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Introduction

Welcome to the 3rd Workshop on Figurative Language Processing (FigLang 2022), to be held on De-
cember 8, 2022 as part of EMNLP in Abu Dhabi.

The use of figurative language enriches human communication by allowing us to express complex ideas
and emotions. Consequently, it is not surprising that figurative language processing has become a ra-
pidly growing area in Natural Language Processing (NLP), including metaphors, idioms, puns, irony,
sarcasm, among others. Characteristic to all areas of human activity (from poetic to ordinary to scien-
tific) and, thus, to all types of discourse, figurative language becomes an important problem for NLP
systems. Its ubiquity in language has been established in several corpus studies, and the role it plays in
human reasoning has been confirmed in psychological experiments. This makes figurative language an
important research area for computational and cognitive linguistics, and its automatic identification and
interpretation indispensable for any semantics-oriented NLP application. Recent advent of large langua-
ge model-based NLP has led to novel techniques for understanding, interpreting, and creating figurative
language.

This workshop is the third in a series of biannual workshops on Figurative Language Processing (fol-
lowing ACL 2018 and ACL 2020 installments). This new workshop series builds upon the successful
start of the Metaphor in NLP workshop series (at NAACL– HLT 2013, ACL 2014, NAACL–HLT 2015,
NAACL–HLT 2016), expanding its scope to incorporate the rapidly growing body of research on various
types of figurative language such as sarcasm, irony and puns, with the aim of maintaining and nourishing
a community of NLP researchers interested in this topic. The workshop features both regular research
papers and two shared tasks on euphemism detection and understanding of a variety (e.g., metaphor,
simile, idiom, and sarcasm) of figurative language through textual explanations. The workshop is privi-
leged to present two invited talks this year. Penny Pexman and Aline Villavicencio will be presenting
talks at this year’s workshop.

In the regular research track, we received sixteen research paper submissions and accepted twelve. The
featured papers cover a range of aspects of figurative language processing such as metaphor prediction
and understanding (Berger; Li et al.; Wachowiak et al.; Dankin et al.; Sengupta et al.), translation of
idiomatic expressions (Santing et al.), metaphor-rich translation in fictitious language (Jansen and Boyd-
Graber), measure of surprise in humor and metaphor (Bunescu and Uduehi), multimodal metaphor de-
tection in videos (Alnajjar et al.), identifying figurative content in drug lexicon (Reyes and Saldivar), and
answering questions from figurative contexts (Rakshit and Flanigan).

The two shared tasks on euphemism detection and understanding of figurative language via textual ex-
planations serve to benchmark various computational approaches to euphemism and different types of
figurative language, clarifying the state of this steadily growing field and facilitating further research.

The Shared Task on Euphemism Detection invited teams to submit systems for the following task: given
a text containing a potentially euphemistic term (PET), determine whether the PET is being used euphe-
mistically or literally. The dataset used consisted of texts from the GloWbE corpus, human-annotated
to be euphemistic (1) or literal (0). The goal of this task was to investigate the performance of current
NLP methods on a euphemism-related task, establish a baseline from which to launch future work on
euphemisms, and analyze additional enhancements attempted by participants. 46 participants spanning
13 teams attempted the task, and 9 system descriptions were submitted. Teams tested approaches such
as transformer models, data balancing, linguistically motivated methods, etc., with the highest F1-scores
being around 0.88.
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The second shared task on understanding figurative language is designed to challenge the participants
to build models to not only identify the type of figurative language but also to explain the decision via
natural language. The task is based on the recently developed FLUTE dataset, which is based on four
types of figurative language – idiom, sarcasm, metaphor, and simile. Out of all the models submitted,
four system papers were submitted to the shared task. Although all the submitted models were based on
the transformer architecture, participants did attempt different approaches – such as using elaboration of
the situation first as additional contexts, sequential training on a variety of NLI datasets, and conducting
multi sequence2sequence tasks. Two participants attained the highest accuracy (accuracy@60) scores of
63.33.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their con-
tributions, the members of the Program Committee for their thoughtful reviews, the invited speakers for
sharing their perspective on the topic, and all the attendees of the workshop. All of these factors contri-
bute to a truly enriching event!

Debanjan Ghosh, Beata Beigman Klebanov, Smaranda Muresan, Anna Feldman, Soujanya Poria, Tuhin
Chakrabarty, Workshop Co-Chairs
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Keynote Talk: Irony Acquisition: How Children Learn to
Detect Sarcasm

Penny M. Pexman
University of Calgary

Abstract: One of the challenges children face in learning to navigate the social world is created by the
fact that people often speak indirectly, for example, with sarcasm or verbal irony. Research has shown
that typically developing children don’t usually begin to convey and appreciate ironic intent until the
early school years. Children’s use and appreciation of ironic language develop over a fairly long deve-
lopmental window, and are related to their cognitive development and social experiences. Most of these
insights have come from research that is focused on the product of interpretation: the understanding
that children convey through verbal descriptions, ratings, or yes/no decisions. In a series of studies, we
developed methodology that allows us to explore the process of children’s irony interpretation. Using a
variant of the visual world paradigm, we track children’s eye gaze and reaching behavior as they judge
speaker intent for ironic language that unfolds in real time. We have used this paradigm to identify fac-
tors that make irony particularly challenging for children. Most recently, those studies have helped us to
devise a training paradigm to teach children to detect sarcastic speech. I’ll discuss what our findings tell
us about what it takes to develop a sense of sarcasm.

Bio: Penny Pexman is currently Professor of Psychology and Associate Vice-President (Research) at
the University of Calgary. Penny earned her PhD in Psychology at the University of Western Ontario in
1998 and joined the University of Calgary the same year. Her research expertise is in psycholinguistics,
cognitive neuroscience, and social-cognitive development. In broad terms, she is interested in how we
derive meaning from language, and how those processes are changed by context or experience. Her
research investigates several aspects of language understanding, ranging from lexical-semantic processes
to figurative language. Penny has published over 150 journal articles and book chapters on those topics.
An award-winning mentor and researcher, Penny is an elected Fellow of both the Canadian Psychological
Association and the Association for Psychological Science.
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Keynote Talk: Modelling Multiword Expressions and
Idiomaticity: an Acid Test for Understanding

Aline Villavicencio
University of Sheffield

Abstract: Advances in large-scale word representation models have been successful in capturing di-
stinct (and very specific) word usages in context. However, these models still face a serious challenge
when dealing with non-literal or non-compositional language, like that involved in Multiword Expres-
sions (MWEs) such as noun compounds (grandfather clock), light verb constructions (give a talk), and
verb particle constructions (give up). MWEs are an integral part of the mental lexicon of native speakers
often used to express complex ideas in a conventionalised way accepted by a given linguistic commu-
nity, but often displaying a wealth of idiosyncrasies, from lexical, syntactic and semantic to statistical
which means that they represent a real challenge for current NLP techniques. However, their accurate
integration has the potential for improving the precision, naturalness and fluency of downstream tasks
like machine translation and text simplification. In this talk, I will present an overview of how advances
in word representations have made an impact for the identification and modelling of idiomaticity and
MWEs. I will concentrate on what models seem to incorporate of idiomaticity, as idiomatic interpre-
tation may require knowledge that goes beyond what can be gathered from the individual words of an
expression (e.g. “dark horse” as an unknown candidate who unexpectedly succeeds).

Bio: Aline Villavicencio is the Chair in Natural Language Processing at the Department of Computer
Science, University of Sheffield (UK). Prior to that she was affiliated as a Reader to the Institute of
Informatics, Federal University of Rio Grande do Sul (Brazil), and as a Lecturer at the University of
Essex (UK). She received her PhD from the University of Cambridge (UK) in 2001, and held postdoc
positions at the University of Cambridge and University of Essex (UK). She was a Visiting Scholar
at the Massachusetts Institute of Technology (USA, 2011-2012 and 2014-2015), at the École Normale
Supérieure (France, 2014), an Erasmus-Mundus Visting Scholar at Saarland University (Germany in
2012/2013) and at the University of Bath (UK, 2006-2009). She held a Research Fellowship from the
Brazilian National Council for Scientific and Technological Development (Brazil, 2009-2017). She is
a member of the editorial board of Computational Linguistics, TACL and of JNLE. She was a PC Co-
Chair of the 60th Meeting of the Association for Computational Linguistics (ACL 2022), and was a PC
Co-Chair of CoNLL-2019, Senior Area Chair for ACL-2020 and ACL-2019 among others and General
co-chair for the 2018 International Conference on Computational Processing of Portuguese. She is also
a member of the NAACL board, SIGLEX board and of the program committees of various ACL and
AI conferences, and has co-chaired several ACL workshops on Cognitive Aspects of Computational
Language Acquisition and on Multiword Expressions. Her research interests include lexical semantics,
multilinguality, multiword expressions and cognitively motivated NLP, and has co-edited special issues
and books dedicated to these topics.
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TEDB System Description to a Shared Task on Euphemism Detection 2022

Peratham Wiriyathammabhum
peratham.bkk@gmail.com

Abstract

In this report, we describe our Transformers
for euphemism detection baseline (TEDB)
submissions to a shared task on euphemism
detection 2022. We cast the task of predict-
ing euphemism as text classification. We
considered Transformer-based models which
are the current state-of-the-art methods for
text classification. We explored different
training schemes, pretrained models, and
model architectures. Our best result of 0.816
F1-score (0.818 precision and 0.814 recall)
consists of a euphemism-detection-finetuned
TweetEval/TimeLMs-pretrained RoBERTa
model as a feature extractor frontend with a
KimCNN classifier backend trained end-to-end
using a cosine annealing scheduler. We ob-
served pretrained models on sentiment analysis
and offensiveness detection to correlate with
more F1-score while pretraining on other
tasks, such as sarcasm detection, produces less
F1-scores. Also, putting more word vector
channels does not improve the performance in
our experiments.

