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Abstract

Considerable efforts to measure and mitigate
gender bias in recent years have led to the intro-
duction of an abundance of tasks, datasets, and
metrics used in this vein. In this position pa-
per, we assess the current paradigm of gender
bias evaluation and identify several flaws in it.
First, we highlight the importance of extrinsic
bias metrics that measure how a model’s perfor-
mance on some task is affected by gender, as
opposed to intrinsic evaluations of model rep-
resentations, which are less strongly connected
to specific harms to people interacting with sys-
tems. We find that only a few extrinsic metrics
are measured in most studies, although more
can be measured. Second, we find that datasets
and metrics are often coupled, and discuss how
their coupling hinders the ability to obtain re-
liable conclusions, and how one may decou-
ple them. We then investigate how the choice
of the dataset and its composition, as well as
the choice of the metric, affect bias measure-
ment, finding significant variations across each
of them. Finally, we propose several guidelines
for more reliable gender bias evaluation.

1 Introduction

A large body of work has been devoted to mea-
surement and mitigation of social biases in natural
language processing (NLP), with a particular focus
on gender bias (Sun et al., 2019; Blodgett et al.,
2020; Garrido-Muñoz et al., 2021; Stanczak and
Augenstein, 2021). These considerable efforts have
been accompanied by various tasks, datasets, and
metrics for evaluation and mitigation of gender bias
in NLP models. In this position paper, we critically
assess the predominant evaluation paradigm and
identify several flaws in it. These flaws hinder
progress in the field, since they make it difficult to
ascertain whether progress has been actually made.
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Computer Engineering at the Technion.

Gender bias metrics can be divided into two
groups: extrinsic metrics, such as performance dif-
ference across genders, measure gender bias with
respect to a specific downstream task, while in-
trinsic metrics, such as WEAT (Caliskan et al.,
2017), are based on the internal representations of
the language model. We argue that measuring ex-
trinsic metrics is crucial for building confidence
in proposed metrics, defining the harms caused by
biases found, and justifying the motivation for de-
biasing a model and using the suggested metrics
as a measure of success. However, we find that
many studies on gender bias only measure intrin-
sic metrics. As a result, it is difficult to determine
what harm the presumably found bias may be caus-
ing. When it comes to gender bias mitigation ef-
forts, improving intrinsic metrics may produce an
illusion of greater success than reality, since their
correlation to downstream tasks is questionable
(Goldfarb-Tarrant et al., 2021; Cao et al., 2022). In
the minority of cases where extrinsic metrics are re-
ported, only few metrics are measured, although it
is possible and sometimes crucial to measure more.

Additionally, gender bias measures are often ap-
plied as a dataset coupled with a measurement tech-
nique (a.k.a metric), but we show that they can be
separated. A single gender bias metric can be mea-
sured using a wide range of datasets, and a single
dataset can be applied to a wide variety of metrics.
We then demonstrate how the choice of gender bias
metric and the choice of dataset can each affect the
resulting measures significantly. As an example,
measuring the same metric on the same model with
an imbalanced or a balanced dataset1 may result in
very different results. It is thus difficult to compare
newly proposed metrics and debiasing methods
with previous ones, hindering progress in the field.

To summarize, our contributions are:

• We argue that extrinsic metrics are important
1Balanced with respect to the amount of examples for each

gender, per task label.
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for defining harms (§2), but researchers do not
use them enough even though they can (§5).

• We demonstrate the coupling of datasets with
metrics and the feasibility of other combina-
tions (§3).

• On observing that a specific metric can be
measured on many possible datasets and vice-
versa, we demonstrate how the choice and
composition of a dataset (§4), as well as the
choice of bias metric to measure (§5), can
strongly influence the measured results.

• We provide guidelines for researchers on how
to correctly evaluate gender bias (§6).

Bias Statement This paper examines metrics and
datasets that are used to measure gender bias, and
discusses several pitfalls in the current paradigm.
As a result of the observations and proposed guide-
lines in this work, we hope that future results and
conclusions will become clearer and more reliable.

The definition of gender bias in this paper is
through the discussed metrics, as each metric re-
flects a different definition. Some of the examined
metrics are measured on concrete downstream tasks
(extrinsic metrics), while others are measured on
internal model representations (intrinsic metrics).
The definitions of intrinsic and extrinsic metrics
do not align perfectly with the definitions of allo-
cational and representational harms (Kate Craw-
ford, 2017). In the case of allocational harm, re-
sources or opportunities are unfairly allocated due
to bias. Representative harm, on the other hand, is
when a certain group is negatively represented or ig-
nored by the system. Extrinsic metrics can be used
to quantify both allocational and representational
harms, while intrinsic metrics can only quantify
representational harms, in some cases.

There are also other important pitfalls that are
not discussed in this paper, like the focus on high-
resource languages such as English and the binary
treatment of gender (Sun et al., 2019; Stanczak
and Augenstein, 2021; Dev et al., 2021). Inclusive
research of non-binary genders would require a
new set of methods, which could benefit from the
observations in this work.

2 The Importance of Extrinsic Metrics in
Defining Harms

In this paper, we divide metrics for gender bias to
three groups:

• Extrinsic performance: measures how a
model’s performance is affected by gender,
and is calculated with respect to particular
gold labels. For example, the True Positive
Rate (TPR) gap between female and male ex-
amples.

• Extrinsic prediction: measures model’s pre-
dictions, such as the output probabilities, but
the bias is not calculated with respect to some
gold labels. Instead, the bias is measured by
the effect of gender or stereotypes on model
predictions. For example, the probability gap
can be measured on a language model queried
on two sentences, one pro-stereotypical (“he
is an engineer”) and another anti-stereotypical
(“she is an engineer”).

• Intrinsic: measures bias in internal model
representations, and is not directly related to
any downstream task. For example, WEAT.

It is crucial to define how measured bias harms
those interacting with the biased systems (Barocas
et al., 2017; Kate Crawford, 2017; Blodgett et al.,
2020; Bommasani et al., 2021). Extrinsic metrics
are important for motivating bias mitigation and
for accurately defining “why the system behaviors
that are described as ‘bias’ are harmful, in what
ways, and to whom” (Blodgett et al., 2020), since
they clearly demonstrate the performance disparity
between protected groups.

For example, in a theoretical CV-filtering sys-
tem, one can measure the TPR gap between female
and male candidates. A gap in TPR favoring men
means that, given a set of valid candidates, the sys-
tem picks valid male candidates more often than
valid female candidates. The impact of this gap is
clear: Qualified women are overlooked because of
bias. In contrast, consider an intrinsic metric such
as WEAT (Caliskan et al., 2017), which is derived
from the proximity (in vector space) of words like
“career” or “family” to “male” or “female” names.
If one finds that male names relate more to career
and female names relate more to family, the conse-
quences are unclear. In fact, Goldfarb-Tarrant et al.
(2021) found that WEAT does not correlate with
other extrinsic metrics. However, many studies re-
port only intrinsic metrics (a third of the papers we
reviewed, §5).
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The developer argued with the designer because she
did not like the design.

