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Abstract

Due to the complexity of bias and the opaque
nature of current neural approaches, there is a
rising interest in auditing language technolo-
gies. In this work, we contribute to such a line
of inquiry by exploring the emergence of gen-
der bias in Speech Translation (ST). As a new
perspective, rather than focusing on the final
systems only, we examine their evolution over
the course of training. In this way, we are able
to account for different variables related to the
learning dynamics of gender translation, and in-
vestigate when and how gender divides emerge
in ST. Accordingly, for three language pairs (en
–> es, fr, it) we compare how ST systems be-
have for masculine and feminine translation at
several levels of granularity. We find that mas-
culine and feminine curves are dissimilar, with
the feminine one being characterized by a more
erratic behaviour and late improvements over
the course of training. Also, depending on the
considered phenomena, their learning trends
can be either antiphase or parallel. Overall,
we show how such a progressive analysis can
inform on the reliability and time-wise acqui-
sition of gender, which is concealed by static
evaluations and standard metrics.

1 Bias Statement

Hereby, we study how Speech Translation (ST)
systems deal with the generation of masculine and
feminine forms for human referents. Despite the
impossibility of a perfect alignment between lin-
guistic and extra-linguistic gender reality (Acker-
man, 2019; Cao and Daumé III, 2020), these forms
affect the representation and perception of individ-
uals (Stahlberg et al., 2007; Corbett, 2013; Gygax
et al., 2019), and are actively used as a tool to ne-
gotiate the social, personal, and political reality
of gender (Hellinger and Motschenbacher, 2015).
Thus, we consider a model that systematically and
disproportionately favors masculine over feminine
forms as biased, since it fails to properly recognize

women. Following Crawford (2017), Blodgett et al.
(2020), and Savoldi et al. (2021), such behavior is
regarded as harmful because language technologies
misrepresent an already disadvantaged social group
by reducing feminine visibility and by offering un-
equal service quality.

Moreover, we consider another potential cause
of discrimination in end-to-end speech technology.
Namely, by translating directly from the audio in-
put it comes with the risk of relying on speakers’
vocal characteristics – including fundamental fre-
quency – to translate gender.1 By using biometric
features as gender cues, ST models may reduce gen-
der to stereotypical expectations about the sound of
masculine and feminine voices, thus perpetuating
biological essentialist frameworks (Zimman, 2020).
This is particularly harmful to transgender individ-
uals, as it can lead to misgendering (Stryker, 2008)
and a sense of invalidation.

Accordingly, we investigate the aforementioned
concerns by evaluating systems’ output throughout
their training process, aiming to shed light on the
dynamics through which gender bias emerges in
translation models. Note that, while our diagnostic
work focuses on the technical side of gender bias,
we recognize the paramount importance of critical
interdisciplinary work that foregrounds the context
of development and deployment of language tech-
nologies (Criado-Perez, 2019; D’Ignazio and Klein,
2020). Also, in Section 9, we discuss the limits of
working on binary language.

2 Introduction

Along with the massive deployment of language
technologies, concerns regarding their societal im-
pact have been raised (Hovy and Spruit, 2016; Ben-
der et al., 2021), and glaring evidence of biased
behavior has been reported by users themselves.
Translation technologies are no exception. On-

1As in the case of ambiguous first-person references, e.g.
en: I’m tired, es: estoy cansado/a.
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line interactions exhibited that commercial engines
reflect controversial gender roles (Olson, 2018),
and further evaluations on both Machine (MT) and
Speech translation (ST) systems confirmed that
models skew towards a masculine default (Cho
et al., 2019; Prates et al., 2020; Bentivogli et al.,
2020), except for stereotypical representations (e.g.,
nurse or pretty doctor as feminine) (Kocmi et al.,
2020; Costa-jussà et al., 2020).

The last few years have witnessed a growing ef-
fort towards developing preventive measures (Ben-
der and Friedman, 2018) and mitigating strategies
(Saunders and Byrne, 2020; Vanmassenhove et al.,
2018; Alhafni et al., 2020). Yet, the complex na-
ture of both neural approaches and bias calls for
focused inquiries into our ST and MT models. In
this regard, dedicated testing procedures have been
designed to pinpoint the impact of gender bias on
different categories of phenomena (Stanovsky et al.,
2019; Troles and Schmid, 2021; Savoldi et al.,
2022). Also, algorithmic choices underpinning
the construction of current models have been re-
evaluated in light of gender disparities (Renduch-
intala et al., 2021; Roberts et al., 2020). Despite
such promising advancements, many questions still
stand unanswered. When does this gender gap
emerge? How does gender bias relate to progress
in terms of generic performance? To what extent is
gender learning altered by the chosen components?
To the best of our knowledge, current studies have
adopted a static approach, which exclusively fo-
cuses on systems’ biased behaviors once their train-
ing is completed.

Rather than treating training as a black box,
in this paper we explore the evolution of gender
(in)capabilities across systems’ training process. In
the wake of prior work highlighting how differ-
ent target segmentations affect gender bias (Gaido
et al., 2021), we compare ST systems built with
two techniques: character and byte-pair encoding
(BPE) (Sennrich et al., 2016). For three language
pairs (en→ es,fr,it), we thus examine their gender
learning curves for feminine and masculine transla-
tion at several levels of granularity.

Overall, our contributions can be summarized as
follows: (1) We conduct the first study that explores
the dynamic emergence of gender bias in transla-
tion technologies; (2) By considering the trend and
stability of the gender evolution, we find that (i)
unlike overall translation quality, feminine gender
translation emerges more prominently in the late

training stages, and does not reach a plateau within
the iterations required for models to converge in
terms of generic performance. Such trend is how-
ever concealed by standard evaluation metrics, and
unaccounted when stopping the training of the sys-
tems. (ii) For easily gender-disambiguated phe-
nomena, masculine and feminine show a generally
parallel and upwards trend, with the exception of
nouns. Characterized by flat trends and a huge gen-
der divide, their learning dynamics suggests that
ST systems confidently rely on spurious cues and
generalize masculine from the very early stages of
training onwards.