1 Introduction

A shared task on euphemism detection (Gavidia
et al., 2022; Lee et al., 2022) is the first installment
of a natural language processing (NLP) shared
task on a particular figurative language detec-
tion, euphemism. Figurative languages, including
metaphors, synecdoches, idioms, puns, hyperbole,
similes, onomatopoeia, and others, are word uses
where the meaning deviates from the literal mean-
ing to convey a complicated, creative and evocative
message without directly stating it. In addition,
figurative language might use contexts such as rela-
tions to other things, actions, social experiences, or
images. Figurative languages are ubiquitous since
they are filled in countless of our everyday activi-
ties without notice (Lakoff and Johnson, 2008).

Euphemisms are mild or indirect words or
phrases being used in place of offensive or unpleas-

Table 1: An Example instance from the shared task
dataset. The first sentence is more offensive literally.
The phrase “collateral damage" should be replaced with
politeness. The second sentence was revised by using
the phrase “advanced age" to provide more politeness
than some possible words or phrases like old, near expi-
ration, or wrinkly.

Sentence Label
All the deaths were just [non-euphemistic]
<collateral damage>
in their cause.
In spite of his [euphemistic]
<advanced age>,
Rollins remains one of
jazz’s most talented
improvisers.

ant ones. Moreover, euphemisms are used to mark
profanity or politely refer to sensitive and taboo
topics such as death, disability, or sickness. The
applications of euphemisms involve social interac-
tions such as politics or doctor-patient discourses.
Euphemisms can also be dangerous since terrorists
can use euphemisms for language manipulation and
separate message and meaning (Matusitz, 2016).
Also, politely calling terrorism results in semantic
deviance and attention away from reality for me-
dia and government officials which makes citizens
lower their guard while in danger.

Previous works (Gavidia et al., 2022; Lee et al.,
2022) utilize RoBERTa models (Liu et al., 2019)
for sentiment and offensive ratings because po-
liteness is the aim of euphemisms. Euphemisms
should make the sentences more positive in senti-
ment and less offensive (Bakhriddionova, 2021).
Our systems build upon these findings and explore
transformer-based models which are pretrained for
sentiment analysis or offensive detection.

Our best submission ranks 6th on the leader-
board. The codes for our systems are open-sourced
and available at our GitHub repository1.

1https://github.com/perathambkk/euphemism_

1
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2 Models

2.1 Pretrained Transformers

Huggingface library (Wolf et al., 2020) is an ex-
tensive platform for transformer models (Vaswani
et al., 2017). Huggingface provides many check-
points for the pretrained transformer suitable to
many tasks as a model hub. TweetEval (Barbieri
et al., 2020) is a social NLP benchmark where stan-
dardized evaluation protocols and strong baselines
and employed on seven Twitter classification tasks.
The strong baselines later became pretrained model
checkpoints loadable via Huggingface.

Diachronic specialization was shown to be lack-
ing in language models (Loureiro et al., 2022)
where changes or evolution in time can break
current (synchronic - a language at a moment in
time without any histories.) language model per-
formances entirely. For example, pre-COVID19
language models will have no knowledge about
the pandemic events completely. Diachrony and
synchrony are two complimentary viewpoints that
were theorized by linguist Ferdinand de Saussure
more than a hundred years ago (De Saussure, 2011).
The paper shares many time-specific language
model checkpoints (TimeLMs).

Specifically, we employed two RoBERTa
language model checkpoints from the papers
(TweetEval and TimeLMs), one for senti-
ment analysis (‘cardiffnlp/twitter-roberta-base-
sentiment-latest’) and another for offensive-
ness detection (‘cardiffnlp/twitter-roberta-base-
offensive’), as in (Gavidia et al., 2022; Lee et al.,
2022). We finetuned them for euphemism detection
as text classification.

2.2 Convolutional Neural Networks Backend

Convolutional Neural Networks (CNN) were pri-
marily introduced for visual tasks, firstly, handwrit-
ten digit recognition, given its properties in trans-
lation invariance for 2D data (LeCun et al., 1998).
KimCNN (Kim, 2014) proposed a little modifica-
tion that enables on-top finetuning of CNN over
pretrained word vectors for sentence classifications.
The results in the paper were from a simple CNN
with a little parameter tuning and static vectors.

We further performed some modifications
by concatenating hidden state outputs from all
RoBERTa layers as a word vector and instead fine-
tuning the whole model end-to-end. We also used

shared_task_emnlp2022

checkpoints from finetuning the pretrained trans-
formers as RoBERTa starting points. We also at-
tempted to combine two word vectors for a multi-
channel KimCNN and finetuning the model with
both word vectors for sentiment analysis and offen-
siveness detection end-to-end in contrast to freez-
ing one word vector channel as in the original paper.

3 Experimental Setup

Our input consists of a three-sentence utterance,
the sentence before, after, and the sentence contain-
ing the euphemistic term. We did not observe any
improvements from removing any special charac-
ters including the ‘<’ and ‘>’ symbols around the
euphemistic term given in the dataset. We used
the maximum input length of 150 tokens since we
found that it is the number that fits well as our
heuristics with the GPU memory for many reason-
able batch sizes (4−20 in our cases). Also, it seems
to cover most data instances given the histogram
plotting in Figure 1. We sampled the model at the
end of each epoch. The dataset has 1572 training
instances and 393 test instances.

All of our experiments were done in the Google
Colab setting on NVIDIA Tesla T4 GPUs. We used
the batch size in the range of 4− 20 and the learn-
ing rate for an AdamW optimizer (Loshchilov and
Hutter, 2018) in the set of {2.5e− 5, 2e− 5, 1e−
5, 7.5e − 6} for all experiments. We considered
linear annealing scheduler and cosine annealing
scheduler with restart. The cycle number is in the
set of {5, 8}. Also, adding a warm-up step does not
make any difference so we set the warm-up step to
zero in all experiments.

3.1 Early Stopping Criterion for Empirical
Risk Minimization

We employed the early stopping with zero patience
training strategy schema (Prechelt, 1998; Bengio,
2012). We varied the training epoch until the train-
ing metric saturated with manual monitoring, and
then stopped right at the end of that epoch. We
tried to split the training data into training and
development sets but empirically we found that
the data set size is too small to perform accurate
estimations/cross-validations on just an efficient
held-out schema. For these reasons, we relied
solely on our heuristics on the training set instead.

Theoretically simply speaking, given a small
data for finetuning, it is not easy to estimate the
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Table 2: Test F1-scores of different pretrained transformers on euphemism detection. (The number in bold is for the
best score, and in italic is for the second best.)

Pretrained Transformer Test F1-score
‘cardiffnlp/xlm-twitter-politics-sentiment’ 0.4693
‘Hate-speech-CNERG/dehatebert-mono-english’ 0.6821
‘mrm8488/t5-base-finetuned-sarcasm-twitter-classification’ 0.6969
‘finiteautomata/bertweet-base-sentiment-analysis’ 0.7349
a strong finetuned vanilla baseline: ‘roberta-base’ 0.7776
‘sagteam/covid-twitter-xlm-roberta-large’ 0.7776
‘cardiffnlp/twitter-roberta-base-offensive’ 0.7838
another strong finetuned vanilla baseline: ‘bert-base-cased’ 0.7941
‘cardiffnlp/twitter-roberta-base-sentiment-latest’ (TimeLMs) 0.8064

Figure 1: The distribution of the input length derived
from the shared task training set.

model performance using a held-out validation set.
Leave-one-out cross-validation (LOOCV) is ap-
propriate but might need much more computation
costs. Even k-fold cross-validation with a high
value of k, which is a less extreme case of LOOCV,
still needs a lot of computation costs. Additionally,
if we split a small data, our model might fit the train
split, but not the validation split. That model is very
unlikely to perform well on the validation split, es-
pecially when the training is still underfitting the
task, given a small data to train and a data-hungry
model with a large capacity. Therefore, it will cer-
tainly have a weak upper bound of its error against
a model that fits the whole training data.

This gives us an intuition of training our mod-
els just to shatter the whole training data and stop
training in a basic train-test setting (empirical risk
minimization). In our other simple intuition, it
would be weird to withhold some training data
from a given small data, implicitly lower the model
capacity by (randomly) filtering out some data for
an inaccurate generalizability estimation, and let
the model predict them wrongly. Also, using more
data to train lowers the model variance error term
in the bias-variance decomposition framework.

