3 1.6 1.4 1.8 1.8 1.8 1.9 1.6 1.8 1.9 1.8 1.6
s5 1.2 1.7 1.4 1.8 1.8 1.8 1.7 1.6 1.7 1.8 1.7 1.7

Table 4: Average number of noun phrases generated by
different inference algorithms. The numbers are given
per sentence.

Kilickaya et al. (2017) and compute three different
correlation scores: Pearson’s correlation, Spear-
man’s rank correlation and Kendall’s correlation.

The correlation scores are presented in Table 3.
In general, sampling-based methods do not signif-
icantly correlate with automatic metrics or corre-
late but negatively. More controlled decodings,
such as greedy or beam search, correlate with au-
tomatic metrics more, especially for the compo-
sition question (F). This indicates that automatic
metrics correlate more with decodings that intro-
duce less randomness. Future work will need
to examine whether randomness and diversity in
such searches as top-k sampling is a suitable type
of diversity since it is unclear from correlation
scores alone. In terms of the relevance of objects,
sampling with temperature generally has negative
scores (similar to other sampling-based methods).
Still, a significant negative correlation is found only
with Spearman’s rank correlation for METEOR.
Beam, however, might produce more relevant ob-
jects as demonstrated by high correlation in terms
of BLEU_2 and CIDER. We do not observe any
correlation for the correctness criterion. On the con-
trary, text composition (flow) shows that more con-
trolled decodings correlate considerably more with
human judgements, especially when looking at n-
gram metrics. This might demonstrate that more
specific automatic metrics better reflect whether
the object descriptions naturally follow each other.
Overall, we show that while most of the automatic
metrics are not sufficient in providing us with in-
formation about the salience and correctness of ob-
ject descriptions for many different decoding algo-
rithms, their scores, somewhat surprisingly, might
still tell us about the sentence-level discourse and
flow of object descriptions.

8 Non-grounded evaluation

Next, we will look at the surface level of noun
phrases and examine faithfulness of generated texts
to the reference ones. Noun phrases in image de-

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 200.0 175.0 227.9 215.0 233.3 231.0 208.0 227.9 209.2 228.2 200.0
s2 205.2 215.8 207.6 215.8 218.1 220.1 207.5 228.2 231.1 206.1 206.5
s3 210.8 205.2 213.8 215.0 233.3 203.8 210.3 202.6 219.3 207.1 207.2
s4 197.4 196.0 216.4 206.5 200.0 208.9 208.9 205.9 201.3 216.4 197.5
s5 198.0 212.5 202.6 205.1 211.3 214.4 197.3 209.6 215.8 208.7 200.0

Table 5: Average proportion of noun phrases (in percent)
when more are generated than present in the references.

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 20.3 8.5 18.8 18.9 19.6 18.6 18.9 19.6 18.8 20.7 20.3
s2 45.3 44.2 42.6 42.9 40.4 43.1 45.9 39.8 40.0 39.7 45.5
s3 45.9 45.6 42.0 45.9 44.4 44.5 45.5 42.7 41.2 44.4 47.1
s4 46.5 46.8 43.9 45.8 43.3 43.4 47.0 45.0 43.3 42.9 46.6
s5 49.3 43.7 41.4 42.5 37.6 40.7 46.2 38.3 40.0 39.9 49.0

Table 6: Average proportion of noun phrases (in percent)
when fewer are generated than present in the references.

scriptions typically depict image objects, thus we
believe that direct comparison of noun phrases in
different texts can help us to understand how much
each decoding algorithm learns on the surface of
descriptions. Table 4 shows the average number
of noun phrases in each sentence across different
searches and references. We see that there is a
gradual decrease in the number of noun phrases
in references throughout the paragraph. Such de-
crease is not observed in texts generated by all algo-
rithms. On the contrary, the first sentence typically
has the fewest number of noun phrases generated
with other sentences containing mostly the same
number. This could be a sign that on the surface
level decoding algorithms do not capture discourse
structure, reflected in gradual decrease of the num-
ber of noun phrases. Instead, search algorithms
tend to generate the same number of noun phrases
across sentences, treating each sentence equally.

We also observe that the algorithms generate
more noun phrases per sentence than required
rather then generate fewer of them. Specifically,
across all image-paragraph pairs a fewer number
of noun phrases is generated for 757 sentences,
a bigger number for 955 sentences and the exact
number as in the references was produced for 493
sentences. To closer identify the impact of over-
and under-generation of noun phrases, we compute
proportion of noun phrases for both cases. As Ta-
ble 5 demonstrates, all searches tend to generate
nearly two times more noun phrases than required
in each sentence. The picture changes when the
searches under-generate. According to Table 6,
while most of the sentences lack at least half of
the required noun phrases (in terms of quantity),
the first sentence is affected the most by under-
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g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 0.18 0.10 0.10 0.13 0.11 0.08 0.14 0.12 0.10 0.13 0.18
s2 0.17 0.17 0.13 0.13 0.13 0.14 0.17 0.12 0.15 0.13 0.17
s3 0.13 0.12 0.10 0.10 0.09 0.11 0.11 0.10 0.11 0.10 0.13
s4 0.10 0.09 0.10 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.10
s5 0.10 0.10 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.08 0.10

Table 7: Dice similarity coefficient between the set
of objects described in reference texts and texts gen-
erated by different decoding algorithms. The values are
provided per sentence and averaged across all image-
paragraph pairs.

generation. Coupled with the results in Table 4, we
conclude that decoding algorithms do not learn the
structure of discourse on the simplest surface level
of descriptions reflected in the differences in the
number of noun phrases. This result indicates that
searches might generate a discourse that is different
from the one observed in references. In the follow-
ing analysis, we will move from the surface level
to the grounding level, in which we will examine if
the noun phrases that are generated can be linked
with image objects. We will also compare whether
the objects described by different searches overlap
with the ones found in reference texts.

9 Grounded evaluation

Table 7 shows the degree of overlap between
two object sets: the first set includes objects de-
scribed in references, while the second set contains
objects mapped with noun phrases in generated
texts from different decodings algorithms. We use
Sørensen–Dice coefficient 2|A∩B|

|A|+|B| to measure the
overlap. The closer the result to 0, the less overlap
is present. The results demonstrate that searches
describe a very different set of objects rather than
the one mentioned in the references. The highest
overlap is observed with greedy search and diverse
beam. The scores indicate that either a different
and correct set of objects is described or the noun
phrases cannot be linked with objects because they
are incorrect (could also be because of high ran-
domness, leading to the lack of grammaticality).

We examine whether noun phrases in generated
texts can be linked with any of the objects in the
image. Table 8 shows the proportion of successful
linking once we link noun phrases with image ob-
jects using cosine similarity. We set the similarity
threshold to 0.5: if the similarity between the ob-
ject label and noun phrase is higher than this value,
we decide that this noun phrase is faithful to the
image and can be grounded.

g b2 s25 s50 s75 s100 st50 n25 n50 n95 db2

s1 69.5 72.7 46.5 46.3 43.2 46.1 66.5 51.1 45.2 50.5 69.5
s2 65.6 65.1 47.2 49.0 43.8 46.6 58.8 44.7 50.3 47.7 65.5
s3 61.6 59.5 43.6 46.9 40.5 45.1 53.1 40.1 40.6 44.7 60.7
s4 55.4 57.6 43.7 42.7 44.7 41.0 52.5 45.0 43.7 38.3 55.7
s5 60.5 57.4 47.6 43.2 43.4 43.7 53.3 39.2 38.9 44.4 59.3

Table 8: Average proportion of successful linking (in
percent) between noun phrases in generated texts and
image objects.

The results demonstrate that half and more of
the generated noun phrases can be linked with ob-
jects in the image. In general, sampling algorithms
generate fewer number of grounded noun phrases,
possibly due to the increased randomness. Greedy
search, beam and diverse beam generate the highest
number of noun phrases which are truthful to the
image. We believe that while reference-correctness
of generated texts can get worse, inference algo-
rithms are still able to generate alternative descrip-
tions of images which can be grounded. However,
the structure of discourse reflected on the surface
level and the level of grounding might not necessar-
ily correspond to the one observed in references. In
the next experiment, we look at the problem under
the angle of attentional structure and examine spa-
tial arrangement of linked objects and how these
arrangements differ between decoding algorithms.

10 Attentional structure of discourse

Figure 1 demonstrates a number of the attention
heatmaps across areas in the image for different
sentences. At first glance, different inference algo-
rithms look at similar locations in the image and
also focus on parts which are attended by humans.
However, there are relatively more areas described
in the first sentence of the references, while a much
smaller and fewer areas are described in gener-
ated texts. This could be directly related to the
fewer number of objects and under-generation dis-
cussed previously. The second and third sentences
describe specific areas of the image in all cases,
mostly central ones. Interestingly, greedy and di-
verse beam have highly similar attention across the
image. In sentence 4, human attention disperses
over the full scene, while it is unclear whether the
same pattern happens in generated texts. This could
signal a possible topic shift, happening in later parts
of the paragraph and inability of searches to cap-
ture that. To understand the differences on the
level of sentences better, we measure the corre-
lation between flattened heatmaps pixel by pixel.
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Figure 1: Attention heatmaps over objects, described in texts according to the results of linking. Results are shown
per sentence and per search. The first row denotes attention in reference texts. We aggregate heatmaps across all
images into the single image, therefore, darker colour denotes higher focus on the specific area in the image.
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Figure 2: Correlation between heatmaps for different
searches and reference paragraphs. X-axis is sentence in
the paragraph (1-5), Y-axis is the correlation coefficient,
pixel-by-pixel correlation between attention heatmaps.

We use Pearson product-moment correlation coef-
ficient which can be applied to images across the
channels. The results are shown in Figure 2. As
we can see, in sentence 4 attentional structure on
the image differs between searches and references,
supporting the idea of topic shift. Sampling meth-
ods have the lowest correlation with the references,
while nucleus with p = 25 is affected the least in
sentence 4. Note that the correlation in the first
sentence is lower than in the second and the third
one for most of the searches. This could be related
to the importance of the first sentence and a big-

ger number of noun phrases in it, which are not
generated during the decoding stage.

11 Conclusion

In this paper we described our analysis of how
decoding strategies structure discourse in multi-
modal longer image descriptions. We performed
evaluation using intuitions from different evalua-
tion perspectives: automatic, surface-based (non-
grounded), image-based (grounded) and attention-
based. The results suggest that for the task of image
paragraph generation decoding algorithms diverge
from humans in generating specific type of dis-
course. Although they might generate reference-
incorrect but image-correct descriptions, it is un-
clear what kind of discourse is generated in the
end. In general, algorithms which are less random
construct discourse similar to the one in human
references, while sampling-based methods gener-
ate a different type of discourse, which is hard to
control for. We plan to use the insights described
in this paper and build a metric that would evaluate
the structure of longer image paragraphs, reflected
in both object and relation descriptions as this is
currently a much needed evaluation measure.
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12 Limitations

There are several directions which can support the
analysis in this paper. First, the automatic linking
is not a perfect mechanism, prone to errors. The
method that we use works better for shorter phrases
which share the same lemmas and thus are less am-
biguous. Second, using more models (Li et al.,
2019) or more datasets (Krause et al., 2017) would
potentially give us a broader picture of the type of
discourses formed by humans and quality of rep-
resentations used during decoding phase. We also
consider our analysis preliminary with the oppor-
tunity of developing a separate metric to evaluate
discourse in longer image descriptions.
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Figure 3: The example item for the workers on AMT for human evaluation.
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Abstract

What do language models know about our
world? This question is hard to answer but
important to get right. To this end, we in-
troduce 20Q, a novel benchmark using the
Twenty Questions game to evaluate world
knowledge and common sense of language
models. Thanks to our overlap-free benchmark,
language models learn the game of Twenty
Questions without learning relevant knowledge
for the test set. We uncover two intuitive factors
influencing the world knowledge of language
models: the size of the model and the topic fre-
quency in the pre-training data. Moreover, we
show that in-context learning is inefficient for
evaluating language models’ world knowledge
— fine-tuning is necessary to show their true
capabilities. Lastly, our results show room for
improvement to enhance the world knowledge
and common sense of large language models.
A potential solution would be to up-sample un-
frequent topics in the pre-training of language
models.

1 Introduction

Transformers are omnipresent in today’s Natural
Language Processing. Using a simple training and
inference procedure, they reach human-level per-
formance on numerous benchmarks.

The scale of these models is hard to grasp. The
most recent one, PaLM (Chowdhery et al., 2022),
has 540 billion parameters. It has sixteen times
more parameters than all words on Wikipedia, or
sixty-eight times more parameters than the total
population on Earth (Roser et al., 2013).

Much previous work focused on what these mod-
els can do: question-answering, mathematics, trans-
lation, or code generation (Wei et al., 2022; Chen
et al., 2021; Cobbe et al., 2021; NLLB Team et al.,
2022; Lewkowycz et al., 2022). Another exciting
area of research is to focus on what these models
know: common sense, world knowledge, or biases

Topic Question Answer
Gorilla Is it alive? Yes
Ball Can we eat it? No
Anchor Is it heavy? Yes
Pen Can it fly? No
Car Can you drive it? Yes
Satellite It it furniture? No

Table 1: Example questions and answers in our 20Q
benchmark. We use simple questions to compare the
amount of world knowledge between different language
models. Despite its apparent simplicity, this benchmark
is challenging for even the largest language models —
GPT-3 makes a wrong prediction about 20% of the time.

(Kejriwal et al., 2022; Kadavath et al., 2022; Lucy
and Bamman, 2021; Abid et al., 2021).

Transformers (Vaswani et al., 2017) models do
not store knowledge symbolically — they distribute
the knowledge within their weights. As a result, re-
searchers have to use proxy tasks to study it. Previ-
ous research used closed-book question-answering
datasets to study how much knowledge language
models can store (Roberts et al., 2020). They con-
cluded that language models perform similarly with
or without external information, thanks to a broad
embedded knowledge.

Unfortunately, Lewis et al. (2021) later demon-
strated that these datasets suffer from a significant
overlap between the training and test set. For ex-
ample, who has scored more goals in the premier
league shares the same answer with most goals
scored by a premier league player. Training on the
first and evaluating on the second does not make
sense. As a result, T5’s (Raffel et al., 2020) per-
formance dramatically dropped when Lewis et al.
(2021) removed the overlap – invalidating the con-
clusion that these models performed equally with or
without external knowledge. Our analysis reveals
commonsense reasoning benchmarks also display
major overlap between the training and test sets.
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Commonsense QA 2.0 Talmor et al. (2022) and
Com2sense (Singh et al., 2021) have exact or close-
to-exact duplicates between the training and test
set.

In this work, we propose a new benchmark, free
of any lexical and semantic overlap between the
training and test set, to evaluate the world knowl-
edge of large language models using the game
of Twenty Questions – a popular yes/no guessing
game. See Table 1 for example questions and an-
swers.

We test two hypotheses using this benchmark.
First, we test whether large models possess more
world knowledge that smaller models. Second, we
test our intuition that world knowledge is correlated
with the frequency of the topic in language models’
pre-training data.

Despite the massive size of GPT-3, it only
reaches an F1 score of 82% on our benchmark.
It is however much better than its smaller variants,
which validates our first hypothesis that larger mod-
els possess more world knowledge than smaller
models.

Our dataset’s unique feature — a generic ques-
tion and a topic — is ideal for testing our second
hypothesis: does world knowledge correlate with
topic frequency. Again, the results show our hy-
pothesis is true as the bottom quartile of topics
is associated with higher variability, whereas the
other quartiles are not.

We conclude this introduction by summarizing
our main contributions:

• We release a new benchmark to study the
world knowledge of language models. It is
free of any overlap between the training and
test set.

• We show that large models possess more
knowledge than smaller ones. However, the
relationship is not linear.

• We show that the knowledgeability of lan-
guage models on a specific topic depends on
the relative frequency of the topic in the pre-
training data.

We release our benchmark on the HuggingFace
dataset hub (Lhoest et al., 2021) for anyone to use.1

1https://huggingface.co/datasets/clips/20Q

2 Related Work

Before the rise of deep learning, NLP stored com-
monsense and world knowledge using semantic
networks such as WordNet (Miller, 1995) and later
ConceptNet (Speer et al., 2017). These graphs have
the advantage of using symbolic representations, fa-
cilitating their analysis. Contrary to Transformers-
based models, they perform equally well on lower-
frequency topics.

Commonsense and world knowledge of Trans-
formers’ based models is harder to evaluate, re-
searchers resort to using proxy tasks to evaluate it.
Several previous works studied the commonsense
abilities of language models in multiple areas: pro-
noun resolution (Levesque et al., 2012; Sakaguchi
et al., 2021), natural language generation (Lin et al.,
2020), story understanding (Mostafazadeh et al.,
2016), reading comprehension (Zhang et al., 2018;
Huang et al., 2019; Ning et al., 2020), physical
and social intelligence (Bisk et al., 2020; Sap et al.,
2019), temporal reasoning (Zhou et al., 2019), nu-
merical knowledge (Dua et al., 2019; Ravichander
et al., 2019), and global commonsense reasoning
(Singh et al., 2021; Talmor et al., 2022, 2019).

The remainder of this section focuses on two
datasets evaluation the commonsense knowledge of
language models using yes/no questions: Common-
sense QA 2.0 (Talmor et al., 2022) and Com2Sense
(Singh et al., 2021). For both of these datasets, we
review the overlap between the training and test set
and find troubling examples.

2.1 Commonsense QA 2.0
Talmor et al. (2022) provide a dataset of 14,343
yes/no questions on several commonsense skills:
numerical reasoning, causal reasoning, world
knowledge, temporal understanding. The authors
used a human-in-the-loop approach to create a chal-
lenging benchmark for language models. We par-
tially share the same seed data (AllenAI, 2018)
as Commonsense QA 2.0, however we follow a
stricter pre-processing and split formation proce-
dure.

Overlap Analysis The authors split the train-
ing and test sets according to the topic of ques-
tions.2 Our qualitative review of the overlap be-
tween the training and test reveals problematic ex-
amples. Some examples are almost duplicates: «

2For example the question « an uncle has to have a brother
or sister » has the topic uncle even though it also is about the
brother topic.
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an electron holds a positive charge » and, « an
electron holds a positive charge and »,3 while oth-
ers are lexically different but semantically similar:
« most happy meals include a toy » and, « happy
meals almost always come with a toy ». We provide
more examples in Appendix A.

2.2 Com2sense

Com2sense (Singh et al., 2021) provides a compre-
hensive commonsense benchmark to test language
models’ understanding of everyday events and en-
tities by answering yes/no questions. The authors
classify their dataset on three axes: knowledge
domain (physical, social, or temporal), reasoning
scenario (comparative or causal) and numeracy.

Overlap Analysis The authors do not take any
special care in the division of the data. However,
a key feature of the dataset introduces a high over-
lap between the two. The authors use a simple
technique to double the size of the dataset: edit a
few words of each sentence to flip the answer: to
read books see stars at night, one should turn on
the lights. Our qualitative review of the overlap
between the training and test reveals highly prob-
lematic examples. First, we found exact duplicates
between the training and test sets. Second, some
examples in the test set are simple negations of
examples in the training set. For example « [...]
opening the blinds will help you see » and, « [...]
opening the blinds will not help you see ». Third,
some examples only change one term between the
test and training set, but are semantically similar.
We provide more examples in Apppendix A.

2.3 Overlap Analysis Summary

Our qualitative review reveals both of these bench-
marks do not properly check for training and test
set overlap.

Unfortunately, Lewis et al. (2021) demonstrated
that a high overlap between the training and test
set can inflate the true performance of language
models.

To summarize, we provide the first common-
sense reasoning benchmark focused exclusively on
world knowledge. Contrary to existing benchmarks,
we take extensive measures to ensure there is no
overlap between the training and test set. We com-
pare 20Q against alternative benchmarks in Table
2.

3the and at the end of the sentence is not a typo.

3 Data

Data is a double-edged sword. On the one hand,
more data is usually good. However, on the other
hand, more data can also complicate the study of
the generalization abilities of the model as it gets
harder to find uncorrelated validation data.

Regarding world knowledge and common sense,
two factors can contaminate the validation data:
the training and pre-training data. Large language
models can memorize their pre-training data. The
bigger the model, the larger the probability of mem-
orization (Chowdhery et al., 2022).

In this work, we take a novel approach and an-
alyze the inner knowledge of large transformers
models through the game of Twenty Questions —
a popular yes/no guessing game. We take extra
care to avoid lexical and semantic overlap between
the training and validation sets.

3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a game
that encourages deductive reasoning and creativ-
ity. In the traditional game, the answerer chooses
a topic and does not reveal it to the questioners,
whom themselves must find the hidden entity by
asking yes/no questions to the answerer. Humans
can play this game (or a variant of it like Guess
Who) from a young age.

3.2 Twenty Questions Dataset

We do not generate a dataset ourselves. Instead,
we rely on an existing dataset of Twenty Ques-
tions games developed by AllenAI, where they
had humans play the game of Twenty Questions
on Amazon Mechanical Turk. In total, they col-
lected 78,890 questions in the style of Twenty Ques-
tions. The dataset is available on Github (AllenAI,
2018).4

3.2.1 Generic Questions
As the questioner does not know the topic, he
mainly refers to the entity using "it". Therefore,
we term these "generic questions." This disentan-
gling of question and topic is helpful in two regards.
First, we can use it to ensure no semantic and lex-
ical overlap between the training and validation
sets for both topics and questions. Second, we can
measure the topic’s knowledge by type of word,
domain, or relative frequency in the pre-training
data.

4https://github.com/allenai/twentyquestions
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Dataset Train Valid. Test No Overlap Focus Example
CQA2.0 9,264 2,541 2,473 ✗ Multiple A bus has at least two steering wheels.

Com2sense 804 402 2,779 ✗ Multiple
As the weather was very cold
he put on his jacket to protect himself.

20Q (ours) 815 - 2,500 ✓
World
Knowledge

Can [an acquittal] cheer you up?

Table 2: Comparison of 20Q with other similar benchmarks. 20Q focuses solely on world-knowledge and is free of
any overlap between the training and test set.

3.2.2 Fine-grained Answers
Reducing the world to yes and no can be challeng-
ing, even impossible. Instead of answering with yes
or no, annotators5 must answer with fine-grained
answers: never, rarely, sometimes, usually, or al-
ways. Three annotators answer each question. With
a Kappa score of 57%, the disagreement between
annotators is high. However, converting the an-
swers to yes or no instead of fine-grained answers
resolves any disagreement between annotators. Us-
ing a binary answer also facilitates the analysis.

3.2.3 Quality Score
Annotators provide a quality score for each ques-
tion and flag potential problems: questions that are
not answerable by yes or no, questions that are not
playing the game, or questions that refer to another
turn. We only retain questions with the highest
quality score (85% of the dataset).

3.3 Pre-processing

As with all data generated by humans, it can be
noisy. The original dataset contains many sen-
tences with orthographic errors, or even questions
unrelated to the Twenty Questions game. Our goal
is to understand the knowledge stored inside the
language models, not their capacity to deal with
noise. Therefore, we take extensive pre-processing
steps to clean the dataset. We give further insight
into our pre-processing in Annex B. First, we re-
move all questions below the maximum score of
three (-15%). Next, we remove all questions which
do not use "it" (-12%). Finally, we remove all
duplicate questions (-3%) and answers where the
topic is not in WordNet (-3%). Our pre-processing
removes 34% of the initial dataset.

3.4 Training Set

The original authors performed a random split of
questions into training, validation, and test set. The

5We want to stress that we are referring to the annotation
of the original dataset (AllenAI, 2018).

authors deal with training/test overlap by flagging
questions where the topic is also present in the
training set. We take a much stronger stance on
train/test overlap and include the semantic overlap
between topics and questions.

Our objective is to test the existing knowledge of
language models — not to provide new knowledge.
Therefore, the priority should be the size of the test
set, not the training set. Our training set consists
of 815 questions (500 generic questions) on 707
different topics.

3.5 Similarity Metrics
Before removing the overlap between the training
and test set, we must first decide which similarity
metric to use.

We use three methods to compute the similarity
between two topics (words) or questions (sequence
of words).

Bag-of-words The simplest method to compare
two words or sequences of words is their bag-
of-words representations. We first tokenize, re-
move stop-words, and finally stem the words. This
method typically identifies close lexical duplicates
such as is it animal & is it an animal.

WordNet Our second method uses the semantic
graph WordNet (Miller, 1995). WordNet excels at
identifying synonyms. For example, it will identify
that bike is a synonym of bicycle.

Sentence Transformers Our last method uses
Sentence Transformers (Reimers and Gurevych,
2019). It uses pre-trained encoder networks to
compute vector representations of sentences (it also
works for single words). We can compare the simi-
larity of two sentences (resp. words) by looking at
the cosine similarity of their vector representations.
We use three different models.

3.6 Test Set
We follow three steps before including an example
in the test set:
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Training Test
Questions (total) 815 2,500
Generic Questions 500 1,250
Topics 707 1,436
Words 5.3 5.2
Yes 46% 42%
No 54% 58%

Table 3: Descriptive statistics. Our goal is not to learn
new knowledge but to test existing knowledge. As a re-
sult, the training set is small compared to the validation
set.

1. We ensure that the bag-of-words representa-
tion of the question and the topic is not present
in the training set.

2. We check if the topic of the question is not a
synonym of any topic in the training set.

3. Our last step removes any example with a
cosine similarity larger than 0.8 with any topic
or question in the training set.

After all these steps, we arrive at a test set of
4,201 examples. Given the high cost of evaluat-
ing very large language models, we only keep the
first 2,500 examples. Given the limited size of the
validation set, we did not implement a test set. Ad-
ditional statistics about the dataset are available in
Table 3. Our validation consists of only 4% of the
clean dataset. However, as there is no overlap be-
tween the training and validation set, we can make
safe conclusions on the generalization abilities of
language models.

4 Overlap Exploration

Lewis et al. (2021) demonstrated the devastating ef-
fect of an uncontrolled overlap between the training
and validation set. Therefore, this section uses dif-
ferent techniques to inspect the most similar items
between the training and validation set.

4.1 Topic Overlap in 20Q

We start by analyzing the overlap in topics. For
example, we want to avoid having questions about
cars in the training set and about automobiles in
the validation set.

N-grams Character n-grams are a good way to re-
trieve words sharing almost the same lexical form.6

6We use a character tri-grams

We show the five most similar pairs of topics be-
tween the training and validation set in Table 7 in
Annex C. The most similar topics according to this
method are account and accountant. This tech-
nique does not reveal problematic overlap between
the two sets.

WordNet We use WordNet to compute the dis-
tance between two topics by following the hyper-
nym or hyponym chain. Table 8 in Annex C shows
this technique’s most similar pair of topics. None
of the retrieved pairs show a significant semantical
or lexical overlap.

Sentence Transformers We finish our qualita-
tive review of the topic overlap using Sentence
Transformers. Table 9 in Annex C shows the five
most similar pairs of topics. The most similar
pairs are costume with halloween, chlorophyll and
chrysanthemum, bracelet and pendant. All of these
words are related, but none are synonyms of one
another.

4.2 Question Overlap in 20Q

An overlap in terms of topics is only part of the
story. We also want to avoid evaluating models
on the same kind of answers used to train them.
Therefore, we perform the same procedure to avoid
lexical and semantic overlap between the questions
in the training and validation set. The task is trick-
ier than for topics. For example, Does it make you
cry and Does it make you laugh only differ in a
single token, but their meaning is opposite.

BM25 We use BM25 to retrieve similar questions
between the two sets. The two most similar ques-
tions are Can the human population fit on it? and
Would it fit in the palm of a human hand?. These
questions share two important tokens: fit and hu-
man, but they do not have the same meaning. See
table 4 for more examples. This clearly shows how
semantically inequivalent even the most similar
sentences in the train and validation set are.

Sentence Transformers Next, we perform the
same analysis with Sentence Transformers. The
most similar questions between the two sets are
does it have a steering wheel? and does it have
gears or screws?, indicating a sufficient amount of
dissimilarity between the questions in the training
and test set.
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Train Topic Validation Topic
Does it have a one time function? knocker Does it need to be one student at a time? lettering
Would a parent want their child to do it? soloist Is it a category response, like parent or child? cornea
Can the human population fit on it? earth Would it fit in the palm of a human hand? keyboard
Does it rock? brim Is it some sort of precious, rare stone or rock? emerald
Is it a turn? heron Is it something you turn on? dice

Table 4: Qualitative review of the most similar pair of questions computed using BM25. Questions usually share
a similar word (e.g., child or rock), however, it is used in a different context each time. Moreover, the topics are
completely unrelated, reducing the risk of overlap even more.