The developer argued with the designer because he
did not like the design.

Figure 1: Coreference resolution example from Wino-
bias: a pair of anti-stereotypical (top) and pro-
stereotypical examples (bottom). Developers are stereo-
typed to be males.

3 Coupling of Datasets and Metrics

In this section, we discuss how datasets and met-
rics for gender bias evaluation are typically cou-
pled, how they may be decoupled, and why this
is important. We begin with a representative test
case, followed by a discussion of the general phe-
nomenon.

3.1 Case study: Winobias

Coreference resolution aims to find all textual ex-
pressions that refer to the same real-world entities.
A popular dataset for evaluating gender bias in
coreference resolution systems is Winobias (Zhao
et al., 2018a). It consists of Winograd schema
(Levesque et al., 2012) instances: two sentences
that differ only by one or two words, but contain
ambiguities that are resolved differently in the two
sentences based on world knowledge and reason-
ing. Winobias sentences consist of an anti- and
a pro- stereotypical sentence, as shown in Figure
1. Coreference systems should be able to resolve
both sentences correctly, but most perform poorly
on the anti-stereotypical ones (Zhao et al., 2018a,
2019; de Vassimon Manela et al., 2021; Orgad et al.,
2022).

Winobias was originally proposed as an extrin-
sic evaluation dataset, with a reported metric of
anti- and pro- stereotypical performance dispar-
ity. However, other metrics can also be measured,
both intrinsic and extrinsic, as shown in several
studies (Zhao et al., 2019; Nangia et al., 2020b;
Orgad et al., 2022). For example, one can mea-
sure how many stereotypical choices the model
preferred over anti-stereotypical choices (an ex-
trinsic performance measure), as done on Wino-
gender (Rudinger et al., 2018), a similar dataset.
Winobias sentences can also be used to evaluate
language models (LMs), by evaluating if an LM
gives higher probabilities to pro-stereotypical sen-
tences (Nangia et al., 2020b) (an extrinsic predic-

tion measure). Winobias can also be used for in-
trinsic metrics, for example as a template for SEAT
(May et al., 2019a) and CEAT (Guo and Caliskan,
2021) (contextual extensions of WEAT). Each of
these metrics reveals a different facet of gender
bias in a model. An explicit measure of how many
pro-stereotypical choices were preferred over anti-
stereotypical choices has a different meaning than
measuring a performance metric gap between two
different genders. Additionally, measuring an in-
trinsic metric on Winobias may be help tie the re-
sults to the model’s behavior on the same dataset
in the downstream coreference resolution task.

3.2 Many possible combinations for datasets
and metrics

Winobias is one example out of many. In fact,
benchmarks for gender bias evaluation are typically
proposed as a package of two components:

1. A dataset on which the benchmark task is
performed.

2. A metric, which is the particular method used
to calculate bias of a model on the dataset.

Usually, these benchmarks are considered as
a bundle; however, they can often be decoupled,
mixed, and matched, as discussed in the Winobias
test case above. The work by Delobelle et al. (2021)
is an exception, in that they gathered a set of tem-
plates from diverse studies and tested them using
the same metric.

In Table 1, we present possible combinations
of datasets (rows) and metrics (columns) from the
gender bias literature. The metrics are partitioned
according to the three classes of metrics defined
in Section 2. We present only metrics valid for
assessing bias in contextualized LMs (rather than
static word embeddings), since they are the com-
mon practice nowadays. The table does not claim
to be exhaustive, but rather illustrates how metrics
and datasets can be repurposed in many different
ways. The metrics are described in appendix A,
but the categories are very general and even a sin-
gle column like “Gap (Label)” represents a wide
variety of metrics that can be measured.

Table 1 shows that many metrics are compatible
across many datasets (many ✓’s in the same col-
umn), and that datasets can be used to measure a
variety of metrics other than those typically mea-
sured (many ✓’s in the same row). Some datasets,
such as Bias in Bios (De-Arteaga et al., 2019), have
numerous metrics compatible, while others have
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Extrinsic Performance Extrinsic Predictions Intrinsic

Dataset
Metric Gap Gap Gap % or # of % or # Model Pred LM Prediction SEAT CEAT Probe Cluster Nearest Cos PCA

(Label) (Stereo) (Gender) Answer Changed Prefers Stereotype Gap On Target words Neighbors
Winogender (Rudinger et al., 2018) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Winobias (Zhao et al., 2018a) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gap (Webster et al., 2018) ✓⃝ ✓(aug)
Crow-S (Nangia et al., 2020a) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
StereoSet (Nadeem et al., 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bias in Bios (De-Arteaga et al., 2019) ✓⃝ ✓ ✓ ✓(aug) ✓(aug) ✓(aug) ✓ ✓ ✓ ✓ ✓ ✓ ✓
EEC (Kiritchenko and Mohammad, 2018) ✓⃝ ✓ ✓ ✓ ✓ ✓
STS-B for genders (Beutel et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dev et al. (2020a) (NLI) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PTB, WikiText, CNN/DailyMail ✓⃝ ✓
(Bordia and Bowman, 2019)
BOLD (Dhamala et al., 2021) ✓⃝
Templates from May et al. (2019a) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
Templates from Kurita et al. (2019) ✓⃝ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
DisCo templates (Beutel et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
BEC-Pro templates (Bartl et al., 2020) ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓
English-German news corpus ✓ ✓ ✓⃝ ✓⃝ ✓⃝ ✓⃝ ✓⃝
(Basta et al., 2021)
Reddit (Guo and Caliskan 2021, ✓ ✓⃝ ✓ ✓ ✓ ✓ ✓
Voigt et al. 2018)
MAP (Cao and Daumé III, 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GICoref (Cao and Daumé III, 2021) ✓⃝ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Combinations of gender bias datasets and metrics in the literature. ✓ marks a feasible combination of
a metric and a dataset. ✓⃝ marks the original metrics used on the dataset, and ✓(aug) marks metrics that can be
measured after augmenting the dataset such that every example is matched with a counterexample of another gender.
Extrinsic performance metrics depend on gold labels while extrinsic prediction metrics do not. A full description of
the metrics is given in Appendix A.

fewer, but still multiple, compatible metrics. Bias
in Bios has many compatible metrics since it has
information that can be used to calculate them: in
addition to gold labels, it also has gender labels
and clear stereotype definitions derived from the
labels which are professions. Text corpora and
template data, which do not address a specific task
(bottom seven rows), are mostly compatible with
intrinsic metrics. The compatibility of intrinsic
metrics with many datasets may explain why pa-
pers report intrinsic metrics more often (§5). Ad-
ditionally, Table 1 indicates that not many datasets
can be used to measure extrinsic metrics, partic-
ularly extrinsic performance metrics that require
gold labels. On the other hand, measuring LM
prediction on target words, which we consider as
extrinsic, can be done on many datasets. This is
useful for analyzing bias when dealing with LMs.
It can be done by computing bias metrics from the
LM output predictions, such as the mean proba-
bility gap when predicting the word “he” versus
“she” in specific contexts. Also, some templates are
valid for measuring extrinsic prediction metrics,
especially stereotype-related metrics, as they were
developed with explicit stereotypes in mind (such
as profession-related stereotypes).