3 Background

Gender bias. Gender bias has emerged as a ma-
jor area of NLP research (Sun et al., 2019; Stanczak
and Augenstein, 2021). A key path forward to
address the issue requires moving away from per-
formance as the only desideratum (Birhane et al.,
2021), and – quoting Basta and Costa-jussà (2021)
– interpreting and analyzing current data and algo-
rithms. Accordingly, existing datasets (Hitti et al.,
2019), language models (Vig et al., 2020; Silva
et al., 2021) and evaluation practices (Goldfarb-
Tarrant et al., 2021) have been increasingly put
under scrutiny.

Also for automatic translation, inspecting mod-
els’ inner workings (Bau et al., 2019) can help
disclosing potential issues or explaining viable
ways to alleviate the problem (Costa-jussà et al.,
2022). Concurrently, studies in both MT and ST
foregrounded how taken-for-granted algorithmic
choices such as speed-optimization practices (Ren-
duchintala et al., 2021), byte-pair encoding (Gaido
et al., 2021), or greedy decoding (Roberts et al.,
2020) – although they may grant higher efficiency
and performance – are actually disfavoring when it
comes to gender bias. Finally, fine-grained analy-
ses based on dedicated benchmarks have shown the
limits of generic procedures and metrics to detect
gender disparities (Vamvas and Sennrich, 2021;
Renduchintala and Williams, 2021).

Such contributions are fundamental to shed light
on gender bias, by providing guidance for inter-
ventions on data, procedures and algorithms. In
this work, we contribute to this line of research by
analysing direct ST systems (Bérard et al., 2016;
Weiss et al., 2017a). As an emerging technology
(Ansari et al., 2020; Bentivogli et al., 2021), we be-
lieve that prompt investigations have the potential
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to inform its future development, rather than keep-
ing concerns over gender bias as an afterthought.
In the wake of previous studies pointing out that
i) ST systems may exploit audio cues to translate
gender (Bentivogli et al., 2020), and ii) state-of-the-
art BPE segmentation comes with a higher gender
bias (Gaido et al., 2021), we conduct fine grained
analyses on these systems, but by means of a new
perspective: over the training process.

Training and learning process. Observing the
learning dynamics of NLP models is not a new
approach. It has been adopted for interpretability
analysis to probe when and how linguistic capabil-
ities emerge within language models (Saphra and
Lopez, 2018, 2019), or inspect which features may
be “harder” to learn (Swayamdipta et al., 2020).

With respect to analyses on a single snapshot,
a diachronic perspective has the advantage of ac-
counting for the evolution of NLP capabilities, mak-
ing them more transparent based on trends’ obser-
vation. Such an understanding can then be turned
into actionable improvements. Accordingly, Voita
et al. (2021) looked at the time-wise development
of different linguistic abilities in MT, so to inform
distillation practices and improve the performance
of their systems. Additionally, the studies by Voita
et al. (2019a,b) on the learning dynamics of extra-
sentential phenomena highlighted how stopping
criteria based on BLEU (Papineni et al., 2002) are
unreliable for context-aware MT. Finally, Stadler
et al. (2021) observed the evolution of different
linguistic phenomena in system’s output, noting
how some of them seem to actually worsen across
iterations.

Overall, as Stadler et al. (2021) noted, not much
effort has been put into investigating how the train-
ing process evolves with regards to measurable fac-
tors of translation quality, such as linguistic criteria
(grammar, syntax, semantics). We aim to fill this
gap by evaluating gender translation of different
ST systems at all training checkpoints.

4 Experimental Setting

4.1 Speech translation models

For our experiments, we rely on direct ST models
built with two different target segmentation tech-
niques: byte-pair encoding (BPE)2 (Sennrich et al.,
2016) and characters (CHAR). Since we are inter-
ested in keeping the effect of different word seg-

2Using SentencePiece (Kudo and Richardson, 2018).

mentations as the only variable, all our systems
are built in the same fashion, with the same Trans-
former core technology (Vaswani et al., 2017) and
within a controlled environment favouring progress
analyses as transparent as possible. For this rea-
son, we avoid additional procedures for boosting
performance that could introduce noise, such as
joint ST-ASR trainings (Weiss et al., 2017b; Bahar
et al., 2019a) or knowledge distillation from MT
models (Liu et al., 2019; Gaido et al., 2020a). Thus,
our models are only trained on MuST-C (Cattoni
et al., 2021), which currently represents the largest
multilingual corpus available for ST. For the sake
of reproducibility, details on the architecture and
settings are provided in Appendix B.

Training procedure. As per standard procedure,
the encoder of our ST systems is initialized with the
weights of an automatic speech recognition (ASR)
model (Bahar et al., 2019a) trained on MuST-C
audio-transcript pairs. In our ST training, we use
the MuST-C gender-balanced validation set (Gaido
et al., 2020b)3 to avoid rewarding systems’ biased
predictions. Each mini-batch consists of 8 samples,
we set the update frequency to 8, train on 4 GPUs,
so that a batch contains 256 samples. Within each
iteration over the whole training set (i.e. epoch), we
record 538 updates for en-es, 555 for en-fr, and 512
for en-it. Given the comparable number of updates
across languages, as a point of reference we save
the epoch checkpoint (herein ckp) that corresponds
to a full pass on the whole training set.

All models reach their best ckp within 42 epochs,
with a tendency of BPE to converge faster than
CHAR. Specifically, they respectively stop improv-
ing after 33/42 epochs (en-es), 25/29 epochs (en-fr),
and 29/32 epochs (en-it). As a stopping criterion,
we finish our trainings when the loss on the valida-
tion set does not improve for 5 consecutive epochs.
To inspect the stability of the best model results,
our analysis also includes these additional 5 ckps.