20Q COM2SENSE CQA20
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Figure 1: Distribution of top-1 similarity between ex-
amples in the training and test set. 20Q has the lowest
similarity between the two (by design).

4.3 Comparison with Existing Benchmarks

We finish this section by comparing the train/test
overlap of 20Q with two existing benchmarks pre-
sented in Section 2: Commonsense QA 2.0 and
Com2sense. For each question in the test set, we
look for the most similar one in the training set
using Sentence Transformers. We summarize the
results in Figure 1. The results are striking, 20Q
has significantly less overlap with the training set
than Com2sense and Commonsense QA 2.0. Our
qualitative analysis of these results reveal danger-
ously close duplicates between the training and test
of these two benchmarks. Even less expected, we
uncover exact duplicates between the training and
test of Com2sense. We provide a more detailed
analysis in Annex A.

To summarize, our benchmark is free of any
semantic and lexical overlap between the training
and validation set regarding topics and questions.
Moreover, despite the strict separation constraints,
both sets stay semantically diverse.

5 Language Model

After reviewing that data, we review the language
models. Although previous work used text-to-text
models such as T5 (Raffel et al., 2020), T0 (Sanh
et al., 2022), and BART (Lewis et al., 2020), in

this work, we stick to GPT-3 (Brown et al., 2020),
a general-purpose decoder-only Transformers lan-
guage model. By sticking to a single model, we can
ensure that the only differentiating factor between
the models is the network size, not the pre-training
data or model architecture.

5.1 GPT-3

GPT-3 (Brown et al., 2020) is an auto-regressive
language model developed by OpenAI. The model
weights are not publicly available, although the
model’s predictions are available through a paid
API.

Size GPT-3 comes in four sizes: 2.7B, 6.7B, 13B
and 175B. We use this feature to understand how
the size of a model influences the amount of world
knowledge it can store.

Pre-training Data The authors of GPT-3 did not
release the pre-training data used to train the model.
So instead, we use C4, the dataset used to train T5
(Raffel et al., 2019), as a proxy to estimate the
frequency of each topic in our benchmark.

Prompting GPT-3 was never trained to answer
yes/no questions. Instead, its objective is to predict
the next token in a piece of text. The standard way
to query a large language model is to use in-context
learning, where one provides a few examples of the
task in the prompt and asks the language model to
complete the last example.

6 Experiments

Our experiments aim at understanding which mod-
els possess the best world knowledge. We believe
large language models are ineffective at querying
their internal knowledge using in-context learning.
For this reason, we also fine-tune each model on
the training set for a single epoch. The goal is not
to teach new knowledge but to guide the model into
learning the task. As we meticulously assembled
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F1 NLL
Model Size Z-S F-S F-T Z-S F-S F-T
GPT-3 2.7B 58.77 58.02 58.04 112.9 82.64 66.46
GPT-3 6.7B 58.45 54.53 66.35 140.5 80.56 55.41
GPT-3 13B 59.65 48.88 74.48 79.87 65.52 55.63
GPT-3 175B 61.10 67.14 82.50 69.86 62.23 41.16

Table 5: Results per model size and inference method: zero-shot (Z-S), few-shot (F-S), and fine-tune (F-T).
According to F1 and NLL, the best method is the largest GPT-3 fine-tuned on our training set.

our training and validation splits, we are sure any
performance gain will not come from the knowl-
edge acquired during fine-tuning.

6.1 Zero-shot

The zero-shot approach is the simplest way to eval-
uate the knowledge of the language model. The
model must predict the next token without any prior
examples. We record the probability of the yes to-
ken and no token.

Prompt

You are playing a game of 20 questions.
Answer the following question
about with yes or no.

Topic: {{ question_topic_1 }}
Question: {{ question_example_1 }}
Answer:

6.2 Few-shot

This approach improves upon the previous one by
providing multiple examples to steer the model in
the right direction. The model learns the task on the
fly using examples from the training set. We record
the probability of the yes token and no token.

Prompt

Topic: {{ topic_example_1 }}
Question: {{ question_example_1 }}
Answer: {{ answer_example_1 }}
...
Topic: {{ topic_example_n }}
Question: {{ question_example_n }}
Answer:

Settings We provide four examples in a random
order (two positives and two negatives) from the
training set.

6.3 Fine-tuning

Understanding the task of answering yes/no ques-
tions using on the fly examples is hard. Therefore,
we also tested another approach where we fine-
tuned models on our training set.

2.7 6.7 13.0 175.0
parameters (B)

0.0

0.5

1.0

nl
l

Figure 2: Box-plot of negative-likelihood (NLL) per
model size.
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Figure 3: Scatter plot of NLL by topic frequency for the
13B (blue) and 175B (green) models.

Prompt

Topic: {{ topic_example }}
Question: {{ question_example }}
Answer:

Settings Each model is trained on a single epoch
of the training set.

7 Results

We run all experiments and report binary-F1 and
Negative Log-Likelihood (NLL) to the ground-
truth answers in Table 5. We start by reviewing
the effect of fine-tuning and then analyze our two
hypotheses.
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7.1 Fine-tuning

The benefit of fine-tuning is clear: fine-tuned mod-
els are systematically better than few-shot and
zero-shot across model size and evaluation met-
rics. Moreover, thanks to our detailed review of the
overlap, we can safely assume the out-performance
does not come from learning any new knowledge
but is due to better use of the world knowledge
already present in the language models.

7.2 Size Effect

In theory, the larger the model, the more space it
has to store world knowledge. Therefore, we expect
to see better performance for large models. Figure
2 shows a box-plot of the negative log-likelihood
of the fine-tuned results by the model size.

The results are somewhat unexpected. Although
the median negative log-likelihood is steadily de-
clining with the model size, the variability also
increases with the model size, except for the largest
one, which breaks the trend with a low median loss
and low variability. In other words, the model’s
ability to know what it does not know diminishes
with model size.

7.3 Frequency Effect

Previous research showed that the frequency of to-
kens in the pre-training data influences the ability
of large language models to do numeric reason-
ing (Razeghi et al., 2022). We hypothesize that
the same is true when it comes to world knowl-
edge. Language models should have a harder time
answering questions on topics they have rarely en-
countered during pre-training. Therefore, we col-
lected the frequency count of each topic in a large
pre-training corpus: C4 (Raffel et al., 2020). Our
experiments revealed the high correlation of topic
frequency with the perplexity of GPT-2 (XL) to
generate the word. We use this metric as it scales
to different word forms and is easier to collect. 7

Figure 3 clearly shows the frequency effect. Top-
ics associated with a lower frequency quartile have
more variability in negative log-likelihood than
higher quartiles. This effect is especially strong
on the 13B model.

7.4 Question Bias

In this section, we try to uncover whether language
models use statistical cues in the question rather

7We use the cross-entropy loss (using a sum reduction)
from a GPT-2 XL model as a measure of frequency

than their internal knowledge to answer questions.
To this end, we run the fine-tuned model (explained
in Section 6.3) without the topic in the prompt. If
language models use statistical patterns in ques-
tions, it should not matter whether the subject is
present or not. The F1 score of GPT-3 (175B) drops
from 82.50% to 59.40%, just over the performance
of the smallest GPT-3 model. We conclude that lan-
guage models use their internal knowledge rather
than statistical cues in the questions.

8 Conclusion

Previous research (Lewis et al., 2021) showed that
language models do not have enough world knowl-
edge to rival open-domain question-answering sys-
tems. We update this claim using larger models
and a novel benchmark, 20Q. We find two factors
influencing the world knowledge of language mod-
els: the model’s size and the topic’s frequency in
the pre-training data. Thanks to careful attention to
the overlap between the training and validation set,
we can safely conclude that fine-tuning provides a
better picture of the world knowledge possessed by
language models. Our benchmark shows that even
the largest language models (175 billion parame-
ters) have room for improvement regarding world
knowledge. We propose several areas of improve-
ment for coping with a rapidly changing world as
future work.
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A Detailed Overlap Analysis

In this section, we review the most similar pairs
of questions between the training and test for
Commonsense QA 2.0, Com2sense, and 20Q
(our benchmark). We use Sentence Transformers
(Reimers and Gurevych, 2019) to compute the sim-
ilarity between all pairs of questions in the training
and test set.

A.1 Commonsense QA 2.0

The authors of Commonsense QA 2.0 used a topi-
cal split to divide the training and test set. We list
the top 15 most overlapped questions between the
training and test set in Table 11. A quick analysis
of the table reveals a number of problematic pairs
such as « an electron holds a positive charge and
» is an almost duplicate to « an electron hold a
positive charge ».

A.2 Com2sense

Our overlap analysis of com2sense reveals three
exact duplicates between the training and test set
of Com2sense. A number of examples are close
duplicates and only change with one word or punc-
tuation. For example « if it is dark outside, opening
the blinds will not help you see » and « if it is dark
outside opening the blinds will help you see ». We
list the top fifteen overlap pairs in Table 12.

A.3 20Q

Our overlap analysis of 20Q does not reveal any
overlap thanks to our strict pre-processing pipeline.
We list the top fifteen overlap pairs in Table 10.

A.3.1 UMAP
Figure 4 and 5 provide a 2 dimension projection of
the semantic of questions and subject in 20Q.

B Pre-processing

The original Twenty Questions dataset is gener-
ated by humans, and is thus extremely noisy. In
this section, we expand upon Section 3.3 and go
into the details of our pre-processing steps. We
detail our pre-processing steps and the percentage
of questions removed in Table 6.
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Figure 4: UMAP projection of the Sentence Transform-
ers representation of the questions. Blue dots belong to
the training set, red dots belong to the validation set.

Figure 5: UMAP projection of the Sentence Transform-
ers representation of the topics. Blue dots belong to the
training set. Red dots belong to the validation set.

Step Size (abs) Size (%)
Initial dataset 78,890 100
Low scores -12,396 -15.7
Do not use "it" -9,665 -12.3
Duplicates -2,708 -3.4
WordNet -2,312 -2.9
Clean dataset 51,809 65.7

Table 6: Pre-processing of the original dataset. We are
aggressive in our pre-processing as we prefer a small
dataset of high quality to the reverse. First, we remove
all questions with a score of 2 (the maximum is 3). We
then remove all sentences that do not use "it." Next, we
use a stemmed bag-of-words representation to remove
close duplicates. Finally, we remove all questions where
the answer is not in WordNet.

B.1 Quality Score
We start our pre-processing by removing all sen-
tences with a score below three. These are ques-
tions which are not answerable with yes or no,
or questions which are not playing the game of
Twenty Questions. For example, questions such as
« so not an object, but tangible. is it edible » which
references the previous turn, or simple one word
questions such as « mountain? »

B.2 Use of it
Our goal is to understand the world knowledge of
language models. For some models such as T0
or T5, it may be easier to answer the question if
the topic is part of the question, instead of having
two separated parts. For example it is easier to
answer: « does a rock float » than « subject: rock,
question: does it float ». To make sure all ques-
tions are equally easy or difficult in terms of lexical
information, we only keep questions of the latter
format.

B.3 Duplicate Questions
Some questions may be close, but not exact, du-
plicates. We want to avoid such questions in the
training or test set as these add very little infor-
mation while artificially inflating the size of the
dataset. We use a stemmed bag-of-words approach
to detect these questions. For example, questions
such as « is it animal » and « is it an animal ».

B.4 WordNet Filtering
We want to avoid having questions where the sub-
ject is not orthographically correct. We remove all
questions where the subject is not present within
WordNet. In effect, this will remove words such as
trex, chldren, voiceing, or acronym words such as
potus or 49ers.

C Topic Overlap Exploration

In this section, we show the list the overlapping
topics according to three different metrics.

C.1 N-grams
We show the five most similar pairs of topics be-
tween the training and validation set in Table 7.

C.2 WordNet
We use WordNet to compute the distance between
two topics by following the hypernym or hyponym
chain. Table 8 shows this technique’s most similar
pair of topics.
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Train Validation Sim.
Account Accountant 0.84
Thinking Thing 0.79
Constitution Institution 0.78
Extraction Traction 0.78
Attraction Traction 0.78

Table 7: Most similar pair of topics between the training
and validation set using a character tri-gram method.

Train Validation Sim.
Vegetation Galaxy 0.33
Purifier Pendulum 0.33
Lambskin Squirrel 0.33
Foil Steel 0.33
Repellent Menthol 0.33

Table 8: Most similar pair of topics between the training
and validation set using the WordNet method.

C.3 Sentence Transformers
We finish our qualitative review of the topic overlap
using Sentence Transformers. Table 9 shows the
five most similar pairs of topics.

Train Validation Sim.
Costume Halloween 0.60
Chlorophyll Chrysanthemum 0.60
Housekeeper Groomsman 0.60
Bracelet Pendant 0.60
Forearm Ankle 0.60

Table 9: Most similar pair of topics between the train-
ing and validation set using the Sentence Transformers
method.
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Test Set Training Set
would it [a granite] be of rock material? can it [a rock] be molded?
is it [a window] see through? does it [a curtain] cover a window?
is it [a sweat] produced by the human body? does it [an exercise] involve sweating?
does it [a hyacinth] have red flowers? does it [a chrysanthemum] have a long stem?
is it [a ring] jewlery? does it [a treasure] go on engagement rings?
is it [a bridge] larger than a car? is it [a bumper] a bridge?
is it [a refuge] a type of campsite? is it [a campground] the mountains?
is it [an ant] bigger than a honeybee? does it [a honeybee] collect nectar?
is it [a marsupial] a kind of bear? is it [a bear] long?
does it [a hyacinth] have white flowers? does it [a chrysanthemum] have a long stem?
is it [a pendant] jeweled? does it [a treasure] go on engagement rings?
does it [a hyacinth] have yellow flowers? does it [a chrysanthemum] have a long stem?
is it [a ship] larger than a whale? does it [a whale] have fins?
is it [a hurdle] made of stone or rock? can it [a rock] be molded?
is it [a fly] a bug? does it [an insect] have antennae?

Table 10: Top fifteen most similar pairs of questions between the training and test set of 20Q.

Test Set Training Set
an electron holds a positive charge and an electron holds a positive charge.
happy meals almost always come with a toy. most happy meals include a toy.
april is larger than february april is smaller than march
sunlight on the skin causes eye cancer sunlight causes almost all skin cancer
thunder sounds before lightning strikes noise of thunder is heard before the lightning.
the beginning of a story is part of the end a story has a beginning and an end.

is there a feminine french word for a city hall?
in french is it true that there are feminine and mascu-
line words for a city hall?

europe is considered to be the most wealthy and rich-
est continent.

europe has the richest countries in the world

a grapefruit is a fruit larger than a watermelon? is a watermelon smaller than an apple?
tree is always part of forest trees are never part of forests
someone of the male gender cannot give birth. an adult male cannot give birth

if you add two plus two you will always get four.
two plus two unfortunately cannot ever add up to
anything but four.

you can return items to a store only if you have a
receipt.

an item can be returned from a store only if it is sold
by that store.

private is another way to say public private almost never means public.
a letter can be written with invisible ink. writing cannot be read if you use invisible ink.

Table 11: Top fifteen most similar pairs of questions between the training and test set of Commonsense QA 2.0.
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Test Set Training Set
john leaves work at 6 pm so that he is an unlikely
suspect for theft that happened in the office at 8 pm.

john leaves work at 6 pm so that he is an unlikely
suspect for theft that happened in the office at 8 pm.

while in a windy rainstorm, you should always point
your umbrella away from the wind.

while in a windy rainstorm, you should always point
your umbrella away from the wind.

while in a windy rainstorm, you should always point
your umbrella into the wind.

while in a windy rainstorm, you should always point
your umbrella into the wind.

since i want to improve my golf skill quickly, i spend
2 hours on the course every day.

since i want to improve my golf game, i spend 2
hours on the course every day.

if it is dark outside, opening the blinds will help you
see.

if it is dark outside opening the blinds will not help
you see.

because it was halloween eve and we had no candy, i
decided to open the door and turn the porch light on.

because it was 6pm on halloween and we no candy, i
decided to open the door and turn the porch light on.

having to teach a night class in thirty minutes, he
should cook a three-course dinner instead of heating
a frozen meal.

having to teach a night class in thirty minutes, he
should make a three-course dinner instead of a frozen
meal.

danny smokes a lot and drinks thirty beers per week
while sarah doesn’t smoke and doesn’t drink, sarah
will probably live longer.

danny smoke a lot and drink thirty beer per week
while sarah dont smoke and dont drink, sarah will
probably live longer.

if it is dark outside, opening the blinds will not help
you see.

if it is dark outside opening the blinds will not help
you see.

because it was halloween eve and we had plenty of
candy, i decided to open the door and turn the porch
light on.

because it was 6pm on halloween and we had plenty
of candy, i decided to open the door and turn the
porch light on.

having to teach a night class in thirty minutes, he
should heat a frozen meal instead of cooking a three-
course dinner.

having to teach a night class in thirty minutes, he
should make a frozen meal instead of a three-course
dinner.

danny smokes a lot and drinks thirty beers per week
while sarah doesn’t smoke and doesn’t drink, danny
will probably live longer.

danny smoke a lot and drink thirty beer per week
while sarah dont smoke and dont drink, danny will
probably live longer.

a spoon is more suitable for eating soup than a fork.
a spoon might be more suitable for eating soup than
a fork.

it is easier to run one mile in 5 minutes than a half
mile in 10 minutes.

it is easier to run two miles in five minutes than it is
to run one mile in ten minutes.

a fork is more suitable for eating soup than a spoon.
a spoon might be more suitable for eating soup than
a fork.

Table 12: Top fifteen most similar pairs of questions between the training and test set of Com2sense.
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Abstract
Generative conversational agents are known to
suffer from problems like inconsistency and
hallucination, and a big challenge in studying
these issues remains evaluation: they are not
properly reflected in common text generation
metrics like perplexity or BLEU, and alterna-
tive implicit methods like semantic similarity or
NLI labels can be misguided when few specific
tokens are decisive. In this work we propose
ConsisTest; a factual consistency benchmark
including both WH and Y/N questions based
on PersonaChat, along with a hybrid evaluation
pipeline which aims to get the best of symbolic
and sub-symbolic methods. Using these and
focusing on pretrained generative models like
BART, we provide detailed analysis on how
the model’s factual consistency is affected by
variations in question and context.

1 Introduction

Although capable of producing fluent responses,
generative conversational models have proved to
be prone to problems like hallucination and self-
contradiction, which do not go away with increas-
ing model size (Roller et al., 2021; Adiwardana
et al., 2020; Shuster et al., 2021b).

In knowledge-grounded conversation, the promi-
nent issue is hallucination —i.e. generating plausi-
ble looking statements that are factually incorrect—
and can be partly mitigated by improving the
knowledge selection or retrieval module (Shuster
et al., 2021a). In open-domain chitchat, where
the grounding “knowledge” is mainly personal at-
tributes and facts (preset before or said during the
conversation), this manifests itself as inconsistency
or forgetfulness (Table 1) where the conversational
agent does not commit to its personal narrative al-
though the facts are present in the conversational
context. These self-contradictions immediately dis-
rupt the conversational flow and cause the agents to
fail in gaining user trust and their long-term com-
munication confidence (Nie et al., 2021).

Agent persona
my name is paul.

I live with my two sons in chicago.

my favorite color is green.

I am a professional golf player.

Utterances
user> hi! what’s your name?

- my name is paul. how are you today?

user> I am good. my name is luna.

- nice to meet you luna. what do you do for work?

user> I am a journalist. are you married ?

- no I am not married. do you have any kids?

user> I don’t. how about you?

- I have two sons. do you have any hobbies?

user> I like to read. what was your name again?.

- my name is luna. what is your favorite color?

Table 1: Example interaction with a pre-trained genera-
tive model fine-tuned on the PersonaChat dataset, which
ends with an inconsistency.

On a general level, open-domain conversational
consistency can be defined with respect to persona,
style, and context (Huang et al., 2020). When lim-
ited to persona and context (which is often the
case in literature), due to the inherent logical as-
pect, consistency becomes a relatively objective
and quantifiable attribute compared to most other
conversational traits: While qualities like human-
ness, interestingness or engagingness (Li et al.,
2019) usually need human evaluation for a reliable
assessment, consistency can be fairly estimated
using simplifying assumptions. In particular, iden-
tifying inconsistent utterances can be reduced to a
classic NLI (natural language inference) problem
by assuming that contradictions are contained in
a sentence pair (Welleck et al., 2019). Following
the NLI paradigm, many studies have tried to pro-
vide better and bigger datasets or models to train
for detecting contradictions. These efforts how-
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ever mainly focused on the overall assessment at
inference time —which allows for improving con-
sistency by re-ranking response candidates—, and
have not explored enough the fine-grained depen-
dencies of consistency, subject to parameters like
data and training.

In this work we try to get new insights into con-
versational consistency, via simplifying assump-
tions that allow to reduce the problem one step
further, into a pseudo-QA case. To this end, we cre-
ate an evaluation dataset following an interrogative
approach; i.e. posing factual questions about the
facts that are already mentioned in the conversation
history or persona. This allows us to develop and
use a hybrid evaluation method for precise perfor-
mance assessment.

Our contribution is threefold:(1) We present Con-
sisTest: an interrogative conversational QA dataset
with both WH and Y/N questions to assess factual
consistency in open-domain conversational agents.
(2) We develop a hybrid evaluation pipeline, tai-
lored to our dataset which provides reliable consis-
tency scores, highly correlated with human eval-
uation. (3) We use the benchmark to explore the
effect of parameters like question source and ques-
tion type on model’s consistency1.

2 Related Work

Consistency and factuality of responses has al-
ways been one of the main qualities in the assess-
ment of conversational agents but framing it as an
NLI problem by Welleck et al. (2019) opened the
way for reliable automatic evaluations using mod-
els trained on labelled data: They introduced the
DNLI dataset, comprising of premise-hypothesis
pairs semi-automatically generated from the Per-
sonaChat persona statements and showed that using
the NLI model to re-rank generated responses, im-
proves persona consistency in dialogue. Dziri et al.
(2019) created InferConvAI, another dataset based
on PersonaChat personas, and applied it for dia-
logue topic coherence evaluation. Li et al. (2020)
employed such an evaluator for unlikelihood train-
ing and showed its effectiveness for improving log-
ical consistency, while Mesgar et al. (2021) used
it as a reward function in reinforcement learning
with positive impact on the factual consistency be-
tween response and persona facts. To address the
limitations of DNLI, Nie et al. (2021) introduced

1The dataset and evaluation code are available at: https:
//github.com/ELotfi/consistest

DECODE, a human-written fully-conversational
dataset based on multiple datasets and covering
logical and context-related reasoning beyond per-
sonal facts, which proved to result in significantly
more robust consistency evaluation.

Another approach (besides the NLI-based meth-
ods) for automatic evaluation of consistency is ask-
ing and answering questions, which is more appli-
cable to knowledge-grounded conversation. Origi-
nally proposed in abstractive summarization (Dur-
mus et al., 2020; Wang et al., 2020), it assumes that
factually equivalent or consistent texts should be in-
terchangeably usable to generate factual questions
and to answer them. Honovich et al. (2021) adapted
it to introduce Q2, to assess factual consistency in
knowledge-grounded dialogues with significantly
higher correlation with human judgement.

More related to our work, Li et al. (2020) applied
a similar interrogative approach (but limited to WH
questions on history) combined with NLI-based
assessment, to provide a framework for evaluating
consistency in open-domain conversational agents,
and used it to compare chatbots in interactive se-
tups. Finally, Rashkin et al. (2021) explored adding
control code features (via special tokens) to inform
a pretrained model about the groundedness of re-
sponses in knowledge-grounded conversations, and
showed that by using these codes during the infer-
ence, the model can be effectively persuaded to
generate more grounded responses.

3 ConsisTest

The ConsisTest benchmark is based on ‘interrog-
ative factual questioning’: Since a consistent dia-
logue agent should commit to its personal narrative,
to assess consistency, we ask the agent factual ques-
tions about previously stated or uttered facts, and
demand accordance with them.

To create the benchmark, we apply this approach
on the popular PersonaChat dataset (Zhang et al.,
2018) which contains crowd-sourced conversations
grounded in predefined “personas” (i.e. a set of 4–6
simple personal statements), and therefore allows
us to study both the persona and history consistency.
Figure 1 demonstrates the overall process in two
steps: First, a PersonaChat persona+conversation
pair (a) is studied to produce simple factual ques-
tions in both WH and Y/N formats (b). Then these
questions are appended to conversation segments
to create a benchmark sample (c).

Next we discuss the process in more detail.
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Figure 1: Creating ConsisTest: a) An (edited) example of a conversation from PersonaChat. Unshaded utterances
are from the speaker with the mentioned persona (agent). b) Producing factual questions from Persona or History
via generation or extraction. c) Creating ConsisTest samples by adding produced questions after the facts they are
based on: immediately after (d=0), and with 2 turns in between (d=2).

3.1 Producing Questions
As mentioned above, the first step is to
produce questions from a PersonaChat per-
sona+conversation sample. The original valida-
tion set –which we use here– contains 1000 per-
sona+conversation pairs, but a quick study shows
that the 1000 persona sets are curated from 550
unique statements. We use three methods to ac-
quire factual questions from these statements as
well as utterances (more details in Appendix A):

• Rule-based Generation: Using a simple rule-
based process and proper templates, we gen-
erate Y/N questions based on persona state-
ments and (cleaned) factual utterances (Figure
1-(b)-top).

• Neural Generation: Using a T5 model (Raf-
fel et al., 2020) finetuned on answer-agnostic
question generation with SQuAD, we produce
WH-questions based on persona statements
and (cleaned) factual utterances. The outputs
are then used to get answers from the context
(as spans) via an extractive question answer-
ing model (Figure 1-(b)-bottom).

• Extraction: We extract question and answer
pairs that already exist in the utterances (Fig-
ure 1-(b)-middle). We mark these History-
Extracted, as opposed to History-Generated
which are questions generated from history.

During the procedure, we annotate the question

Source (Persona, History-Generated or History-
Extracted), question Type (WH or Y/N), and —in
the case of history-based questions— the Turn
index in dialogue from which the QA has been
generated or extracted. We also manually annotate
the Fact (Figure 1-(b)) on which the question is
based as a self-contained statement which can act
as the gold long answer to the proposed question
(as opposed to Truth which only contains the short
answer keywords). At the end we obtain around
12k question-answer candidates which after man-
ual cleaning and filtering (details in Appendix A)
amount to 3125 samples. Table 2 shows the statis-
tics of the final QA set2.

Source Total # WH Y/N Extracted
Persona 1100 492 608 -
History 2025 1613 412 588
Total 3125 2105 1020 588

Table 2: Statistics of the final QA set. The “Extracted”
column is already counted in WH and Y/N numbers.

3.2 Creating Benchmark Samples
Having the questions at hand, we now can append
them to proper dialog segments (or contexts) to

2Since the persona-based and history-based questions have
been created from 550 statements and 1000 dialogues respec-
tively, these numbers mean that on average each persona state-
ment has originated 2 questions, while the same is true for a
whole dialogue. This difference in question density will mani-
fest itself when constructing the final benchmark, as observed
in the next section.
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Source Total # WH Y/N Extracted
Persona 15088 7008 8080 -
History 3545 2818 727 1023
Total 18633 9826 8807 1023

Table 3: Distribution of samples in ConsisTest-02. The
“Extracted” column is already counted in WH and Y/N
numbers.

create benchmark samples (Figure 1-(c)). Since a
question theoretically can be asked anywhere after
its supporting fact, we examine two cases: d = 0;
i.e. question comes right after the fact (c-top), and
d = 2; i.e. question comes 2 turns after the fact
(c-bottom).3 Following these conventions, we get
a set of 18633 conversational samples (context +
question), which we call ConsisTest-02 (referring
to the chosen values for d or distance parameter).
Table 3 shows the details.

The curated benchmark can now be used to as-
sess a dialog agent’s factual consistency if we have
a reliable way to evaluate the agent’s responses to
the proposed context+question pair.

4 Evaluation Method

Evaluating generated text is a well-known chal-
lenge in NLP, situated between the inadequacies of
automatic metrics and difficulties of human eval-
uation (van der Lee et al., 2019). When limited
to answering questions, the task becomes more
manageable and well-defined since there are often
logically limited sets of correct or ‘gold’ answers
that can act as reference. In particular, factual ques-
tions provide the possibility to formulate the prob-
lem as span extraction (e.g. SQuAD dataset (Ra-
jpurkar et al., 2016)) which then can be evaluated
with more confidence using token-level comparison
methods like the F1-score. But the conversational
aspect of our problem prevents us from directly
and exclusively relying on token-level evaluation,
since the overall semantic agreement between the
response and reference fact is not guaranteed.