Based on Table 1, it is clear that there are many
possible ways to measure gender bias in the litera-
ture, but they all fall under the vague category of
“gender bias”. Each of the possible combinations
gives a different definition, or interpretation, for
gender bias. The large number of different metrics
makes it difficult or even impossible to compare

different studies, including proposed gender bias
mitigation methods. This raises questions about the
validity of results derived from specific combina-
tions of measurements. In the next two sections, we
demonstrate how the choice of datasets and metrics
can affect the bias measurement.

4 Effect of Dataset on Measured Results

The choice of data to measure bias has an impact
on the calculated bias. Many researchers used sen-
tence templates that are “semantically bleached”
(e.g., “This is <word>.”, “<person> studied <pro-
fession> at college.”) to adjust metrics developed
for static word embeddings to contextualized rep-
resentations (May et al., 2019b; Kurita et al., 2019;
Webster et al., 2020; Bartl et al., 2020). Delobelle
et al. (2021) found that the choice of templates
significantly affected the results, with little corre-
lation between different templates. Additionally,
May et al. (2019b) reported that templates are not
as semantically bleached as expected.

Another common feature of bias measurement
methods is the use of hand-curated word lexicons
by almost every bias metric in the literature. An-
toniak and Mimno (2021) reported that the lexi-
con choice can greatly affect bias measurement,
resulting in differing conclusions between different
lexicons.

4.1 Case study: balancing the test data

Another important variable in gender bias evalua-
tion, often overlooked in the literature, is the com-
position of the test dataset. Here, we demonstrate
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Metric
Testing balancing

Original Oversampled Subsampled

TPR (p) 0.78 0.75 0.75
TPR (s) 2.35 2.41 2.38
FPR (p) 0.61 0.59 0.57
FPR (s) 0.08 0.08 0.08
Precision (p) 0.63 0.64 0.38*
Precision (s) 0.22 0.03* 0.02*
Separation (s) 2.27 0.23* 0.35*
Sufficiency (s) 1.94 0.74* 9.15*
Independence (s) 0.14 0.01* 0.01*

Table 2: Metrics measured on Bias in Bios, separated to
performance gap metrics (above the line) and statistical
fairness metrics (below the line). Metrics are measured
on the original test split, and on a subsampled and over-
sampled version of it. * marks statistically significant
difference in a metric compared to the baseline (Origi-
nal), using Pitman’s permutation test (p < 0.05).

this by comparing metrics on different test sets,
which come from the same dataset but have a differ-
ent balance of examples. Bias in Bios (De-Arteaga
et al., 2019) involves predicting an occupation from
a biography text. These occupations are not bal-
anced across genders, so for example over 90% of
the nurses in the dataset identify as females.

Our case study extends the experiments done by
Orgad et al. (2022). In their work, they tested a
RoBERTa-based (Liu et al., 2019) classifier fine-
tuned on Bias in Bios. The model was trained and
evaluated on a training/test split of the dataset using
numerous extrinsic bias metrics. Here we train the
same model on the same training set, but evaluate
it on three types of test sets: the original test set
alongside balanced versions of it, which have equal
numbers of females and males in every profession,
by either subsampling or oversampling. 2 We fol-
low Orgad et al. (2022) and report nine different
metrics on this task, measuring either some notion
of performance gap or a statistical metric from the
fairness literature. For details on the metrics mea-
sured in this experiments, see Appendix C.

As the results in Table 2 show, although many
of the gap metrics (top block) are unaffected by
the balancing of the test dataset, the absolute sum
of precision gaps is almost zero when the dataset
is balanced. Moreover, the Pearson correlation
for precision is significantly reduced after subsam-
pling the test dataset. The Pearson correlation is

2Subsampling is the process of removing examples from
the dataset such that the resulting dataset contains the same
number of male and female examples for each label. Over-
sampling achieves this by repeating examples.

Figure 2: Percentage of females in the training percent
versus the resulting precision gap, per each profession,
for a regular test set and a subsampled one. Precision
gaps and the Pearson correlation are both lower for a
subsampled dataset.

computed between the performance gaps per label
(profession), and the percentage of females in the
training set for that label, without balancing (the
original distribution of professions per gender can
be found in Appendix E). A higher correlation indi-
cates that more bias was learned from the training
set. This correlation is illustrated in Figure 2, and
it is visible that the correlation is much lower when
measured on a subsampled test dataset than on the
original test dataset.

The statistical fairness metrics (bottom block
in Table 2) show a significant difference in the
measured bias across different test set balancing.
Oversampling shows less bias than when measured
on the original test set, while subsampling yields
mixed results – it decreases one metric while in-
creasing another.

What is the “correct” test set? Since metrics are
defined over the entire dataset, they are sensitive
to its composition. For measuring bias in a model,
the dataset used should be as unbiased as possible,
thus balanced datasets are preferable.

If we were only concerned with measuring one
of the reduced metrics on a non-balanced test set,
we could misrepresent the fairness of the model.
Indeed, it is common practice to measure only a
small portion of metrics out of all those that can be
measured—as we show in section 5—which makes
us vulnerable to misinterpretations.

4.2 Case study: measuring intrinsic bias on
two different datasets

It is critical to consider the impact of the data used
when measuring intrinsic bias metrics on a lan-
guage model. Previous work (Goldfarb-Tarrant
et al., 2021; Cao et al., 2022; Orgad et al., 2022)
inspected the correlations between extrinsic and in-
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(a) Intrinsic metric was measured on the test set of occupation
prediction, figure reproduced from Orgad et al. (2022) (with
permission).

(b) Intrinsic metric was measured on Winobias (Zhao et al.,
2018a).

Figure 3: Correlation between an intrinsic metric (compression) and an extrinsic metric (sufficiency gap sums), for
various models trained on occupation prediction task.“None” was trained on the original dataset, “Oversampling”
was trained on an oversampled dataset, “Subsampling” was trained on a subsampled dataset and “Scrubbing” was
trained on a scrubbed dataset (explicit gender words like “he” and “she” were removed).

trinsic gender bias metrics. Some did not find cor-
relations, while others did in some cases. However,
correlations do not solely depend on the model
used for bias measurement, but also on the dataset
used to measure the intrinsic metric.