4.2 Evaluation

Test set and metrics. To study the evolution of
gender translation over the course of training and
how it relates to generic perfomance, we employ
the gender-sensitive MuST-SHE benchmark (Ben-
tivogli et al., 2020) and its annotated extension

3It consists of an equal number of TED talks data from mas-
culine and feminine speakers: https://ict.fbk.eu/
must-c-gender-dev-set/.

96

https://ict.fbk.eu/must-c-gender-dev-set/
https://ict.fbk.eu/must-c-gender-dev-set/


(Savoldi et al., 2022).4 Consisting of instances of
spoken language extracted from TED talks, MuST-
SHE allows for the evaluation of gender translation
phenomena5 under natural conditions and for sev-
eral informative dimensions:

· GENDER, which allows to distinguish results for
Feminine (F) and Masculine (M) forms, thus re-
vealing a potential gender gap.

· CATEGORY, which differentiates between: CAT1
first-person references to be translated according to
the speakers’ linguistic expression of gender (e.g.
en: I am a teacher, es: soy un profesor vs. soy
una profesora); and CAT2 references that shall be
translated in concordance with other gender infor-
mation in the sentence (e.g. en: she is a teacher, es:
es una profesora). These categories separate un-
ambiguous from ambiguous cases, where ST may
leverage speech information as an unwanted cue to
translate gender.

· CLASS & POS, which allow to identify if gen-
dered lexical items belonging to different parts-of-
speech (POS) are equally impacted by bias. POS
can be grouped into open class (verb, noun, de-
scriptive adjective) and closed class words (article,
pronoun, limiting adjective).

In MuST-SHE reference translations, each
target gender-marked word is annotated with
the above information.6Also, for each annotated
gender-marked word, a corresponding wrong form,
swapped in the opposite gender, is provided
(e.g. en: the girl left; it: la<il> ragazza è an-
data<andato> via). This feature enables pin-
pointed evaluations on gender realization by first
computing7 i) Coverage, i.e. the proportion of an-
notated words that are generated by the system (dis-
regarding their gender), and on which gender real-
ization is hence measurable, e.g. amigo (friend-M)
→ amig*; and then ii) Accuracy, i.e. the proportion
of words generated in the correct gender among
the measurable ones, e.g. amigo (friend-M) →
amigo. Hence, accuracy properly measures model
tendency to (over)generalize masculine forms over
feminine ones: scores below 50% can signal a
strong bias, where the wrong form is picked by
the systems more often than the correct one.

4Available at: https://ict.fbk.eu/must-she/
5Namely, the translation of a source neutral English word

into a gender-marked one in the target languages, e.g. en: this
girl is a good friend, es: esta chica es una buena amiga.

6Annotation statistics are provided in Appendix A.
7We rely on the evaluation script provided with the MuST-

SHE extension.

In our study, we rely on the above metrics to in-
spect gender translations, and employ SacreBLEU
(Post, 2018)8 to measure overall translation quality.

Setup. Since we aim to observe the learning
curves of our ST models, we evaluate both overall
and gender translation quality after each epoch of
their training process. As explained in Sec. 4.1,
training includes also the 5 epochs that follow the
best system ckp. To investigate systems’ behaviour,
we are particularly interested in the two following
aspects of the learning curves: i) training trend
(is gender accuracy raising across epochs, does it
reach a plateau or can it actually worsen across iter-
ations?); ii) training stability (is gender learning
steady or erratic across epochs?)

Depending on the aspect addressed, we present
results with different visualizations, reporting ei-
ther the actual scores obtained at each ckp (more
suitable to detect small fluctuations) or aggregated
scores calculated with moving average over 3 ckp
(more suitable to highlight general trends). Note
that, since the total number of epochs differs for
each system, to allow for a proper comparison we
also plot results at different percentages of the train-
ing progress, where each progress point represents
a 5% advancement (i.e 5%, 10%, 15% etc.).

With this in mind, we proceed in our analy-
ses comparing overall performance across metrics
(Sec.5.1), and inspecting feminine and gender trans-
lation (Sec. 5.2) at several levels of granularity (Sec
5.3 and 5.4). For any addressed aspect, we compare
CHAR and BPE models across language pairs.

5 Results and Discussion

BLEU All-Cov All-Acc F-Acc M-Acc
en-es BPE 27.4 64.0 66.0 49.0 80.7

CHAR 27.2 64.0 70.5 58.9 80.5
en-fr BPE 24.0 53.7 65.4 51.7 77.2

CHAR 23.5 53.1 69.7 64.0 74.9
en-it BPE 20.4 48.7 65.6 49.9 79.0

CHAR 19.1 51.2 71.2 52.9 86.7

Table 1: BLEU, coverage and accuracy (percentage)
scores computed on MuST-SHE.

First of all, in Table 1 we provide a snapshot
of the results obtained by our ST models on their
best ckp. As expected, the accuracy scores clearly
exhibit a strong bias favouring masculine forms in
translation (M-acc>F-acc), with feminine forms be-
ing generated with a probability close to a random
guess for most systems. Moreover, these results

8BLEU+c.mixed+.1+s.exp+tok.13a+v.1.4.3.
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(a) BLEU (b) Coverage (c) Accuracy

Figure 1: Results for every ckp of each model: BLEU (a), gender Coverage (b), and gender Accuracy (c).

are in line with the analyses by Gaido et al. (2021)
and Savoldi et al. (2022) showing that CHAR has
an edge in gender translation (All-Acc),9 which
is largely ascribed to better treatment of feminine
gender.10 Thus, we confirm a previously verified
behaviour, which we now further inquiry in terms
of its dynamic evolution.

5.1 Overall results

Here, we start by looking at the evolution of mod-
els’ performance assessed in terms of BLEU, cov-
erage, and accuracy (Figure 1) to inspect the time
of emergence of the different capabilities captured
by such metrics. For a bird’s-eye view, we present
the actual scores per each ckp.