A common alternative, especially when dealing
with consistency, is using NLI models (Welleck
et al., 2019) which classify the relationship between
a pair of phrases (corresponding to the reference
fact and model response in our case) as one of En-
tailment, Neutral or Contradiction. This is quite

3Note that the context received by the conversational model
is Persona+History. Therefore for Persona-based questions,
the d = 0 case means that the conversation starts with the
question (i.e. no History).

helpful in identifying sharp inconsistencies but is
less sensitive to token-level nuances that might be
of interest in factual QAs. Regarding our bench-
mark, there are cases where the pure NLI method
often falls short of a valid assessment, most no-
tably:

• Partial keyword coverage: NLI models of-
ten are unable to check for the full cov-
erage of important keywords. For exam-
ple the roberta-large-mnli model (re-
ferred to as RobNLI in the rest of this section)
identifies the [‘My cats are called snow and
winter.’ , ‘They are called winter.’] pair as
Entailment.

• Neutralized judgement: When the provided
hypothesis goes beyond the premise content
(which is quite common in conversational
data), the model’s verdict can shift towards
“Neutral”. For example, while RobNLI clas-
sifies [‘My cats are called snow and winter.’
, ‘they are called snow and puffy.’] as Con-
tradiction, changing the hypothesis to ‘they
are called snow and puffy. I love them a lot.’
results in a Neutral verdict.

• Y/N questions: In our case, the included Y/N
questions prove to bring new challenges. First,
the agent might give brief answers (e.g. I
am. or Nope.), which are not self-contained
enough for an NLI model to do a solid judg-
ment. Second, it turns out that agreement
between the short and long answer is not a
given in generated responses4. For example
when asked ‘Are you single?’ (with Fact = ‘I
am married.’), models occasionally respond
with phrases like ‘yes I’m married.’ which we
consider to be wrong, while any NLI model
would naturally classify the [‘I am married’ ,
‘yes I’m married.’] pair as Entailment.

Fine-tuning the classic NLI model on conversa-
tional data (e.g. the DNLI dataset (Welleck et al.,
2019)) leads to partial improvement but to achieve
more accurate results we decide to develop a hybrid
pipeline which tries to get the best of the symbolic
and sub-symbolic methods.

4.1 The Hybrid Approach
Our hybrid method consists of 3 main components:
1) Rule-based assessment, 2) NLI model, and 3)

4We will revisit this observation later in the experiments.
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Figure 2: Our Hybrid evaluation pipeline for Y/N (left) and WH questions (right).

Token-level metrics. Figure 2 shows how these
components are used based on the question type5:

• Y/N questions: Here the method tries to
deal with the Y/N short-answer challenges
(mentioned above) before using the NLI mod-
ule. More specifically, it first checks (via
templates) whether the response starts with
a short-form answer like no. or I do., in which
case the short answer is assessed using rules.
Then the NLI module is employed to compare
the response with the reference fact.

• WH questions: Here the NLI module acts as
a safeguard to make sure the response does
not contradict the reference fact. If the re-
sponse passes this check, it will be scored by
the Recall of the Truth keywords.

Note that the token-level assessment, seemingly
applies a more strict measure of consistency which
demands grounding and punishes generic or ir-
relevant responses. However, since all questions
have their supporting facts present in the context
received by the conversational model: a) generic
responses like ‘I don’t know.’ can be safely con-
sidered inconsistent, and b) completely irrelevant
responses are almost non-existent.

To assess the pipeline, we compare the perfor-
mance of the following methods with human evalu-
ation:

• F1: F1-score of response with respect to Fact.

• Recall: Ratio of Truth keywords covered in
response.

5More details can be found in Appendix B

• RobNLI: Entailment score of response
(ref.=Fact) according to RoBERTa-large
model finetuned on MNLI data.

• RobDNLI: Entailment score of response
(ref.=Fact) according to The RobNLI model
finetuned on the DNLI dataset (Welleck et al.,
2019).

• Hybrid(RobNLI): Our Hybrid pipeline, with
RobNLI as the NLI module.

• Hybrid(RobDNLI): Our Hybrid pipeline,
with RobDNLI as the NLI module.

For the evaluation set, we first generate re-
sponses to 1000 extra pairs of context+question us-
ing 4 pretrained models finetuned on PersonaChat,
under slightly different settings. We then randomly
sample 1000 instances to be manually scored fol-
lowing simple guidelines that are described in Ap-
pendix C. Finally, we apply the listed methods on
the same set and compare their scores with human
evaluation.

Method \Subset All WH Y/N MSE
F1 .517 .512 .520 .214
Recall .553 .564 .538 .131
RobNLI .511 .448 .599 .256
RobDNLI .71 .709 .715 .220
Hyb (RobNLI) .604 .545 .686 .071
Hyb (RobDNLI) .640 .565 .743 .047
Human Eval .645 .577 .739 0.0

Table 4: Consistency score obtained by different meth-
ods/baselines applied on the curated evaluation set.
MSE is the mean square error against the human evalu-
ation scores.
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Figure 3: Punctuating a conversational input sequence (e.g. in ConsisTest) with special tokens to mark the speakers.

Table 4 shows the results on the curated set and
its question-type subsets. The last column shows
the mean square error against the human evaluation
scores. As one can see, the Hybrid(RobDNLI)
method achieves the best results (i.e. closest
to human evaluation) on average and across all
subsets, which agrees with the observation that
RobDNLI and Recall —as the main components
of this method— have very good performances on
the Y/N and WH subsets, respectively. In other
words the Hybrid method manages to benefit from
the strengths of symbolic and sub-symbolic ap-
proaches by properly switching between them.

Based on these results, we pick the Hy-
brid(RobDNLI) method as our consistency eval-
uation approach for the rest of this paper. It should
be mentioned however that the Hybrid method is
tailored to the specifics of this problem and dataset
and, although it might work well in other cases, it is
not presented here as a generic evaluation method
for consistency.

5 Experiments

Having a reliable evaluation method, we can now
delve deeper to see how/if the consistency of a
conversational model is affected by question prop-
erties (e.g. Source and Type) and training setups
(e.g. input encoding scheme).

As the standard model, we pick the base version
of BART (Lewis et al., 2020) which is a pretrained
encoder-decoder transformer with a total number
of 12 layers (6+6) and 140M parameters. To en-
code the inputs, we follow the standard practice of
identifying the speakers via <user> and <agent>
‘special tokens’ (Wolf et al., 2019). Figure 3 shows
the result of applying such an encoding to an arbi-
trary sample of ConsisTest or PersonaChat dataset.

We choose 3 full turns -or 6 utterances- for the
memory size (maximum number of previous utter-
ances kept in the context) and finetune the model on
PersonaChat train set for 6 epochs (early-stopping)
with an effective batch size of 128. We then use

the finetuned model to do inference on ConsisTest-
02; i.e. generating responses to the provided con-
text+question pairs. To ease reproducibility, we im-
plement the training and inference using the Trainer
and generate methods from the HuggingFace Trans-
formers library (Wolf et al., 2020). Table 5 shows
the obtained scores.

All Persona History
WH Y/N WH Y/N

.74 .86 .80 .35 .57

Table 5: Factual consistency scores on ConsisTest-02
for BART-base

5.1 Question Source

One interesting observation in Table 5 is the large
gap in consistency score between the Persona- and
History-based questions. To explain this gap, we
consider three potential factors or hypotheses:

1. Linguistic-Statistical: The Persona-based
questions (in our dataset) are essentially easier
to answer than the History-based ones.

2. Structural: The supporting fact for Persona-
based questions is clean and clear (a persona
statement) whereas the History-based facts
should be extracted or even induced from the
utterances.

3. Positional: There is a positional bias at work
which benefits Persona-based questions since
their supporting fact comes in the beginning
of the input.

To assess the first, we consider the ultimate case
in which the model only receives the clean sup-
porting statement (i.e. the Fact) as context. This
eliminates the structural disparities and transforms
the problem into a very straightforward Question-
Answering with minimum noise (no irrelevant in-
formation in the context) whose results can be used
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Model Input Persona History
WH Y/N WH Y/N

Persona + History + Question (standard) .86 .80 .35 .57
Fact + Question .93 .82 .90 .82
Persona + Fact + History + Question .86 .80 .66 .74
Fact + Persona + History + Question .81 .76 .79 .80

Table 6: The effect of providing clean grounding context on model’s consistency score under different combinations
of input

as a proxy for ‘average question difficulty’. Results
(second row in Table 6) show that this modifica-
tion almost fills the gap between the subset per-
formances, and can be taken as an indication that
the History-based questions —by themselves— are
not significantly more challenging than the Persona-
based ones.

To assess the second hypothesis, we do the in-
ference and evaluation again, but this time for the
History-based questions we add the Fact to the end
of the Persona section and mask the grounding
turn (i.e. the utterance containing the Fact) in His-
tory. The evaluation results (third row in Table 6)
show an expected boost in the History-based subset
which is more significant for WH questions (.35 to
.66), but it does not fully eliminate the performance
gap.

For the third hypothesis (positional bias), we re-
peat the previous experiment but this time we add
the Fact to the beginning of Persona instead of its
end. As the last row in Table 6 shows, this change
not only results in a significant boost in the History-
based performance, it also has a negative effect
on the Persona-based performance, bringing them
almost on par with each other6. We can therefore
conclude that the structural and positional advan-
tages are mainly responsible for the source-based
performance gap.

5.2 Question Type

As foreshadowed in 4, one observation in model
responses to Y/N questions is the frequent disagree-
ment between the three (potential) parts of a Y/N
response; i.e. yes/no, short answer, and long an-
swer. In many cases, although the long answer
is correct and consistent, the short answer or the
yes/no part contradicts it, leading to examples like

6To rule out the possibility of training bias (i.e. early per-
sona statements are significantly more talked and asked about
in the training set), we train a model with persona statement
permutation, which does not result in any significant change
in performance scores.

yes I work at a school in response to do you work at
a bar?, asked based on the Fact :I work at a school.

To get a better idea of the weight of this issue, we
look into the Persona-based subset which contains
most of the Y/N questions. Table 7 shows the
results. The included percentages are relative to the
previous column; for example the first row shows
that from the 5178 Y/N questions with positive
Truth, 12% were answered incorrectly, of which
76% had incorrect short answers. From these we
can see that:

1. Negation is significantly more challenging
than confirmation (35% vs. 12% error rate).

2. Short-long-answer inconsistency accounts for
the majority of Y/N mistakes (87% in total).

3. Short-long-answer inconsistency is more evi-
dent in negation cases 93% vs. 76%).

Truth Total # Wrong Ans. Wrong Short Ans.
Yes 5178 621 (12%) 475 (76%)
No 2904 1007 (35%) 936 (93%)
All 8082 1628 (20%) 1411 (87%)

Table 7: Error analysis in the Persona-based Y/N ques-
tion subset (BART-base-special). Percentages are rela-
tive to the previous column.

6 Conclusion and Future Work

In this work we tried to obtain new insights into
one of the prominent issues in open-domain con-
versational modeling, i.e. consistency. Taking a
factual questioning approach, we built a bench-
mark dataset (ConsisTest) based on PersonaChat,
and developed a hybrid evaluation pipeline that
takes advantage of both symbolic and sub-symbolic
methods to achieve high correlation with human
evaluation of factual consistency. Then, focusing
on pretrained generative transformers (i.e. BART),
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we studied how the consistency score varies in dif-
ferent subsets of our benchmark: We confirmed the
intuition that in a persona-history setting, remain-
ing consistent with respect to conversation history
is significantly more challenging than commitment
to persona, and we showed that this gap is mainly
rooted in structural and positional advantages of
the latter. We also observed that in the case of
Y/N questions, agreement between the short and
long answer is not a given with these models, and
accounts for the majority of Y/N inconsistencies.

Many more aspects and dependencies of conver-
sational consistency remain to be explored, includ-
ing the difference between the History-Generated
and History-Extracted questions, effect of inser-
tion distance (d), importance of the base model
(e.g. decoder-only models like GPT2 vs. encoder-
decoders like BART), and the detailed dynamics
behind the apparent positional bias observed in 5.1.
These, along with the refinement and expansion
of the dataset, provide interesting options for the
future work.

7 Limitations

The choices we made in our study, come with
their own limitations which should be acknowl-
edged and –if possible– addressed in future work.
Most importantly, is the statistical and linguistic
properties of our benchmark dataset which only
includes short, clear and straightforward question-
answer pairs. While highly facilitating our evalu-
ation method, we should keep in mind that chal-
lenges in conversational consistency are not limited
to the factual aspect. The benchmark can also bene-
fit from more instances and a better question-source
balance, specially if discrepancies between the
History-Generated and History-Extracted subset
performances are to be explored. Finally, having
access to fine-grained QA annotations (e.g. com-
plexity proxies like whether the question can be
answered by simple extraction, or does it need the
employment of external common sense, multi-hop
reasoning, coreference resolution etc.) enables us
to make more reliable conclusions.

In the evaluation part, our hybrid pipeline demon-
strates relatively accurate results, showing that it is
well-suited to our data. But this comes at the cost
of ‘specificity’ which makes it less robust to future
modifications. Therefore the pipeline’s scope of va-
lidity should be considered before its employment
in new scenarios.
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A Appendix: Question Generation and
Cleaning

PersonaChat’s validation set contains 1000 dia-
logues and 7801 utterance pairs. Each dialogue
comes with a persona set for the “self” speaker
(which hereafter we refer to as “agent”), corre-
sponding to even utterances. In total these sets
amount to 4483 persona statements which are un-
seen in the training set but are not all unique; i.e.
the 1000 persona sets are combinations of around
550 unique statements7. We distill these unique per-
sona lines and use them as input for two question
generation methods:

• Deep Neural Generation pipeline using a T5
model finetuned on answer-agnostic question
generation with SQuAD. The outputs (ques-
tions) are then used to get answers from the
context by a question answering model. Be-
cause of its extractive nature, this pipeline
only produces WH questions.

• Rule-based Generation pipeline using a sim-
ple rule-based process which checks for the
polarity of the statement (mainly based on the
presence of negation) and then generates Y/N
questions following proper templates. Here
the simple and repetitive structure of persona
statements comes in useful8.

For the History-based questions we distinguish
two ways to produce questions:

• Generation: Using the agent’s utterances in
the same way as personas (i.e. feeding them to
the deep and rule-based generation pipelines
to get WH and Y/N QA candidates). Since
utterances are not single-sentence clean state-
ments like personas, we first split each agent’s
utterance into sentences and filter out the inter-
rogative ones (using question words and ‘?’ as
clues), as these rarely contain any information
about the agent. We mark these questions as
Hist_Gen.

• Extraction: In many cases, a Q&A pair al-
ready exists in the utterances but they often es-
cape the previous approach due to short-form
answers (e.g. the 3rd turn in Figure 1-(a)).
To capture these we extract utterance pairs
in which a question is asked from the agent

7670, considering contractions (e.g. I’m vs. I am)
8e.g. out of 550 statements, 148 start with I am or I have.

(using question cues), and clean the pair by
removing any possible non-interrogative parts
from the first, and any interrogative parts from
the second utterance. We mark these ques-
tions as Hist_Ext.

In the cleaning process we filter the produced
QA pairs mainly by removing errors and dupli-
cates, but also WH questions based on clearly non-
exclusive facts. For example in Figure 1-(a) one
candidate question about the first persona might be:
What animal do you love? with the answer being
‘cats’. We remove this QA since ‘cats’ is not neces-
sarily the complete answer, as the agent might also
love other animals!9. This step allows us to safely
apply the seemingly stricter consistency measure
discussed in 4.1; i.e. with an exclusive fact, a gen-
eral or uninformative response can be more fairly
and confidently rejected as inconsistency.

B Appendix: Evaluation Method

The evaluation pipeline receives Truth, Fact and
model’s Response to perform a hybrid evaluation.
It comprises of two main components:

Symbolic: which does token-level comparison
between Response and Truth.

Sub-symbolic: which uses an NLI (Natural
Language Inference) classifier to do sentence-
level comparison between Response and Fact.
Based on Table 4 we use RobDNLI which is the
roberta-large-mnli model finetuned on the
DNLI dataset (Welleck et al., 2019), and classifies
the relationship between a pair of inputs as one of
Entailment, Neutral or Contradiction.

Before using the pipeline, Response and Truth
go through a pre-processing step which first re-
moves the potential interrogative parts in Response
(e.g. the second sentence in ‘They are called snow
and winter. Do you have any hobbies?’), using
simple pattern matching. Then numeric words in
Response and Truth (if any) are converted to dig-
its using a rule-based code (e.g. twenty one –>
21). After this step, Response and Truth/Fact are
compared based on the question type as was demon-
strated in Figure 2:

• Y/N Questions: Using a lexicon, the pipeline
first checks if the Response starts with a short
form answer (e.g. yes, I do., etc.). If so, it
checks whether the short form is wrong (e.g.
yes or I do. to a negative question) in which

9However the Y/N question Do you love cats? is kept
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Fact Question Truth Response

1 I’m 30. how old are you? 30 I’ve a german shepherd named barnaby.

2 I like spawn and the x men What comic books do you
like?

spawn and
the x men

I like all kinds of comic books.

3 I drive a bmw. do you drive a mercedes? no I do. I drive a bmw.

4 I don’t go to school anymore. are you going to school at all? no no. I am a student. what do you do for
fun?

Table 8: Examples of Inconsistency (score = 0) demonstrating annotation guidelines.

case the score will be 0. Otherwise (i.e. cor-
rect short answer), the Response receives full
score (1) unless the NLI model identifies it
as contradicting the Fact, in which case the
score will be 0. If the Response does not start
with a short form, the value of NLI(Response,
Truth)==Entailment is used as the score.

• WH Questions: Here the recalled ratio of
Truth tokens in Response is returned, unless
the NLI model identifies the Response as con-
tradicting the Fact, in which case the score
will be 0.

C Appendix: Human Evaluation

We score the 1000-sample response set for consis-
tency, following these guidelines:

• The response should be (partly or fully)
grounded in the fact about which the agent
is asked. Therefore —and using the taxon-
omy described in Dziri et al. (2021)— generic,
off-topic, uncooperative or hallucinative re-
sponses are considered inconsistent or wrong.
(rows 1–2 in Table 8)

• In Y/N questions, the label/score is binary
(0 or 1), and a “correct” answer should be
consistent across its parts. Therefore any dis-
agreement between the Yes/No part, the short
answer and the long answer (if present) results
in score = 0. (rows 3–4 in Table 8)

• In WH questions, the response is labeled as in-
consistent, partly consistent or fully consistent
(corresponding to [0, .5, 1] scores) based on
agreement with Truth/Fact. The score should
take into account the recalled fraction of Truth
keywords (positive) as well as any halluci-
nated ones (negative). The exact lexical match
is not important as long as the same concept(s)
are conveyed.

Then a second annotator was presented with the
guidelines and the demonstrative examples, and
asked to score a 500-sample subset. Table 9 shows
the agreement results (Cohen’s κ) for the Y/N and
WH subsets which —not surprisingly— are quite
high.

Subset Cohen κ Annot. 1 Annot. 2
(avg. score) (avg. score)

Y/N QAs .94 .69 .67
WH QAs .88 .59 .58
All - .632 .618

Table 9: Agreement between annotators in labeling the
Y/N and WH responses. The last two columns show the
average values when labels are taken for their numeric
values.

D Appendix: Training and inference
parameters

We choose 3 turns (or 6 utterances) for the memory
size (maximum number of previous utterances
kept in the context) and do the finetuning with
early-stopping w.r.t evaluation set, using an
effective batch size of 128 and lr=2e-5. To
ease the reproducibility, we implement the
training and inference using the Trainer and
generate methods from the HuggingFace
Transformers library (Wolf et al., 2020). The
inference is done in a greedy way unless stated
otherwise. The BART-base, BART-large and
RoBERTa-MNLI model are accessible from
this library as facebook/bart-base,
facebook/bart-large and
roberta-large-mnli respectively.
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Abstract

Narrative Why-Question Answering is an im-
portant task to assess the causal reasoning abil-
ity of models in narrative settings. Further
progress in this domain requires clear identi-
fication of challenges that question answering
models need to address. Since Narrative Why-
Question Answering combines the characteris-
tics of both narrative understanding and why-
question answering, we review the challenges
related to these two domains. In the context of
why-questions, we review the characteristics of
causal relations and the sources of ambiguity in
why-questions. In relation to narratives, we dis-
cuss the challenges posed by the implicitness
and the length of the narrative texts. Further-
more, we identify suitable datasets for Narra-
tive Why-Question Answering and outline both
data-specific and task-specific challenges that
can be utilized to test the performance of mod-
els. Additionally, we discuss some issues that
can pose problems in benchmarking Narrative
Why-Question Answering systems.

1 Introduction

Narrative Why-Question Answering is the task of
answering why-questions in narrative settings. This
task combines the challenging properties of both
why-question answering and narrative understand-
ing. As such, Narrative Why-Question Answering
makes a suitable task for evaluating complex com-
prehension abilities of language models.

Why-question is one of the most challenging
non-factoid question types (Bolotova et al., 2022)
because it requires discovering explicitly or im-
plicitly stated causal relations from text. As such,
why-questions can be used to test the causal rea-
soning abilities of QA systems. On the other hand,
narratives can be considered a desirable testbed for
machine reading comprehension (MRC) tasks be-
cause narratives play a central role in the life of hu-
man beings, they have implicit nature and complex

structure, and fictional narratives are self-contained
(Dunietz et al., 2020).

Although humans can easily identify causal re-
lations in narratives and make inferences by using
their background knowledge and by paying close
attention to the timeline, cause, and motivation of
the events/entities, current QA systems have diffi-
culties extracting correct relations and making such
complex inferences in narratives (Lal et al., 2021,
2022). In order to make further progress in the
Narrative Why-Question Answering, one should
be knowledgeable about challenges that exist in
this domain and in its datasets. These challenges
can stem from both the properties of the narrative
understanding and the specifics of why-question
answering. Some previous works (Lal et al., 2021,
2022) have mentioned commonsense-related chal-
lenges. However, we are not aware of any previous
work that has attempted to give a comprehensive
list of challenges related to this topic.

In this paper, our goal is to give a wider overview
of the potential challenges in Narrative Why-
Question Answering that can help to inform the re-
searchers working in this domain. Furthermore, in
terms of datasets, the TellMeWhy dataset (Lal et al.,
2021) is the only dataset that solely focuses on Nar-
rative Why-Question Answering. In this paper,
we also address why-questions in multiple-choice,
free-form, and extractive narrative QA datasets in
order to more fully identify the scope of challenges
in this domain. We believe that considering other
Narrative Why-Question Answering datasets can
also help further development in this domain.

We start by reviewing the concepts and chal-
lenges of why-questions and narratives in sections
2 and 3. In section 4, we identify the datasets rel-
evant to Narrative Why-Question Answering, and
provide an overview of the commonly used evalua-
tion measures. Finally, in section 5, we analyze the
dataset- and task-specific challenges according to
the concepts mentioned in previous sections.
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2 Why-Questions

A why-question is typically asked about a causal
relation in the text. Causal questions can be con-
structed in several ways and they are not limited to
why-questions only. Causal questions can be also
asked with what (e.g., what is the cause of), which
(e.g., which are the consequences of), and how (e.g.,
how dangerous is) (Girju, 2003). However, why-
question is the only question type that solely repre-
sents causality and can be used to test causal reason-
ing (Grivaz, 2010; Dunietz et al., 2017; Tan et al.,
2022). Furthermore, answering why-questions re-
quires more complex reasoning than answering
other types of causal questions because it is more
difficult for QA-systems to decide directly from a
why-question which type of information needs to
be searched for in the text (Girju, 2003). In the
following subsections, we start by elaborating on
the notion of causality, including how causal rela-
tions are expressed in the texts, and then review
what ambiguities why-questions hold in relation to
causality.

2.1 Causality

Causality is a semantic relationship between
events showing that an event occurs or holds due
to another event (Mostafazadeh et al., 2016b).
Mostafazadeh et al. (2016b) distinguish four types
of lexical causality relations: cause, enable, pre-
vent, and cause-to-end based on the works by
Wolff and Song (2003), Wolff (2007), and Khem-
lani et al. (2014). Moreover, causality has
temporal implications such that if an event A
causes/enables/prevents an event B, then A should
start before B, or if an event A causes an event
B to end, then B should start before A. Causality
relations can hold one of the three temporal implica-
tions: before, overlaps, and during (Mostafazadeh
et al., 2016b). Thus, while answering a why-
question, the temporal relation between the events
should also be taken into account in addition to the
causality relation.

A causal relation is constructed from two com-
ponents: cause and effect. Based on how the cause
and the effect are conveyed in a text, causation
can be distinguished into the following categories:
explicit vs implicit, marked vs unmarked, and am-
biguous vs unambiguous.

Explicit vs Implicit. Causation is explicit if
both the cause and the effect are present in the text.
Causation is implicit if either the cause or the effect

of both are missing from the text (Blanco et al.,
2008). For instance, “She was accepted to a top
university after receiving a high score in the state
examination” is explicit, while “I did not attend
the mandatory final exam.” is implicit because the
effect of “failing the course” is not explicitly stated.

Marked vs Unmarked. Causation is marked if
the text contains the causal signal words that indi-
cate the causal relation (Blanco et al., 2008). For
example, “I was late because of traffic” is marked,
but “Do not buy any bread. We have already got
two at home” is unmarked.

Ambiguous vs Unambiguous. If the causal re-
lation is presented in the text with causal keywords
(e.g., cause, effect, consequence) or with causal
signals (e.g., because of, due to, as a result of ), it
is considered unambiguous (Girju, 2003). On the
other hand, if a causal relation is constructed in
the form of an expression containing affect verbs
(e.g., affect, change, influence) or link verbs (e.g.,
link, lead, depend), it is considered ambiguous.
Furthermore, if a marked signal always refers to
causation (e.g., because), it is unambiguous, while
if a marked word occasionally signals causation
(e.g., since), it is ambiguous (Blanco et al., 2008).

2.2 Why-Questions: Ambiguity

Why-questions are constructed based on explicit
and implicit causal relations in the text. Such ques-
tions seek a reason/cause as an answer. However,
it is not always clear which reason/cause can be an
answer to a question. There are two types of ambi-
guity: question ambiguity and answer ambiguity.

2.2.1 Question ambiguity
Question ambiguity can occur because of the struc-
tural ambiguity in the syntax of the question (Ver-
berne et al., 2006). Due to question ambiguity, it
might be not clear what action the why-question
refers to. For example, “Why did he say that he
will not come to the party?” can be interpreted as
“Why did he say it?” or “Why will he not come
to the party?”. Both “He was asked what he will
wear to the party.” and “He has other plans for that
time.” can be correct answers based on different
interpretations of the question.

2.2.2 Answer ambiguity
Answer ambiguity occurs because most questions
can have multiple answers belonging to different
answer types and because often the desired type
is not expressed in the question. Several partially
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overlapping taxonomies of reasons, which is the
cause component of a causal relation, have been
proposed (Verberne et al., 2006; Dunietz et al.,
2017; Tan et al., 2022). Verberne et al. (2006)
distinguish four types of reasons based on Quirk
et al. (1985):

• Cause - a temporal and causal relation without
the involvement of the human intention: an
event mechanistically leads to another event;

• Motivation - a temporal and causal relation
with an involvement of the human intention: a
goal or a motivation of an agent leads to their
action;

• Circumstance - a temporal and causal rela-
tion based on conditionality: one event is a
condition for another event to occur;

• Generic purpose - a causal relation stemming
from physical functions of the objects.

Similarly, Dunietz et al. (2017) defines three
types of causalities while annotating causal rela-
tions: (1) Consequence: similar to the Cause type
above, (2) Motivation and (3) Purpose: similar to
the Motivation type above. Tan et al. (2022) de-
fines four senses for causality based on Webber
et al. (2019) for annotating causal relations: (1)
Cause: similar to the Cause type above (2) Pur-
pose: similar to the Motivation type above, (3)
Condition and (4) Negative-Condition, which can
fit into the Circumstance type above. Although
the types of reasons introduced by Verberne et al.
(2006) are broader than the taxonomies of Dunietz
et al. (2017) and Tan et al. (2022), this list is not
complete, as Verberne et al. (2006) demonstrated
that not all why-questions can be classified into
these categories.

Context: "He opened the box to take a
slice of pizza."
Question: "Why did he open the box?"
Answers:
(1) The pizza was in the box.
(2) The box was closed.
(3) He was hungry.
(4) He wanted to eat pizza.
(5) He wanted to take a slice of pizza.