Our experiment analyzes the behavior of the
same metric on different datasets. We again follow
Orgad et al. (2022), who probed for the amount of
gender information extractable from the model’s
internal representations. This is quantified by com-
pression (Voita and Titov, 2020), where a higher
compression indicates greater bias extractability.
Orgad et al. found that this metric correlates
strongly with various extrinsic metrics. An exam-
ple of this correlation is shown in Figure 3a on the
Bias in Bios task with models debiased with various
strategies. The correlation is high (r2 = 0.567).

In their experiment, the intrinsic metric was mea-
sured on the same dataset as the extrinsic one. We
repeat the correlation tests, but this time measure
the intrinsic metric on a different dataset, the Wino-
bias dataset. The results (Figure 3b) clearly show
that there is no correlation between extrinsic and
intrinsic metrics in this case (r2 = 0.025).

Hence, we conclude that the dataset used to mea-
sure intrinsic bias impacts the results significantly.
To reliably reflect the biases that the model has ac-
quired, it should be closely related to the task that
the model was trained on. In our experiment, when
intrinsic and extrinsic metrics were not measured
on the same dataset, no correlation was detected.
This is the case for all metrics on this task from
Orgad et al. (2022); see Appendix 3. As discussed

in §3, the same intrinsic metrics can be evaluated
across a variety of datasets. Even so, some intrin-
sic metrics were originally defined to be measured
on different datasets than the task dataset, such as
those defined on templates (Table 1).

5 Different Metrics Cover Different
Aspects of Bias

In this section, we explore how the choice of bias
metrics influences results. Although extrinsic bias
metrics are useful in defining harms caused by a
gender-biased system, we find that most studies on
gender bias use only intrinsic metrics to support
their claims. We surveyed a representative list of
papers presenting bias mitigation techniques that
appeared in the survey by Stanczak and Augenstein
(2021), as well as recent papers from the past year.
In total, we examined 36 papers. The majority
of papers do not measure extrinsic metrics. Even
when downstream tasks are measured, only a very
small subset of metrics (three or less) is typically
measured, as shown in Figure 4. Furthermore, in
these studies, typically no explanation is provided
for choosing a particular metric.

The exceptions are de Vassimon Manela et al.
(2021) and Orgad et al. (2022), who measured six
and nine or ten metrics on downstream tasks, re-
spectively. Orgad et al. showed that different extrin-
sic metrics behave differently under various debias-
ing methods. Additionally, in §4 we saw that sub-
sampling the test set increased one bias metric and
decreased others, which would not have been evi-
dent had we only measured a small number of met-
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Figure 4: The number of extrinsic metrics measured in
the papers we reviewed.

rics. Measuring multiple metrics is also important
for evaluating debiasing. When Kaneko and Bolle-
gala compared their proposed debiasing method to
that of Dev et al. (2020a), the new method outper-
formed the old one on two of the three metrics.

As the examples above illustrate, different ex-
trinsic metrics are not necessarily consistent with
one another. Furthermore, it is possible to measure
more extrinsic metrics, although it is rarely done.
When it is not feasible to measure multiple metrics,
one should at least justify why a particular metric
was chosen. In a CV-filtering system, for example,
one might be more forgiving of FPR gaps than of
TPR gaps, as the latter leaves out valid candidates
for the job in one gender more than the other. How-
ever, more extrinsic metrics are likely to provide a
more reliable picture of a model’s bias.

6 Conclusion and Proposed Guidelines

The issues described in this paper concern the in-
stabilities and vagueness of gender bias metrics
in NLP. Since bias measurements are integral to
bias research, this instability limits progress. We
now provide several guidelines for improving the
reliability of gender bias research in NLP.

Focus on downstream tasks and extrinsic met-
rics. Extrinsic metrics are helpful in motivating
bias mitigation (§2). However, few datasets can be
used to quantify extrinsic metrics, especially extrin-
sic performance metrics, which require gold labels
(§3). More effort should be devoted to collecting
datasets with extrinsic bias assessments, from more
diverse domains and downstream tasks.

Stabilize the metric or the dataset. Both the
metrics and the datasets could have significant ef-
fects over the results: The same dataset can be used
to measure many metrics and yield different con-
clusions (§4), and the same metric can be measured
on different datasets and show bias in one instance

but not in another (§5). If one wishes to measure
gender bias in an NLP system, it is better to hold
one of these variables fixed: for example, to fo-
cus on a single metric and measure it on a set of
datasets. Of course, this can be repeated for other
metrics as well. This will produce much richer,
more consistent, and more convincing results.

Neutralize dataset noise. As a result of altering
a dataset’s composition, we observed very different
results (§4). This is caused by the way various
fairness metrics are defined and computed on the
entire dataset. To ensure a more reliable evaluation,
we recommend normalizing a dataset when using it
for evaluation. In the case of occupation prediction,
normalization can be obtained by balancing the test
set. In other cases it could be by anonymizing the
test set, removing harmful words, etc., depending
on the specific scenario.

Motivate the choice of specific metrics, or mea-
sure many. Most work measures only a few met-
rics (§5). A comprehensive experiment, such as
to prove the efficacy of a new debiasing method,
is more reliable if many metrics are measured. In
some situations, a particular metric may be of in-
terest; in this case one should carefully justify the
choice of metric and the harm that is caused when
the metric indicates bias. The motivation for debi-
asing this metric then follows naturally.

Define the motivation for debiasing through bias
metrics. Blodgett et al. (2020) found that pa-
pers’ motivations are “often vague, inconsistent,
and lacking in normative reasoning”. We propose
to describe the motivations through the gender bias
metrics chosen for the study: define what is the
harm measured by a specific metric, what is the
behavior of a desired versus a biased system, and
how the metric measures it. This is where extrinsic
metrics will be particularly useful.

We believe that following these guidelines will
enhance clarity and comparability of results, con-
tributing to the advancement of the field.

Acknowledgements
This research was supported by the ISRAEL SCI-
ENCE FOUNDATION (grant No. 448/20) and by
an Azrieli Foundation Early Career Faculty Fellow-
ship. We also thank the anonymous reviewers for
their insightful comments and suggestions, and the
members of the Technion CS NLP group for their
valuable feedback.

157



References
Maria Antoniak and David Mimno. 2021. Bad seeds:

Evaluating lexical methods for bias measurement.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1889–1904, Online. Association for Computational
Linguistics.

Solon Barocas, Kate Crawford, Aaron Shapiro, and
Hanna Wallach. 2017. The problem with bias: Al-
locative versus representational harms in machine
learning. In 9th Annual Conference of the Special
Interest Group for Computing, Information and Soci-
ety.

Solon Barocas, Moritz Hardt, and Arvind Narayanan.
2019. Fairness and Machine Learning. fairml-
book.org. http://www.fairmlbook.org.