The evolution of both overall translation perfor-
mance and gender translation is positive, but
dissimilar in time and quality. By looking at
Figure 1, we observe that the gender accuracy
learning curve (1c) immediately stands out. In-
deed, the curves for both BLEU (1a) and gender
coverage (1b) have a rapid and steady initial in-
crease,11 which starts to level off around the 20th
ckp.12 Also, the BLEU trends reveal a divide across
models (BPE>CHAR) that remains visible over the

9Contemporary to our submission, Libovickỳ et al. (2021)
show that en-de MT systems based on character-level segmen-
tation have an edge – with respect to BPE – in terms of gender
accuracy on the WinoMT benchmark (Stanovsky et al., 2019).
Their results, however, do not distinguish between feminine
and masculine translation capabilities.

10For the sake of our analysis across epochs, we do not
generate our final systems by averaging the 5 models around
the best ckp as in Gaido et al. (2021) and Savoldi et al. (2022).
For this reason, our systems compare less favourably in terms
of BLEU score, also reducing the perfomance gap bewteen de
facto standard BPE and CHAR.

11Computed as a binary task, gender accuracy starts at ∼50-
55% in the first ckp. Such scores reflect that correct gender is
assigned randomly at the beginning of the training process.

12The plateau is particularly visible for en-es CHAR due to
its longer training.

whole course of training. In terms of coverage,
the boundaries between types of models are more
blurred, but correlate with BLEU scores for all
language pairs. Conversely, by looking at the gen-
der accuracy curves (1c) we asses that, while the
overall trends show a general improvement across
epochs, gender learning i) proceeds with notable
fluctuations, unlike the smoother BLEU and cov-
erage curves; ii) emerges especially in the final
iterations. In particular, it is interesting to note that
by epoch 30 (roughly 80% of the training process),
all CHAR models handle gender translation better
than all the BPE ones, regardless of the lower over-
all quality of the former group. Notably, the en-it
CHAR system - with the lowest BLEU – exhibits
the steepest increase in gender capabilities.

Takeaways. Generic translation quality improves
more prominently in the initial training stages,
while gender is learnt later. Thus, standard qual-
ity metrics conceal and are inadequate to consider
gender refinements in the learning process.

5.2 Masculine and feminine gender

Moving onto a deeper level of analysis, we com-
pare the learning dynamics that undergo Feminine
(F) and Masculine (M) gender in terms of accu-
racy. To give better visibility of their trends and
comparisons across models, in Figure 2 we plot
the averaged results. As complementary view into
training stability, Figure 3 shows the actual accu-
racy scores for the en-it models.13

Masculine forms are largely and consistently ac-
quired since the very first iterations. As shown in
Figure 2, masculine gender (M) is basically already
learnt at 15% of the training process. Henceforth,
its accuracy remains high and stable within 70-80%

13Due to space constraints, plots for all language pairs are
in Appendix C - Fig. 7, which shows consistent results.
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(a) en-es (b) en-fr (c) en-it

Figure 2: (F)eminine vs M(asculine) and over(all) accuracy scores for CHAR and BPE in en-es (2a), en-fr (2b), and
en-it (2c). For better comparability across systems and trend visibility, results are shown at different percentages of
the training progress (increasing by 5%), and scores at each progress point are calculated with moving average over
3 ckp. The first ckp (0%) is the actual score of the first epoch. The vertical line indicates the average score for the
best ckp.

Figure 3: All, F vs Masculine gender accuracy for en-it
BPE (left) and CHAR (right) models. Actual scores are
reported per each ckp, and black dots indicate best ckp.

average scores for all models. As an exception, we
notice a slightly decreasing trend in the iterations
that follow the best ckp for en-fr BPE (2b). Instead,
feminine translation exhibits an overall upward
trend that emerges later in the training process.
In Table 1, we already attested CHAR’s advantage
in dealing with feminine translation. Here, we are
able to verify how such a capability is developed
over the whole course of training. Specifically,
CHAR gains a clear advantage over BPE in the last
training phases, in particular for en-es (2a) and en-
it (2c). Moreover, the overall rising F trend for
CHAR models does not seem to dwindle: even after
systems have reached their best ckp, feminine trans-
lation shows potential for further improvement.

Unlike CHAR systems, BPE disproportionately
favours masculine forms since the first ckp. In
the first ckp of the training, we notice an interest-
ing difference between BPE and CHAR. Namely,
the former models are biased since the very be-
ginning of their training with an evident gender

divide: ∼65% accuracy for M and only ∼40% for
F forms.14 Conversely, accuracy scores for both F
and M forms in CHAR systems present about the
same accuracy: both around 50% for en-it and en-
fr, whereas the en-es model notably presents lower
scores on the M set. From such behaviours, we
infer that CHAR systems i) are initially less prone
towards masculine generalisation, which is instead
a by-product of further training; ii) promptly ac-
quire the ability to generate both M and F inflec-
tions, although they initially assign them randomly.
As we further discuss in Sec. 6, they occasionally
acquire target morphology even before its lexicon,
thus generating English source words inflected as
per the morphological rules of the target language,
e.g. en: sister; es: sistera (hermana). We regard
this finding as evidence of the already attested ca-
pabilities of character-level segmentation to better
handle morphology (Belinkov et al., 2020), which
by extension may explain the higher capability of
CHAR models at generating feminine forms.

Despite a common upward trend, F and M gen-
der curves progress with antiphase fluctuations.
In Figure 3, we see how this applies to CHAR in
particular. Far from being monotonic, the progress
of gender translation underlies a great level of in-
stability with notable spikes and dips in antiphase
for F and M - although eventually resulting in gains
for F. Interestingly, it thus seems that systems be-
come better at enhancing F translation by partially
suppressing the representation of the other gender

14As outlined in Sec. 4.2, 40% accuracy for F means that in
the remaining 60% of the cases systems generate a masculine
inflection instead of the expected feminine one.
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form.