Table 1: An example of answer ambiguity. Answers (1)
and (2) refer to causal reasons, answers (3), (4) and (5)
refer to motivational reasons.

Valid answers to a why-question about an event
or a state can include at least one of the cause, mo-
tivation, circumstance, or generic purpose of an
event or state according to the above taxonomy.
Since a why-question can often be answered with
answers falling into several type categories, the ne-
cessity to choose the correct answer type creates
ambiguity since the desired type is typically not ex-
plicitly stated in the question. Furthermore, a why-
question can be answered with several causes in the
causal chain (Verberne et al., 2006), and in that case
all these answers can be considered as correct. For
instance, consider the example shown in Table 1.
For this example question, several potential causes
can be the basis for the answer. Consequently, this
why-question can be answered according to both
mechanistically causal (answers 1, 2) and motiva-
tional (answers 3, 4, 5) reasons.

3 Narratives

Narratives are texts in which events are causally
or thematically linked and develop within a tem-
poral framework (Brewer, 2017). Narratives are
generally agent-oriented and their main scope is
centered on characters, their actions, and motiva-
tions (Sang et al., 2022). In narrative QA, sto-
ries, fairytales, books, and (movie) scripts are com-
monly utilized as narrative texts. Characteristics
of narrative texts, such as causality of events and
motivations of agents, make narratives a suitable
context for asking why-questions. Additionally,
fictional narratives can ensure the test of compre-
hension because they are self-contained, meaning
that all elements needed to understand the narrative,
such as events, characters, and settings, are present
in the text and QA models need to comprehend
the narrative in order to answer questions (Dunietz
et al., 2020; Richardson et al., 2013; Kočiský et al.,
2018). Implicitness is a key feature of narratives
that makes it different from other types of texts.
Length is another characteristic dimension of narra-
tives which is also very important for QA systems.
In the following subsections, we will review these
characteristics in more detail.

3.1 Implicitness: “Reading between the lines”

People often think and communicate with each
other in the form of a narrative (story) (Dunietz
et al., 2020). They assume that other people with
whom they interact share a common ground with
them, so they do not have to mention or specify
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commonly known knowledge (Ostermann et al.,
2018a). Similar to the implicitness characteristic
of the natural narrative-style communication, narra-
tive texts tend to exclude common knowledge, such
as commonsense and script (typical sequences of
events to accomplish common tasks) knowledge,
and assume that the reader has the background
knowledge required to infer relevant implicit infor-
mation (Schank and Abelson, 1975). For instance,
not all causes of events and reasons for actions of
agents are explicitly stated in narratives. Thus, the
ability to “read between the lines” is necessary for
properly understanding narratives (Norvig, 1987).

3.2 Short vs long narratives

Narratives can be short or long based on the scope
of the text stream and the number of events it con-
tains.

Short narratives cover a small number of events
and briefly narrate the actions of fewer agents. The
local structure of a longer narrative such as an indi-
vidual scene can be also considered and used as a
short narrative. In short narratives, the reader can
make inferences by linking local narrative elements
and creating a local narrative representation (Sang
et al., 2022; Kintsch, 1988).

Long narratives, on the other hand, have large
textual content, cover many events, and focus on
the actions and interactions of many agents. Long
narratives require the readers to comprehend the un-
derlying deep structure of the narrative and analyze
the high-level abstractions. Answering questions in
this setting requires understanding the global narra-
tive structure, such as the whole story (Sang et al.,
2022; Kintsch, 1988) and the integration of various
information stated in different parts of the long nar-
rative by connecting individual scenes (McNamara
and Magliano, 2009).

4 Narrative Why-Question Answering

Narrative Why-Question Answering task can be
formulated as a special case of Why-QA where
the context is a complex structured text—a narra-
tive. Currently, there exists only one QA dataset
(TellMeWhy) that solely consists of why-questions
in narrative setting. Additionally, several other
narrative QA datasets contain why-questions in
various proportions. The subsets consisting of why-
questions can be extracted from these datasets and
used for training or testing Narrative Why-Question
Answering systems. In the following subsections,

we first review these potential datasets suitable for
Narrative Why-QA, and then give an overview of
common evaluation measures used to assess the
performance of Narrative Why-Question Answer-
ing systems.

4.1 Datasets

We selected several multiple-choice, extractive, and
free-form QA datasets that utilize narrative as their
context. In order to identify why-questions in these
datasets, we first extracted all questions including
the word why. We then manually removed any non-
why questions (e.g, “what did the king’s son do
after he wondered why the girl was crying”) from
the questions that do not start with why. The rele-
vant statistics of all datasets are shown in Table 2.

TellMeWhy (Lal et al., 2021) dataset presents
free-form why-questions over events in short nar-
ratives. It is the only existing dataset created with
the Narrative Why-Question Answering task in
mind. The questions were created using template-
based transformations and the answers to questions
were crowdsourced. Narratives were collected
from ROCStories (Mostafazadeh et al., 2016a) and
CATERS (Mostafazadeh et al., 2016b). The dataset
has a total of 30,519 why-questions with three
golden free-form answers for each question. Ac-
cording to data annotators, 28.82% of questions in
the dataset cannot be answered explicitly based on
the narrative (context).

MCTest (Richardson et al., 2013) is a multiple-
choice MRC dataset based on fictional stories. The
dataset is created via crowdsourcing and it is de-
signed for the level of understanding of 7-year-old
children. The fictional and basic comprehension
nature of the dataset decreases the need for addi-
tional world knowledge and makes it possible to
find the answer only based on the text.

MCScript (Ostermann et al., 2018a) is a
multiple-choice MRC dataset based on stories
about daily activities. It is created to evaluate ma-
chine comprehension using commonsense (script)
knowledge (Ostermann et al., 2018b). Stories are
collected by crowdsourcing new texts based on
selected scenarios. Questions are crowdsourced
based on scenarios independent of narratives and
then matched with narratives randomly. Similar to
MCTest, texts and questions are created according
to the understanding level of a child. In general,
27.4% of questions require commonsense (script)
knowledge to correctly infer the answer.
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Dataset # of Why % of Why Answer Context % of Implicit
TellMeWhy 30519 100 free-form short 28.82
MCTest 329 12.5 multiple-choice short -
MCScript 1623 11.6 multiple-choice short 27.4
MCScript2.0 136 0.6 multiple-choice short 50
CosmosQA 12439 35 multiple-choice short 93.8
NarrativeQA 4179 9 free-form long/summaries 42
FairytaleQA 2864 27 span/free-form short 25.5

Table 2: Statistics of the narrative why-QA datasets. # of Why shows the number of why-questions in the datasets.
% of Why refers to the proportion of why-questions in the datasets. The percentage of implicit questions is taken
from the respective dataset papers, except for the NarrativeQA for which this number is due to the analysis done by
Bauer et al. (2018)

MCScript2.0 (Ostermann et al., 2019) is another
multiple-choice MRC dataset focused on script
knowledge. The stories were collected by reusing
narratives from the MCScript, and crowdsourcing
texts based on new scenarios. Questions were col-
lected based on target sentences of stories rather
than scenarios or complete stories. Similar to MC-
Script and MCTest, the texts and questions are cre-
ated according to the understanding level of a child.
Correct and incorrect answers were crowdsourced
by showing questions and hiding the target sen-
tences in the story. In total, 50% of the questions
require commonsense knowledge to be answered.

Cosmos QA (Huang et al., 2019) is a multiple-
choice commonsense-based reading comprehen-
sion dataset. 93.8% of the questions in the dataset
require contextual commonsense reasoning. Con-
text paragraphs were collected from the spinn3r
blog story corpus Burton et al. (2009) and a dataset
by Gordon and Swanson (2009). Both questions
and answers were crowdsourced. Questions are
based on the causes and effects of events, facts
about entities, and counterfactuals.

NarrativeQA (Kočiský et al., 2018) is a narra-
tive reading comprehension dataset based on books
and movies. Books from the Project Gutenberg
and movie scripts from the web are used as sto-
ries. Moreover, summaries for long narratives are
obtained from Wikipedia. Questions and answers
are crowdsourced based on summaries only. Since
both original long stories and summaries exist for
each question, this dataset can be used for two tasks:
narrative QA based on long narratives (books and
movie scripts) and short narratives (summaries).
Manual analysis on the validation set by Bauer
et al. (2018) showed that 42% of the questions
need commonsense knowledge for inference.

FairytaleQA (Xu et al., 2022) is a narrative com-

prehension dataset designed for both question an-
swering and question generation tasks. The narra-
tives were collected from the Project Gutenberg by
considering the reading difficulty up to the 10th-
grade level. Small sections were extracted from
fairytales as context paragraphs. Following the
narrative comprehension frameworks by Paris and
Paris (2003) and Alonzo et al. (2009), trained an-
notators created questions and answers for the con-
texts. The most common questions are about char-
acters’ behavior and causal relationships. 25.5% of
the questions are implicit (free-form) and 74.5% of
the questions are explicit (span-based).

The amount of why-questions in the reviewed
datasets is reported in Table 2. Among the
multiple-choice QA datasets, CosmosQA has a
higher number of why-questions compared to oth-
ers. Among the free-form QA datasets, TellMe-
Why dataset contains approximately 4.5 times more
why-questions than the other two free-form QA
datasets combined. Considering the proportion of
why-questions in these datasets (also shown in Ta-
ble 2), why-questions are well-represented in the
CosmosQA and FairytaleQA datasets where they
make up a sizeable part of the whole dataset, while
in the MCTest, MCScript, MCScript2.0, and Narra-
tiveQA datasets, why-questions cover only a small
portion of the whole dataset.

4.2 Evaluation measures

For multiple-choice QA datasets, accuracy is a com-
monly used metric to measure the performance
of a model. For free-form QA datasets, both au-
tomatic and human evaluation measures are uti-
lized to evaluate the capabilities of the QA model.
Most commonly, ROUGE-L (Lin, 2004), Meteor
(Denkowski and Lavie, 2011), BLEU (Papineni
et al., 2002), BLEURT (Sellam et al., 2020) and
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BertScore (Zhang et al., 2020) have been used to
automatically evaluate the performance of the free-
form QA models in narrative setting. Overall, F1
score of the ROUGE-L is the most commonly re-
ported automatic evaluation measure.

In terms of human evaluation, Lal et al. (2021)
proposed to assess the grammaticality and validity
of the answers based on a 5-point Likert scale. The
scale of the grammaticality ranges from strongly
ungrammatical (1) to strongly grammatical (5),
where a strongly grammatical answer must follow
all the rules of the English grammar and a neu-
tral score (3) is indicated when the meaning of the
answer can be still inferred despite clear grammati-
cal mistakes. The validity scale assesses whether
the answer is valid and makes sense in the given
context.

5 Challenges

In this section, we list challenges based on our anal-
ysis of the datasets and the characteristics of the
Narrative Why-Question Answering. This section
is divided into three parts. In the first part, we fo-
cus on the commonly addressed challenges in the
Narrative Why-Question Answering. The existing
datasets are created generally to test the abilities
of models on these challenges. In the second part,
we review some potential challenges that are not
marked in existing datasets and that the current
models thus cannot be tested on. Lastly, we review
challenges that stem from both the datasets and the
characteristics of the Narrative Why-Question An-
swering that can create problems on benchmarking
models on this task.

5.1 Commonly focused challenges

In this subsection, we review the challenges that
the creators of existing datasets have focused on,
related to the implicit vs explicit questions and the
length of the narrative.

5.1.1 Explicit vs implicit questions
Questions in the majority of datasets ask about
both explicit and implicit causal relations stated in
the narratives. The distinction between explicit vs
implicit questions is based on the notions stated in
sections 2.1 and 3.1:

• Explicit questions ask about clearly stated
causal relations in the narratives. The answer
can be found in the narrative, often as a span
of the text. Answering explicit why-questions

requires the model to identify affect, link, and
causative verbs (e.g., change, lead, cause) or
causal signals (e.g., because of, as a result of,
due to, so) in the narratives (Mirza and Tonelli,
2014).

• Implicit questions ask about not explicitly
stated causal relations in the narratives. An-
swering these questions requires filling in the
gaps with additional background knowledge,
such as commonsense or script knowledge
(Norvig, 1987; Lal et al., 2021).

In Table 2, we can see that most reviewed
datasets contain more explicit questions than im-
plicit ones. The CosmosQA dataset is an exception
here, as it was designed as a commonsense reason-
ing dataset with a focus on narratives, in which
answers cannot be found using the text spans of
the context only, and commonsense knowledge is
required to answer most questions.

Generally, the inclusion of additional knowledge
improves the performance of the QA models to an-
swer implicit questions (Lal et al., 2022). However,
in simple stories, such as in MCScript, the system
can learn some amount of background knowledge
also from the stories and the effect of using ad-
ditional commonsense knowledge is small (Oster-
mann et al., 2018b).

5.1.2 Short vs Long narratives
All reviewed datasets have short narratives as their
context. The NarrativeQA short texts have a more
complex narrative structure than other datasets,
since the short context versions of the NarrativeQA
are summaries of the larger narratives, and not sin-
gle scenes from the long narratives. In short narra-
tives, if there is a common lexical pattern between
the question and a part of the narrative, or a large
lexical overlap between the answer and the narra-
tive, sophisticated models can treat free-form QA
as an extractive task. For example, models trained
on the TellMeWhy dataset generally try to find
the answer span in the text and copy a part of the
narrative as an answer (Lal et al., 2021).

The NarrativeQA dataset is the only dataset that
has long narratives as its context. Linking narrative
elements to answer questions in large narratives
is harder than in short narratives (see section 3.2).
Typically, in order to reason about long narratives,
the parts relevant to reasoning are retrieved first
(Kočiský et al., 2018; Tay et al., 2019; Frermann,
2019; Mou et al., 2020, 2021). The retrieval is
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difficult even with the state-of-the-art models due
to the characteristics of narratives and the necessity
of high-level narrative comprehension (Mou et al.,
2021).

5.2 Less focused challenges

In this subsection, we list some of the challenges
that can be potentially relevant for why-question
answering but that the current datasets do not con-
centrate on. In particular, we review different for-
mats the why-questions can have, and discuss the
unmarked and ambiguous causal relations.

5.2.1 Why-question formats
In why-questions, why can appear in different parts
of the question and questions can be formulated in
different ways. Based on the manual analysis of
the questions in the datasets listed, we observed the
following variations of why-questions.

• Simple why-question: the question starts with
why. Most why-questions in the reviewed
datasets follow this format.

• Long why-question: the why-question is for-
mulated in a long format such as “What
(is/was/may be) (the/a possible/a real) reason
why ...” or “(Could/Can) you tell me why ...”.

• Specific why-question: the question first limits
the situation to a certain time/place/person
and then formulates the why-question. For
instance, “At the end of the story, surrounded
by cameras and police, why does Norma think
she is on set?” or “According to Bonnie, why
is Blanche a constant danger to the gang’s
well-being?”.

• Statement+why question: this is a differently
formulated type of specific why-question that
starts with a statement, which is followed by
the one-word question “why?”. For example,
“When Gandhi was 23, he was thrown off a
train in South Africa. Why?”

• Question chain: several questions including
at least one why-question formulated in one
sentence, e.g., “What is Gruul and why are
they raiding?”.

Most reviewed datasets contain simple why-
questions, other variations of why-questions make
up a very small portion of the datasets if any. For

example, the TellMeWhy dataset contains only sim-
ple why-questions since the questions were con-
structed using question templates where why is
always the first word of the question. It would be
useful to have a fair portion of other why-question
formats in the datasets as well in order to test
how well the models can handle these other for-
mat types. One easy way to accomplish this would
be to use templates to transform current simple
why-questions into other formats.

5.2.2 Unmarked and ambiguous causality
As discussed in section 2.1, based on causality con-
struction, causation can be categorized to marked
vs unmarked and ambiguous vs unambiguous in ad-
dition to explicit vs implicit. The reviewed datasets
only focus on explicit vs implicit causation nuance
(see section 5.1.1) and further categorization is not
annotated in these datasets. Thus, it is currently
difficult to identify how the models’ performance
would differ in answering questions asked about
marked vs unmarked or ambiguous vs unambigu-
ous causal relations.

5.3 Challenges for benchmarking
In this subsection, we review some challenges that
can occur during assessing the performance of mod-
els on the datasets. First, we look into what we call
the general question problem and list its potential
causes. Then, we discuss how the general question
problem and the ambiguity of the why-questions
can affect the evaluation of models on the Narrative
Why-Question Answering task.

5.3.1 General question problem
Tasks designed on narrative QA datasets require
systems to answer questions based on narrative
(context). Questions, for which a context/narrative
is available, should be correctly answerable only
based on this context/narrative. If the question can
be answered without the narrative, it does not meet
the requirements of reading comprehension, espe-
cially in narrative QA. We distinguish between the
context-specific and general questions as follows:

• Context-specific questions are questions that
can be answered correctly only by using the
information given in the context.

• General questions are questions that can be
answered without the context.

Although we expect all why-questions in nar-
rative settings to be context-specific, datasets still
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contain questions that can be answered both with
and without the consideration of the context. This
can happen due to the issues in data collection pro-
cess and due to the characteristics of the causal
questions.

If the questions are created without consider-
ing the context details, questions can end up being
general. This is the case of the MCScript dataset,
where questions were asked based on the general
scenario description and not on the specific narra-
tive. Thus, some questions that were created are
answerable irrespective of the narrative (Ostermann
et al., 2019).

When questions have several golden answers
(i.e., in free-form QA datasets), a question is con-
sidered context-specific if all golden answers can
be correctly inferred only by using the information
given in the context. In some question-answer pairs,
the question can be general because some of the
answers do not contain context-specific informa-
tion. For instance, in the example shown in Table 1,
while answers (1), (3), (4), and (5) are specifically
related to context, the answer (2) can be correct in
any context such as “She opened the box to take
out her shoes”. A QA model can treat this example
question both as context-specific or general, and
any of the given five answers can be considered
correct. So, in order avoid a question being gen-
eral, context-specific information can be added to
answers that make the question context-specific.
In the example of Table 1, “The box was closed.”
can be converted to “The pizza box was closed.”
which contains the context-specific word “pizza”;
this step makes the question context-specific for all
the answers in the given set.

5.3.2 Evaluation
Evaluation of multiple-choice QA datasets. Eval-
uating answers of why-questions in multiple-choice
datasets is a straightforward process. The presence
of only one correct answer in multiple-choice ques-
tions helps to correctly assess the performance of
the model without having to consider the potential
answer ambiguity of why-questions. However, if
question ambiguity is not addressed in the dataset,
some of the questions can have more than one cor-
rect answer. Moreover, general why-questions can
affect the accuracy of the overall assessment since
these questions remove the necessity of the narra-
tive understanding component of the task. There-
fore, general questions should be identified and
removed from the datasets in order to correctly

assess the models’ comprehension ability.
Evaluation of free-form QA datasets. General

questions can affect the correct evaluation on free-
form QA datasets as well. Thus, in order to increase
the accuracy of the overall evaluation process, gen-
eral questions should be identified and transformed
to context-specific by adding contextual informa-
tion to those answers that make the question gen-
eral. Moreover, ambiguity in why-questions can
cause additional problems with both automatic and
human evaluations. Due to the question and answer
ambiguities, why-questions can have more valid
answers than the collected golden answers in the
datasets, and collecting all valid answers to these
questions is not feasible and is probably impossible.
Consequently, automatic metrics can only evalu-
ate the output of models against the set of golden
answers, which is likely only a small subset of all
valid answers, and thus these metrics cannot fully
measure the capacity of the models.

Human evaluation is considered the gold stan-
dard in all text generation tasks, including free-
form QA (Celikyilmaz et al., 2020). However,
performing human evaluation is a costly and slow
process (Lal et al., 2021), and the reliability of hu-
man judgments is questionable (Gatt and Krahmer,
2018), especially in why-question answering that
possesses many ambiguities. For example, human
evaluators can prefer one interpretation of the ques-
tion over another in terms of question ambiguity
(section 2.2.1) or consider some causes (e.g., moti-
vational) in the causal chain more reasonable than
other causes (e.g., mechanistically causal) in case
of answer ambiguity (section 2.2.2). Thus, further
instructions are needed in the evaluation process to
resolve ambiguities in the why-questions.

6 Conclusion

In this paper, we reviewed challenges and datasets
related to Narrative Why-Question Answering. The
challenges that occur in this domain can stem from
both the properties of narrative understanding and
the specifics of why-question answering. The main
challenges regarding narrative understanding are
the exclusion of common knowledge, the neces-
sity of understanding the local and global narrative
structure, and high-level abstraction. The primary
challenges of why-question answering are related
to identifying causal relations, and ambiguities in
questions and answers.

In order to understand data-specific challenges
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and the implications of task-specific challenges in
datasets, we reviewed seven datasets that can be
suitable for this task. We listed challenges that
models are tested on in these datasets. The implic-
itness of questions and the length of narratives are
more tested challenges in the datasets. We outlined
different why-question formats and questions about
unmarked and ambiguous causal relations as other
potential challenges that models can be tested on.

Finally, we argued that general questions, and
answer and question ambiguities in why-questions
can create challenges for benchmarking. We pro-
pose that removing general questions and resolving
ambiguities in why-questions can lead to more ac-
curate evaluation of systems. We hope that the
review of this potential challenges and the anal-
ysis of the datasets listed in this paper will help
to further the progress in Narrative Why-Question
Answering.

Limitations

In the paper, we focus on free-form/span-based and
multiple-choice question answering datasets and
do not consider other types of QA datasets, such as
the cloze test. We also do not focus on datasets that
have a mix of narrative and expository contexts.
Also, although we took the effort to carefully list
the challenges relevant to Narrative Why-Question
Answering, it is possible that we missed something;
thus, the list of challenges presented in this paper
should not be considered complete.
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Abstract

This work presents a two-stage approach for
tackling low-resource AMR-to-text generation
for Brazilian Portuguese. Our approach con-
sists of (1) generating a masked surface real-
ization in which some tokens are masked ac-
cording to its Part-of-Speech class and (2) infill-
ing the masked tokens according to the AMR
graph and the previous masked surface realiza-
tion. Results show a slight improvement over
the baseline, mainly in BLEU (1.63) and ME-
TEOR (0.02) scores. Moreover, we evaluate
the pipeline components separately, showing
that the bottleneck of the pipeline is the masked
surface realization. Finally, the human revision
suggests that models still suffer from halluci-
nations, and some strategies to deal with the
problems found are proposed.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism that encodes the meaning of a
sentence into a labeled directed and rooted graph
(Banarescu et al., 2013). This representation com-
prises semantic information related to semantic
roles, named entities, and co-references, among
others.

AMR is a widely-studied research topic in the
semantic representation field and has been proven
helpful in many Natural Language Processing tasks
(Liao et al., 2018; Song et al., 2019). Its success is
partially based on its broad use of mature linguistic
resources, such as PropBank (Palmer et al., 2005),
and its attempt to abstract away from syntax. Fig-
ure 1 shows an example of an AMR graph and its
corresponding PENMAN notation for the sentence
“The boy must not go.".

AMR-to-text generation aims to “translate" an
Abstract Meaning Representation graph into its
corresponding text. This task has been widely tack-
led by diverse approaches, starting from statistical,
transducer-based and transition-based ones (Pour-

(o / obligate-01
:ARG2 (g / go-02

:ARG0 (b / boy)
:polarity -))

o / obligate-01

g / go-02

b / boy

-

:ARG2

:ARG0

:polarity

(A) Graph Representation

(B)   PENMAN notation

Figure 1: AMR example for the sentence “The boy must
not go."

damghani et al., 2016; Flanigan et al., 2016; Lam-
pouras and Vlachos, 2017), until end-to-end neural
ones (Mager et al., 2020; Ribeiro et al., 2021a),
recently.

In particular, end-to-end neural models -mainly
those based on pre-trained models- have largely
outperformed the initial methods, achieving state-
of-the-art results (Ribeiro et al., 2021b). These
models can generate fluent text. However, they are
prone to generate hallucinations, i.e., texts that are
irrelevant to or contradicted with the input (Reiter,
2018).

Another drawback is that these models are usu-
ally data-hungry, i.e., they need to be trained on
a large dataset to achieve a good performance. It
can be a problem when we deal with low-resource
domains, languages, or tasks (Sobrevilla Cabezudo
and Pardo, 2022). Even when the results may be
better than those obtained by statistical methods,
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they are still far from good results. For example,
Ribeiro et al. (2021b) show that fine-tuning T5
(Raffel et al., 2020) on a small portion of a big
dataset (∼500 instances) produces a∼10-15 BLEU
score.

In general, an approach to have more control
over the decoding process (and avoid hallucina-
tions) is to use a pipeline-based method in which
the model of each pipeline’s module is imple-
mented with neural models (Castro Ferreira et al.,
2019; Ma et al., 2019; Puduppully and Lapata,
2021). Another alternative is to use templates, infill
concepts in these templates, and then define a strat-
egy to transform them into sentences/paragraphs
(Kasner and Dušek, 2020; Mota et al., 2020). Both
approaches have proven to be helpful in text gener-
ation tasks. However, the main issue for the latter
one is that it only can be applied in restricted do-
mains as it is necessary to define a set of templates.

In this work, we approach the AMR-to-text gen-
eration task in two stages. Firstly, generating a
masked surface realization in which some tokens
are masked according to its Part-of-Speech (POS)
classes. Then, finally, infilling the masked tokens
according to the AMR graph and the previous
masked surface realization1.

The intuition for masking some tokens this way
is that some POS classes are more difficult to be
predicted during text decoding and can harm the
performance. On the other hand, filling-in-the-
blank is commonly used on current SotA archi-
tectures, such as T5 (Raffel et al., 2020) during the
pre-training phase. This way, we can leverage the
learned knowledge to infill the masked tokens in
the previous stage adequately.

Experiments are conducted on low-resource an
AMR-to-text generation task for Brazilian Por-
tuguese (Inácio et al., 2022) to show how this
method behaves even when a large dataset is un-
available.

In general, our main contributions are:

• we propose a simple two-stage method that
consists of generating masked surface realiza-
tion and infilling the masked tokens with a
transformer-based architecture;

• we conduct a manual revision on the outputs
of the best approaches and the end-to-end ap-
proach.

1The code is available at https://github.com/
msobrevillac/DICO-AMR2Text.

2 Related Work

AMR-to-Text generation Modular approaches
have been mainly focused on converting AMR
graphs into syntax trees via transition-based meth-
ods (Lampouras and Vlachos, 2017), end-to-end
methods (Cao and Clark, 2019) or rule-based graph-
transducers (Mille et al., 2017) and use an off-the-
shelf method (neural or statistical) to generate the
text. These methods usually have got a low perfor-
mance on test sets (May and Priyadarshi, 2017).

AMR is more open-ended than other datasets
such as WebNLG (Gardent et al., 2017). This way,
extracting templates can be a complex task. Some
attempts to get templates in the form of rules are
presented by Flanigan et al. (2016) and Song et al.
(2017). However, these approaches need some
manually created rules and have been surpassed
by current models.

On the other hand, current neural models have
achieved SotA results. However, they need a large
dataset to get high performance. On the contrary,
a small portion of an extensive dataset produces
lower scores (Ribeiro et al., 2021a,b)2.

Data-to-Text generation Currently, most data-
to-text methods are based on end-to-end neural
approaches. In particular, methods that fine-tunes
a pre-trained model, such as BART (Lewis et al.,
2020) or T5 (Raffel et al., 2020), on its specific
generation task have achieved SotA results.

Other works have tried to approach this kind of
tasks using pipeline approaches (Castro Ferreira
et al., 2019; Ma et al., 2019; Puduppully and Lap-
ata, 2021) and template-based approaches (Kasner
and Dušek, 2020; Mota et al., 2020). In partic-
ular, pipeline approaches have advantages in low-
resource settings and unseen domains. On the other
hand, template-based approaches tend to infill the
templates with concepts and then use them to gen-
erate the complete sentence.

3 Experimental Setup

3.1 Dataset
We conduct all experiments on the journalistic sec-
tion of the AMR-PT corpus (Inácio et al., 2022)
(named AMRNews)3. The AMRNews corpus com-
prises 870 sentences with up to 23 tokens each from

2Ribeiro et al. (2021b) show an impressive improvement
using structural adapters. However, this is not part of this
study.

3AMRNews is freely available at https://github.com/
nilc-nlp/AMR-BP/tree/master/AMRNews.
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Brazilian news texts manually annotated according
to adapted AMR guidelines (Sobrevilla Cabezudo
and Pardo, 2019). Besides, it is divided into 402,
224, and 244 instances for training, development,
and testing, respectively.