3.2 Finetuning Pretrained Transformers

We compare many available huggingface hub’s
pretrained checkpoints we feel suitable for the
task, which are multilingual Twitter politics sen-
timent analysis (Antypas et al.), hate speech de-
tection (Aluru et al., 2020), Twitter sarcasm de-
tection (Ghosh et al., 2020; Raffel et al., 2020),
Twitter English sentiment analysis (Nguyen et al.,
2020; Loureiro et al., 2022), Multilingual Russian-
English Twitter COVID-19 report detection (Sboev
et al., 2021), and offensiveness detection (Barbi-
eri et al., 2020). The transformer models include
BERT (Kenton and Toutanova, 2019), RoBERTa
(Liu et al., 2019), XLM (Conneau et al., 2018),
XLM-RoBERTa (Conneau et al., 2020) and T5
(Raffel et al., 2020) which are finetuned for the
target task and their model parameters are shared
on huggingface hub.

From the test F1-scores in Table 2, in which we
even report the best result from all model hyper-
parameter settings in our experiment not reported
here for brevity, we tend to confirm the hypothe-
sis in the aforementioned previous works (Gavidia
et al., 2022; Lee et al., 2022; Bakhriddionova, 2021)
which state that euphemism relates with sentiment
and offensiveness because the top-2 best scores in
the table are sentiment analysis and offensiveness
detection. Also, multilingual pretraining seems not
to be helpful in this case of English euphemism
detection. The ‘cardiffnlp/twitter-roberta-base-
sentiment-latest’ RoBERTa-base model seems
to outperform the ‘finiteautomata/bertweet-base-
sentiment-analysis’ BERTweet model as in the
TimeLMs paper (Loureiro et al., 2022) too. There-
fore, we further build our models based on these
top-2 best scorer pretrained TweetEval/TimeLMs
RoBERTa models (Gururangan et al., 2020). We
are aware that these top-2 models were among pre-
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Table 3: Test F1-scores of different TweetEval pretrained transformers (Barbieri et al., 2020) on euphemism
detection. (The number in bold is for the best score, and in italic is for the second best.)

Pretrained Transformer Test F1-score
‘cardiffnlp/twitter-roberta-base-stance-climate’ 0.7238
‘cardiffnlp/twitter-roberta-base-sentiment’ 0.7238
‘cardiffnlp/twitter-roberta-base-stance-feminist’ 0.7306
‘cardiffnlp/twitter-roberta-base-stance-abortion’ 0.7446
‘cardiffnlp/twitter-roberta-base-emotion’ 0.7588
‘cardiffnlp/twitter-roberta-base-emoji’ 0.7615
‘cardiffnlp/twitter-roberta-base-stance-hillary’ 0.7651
‘cardiffnlp/twitter-roberta-base-hate’ 0.7665
‘cardiffnlp/twitter-roberta-base-irony’ 0.7688
‘cardiffnlp/twitter-roberta-base-stance-atheism’ 0.7688
a strong finetuned vanilla baseline: ‘roberta-base’ 0.7776
‘cardiffnlp/twitter-roberta-base-offensive’ 0.7838
another strong finetuned vanilla baseline: ‘bert-base-cased’ 0.7941

trained language models using the most data in
TweetEval/TimeLMs.

3.2.1 TweetEval Pretrained Language Models
However, when we additionally compared all
TweetEval pretrained RoBERTa-base language
models finetuned on the euphemism task using our
training scheme in Table 3, we observed that a
TweetEval sentiment analysis model does not per-
form well at all. Besides, it was pretrained using
much less data than the one in TimeLMs (45k vs.
138.86M tweets). Still, in Figure 2, the TimeLMs
sentiment classification model performs very well
given lots of data. The sentiment classification task
might have some correlations with euphemism de-
tection when the model learns well, or just lots of
data make it work.

The best result in Table 3 is from offensiveness
detection with only 11k tweet data. The second best
models are irony detection and stance detection in
the target domain of atheism. The performances
vary based on some degree of euphemisms in the
pretrained data. Nevertheless, only the offensive-
ness detection language model performs better than
a finetuned vanilla RoBERTa-base language model.
Finally, this is only our evidence-based intuition
based on some point estimations of the model per-
formances on euphemism detection.

We observed high sensitivities in hyperparame-
ter settings in these experiments. Changing some
hyperparameters such as patience in early stop-
ping, initial learning rate, learning rate sched-
uler cycle, or even the random seed can result
in significant changes in the results as in typical
transformer models which are known to be sensi-

Table 4: Test F1-scores of different classifiers on eu-
phemism detection using vanilla pretrained language
models. (The number in bold is for the best score.)

Model RoBERTa-base
Huggingface’s 0.5203
classifier
sklearn logreg 0.4376
PA classifier 0.4126
3-NN 0.5446
MLP 0.4545
Decision Tree 0.4910
Linear SVM 0.4125

Model BERT-base-cased
Huggingface’s 0.4197
classifier
sklearn logreg 0.5062
PA classifier 0.5239
3-NN 0.4436
MLP 0.4927
Decision Tree 0.4315
Linear SVM 0.4125

tive to perturbations (Dodge et al., 2020). Train-
ing the ‘cardiffnlp/twitter-roberta-base-sentiment-
latest’ model until the training metric is saturated
but using a linear scheduler for 10 epochs instead
of the best 15 epochs and removing special char-
acters can result in 0.6920 test F1-score, using a
linear scheduler for 12 epochs and removing spe-
cial characters can result in 0.7301 test F1-score,
which both are significant degradation.
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Table 5: Validation F1-scores of different classifiers on
euphemism detection using vanilla pretrained language
models. The split ratio is 0.40. (The number in bold is
for the best score.)

Model RoBERTa-base
sklearn logreg 0.5954
PA classifier 0.5929
3-NN 0.6107
MLP 0.6438
Decision Tree 0.6692
Linear SVM 0.6260

Model BERT-base-cased
sklearn logreg 0.5929
PA classifier 0.5700
3-NN 0.5954
MLP 0.6056
Decision Tree 0.6743
Linear SVM 0.6031

3.2.2 A Comparison to Vanilla Pretrained
Language Models

We additionally conducted experiments on various
classifiers using vanilla pretrained language mod-
els, like RoBERTa-base and BERT-base-cased, as
fixed feature extractors. From Table 4 and Table 5,
the validation F1-scores are not good estimations
of any test F1-scores. They overestimate all model
performances by some large margins of around
0.12 ∼ 0.15 by their best differences or more.
Training a classifier on a fixed feature extractor
yields us only at most around ∼ 0.54 test F1-score.
This is a large gap compared to the performance of
most finetuned language models. Also, the classi-
fier with the best validation score, a decision tree,
performs poorly on the test set. We used default
parameters for the classifiers and used the same
early-stopping training scheme but with an initial
learning rate of 2.5e− 4.

3.3 Finetuning KimCNNs

We employed the finetuned ‘cardiffnlp/twitter-
roberta-base-sentiment-latest’ RoBERTa from the
previous subsection for our KimCNN. We used
100 feature maps and 3, 4, 5 weight length set in-
put. We use a cross-entropy loss function and co-
sine annealing scheduler for this model type. Other
hyperparameters were the same as in the previous
subsection.

We got the best result of 0.8158 test F1-score,
approximately 0.01 improvement over the previ-
ous model, simply using a KimCNN backend.
However, adding another word vector channel us-

Table 6: Test F1-scores of different settings for KimC-
NNs on euphemism detection. (The number in bold is
for the best score.)

Model Test F1-score
KimCNNs 0.8158
+ multichannel 0.7980
KimCNNs 0.6807
(word2vec)
KimCNNs 0.6172
(glove-twitter)

ing ‘cardiffnlp/twitter-roberta-base-offensive’, fine-
tuned in the last subsection, reduces the perfor-
mance as shown in Table 6. We additionally con-
ducted experiments on removing a large language
model and used only static word embeddings. A
vanilla KimCNN with either word2vec (Mikolov
et al., 2013) or glove-twitter (Pennington et al.,
2014), trained on euphemism detection, works
quite well with 0.6807 and 0.6172 test F1-scores
respectively.

Also, we varied some hyperparameters and ob-
served more stability and faster convergence by
simply putting a KimCNN backend on top. The
significant degradation in the previous subsec-
tion was no longer. The test F1-scores of those
models are like 0.8130 or 0.8132 which are very
close to the best score. We also observed lower
scores and slower convergence from using the
‘cardiffnlp/twitter-roberta-base-sentiment-latest’ di-
rectly from the huggingface’s hub for KimCNN.
So, another pretraining step to the task by finetun-
ing a model from some relevant task helps improve
the overall performance.

4 Conclusion

This report describes our baseline systems for
a shared task on figurative language process-
ing 2022, euphemism detection. Our best re-
sult is from a single-channel KimCNN model
using ‘cardiffnlp/twitter-roberta-base-sentiment-
latest’, pretrained again for euphemism detection,
as a feature extractor. We observed more stability
and faster convergence from this training schema.
Our results on pretrained transformer models are
likely to confirm the previous works (Gavidia et al.,
2022; Lee et al., 2022; Bakhriddionova, 2021) that
euphemism relates with sentiment and offensive-
ness. Still, we also observed that finetuning a
sentiment-based pretrained language model, which
pretrained with a rather small dataset, does not per-
form well.
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Limitations

We only sampled a relatively small portion of mod-
els and draw conclusions. We also conducted ex-
periments only on one dataset for euphemism de-
tection. We did not perform any strong statistical
tests on the models, just point estimations.