Takeaways. The insights are more fine-grained:
i) F is the actual gender form that is learnt late in
the training process; ii) the progress of gender trans-
lation involves unstable antiphase fluctuations for
F and M; iii) there is still room for improvements
for F gender, especially for CHAR models. Overall,
these findings make us question the suitability of
standard metrics for diagnosing gender bias (see
Sec. 5.1), and of the loss function as a stopping
criterion. Along this line, previous work has fore-
grounded that even when a model has converged in
terms of BLEU, it continues to improve for context-
aware phenomena (Voita et al., 2019a). Hereby,
although we find a good (inverse) correlation be-
tween loss and BLEU, we attest that they seem
to be unable to properly account for gender bias
and the evolution of feminine capabilities. Look-
ing at both Figures 2 and 3, we question whether a
longer training would have facilitated an improve-
ment in gender translation and, in light of F and M
antiphase relation, if it would lead to a suppression
of M by favouring F. If that were the case, such
type of diversity could be leveraged to create more
representative models. Since more ckps would be
needed to investigate this point, we leave it for
future work.

5.3 Gender category

We now examine the learning curves for the trans-
lation of i) ambiguous references to the speaker,
and ii) references disambiguated by a contextual
cue (CAT1 and CAT2 introduced in Sec. 4.2). For
each category, Figure 4 shows the comparison of
feminine (1F, 2F) and masculine (1M, 2M) forms.

Compared to the extremely unstable learning of
CAT1, feminine and masculine curves from the
unambiguous CAT2 exhibit a smooth upward
parallel trend. In Figure 4, the differences across
categories fully emerge, and are consistent across
languages and models. On the one hand, F and
M curves from CAT2 show a steady trend which,
despite a ∼10-20% accuracy gap across genders,
suggests an increasing ability to model gender cues
and translate accordingly. On the other hand, CAT1
proves to be largely responsible for the extreme
instability and antiphase behaviour discussed for
Figure 2, which is so strong to be evident even over
the presented averaged scores.15 Overall, we recog-

15E.g., the actual scores for 1F accuracy for en-it CHAR
plummets as low as 11% at ckp9, and rockets at 60% at ckp36.

(a) en-es

(b) en-fr

(c) en-it

Figure 4: F vs M accuracy for CAT1 and CAT2. Scores
are averaged over 3 ckps, and reported for each training
phase. Dots indicate averaged scores for best ckp.

nize a moderately increasing trend of 1F curves for
all the CHAR models and the en-fr BPE. However, it
barely raises above a random prediction, i.e. ∼50-
57% accuracy meaning that a wrong masculine
form is generated in ∼50-43% of the instances.

In light of the above, we are brought to reflect
upon the hypothesis that direct ST models may use
audio information to translate gender.16 One possi-
ble explanation for systems’ behaviour on CAT1 is
that – although highly undesirable – ST does lever-
age speaker’s voice as a gender cue, but finds the
association “hard to learn”. Another option is that
ST does not leverage audio information and deals
with CAT1 as gender ambiguous input. As a result,
more biased BPE models more frequently opt for a
masculine output in this scenario. CHAR models,

16This hypothesis was formulated in both (Bentivogli et al.,
2020) and (Gaido et al., 2021).
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instead, being characterized by a more favourable
generation of feminine forms, progressively tend
to converge towards a random gender prediction
over the 1F set.

Towards the trustworthy development of ST tech-
nology, we call for future investigations on this
point.

(a) en-es

(b) en-fr

(c) en-it

Figure 5: Open (left) vs Closed (right) classes accuracy
scores per F and M gender. Scores are averaged over 3
ckps and reported for training phase.

5.4 Class and POS
In Figure 5, we compare the gender curves for open
and closed class words, which differ substantially
in terms of frequency of use, variability and seman-
tic content.
Both F and M curves of the closed class change
very little over the course of training. In Figure
5, the closed class exhibits a stable trend with mini-
mal increases, and a small F vs. M gap compared to

the open class. We hypothesise this may be due to
simple source constructions involving articles next
to a gendered word, which are learnt since the very
beginning (e.g., the mum; fr: la mère). Open class
words instead, show an unstable upward trend
for F, opposed to the steady and early-learned
M translation. Consistently, the M curve starts
off with unprecedented high scores (i.e., ∼80% ac-
curacy within the first 20% of the training process)
which further increases to 90% accuracy scores for
CHAR. The F curve is progressively improving and
– once again – with more significant gains late in
training. This also implies that the M/F gap is re-
duced over the epochs. In light of the evident bias
and distinct behaviour of F and M learning progress
for the open class, we now turn to examine how
each POS in this group evolves over training.

Nouns are outliers, being the only POS that ex-
hibits low variability in its learning curves, with
little to almost no room for improving F trans-
lation. Consistently across languages and mod-
els,17 this claim can be verified in Figure 6 for
en-fr. M nouns are basically fluctuation-free and
reach almost perfect accuracy since the early ckps.
Conversely, the F curve presents extremely low
scores throughout the training process, signalling
the strongest bias attested so far (i.e., the accuracy
for F-nouns is 40% for both CHAR and BPE). Oddly
enough, unlike adjectives and verbs, nouns learning
dynamics do not even reflect the different trends as-
sessed for CAT1 and the “easier” CAT2 (Sec. 5.3).
Namely, despite the presence of a gender cue, the
translation of feminine nouns from CAT2 (2F) does
not benefit from such a disambiguation informa-
tion. In fact, the accuracy for 2F nouns is basically
on par (or even worse) with the performance of F
nouns of CAT1 (1F), whereas for any other POS
– and even M-nouns – the subset of CAT2 always
exhibits a more positive learning trend.