3.2 Architecture

Aiming to leverage the “fill-in-the-blank" potential
of current pre-trained neural models, we propose
a two-stage approach consisting of generating a
masked surface realization and then infilling the
masked tokens using a pre-trained model. Figure 2
shows an example of the whole process.

3.2.1 Masked Surface Realisation

The first stage involves generating a sentence corre-
sponding to an AMR graph in which some tokens
are masked. The idea behind this is that some to-
kens can be more difficult to be predicted. This
way, we can mask them and let the next stage com-
plete the masked tokens.

To decide what tokens should be masked, we use
Part-of-Speech-based criteria. This way, we group
all Part-of-Speech (POS) classes into main classes
according to their function. For example, pronouns,
nouns, and proper nouns are usually actors/places
in a sentence, while verbs represent relations. This
way, the main classes are: “substantivos" (nouns),
“verbos" (verbs), “qualificadores" (qualifiers), and
“outros" (others). Table 1 shows the main and POS
classes included in each.

Main Class Part-of-Speech
Substantivos (nouns) pronoun, noun, proper noun
Verbos (verbs) auxiliary verb, verb
Qualificadores (qualifiers) adverb, adjective
Outros (others) other Part-of-Speech

Table 1: Main and POS classes used in experiments

We train a model for each main class separately.
Besides, we train a model for all main classes to-
gether. The input consists of a prefix and an AMR
graph in the PENMAN notation (eliminating the
frameset numbers). We use the expression “mas-
carar X desde amr:" (“Mask X from amr:") as pre-
fix for each instance, where “X" is an specific main
class. The output is the corresponding sentence,
but words that belong to the target main class are
masked. Box 1 from Figure 2 shows an example of
this sub-task.

For experiments, we fine-tune the Portuguese

T5 (PTT5) (Carmo et al., 2020)4 on our corpus.
Among the hyperparameters, we use AdamW op-
timizer with a learning rate of 5e-4, a max source
and target length of 120 and 80 tokens, a batch
size of 8, and a gradient accumulation of 4. The
model trains by 12 epochs and is evaluated after
each epoch. We use perplexity as evaluation crite-
ria, and the training is halted if the model does not
improve after 4 epochs.

3.2.2 Word Infilling
The second stage in the pipeline consists of infill-
ing the masked tokens. In general, the task can be
defined as follows: given an AMR graph in a simi-
lar format to the one used at the previous stage and
a masked sentence, the model predicts the masked
words.

Each instance in the corpus is formatted as fol-
lows: a prefix, the AMR graph similar to the one
used in the previous stage, the word “contexto:"
(context), and the masked sentence. Box 2 from
Figure 2 shows an example of the input and out-
put. We use the expression “preencher amr:" (“fill
amr:") as prefix and train a model for each main
class separately and another model for all main
classes together.

Similar to the previous stage, we fine-tune PTT5
on our task. The main reason use PTT5 is that it
was pre-trained for a similar task (’filling-in-the-
blank’) (Carmo et al., 2020; Raffel et al., 2020).
This way, we aim to leverage the learned knowl-
edge in our use case. We use the same hyperparam-
eters as the used ones in the first stage; however,
we modify the source length to 200 tokens.

4 Results and Discussion

Table 2 shows the overall results for all the trained
models on test set in terms of BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
chrF++ (Popović, 2017), and BERTScore (Zhang
et al., 2020) evaluation metrics56. In addition, we
report the results for a baseline that generates sen-
tences with no masked tokens. This baseline is
obtained by fine-tuning PPT5 on our task. How-
ever, the input consists of a prefix “gerar texto
desde amr:" (“generate text from amr:"), followed

4Available at https://huggingface.co/unicamp-dl/ptt5-base-
portuguese-vocab.

5We execute 4 runs for each experiment and show the mean
and standard deviation.

6Metrics are calculated by using the code available at
https://github.com/WebNLG/GenerationEval.
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preencher amr: (a / alegar :arg0 (e / ela) :arg1 (p / possible :polarity - :arg1 
(f / falar :arg0 ela-ref :arg1 (c / cliente :poss ela-ref)))) contexto: ela 
<extra_id_0> que não <extra_id_1> <extra_id_2> sobre seus clientes .

mascarar verbos desde amr: (a / alegar :arg0 (e / ela) :arg1 (p / possible 
:polarity - :arg1 (f / falar :arg0 ela-ref :arg1 (c / cliente :poss ela-ref))))

ela <extra_id_0> que não <extra_id_1> <extra_id_2> sobre seus clientes .

<extra_id_0> alega <extra_id_1> pode <extra_id_2> falar

IN:

OUT:

IN:

OUT:

(a / alegar-01
:ARG0 (e / ela) 
:ARG1 (p / possible-01

:polarity -
:ARG1 (f / falar-01

:ARG0 e 
:ARG1 (c / cliente 

:poss e))))

Ela alega que não pode falar sobre seus 
clientes.
(She claims she can't talk about her 
customers.)

(A) AMR (B) Reference
1

2

Figure 2: Pipeline Example. Box 1 describes the input and output for the masked surface realization module, and
Box 2 illustrates the input and output for the word infilling module.

by an AMR graph represented by the PENMAN
notation in a similar way as all already mentioned
models, and the output is the original sentence.

Overall, results show a slight improvement over
the baseline when we use the model trained on all
main classes, mainly in BLEU (+1.63) and ME-
TEOR (+0.02) scores. Moreover, the best main
classes to be masked seem to be “verb" and “quali-
fier". On the other hand, masking nouns and other
POS classes harm the decoding performance. We
might interpret this result as the characters in a sen-
tence, and some connections between chunks are
the most important in the realization of a sentence.

Another point to note is that it is better to train
models on all main classes together instead of sep-
arately. A possible explanation is that more data
can lead to better results. Also, examples from
other main classes serve as negative examples for
a specific main class, and it helps to improve its
performance.

In order to verify which stage of the pipeline
is affecting the overall performance, we evaluate
each module separately. Table 3 and 4 shows the
performance on both modules in terms of BLEU,
METEOR and chrF++. However, for word infill-
ing, we only evaluate BLEU-2 and BLEU-3, as the
number of tokens to be predicted is three as most.

In addition, we evaluate METEOR.

Concerning the Mask Surface Realization task,
Table 3 indicates that verb masking leads to the
best performance. A possible explanation for this
result is that, as mentioned before, participants, sit-
uations, or locations in a sentence and connections
between chunks are the most important and the
easiest classes to predict during decoding. Also,
it is worth noting that the verbs and qualifiers are
less frequent in our dataset, as we can find 1.37-
1.47 verbs/qualifiers per sentence. Therefore, it can
make decoding easier than nouns (2.23 nouns per
sentence).

Table 4 shows the opposite result, as the verb
infilling is the most challenging task. However,
we note that the values for BLEU-3 in the case
of nouns and others are small. This way, it can
confuse the infilling order in sentences with more
tokens belonging to these classes. Moreover, we
note that METEOR score for verbs less penalizes
the performance (in comparison with BLEU), sug-
gesting that the model can predict a different con-
jugation of the expected word.

It is worth noting that, in general, the bottle-
neck of the whole pipeline is the masked surface
realization task, as values are similar to the over-
all performance. Even the verb-focused decoding,
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BLEU METEOR chrF++ BERTScore
Baseline 10.39 ± 0.48 0.29 ± 0.01 0.41 ± 0.01 0.82 ± 0.00

SEP

Noun 5.32 ± 0.56 0.22 ± 0.01 0.35 ± 0.01 0.80 ± 0.01
Verb 8.95 ± 1.46 0.27 ± 0.01 0.39 ± 0.02 0.81 ± 0.00
Qualifier 9.44 ± 0.87 0.27 ± 0.01 0.39 ± 0.01 0.81 ± 0.00
Other 8.21 ± 0.99 0.27 ± 0.01 0.39 ± 0.02 0.81 ± 0.01

ALL

Noun 8.87 ± 0.69 0.28 ± 0.01 0.40 ± 0.02 0.81 ± 0.01
Verb 12.02 ± 2.13 0.31 ± 0.03 0.42 ± 0.03 0.83 ± 0.01
Qualifier 10.34 ± 1.34 0.30 ± 0.02 0.42 ± 0.02 0.83 ± 0.01
Other 7.74 ± 1.71 0.28 ± 0.01 0.42 ± 0.02 0.81 ± 0.00

Table 2: Overall Results on test set. Experiments in block “SEP" are the ones in which a model is trained on each
main class separately, and “ALL" are the ones in which a model is trained on all main classes together, but we
evaluate it individually.

having the worst performance on the word infilling
task, achieves the highest performance because the
previous task gets the best one. A possible expla-
nation for this problem is how the generation is
performed. We use an encoder-decoder architec-
ture in which the generation of a token depends on
the previously generated tokens. This way, adding
mask tokens in training could make it more diffi-
cult as the pre-trained model never saw these tokens
in a generation task (these were used for training
the blank infilling task). Among the alternatives to
solve this issue, we could explore other strategies to
determine the less confident tokens in a generated
sentence and mask them for the next stage. Also,
we could try a non-autoregressive model that can
overcome the problem of dependency mentioned
before (Su et al., 2021).

BLEU METEOR chrF++

SEP

Noun 6.90 ± 1.05 0.45 ± 0.02 0.48 ± 0.02
Verb 10.91 ± 0.48 0.42 ± 0.02 0.47 ± 0.02
Qualifier 8.43 ± 0.82 0.30 ± 0.01 0.39 ± 0.01
Other 10.11 ± 0.74 0.53 ± 0.03 0.56 ± 0.03

ALL

Noun 9.41 ± 1.65 0.49 ± 0.03 0.51 ± 0.03
Verb 12.31 ± 1.52 0.45 ± 0.03 0.49 ± 0.04
Qualifier 10.31 ± 1.27 0.32 ± 0.03 0.40 ± 0.03
Other 10.22 ± 2.67 0.54 ± 0.04 0.56 ± 0.04

Table 3: Results on Mask Surface Realisation on dev
test.

5 Manual Revision

We conduct a manual revision of the outputs for
each model in order to check the main and most
common errors. In particular, we select the two best
models in our experiments, i.e., the ones trained
on all main classes but focusing on masking/filling
verbs and qualifiers.

BLEU-2 BLEU-3 METEOR

SEP

Noun 33.80 ± 3.83 11.45 ± 3.33 0.46 ± 0.03
Verb 18.53 ± 2.22 - 0.41 ± 0.01
Qualifier 44.98 ± 9.12 - 0.57 ± 0.01
Other 40.35 ± 3.99 18.48 ± 4.02 0.52 ± 0.02

ALL

Noun 41.20 ± 3.07 22.20 ± 3.43 0.57 ± 0.02
Verb 20.95 ± 3.77 - 0.50 ± 0.02
Qualifier 39.05 ± 10.21 - 0.65 ± 0.01
Other 40.90 ± 4.70 19.55 ± 4.13 0.53 ± 0.03

Table 4: Results on Word Infilling on dev set

We analyze 35 instances from the test set and
classify the outputs into four classes: (1) Accu-
rate (“Acc"), for accurate outputs,(2) Hallucination
(“Hall"), for outputs that are not related to the refer-
ence, (3) Cut chunk, for outputs that contains only
a portion of the reference, and (4) Small Changes,
for outputs with slightly different from the refer-
ence (some tokens are different). Table 5 shows the
frequency of each class for all evaluated models.

In general, the model trained on all main classes,
but focusing on verbs got the best results. It is
worth noting the high number of hallucinations in
all models, mainly when longer sentences are eval-
uated. Also, the cut chunks happen in the same
cases. Moreover, there are several instances where
only changing a simple word (or two) would be
necessary to make the output similar to the ref-
erence. This problem happens mainly with con-
nectors such as “em" (“in" or “at") or “de" (“of")
(words highlighted in red in Figure 3) and with bad
conjugations in the case of the verbs.

Figure 3 shows three examples. The first exam-
ple shows that the model focused on verbs gets an
accurate output (example 1). The second example
shows that the outputs for models focused on verbs
and qualifiers can generate paraphrases instead of
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Acc Hall Cut Chunk Small Changes
Baseline 9 16 4 6
ALL-Verb 14 12 1 8
ALL-Qualifier 9 18 1 7

Table 5: Number of accurate outputs ("Acc") and errors
in the human evaluation.

the same sentence; however, these are accurate too.
Finally, the third example is a case in which the
models generate hallucinations (“eua investiram
em 2010."), outputs with cut chunks (“investir em
os eua.") or small changes.

Reference

Baseline

ALL-Verb

ALL-Qualifier

nada disso é criminoso . 
none of this is criminal.
nada de isso . 
none of that.
nada de isso é criminoso . 
none of this is criminal.
nada de criminoso . 
nothing criminal.

Reference

Baseline

ALL-Verb

ALL-Qualifier

no vestiário , passou mal .
in the locker room , he felt sick .
passou mal .
he was feeling sick
ele passou mal no vestiário .
he got sick in the locker room.
passou mal no vestiário .
he got sick in the locker room.

Reference

Baseline

ALL-Verb

ALL-Qualifier

desde 2010 , o empresário investe nos eua .
since 2010, the businnessman invests in the usa.
eua investiram em 2010 . 
usa invested in 2010.
investir em os eua .
invest in the usa.
em 2010 , o empresário não investiu no eua .
in 2010, the businessman did not invest in the usa.

Figure 3: Outputs comparison between the reference,
the baseline, and the two best models in our experiments.
The first lines for each model are the sentences gener-
ated in Brazilian Portuguese, and the next ones are the
corresponding English translations.

6 Conclusion and Further Work

This work presents a simple two-stage approach
to the low-resource AMR-to-text generation task.
The approach consists of generating a masked sur-
face realization in which some tokens are masked
according to a POS class criteria and infilling the
masked tokens according to the AMR graph and
the previous masked surface realization.

Results show a slight improvement over the base-
line, mainly in BLEU (1.63) and METEOR (0.02)
scores. However, it is necessary to fine-tune the
model on all the sub-corpus created together. Be-
sides, we can note that verb masking seems to be
the best strategy in this approach.

On the other hand, we note that the bottleneck
of this approach is the masked surface realization
model, as some generated tokens are different and
unrelated to the original reference (hallucinations),
and some tokens are omitted from the original refer-
ence. Some possible explanations for this problem
are how the generation is performed -as each out-
put word is conditioned on previously generated
outputs-and the need to constrain the decoding pro-
cess.

As further work, we plan to explore strate-
gies to enforce the model to cover all the AMR
concepts in the masked generated sentence and
non-autoregressive text generation with pre-trained
models, similar to Su et al. (2021). Besides, we
plan to explore other strategies to mask tokens ac-
cording to its confidence in decoding instead of
using a POS-based one as the later can add more
complexity to the task. Finally, we plan to extend
this work to English AMR corpus, in order to make
a better comparison in terms of generalization.

Limitations

This work tackles the AMR-to-Text generation task
with a pipeline approach, and the results are similar
to those obtained for previous work with the same
amount of data (∼10-15 BLEU score). However,
the performance could be different as the lengths
of the sentences in our task are up to 23 tokens, and
the sentences evaluated in works for English are
longer.

Other limitation is related to the criteria used
for masking some tokens as it can introduce more
complexity, mainly for low-resource languages.
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Abstract

Expressing natural language descriptions of
structured facts or relations – data-to-text gen-
eration (D2T) – increases the accessibility of
structured knowledge repositories. Previous
work (Nan et al., 2020) shows that pre-trained
language models (PLMs) perform remarkably
well on this task after fine-tuning on a signifi-
cant amount of task-specific training data. On
the other hand, while auto-regressive PLMs
can generalize from a few task examples, their
efficacy at D2T is largely unexplored. Further-
more, we have an incomplete understanding
of the limits of PLMs on D2T. In this work,
we conduct an empirical study of both fine-
tuned and auto-regressive PLMs on the DART
multi-domain D2T dataset. We consider their
performance as a function of the amount of
task-specific data and how the data is incor-
porated into the models: zero and few-shot
learning, and fine-tuning of model weights. In
addition, we probe the limits of PLMs by mea-
suring performance on subsets of the evaluation
data: novel predicates and abstractive test ex-
amples. To improve the performance on these
subsets, we investigate two techniques: pro-
viding predicate descriptions in the context and
re-ranking generated candidates by information
reflected in the source. Finally, we conduct a
human evaluation of model errors and show
that D2T generation tasks would benefit from
datasets with more careful manual curation.

1 Introduction

Structured data repositories, or knowledge bases,
contain a wealth of information organized to facil-
itate automated access and analysis. Automated
data-to-text (D2T) generation systems can trans-
form and organize this knowledge into natural lan-
guage text snippets that enable broader access (Gatt
and Krahmer, 2018). These systems take as input
a set of relations, where each relation is a (subject,

∗Work done during an internship at Bloomberg.
†Now at Google Research.

predicate, object) triple. Applications of this tech-
nology include story or dialogue generation (Moon
et al., 2019), open-domain question-answering (Ma
et al., 2021; Fan et al., 2019), and text summariza-
tion (Wiseman et al., 2017). Domains span journal-
ism (Leppänen et al., 2017), weather (Ramos-Soto
et al., 2014; Mei et al., 2015), finance, sports (Pla-
chouras et al., 2016; Chen and Mooney, 2008;
van der Lee et al., 2017), and summarizing patient
medical histories (Portet et al., 2009).

Historically, D2T systems included pipeline
approaches with customized models (Gardent
et al., 2017), but have now shifted to pretrained
Transformer-based language models (PLMs) (De-
vlin et al., 2018; Liu et al., 2019; Radford et al.,
2019). Recent examples include Mager et al.
(2020) and Kale and Rastogi (2020), who use mod-
els like GPT-2 (Radford et al., 2019) and T5 (Raffel
et al., 2019) to generate natural language descrip-
tions for relations. To support these types of sys-
tems, Nan et al. (2020) introduced DART, a large
open-domain data-to-text generation corpus. Mod-
els trained on DART, both larger and more diverse
than previous corpora, improve the performance
of BART (Lewis et al., 2019) and T5 on the stan-
dard WebNLG challenge (Gardent et al., 2017).
This approach requires a PLM to be fine-tuned on a
task-specific in-domain dataset (Howard and Ruder,
2018; See et al., 2019; Keskar et al., 2019). The
promising results achieved by fine-tuning on DART
belie the reality – in spite of DART’s aspirations,
most domains and relations that one could express
fail to appear in DART.

A variety of methods have emerged within PLM
research to address domain or task adaptation. For
example, auto-regressive models, like GPT, have
demonstrated improved performance on a wide
range of tasks via few-shot learning from a handful
of examples (Chen et al., 2019). Other strategies,
such as prompt tuning (Lester et al., 2021), can
adapt PLMs to specific down-stream tasks by up-
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dating only a small subset of model parameters.
While great progress has been made in utiliz-

ing PLMs for D2T generation, the path forward is
unclear, as we have an incomplete understanding
as to which examples they fall short on and the
quantity of training resources they need to achieve
acceptable performance. More specifically, it is
not clear which classes of D2T examples are chal-
lenging for these models. In addition, we do not
fully understand what classes of errors PLMs are
prone to and how the adaptation mechanism (e.g.,
k-shot learning, fine-tuning) affects the prevalence
of these errors.

In this work, we conduct an evaluation of PLMs
for D2T generation, focusing on two classes of
challenging examples: examples with novel (un-
seen) relations (predicates) and examples where
the source and target sequences are lexically very
different (not amenable to purely extractive D2T
systems). We consider how GPT-2, adapted with
few-shot learning, prompt tuning, and the addi-
tion of predicate descriptions, performs on these
example classes as compared to a state-of-the-art
fine-tuned T5. We show that while GPT-2 performs
poorly on DART in the 0-shot setting, its perfor-
mance can be drastically improved by employing
the above techniques. We make the following con-
tributions:

• We evaluate GPT2-XL and fine-tuned T5 for
D2T generation. While the 0-shot GPT model
performs poorly, we evaluate several strate-
gies to improve performance, including few-
shot learning and prompt tuning. Both pro-
vide significant improvements on the DART
dataset.

• We compare model performance on two
classes of difficult examples: examples with
unseen predicates, and abstractive examples
(examples where source and target sequences
are lexically dissimilar). We investigate
whether including predicate descriptions in
the prompt can improve the ability of PLMs
on these classes.

• We conduct a human evaluation of PLMs to
quantify the prevalence of hallucination and
missing information in generations as a func-
tion of the model adaptation technique. We
find that a re-ranking strategy for few-shot
GPT2-XL, despite having little effect on au-
tomatic metrics like BLEU, reduces the inci-

dence of missing information, without requir-
ing additional training data.

Finally, we provide recommendations for future
model and dataset research in D2T generation.

2 Background and Related Work

In the task of data-to-text generation, we are pro-
vided a set of triples that include a predicate,
subject, and object. The system then produces
a text snippet expressing the predicate in natu-
ral language. Figure 2 shows examples of pred-
icates about sports. The system can be given a
set of triples with related predicates (e.g., CLUB,
LEAGUE, FORMER_TEAM) and must gener-
ate text that expresses the facts encoded by these
relations. The resulting text is typically evaluated
by comparison to a set of reference texts, which
represent various ways of expressing this triple set.

Variations in the formulation of this task depend
on the structure of the relations (e.g., tables, triples),
the domain of the task (single or open domain), and
the source of the data (manually created, automati-
cally derived).

Harkous et al. (2020) follow a generate-and-re-
rank paradigm to improve the semantic fidelity
of the generated text by fine-tuned GPT-2 model.
More recently, Ribeiro et al. (2020) propose a
new task-adaptive pretraining strategy to adapt
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2019) models for data-to-text generation. They
show that adding an intermediate task-adaptive pre-
training step between the task-independent pretrain-
ing and fine-tuning further improves the perfor-
mance of these models on data-to-text generation.

Despite the progress of these models, it is not
clear which types of D2T examples are most chal-
lenging for PLMs or what errors are prevalent in
generations. Futhermore, how does PLM adap-
tation (tuning/prompting) interact with the occur-
rence of these errors. On the other hand, D2T
datasets are not readily available in many domains.
Weakly supervised annotation methods (e.g., based
on identifying sentences in a corpus that are likely
to express a data record) require significant manual
effort and often result in annotations with low fi-
delity between data records and the corresponding
textual expression (Mintz et al., 2009). Training
NLG models on such data can result in generations
with missing information or hallucination (Dušek
et al., 2019; Dziri et al., 2022a,b). These issues ren-
der the path forward for D2T generation research
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Zero-shot Prompt

Translate Graph to English:

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Zero-shot Prompt + Relation Description

Translate Graph to English:

Definition: club is an organization of players and man-
agers associated with a particular football team.

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Figure 1: A customized 0-shot prompt for GPT

unclear.

3 Model Adaptation

As a supervised task, D2T generation systems rely
on previously observed examples to learn the cor-
rect generation or level of required "re-writing"
for a predicate. On the other hand, large auto-
regressive PLMs (such as GPT2-XL) are able to
perform D2T generation without any explicit fine-
tuning at all. However, their efficacy on D2T
and potential shortcomings are largely unexplored.
How well do PLMs perform on relations with a
novel predicate? Do PLMs overly rely on copy-
ing verbatim from the input or are they capable
of abstraction when required? What classes of er-
rors are prevalent in the generations and how do
they interact with the choice of adaptation mech-
anism? Our focus is on the analysis of PLMs for
D2T generation.

We study this problem using two types of PLMs:
auto-regressive models like GPT-2 and “supervised”
models like T5 (Raffel et al., 2019). While prior
work has demonstrated that T5 achieves state-of-
the-art results on D2T, these “supervised” models1

expect task-specific training data, whereas gener-
ative PLMs excel at adapting to new tasks. Since
auto-regressive models have not been fully bench-
marked for D2T, we will evaluate them in multiple
settings and compare to T5. For both, we will ex-
plore the effect of varying training size and their
pathological behaviors.

1We note that new findings (Sanh et al., 2021) has demon-
strated T5 can handle 0-shot task adaptation with the right
prompts; this is an evolving research area.

Few-shot Prompt

Translate Graph to English:

Graph: <H> Paulo Sousa <R> CLUB <T> ACF
Fiorentina
English: Paulo Sousa plays for ACF Fiorentina.
###

Graph: <H> Dave Challinor <R> CLUB <T> Col-
wyn Bay F.C.
English: Dave Challinor plays for Colwyn Bay F.C.
###

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Figure 2: A customized 3-shot prompt for GPT

While PLMs can be fine-tuned, their increasing
size and training requirements disfavors this ap-
proach. Instead, current work assumes a single
PLM capable of performing multiple downstream
tasks (Lester et al., 2021). We adopt GPT2-XL, a
decoder-only Transformer (Vaswani et al., 2017)
with 1.5B parameters pre-trained for language mod-
eling (Radford et al., 2019).2 We utilize GPT2-
XL as a D2T generation model by varying the
amount of supervised information available. In-
stead of fine-tuning GPT2-XL, we investigate both
few-shot learning (Radford et al., 2019), which is
better suited to settings where little training data is
available, and prompt tuning, which enables us to
tractably update a subset of model weights in spite
of GPT2-XL’s large parameter count.

3.1 0-shot Setting

We start by evaluating GPT2-XL in the 0-shot set-
ting, an especially challenging setting due to a lack
of coverage in the training data of pairings between
structured records and unstructured text (Gong
et al., 2020). Ribeiro et al. (2020) handled this
by including an additional pretraining step. Our
focus is on an off-the-shelf GPT2-XL model. We
format the input data using the D2T generation in-
fix and prefix formatting of Ribeiro et al. (2020)
(example in Figure 1). We provide no additional
context or task-specific training.

2WebText (the training dataset) includes the content of
more than 8 million documents with outbound links from
Reddit, a social media platform. Wikipedia (the main data
source for DART) is excluded.
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3.2 Few-shot Setting

We next consider a few-shot setting by augment-
ing the format of the 0-shot input with reference
generations from the training corpus. We evaluate
GPT2-XL under the 3-shot learning setting (ex-
ample in Figure 2). For predicates “seen” in the
training set, we select three shots with the same
predicate uniformly at random from the training
set. For “unseen” predicates – predicates not cov-
ered in the training set – we randomly select any
three examples. Previous work has found that care-
ful shot selection based on input text similarity can
be beneficial (Liu et al., 2021a). However, it’s less
clear how this would apply to unseen predicates.
We leave this for future work.

3.3 Prompt Tuning

The expected task for a PLM is indicated by the
choice of prompt; ours (Figure 1) follows prior
work (Ribeiro et al., 2020; Nan et al., 2020). The
prompt includes a prefix (“Graph”) and an infix
token (“English”) that indicate the start of the in-
put and the start of the expected output. Auto-
regressive language models are sensitive to the
choice of prompt, and significant effort is needed
to craft effective prompts (Liu et al., 2021b).

Lester et al. (2021) proposed an alternate
method: prompt tuning. Instead of using discrete
prompt tokens, they use “soft-prompts” which are
pseudo-token embeddings that are learned during
fine-tuning, with all other model parameters held
fixed. We follow previous work (Lester et al.,
2021; Chowdhury et al., 2022) and use a generic se-
quence of tokens to denote the prompt prefix p1:s =
(p1, p2, ....ps) and infix q1:t = (q1, q2, ....qt). The
PLM is provided the input sequence p1:s <H> x1
<R> x2 <T> x3 q1:t, where x1, x2 and x3 are head,
predicate (relation), and tail strings from the exam-
ple.

The objective during prompt tuning is to maxi-
mize the probability of output sequence y1:m given
input data record, prefix p1:s, and infix q1:t. Dur-
ing training, however, only the embedding of the
prompt tokens can be updated. Unlike fine-tuning
which updates all model parameters on the target
task, prompt tuning tunes a small number of pa-
rameters (less than 0.01% of all parameters) while
keeping most of the language model fixed. While
this requires the use of the full training set, as op-
posed to few-shot learning, it illuminates the abili-
ties of GPT2-XL given access to such data.

3.4 Domain Knowledge

We explore another way of improving model per-
formance for novel predicates and for examples
where significant re-writing is needed: providing
definitions for predicates. In many domains, we
may find a knowledge base containing many pred-
icates, and definitions for those relations, but no
examples of sentences expressing those relations.
In these cases, we want to enhance the context of
the PLM with predicate definitions. For example,
for the tuple <H> Genuine Parts <R> DISTRIBU-
TOR <T> automotive and industrial replacement
parts we may know that DISTRIBUTOR means
"someone who markets merchandise". This def-
inition can be helpful to a model that was never
exposed to this predicate at training time.