The authors are self-affiliated and do not repre-
sent any entities.
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Abstract

Euphemism is an indirect way to express
sensitive topics. People can comfortably
communicate with each other about
sensitive topics or taboos by using
euphemisms. The Euphemism Detection
Shared Task in the Third Workshop on
Figurative Language Processing co-
located with EMNLP 2022 provided a
euphemism detection dataset that was
divided into the train set and the test set.
We made euphemism detection
experiments by prompt tuning pre-trained
language models on the dataset. We used
RoBERTa as the pre-trained language
model and created suitable templates and
verbalizers for the euphemism detection
task. Our approach achieved the third-best
score in the euphemism detection shared
task. This paper describes our model
participating in the task.

1 Introduction

Euphemism is a common linguistic phenomenon
that is indispensable in everyday communication.
In daily communication, people often encounter
some sensitive topics or taboos that are
inconvenient to express directly, such as death,
age, income, etc., and need to borrow some
synonymous sentences to express them tactfully
or use words that are related to the original
meaning. The social function of euphemism
enables people to express their thoughts more
freely and to communicate easily and happily.
Euphemism detection is a classification task in

natural language processing and it can be divided
into phrase-level euphemism detection and
sentence-level euphemism detection. In English,
euphemisms consist of one or more words, for
example, indigent is a euphemistic word that
refers to a poor or needy person; deceased means

a person who has died; a sex worker means a
prostitute euphemistically. Phrase-level
euphemism detection refers to the task of
identifying euphemistic phrases in a sentence or
paragraph. A model needs to recognize the
euphemistic phrases in the target sentences.
Phrase-level euphemism detection can be modeled
as a token classification task. Sentence-level
euphemism detection refers to the task of
determining whether a sentence or a paragraph
contains a euphemism. For example, the sentence
“Give me a moment, I just need to run to the
powder room.” Contains a euphemistic phrase
“powder room” which means toilet, so the
sentence could be classified as euphemistic. A
model needs to determine whether target
sentences contain any euphemistic phrases.
Sentence-level euphemism detection can be
modeled as a sequence classification task.
The Euphemism Detection Shared Task in the

Third Workshop on Figurative Language
Processing co-located with EMNLP 2022 is a
sentence-level euphemism detection task, which
provides a sentence-level euphemism detection
dataset based on GloWbE (Davies et al., 2015)
dataset. The euphemism detection dataset consists
of a total of 1965 sentences, among them 1382
sentences containing euphemistic terms and 777
sentences that don’t contain euphemistic terms.
The dataset is divided into a train set and a test set,
the train set contains 1572 sentences with target
labels, and the test set contains 393 sentences
without target labels. The task requires
participants to develop a model which can
determine whether the target sentence contains
any euphemistic terms. A model can train on the
train set and predict the labels of the test set.
Prompt learning adds additional prompt

information to the original input sentence and
transforms it into cloze forms to make the pre-
trained language model better understand and
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process the sentence. Prompt learning unifies the
training of downstream tasks with pre-training
processes and avoids the pre-trained language
models to forget some of the knowledge and tap
more potential of them. By this, prompt learning
improves the performance of the models in few-
shot and zero-shot, or even full-shot tasks. So we
developed a prompt learning-based euphemism
detection model, using RoBERTa (Liu et al., 2019)
as the pre-trained language model. We trained the
model on the train set, then predict the labels of
the test set by using it. Our model achieved an F1
score of 85.2% on the test set, the third highest
among all participants.

2 Related Works

In recent years, people have made some
explorations on euphemism detection, constructed
some euphemism detection datasets, and made
some efforts to recognize euphemistic phrases and
sentences. In this section, we will introduce these
works by phrase level and sentence level
respectively.

2.1 Phrase-Level Euphemism Detection

Euphemisms consist of phrases, which means that
recognizing euphemistic phrases is the direct way
of euphemism detection research. So there has
been relatively more work on phrase-level
euphemism detection.
Magu et al. (2018) made research on

euphemistic hate speech. Specifically, they
collected 200000 tweets containing euphemistic
code words and constructed a dataset, by using the
Community detection analysis method they found
some unknown euphemistic hate speech code
words. Felt et al. (2020) constructed a dataset by
manually annotating target phrases as
euphemisms, dysphemism, or neutral and made x-
phemism classification experiments by using
sentiment lexicons and contextual sentiment
analysis. As a result, experiments using contextual
sentiment analysis achieved better results than
experiments using sentiment lexicons. This
illustrated that euphemisms are context-dependent
and models relying on contexts are more efficient
in euphemism detection. Zhu et al. (2021)
investigated multi-word euphemistic phrase
detection approaches automatically. They
extracted suitable phrases from the original data
and selected euphemistic phrase candidates
utilizing word embedding similarities, then ranked

candidate phrases by using Spanbert (Joshi et al.,
2020). They achieved significant performance
improvement on the euphemistic phrase detection
task compared to baseline models. Lee et al. (2022)
made an investigation to find potentially
euphemistic terms by steps. Firstly, they extracted
phrases from original data, then filtered phrases
related to sensitive topics by calculating the cosine
similarity between the phrases and a list of words
representing sensitive topics. After that, they
paraphrased quality phrases using the top 25 most
similar words as output by word2vec. Finally,
they ranked phrases by using a RoBERTa-base
model trained on tweets for sentiment analysis
and offensive language identification.

2.2 Sentence-Level Euphemism Detection

Sentence-level euphemism detection is another
direction in euphemism detection research, which
needs to determine whether a sentence contains
any euphemism, but there is little research in this
direction.
Gavidia et al. (2022) made a list of common

euphemistic phrases, which contained a total of
184 euphemistic phrases. Then selected 1382
euphemistic sentences and another 583 not
euphemistic sentences according to the list from
GloWbE dataset, and constructed a sentence-level
euphemism detection dataset. They made
sentiment analysis using RoBERTa on the dataset
and found that the sentiment and offensiveness of
euphemistic phrases have some differences
compared to their literal meanings.

3 System Overview

Prompt-tuning is a method of using pre-trained
language models, which requires transforming
downstream tasks into cloze forms so that the pre-
training process of pre-trained language models
and the training process of downstream tasks can
be unified. The prompt-tuning method can unlock
the potential of pre-trained language models and it
is a better few-shot learning method compared
with the fine-tuning method. Considering these
advantages of prompt-tuning, we conducted our
euphemism detection experiments using it.

3.1 System Architecture

The architecture of our euphemism detection
system is shown in figure 1.
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In figure 1, Input refers to the target text
inputted into the model. The template is a module
that transforms the input text into a cloze form by
adding extra characters and <mask> tags to the
head and end of the input text. PLM stands for
pre-trained Language Model, in this paper we
used RoBERTa as the pre-trained language model.
Verbalizer is a module that maps predicted words
to target labels, it is mainly composed of a word-
label dictionary and mapping function. Output is
the target label predicted by the model, in our
euphemism detection experiment, the output is a
label consisting of 0 or 1, 0 stands for not
euphemistic, and 1 stands for euphemistic.

3.2 Template For Euphemism Detection

The template is an important module in prompt
learning, the quality of the template has a great
effect on the performance of the model. So people
made a lot of explorations on the method of
creating templates, including manually creating,
automatically creating, and mixed approaches to
the above two methods. We made many
experiments using different templates, including
manually created templates, prefix-tuning
templates (Li et al. 2021), P-tuning templates (Liu
et al., 2021), and ptr templates (Han et al., 2021).
Through experiments, we found that ptr templates
perform better than other templates on the
euphemism detection task, so we selected ptr
template as the template for our euphemism
detection model. Ptr template is a hybrid template
using the manually and automatically template-
creating methods together. Specifically, a basic
template should be created manually, and
optimized by logic rules, so we created some
candidate basic templates for the euphemism
detection task as follows:
<text> Is this euphemistic? <mask>
<text> This is <mask> sentence.
<mask> - <text>
<text> This is <mask>.
In these templates, <text> stands for the

original input text, and <mask> is the token that
should be predicted by the model. We made
experiments using these candidate basic
templates and found that template “<text> This is

<mask> sentence.” achieved the best
performance among them, so we selected it as
the final basic template for our euphemism
detection model.

3.3 Verbalizer For Euphemism Detection

Another important module of prompt learning is
the verbalizer, the function of the verbalizer is
mapping the predicted words to target labels, in
our euphemism detection experiments the
verbalizer will map the predicted words into one
of the euphemistic or not euphemistic labels. Like
the template, there are a lot of ways to create
verbalizers, including manually created verbalizer,
knowledgeable verbalizer (Hu et al., 2022), and
ptr verbalizer (Han et al., 2021). We made
euphemism detection experiments using different
verbalizers and found that the ptr verbalizer
performed better than other verbalizers, so we
selected ptr verbalizer as our verbalizer.
In our euphemism detection task, we only need

to detect the euphemistic sentences and don’t need
to detect not euphemistic sentences, so we made
some changes to the ptr verbalizer, and determine
whether the predicted word is in the words list of
the euphemistic label before mapping the
predicted words to the target label if it is, then
maps the predicted word to euphemistic label, else
then maps the predicted word to not euphemistic
label. By this, we reduced the burden of the model
and we only need to create a word list for the
euphemistic labels.
After selecting the ptr verbalizer and making

some changes to it, we created some candidate
verbalizers as follows:
euphemistic, tactful, periphrastic
yes, yeah
The verbalizer “yes, yeah” is for the template

“<text> Is this euphemistic? <mask>” and other
templates use the verbalizer “euphemistic, tactful,
periphrastic”. For example, when we use the
template “<text> This is <mask> sentence.” and
the verbalizer “euphemistic, tactful, periphrastic”,
if the predicted word is one of the words in the list
“euphemistic, tactful, periphrastic”, the predicted
word will be mapped to euphemistic label, else
the predicted word will be mapped to not
euphemistic label.