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020.
Unmasking contextual stereotypes: Measuring and
mitigating BERT’s gender bias. In Proceedings of
the Second Workshop on Gender Bias in Natural
Language Processing, pages 1–16, Barcelona, Spain
(Online). Association for Computational Linguistics.

Christine Basta, Marta R Costa-jussà, and Noe Casas.
2021. Extensive study on the underlying gender bias
in contextualized word embeddings. Neural Comput-
ing and Applications, 33(8):3371–3384.

Christine Basta, Marta R. Costa-jussà, and José A. R.
Fonollosa. 2020. Towards mitigating gender bias in
a decoder-based neural machine translation model by
adding contextual information. In Proceedings of the
The Fourth Widening Natural Language Processing
Workshop, pages 99–102, Seattle, USA. Association
for Computational Linguistics.

Yonatan Belinkov. 2021. Probing classifiers: Promises,
shortcomings, and alternatives. Computational Lin-
guistics 2021.

Alex Beutel, Ed H. Chi, Ellie Pavlick, Emily Blythe
Pitler, Ian Tenney, Jilin Chen, Kellie Webster, Slav
Petrov, and Xuezhi Wang. 2020. Measuring and
reducing gendered correlations in pre-trained models.
Technical report.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454–
5476, Online. Association for Computational Lin-
guistics.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
neural information processing systems, 29.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Shikha Bordia and Samuel R. Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 7–15, Minneapolis, Minnesota. Association for
Computational Linguistics.

Aylin Caliskan, J. Bryson, and A. Narayanan. 2017. Se-
mantics derived automatically from language corpora
contain human-like biases. Science, 356:183 – 186.

Yang Trista Cao and Hal Daumé III. 2021. Toward
gender-inclusive coreference resolution: An analysis
of gender and bias throughout the machine learning
lifecycle*. Computational Linguistics, 47(3):615–
661.

Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang,
Rahul Gupta, Varun Kumar, Jwala Dhamala, and
Aram Galstyan. 2022. On the intrinsic and extrinsic
fairness evaluation metrics for contextualized lan-
guage representations.

Marta R. Costa-jussà and Adrià de Jorge. 2020. Fine-
tuning neural machine translation on gender-balanced
datasets. In Proceedings of the Second Workshop on
Gender Bias in Natural Language Processing, pages
26–34, Barcelona, Spain (Online). Association for
Computational Linguistics.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In proceedings of the Conference on Fairness,
Accountability, and Transparency, pages 120–128.

Daniel de Vassimon Manela, David Errington, Thomas
Fisher, Boris van Breugel, and Pasquale Minervini.
2021. Stereotype and skew: Quantifying gender bias
in pre-trained and fine-tuned language models. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2232–2242, Online.
Association for Computational Linguistics.

Pieter Delobelle, Ewoenam Kwaku Tokpo, Toon
Calders, and Bettina Berendt. 2021. Measuring fair-
ness with biased rulers: A survey on quantifying
biases in pretrained language models. arXiv preprint
arXiv:2112.07447.

Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Sriku-
mar. 2020a. On measuring and mitigating biased
inferences of word embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7659–7666.

158

https://doi.org/10.18653/v1/2021.acl-long.148
https://doi.org/10.18653/v1/2021.acl-long.148
http://www.fairmlbook.org
https://aclanthology.org/2020.gebnlp-1.1
https://aclanthology.org/2020.gebnlp-1.1
https://doi.org/10.18653/v1/2020.winlp-1.25
https://doi.org/10.18653/v1/2020.winlp-1.25
https://doi.org/10.18653/v1/2020.winlp-1.25
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2010.06032
https://arxiv.org/abs/2010.06032
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.1162/coli_a_00413
https://doi.org/10.1162/coli_a_00413
https://doi.org/10.1162/coli_a_00413
https://doi.org/10.1162/coli_a_00413
https://doi.org/10.48550/ARXIV.2203.13928
https://doi.org/10.48550/ARXIV.2203.13928
https://doi.org/10.48550/ARXIV.2203.13928
https://aclanthology.org/2020.gebnlp-1.3
https://aclanthology.org/2020.gebnlp-1.3
https://aclanthology.org/2020.gebnlp-1.3
https://doi.org/10.18653/v1/2021.eacl-main.190
https://doi.org/10.18653/v1/2021.eacl-main.190


Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Sriku-
mar. 2020b. On measuring and mitigating biased
inferences of word embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7659–7666.

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Ar-
jun Subramonian, Jeff Phillips, and Kai-Wei Chang.
2021. Harms of gender exclusivity and challenges in
non-binary representation in language technologies.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1968–1994, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and
Rahul Gupta. 2021. Bold: Dataset and metrics for
measuring biases in open-ended language genera-
tion. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, pages
862–872.

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-
banek, Douwe Kiela, and Jason Weston. 2020.
Queens are powerful too: Mitigating gender bias in
dialogue generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8173–8188, Online. As-
sociation for Computational Linguistics.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
11–21, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ali Emami, Paul Trichelair, Adam Trischler, Kaheer
Suleman, Hannes Schulz, and Jackie Chi Kit Cheung.
2019. The KnowRef coreference corpus: Remov-
ing gender and number cues for difficult pronominal
anaphora resolution. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3952–3961, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.
2019. Understanding undesirable word embedding
associations. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1696–1705, Florence, Italy. Associa-
tion for Computational Linguistics.

Ismael Garrido-Muñoz , Arturo Montejo-Ráez , Fer-
nando Martínez-Santiago , and L. Alfonso Ureña-
López . 2021. A survey on bias in deep nlp. Applied
Sciences, 11(7).

Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ri-
cardo Muñoz Sánchez, Mugdha Pandya, and Adam
Lopez. 2021. Intrinsic bias metrics do not correlate
with application bias. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:

Long Papers), pages 1926–1940, Online. Association
for Computational Linguistics.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Workshop on Widening
NLP, pages 60–63, Florence, Italy. Association for
Computational Linguistics.

Wei Guo and Aylin Caliskan. 2021. Detecting emergent
intersectional biases: Contextualized word embed-
dings contain a distribution of human-like biases. In
Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, pages 122–133.

Nizar Habash, Houda Bouamor, and Christine Chung.
2019. Automatic gender identification and reinflec-
tion in Arabic. In Proceedings of the First Workshop
on Gender Bias in Natural Language Processing,
pages 155–165, Florence, Italy. Association for Com-
putational Linguistics.

Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and
Simone Teufel. 2019. It’s all in the name: Mitigating
gender bias with name-based counterfactual data sub-
stitution. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5267–5275, Hong Kong, China. Association for Com-
putational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Xisen Jin, Francesco Barbieri, Brendan Kennedy, Aida
Mostafazadeh Davani, Leonardo Neves, and Xiang
Ren. 2021. On transferability of bias mitigation ef-
fects in language model fine-tuning. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3770–3783,
Online. Association for Computational Linguistics.