We source predicate definitions for our data from
WordNet, a lexical database in English (Miller,
1995), and WikiData.3 We use WikiData since
Wikipedia was the source of many relations in the
DART data.4 An example of the input prompt
enhanced with the predicate definition appears in
Figure 1. We also consider using predicate descrip-
tions in combination with prompt tuning.

3.5 Fine-tuned PLM

Our second model type is T5large (Raffel et al.,
2019), a Transformer encoder-decoder architecture
with 770M parameters for text generation. The
model is pretrained with a denoising objective on
a variety of NLP tasks and web-extracted C4 cor-
pus. Unlike GPT2-XL, the denoising objective
means an off-the-shelf model performs poorly on
unseen tasks, such as D2T generation (Raffel et al.,
2019; Lester et al., 2021). We follow Nan et al.
(2020) and fine-tune T5large on the DART train-
ing set. While this model requires a large amount
of supervised examples, it attains state of the art
performance on this task.

4 Dataset

For our experiments we use DART (Nan et al.,
2020), the largest publicly available open-domain
data-to-text generation corpus. DART relies on
data from Wikipedia as well as two other com-
monly used data sets for this task: WebNLG (Gar-

3wikidata.org
4DART includes predicates such as

MARGIN_OF_VICTORY and INTERMEDI-
ATE_(SOUTH)_WINNERS. Since descriptions for such
relations cannot be found verbatim in WordNet or WikiData,
no description is added to those cases.
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Train Dev Test
Size 30,526 2,768 5,097
#Unique relation types 4,221 419 494
#Ref per example min/avg/max 1/2.0/48 1/2.5/33 1/2.4/35
#Triples per record min/avg/max 1/3.3/10 1/3.7/8 1/3.6/7

Table 1: Descriptive statistics of the DART version 1.1.1

dent et al., 2017) and E2E (Novikova et al., 2017).
Each instance includes a triple set (a set of one
or more predicates and their labels) and a natural
language reference that expresses the facts in the
triple set. We choose DART due to its size and
wide coverage of predicate types. Relevant DART
statistics appear in Table 1. We use the original
train, development, and test splits.5 6

Data Splits The DART test set includes 5,097
examples, of which 4,826 (94.4%) include at least
one relation type that appears in the training set.
We refer to this subset as the SEEN partition. The
remaining 271 instances (5.3%) are considered UN-
SEEN.7 To support additional system analysis, we
create another partition of the test data: EASY and
HARD. HARD examples are identified by similarity
of the input triple to the reference text. In many
cases, the reference has high lexical overlap with
and similar meaning to the input, while in other
cases the generation is non-trivial (see Appendix A
for examples). To create the EASY and HARD par-
titions, we use BERTScore (Zhang et al., 2019) to
compute similarity of the input triple with respect
to the reference. Examples are ranked based on
BERTScore (F1) and the top 10% (510 examples)
comprise the EASY partition, while the bottom 10%
comprise the HARD partition. By using BertScore
to separate EASY and HARD examples, we are not
relying purely on lexical overlap to score the diffi-
culty of an example.

5 Experimental Setup

Model Training We use the pretrained mod-
els GPT2-XL and T5large released by Hugging

5Nan et al. (2020) use version v1.0.0 of DART, whereas
we use the publicly available version, v1.1.1.

6In the DART dataset, some data records are paired with
more than 30 references. Nan et al. (2020) do not report the
number of references used for their experiments. However in
their adaptation of Ribeiro et al. (2020)’s fine-tuning script
they only use three references. We follow their methodology
and only use up to three references per example.

7Note that Nan et al. (2020) report performance on the
“unseen” portion of WebNLG. “Unseen”, in this case, means
that the relations do not appear in the WebNLG training data;
there is no guarantee that they do not appear in the DART
training data. Our splits ensure that the UNSEEN partition only
contains predicates not seen during DART training.

Face (Wolf et al., 2019), along with their respective
tokenizers, for all experiments.

We use beam search with beam size of three
for decoding in all models, lightly post-processing
the generated text by truncating generations at the
newline character. We set maximum generated
tokens to 100 and repetition penalty to 1.01 for all
experiments.

We used a single V100 GPU with 32GB of mem-
ory for all prompt tuning experiments, tuning for a
single epoch on the DART train set with prefix and
infix length both set to 8 tokens. We use the Adam
optimizer (Kingma and Ba, 2014) with a maximum
learning rate of 0.1 and 100 warm-up steps for the
linear learning rate schedule. The training batch
size was fixed to 2, with 32 gradient accumulation
steps (effective batch size of 64 examples).

We use the scripts from Ribeiro et al. (2020) to
fine-tune T5 on DART, using identical hyperparam-
eter settings.8 We use the Adam optimizer with
an initial learning rate of 3e-5 and a linearly de-
creasing learning rate schedule. We fine-tune the
model on four GPUs for a maximum of 100 epochs
and stop training early if the performance does not
improve on the dev set for 15 epochs. Each train-
ing epoch takes approximately two hours for each
model.

Finally, we include a baseline system to bench-
mark the performance of our machine learning
models. In a “copy baseline” we simply copy
the input text and remove the prefix tokens (<H>,
<R>, <T>) as well as special characters (e.g., under-
scores) common in DART predicates. This baseline
performs well for examples with high lexical over-
lap between input triple set and reference.

Evaluation Metrics Following previous work,
we use automated metrics such as BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014), translation edit rate (TER) (Snover et al.,
2006), and chrF++ (Popović, 2015) for evaluating
our generation results. In addition, we also report
BERTScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020). These metrics go beyond surface
form similarities and use contextual embeddings to
measure semantic similarity between the generated
and reference text.9

8https://github.com/UKPLab/
plms-graph2text (Apache 2.0 license)

9We use the evaluation scripts provided in the official
WebNLG challenge: https://github.com/WebNLG/
GenerationEval (MIT license)
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ID Model BLEU ↑ METEOR ↑ TER ↓
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 4.48 5.07 4.50 0.28 0.31 0.28 0.92 0.86 0.92
2 GPT2-XL (0-shot) 13.13 13.88 13.26 0.23 0.27 0.23 0.69 0.78 0.70
3 GPT2-XL(3-shot) 26.74 23.72 26.65 0.29 0.28 0.29 0.85 0.78 0.84
4 GPT2-XL-PT 33.55 29.86 33.41 0.24 0.28 0.24 0.65 0.61 0.65
5 GPT2-XL-PT + Reranking 31.03 31.67 31.09 0.28 0.30 0.28 0.63 0.58 0.63
6 T5large 48.41 43.48 48.25 0.39 0.40 0.39 0.46 0.44 0.46
+Descriptions
7 GPT2-XL(0-shot) 11.45 8.05 11.4 0.20 0.19 0.20 0.70 1.00 0.72
8 GPT2-XL(3-shot) 26.32 21.30 26.14 0.28 0.27 0.28 0.83 0.89 0.83
9 GPT2-XL-PT 33.96 31.37 33.85 0.24 0.28 0.24 0.66 0.59 0.66
10 T5large 48.56 43.82 48.4 0.39 0.39 0.39 0.46 0.45 0.46

Table 2: Model results on test set of the DART dataset. ↑: Higher is better. ↓: Lower is better.

ID Model BLEU ↑ METEOR ↑ chrF++ ↑ TER ↓ BERTScore(F1) ↑ BLEURT ↑
EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD

11 copy baseline 18.00 2.01 0.41 0.23 0.45 0.32 0.79 0.99 0.88 0,80 0.12 -1.00
12 GPT2-XL (0-shot) 22.20 6.92 0.34 0.18 0.47 0.31 0.83 0.64 0.90 0.88 -0.09 -0.54
13 GPT2-XL (3-shot) 34.97 1.88 0.34 0.06 0.54 0.07 0.82 0.38 0.92 0.93 -0.09 -0.11
14 GPT2-XL-PT 42.81 31.78 0.35 0.23 0.57 0.39 0.48 0.69 0.94 0.92 0.31 -0.17
15 GPT2-XL-PT + Reranking 43.35 25.79 0.37 0.29 0.60 0.48 0.47 0.66 0.94 0.93 0.34 -0.04
16 T5large 70.54 38.34 0.51 0.35 0.80 0.57 0.23 0.59 0.97 0.94 0.70 0.20
+Descriptions
17 GPT2-XL (0-shot) 19.00 6.43 0.30 0.17 0.42 0.31 0.93 0.65 0.89 0.88 -0.20 -0.54
18 GPT2-XL (3-shot) 34.19 20.54 0.38 0.26 0.61 0.44 0.92 0.81 0.93 0.91 0.07 -0.26
19 GPT2-XL-PT 42.52 33.1 0.34 0.23 0.56 0.39 0.5 0.69 0.93 0.91 0.28 -0.21
20 T5large 70.06 38.49 0.51 0.34 0.80 0.57 0.23 0.60 0.97 0.94 0.69 0.20

Table 3: Model results on EASY and HARD partitions of the DART test set. ↑: Higher is better. ↓: Lower is better.

6 Experiments

We evaluate PLMs with various input types and
training regimes to answer the following empirical
questions:

• How do the adaptation mechanism and level
of supervision at train time affect PLM perfor-
mance on the D2T task?

• What classes of D2T examples are particu-
larly challenging for each PLM? How well do
PLMs perform on out-of-sample predicates
and examples that are more abstractive (dis-
similar source and target sequences)?

• Can we improve performance on examples
with unseen predicates by including predicate
descriptions in the prompt, as mentioned in
§3.4?

• Qualitatively, what kinds of errors do PLMs
make on the D2T task? Are some adaptation
techniques more susceptible to classes of er-
rors than others?

• Can we mitigate some of these errors by re-
ranking the decoding results?

6.1 Results

Table 2 presents model performance on the entire
DART dataset (ALL), as well as the SEEN and
UNSEEN partitions. See Appendix B for chrF++,
BERTScore, and BLEURT results. Table 3 shows
model performance on the EASY and HARD parti-
tions.

Level of Supervision We first turn to GPT2-XL,
which is evaluated on this task without any train-
ing data. Following previous work we find that
GPT2-XL makes an effective 0-shot model, out-
performing the copy baseline according to BLEU
and METEOR (row 2). Examining the output more
closely, we find that GPT2-XL mostly copies the
input; while it outperforms the copy baseline, its
strategy is largely the same. We include example
generations in Appendix C. 3-shot GPT2-XL (row
3) does much better than the 0-shot case. Note that
in this setting, no model parameters are updated. In
addition, the amount of annotated data used for cre-
ating 3-shot prompts is much less than what is used
for prompt tuning and fine-tuning. While few-shot
prompting leads to a boost in BLEU and METEOR,
TER increases by 0.14 point. We conjecture that
this is due to an increase in hallucinated content in
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this setting. We take a closer look at these patho-
logical behaviors in our human evaluation.

Both GPT2-XL models prompt tuned on the
entire DART dataset (rows 4 and 5) outperform
the 3-shot model by a wide margin. As reported
previously (Nan et al., 2020), we also notice that
fine-tuned T5 (row 6) performs well on this task
surpassing either prompt-tuned GPT2-XL model.

Consistent with previous findings, we also no-
tice that the more training data that is used to adapt
the model (either by few-shot learning or training
model weights), the better PLMs perform. How-
ever, in a resource-constrained setting, few-shot
GPT2-XL achieves reasonable performance. Few-
shot adaptation might be a good choice for D2T
when the number of unique predicates in the test set
is small, and only very few examples can be man-
ually annotated. On the other hand, if more data
is available, fine-tuning T5 leads to better results
for D2T. In fact, our experiments show that T5 can
surpass the 3-shot GPT2-XL after fine-tuning on
only 200 examples. See Appendix B for details.

Predicate Novelty As expected, the copy base-
line (row 1) performs poorly across all conditions,
but consistent for both the SEEN and UNSEEN par-
titions. 0-shot GPT2-XL also performs similarly
on both partitions, since it was not trained on any
task data. GPT2-XL with a 3-shot prompt (row 3)
outperforms 0-shot on both partitions, despite the
unseen prompts including unrelated predicates; the
model still benefits from multiple shots even if they
do not contain the same predicates (+9.84 BLEU
points).

Prompt tuning and re-ranking generated sam-
ples by overlap with the triple set entities both
improve the performance of GPT2-XL on novel
predicates. Overall, GPT2-XL performs consis-
tently across SEEN and UNSEEN partitions, while
T5 performance is more sensitive to whether the
predicate was observed during training (e.g., differ-
ence of 4.93 points BLEU in row 6).

We next turn to evaluating the impact of aug-
menting prompts with predicate descriptions for
unseen predicates. This process is described in
§3.4. We evaluate this augmentation in the 0-shot
(row 7), 3-shot (row 8) and prompt tuning (row 9)
settings, as well as in T5 fine-tuning (row 10). We
observe very small improvements on the UNSEEN

partition and only in cases where model parameters
are updated (rows 9 and 10). We suspect that as
descriptions are sourced from WordNet and Wiki-

Data, either many predicates could not be resolved
to a description in these tables, or the predicates
that could be resolved were largely self-explanatory.
We conjecture that in the 0-shot setting, condition-
ing the generation on descriptions might distract the
model from the head and tail entity. On the other
hand, many of the unseen predicates in DART are
not words that can be easily resolved. However,
we suspect that if they were to be reliably resolved,
specialized domains such as finance or medicine
would benefit from adding predicate descriptions.

Generation Difficulty Table 3 shows the perfor-
mance of all models on the EASY and HARD par-
titions. All models have noticeably worse perfor-
mance on HARD examples, where more abstrac-
tion is needed. The best performing model, T5
(row 16), has a gap of 0.16 METEOR between the
EASY and HARD partition, while the prompt tuned
GPT2-XL (row 14) has the smallest difference in
performance between the partitions. It is clear that
these models perform well overall when copying
from the input suffices, but do poorly when sig-
nificant rewriting is required. In many domains,
we may prefer models with more diverse, creative
generations, a task at which these models do not
do well. On the other hand, DART is a mostly au-
tomatically derived dataset, with significant errors
in some examples, where the reference text may
contain information that is unsupported by the in-
put triple. These examples may pervade the HARD

partition.
Next, we investigate the impact of adding pred-

icate descriptions on D2T of the HARD partition.
In the few-shot setting, adding predicate descrip-
tions improves the BLEU score to 20.54 on the
HARD partition (row 18). Conditioning the model
on predicate descriptions significantly enhances its
re-writing ability. For the prompt tuned GPT2-XL,
BLEU score improves to 33.1 (row 19). However,
we do not see any gains for 0-shot GPT or T5 (rows
17 and 20). Overall, GPT2-XL benefits from predi-
cate descriptions on examples where significant re-
writing is needed, even when additionally prompt
tuned. GPT2-XL with prompt tuning achieves com-
petitive results with benchmark T5 on the HARD
partition (33.1 vs 38.49 BLEU).

Human Evaluation To further examine the
pathological behaviors of the models, we randomly
sampled 50 examples from the DART test set for
human evaluation. For each example, the output
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Source Hallucination ↓ Missing Info ↓ Fluency ↑
Reference 1.53 1.19 4.51
GPT2-XL(3-shot) 3.26 3.61 3.17
GPT2-XL-PT 1.73 3.35 4.64
GPT2-XL-PT + Ranking 1.73 2.79 4.75
T5 large 1.16 1.23 4.79
Agreement 0.64 0.77 0.50

Table 4: Results of the qualitative evaluation. ↓: Lower
is better. ↑: Higher is better. Inter-annotator agreement
is measured by Kendall’s τ rank correlation coefficient.

of T5 and GPT2-XL in the 3-shot, prompt tuned,
and re-ranked settings were presented to two an-
notators.10 We also showed the reference text as
another candidate, with the generating model iden-
tity hidden. Annotators evaluated output quality
based on three criteria: (1) whether it contains hal-
lucinated content (hallucination) (2) whether the
text is missing information from the input records
(missing info), and (3) fluency. Annotators indi-
cated agreement with each of these Likert items
on an ordinal scale from 1 (strongly disagree) to 5
(strongly agree).

Table 4 presents the average annotator score ac-
cording to each of these Likert items. GPT2-XL
in the 3-shot setting often misses information. No-
tably, both prompt-tuned variations generate very
fluent text. Re-ranking improves the quality of
the generations by decreasing the amount of miss-
ing information and improving fluency. While the
best GPT2-XL model does very similar to T5large
in terms of fluency, on average it hallucinates or
misses information more often.

Re-ranking GPT2-XL prompt tuned is both pa-
rameter efficient and generalizes very well to novel
predicates. It also does very well on examples that
require more re-writing. It approaches the perfor-
mance of fine-tuned T5large according to avoiding
hallucinations and fluency. During the human eval-
uation, we observe that this model would often miss
the subject or object of the predicate in its gener-
ations (see our human evaluation for details). We
can mitigate this problem without additional model
training through a re-ranking strategy to ensure
that the selected generation contains all relevant
information.

We first create multiple candidate generations by
increasing beam size during decoding. Next, we
compute the percentage of head and tail entities
covered in the text. Finally, we pick the candidate
that contains the highest percentage of entity spans

10Two of the paper authors.

from the input triple.11 Rows 5 and 15 show the re-
sults of re-ranking a GPT2-XL prompt tuned model.
Re-ranking modestly improves performance on all
partitions, and across all metrics except BLEU.

7 Conclusion and Future Work

In this work, we systematically analyze the perfor-
mance of two PLMs – T5 and GPT2-XL – for D2T
generation by examining performance based on
the choice of adaptation mechanism: fine-tuning,
prompt tuning, and few-shot learning. We observe
that while fine-tuning on more data leads to better
performance, when no training data is available,
GPT2-XL (0-shot) outperforms T5. With a small
number of training examples, few-shot GPT2-XL
is a more appropriate solution for D2T.

We also conduct a thorough investigation of D2T
challenges for PLMs by evaluating them on two
divisions of the DART test set: novel predicates
and abstractive examples. We show that the per-
formance of fine-tuned T5 drops significantly on
unseen predicates. On the other hand, the perfor-
mance of few-shot GPT2-XL on unseen predicates
can be enhanced even with shots containing un-
related predicates. We also notice that T5 and
GPT2-XL both do well at D2T by copying the
input. However, they do noticeably worse on exam-
ples where significant re-writing is needed. Adding
domain knowledge (predicate descriptions) to the
prompts can improve the performance of few-shot
GPT2-XL on this subset by a large amount. We
also conduct a human evaluation of the generations
and find that prompt tuned GPT2-XL generations
can be improved by re-ranking generations by over-
lap with the input entity spans.

Future work in D2T generation should consider
more challenging examples, and should consider
ways in which to generate more diverse variations
for expressing a given predicate. This should in-
clude more challenging and disparate domains,
such as finance or medicine. In these cases, one
may see benefits from including predicate descrip-
tions, which performed well on the most abstractive
examples.

Limitations

An important challenge for D2T is how to train
models that can generalize to new domains. While

11We use a beam size of 20 during decoding. Prior to
measuring the entity coverage in the candidates, we normalize
the text by lower casing and removing special characters.
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this work looked at a related class of examples
(instances with unseen predicates), it would be
interesting to investigate how PLMs trained on
one domain can be efficiently adapted to perform
D2T on another unrelated domain (e.g., sports
to finance). This would require creating domain-
specific datasets for D2T.

Moreover, we observed that adding domain
knowledge (predicate descriptions) to prompts can
improve the performance of few-shot GPT2-XL
on abstractive examples. We suspect that this idea
may work better on specialized domains, with bet-
ter relation descriptions, or with a larger language
model; we could not test this without a specialized
D2T dataset with better task relation descriptions.

Finally, many applications prefer generating
novel or interesting descriptions for a data record
over “safe” and “generic” ones, which are predom-
inant in our training data (Li et al., 2015, 2016;
Baheti et al., 2018; Shao et al., 2021). Evaluating
PLMs for diversity of generated text is an orthogo-
nal and promising future direction.
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Vassilis Plachouras, Charese Smiley, Hiroko Bretz, Ola
Taylor, Jochen L Leidner, Dezhao Song, and Frank
Schilder. 2016. Interacting with financial data using
natural language. In Proceedings of the 39th Inter-
national ACM SIGIR conference on Research and
Development in Information Retrieval, pages 1121–
1124.

548
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Figure 3: Impact of fine-tuning data size on performance
of T5. Numbers reflect average performance over 5
different data samples, with standard error of the mean
indicated by bars.

Appendices

A Data Splits

Examples from the EASY and HARD partitions are
shown in Figure 4. The copy baseline achieves
good results on the EASY examples. On the other
hand, the examples from the HARD partition are
more abtractive – generating descriptions for these
examples requires substantial rewriting. In several
cases, the reference text has a low fidelity with
respect to the input record. For example, when one
or more triples in the input are not described in the
reference text. This is a data quality issue and is a
common occurrence in DART.

B Results

Experimental results on SEEN and UNSEEN parti-
tions are presented in Table 5. As reported in § 6,
T5 performs well on this task (row 6). The 0-shot
GPT2-XL outperforms the copy baseline in terms
of all metrics except for chrF++ (row 2). GPT2-XL
with a 3-shot prompt does much better than the 0-
shot case. Prompt tuning improves the results both
in terms of BertScore and BLEURT (row 4). We
see another gain in the performance by adding re-
ranking (row 5). These trends are consistent with
what we observed for BLEU, METEOR, and TER
in Table 2.

We do not see a consistent performance drop
going from SEEN to the UNSEEN partition when
looking at chrF++, BertScore, and BLEURT. This
is somewhat surprising, but also hard to interpret
given that chrF++ relies on character n-gram and
BertScore and BLEU rely in contextualized embed-
dings.

Training Curves In this experiment, we seek to
answer that how much data does T5 require to do
well on this task? Specifically, how many exam-
ples are required for T5 to exceed the performance
of the few-shot GPT2-XL? We fine-tune T5 on
increasingly larger amounts of training data. We
start off with an off-the-shelf T5 model with no
additional training. We then vary the number of
training examples in {10, 20, 50, 100, 200, 500}.12

We repeat each setting five times by resampling a
training set and fine-tuning T5, and report results
for each training set size averaged cross all test
partitions. Figure 3 shows the BLEU performance
(y-axis) of T5 as a function of number of training
examples (x-axis). Performance of the copy base-
line, 0-shot, 3-shot, and prompt tuned GPT2-XL
are indicated by horizontal lines. Without any task-
specific fine-tuning, T5 does slightly worse than
the copy baseline, easily outperformed by 0-shot
GPT2-XL. In settings without training data, GPT2-
XL is the clear choice. T5 continues to lag behind
GPT2-XL 3-shot until trained on at least 200 ex-
amples, and meets the performance of GPT2-XL
prompt tuned after training on 500.

C Sample Model Output

In this section, we share a few samples from the
DART test set as well as outputs generated by dif-
ferent models. We qualitatively compare different
models and highlight a few of their common errors.

Task Prompting As seen in Examples 1 and 2,
GPT2-XL in the 0-shot setting often copies the
input. GPT2-XL with a 3-shot prompt generates a
much more fluent text than the 0-shot case. This
can be seen in Examples 2, 4, and 5. Although
GPT2-XL with few-shot prompting generates more
fluent text, it often generates hallucinated content
(see Example 3).

We see that prompt tuning further boosts our
performance and generates a more coherent text in
comparison to few-shot GPT2-XL (see Example 1
and 3). Moreover, it hallucinates much less than
the few-shot setting (e.g. see Example 3). We also
saw this previously in Table 2, as the prompt tuned
GPT2-XL achieved lower TER score. In contrast
to T5 training, in which all model parameters are
updated, prompt tuning adapts only a small fraction

12We use the same hyper-parameters as before except for
the number of training epochs and batch size. To avoid over-
fitting on small data, we only fine-tune for 1 epoch. We use
batch size of 2.
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ID Model chrF++ ↑ BERTScore(F1) ↑ BLEURT ↑
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 0.33 0.34 0.33 0.83 0.85 0.83 -0.59 -0.29 -0.58
2 GPT2-XL (0-shot) 0.34 0.34 0.34 0.88 0.87 0.88 -0.46 -0.30 -0.46
3 GPT2-XL (3-shot) 0.48 0.44 0.48 0.91 0.91 0.91 -0.19 -0.17 -0.19
4 GPT2-XL-PT 0.40 0.44 0.40 0.92 0.92 0.92 -0.11 0.06 -0.10
5 GPT2-XL-PT + Reranking 0.46 0.47 0.46 0.92 0.92 0.92 -0.01 0.12 0.00
6 T5large 0.64 0.64 0.64 0.95 0.95 0.95 0.38 0.44 0.39

+ Description
7 GPT2-XL (0-shot) 0.31 0.23 0.30 0.88 0.86 0.88 -0.46 -0.54 -0.46
8 GPT2-XL (3-shot) 0.47 0.42 0.46 0.91 0.90 0.91 -0.19 -0.16 -0.19
9 GPT2-XL-PT 0.39 0.45 0.39 0.91 0.92 0.91 -0.14 0.09 -0.13
10 T5large 0.64 0.63 0.64 0.95 0.95 0.95 0.38 0.43 0.38

Table 5: Performance on the DART test set, partitioned by whether predicates are SEEN, UNSEEN, and overall. ↑:
Higher is better.

of the model parameters. However, in many cases
the generated text is as good as the benchmark T5
(see Example 2). Despite generating very fluent
text, prompt tuned GPT2-XL often misses infor-
mation from one or more relations (Examples 1, 3,
and 4).

Re-ranking Re-ranking based on entity cover-
age solves the missing information issue in several
cases. For example, in Example 3, the entity Alvis
Speed 25 which is missed by the prompt tuned
GPT2-XL, is covered after re-ranking. The ben-
efit of re-ranking also can be seen in Example 4.
On the other hand, in Example 2, ranking does
not solve the missing information issue. This is
because argument "yes" of "family-friendly" prob-
ably would not naturally appear in generated text
(e.g., "Yes, this is a family-friendly restaurant").
For such cases, the re-ranking heuristic will not
provide useful feedback.

Predicate Descriptions As mentioned in Sec-
tion 6.1, in several cases, the description extracted
from WordNet and WikiData are trivial. In Exam-
ple 2, the definition of relations food, area, and
near add no information beyond the word itself,
and therefore not helpful for the model. On the
other hand, it seems like defining relation MAN-
UFACTURER in Example 3 has improved genera-
tions of GPT2-XL in both the few-shot and prompt-
tuned settings. In some cases, while the predicate
description can be potentially useful, the model ig-
nores the augmented description. For example, in 4,
the definition of relation GENRE is not covered in
the generated text of any of models.
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EASY Examples

Input: <H> Adolfo Suárez Madrid–Barajas Airport <R> LOCATION <T> Madrid, Paracuellos de Jarama, San Sebastián de
los Reyes and Alcobendas

Reference: Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastián de los
Reyes and Alcobendas.’

###
Input: <H> Alaa Abdul-Zahra <R> CLUB <T> Sanat Mes Kerman F.C.

Reference: Alaa Abdul-Zahra’s club is Sanat Mes Kerman F.C.

###
Input: <H> Alderney Airport <R> RUNWAY_NAME <T> "14/32"

Reference: Alderney Airport runway name is 14/32

###
Input: <H> Asunción <R> IS_PART_OF <T> Gran Asunción

Reference: Asunción is a part of Gran Asunción.

###
Input: <H> Airey Neave <R> AWARD <T> Military Cross

Reference: Airey Neave was awarded the Military Cross.

HARD Examples

Input: <H> 2004 <R> MOVEMENTS <T> Promotion Playoffs - Promoted <H> 2004 <R> POSITION <T> 1st

Reference: Sports stats for Ljungskile SK

###
Input: <H> Khokhan Sen <R> MATCHES <T> 14 <H> Khokhan Sen <R> INNINGS <T> 21 <H> Khokhan Sen <R>
RANK <T> 9 <H> Khokhan Sen <R> CAUGHT <T> 20 <H> Khokhan Sen <R> STUMPED <T> 11 <H> Khokhan Sen
<R> DISMISSALS <T> 31

Reference: The innings when caught was 20 was 21

###
Input: <H> thierry morin <R> POSITION <T> defender <H> [TABLECONTEXT] <R> NAME <T> thierry morin <H>
[TABLECONTEXT] <R> [TITLE] <T> Players

Reference: Thierry Morin was a defender for Paris Saint-Germain.