4 Experiments

In this section, we will introduce the specifics of
the experiments, including dataset statistics,

Figure 1: The architecture of the euphemism detection
system based on prompt-tuning.
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coding framework, hyperparameters of
experiments, results of experiments and analysis,
etc.

4.1 Dataset Statistics

There are some hyperparameters like the
maximum sentence length inputted the pre-trained
language model that has much relations with the
dataset features. So we made some statistical

analysis to the dataset. The details of the statistical
analysis are shown in table 1.
Datas
et

Avg
len

Max
len

len>1
92

Total Percent
age

Train 83.13 381 20 1572 1.27%
Test 83.36 247 3 393 0.76%

In table 1, avg len stands for the average
number of words in the sentence, max len stands
for the number of words in the longest sentence,
len>192 stands for the number of sentences that
contain words more than 192, and total stands for
the total number of the sentence in the dataset, the
percentage stands for the ratio of the number of
sentences longer than 192 among all the sentences.

4.2 Coding Framework

OpenPrompt (Ding et al., 2022) is an open-source
prompt learning framework based on PyTorch
(Paszke et al., 2019), which provided the
implementation of many templates and verbalizers,
including manually created templates, prefix-
tuning templates, p-tuning templates, ptr
templates, manually created verbalizers,
knowledgeable verbalizers, ptr verbalizers, etc.
Relying on OpenPrompt, we could implement our
prompt learning experiments by conveniently
switching among the different templates and
verbalizers. So we selected OpenPrompt as our
prompt learning framework and coded our model
using it.

4.3 Hyperparameters

From table 1, we can see that the proportion of the
sentences containing more than 192 words is
about 1%, this means that 192 is a proper value

for the maximum length of the sentence inputted
to the
pre-trained language model, so we set it as 192.
There are some other hyperparameters like
learning rate, weight decay, etc. The details are
shown in table 2.

4.4 Results And Analysis

Using RoBERTa-base as our pre-trained language
model, we implemented euphemism detection
experiments on the euphemism detection dataset.
We trained the prompt-based euphemism
detection model on the train dataset and let it
predict the labels of the test data. By training the
model 5 epochs, achieved relatively good results

on the test data, and ranked third among all
participants. The details of the results are shown
in Table 3.

Type Precision Recall F1
Euphemistic 0.904 0.924 0.914

Not euphemistic 0.811 0.769 0.789
macro avg 0.858 0.847 0.852

From table 3 we can see that the precision, recall,
and f1 score of the euphemistic label is better than
the not euphemistic label. We think that because
the dataset is an unbalanced dataset, contains
more euphemistic sentences and fewer not
euphemistic sentences, model learning is biased
toward euphemistic sentences.

5 Conclusions

In this paper, we described the euphemism
detection model based on prompt learning and the
details of euphemism detection experiments based
on this model. We selected RoBERTa as our pre-
trained language model, selected the ptr template
and ptr verbalizer, made some reasonable changes
to the ptr verbalizer, implemented euphemism
detection experiments using this model, and
achieved better results on the euphemism
detection dataset.
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Abstract

Automated metaphor detection in languages
other than English is highly restricted as train-
ing corpora are comparably rare. One way
to overcome this problem is transfer learning.
This paper gives an overview on transfer learn-
ing techniques applied to NLP. We first intro-
duce types of transfer learning, then we present
work focusing on: i) transfer learning with
cross-lingual embeddings; ii) transfer learning
in machine translation; and iii) transfer learn-
ing using pre-trained transformer models. The
paper is complemented by first experiments
that make use of bilingual embeddings gener-
ated from different sources of parallel data: We
i) present the preparation of a parallel Gold
corpus; ii) examine the embeddings spaces to
search for metaphoric words cross-lingually;
iii) run first experiments in transfer learning
German metaphor from English labeled data
only. Results show that finding data sources for
bilingual embeddings training and the vocabu-
lary covered by these embeddings is critical for
learning metaphor cross-lingually.

1 Introduction

In the literature, figurative language is instantiated
in many different ways. One of the most challeng-
ing tasks of figurative language detection, however,
is metaphor identification. Dorst (2015) finds that
up to almost 20% of words in a text are metaphor-
related. However, most work in the field is focused
strongly on the English language.

As such, early work on computational metaphor
interpretation was performed by Kintsch. Kintsch
(2000) uses Latent Semantic Analysis to adjust
the meaning of a predicate P when it is applied to
an argument A. In Kintsch’s theory the predicate is
what we typically call a metaphor’s source (Lakoff
and Johnson, 1980) and the argument is its target
(e.g., selfies [target] go viral [source]). Before word
embeddings were used based on implementations
such as word2vec, LSA helped to generate high-

dimensional semantic spaces using singular value
decomposition for dimension reduction. Kintsch
uses cosine similarity to compare a metaphorical
predication (i.e., its numerical representation) to
some of its semantic surroundings.

Today, semantic information mainly is encoded
by word embeddings (Mikolov et al., 2013). Gao
et al. (2018) recently presented work of metaphor
prediction using an RNN classifier. Together with
different types of embeddings vectors, the authors
perform neural metaphor detection, in a sequence
labeling setup, and in a classification setup.

One of the most famous works regarding the
development of training and testing data sets is
delivered by Steen et al. (2010). The authors
present a method for the identification of metaphor
in language at the word-level based on method-
ological and empirical corpus-linguistic work in
English and Dutch. The method formulates man-
ual instructions and is a refinement based on the
metaphor identification procedure (MIP) presented
by (Group, 2007). The extended annotation ver-
sion (MIPVU) is developed at Vrije Universiteit
Amsterdam (VUA) and demonstrates case studies
addressing metaphor in English and Dutch news
amongst others.

While there is a lot of room for improvement in
the field of metaphor detection and interpretation,
especially languages other than English lack re-
sources and successful algorithms. Transfer learn-
ing (TL) is one way to overcome this issue. But
work in this field is rare.

Tsvetkov et al. (2014) use lexical semantic fea-
tures of words participating metaphoric construc-
tion. The authors use transfer learning based on
bilingual dictionaries to find metaphoric expres-
sions across languages. Their work supports the
consensus that metaphors are rather conceptual.

More recently, Aghazadeh et al. (2022) perform
probing of metaphor-annotated data sets. Next
to other tasks, they also probe for cross-lingual
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performance using a multilingual pre-trained lan-
guage model and a data set of four high-resource
languages (English, Russian, Spanish, Farsi).

In this paper, we present different strategies to
overcome resource gaps using transfer learning
strategies. We start with a literature overview be-
fore we perform first experiments to assess these
techniques for the German language.

2 Literature on transfer learning

2.1 Types of transfer learning

TL in general refers to techniques applied across
different domains and languages. Cross-language
(CL) learning refers specifically to the transfer
from one language to another while domain adap-
tion (DA) rather showcases the transfer of a tech-
nique from one domain to another within the same
language. In their comprehensive survey, Weiss
et al. (2016) differentiate (among others) between
instance-based and feature-based techniques of TL.
Instance-based transfer: Instance-based TL in-
fers knowledge based on the behaviour of instances
in a source versus target domain. As such, it at-
tempts to reduce the marginal distribution differ-
ence (P (Xt) ̸= P (Xs), e.g., word freq.) by re-
weighting the samples in the source domain to cor-
rect for distribution differences (Asgarian, 2018).

One example for instance-based TL is Asgarian
et al. (2018). For training, the authors only use
information from relevant re-weighted instances in
the target domain. The target samples are selected
upfront based on the uncertainty (distance of sam-
ple x to the decision boundary) in a binary model
trained on source and target samples. Also, Jiang
and Zhai (2007) find relations between different in-
stance distributions in source and target. They for-
mulate requirements for instance distribution and
classification function different in source and target.
Then, they solve for these differences using semi-
supervised instance-weighting. Dai et al. (2008)
migrate knowledge—from labeled data—from a
source feature space to a target feature space. The
authors show that one can use for example labeled
text data to train a model for image classification
when image labels are rare.
Feature-based transfer: Feature-based TL aims
to reduce the gap between the marginal (P (Xt) ̸=
P (Xs), e.g., word frequencies) and conditional
distributions (P (Yt|Xt) ̸= P (Ys|Xs), typically Y-
labels) of source and target domain (Long et al.,
2013). In asymmetric feature-based TL, often

a transformation ϕs/ϕt from source to target is
employed (Long et al., 2013), which especially
works well when both domains share the same label
spaces. In symmetric feature based TL, features are
transferred from source and target respectively into
a common space. Pan et al. (2010) transfer com-
ponents across domains into a reproducing kernel
Hilbert Space using maximum mean discrepancy
as a distance measure. In the sub-space represented
by that Hilbert Space, data properties are preserved
and data distributions of different domains can still
remain similar. This enables the training of classi-
fiers in a source domain for use in a target domain.
Also Duan et al. (2012) consider the use of source
domain and target domain data represented by het-
erogeneous features of different dimensions. Two
projection matrices help to transform data from
source and target into a common subspace, and two
feature mapping functions use these projections to
augment the data in that new space.