Masahiro Kaneko and Danushka Bollegala. 2019.
Gender-preserving debiasing for pre-trained word
embeddings. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1641–1650, Florence, Italy. Associa-
tion for Computational Linguistics.

Masahiro Kaneko and Danushka Bollegala. 2021a. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266, Online.
Association for Computational Linguistics.

159

https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/D18-1002
https://doi.org/10.18653/v1/D18-1002
https://doi.org/10.18653/v1/P19-1386
https://doi.org/10.18653/v1/P19-1386
https://doi.org/10.18653/v1/P19-1386
https://doi.org/10.18653/v1/P19-1166
https://doi.org/10.18653/v1/P19-1166
https://doi.org/10.3390/app11073184
https://doi.org/10.18653/v1/2021.acl-long.150
https://doi.org/10.18653/v1/2021.acl-long.150
https://aclanthology.org/W19-3621
https://aclanthology.org/W19-3621
https://aclanthology.org/W19-3621
https://doi.org/10.18653/v1/W19-3822
https://doi.org/10.18653/v1/W19-3822
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/D19-1530
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/2021.naacl-main.296
https://doi.org/10.18653/v1/2021.naacl-main.296
https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2021.eacl-main.107


Masahiro Kaneko and Danushka Bollegala. 2021b.
Dictionary-based debiasing of pre-trained word em-
beddings. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 212–223,
Online. Association for Computational Linguistics.

Saket Karve, Lyle Ungar, and João Sedoc. 2019. Con-
ceptor debiasing of word representations evaluated
on WEAT. In Proceedings of the First Workshop
on Gender Bias in Natural Language Processing,
pages 40–48, Florence, Italy. Association for Com-
putational Linguistics.

Kate Crawford. 2017. The trouble with bias. keynote at
neurips.

Svetlana Kiritchenko and Saif Mohammad. 2018. Ex-
amining gender and race bias in two hundred senti-
ment analysis systems. In Proceedings of the Seventh
Joint Conference on Lexical and Computational Se-
mantics, pages 43–53.

Vaibhav Kumar, Tenzin Singhay Bhotia, Vaibhav Ku-
mar, and Tanmoy Chakraborty. 2020. Nurse is closer
to woman than surgeon? mitigating gender-biased
proximities in word embeddings. Transactions of the
Association for Computational Linguistics, 8:486–
503.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in con-
textualized word representations. In Proceedings of
the First Workshop on Gender Bias in Natural Lan-
guage Processing, pages 166–172, Florence, Italy.
Association for Computational Linguistics.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 25–30, Melbourne,
Australia. Association for Computational Linguistics.

Sheng Liang, Philipp Dufter, and Hinrich Schütze. 2020.
Monolingual and multilingual reduction of gender
bias in contextualized representations. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5082–5093, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019a. On measur-
ing social biases in sentence encoders. In Proceed-
ings of the 2019 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 622–628, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019b. On measur-
ing social biases in sentence encoders. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 622–628, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
Stereoset: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel Bowman. 2020a. Crows-pairs: A challenge
dataset for measuring social biases in masked lan-
guage models. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020b. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Hadas Orgad, Seraphina Goldfarb-Tarrant, and Yonatan
Belinkov. 2022. How gender debiasing affects in-
ternal model representations, and why it matters. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799–2804, Brussels, Belgium. Association for Com-
putational Linguistics.

Flavien Prost, Nithum Thain, and Tolga Bolukbasi.
2019. Debiasing embeddings for reduced gender
bias in text classification. In Proceedings of the First
Workshop on Gender Bias in Natural Language Pro-
cessing, pages 69–75, Florence, Italy. Association for
Computational Linguistics.

Yusu Qian, Urwa Muaz, Ben Zhang, and Jae Won Hyun.
2019. Reducing gender bias in word-level language
models with a gender-equalizing loss function. In

160

https://doi.org/10.18653/v1/2021.eacl-main.16
https://doi.org/10.18653/v1/2021.eacl-main.16
https://doi.org/10.18653/v1/W19-3806
https://doi.org/10.18653/v1/W19-3806
https://doi.org/10.18653/v1/W19-3806
https://doi.org/10.1162/tacl_a_00327
https://doi.org/10.1162/tacl_a_00327
https://doi.org/10.1162/tacl_a_00327
https://doi.org/10.18653/v1/W19-3823
https://doi.org/10.18653/v1/W19-3823
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/2020.coling-main.446
https://doi.org/10.18653/v1/2020.coling-main.446
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://arxiv.org/abs/2204.06827
https://arxiv.org/abs/2204.06827
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/W19-3810
https://doi.org/10.18653/v1/W19-3810
https://doi.org/10.18653/v1/P19-2031
https://doi.org/10.18653/v1/P19-2031


Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics: Student Re-
search Workshop, pages 223–228, Florence, Italy.
Association for Computational Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Magnus Sahlgren and Fredrik Olsson. 2019. Gender
bias in pretrained swedish embeddings. In Proceed-
ings of the 22nd Nordic Conference on Computa-
tional Linguistics, pages 35–43.

Danielle Saunders and Bill Byrne. 2020. Reducing gen-
der bias in neural machine translation as a domain
adaptation problem. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7724–7736, Online. Association
for Computational Linguistics.

Danielle Saunders, Rosie Sallis, and Bill Byrne. 2020.
Neural machine translation doesn’t translate gender
coreference right unless you make it. In Proceedings
of the Second Workshop on Gender Bias in Natural
Language Processing, pages 35–43, Barcelona, Spain
(Online). Association for Computational Linguistics.

João Sedoc and Lyle Ungar. 2019. The role of protected
class word lists in bias identification of contextual-
ized word representations. In Proceedings of the
First Workshop on Gender Bias in Natural Language
Processing, pages 55–61, Florence, Italy. Association
for Computational Linguistics.

Indira Sen, Mattia Samory, Fabian Flöck, Claudia Wag-
ner, and Isabelle Augenstein. 2021. How does coun-
terfactually augmented data impact models for social
computing constructs? In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 325–344, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Seungjae Shin, Kyungwoo Song, JoonHo Jang, Hyemi
Kim, Weonyoung Joo, and Il-Chul Moon. 2020. Neu-
tralizing gender bias in word embeddings with latent
disentanglement and counterfactual generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3126–3140, Online.
Association for Computational Linguistics.
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A List of gender bias metrics, as
presented in Table 1

Many of the items in this list do not aim to describe
a specific metric, but rather describe a family of
metrics with similar characteristics and require-
ments.

A.1 Extrinsic Performance
This class of extrinsic metrics measures how a
model’s performance is affected by gender. This is
computed with respect to particular gold labels and
there is a clear defintion of harm derived from the
specific performance metric measured, for instance
F1, True Positive Rate (TPR), False Positive Rate
(FPR), BLEU score for translation tasks, etc.