###
Input: <H> ALV X-1 <R> COUNTRY_ORIGIN <T> United States <H> United States <R> ETHNIC_GROUP <T>
African Americans <H> United States <R> DEMONYM <T> Americans

Reference: Originating in the United States and by Americans, some of African decent is the ALVX-1.’, ’ALVX-1 comes
from the US where Americans live and African Americans are an ethnic group

###
Input: <H> past tense <R> SEASON_# <T> 4 <H> past tense <R> ORIGINAL_AIR_DATE <T> october29,2008 <H> past
tense <R> NO._IN_SERIES <T> 13 <H> past tense <R> U.S._VIEWERS_(MILLIONS) <T> 7.93 <H> past tense <R>
DIRECTED_BY <T> michael pressman <H> past tense <R> WRITTEN_BY <T> craig turk

Reference: Past Tense was the 13th episode in the series.

Figure 4: Examples from the EASY and HARD partition
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Example #1

Input: <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker) <R> STATUS
<T> ""In service"" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov (icebreaker)
<R> BUILDER <T> Arctech Helsinki Shipyard
Reference: The icebreaker Aleksey Chirikov was built at the Arctech Helsinki Shipyard in Helsinki. The Aleksey Chirikov
(icebreaker) is in service and its ship beam is 21.2
Description: BUILDER means a person who constructs something

GPT2-XL (0-shot): <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker)
<R> STATUS <T> "In service" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov
(icebreaker) <R> BUILDER <T>
GPT2-XL (3-shot): Aleksey Chirikov (icebreaker) is of type 21.2.
GPT2-XL (3-shot) + Description: Aleksey Chirikov (icebreaker) was a Russian icebreaker.
GPT2-XL-PT: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Description: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Reranking: Aleksey Chirikov (icebreaker) is in service at Arctech Helsinki Shipyard.

T5large: The ship Aleksey Chirikov was built by Arctech, Helsinki Shipyard and has a ship beam of 21.2 metres. It is currently

in service.

Example #2

Input: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R> area <T> city centre
<H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia
Reference: The Mill pub is near Café Sicilia in the city centre that isn’t family friendly, is average and has Fast food.
Description: eatType means type of food served by a restaurant or restaurant chain. food means any substance that can be
metabolized by an animal to give energy and build tissue. area means area occupied by an object. near means move towards.

GPT2-XL (0-shot): Graph: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R>
area <T> city centre <H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia
English:
GPT2-XL (3-shot): The Mill is located in the city centre near Café Sicilia. It serves fast food in the price range of £20-25
with a moderate customer rating
GPT2-XL (3-shot) + Description: The fast food restaurant, The Mill, has an average rating of 3 out of 5 perhaps as it is not
friendly to kids. The Mill is located in the city centre area near Café Sicilia.
GPT2-XL-PT: The Mill is a fast food pub in the city centre near Café Sicilia.
GPT2-XL-PT + Description: The Mill is a family friendly pub near Cafe Sicilia.
GPT2-XL-PT + Reranking: The Mill is a fast food pub in the city centre near Café Sicilia.
T5large: The Mill is a fast food pub in the city centre near Café Sicilia.

Example #3

Input: <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis Car and
Engineering Company <R> LOCATION_CITY <T> Coventry
Reference: Alvis Speed 25 was made by the Alvis Car and Engineering Company of Coventry.
Description: MANUFACTURER means manufacturer or producer of this product.

GPT2-XL (0-shot): <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis
Car and Engineering Company <R> LOCATION_CITY <T> Coventry
GPT2-XL (3-shot): Alvis Speed 25 won the race in Coventry on April 25, 1996.
GPT2-XL (3-shot) + Description: Alvis Speed 25 is a car manufactured by Alvis Car and Engineering Company in Coventry,
England
GPT2-XL-PT: Alvis Car and Engineering Company is located in Coventry.
GPT2-XL-PT + Description: Alvis Speed 25 is manufactured in Coventry.
GPT2-XL-PT + Reranking: Alvis Speed 25 is manufactured by Alvis Car and Engineering Company in Coventry.

T5large: Alvis Car and Engineering Company is located in Coventry and manufactures the Alvis Speed 25.
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Example #4

Input: <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic <H> Anders
Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders Osborne <R>
GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Billy Iuso
<H> Anders Osborne <R> ACTIVE_YEARS_START_YEAR <T> 1989
Reference: Anders Osborne musical career began in 1989. His career began in the blue’s genre. He has been associated
with the band, Galactic as well as Tab Benoit. Osborne also has ties to fellow musician Billy Iuso.
Description: GENRE means creative work’s genre or an artist’s field of work

GPT2-XL (0-shot): <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic
<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders
Osborne <R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_M
GPT2-XL (3-shot): Anders Osborne is an English singer, songwriter and guitarist.
GPT2-XL (3-shot) + Description: Anders Osborne is an active musician and composer.
GPT2-XL-PT: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Description: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Reranking: Tab Benoit is associated with Galactic and Anders Osborne is associated with Billy Iuso.
T5large: Anders Osborne is associated with the band Galactic, Billy Iuso, Tab Benoit and the genre of Blues. His active years
start in 1989.

Example #5

Input: <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB <T> A.C.
Milan
Reference: PSV Eindhoven had the fastest lab on the Nurburgring, and A.C. Milan was the winning club at that race.
Description: FASTEST_LAP means person who does the fastest lap during a motorsport race.

GPT2-XL (0-shot): <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB
<T> A.C. Milan
GPT2-XL (3-shot): A.C. Milan had the fastest lap in the race won by PSV Eindhoven.
GPT2-XL (3-shot) + Description: A.C. Milan set the fastest lap at the Nurburgring when the winning team was PSV
Eindhoven.
GPT2-XL-PT: Nurburgring is the fastest lap at A.C. Milan.
GPT2-XL-PT + Description: PSV Eindhoven is the winning club at the Nurburgring.
GPT2-XL-PT + Reranking: Nurburgring is the fastest lap at A.C. Milan
T5large: A.C. Milan won the race where PSV Eindhoven had the fastest lap.
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Abstract
Abstractive summarization systems today pro-
duce fluent and relevant output, but often
“hallucinate” statements not supported by the
source text. We analyze the connection be-
tween hallucinations and training data, and
find evidence that models hallucinate because
they train on target summaries that are unsup-
ported by the source. Based on our findings, we
present PINOCCHIO, a new decoding method
that improves the consistency of a transformer-
based abstractive summarizer by constraining
beam search to avoid hallucinations. Given the
model states and outputs at a given step, PINOC-
CHIO detects likely model hallucinations based
on various measures of attribution to the source
text. PINOCCHIO backtracks to find more con-
sistent output, and can opt to produce no sum-
mary at all when no consistent generation can
be found. In experiments, we find that PINOC-
CHIO improves the consistency of generation
by an average of 68% on two abstractive sum-
marization datasets, without hurting recall.

1 Introduction

Abstractive text generation is an important task
with the promise of compressing lengthy source
material into concise summaries, satisfying appli-
cation or user needs. Pretrained abstractive sum-
marizers (e.g. BART (Lewis et al., 2020)) have re-
cently achieved new state-of-the-art (SOTA) across
multiple datasets (Fabbri et al., 2020). However,
these systems remain unusable in most real world
scenarios, because they frequently hallucinate infor-
mation that is inconsistent with the input (Maynez
et al., 2020).

Many researchers have proposed methods to as-
sess and improve the consistency1 of summariza-
tion systems. Two popular approaches are 1) in-
corporating extracted knowledge (Zhu et al., 2021)

∗Both authors contributed equally. The first author’s work
was performed while at the Allen Institute for AI.

1We use the terms “consistent” and "hallucinated" as
antonyms, and avoid “factual”. Check Section 2 for details.

Method Text

Source ...The PSNI said the tablets were “as yet
unidentified” but warned of the “potential
dangers” they posed...

BART A 17-year-old boy has been charged after
a teenager was taken ill after taking what
police have described as “potentially
lethal” ecstasy tablets.

PINOCCHIO A 17-year-old teenager has been charged
with drugs offences after a teenager was
treated in hospital after taking what police
described as an “unidentified” drug.

Table 1: An example of hallucination. Inconsistent
words are highlighted in red italic fonts. In this case,
PINOCCHIO corrects the inconsistent detail in the BART
output.

(possibly in the form of questions (Durmus et al.,
2020)), and 2) incorporating a consistency text clas-
sifier (Kryscinski et al., 2020) (often based on nat-
ural language inference (NLI) (Falke et al., 2019)).
These methods tend to reduce the problem of gen-
erating consistent text to another difficult problem
(e.g. information extraction (IE) or NLI). Given
a strong IE system or a structured representation
of the source information, it is possible to dramat-
ically improve the consistency of generated text
(Zhang et al., 2020b; Tian et al., 2019), but such
resources are only available in a narrow subset of
domains.

We propose a different approach for generating
more consistent summaries. It is based on the ob-
servation that today’s abstractive summarizers are
often trained on target summaries that contain state-
ments unsupported by the source text (Matsumaru
et al., 2020). This disconnect arises because the
training datasets are acquired from noisy “silver”
sources in order to scale, e.g. treating a news head-
line as a summary of its article or an encyclopedia
entry as a summary of a portion of its references.
We conjecture that a model optimized for likeli-
hood and trained on target summaries containing
unsupported statements will have a strong tendency
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to hallucinate information rather than say some-
thing less “likely,” but supported (§3). Further,
common automatic evaluation metrics like ROUGE
reward lexical similarity significantly more than
consistency, preferring hallucinated lexically sim-
ilar summaries to completely consistent lexically
different ones.

Our method, called PINOCCHIO, is a novel de-
coding algorithm that constrains beam search to
only consider predicted tokens that are likely to
be supported by the source text. PINOCCHIO es-
timates which tokens are likely supported using
simple but effective heuristics based on the model’s
confidence and attention distribution, and word fre-
quency. When PINOCCHIO reaches a state where
no supported token can be generated, it backtracks
the search. It can also opt-out from generating a
summary at all, rather than produce one expected
to be hallucinated. We show how PINOCCHIO sig-
nificantly improves consistency on two abstractive
summarization datasets with only a small decrease
in fluency, measured using careful human evalua-
tions.

To test PINOCCHIO on diverse domains, we also
develop a new abstractive summarization dataset
called Scientific Concept Description (SCD). In-
spired by the WikiSum (Liu* et al., 2018) dataset,
SCD uses Wikipedia descriptions as the target sum-
maries and the referenced papers as the source doc-
uments, detailed in (§5). SCD is motivated by the
goal of automatically generating a high-quality en-
cyclopedia for the long tail of scientific concepts
described in papers, and presents a challenging
workload for abstractive summarization. It comes
with a total of 60k samples of scientific concepts
and 118k corresponding paper identifiers, with full
text for 8k of the papers.

We make the following contributions:

1. We analyze the relationship between halluci-
nation and training on targets that are not fully
supported by the source.

2. We introduce PINOCCHIO, a decoding algo-
rithm that improves generation consistency by
constraining beam search to focus on input-
supported tokens. It improves consistency by
an average of 68% in two abstractive sum-
marization datasets at the expense of a minor
decrease to fluency.

3. We introduce Scientific Concept Description,
a challenging new abstractive summarization
task, and release a dataset.

The SCD dataset, along with our code,
trained models, and human evaluations, is avail-
able at https://github.com/allenai/
pinocchio.

2 Related work

Pretrained language models have recently taken the
top spots on summarization leaderboards (Fabbri
et al., 2020; Huang et al., 2020). This includes
models like BART (Lewis et al., 2020), PEGASUS
(Zhang et al., 2020a), and UniLM (Dong et al.,
2019). In a recent large scale evaluation of summa-
rization models, Fabbri et al. (2020) found BART
and PEGASUS to be the top performing models.
We choose to focus on BART in this work.

It is widely known that SOTA summarization
models tend to hallucinate facts (Maynez et al.,
2020), and the most closely related works to ours
are those on factual summarization. However, we
avoid the term “factuality” and instead use “con-
sistency” to denote that the generated summary is
supported by the input text. As noted in Maynez
et al. (2020), a summary could be hallucinated but
still be factually correct. In this work, we aim to im-
prove consistency and reduce hallucinations, which
indirectly improves factuality, without directly op-
timizing for it.

Prior works attempt to improve consistency
by correcting already-generated summaries (Dong
et al., 2020; Zhu et al., 2021), using a knowledge
graph (Zhu et al., 2021), filtering training data
(Nan et al., 2021), constraining generation with
keywords (Mao et al., 2020), using NLI models
(Barrantes et al., 2020; Mishra et al., 2020), among
others. Some have focused on the data-to-text
setting, which presupposes structured input (Tian
et al., 2019; Wang et al., 2020b). Some works con-
trol the extractiveness of generations (Song et al.,
2020). There have also been multiple works on au-
tomatically measuring consistency (Durmus et al.,
2020; Kryscinski et al., 2020; Wang et al., 2020a).
Matsubara and Singh (2020) noted that hallucina-
tions come from a source-target discrepancy, where
many training targets are not fully supported by
their source text, and suggested to address it by re-
moving samples with unsupported summaries. We
extend their empirical findings with similar mea-
surements on three additional datasets, conjecture
that hallucination is unavoidable in such settings,
and provide evidence for the conjecture in terms of
the lexical statistics of output summaries.
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Figure 1: Distribution of positions in summaries about
player signings in train vs. BART output. BART out-
put is more peaked at positions more common in train,
suggesting BART defaults to these when no position is
supported by the source.

We use beam search for decoding, which has
become standard practice for neural seq2seq mod-
els (Graves, 2012; Sutskever et al., 2014). Our
approach can be viewed as a version of constrained
decoding (Hokamp and Liu, 2017) but with dynam-
ically identified constraints and the ability to back-
track. Our constraints come from various model in-
ternal signals that indicate attribution to the source
text. One such signal is entropy, where Xu et al.
(2020) found that low next token entropy indicates
the model is copying. Unlike previous work, we
do not attempt to imbue models with a new level of
textual understanding, but rather show that we can
improve consistency of generated text using simple
signals based on model internals.

3 Why Do Models Generate Inconsistent
Summaries?

In this section, we analyze why models generate
inconsistent summaries. Here, we use the definition
of consistent from Fabbri et al. (2020), i.e., the
factual alignment between the summary and the
summarized source.

We hypothesize that there are two factors that
contribute to inconsistency: 1) the maximum like-
lihood training and generation strategy used in
summarization models, and 2) imperfect training
datasets that contain many instances where the tar-
get is difficult or impossible to deduce from the
source. Specifically, we conjecture that in the pres-
ence of these two factors, models are guaranteed
to hallucinate because they either 1) default to a
background distribution of the most common rele-
vant terms during generation or 2) learn spurious
correlations between the source and target texts. In
either case, the model generates text that is often
inconsistent with the inputs.

We present our analysis in terms of a motivating
example below, and provide empirical support for
it in Sec. 7. The analysis inspires the design of the
PINOCCHIO method in Sec. 4.

3.1 Motivating example

Consider the target summary of an article about a
team signing a football player, from XSUM:

’League Two club Cheltenham Town have

signed Hibernian striker Brian Graham on

a free transfer.’

Many of the details in this summary are diffi-
cult for a model to predict because they are not
supported directly by the input passage.2 For exam-
ple, the player’s first name (“Brian”) and position
(“striker”), and the lack of signing fee (“free trans-
fer”) are nowhere mentioned. This mismatch be-
tween typical summary fields and the text available
in the input passage is not restricted to summaries
about player signings, but is more generally ob-
served across a variety of article types in XSUM
and also our new SCD data set.

Achieving a high likelihood on the training
dataset requires that the trained models output the
aforementioned fields anyway: e.g., in summaries
of player signings, from a sample of 43 summaries,
100% mention the player’s full name, 88% the
player’s position, 78% the length of the signing,
etc, even though they are often not supported in the
source. As a result, the BART summarizer outputs
the following summary for the example:

’League Two side Cheltenham Town have

signed Hibernian midfielder Scott Graham

on loan until the end of the season.’

This summary begins nearly identically to the
target, but then outputs the three field values in-
correctly (first name, position, and length of the
contract).

The errors make sense when you consider the
model’s calculus for choosing a summary. Con-
sider a single field that can be present or absent in
a summary, and make the simplifying assumption3

that the probability of the most-likely summary
with a field value is strictly monotonic in the prob-
ability of the field value (see App. B for formal
details). In that case, a model that maximizes like-
lihood will output the field if and only if its best

2The full input passage summarized in this example is in
App. C.2.

3Note that the PINOCCHIO method (Sec. 4) does not de-
pend on this assumption, it is only used here for intuition and
ease of analysis.

557



guess of the field value is more probable than the
field’s absence. In practice, the probability of field
absence is often low because training summaries of
certain topics reliably cover certain fields, and the
best guess probabilities are often higher because
the model can do some inference to narrow the
choice set to a limited and typically peaked distri-
bution (e.g., to a small number of football player
positions). Thus, hallucinating a best guess is often
preferred by the model—even, in some cases, when
the model estimates that the guess is less likely than
chance to be correct. In the example, since the esti-
mated probability that the player is a “midfielder” is
relatively high (“midfielder” is relatively common,
shown in Fig. 1), and position going unmentioned
is rare (about 12% of the time), the model chooses
to incorrectly output “midfielder.”

Of course, the assumptions in our analysis may
not always hold, and hallucination is likely more
complex than the single phenomenon analyzed
here. But our approach, motivated by the above
conjecture, can improve the consistency of sum-
maries in practice. Further, in Section 7 we validate
two aspects of our analysis empirically, showing
that ground truth training summaries for abstractive
summarization do contain unsupported statements,
and that summarizers do disproportionately pro-
duce more common terms in their output.

4 PINOCCHIO: Constraining Beam
Search to Improve Consistency

Inspired by the previous analysis, we introduce
PINOCCHIO; a modification to standard beam
search for supported-decoding (Alg. 1).

Beam search for text generation typically works
by adding to a small set of candidate generations
one token at a time, keeping the top B generations
according to model-predicted likelihood after each
prediction timestep. After <end> has been pre-
dicted inB beams, thoseB candidates are rescored
with a length penalty (Wu et al., 2016), and the best
one is chosen as the final output. PINOCCHIO dif-
fers from regular beam search only in its use of the
set R, which holds a set of disallowed generation
paths; if R is always empty, Alg. 1 simplifies to
standard beam search. PINOCCHIO modifies the
model predicted token scores to avoid inconsistent
predictions.

In particular, PINOCCHIO applies a function
fc(model state, candidate next generation) to the
predicted likelihood of the top predicted tokens. If

Algorithm 1: Supported-decoding
Input: beam size B, generative model M ,

consistency function fc, vocab V ,
maximumly allowed backtrack count N

priority queue PQ = ["<start>"]*B;
completed generations CG = {};
rejected paths R = {};
backtrack count η = 0;
while |CG| < B do

C := {x+ v : x ∈ PQ, v ∈ V } −R;
T := top 2B items of C scored by M ;
R := R ∪ {d ∈ T : fc(M,d) = 0};
if T −R == ∅ then

if η ≥ N then
// Stop Generation
return {};

end
R := R ∪ {x[: −1] : x ∈ T};
PQ := {x[: −1] : x ∈ PQ};
η := η + 1;
continue;

end
T := T −R;
PQ := top B elements of T according to M not

ending in "<end>";
CG := CG ∪ {d ∈ T : d scores higher than

min in PQ and ends in "<end>"};
end
return top-ranked element of CG;

all top predicted tokens for a given timestep are in-
consistent according to fc, PINOCCHIO backtracks
by removing the last predicted token from each
beam, and predicts again without the ability to pre-
dict the removed tokens. The number of times
this backtracking occurs η, combined with the av-
erage entropy of the token predictions in the final
output is a good indicator of whether the model suc-
ceeded in producing a good summary or not. Thus,
we eliminate generations with multiple backtracks
(e.g., η > 2) and high entropy, as well as indi-
vidual sentences with high entropy (>2.75) from
multi-sentence outputs.

Within this framework, we present an instan-
tiation of fc based on a set of carefully curated
heuristics, determining if a token is allowed to be
predicted or not.

The function fc consists of a series of binary
checks, which take into account both model inter-
nals as well as language features. If any of the
checks succeeds, fc is 1 and the model continues
generating, but if all of the checks fail fc = 0
and the model disallows the generation path. First,
we consider the model confidence for the current
prediction—based on the intuition that a low en-
tropy of the token prediction probability distribu-
tion corresponds to more certain, and potentially
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Method Dataset % Cons.=5 % Cons.= 4/5 Cons. Flue. Rele. Cohe.

BART (n=282) XSUM 0.287 0.709 3.908 4.794 4.887 -

PINOCCHIO (n=211) XSUM 0.422 0.82 4.19 4.649 4.886 -

BART (n=268) SCD 0.209 0.552 3.612 4.537 4.925 4.619

PINOCCHIO (n=207) SCD 0.396 0.768 4.082 4.338 4.816 4.585

Table 2: Human evaluation of models. PINOCCHIO improves consistency significantly, while decreasing flu-
ency slightly. For the 4 evaluation metrics, significant (Mann–Whitney U test, p<0.01) differences are bolded.
Cons.=Consistency, Flue.=Fluency, Rele.=Relevance, Cohe.=Coherence. For each row, n denotes the number of
examples output, which is lower for PINOCCHIO than for BART because PINOCCHIO elects to skip certain cases.

more correct, predictions. Second, we keep track
of the source text with high attention scores during
the generation process: when the attended texts
are semantically or lexically similar to the token to
be generated, that suggests that the token may be
supported by the source. Third, PINOCCHIO also
allows tokens that are especially common (such as
stopwords), as we expect these are less likely to be
hallucinations. We develop a total of 8 different
binary functions within the three categories above
(details in §D.1).

The heuristics do not require additional training
steps, and all the associated thresholds or hyperpa-
rameters were determined by manual inspection on
a small number of samples (e.g., n=20) from each
dataset. Different from prior work Matsubara and
Singh (2020), this non-machine learning approach
is based on scrutiny of the model generation pro-
cess. It is easy to execute and more explainable
compared to black-box models.

5 Tasks and Datasets

We evaluate PINOCCHIO on two distinct summa-
rization tasks: news summarization (XSUM and
CNN / Daily Mail) and scientific concept descrip-
tion (the newly proposed SCD dataset).

5.1 News Summarization

XSUM (Narayan et al., 2018) is a popular ab-
stractive news summarization dataset. XSUM is
a challenging dataset; the source text frequently
does not entail the target text, the target task is not
exactly summarization (XSUM is closer to head-
line generation than summarization), and data is
noisy (e.g. there are articles in another language,
Welsh). Challenges aside, XSUM is highly regular,
as mentioned in Sec. 3. Although this seems to
make the task easier, a strong pattern matcher will
reproduce dataset patterns (see Appendix G and
Tab. 7 for example patterns), whether or not it is

able to fill in all the details in the pattern correctly.

CNN / Daily Mail Dataset (Nallapati et al.,
2016) is another commonly used dataset for news
summarization. Different from XSUM, the sum-
maries are relatively longer (one sentence vs more
than 2 sentences) and are considered to be nearly
extractive (see Sharma et al. (2019) and our results
in Tab. 6) as the summaries are based on summary
bullets from the original news article.

5.2 Scientific Concept Description

We introduce the novel task of scientific concept de-
scription (SCD): automatically generating a brief
description of a scientific concept, given the con-
cept name and some papers discussing the concept.
Test data has been manually evaluated to ensure
quality.

SCD training corpus Training an SCD system
requires a large set of ground-truth descriptions. In-
spired by the WikiSum dataset (Liu* et al., 2018),
we construct our training set using Wikipedia in-
tro sections4 as the target descriptions,5 with the
papers cited in each description as source text. To
remove intractable examples, we filter out those
with lower than 0.15 ROUGE-1 recall between
the cited papers and the target Wikipedia descrip-
tion. The dataset is split into train/dev/test with
47570/5989/5839 examples. Examples have 2.4
source documents with a total of 319 sentences on
average and target descriptions averaging 6 sen-
tences each. We are able to extract body text for
~57% of the cited papers, and use just the titles and
abstracts of the remainder.

4Specifically, we use the first section for the concept, and
also include sections with definitional headers (Introduction,
Definition, Uses, Description, Function, Overview).

5English Wikipedia 4/1/20 dump processed with
https://github.com/spencermountain/
dumpster-dive
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Method Dataset # Samples R1 R2 RL

BART XSUM 11333 0.444 0.210 0.354

BART* XSUM 83451 0.442 0.207 0.349

PINOCCHIO XSUM 8345 0.431 0.196 0.338

BART SCD 5839 0.380 0.167 0.270

BART* SCD 2335 0.398 0.189 0.291

PINOCCHIO SCD 2335 0.391 0.181 0.284

BART CNN/DM 10990 0.438 0.209 0.372

BART* CNN/DM 10943 0.438 0.209 0.372

PINOCCHIO CNN/DM 10943 0.438 0.209 0.372

1 Because PINOCCHIO can elect to skip in certain cases, we report
two scores for BART model outputs: for all test samples, and for
the samples where PINOCCHIO generates results.

Table 3: Rouge scores on different datasets with and
without using PINOCCHIO. Datasets with higher ab-
stractiveness (e.g., XSUM and SCD) may suffer from
higher ROUGE drops when PINOCCHIO is used.

Manually-evaluated SCD test corpus The mo-
tivating use case for the SCD task is automatically
generating a high-quality encyclopedia for the long
tail of scientific knowledge presented in papers. As
a result, we construct a second test set of SCD
evaluation examples not from Wikipedia, but in-
stead from a much broader set of scientific con-
cepts mined from computer science papers using
ForeCite (King et al., 2020). This set lacks target
descriptions, so it requires manual evaluation.

Training on surrogate data that differs some-
what from the intended use case but can be ob-
tained at scale is common in summarization re-
search (e.g. abstracts as paper summaries (Co-
han et al., 2018); headlines as news summaries
(Narayan et al., 2018)). In our case there are two
major discrepancies between train and test: the
textual domain (train is mostly biomedical, test is
largely computer science), and the level of support-
ing text (the Wikipedia-cited training inputs often
have less support for the concept description than
the ForeCite-mined test inputs do, as ForeCite pairs
concepts with their likely introducing paper(s)).

6 Experiments

6.1 Metrics

We rely on human evaluation, as current automatic
metrics are unreliable for evaluating factuality (see
§6.4). We are not targeting ROUGE metrics (Lin,
2004), but present them for completeness.6

For human evaluation, we use standard dimen-
sions of consistency (does the source entail the

6https://github.com/Yale-LILY/SummEval

Metric Dataset Cons. Flue. Rele. Cohe.

tau XSUM 0.60 0.84 - -
exact XSUM 0.66 0.89 0.96 -
compare XSUM 0.69 0.82 1.0 -
compare~ XSUM 1.0 1.0 1.0 -
tau SCD 0.55 0.43 0.20 0.53
exact SCD 0.55 0.69 0.93 0.80
compare SCD 0.67 0.64 0.86 0.64
compare~ SCD 0.95 0.98 1.0 0.98

Table 4: Mean agreement metrics between all pairs of
annotators. tau=Kendall’s tau, exact=exact agreement,
see §6.5 for compare and compare~. The very low/null
correlation values are due to low variance in relevance.

target?), fluency (is the target grammatical, under-
standable English?), relevance (does the target con-
tain important information for understanding the
source?), and coherence (do the sentences flow
together coherently?)7, with definitions adapted
slightly from (Fabbri et al., 2020) via calibration
with our annotators. We also decided to rate con-
sistency and fluency on a five-point 1-5 scale, but
relevance and coherence on a coarser three-point
1,3,5 scale. See App. E for annotation guidelines.

6.2 Manual evaluation
In Tab. 2, we report manual evaluation results, with
each example annotated by one annotator (inter-
annotator agreement is reported in Section 6.5).
PINOCCHIO improves overall consistency. Express-
ing the results in terms of precision and recall, treat-
ing perfectly consistent output (i.e., a consistency
score of 5) as a true positive, Table 2 shows that
PINOCCHIO improves precision by 68% on aver-
age (47% on XSUM, and 89% on SCD) without
hurting recall, yielding an F1 improvement from
0.209 to 0.345 and 0.287 to 0.361 on SCD and
XSUM respectively. The improvements in consis-
tency arise from two cases: first, when PINOCCHIO

produces output, it is rated more consistent than
BART on 44% and 24% of the examples from SCD
and XSUM respectively, whereas BART is more
consistent for only 16% and 13% (in the remaining
cases, the two systems are equallly consistent). Sec-
ond, on the examples where PINOCCHIO produces
no output, BART’s output is tends to be less factu-
ally consistent than its average, scoring 0.30 and
0.44 points lower (on the 5-point consistency scale)
than its average for SCD and XSUM respectively.