2.2 Task-oriented techniques

Following, we give an overview on TL techniques
from a more task-driven perspective.
Cross-lingual word embeddings: Often, word em-
beddings are induced from a source language cross-
lingually (CL) into a target language. A such, Upad-
hyay et al. (2016) perform an empirical comparison
of different approaches for inducing CL embed-
dings, each with a different degree of supervision:
First, a simple bilingual Skip-Gram model (Luong
et al., 2015) that uses word-aligned corpora to learn
contexts for words in different languages; Second,
a bilingual compositional model (Hermann and
Blunsom, 2014), which finds bilingual embeddings
for parallel sentences—each represented by the em-
bedding of its constituent words—using minimized
Euclidean length between two candidate sentences;
Third, bilingual word vector training based on bilin-
gual documents that upfront were randomly gener-
ated from a document-aligned corpora (Vulić and
Moens, 2015).

Shi et al. (2015) study matrix co-factorization
to learn word embeddings language-independently
from distributed meaning. They first induce con-
texts based on word frequencies from parallel sen-
tences. Then, they maximize similarity of word
pairs in multiple languages using probabilistic
machine-translation. Results in document classifi-
cation show that the technique is efficient to encode
CL knowledge to create CL word embeddings.
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Klementiev et al. (2012) start from an annotated,
well-resourced language to study word represen-
tations for joint languages. They treat word rep-
resentation learning as a multitask problem where
each task represents a word. Task relatedness is
derived from co-occurrence statistics in bi-texts.
Their approach partly outperforms MT baselines.

Cross-lingual embeddings can be understood as
instance-based transfer since merging data sources
from two languages modifies the distribution of
words in the new embeddings space. However,
when applying it to a classification problem, such
as metaphor prediction, it also is an example for
feature-based transfer, because we attempt to re-
duce the cap between the marginal contribution of
the words in the embeddings representation follow-
ing the conditional distributions of the labels.

Using pre-trained models in NLP tasks: Dur-
rani et al. (2021) investigate how fine-tuning of
neural models affects the learned knowledge in lin-
guistic downstream tasks. Performing their test on
pre-trained models such as BERT and RoBERTa,
they use diagnostic classifiers on the layer-level
and neuron-level. The authors find out that while
linguistic knowledge is distributed in the entire pre-
trained network, after fine-tuning it becomes local-
ized in shallower layers, whereas deeper layers are
reserved for task specific knowledge. Ahmad et al.
(2021) show that explicitly providing language syn-
tax and training mBERT using an auxiliary objec-
tive to encode the universal dependency tree struc-
ture helps cross-lingual transfer. The authors per-
form experiments on text classification, QA, NER,
and task-oriented semantic parsing. The experi-
ment results show that syntax-augmented mBERT
boosts transfer performance with 3.9 and 3.1 points
in PAWS-X and MLQA benchmarks.

Typically, TL using transformers is applied to-
gether with a fine-tuning on data samples in the tar-
get language. Hence, it is a candidate for instance-
based transfer learning where the marginal distri-
bution of the source language’s instances is re-
weighted towards the target language.

Transfer learning in neural machine transla-
tion: Neural machine translation often approaches
TL by first training a “parent” model for a high-
resource language pair and then fine-tune it on a
low-resource language pair (“child”) by simply
replacing the training corpus (Kocmi and Bojar,
2018; Zoph et al., 2016). Kocmi and Bojar (2018)
find that this child model can perform better than

a low-resource trained baseline even for languages
with different alphabets. Similarly, Zoph et al.
(2016) improve baseline models by 5.6% of BLEU
score on low-resource language pairs. In a differ-
ent setup, Nguyen and Chiang (2017) use paral-
lel data from two related low-resource language
pairs. A model is trained on the first language
pair, then its parameters are transferred to another
model where training is continued. Imankulova
et al. (2019) improve TL in a Japanese–Russian
pair by more than 3.7 BLEU points over a baseline.
English serves as pivot language to train a multi-
lingual model. They then fine-tune on in-domain
data. Another translation example is text-to-speech
(TTS) generation. To apply TTS for low-resource
target languages Tu et al. (2019) transfer knowl-
edge from a high-resource language by mapping
linguistic symbols between source and target. This
mapping preserves pronunciation information in
the transferring process. Experiments show that 15
minutes of paired data is sufficient to build a TTS
system.

In this paper, we attempt to classify German
language metaphor from training a classifier us-
ing English language training data. The English
language training data is represented by bilingual
embeddings. In future work, we will then also test
pre-trained transformers as well as techniques from
machine translation.

3 Method Overview

In the following sections (i.e., Sec. 4 to Sec. 7), we
present a procedure to TL for metaphor prediction.
We start with a description of the metaphor cor-
pus that we use as Gold data. Once it is completely
translated and annotated for metaphor source words
in the German translation (Sec. 4), we can use it
for other evaluation setups too. Right now, we
have 500 samples finished and use them for neigh-
borhood retrieval (c.f., Sec. 6) and classification
testing (c.f., Sec. 7) In Section 5, we introduce the
source data that we build our bilingual embeddings
upon and describe a merging strategy of the paral-
lel data. We also present different approaches to
handle compound metaphor sources in the target
language and how they affect the distance to the
English language counterparts (in the embeddings
space). The latter is performed on 500 samples
of the metaphor corpus. In Sec. 6, we discuss the
training of the bilingual embeddings after we per-
form a retrieval of a metaphoric German language
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Figure 1: Overview of corpus translation and alignment in order to obtain bilingual embeddings for metaphor
prediction training

word within the English language word’s embed-
dings space. In Sec. 7 we present first results on
predicting metaphor in a target language when only
labeled training data in the source language is avail-
able. We use 500 already annotated samples in
the target language for testing. Figure 1 shows the
overview of the procedure.

4 Metaphor Gold corpus

The corpus: A first step is to create a Gold corpus
to have a test set available for all sorts of tech-
niques, be it supervised, unsupervised or transfer.
Hence, we start from the corpus of Gordon et al.
(2015). It origins from sources such as news arti-
cles, blog posts, and online forums. It consists of
more than 1700 sentences using metaphoric lan-
guage. The authors propose the use of conceptual
schema to represent scenarios of metaphor usage.
They recognize 70 source domains which again are
grouped into 14 ontological categories. The corpus
is manually validated and contains annotations for
a metaphor’s target, a metaphor’s source, their asso-
ciated linguistic and conceptual metaphors and the
metaphors’ lexical trigger. The linguistic metaphor
annotation refers to terms from the sentence itself,
so we can use this information to find the corre-
sponding figurative label for a term. We prefer this
corpus over the famous VUA corpus (Steen et al.,
2010), especially because we are also interested
in seeing the effect of having training and testing
data from different domains (see Sec. 7 ). Further,
having a German-translated and annotated version
in place, we can add more diverse data sets to the
community. A last reason is that the entire data set
(once mirrored to German) offers a good sample
size for tuning and evaluating further neural-based
classifiers.
Corpus preparation: We prepare the data for our
experiments as follows. First, we translate the

sentences of the corpus into German making use
of contemporary machine translation techniques.1

We evaluate a sample of 500 sentences manually
by one German native. Table 1 shows the re-
sults grouping them into three categories; i) high:
denoting a perfectly translated sentence that pre-
serves the figurative meaning while not affecting
any rule of well-formed syntax nor leading to a
“bad” metaphor (c.f. Harati et al. (2021) for crite-
ria judgements on good metaphors); ii) mid: good
translation with skipped metaphoric language (15)
or a falsely translated (stop) word (31); and iii) low:
sentence was not successfully translated (most of-
ten the last part of very long sentences). Consider-
ing the fact that the majority of sentences is very
well translated, in some cases just one word is ef-
fected, and only very few translated sentences are
ill-formed, we simply work with the entire data set.
We also metaphor-annotate these 500 samples. Pre-
cisely, we identify the German language metaphor
source word.2

5 Bi-text for cross-lingual embeddings

Motivation: We follow the idea that metaphoric
words often stay robust or conceptual across lan-
guages (Stowe et al., 2021; Shutova and Teufel,
2010; Yan et al., 2010). To obtain more resources
for languages other than English, we can apply the
concept of transfer learning to make use of infor-
mation of the semantic environment of words (also
metaphoric words) to be transferred to the target
language. So, starting with an annotated English

1Using Google Translate with settings source language
English, target language German, and operation type docu-
ment: https://translate.google.com/?hl=de&
sl=en&tl=de&op=docs