Takeaways. Overall, our remarks are in line with
the findings formulated by Savoldi et al. (2022):
nouns emerge as the lexical category that is most
impacted by gender bias, arguably because sys-
tems tend to rely more on stereotypical, spurious
cues for the translation of professional nouns (e.g.,
scientist, professor). By examining their training
progress however, we additionally unveil that i) bi-
ased associations influence noun translation more
than unambiguous and relevant information, which

17Due to space constraints, we refer to Appendix C.2.1 for
en-es and en-it.

101



(a) CHAR en-fr

(b) BPE en-fr

Figure 6: Accuracy per each open class POS for the en-fr CHAR and BPE models. The graph shows F vs M scores,
also at the level of CAT1/2. Scores are provided for training phases, and calculated as the average over 3 ckps.

is available for CAT2; ii) ST models rely on such
patterns so confidently that they never really adjust
their trend over the epochs.

6 Qualitative Insights

We conclude our analysis with a manual inspection
of the outputs of our ST systems at two i) initial,
ii) middle, and ii) final ckps of their training pro-
cess. To this aim, we opt for the en-es language
pair – for which we observed the highest BLEU
and gender coverage scores (Table 1) – to mini-
mize the amount of low-quality translations that
could be hard to analyze. Table 2 presents an exam-
ple sentence from CAT2, translated by both CHAR

and BPE, which backs up some of the quantitative
observations formulated in Sec. 5. The source
sentence contains neutral words (older, a, a mas-
ter) occurring together with gender-marked words
that disambiguate the correct gender (sister, she,
mother). Given the presence of these gender cues,
the neutral words should be fairly easy to translate.

In the first two ckps of both models, the output
has very low quality.18 It is characterized by ex-
tensive repetitions of frequent words, like mother
(madre in A) or young (joven, jóvenes in B-G). Also,

18Still, we believe that it is to a certain degree intelligible
thanks to the ASR initialization, see Sec. 4.1.

whereas functional words19 are already appropri-
ately employed and inflected with the correct gen-
der (e.g. a mother → una madre, A,G), the noun
master is not learnt yet and remains out of cover-
age; notably, BPE generates the word hombre (i.e.
man) instead. Interestingly, if we also look at the
gender cue noun sister, it maps to another kinship
term daughter for BPE (G), whereas CHAR gener-
alizes target morphology over English lexicon at
these stages (sistería in A, sistera in B).

Such lexical issues are all refined by the mid-
dle ckps, where the systems have acquired both
sister/hermana (with the feminine inflected adjec-
tive antigua20 in C) and master/maestr*, which in
this case undergoes an interesting gender evolution
across systems. For CHAR, we assist to an adjust-
ment from masculine inflection (B), to a feminine
one (C onwards) that remains stable until the end
of training, even after the best ckp. Instead, BPE

has a reversed trend. In H, the output una maestra
reveals that this system can and has learnt to gen-
erate feminine forms. However, as the training
progresses it switches to M inflections and never
rebounds to the F ones. Rather, in the last epochs
K-L it produces alternative synonyms, but always

19I.e. closed class.
20The most fluent choice would be the neutral mayor. Here,

however, we just focus on gender realizations.
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2F SRC My older sister Claire, she became a young mother, and a master at getting things done

CHAREs (A) INI Mi madre la sistería sistencia , encontró una madre joven una madre, y una madre, y una masa, y una cosa que estaba cosas.
(B) INI Mi madre sistera de clara se convirtió en un joven jóvenes jóvenes jóvenes, y un maestro de cosas que hicieron.
(C) MID Mi hermana más antigua clara, se convirtió en una madre joven y una maestra que hacía cosas.
(D) MID Mi antigua hermana Clare, se convirtió en una madre joven y una maestra que hice las cosas.
(E) FIN Mi hermana mayor Clare, se convirtió en una madre joven, y una maestra de hacer las cosas.
(F) FIN Mi hermana mayor, Clare, se convirtió en una joven madre, y una maestra por hacer las cosas.

BPEEs (G) INI Mi hija de la Tierra se convirtió en un joven joven, ella me convertí en una madre, y un hombre que hizo cosas.
(H) INI Mi hermana mayor claridad se convirtió en una madre joven, y una maestra, lo hice.
(I) MID Mi hermana mayor se volvió a ser una joven madre, y una maestría que hice.
(J) MID Mi hermana mayor declaró, se convirtió en una madre joven, y un maestro que se está haciendo.
(K) FIN Mi hermana mayor declaró que se convirtió en una madre joven, y un amo logrando hacer las cosas.
(L) FIN Mi hermana mayor Clare se convirtió en una madre joven, y un dueño de hacer que las cosas se hicieran.

Table 2: En-es outputs at initial, middle, and final epochs. The source sentence contains neutral words to be
translated according to the available gender cues. In the outputs, we indicate correct feminine gender translation vs
masculine. We also signal repetitions and copied source lemma+target morphology combinations.

with the wrong gender (amo, dueño).21 Overall,
this case exemplifies how, in spite of i) having F
morphological capabilities, and ii) the presence of
a close cue disambiguating gender, the BPE sys-
tem confidently relies on spurious and irrelevant
patterns for gender translation.

7 Limitations and Future Work

In this work, we rendered the ST training process
less opaque by analyzing the learning process of
gender. To do so, we looked into ST outputs. How-
ever, a complementary perspective would be to
rely on explainability and probing approaches on
system’s inner mechanisms (Belinkov and Glass,
2019) and verify their compatibility with our find-
ings. Also, a contrastive comparison of the learning
curves for gender and other linguistic phenomena
implying a one-to-many mapping (e.g. politeness
you → es: tu/usted) could pinpoint learning trends
which are specific to gender bias. A limit of our
analyses is that they include only 5 epochs after
their best validation loss. In light of our a posteriori
finding that F gender – especially for CHAR – does
not reach a plateau in the last epochs, future work
is needed to confirm whether and to what extent F
learning keeps improving. This could inform stud-
ies on i) how to leverage diversified output to alle-
viate gender bias in our models, ii) gender-sensitive
stopping criteria. Finally, we point out that for the
most fine-grained level of analyses (Sec. 5.4), our
evaluation is based on very specific subsets (e.g.
nouns broke down into 1F, 2F, 1M, 2M).22 This
comes with an inherent reduction of the amount of

21Although inappropriate in this context, both amo and
dueño are valid mapping to the word master).