We see that PINOCCHIO does reduce fluency
with respect to the base BART model, and fur-
ther that the sentence level entropy filter applied

7Coherence not used on XSUM as targets are 1 sentence
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Metric FactCC FEQA

tau -0.02 0.233
compare̸= 0.528 0.585
mean/σ pairwise ties 1.354/1.464 0.108/0.096
mean/σ pairwise not ties 1.699/1.518 0.113/0.1

Table 5: Agreement between automated metrics and our
annotations. tau represents Kendall’s tau, compare̸=
denotes agreement with the annotator on which model
is better, when the annotator did not rate the models as
equivalent, "Mean/σ pairwise ties" gives the mean/std
of absolute value of difference between the metric’s
rating for each model, for pairs where the annotator
rated the models as the same, and "Mean/σ pairwise
not ties" is the same but for pairs where the annotator
rated the models as different. A well-calibrated metric
should have mean near zero and low standard deviation
when the models are annotated as equivalent. We find
the automated metrics exhibit low agreement with our
annotators.

in PINOCCHIO sometimes removes the key first
sentence that defines the entity in SCD, resulting in
a decrease in relevance. Pretrained language mod-
els are capable of producing incredibly fluent text
and prior work on steering them over-optimizes for
maximizing the highest likelihood output (Subra-
mani et al., 2019; Subramani and Suresh, 2020).
As a result, steering them away from their highest
likelihood output as PINOCCHIO does is bound to
reduce fluency. Our results suggest that some of
this fluency is coming at the cost of factual con-
sistency, as the model has learned how to follow
patterns to produce plausible sentences, but not
necessarily while sticking to the source text (see §3
and Appendix §G).

6.3 Automatic evaluation

For completeness, we report ROUGE 1, 2 and L
(Tab. 3), for the two tasks along with results on the
CNN/Daily Mail dataset (Hermann et al., 2015a)
for reference. We note that PINOCCHIO elects not
to generate for a much higher portion of samples
in SCD. This can be partially explained by the
abstractiveness of these datasets, which we detail in
Section 7.1. For the examples where PINOCCHIO

generates, PINOCCHIO lowers ROUGE moderately
for the two abstractive datasets compared to BART,
and by somewhat more on XSUM than on SCD. We
analyze the ROUGE drop in XSUM in Appendix
§G). By contrast, PINOCCHIO fires only rarely for
the extractive CNN/DM dataset, and therefore its
ROUGE scores are unchanged from BART.

6.4 Comparison against existing correctors
and factuality metrics

We also compare with three recent methods for
automatically correcting summaries or measuring
their factuality. Here we evaluate on XSUM, which
we expect to be more suitable for these methods
(each were evaluated on XSUM in previous work,
whereas SCD is out of domain). First, we compare
against Zhu et al. (2021), a recent seq2seq fact
corrector (FC) that incorporates OpenIE (Angeli
et al., 2015) and knowledge graph embedding. We
take the output of their strongest model (UniLM
(Dong et al., 2019)+FC) on the XSUM test set and
find that it changes only ~5% of examples, and that
the net improvement rate of the changes is 15%
(see App. F for details). This corresponds to an
improvement on <1% of the full XSUM test set. By
contrast, our experiments in the previous section
show that PINOCCHIO yields an improvement on
~8.5% of XSUM, more than a factor of eight higher.

Finally, we assess two representative automatic
factuality metrics, FactCC (Kryscinski et al., 2020)
and FEQA (Durmus et al., 2020). FactCC trains
a <source, summary sentence> classifier; FEQA
generates/answers questions from the summary,
checking if answers are the same when using the
source. We find neither metric suitable for our
highly abstractive setting; each has low agreement
with our XSUM annotations (Tab. 5), a result in
line with a very recent evaluation of factuality mea-
sures (Pagnoni et al., 2021).

6.5 Inter-annotator agreement

In Tab. 4, we report various inter-annotator agree-
ment measures. We had three expert annotators,
and the agreement stats are averaged between all
pairs of annotators, on a set of 30 examples (15
from each model) from each dataset. For model
comparison, the most important metrics are the
“compare” metrics, which measure how often the
annotators agree on which model’s output is bet-
ter for a given example. The “compare” metric
is the fraction of examples for which the pair of
annotators agree on which model’s output is better
or both say the outputs are equivalent. The “com-
pare~” metric is similar but more lenient, as it only
counts as disagreement the examples where one
annotator says one model is better, and the other
annotator says the opposite. These kinds of strong
disagreements are very rare in our data, suggesting
that the relative comparisons between models in
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Dataset Abstractiveness Human Annotated Unsupported Words BART+PINOCCHIO

Dataset 1-gram 2-gram 3-gram 4-gram Avg. % Unsupported Words IAA - Cohen κ Avg. η per Successful Generation

CNN/DM1 17.18% 58.44% 78.06% 86.71% 60.10% 1.57% 0.571 0.0003

XSUM 49.88% 89.65% 98.13% 99.60% 84.31% 17.78% 0.728 0.1541

SCD 60.16% 88.97% 96.81% 98.61% 86.14% 23.84% 0.414 0.2300

1 We report the scores for the CNN / Daily Mail dataset (See et al., 2017; Hermann et al., 2015b) for comparison because it is highly extractive.

Table 6: Analysis of the abstractiveness of three summarization datasets. The abstractive XSUM and SCD datasets
contain a substantial fraction of unsupported words, measured in terms of either automated n-gram overlap measures
or manual annotation. BART+PINOCCHIO performs more backtracks η on more abstractive datasets.
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Figure 2: Comparing the n-gram frequency distribution on the XSUM Dataset for generated, versus ground
truth sources. The default BART model outputs (in green) over-represent frequent n-grams (bottom right of the
distribution), but PINOCCHIO is closer to the ground-truth. Results in the SCD dataset are similar. The slope of the
linear fits for ground-truth text and BART generations are significantly different (p≪ 0.05, ANCOVA) while those
between ground-truth and BART + PINOCCHIO generations are not (p > 0.05) for both 2-gram and 3-grams.

our experiments are reliable.

7 Discussion

7.1 Empirical validation of the intuition
motivating PINOCCHIO

We now present two empirical analyses to verify
the intuition sketched in Section 3. First, we ver-
ify our claim that the ground truth summaries in
our data sets contain unsupported terms (Table 6).
We define Dataset Abstractiveness as the ratio of
n-grams that appear in the summary but not in the
source text. The two abstractive datasets (XSUM
and SCD) show high abstractiveness, with approxi-
mately half or more of the terms in the summaries
not appearing in the source. Of course, a lack of
lexical overlap could arise from summaries stating
supported information but in different terms from
the source. Thus, we also manually examine twenty
examples for XSUM and CNNDM and ten for SCD
and measure the fraction that are not directly sup-
ported by the source.8 This fraction is substantial
(18-24%) for the abstractive datasets, but much

8This annotation task can be challenging and subjective
especially for the SCD dataset, see appendix §C for details.

smaller (2%) for the more extractive CNN/DM
dataset. Finally, η, the number of times our pro-
posed method BART + PINOCCHIO backtracks,
which is a measure of how often the method esti-
mates that generated tokens are unsupported, also
correlates with the abstractiveness measures.

We also verify one expected consequence of our
hypothesized mechanism of hallucination. If in-
deed BART is defaulting to a background distribu-
tion of field values (based on frequency in the train-
ing summaries), then we would expect the more
frequent training values to become even more prob-
able in BART’s output, as the model defaults to
these as best guesses. We observe this effect for po-
sitions in player signings, as shown in Fig. 1. It is
notable that while this distribution is more peaked,
it is not entirely concentrated on the most-likely
field value, suggesting that the model has learned
spurious correlations that lead it to output other
more rare field values, even when unsupported.

More generally, we also observe a similar bias
across all n-grams; compared to the original ground
truth summaries, the BART output tends to be less
heavy-tailed, including disproportionately more of
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the high-likelihood n-grams. We show this by plot-
ting the n-gram frequency distributions (which fol-
low a power law) on a log-log scale in Fig. 2. The
BART output generally has a less negative slope
than the ground truth distribution on these plots.
BART + PINOCCHIO method results in a distribu-
tion that is closer to the ground truth for 2- and
3-grams.

7.2 Errors analysis

To provide insight into dominant error types, we
sample 20 PINOCCHIO generations from the SCD
evaluation with inconsistent outputs, and identify
three common error causes that each occur in ~20%
of the samples: 1) Incorrect paraphrasing or omis-
sion of meaning-changing information (e.g. X has
a long history of being used for Y vs. X is the
model of choice for Y) 2) Incorrect treatment of en-
tities as coreferent/synonymous 3) Difficulty with
heavy mathematical notation.

We also provide additional qualitative analysis
on the generated outputs in Appendix G. We con-
clude that BART tends to exploit specific patterns
in the dataset that contribute to its better ROUGE
scores, but it fails to reliably apply commonsense
or facts learned during training. Targeting these
challenges in generative models is a promising fu-
ture direction.

8 Conclusion

In this work, we present PINOCCHIO, a simple,
no-additional-machine-learning required, method
for reducing hallucination in generative encoder-
decoder models. PINOCCHIO provides a substan-
tial lift in consistency, with only a small decrease
in fluency. We analyze why existing summarizers
hallucinate, showing that silver abstractive sum-
marization datasets can contain unsupported target
summaries, and presenting evidence for our conjec-
ture that models that maximize likelihood trained
on such data will tend to hallucinate. We also show
that existing factuality metrics are insufficient, and
further explore how patterns in the training dataset
can produce misleading results on the test test. We
also introduce the task of scientific concept descrip-
tion and release a Wikipedia-based dataset for it.

We would like to clearly acknowledge the lim-
itations of our approach. PINOCCHIO does not
add new learned behavior to the model, using sim-
ple heuristics and single-step backtracking to steer
the model towards more consistent output. The

heuristics have settings that require some adapta-
tion for each data set, and while limited manual
tuning was sufficient for the two data sets in our
experiments, further experiments with additional
data sets are necessary. Further, preliminary exper-
iments suggest that the settings that were effective
for BART do not simply work out of the box for
another summarizer, PEGASUS. We also acknowl-
edge that while PINOCCHIO offers improvements
in consistency, the results are still far from perfect,
and thus the system is not suitable for certain appli-
cations. We hope the approach and insights in this
paper help spur further development of models that
generate consistent text.
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A Example Full Text

A.1 Example from Table 1

Police said the 14-year-old reported feeling un-
well and required hospital treatment. He was
later discharged from hospital and is recovering
at home. The incident happened in Holywood,
County Down, on Saturday. The PSNI said the
tablets were "as yet unidentified" but warned of
the "potential dangers" they posed. The 17-year-
old, has been charged with possessing a Class A
controlled drug with intent to supply; possessing
a Class B controlled drug with intent to supply;
possession of a Class A controlled drug; posses-
sion of a Class B controlled drug and supplying
a Class A controlled drug. He is due to appear at
Newtownards Youth Court on 14 February.

A.2 Player signings

The 29-year-old Scot has signed a two-year con-
tract with the Gloucestershire outfit. Prior to join-
ing Hibs in August 2016, Graham had spells at six
other Scottish sides, including Dundee United, St
Johnstone and Ross County. He will be available
for Saturday’s league visit of Crawley Town, sub-
ject to receiving international clearance. Find all
the latest football transfers on our dedicated page.

B Mathematical Details of Hallucination
Analysis

Formally, a summarization model is defined by a
distribution P (S|P ) over output textual summaries
S conditioned on an input passage P . We assume
that the summarization system aims to maximize
the probability of the summary S given the text
passage, i.e. it outputs argmaxS P (S|P ). While
in practice (including in our experiments), summa-
rization models use imperfect search procedures
like beam search to find high-likelihood genera-
tions, and may rescore complete generations using
factors other than likelihood (like length), in this
analysis we ignore these details and assume the
generator simply maximizes likelihood. Analyzing
the impact of more complex generation aspects is
an item of future work.

Let F (S) be a function denoting the value of
a given “field” in the summary S, equal either to
some string value or to ∅ if the field does not occur
in S. A “field” is a typical piece of information
that is often mentioned in a summary of a given
topic (e.g., participating teams, in a summary of

a sporting event; or the university where an idea
was developed, in a scientific concept description).
Then the model’s distribution over a field value for
a given passage is P (F = f |P ) =∑S P (F (S) =
f |P ).

Our analysis uses the following assumption:
Assumption A1: The model’s most likely sum-

mary probability is strictly monotonic in the proba-
bility of its included field values. That is, whenever:

P (F = f |P ) > P (F = f ′|P ) (1)

then

max
S

P (S, F (S) = f |P ) >

max
S

P (S, F (S) = f ′|P ) (2)

That is, when the model thinks a field value is
more likely in a summary for a given passage, then
it can find a more likely summary that uses that
field value. This assumption seems likely to hold
often in practice (for example, we would expect
that by simply swapping out a less likely field value
in a summary for a more likely one, we would often
arrive at a more probable summary).

The observation used in the analysis in Section
3 is then: given a passage p, a field F , and a sum-
marization model P (S|P ), if assumption A1 holds,
then a generator that maximizes likelihood will
choose to output f = argmaxf P (F = f |P ) for
the field’s value (or omit the field, if f = ∅). This
fact is straightforward from the definitions.

C Manual Examination of the
Unsupported Dataset Samples

Identifying parts of a summary that are not sup-
ported by the source document is a challenging
annotation task. In this section, we explain how
we formalize this task as a binary token tagging
problem, and we show one example that illustrate
the difficulty of annotation.

C.1 Annotating unsupported words

Naturally, words that appear only in the summary
but not the source document tend to have a higher
chance of being “hallucinated”, and vice versa.
Hence, we select such words from the summary,
and the goal is try to identify whether the meaning
of these words can be deduced from the source doc-
uments. Compared to the automated measurements,
the manually inspected labels are considered to be
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a better approximation of the true abstractiveness
of the dataset or the samples.

C.2 One challenging example

In practice, understanding the source document
involves multiple (common sense) reasoning steps
and subjective judgements.

Considering the following document text:
’ABC of allergies: Venom allergy

Stings from bees and wasps, the most

common stinging insects in Britain,

can cause severe allergic reactions,

including anaphylaxis. Coroners’ data

suggest that an average of four deaths

from bee or wasp stings occur each

year in the United Kingdom, but this

is almost certainly an underestimate

because venom anaphylaxis is not always

recognised as the cause of death’

For one sentence in the summary, we highlight
the words that do not appear in the source in red:

’The stings of most of these species

(Bees) can be quite painful, and are

therefore keenly avoided by many

people.’

The source text mentions several dangerous as-
pects of bee stings, but whether it can be con-
cluded that they are avoided by many people (a
plausible commonsense implication) is subjective
to judge, and annotators often had differing opin-
ions on these judgments.

D PINOCCHIO Details

D.1 Heuristics in fc
We develop 8 binary checks that constitute the
heuristics for fc, which fall into three categories.
Two categories use model internals, model confi-
dence and source text attribution for the predicted
token. The third category uses language features,
allowing generations that are common words.

Model confidence
• entropy of next-token distribution < τ for a

token in the top 2 predictions
• from the top 10 predicted next tokens, the

number that match a top 5 attended-to piece
of source text9 is >= 1

2(10−the number that

9All reference to “top attended-to pieces of the source text”
means a max across locations in the source text across atten-
tion heads in the final layer of the decoder’s cross-attention,
and a 10-wordpiece window around the attended-to location.

are stopwords)
Source text attribution

• the most attended-to piece of the source text
contains the predicted token

• 3 out of the top 5 attended-to pieces of the
source text contain the predicted token

• sum of the attention scores of the attended-to
pieces of source text (out of the top 5) that
contain the predicted token is greater than 1

3
of the sum of the top 5 attention scores

• max cosine similarity between the embedding
of the predicted token and that of any word in
the top 5 attended-to pieces of source text is
greater than 0.15 (and the word is not capital-
ized or a number word)*10

Common word
• predicted token is a stopword*
• prediction matches11 one of the top 5 predic-

tions of roberta-base12

All of the components and hyperparameters
above were determined via inspection on a small
number of samples (e.g., n=20) from the XSUM
and SCD dataset. In the subsequent sections we
detail the configurations of the parameters on each
dataset.

D.2 XSUM modeling details

For configuration of PINOCCHIO for XSUM, we
set τ = 1.0 and do not use the optional stopword
condition, in order to accommodate the highly ab-
stractive nature of the XSUM dataset and attempt
to prevent the use of stopwords in hallucinations.

One other important detail is that XSUM has a
surprising property with respect to first names. If
a person appears in the source as “Mr/Ms” X, and
also in the headline, they always appear as <FIRST
NAME> X in the headline. This leads to BART al-
ways guessing the first name of a person, frequently
incorrectly. Our fc often identifies the first name
as unsupported, but because BART is essentially
unable to predict anything other than a first name
in this situation, it is unable to recover from this
error. For this reason, when an unsupported to-
ken is identified as a name using spaCy (Honnibal
et al., 2020), we deterministically replace it with
Mr/Ms.13

10Items marked with an asterisk * are optional.
11For all string matching, we lemmatize first.
12https://huggingface.co/roberta-base
13For real applications, we suggest using a gender neutral

honorific, as gender is not possible to infer using first names
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D.3 SCD modeling details
For SCD, the source consists of full papers and
is too long to input to BART directly, so we
train a separate BERT-based model to extractively
rank chunks of the input text based on predicted
ROUGE-L F1 score against the target text. This
setup of ranking extractive chunks and then pass-
ing them to an abstractive model is similar to prior
work on long text summarization (Liu and Lapata,
2019). We pass the concept name/aliases and each
chunk of text to rank to SciBERT-base (Beltagy
et al., 2019), with a final linear layer to predict the
ROUGE-L score. We then finetune BART, with the
ranked extractive chunks as source, again concate-
nated with the concept name/aliases. For inference,
we also filter the chunks to those that include the
concept name or an alias.

Beam search parameters We use standard
parameters for the beam search of min_length=5,
max_length=500, no_repeat_ngram_size=3,
length_penalty=2.0, and num_beams=6.

Extractive ranker for descriptions The extrac-
tive ranker uses SciBERT14, followed by a linear
layer, and is trained with MSE loss. We also use
dropout of 0.1. We train on chunks containing three
sentences, and use the average ROUGE-L as the
label. To reduce the size of the training set, for
each target description, we select the top 5 and bot-
tom 5 chunks by ROUGE-L, and an additional 5
random chunks from the middle. We train for 3
epochs, with a batch size of 1, 8 gradient accumula-
tion steps, and the AdamW (Loshchilov and Hutter,
2017) optimizer, with weight decay 0.01, and a
slanted triangular learning rate scheduler with peak
learning rate 5e-5.

D.4 Finetuning BART on descriptions
BART was finetuned with the standard settings,15 a
batch size of 4 with 8 gradient accumulation steps,
for 10 epochs, selecting the epoch 5 model based
on validation loss. The same optimizer as above
was used, with 500 warmup steps. The model was
trained for 5.5 hours on 3 NVIDIA Quadro RTX
8000s. We additionally filter out examples that
have a target length less than 150 characters, and
examples where the source and target have less
than 0.2 token overlap.

14https://huggingface.co/allenai/
scibert_scivocab_uncased

15https://huggingface.co/facebook/
bart-large/blob/main/config.json

For configuration of PINOCCHIO for SCD, we
set τ=0.75 and do not use the optional cosine simi-
larity condition, to encourage more extractiveness.

E Annotation Instructions

• Consistency
– 1: completely made up
– 2: some phrases supported, but largely

made up
– 3: some full details correct, but key de-

tails made up
– 4: minor details not fully supported (e.g.

acronym wrong, location abstracted a bit
wrong)

– 5: fully supported
– Other notes: An unresolved “it” should

be assumed to refer to the main concept.
If this makes it not factual, that counts
against consistency, otherwise it counts
against coherence.

• Coherence
– 1: all sentences/phrases don’t make

sense together
– 3: some sentences/phrases don’t make

sentence together, separate from whether
they are factual

– 5: no issues with how phrases/sentences
are put together

• Fluency (at the sentence level)
– 1: not fluent English to the point that it

is impossible to understand/meaningless
– 2: not fluent English to the point that it

is very hard to understand
– 3: semi fluent English (including ma-

jor fluency errors resulting from copying
source text), but still largely understand-
able

– 4: Mostly fluent English (including mi-
nor fluency errors resulting from source
text), does not impact understanding

– 5: Fluent English
• Relevance

– 1: off-topic
– 3: mostly on-topic or seems to be miss-

ing an actual statement of what the con-
cept is (or for news, what the article is
about)

– 5: on-topic and contains the key state-
ment of what the concept is (or for news,
what the article is about)
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F UniLM+FC Comparison Details

Model output downloaded from https:
//drive.google.com/file/d/
1blmmJvniToN1yedoWUH3u0SNtXnMVDAs/
view?usp=sharing on 03/23/21. We consider
an output “changed” by FC if it is not a prefix
match for the original UniLM output, after
lowercasing and removing spaces and apostrophes.
Many FC-corrected examples seem to simply
cutoff the end of the generated text. We choose
to not count these as “changed.” There are 579
such cases. Given this criteria, FC changes 594
examples in the XSUM test set, and we sample
100 of these for evaluation. FC makes very
minimal edits, so it is straightforward to identify
whether the edit is an improvement or not. The
net improvement is the number of increases in
consistency minus the number of decreases in
consistency.

G Patterns and Hallucination

We provide additional discussions for some qual-
itative aspects of our results. First, we need to
discuss the substantial drop in ROUGE on XSUM.
As alluded to in §3, we believe this is due to a
pervasive regularity in the XSUM dataset, which
BART is able to capture very well. In Tab. 7, we
show the top examples sorted by ROUGE-L differ-
ence between BART and PINOCCHIO, along with
a hand-crafted regex matching the example, how
many times it matches target outputs from the train-
ing and validation set, how many times it matches
BART predictions on the test set, and how many of
those predictions are completely factually consis-
tent. Most of these examples straightforwardly map
to patterns of text that occur in the training data.
We also see that test set predictions matching these
patterns are largely not consistent. As discussed in
§3, this is because BART assigns high likelihood
to the general pattern, but guesses to fill in the de-
tails. Some of these patterns are straightforward
to identify, but many are likely to be more compli-
cated. Broadly speaking, XSUM contains a lot of
regularity in the mapping between the source topic,
phrases, and vocabulary used in the target sum-
mary. BART exploits this, whereas PINOCCHIO

steers the model away from the patterns, which
are often not supported by the source text, which
lowers ROUGE.

A related question is if BART trained on XSUM
applies facts learned during training correctly.

Does it learn that Antonio Conte is the coach of the
Italian football team, thus someone named “Conte”
who coaches the Italian team is Antonio Conte? Or
does it merely learn the first name most commonly
associated with “Conte” in train is “Antonio”, and
so everyone named “Conte” is Antonio Conte? 16

It is difficult to assess this automatically, so we
present an example of BART’s tendency to guess
world knowledge. We create one three-sentence
source, “Sometime last week, a fire burned down
a <BUILDING>, killing a number of people. The
fire took place in <LOCATION>. Investigators
believe at least four people to be missing.”, fill-
ing in the blanks with three made up locations and
three building types. BART produces plausible but
inconsistent summaries. Nine out of nine outputs
hallucinate the location, eight discuss arrests or hos-
pitalizations, and three mention the police or fire
service reporting the details of the situation. These
characteristics are all due to biases present in the
training data. Locations are often abstracted, re-
ported fires often result in someone being arrested
or hospitalized, and they are usually reported by au-
thorities. We present this example as evidence that
BART is not learning how to reliably apply com-
monsense and learned facts, but rather, is naively
reproducing patterns and word associations.

H Comparing Generated Summaries
with and without PINOCCHIO

In Tab. 8 and 9, we include example summaries
generated with and without PINOCCHIO. We ad-
ditionally include the annotator ratings and their
comments to illustrate how PINOCCHIO improves
the quality of the summaries.

16Experiments with this example strongly suggest the latter.
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BART generation Manual pattern Train/val Predicted Consistent

A 70-year-old man who died after being .*year-old.*who died.*named.* 47 4 0
hit by a car in Monmouthshire has been
named by police.

Chinese businessman Dr Tony Xia has .*Tony Xia.*Aston Villa.*| 7 1 0
completed his £52m takeover of .*Aston Villa.*Tony Xia.*
Championship club Aston Villa.

All pictures are copyrighted. .*All pictures are copyrighted.* 44 4 4

Forfar Athletic extended their lead at the .*extended.*top.*points.*win.* 9 3 0
top of Scottish League Two to five points .*Forfar Athletic.*top of Scottish 10 1 0
with a 3-0 win over Berwick Rangers. League Two.*

Table 7: Top-5 BART generations, by ROUGE-L gain over PINOCCHIO (#2 is excluded; it doesn’t match an obvious
pattern and is factually consistent). In all examples, BART clearly memorized training patterns and guesses the
details in at least 3 (the 3rd output is memorized from noise in XSUM), which is not strongly penalized by ROUGE.

Table 8: Side-by-side comparison of the generated summaries with and without PINOCCHIO – Example 1 in XSUM.

Source Tourism NI said it expects a strategy to be in place by early next year. Janice Gault from
the Hotels Federation told the BBC’s Inside Business programme it was crucial for the
industry. She said a "partnership" approach was essential. "I mean we’ve really urged
people to get a strategy at sort of quite a high level so that everybody can buy into that,"
she said. "Hotels have probably spent about a billion pounds in the last decade and are
set to spend more." Ms Gault said another big boom was expected in the hotel market
which would probably generate another half a billion pounds. "The funny thing about the
strategy is we still have the target, but we don’t have the strategy. We only have one way
to go and that’s growth and the way for us to get that is to partnership," she added.

Generation BART BART+PINOCCHIO

The Northern Ireland Hotels Federation
has called on the Northern Ireland Execu-
tive to set out a strategy for growth in the
hotel industry.

A new strategy for Northern Ireland’s ho-
tel industry has been urged by the Hotels
Federation and Tourism NI as the industry
is set for another big year.

Ratings Consistency: 3 Fluency: 5 Relevance: 5 Consistency: 5 Fluency: 5 Relevance: 5

Annotator
Comment

Executive abstracted; didn’t call on her;
strategy is not to "grow" the industry
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Table 9: Side-by-side comparison of the generated summaries with and without PINOCCHIO – Example 2 in XSUM.

Source The University and College Union says the 1.1% rise offered by the universities is "an
insult". But the Universities and Colleges Employers Association said the walkout was
"disappointing given the very good pay offer". Unions representing university support
staff are balloting on the offer, with strike action possible in the autumn. UCU says its
members have suffered a real-terms pay cut of 14.% since 2009 and complains the squeeze
on staff salaries has come as university leaders enjoyed hefty increases. "A 1.1% pay offer
is an insult to hardworking staff, especially in light of the 5% pay rise vice-chancellors
have enjoyed while holding down staff pay," said general secretary Sally Hunt. "Industrial
action which impacts on students is never taken lightly, but members feel that they have
been left with no alternative. "If the employers wish to see a swift end to this dispute,
and avoid further disruption, they need to come back to the table with a much-improved
offer." Summer exams are still running at some universities, though many have finished.
A spokesman for the employers anticipated only "minor impact and minimal student
disruption". "Even for examinations which are still taking place at some higher education
institutions, more than nine out of 10 report that a no to low impact is anticipated," said
the spokesman. "We would like to see the UCU consulting its members on the final offer."
The employers say the offer is "at, and, for some, beyond, a limit of affordability for
higher education institutions and the very best offer that will be available this year". They
maintain the weighting of the offer means the worst paid university staff will get a rise
of more than 5%. They say they have also offered talks on zero-hours contracts and on
improving lower pay for female academics. But UCU says it rejected the 1.1% offer as it
was only a marginal improvement on the original 1% on which it had balloted members.
Ballots of university support staff represented by Unison and Unite are also under way on
the improved offer, with both unions recommending it be rejected. Any action would take
place during the autumn term, said a Unison spokeswoman. UCU is planning strike rallies
in: Staff are also working to contract from Wednesday - refusing to set extra work, cover
for absent colleagues or work overtime.

Generation BART BART+PINOCCHIO

University staff in England are to stage a
one-day strike on Wednesday in a row over
pay, in a dispute that could lead to further
industrial action.

Universities have warned of "minor dis-
ruption" for students in England after staff
rejected an improved pay offer in a dispute
over a pay rise.

Ratings Consistency: 3 Fluency: 3 Relevance: 5 Consistency: 4 Fluency: 5 Relevance: 3

Annotator
Comment

consistency: location abstracted; "one
day" on Wednesday not true
fluency: "in a" twice in same sentence,
doesn’t flow

consistency: quoted text is not an actual
quote; location abstracted
relevance: "improved pay" is misleading,
missing key information: "1.1% marginal
improvement"
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