2We plan to annotate the entire German part of that corpus
for metaphor sources to fine-tune and evaluate transformer-
based models with these Gold data too. When finished, and
with the agreement by Gordon et al. (2015) we will also pub-
lish this corpus.
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quality example #
high EN: I will be out in the city today, feeling the [...] thrust of blood, the apple-red circulation of democracy, [...] 441

DE: Ich werde heute draußen in der Stadt sein und den [...] Blutstrom spüren, den apfelroten Kreislauf der Demokratie, [...]
mid EN: [...] so vital to the smooth flow of taxation within the United States. 46

DE: [...] die für den reibungslosen Ablauf der Besteuerung in den Vereinigten Staaten so wichtig ist.
low EN: [...] to assist the Government of Colombia protect its democracy from United States-designated foreign terrorist organizations [...] 13

DE: [...] um die kolumb. Regierung beim Schutz ihrer Demokratie vor den USA zu unterstützen. ausgewiesene ausländische Terrororganisa [...]
total 500

Table 1: Evaluation of a subset of machine translated Metaphor corpus; The medium example is well translated, but
does not contain metaphor anymore

metaphor corpus (for example the metaphor cor-
pus by Stowe et al. (2021) or the VUA corpus)
and some parallel data, we can predict metaphor in
German language text.
Parallel data: We run experiments using our Gold
corpus of parallel metaphor to apply the concept
of cross-lingual embeddings. As shown above, the
technique is efficient for tasks in which semantic
knowledge is needed across languages. However,
our Gold data is mainly for testing purposes in the
classification setup. To train bilingual embeddings,
we also need bigger parallel data. We use following
bigger corpora:

• The English/German part of Europarl Parallel
Corpus (Europarl) (Koehn, 2005)3

• The training data share of the Political
News Attribution Relations Corpus (PolN-
eAR) (Newell et al., 2018)4 to conceive a
news corpus which’s content is more compa-
rable to the one of the metaphor corpus itself.
PolNeAR contains 17,292 sentences. We also
translate this corpus using contemporary MT.

We combine the parallel metaphor corpus with the
Europarl Parallel corpus and the PolNeAR corpus
in different setups. We train the bilingual embed-
dings using Gensim’s word2vec implementation.5

Merging procedure: Typically text sources for
training bilingual embeddings are in a way aligned
or merged (Vulić and Moens, 2015; Luong et al.,
2015; Hermann and Blunsom, 2014). We generate
bilingual merged text data designing a simple zip-
like merging algorithm that takes the words of two
sentences (English and German) as arguments. In
case one sentence is longer than the other, the factor
of this ratio is used to align multiple words from
the longer sentence towards the shorter one. See

3https://www.statmt.org/europarl/
4https://github.com/networkdynamics/

PolNeAR
5https://pypi.org/project/gensim/

Alg. 1 for details. We remove stop words6 before
applying the zip-merge algorithm to the Metaphor,
the PolNeAR, and the whole Europarl corpus.

Algorithm 1: Merging of English and Ger-
man sentences

Input: E ← word token list of an English language
sentence

Input: G← word token list of the German
translation

Output: EG← merged token list
Ensure: E ≥ G
factor = round(|E|/|G|);
j = 0;
for i in |G| do

EG = EG ∪Gi ; /*i starting with
1*/

while factor ∗ i > j ≥ factor ∗ (i− 1) do
EG = EG ∪ Ej ;
j = j + 1

end
end

Handling compounds and derivatives: Handling
compounds is a challenging matter. Our target lan-
guage is famous for shipping with an extraordinary
compositional nature especially concerning nouns.
We count 68 compounds in our target language data
set’s metaphor sources (61 nouns and 7 verbs).

Cordeiro et al. (2016) handle English compound
words by comparing the embedding of a compound
with the embedding of its components’ normal-
ized sum. Their hypothesis is that if the angle
between both embedding vectors is small then the
compound’s meaning is literal otherwise its mean-
ing is idiomatic.

We decompose our compounds manually. Then,
we retrieve three versions of them in the embed-
dings spaces that we compare later on with the
English language counter word: i) the compound
itself7 (compound std), ii) the averaged vector of
its components (components av.), and iii) the nor-

6For German: https://stopwords.net/
german-de/; for English we apply the stop word
list delivered with the scikit-learn Python package

7This often falls out of vocab
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malized sum of its components (Cordeiro et al.,
2016) (components norm sum). For derivatives
(verbs) we consider i) the finite verb form only (fi-
nite), and ii) the infinitive (infinite). We compare
these vectors then with the word vector from the
metaphor source of the English language text (see
next section).

6 Training cross-lingual embeddings

Before we develop a supervised training setup with
our data at hand (next section), it is important to
learn about the potential contexts offered by cross-
lingual embeddings. Therefore, we first test differ-
ent setups of cross-lingual embeddings to retrieve
the distances between a metaphoric word in an En-
glish language text and its German counterpart in
the target language.

Using 500 manually annotated samples of our
(parallel) metaphor corpus, we now retrieve the
German counter word given an English language
metaphoric word in the embeddings spaces trained
from different parallel data setups:

• the metaphor corpus only (Metaphor); train
vectors of length 150 with a min. frequency
of 2 for 5 epochs

• the metaphor corpus and the PolNeAR corpus
(Metaphor+PolNeAR); train vectors of length
150 with a min. frequency of 2 for 5 epochs

• the metaphor corpus & the first 100,000 sen-
tences (to have a comparable data set) of
Europarl corpus (Metaphor+Europarl 100K);
train vectors of length 150 with a min. fre-
quency of 2 for 5 epochs

• the metaphor corpus & Europarl corpus
(Metaphor+Europarl); we train with vectors
of length 300 with a min. frequency of 20 for
5 epochs, because this data set is much bigger
then the previous data sets

Figure 2 shows the distribution of the German
metaphoric word among the nearest neighbors of
a metaphoric word from the English data. All
corpora except the small metaphor corpus show
an inverted bell curve meaning that most of the
metaphors have their German counterpart among
the 100 nearest neighbors or beyond their 10,000
nearest neighbors. The metaphor data (blue) rather
show a bell distribution of the metaphoric words in
the target language. However, we only added the
blue curve for comparison reasons. The distribu-
tions of English and German metaphoric words in
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Figure 2: Distribution of metaphors which’s German
language metaphor source word are within the k-NNs
of the English language source words

the embeddings space gives first insights into how
they are represented in the bilingual embeddings’
vocabulary, and hence, in the language’s semantics.

Fig. 3a shows a scatter plot of the distribution of
cosine similarities between the metaphors’ sources
in English and German respectively in the metaphor
corpus. The vast majority of values is very close to
one. This is especially because the vocabulary of
this model is not big, and most words are in close
neighborhood of the metaphor source word.

Fig. 3b shows a plot of cosine similarities dis-
tributed between the metaphors sources in English
and German respectively in the metaphor corpus
and PolNeAR. As PolNeAR is about ten times as
big as Metaphor, we can see the data points are
moving more towards zero being not as similar
anymore.

Fig. 3c shows cosine similarities distributed in
Metaphor and Europarl 100K. We encounter a
much lower oov-rate (min-freq of 2). We also
see that the normalized sum for component com-
bination achieves higher similarities with the En-
glish metaphor sources than the averages do. Even
though we do not have many data points here, we
still learn that compounds are somewhat difficult
to associate to the English source words. Hence,
we plan to test the impact of decomposed com-
pounds in the test data once our entire Gold corpus
is finished8

In the next section, we use our bilingually trained
embeddings9 in a TL-classification task. We find
out experimentally that a mix of Metaphor, PolN-
eAR, and Europarl with a minimum frequency of 5
and lower-cased embeddings sources covers most

8For other corpus combinations we do not show scatter
plots since similarity decreases with vocabulary growth.

9Using a window of 5, five epochs, and 300 dimensions to
match default values
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Figure 3: Distribution of cosine-based similarities between a metaphor source word in EN and DE

of the vocabulary in the training and test data (c.f.,
Tab. 2).

embedding sources min f #voc
Metaphor+PolNeAR 2 42,353
Meta+Europarl 100K lc 5 30,768
Meta+PolNeAR+Euro 100k 5 42,008
Meta+PolNeAR+Euro 100k lc 5 39,229
Meta+Europarl 20 68,506
Meta+PolNeAR+Euro lc 5 139,356

Table 2: Vocab sizes of different embeddings sources;
using Metaphor, PolNeAR, Euro(parl) (100,000 sen-
tences) l(ower)c(ased) next to min(imum) f(requnecy)
and voc(ab size)

7 TL with cross-lingual embeddings

Experimental setup: Inspired by Gao et al. (2018),
we use the VUA corpus (Steen et al., 2010) to-
gether with our bilingual embeddings to perform
cross-lingual metaphor prediction. This means,
we train the model from Gao et al. (2018) as
presented in their work (the authors use GloVe

embeddings (Pennington et al., 2014) and ELMo
embeddings (Peters et al., 1802) with a bidirec-
tional LSTM classifier), then we use our German
metaphor data set as test set. Our test data consist
of a balanced data set of sentences labeled with 1
(when it contains a main verb that is metaphoric;
259), and with 0 (when it is not; 198). The index
of the respective verb is handed over as well.