22In the Appendix, we provide MuST-SHE statistics (Table
4) and gender coverage for open-closed class words (Fig. 8).

measurable gender-marked words, which could in
turn imply noise and additional instability in the
visualized results. However, we reduce this risk by
presenting them averaged over 3 ckps and, as the
noun curves show (Fig. 6), believe in their validity
for comparisons within the same dimension and
level of granularity.

Note that our study lies on the specificity of three
comparable grammatical gender languages. We are
thus cautious about generalizing our findings. Ex-
periments on other training sets and language pairs
are currently hindered by the lack of an available
natural, gender-sensitive ST benchmark that covers
alternative gender directions. While bearing this in
mind, we however underscore that the conditions
of gender translation significantly change depend-
ing on the features of the accounted languages and
direction (e.g. translating from grammatical gender
languages to English and not vice versa). Thus,
gender phenomena on typologically different gen-
dered languages would not be directly comparable
and compatible with the presented analyses. Rather
than a specific limitation of our setting, we regard
this as an intrinsic condition.

8 Conclusion

Despite the mounting evidence of biased behaviour
in language technologies, its understanding is hin-
dered by the complex and opaque nature of current
neural approaches. In this work, we shed light on
the emergence of gender bias in ST systems by fo-
cusing on their learning dynamics over training. In
this way, we adopt a new perspective that accounts
for the time-wise appearance of gender capabilities,
and examine their stability, reliability and course
of development. For three language pairs (en → es,
fr, it) we inspect the learning curves of feminine
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and masculine gender translation i) at several levels
of granularity; ii) with respect to progress in terms
of overall translation quality; iii) on the output of
ST systems trained on target data segmented as ei-
ther character or sub-words units (BPE). In our di-
achronic analysis, we unveil that i) feminine gender
is learnt late over the course of training, ii) it never
reaches a plateau within the number of iterations
required for model convergence at training time,
and iii) its refinements are concealed by standard
evaluation metrics. Also, by looking at the stability
vs. fluctuations of the explored trends, we iden-
tify under which circumstances ST models seem to
actually progressively acquire feminine and mas-
culine translation, and when instead their erratic,
antiphase behavior reflects unreliable choices made
by the systems. In this way, we find that nouns –
the lexical category most impacted by gender bias
– present a firm and huge gender divide over the
whole training, where ST systems do not rely on
relevant information to support feminine transla-
tion and never really adjust its generation.

9 Impact Statement23

In compliance with ACL norms of ethics,24 we
hereby clarify i) the characteristics of the dataset
used in our experiments, and ii) our use of gender
as a variable (Larson, 2017).

As already discussed, in our experiments we rely
on the training data from the TED-based MuST-
C corpus25 (Sec. 4.1), and its derived evaluation
benchmark, MuST-SHE v1.226 (Sec. 4.2). For
both resources, detailed information on the rep-
resentativeness of TED data is available in their
data statements (Bender and Friedman, 2018). As
regards gender, it is largely discussed how it is in-
tended and annotated. Thus, we know that MuST-C
training data are manually annotated with speak-
ers’ gender information27 based on the personal
pronouns found in their publicly available personal
TED profile.28 Overall, MuST-C exhibits a gender
imbalance, with 70% vs. 30% of the speakers re-
ferred by means of he/she pronoun, respectively.29

23Extra page granted as per https://
aclrollingreview.org/cfp.

24https://www.aclweb.org/portal/
content/acl-code-ethics

25https://ict.fbk.eu/must-c/
26https://ict.fbk.eu/must-she/.
27https://ict.fbk.eu/must-speakers/
28https://www.ted.com/speakers.
29Only one They speaker is represented in the corpus.

As reported in its release page,30 the same anno-
tation process applies to MuST-SHE as well, with
the additional check that the indicated (English)
linguistic gender forms are rendered in the gold
standard translations. Hence, information about
speakers’ preferred linguistic expressions of gender
are transparently validated and disclosed. Accord-
ingly, when working on the evaluation of speaker-
related gender translation for MuST-SHE,31 we
solely focus on the rendering of their reported lin-
guistic gender expressions. No assumptions about
speakers’ self determined identity (GLAAD, 2007)
– which cannot be directly mapped from pronoun
usage (Cao and Daumé III, 2020; Ackerman, 2019)
– has been made.

Finally, in our diagnosis of gender bias we
only account for feminine and masculine linguistic
forms, which are those traditionally in use and the
only represented in the used data. However, we
stress that – by working on binary forms – we do
not imply or impose a binary vision on the extra-
linguistic reality of gender, which is rather a spec-
trum (D’Ignazio and Klein, 2020). Also, we ac-
knowledge the challenges faced for grammatical
gender languages like Spanish, French and Ital-
ian in fully implementing neutral language, and
support rise of neutral language and non-binary
neomorphology (Shroy, 2016; Gabriel et al., 2018;
Conrod, 2020).
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A MuST-SHE statistics

Table 4 shows the word-level annotation statistics
of MuST-SHE v1.2 (Bentivogli et al., 2020) and
ist annotated extension (Savoldi et al., 2022). The
amount of gender-marked words is balanced across
i) languages, ii) Feminine and Masculine gender
forms, iii) Categories. The Open/Closed Class and
POS distribution vary in light of the gender mark-
ing features of the accounted languages.