1. Gap (Label): Measures the difference in
some performance metric between Female
and Male examples, in a specific class. The
performance gap can be computed as the dif-
ference or the quotient between two perfor-
mance metrics on two protected group. For
example, in Bias in Bios (De-Arteaga et al.,
2019) one can measure the TPR gap between
female teachers and male teachers. The gaps
per class can be summed, or the correlation
with the percentage of women in the particular
class can be measured.

2. Gap (Stereo): Measures the difference
in some performance metric between pro-
stereotypical (and/or non-stereotypical) and
anti-stereotypical (and/or non-stereotypical)
instances. A biased model will have better per-
formance on pro-stereotypical instances. This

can be measured across the whole dataset or
per gender / class.

3. Gap (Gender): Measure the difference in
some performance metric between male ex-
amples and female examples, across the en-
tire dataset. In cases of non-binary gender
datasets (Cao and Daumé III, 2021), the gap
can be calculated to measure the difference
between text that is trans-inclusive versus text
that is trans-exclusive. Another option is to
measure the difference in performance before
and after removing various aspects of gender
from the text.

A.2 Extrinsic Prediction
This class is also extrinsic as it measures model pre-
dictions, but the bias is not computed with respect
to some gold labels. Instead, the bias is measured
by the effect of gender on the predictions of the
model.

1. % or # of answer changes: The number or
percentage that the prediction changed when
the gender of the example changed. To mea-
sure this, each example should have a coun-
terpart example of the opposite gender. This
difference can be measured with respect to
the number of females or males in the specific
label, for instance with relation to occupation
statistics.

2. % or # that model prefers stereotype: Quan-
tifies how much the model tends to go for the
stereotypical option, for instance predicting
that a “she” pronoun refers to a nurse in a
coreference resolution task. This can also be
measured as a correlation with the number of
females or males in the label, which can be
thought of as the “strength” of the stereotype.

3. Pred gap: The raw probabilities or some func-
tion of them are measured, and the gap is mea-
sured as the prediction gap between male and
female predictions. This can be measured
across the whole dataset or per label at other
cases.

4. LM prediction on target words: This met-
ric relates to the specific predictions of a pre-
trained LM, such as a masked LM. The pre-
diction of the LM is calculated for a spe-
cific text or on a specific target word of in-
terest. These probabilities are then used to
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measure the bias of the model. We did not
include this metric category in the “Pred gap”
category because it can be measured on a
much larger number of datasets. For exam-
ple, for the masked sentence: “The program-
mer said that <mask> would finish the work
tomorrow”, we might measure the relation
between p(< mask >= he|sentence) and
p(< mask >= she|sentence). Although
somewhat similar in idea to the previously de-
scribed metric “pred gap”, it is presented as a
separate metric since it can be computed on
a wider range of datasets. The strategy for
calculating a number quantifying bias from
the raw probabilities varies in different papers.
For example, Kurita et al. (2019); Nangia et al.
(2020a); Bordia and Bowman (2019); Nadeem
et al. (2021) all use different formulations.

A.3 Intrinsic

This class measures bias on the hidden model repre-
sentations, and is not directly related to any down-
stream task.

1. WEAT: The Word Embedding Association
Test (Caliskan et al., 2017) was proposed as
a way to quantify bias in static word embed-
dings. While we consider only bias metrics
that can be applied in contextualized settings,
we describe WEAT here as it is popular and
has been adapted to contextualized settings.
To compute WEAT, one defines a set of tar-
get words X,Y (e.g., programmer, engineer,
scientist, etc., and nurse, teacher, librarian,
etc.) and two sets of attribute words A,B (e.g.,
man, male, etc. and woman, female, etc.). The
null hypothesis is that the two sets of target
words are not different when it comes to their
similarity to the two sets of attribute words.
We test the null hypothesis using a permu-
tation test on the word embeddings, and the
resulting effect size is used to quantify how
different the two sets are.

2. SEAT: the Sentence Encoder Association
Test (May et al., 2019a) was proposed as
a contextual version of the popular metric
WEAT. As WEAT was computed on static
word embedding, in SEAT they proposed us-
ing “semantically-bleached” templates such
as “This is [target]”, where the target word of
interest is planted in the template, to get its

word embedding in contextual language mod-
els. Thus, we only consider “semantically-
bleached” templates to be appropriate as a
dataset for SEAT.

3. CEAT: Contextualized Embedding Associa-
tion Test (Guo and Caliskan, 2021) was pro-
posed as another contextual alternative to
WEAT. Here, instead of using templates to
get the word of interest, for each word a large
number of embeddings is collected from a
corpus of text, where the word appears many
times. WEAT’s effect size is then computed
many times, with different embeddings each
time, and a combined effect size is then cal-
culated on it. As already mentioned by the
original authors, even with only 2 contextual
embeddings collected per word in the WEAT
stimuli, and each set of X,Y,A,B having
only 5 stimuli, 25·4 possible combinations can
be used to compute effect sizes.

4. Probe: The entire example, or a specific word
in the text, is probed for gender. A classifier is
trained to learn the gender from a representa-
tion of the word or the text as extracted from a
model. This can be done on examples where
there is some gender labeling (for instance,
the gender of the person discussed in a biogra-
phy text) or when the text contains some target
words, with gender context. Such target words
could be “nurse” for female and “doctor” for
male. Usually, the word probe refers to a clas-
sifier from the family of multilayer preceptron
classifiers, linear classifiers included. The ac-
curacy achieved by the probe is often used as
a measure of how much gender information in
embedded in the representations, but there are
some weaknesses with using accuracy, such
as memorization and other issues (Hewitt and
Liang, 2019; Belinkov, 2021), and so MDL
Probing is proposed as an alternative (Voita
and Titov, 2020), and the metric used is com-
pression rate. Higher compression indicates
more gender information in the representa-
tion.

5. Cluster: It is possible to cluster the word em-
beddings or representations of the examples
and perform an analysis using the gender la-
bels just like in probing.

6. Nearest Neighbors: As with probing, the ex-
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amples and word representations can be clas-
sified using a nearest neighbor model, or an
analysis can be done using nearest neighbors
of word embeddings as done by Gonen and
Goldberg (2019).

7. Gender Space: in the static embeddings
regime, Bolukbasi et al. (2016) proposed to
identify gender bias in word representations
by computing the direction between repre-
sentations of male and female word pairs
such as “he” and “she”. They then computed
PCA to find the gender direction. Basta et al.
(2021) extended the idea to contextual embed-
dings by using multiple representations for
each word, by sampling sentences that con-
tain these words from a large corpus. Zhao
et al. (2019) performed the same technique
on a different dataset. They then observed the
percentage of variance explained in the first
principal component, and this measure plays
as a bias metric. The principal components
can then be further used for a visual qualita-
tive analysis by projecting word embeddings
on the component space.