B Model Settings

To create the models used in our experi-
ments, we exploited the open source code pub-
licly available at: https://github.com/

108

https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1159
https://doi.org/10.18653/v1/P19-1159
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://aclanthology.org/2021.wmt-1.61
https://aclanthology.org/2021.wmt-1.61
https://aclanthology.org/2021.wmt-1.61
https://aclanthology.org/2021.wmt-1.61
https://doi.org/10.18653/v1/D18-1334
https://doi.org/10.18653/v1/D18-1334
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://doi.org/10.18653/v1/D19-1081
https://doi.org/10.18653/v1/D19-1081
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.1093/oxfordhb/9780190212926.013.45
https://doi.org/10.1093/oxfordhb/9780190212926.013.45
https://github.com/mgaido91/FBK-fairseq-ST


en-es en-fr en-it
BPE 8,120 8,048 8,064
Char 464 304 256

Table 3: Sizes of model dictionaries.

mgaido91/FBK-fairseq-ST. In accordance
with (Potapczyk and Przybysz, 2020), our models
have 2 3x3 convolutional layers with 64 filters that
reduce the input sequence length by a factor of 4,
followed by 11 Transformer encoder layers and 4
Transformer decoder layers. We add a logarithmic
distance penalty (Di Gangi et al., 2019) to the en-
coder self-attention layers. As loss function we
adopt the label smoothed cross-entropy (Szegedy
et al., 2016) with 0.1 as smoothing factor. Our op-
timizer is Adam using β1=0.9, β2=0.98, and the
learning rate decays with the inverse square root
policy, after increasing for the initial 4.000 updates
up to 5 × 10−3. The dropout is set to 0.2, and
to further regularize the training we use as data
augmentation technique SpecAugment (Park et al.,
2019; Bahar et al., 2019b) with probability 0.5, two
bands on the frequency dimension, two on the time
dimension, 13 as maximum mask length, and 20 as
maximum mask length.

We extract 40 features with 25ms windows and
10ms slides using XNMT32 (Neubig et al., 2018),
after filtering utterances longer than 20s to avoid
excessive memory requirements at training time.
The resulting features are normalized per-speaker.

We rely on the MuST-C corpus (Cattoni et al.,
2021) for training: it contains 504 hours of speech
for en-es, 492 for en-fr, and and 465 for en-it, thus
offering a comparable amount of data for our three
language pairs of interest.

The target text is tokenized with Moses33 and
then segmented. When using BPE, we set the num-
ber of merge rules to 8,000, which – following
Di Gangi et al. (2020) – results in the most favour-
ing ST performance. The size of the resulting dic-
tionaries is reported in Table 3.

C Additional visualizations

In this section, we provide additional plots that –
due to space constrains – were not inserted in the
discussion of the results in Section 5.

32https://github.com/neulab/xnmt
33https://github.com/moses-smt/

mosesdecoder

(a) En-Es

(b) en-fr

(c) en-it

Figure 7: overAll, Feminine vs Masculine actual accu-
racy scores per each ckp of BPE and CHAR: en-es (7a),
en-fr (7a), en-it (7c). Black dots indicate the best ckp.

C.1 Feminine and Masculine forms

In Figure 7, we show Feminine vs Masculine gen-
der accuracy actual scores for en-es (7a), en-fr (7b),
en-it (7c) for each ckp. As the plots show, gender
accuracy scores exhibit a more positive and steeper
trend for CHAR, which is however characterized by
higher levels of instability. For all models, we can
see – to different degrees – the antiphase relation
between F and M curves.

C.2 Open and Closed Class

Figure 8 shows coverage scores over the training
progress for words from the open (O) and closed
(C) class. As expected, the coverage of functional
words is extremely high, firmly maintained over
the whole course of training. For the more variable
words from the O class, instead, we attest upwards
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En-Es En-Fr En-It
1977 1823 1942

F M F M F M
950 1027 898 925 898 1044

1F 2F 1M 2M 1F 2F 1M 2M 1F 2F 1M 2M
392 558 419 608 424 474 410 515 401 497 415 629

Open noun 121 106 151 185 58 62 75 112 48 62 71 138
adj-des 191 190 139 141 177 153 129 107 118 119 92 110

verb 19 36 12 37 156 90 141 105 178 133 176 129
Closed article 35 147 75 193 29 89 61 119 41 105 59 177

pronoun 5 33 26 23 1 28 3 25 3 20 6 17
adj-det 21 46 16 29 3 52 1 47 13 58 11 58

Table 4: Word-level statistics for all MuST-SHE dimensions on each language pairs: i) Feminine and Masculine
gender forms, ii) Categories 1 and 2, iii) Open/Closed Class and POS.

Figure 8: Coverage actual scores for Closed and Open
class POS of CHAR and BPE models for all language
pairs over percentages of training progress.

trend, which start to reach a plateau in the second
half of the training progress. However, it never
exceeds ∼58% coverage scores.

C.2.1 Open Class POS
Figure 9 shows Feminine and Masculine learning
curves for en-es and en-it for each of the POS
within the Open class: i) nouns, ii) verbs, and iii)
descriptive adjectives. Also, we visualized their
trend within the subset of CAT1 and CAT2 of each
POS. Overall, also for these language pairs we see
how nouns are outliers: their feminine learning
curve exhibits little to no real improvement. The
CHAR model for en-es represents a partial excep-
tion given that F learning curves shows a steeper
upward trend: still, it remains close to only 50%
accuracy. Also, the evolution of F nouns from the
ambiguous CAT1 and CAT2 (non ambiguous) is
basically on par, thus confirming that models do not
rely on relevant gender information to adjust the
feminine generation of nouns over their training.
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(a) CHAR en-es

(b) BPE en-es

(c) CHAR en-it

(d) BPE en-it

Figure 9: Accuracy per each open class POS for en-es (9a. 9b) and en-it (9c, 9d) CHAR and BPE models. The graph
shows F vs M scores, also at the level of CAT1/2. Scpres are provided for training phases, and calculated as the
average over 3 ckps.
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