8. Cos: in static word embeddings (Bolukbasi
et al., 2016), this was computed as the mean
cosine similarity between neutral words which
might have some stereotype such as “doctor”
or “nurse”, and the gender space. Basta et al.
(2021) computed it on profession words using
extracted embeddings from a large corpus.

B Statistical Fairness Metrics

This section describes statistical metrics that are
representative of many other fairness metrics that
have been proposed in the field. separation and
sufficiency fall under the definition of “extrinsic
performance”, specifically “gap (Gender)” while
independence falls under the definition of “extrinsic
prediction”, specifically “pred gap”. Various num-
bers are generated by these metrics that describe
differences between two distributions as measured
by Kullbeck-Liebr divergence. We sum all the num-
bers to quantify bias in a single number.

Let R be a model’s prediction, G the protected
attribute of gender, and Y the golden labels.

Independence requires that the model’s predic-
tions are independent of the gender. Formally:
P (R = r|Z = F ) = P (R = r|Z = M)

It is measured by the distributional difference
between P (R = r) and P (R = r|Z = z) ∀z ∈
{M,F}.

Separation requires that the model’s predictions
are independent of the gender given the label. For-
mally:
P (R = r|Y = y,G = F ) = (R = r|Y =

y,G = M)∀y ∈ Y
It is measured by the distributional difference

between P (R = r|Y = y, Z = z) and P (R =
r|Y = y)∀y ∈ Y,∀z ∈ {M,F}

Sufficiency requires that the distribution of the
gold labels is independent of the model’s predic-
tions given the gender. Formally:
P (Y = y|R = r,G = F ) = P (Y = y|R =

r,G = M)

It is measured by the distributional difference
between P (Y = y|R = r, Z = z) and P (Y =
y|R = r)∀y ∈ Y,∀z ∈ {M,F}

C Implementation details: Bias in Bios
experiment

In this section we describe the metrics that were
measured in the experiments on Bias in Bios, fol-
lowing Orgad et al. (2022).

Performance gap metrics. The standard mea-
sure for this task (De-Arteaga et al., 2019) is the
True Positive Rate (TPR) gap between male and
female examples, for each profession p:

TPRp = TPRpF − TPRpM

and then compute the Pearson correlation between
each TPRp and the percentage of females in the
training set with the profession p. The result is a
single number in the range of 0 to 1, with a higher
value indicating greater bias. We measure the Pear-
son correlations of TPRp, as well as of the False
Positive Rate (FPR) and the Precision gaps. In ad-
dition, we sum all the gaps in the profession set P ,
thereby quantifying the absolute bias and not only
the correlations, for example, for the TPR gaps:∑

p∈P TPRp.

Statistical fairness metrics. We also measured
three statistical metrics (Barocas et al., 2019), re-
lating to several bias concepts: Separation, Suffi-
ciency and Independence. A greater value means
more bias. Detailed information on these metrics
can be found in Appendix B.

164



D Bias in Bios: Correlations between
extrinsic and intrinsic metrics when
measured on different datasets

Table 3 present the full results of our correlation
tests, when intrinsic metrics was measured on a dif-
ferent dataset (Winobias) than the extrinsic metric
(Bias in Bios). For all metrics, there is no correla-
tion when we measured the intrinsic metric with a
different dataset, although many of the metrics did
correlate with the intrinsic metrics when measured
on the same dataset as is originally done in Orgad
et al..

E Bias in Bios: Statistics of the Dataset
Before Balancing

Table 4 presents how the professions in Bias in Bios
dataset (De-Arteaga et al., 2019) are distributed, per
gender. The gender was induced by the pronouns
used to describe the person in the biography, thus
it is likely the self-identified gender of the person
described in it.

F Full List of Reviewed Papers for
Extrinsic Metrics Measurements

Table 5 presents the papers we reviewed and the
amount of extrinsic metrics measured by them.
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Metric Bias in Bios (Original) Winobias

TPR gap (P) 0.304 0.022
TPR gap (S) 0.449 0.002
FPR gap (P) 0.120 0.030
FPR gap (S) 0.046 0.008

Precision gap (P) 0.063 0.013
Precision gap (S) 0.291 0

Independence gap (S) 0.382 0.005
Separation gap (S) 0.165 0.001
Sufficiency gap (S) 0.567 0.025

Table 3: Correlations between intrinsic and extrinsic metrics. Original correlations are from Orgad et al. (2022), our
correlations are calculated with the intrinsic metric as measured on Winobias.

Females Males

professor 45.10% 54.90%
accountant 36.73% 63.27%
journalist 49.51% 50.49%
architect 23.66% 76.34%
photographer 35.72% 64.28%
psychologist 62.07% 37.93%
teacher 60.24% 39.76%
nurse 90.84% 9.16%
attorney 38.29% 61.71%
software_engineer 15.80% 84.20%
painter 45.74% 54.26%
physician 49.37% 50.63%
chiropractor 26.31% 73.69%
personal_trainer 45.56% 54.44%
surgeon 14.82% 85.18%
filmmaker 32.94% 67.06%
dietitian 92.84% 7.16%
dentist 35.28% 64.72%
dj 14.18% 85.82%
model 82.74% 17.26%
composer 16.37% 83.63%
poet 49.05% 50.95%
comedian 21.14% 78.86%
yoga_teacher 84.51% 15.49%
interior_designer 80.77% 19.23%
pastor 24.03% 75.97%
rapper 9.69% 90.31%
paralegal 84.88% 15.12%

Table 4: Statistics of professions and genders as they appear in the Bias in Bios dataset.
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Paper Maximum # of extrinsic
metrics per task

Bolukbasi et al. (2016); Zhang et al. (2018)
Bordia and Bowman (2019); Ethayarajh et al. (2019)
Sahlgren and Olsson (2019); Karve et al. (2019)
Hall Maudslay et al. (2019); Sedoc and Ungar (2019)
Kaneko and Bollegala (2019); Liang et al. (2020)
Dev et al. (2020b); Shin et al. (2020)
Kaneko and Bollegala (2021b)

0

Zhao et al. (2017, 2018b)
Li et al. (2018); Elazar and Goldberg (2018)
Zmigrod et al. (2019); Zhao et al. (2019)
Kumar et al. (2020); Bartl et al. (2020)
Sen et al. (2021)

1

Prost et al. (2019); Qian et al. (2019)
Emami et al. (2019); Habash et al. (2019)
Dinan et al. (2020); Costa-jussà and de Jorge (2020)
Basta et al. (2020)

2

Park et al. (2018); Stafanovičs et al. (2020)
Saunders and Byrne (2020); Saunders et al. (2020)
Kaneko and Bollegala (2021a); Jin et al. (2021)

3

de Vassimon Manela et al. (2021) 6

Orgad et al. (2022) 10

Table 5: Papers about gender bias and the number of extrinsic metrics they measured per task. 0 means no extrinsic
metrics were measured.
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