We run four setups: i) the baseline approach
training/testing on VUA using GloVe embed-
dings (Gao et al., 2018) (no transfer); ii) the same
setup using our embeddings instead of GloVe (no
transfer); iii) our embeddings testing on the English
part of the Metaphor corpus (no transfer); and iv)
our embeddings testing on the German part of the
Metaphor corpus (transfer).
Results and discussion: Table 3 shows that our
embeddings do not address the vocabulary of the
training and testing data as well as GloVe does.
Still, the bilingual embeddings are capable to repre-
sent contexts well as F1-scores rather increase than
drop for English (row 2 and 3 compared to row
1). Accuracy, however drops drastically especially
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embed voc addr voc size train sample size test sample size val f1 p r f1 ac
GloVe (reprod.) 17,941 18,695 VUA 17,240 VUA 5,873 57 59 53 56 75
M+P+E 11,480 18,695 VUA 17,240 VUA 5,873 52 56 69 62 75
M+P+E 10,862 17,301 VUA 17,240 M-En 480 (284:196) 52 65 66 65 59
M+P+E 11,845 19,567 VUA 17,240 M-De 457 (259:198) 54 60 22 33 48

Table 3: Results (%) of TL classification in metaphor prediction using our embed(dings model):
M(etaphor)+P(olNeAR)+E(uroparl) 1.9mio lower-cased; voc(ab) addr(essed); voc(ab) size

while applying the English-trained model in Ger-
man (row 3 and 4). This might be the case since
our testing data set is better balanced than the VUA
data set. On the other hand, metaphoric contexts
are not as well represented for German as they are
for English in the model, especially since we did
not word-align the data even though positions of
verbs differ in both languages. 10 Looking into
samples, we found that the especially low recall
is caused by a lot of verbs not used very figura-
tively, such as “Waffenrechte verteidigen/schützen”
(defend/protect gun rights). We plan to investigate
these issues in detail to refine our choices and meth-
ods for training bilingual embeddings.

We did not use pre-trained bilingual embeddings
even though existing work often comes with links
to data and code (c.f, Luong et al. (2015); Hermann
and Blunsom (2014)). However, these data often is
difficult to collect as links are not available, broken
or regeneration is laborious. Further, often bilin-
gual embeddings are trained on Europarl which is
not necessarily the domain, we can hope to find a
lot of metaphoric language—also a problem in our
approach as we use Europarl data too. During our
work we also learned that adding source data from
the news domain to our embeddings data reduces
distances in the embeddings space (c.f., Fig. 3b).

8 Next steps

A next step is to predict metaphoric language in a
target language using pre-trained transformer mod-
els and our Gold data for fine-tuning for example in
a classification task. For this task, the embeddings
representation of a sentence and the metaphor’s
source word is given, and the metaphoric word of
the target language needs to be predicted.

Another step might be applying TL methods of
neural machine translation (e.g., Kocmi and Bojar

10We also tested our approach using bilingual embeddings
from upfront word-aligned (Jalili Sabet et al., 2020) data.
However, test F1-score remains below 10%. We belief that
the n:m relations of words make it difficult for the classifier to
identify the semantic in the target language well enough.

e.g., VUA corpus 
(EN Metaphors)

Source 
tagged Gold corpus

German metaphoric
text

TL 
metaphor prediction

Metaphor

sequence

labeling model

Target 
to be predicted

pre-trained
En-De translation model

Figure 4: Overview on metaphor detection using a se-
quence labeling transfer learning technique

(2018)). As we learned in Sec. 2.2 usually a neural
model is trained on a high-resource language pair
and tested on a low-resource pair. In our setup,
we could encounter this using a sequence labeling
model trained on an English language metaphor
corpus and combine it with a (pre-trained) trans-
lation model of English and German. As sources
for the translation and evaluation part, we might
also consider to use the parallel data from Com-
mon Crawl EMNLP (2018). Figure 4 shows an
overview on the technique considering language
model and tagging model probabilities as common
translation setups do.

9 Conclusion

In this paper, we presented an overview of transfer
learning techniques structured in a twofold man-
ner: i) types of transfer learning, and ii) transfer
learning techniques from a task-oriented perspec-
tive. We presented first steps towards the applica-
tion of modern transfer learning techniques towards
metaphor prediction in German language text. The
experiments make clear that successfully training
bilingual embeddings depends on the vocabulary
coverage of the source texts. We furthermore are in
the process of annotating a parallel corpus (EN-DE)
of metaphor starting from a pre-existing English
language corpus, which we plan to use as a Gold
data set to test transformer-based models.

20



10 Limitations

Our first results show very low performance consid-
ering a guessing baseline of about 50%. We think
this is mainly caused by the limited embeddings
data we have available. Also, the lack of word
alignments might cause difficulties. However, as
demonstrated, the task is very complex given all
the constrains that need to be fulfilled upfront (such
as Gold data set, suitable TL-technique, bilingual
resources). We consider to look further for paral-
lel data sources and develop strategies to generate
parallel sources, e.g., by back-translation (Dhar
et al., 2022) before we go ahead applying other
TL-learning techniques. We also need to establish
a way to incorporate findings on compound and in-
frequent words into the creation of the embeddings
representation. However, we did not do this yet,
because we had to manipulate the primary data for
this purpose.
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Abstract

We present the first openly available multi-
modal metaphor annotated corpus. The corpus
consists of videos including audio and subti-
tles that have been annotated by experts. Fur-
thermore, we present a method for detecting
metaphors in the new dataset based on the tex-
tual content of the videos. The method achieves
a high F1-score (62%) for metaphorical labels.
We also experiment with other modalities and
multimodal methods; however, these methods
did not out-perform the text-based model. In
our error analysis, we do identify that there are
cases where video could help in disambiguat-
ing metaphors, however, the visual cues are too
subtle for our model to capture. The data is
available on Zenodo.

1 Introduction

Figurative language is a challenging topic for com-
putational modeling as the meaning of a figurative
expression is non-compositional and typically very
context dependent (see Roberts and Kreuz 1994).
Metaphor is one of the most important figures of
language; it is constantly used in every day lan-
guage (Steen et al., 2010a) to draw comparisons
or to express something difficult and foreign in
more familiar terms. Metaphors can be conven-
tional (Traugott, 1985) and they are often found in
idioms, but at the same time metaphors are used to
create something new (see Kantokorpi et al. 1990).

Given its ubiquitous presence, understanding
metaphors is integral in achieving true natural
language understanding (NLU) in the real world.
Without their successful interpretation, our mod-
els are bound to make mistakes whenever any-
thing is expressed in an indirect or creative fashion.
Metaphors are often very contextual and their suc-
cessful detection and interpretation requires a wide
range of contextual cues that would be captured
in audio (e.g., prosody) and video (e.g., gestures
and actions). Therefore, we believe a multimodal

dataset is a great contribution to metaphor research
within and outside of the field of NLP.

Two important parts of a metaphor are a tenor
and a vehicle (see Richards 1936). For example, in
the metaphor life is a journey, life is the tenor and
journey is the vehicle. How metaphors essentially
operate is that a vehicle is used to give some of its
attributes to the tenor. In the case above, journeys
are long and full of adventure, which means that
these properties are attributed to life in an indirect
fashion. The meaning of a metaphor is never literal
nor compositional, but rather calls for interpretation
on the level of pragmatics (see Rosales Sequeiros
2016).

Meanwhile, multimodality is becoming increas-
ingly important for many tasks (see Castellucci
et al. 2020; Mogadala et al. 2020; Declerk et al.
2020). We believe the availability of multimodal
datasets for a variety of NLP tasks is lacking, and
we hope to contribute to the community with our
multimodal metaphor dataset.

In this paper, we present the first fully open ex-
pert annotated multimodal dataset for metaphor
detection1. In addition, we experiment with uni-
modal and multimodal methods for metaphor detec-
tion. Our results indicate that the text-based model
achieved the best performance. We discuss the re-
sults of our experiments and conduct an extensive
error analysis to shed light on what was learned
successfully by the model and its shortcomings.

Using CC BY licensed videos in our corpus has
been the primary design principle of our data col-
lection so that we can release our corpus without
any restrictions in its entirety. This, we believe,
is more useful for research purposes than a cor-
pus consisting of short video clips to compile with
copyright laws such as the fair use law in the US.

1https://doi.org/10.5281/zenodo.7217991
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2 Related Work

Metaphors have, thus far, been computationally de-
tected using only text. In this section, we describe
some of the recent approaches for textual metaphor
detection, the corpora used to achieve that and
some of the multimodal research conducted on
NLP tasks other than metaphor detection. There
are several takes on metaphor interpretation (Xiao
et al., 2016; Rai et al., 2019; Bar et al., 2020) and
generation (Hämäläinen, 2018; Terai and Sugyo,
2019; Zheng et al., 2019), but we do not describe
them in detail as interpretation is a very different
problem.

There are two corpora currently used for
metaphor detection, VU Amsterdam (VUA)
Metaphor Corpus (Steen et al., 2010b) and Cor-
pus of Non-Native Written English Annotated for
Metaphor (Beigman Klebanov et al., 2018). Unlike
our corpus, both of these datasets contain textual
modality only.

For textual metaphor detection, Gao et al. (2018)
has used a bi-directional LSTM (long short-term
memory) based model with ELMo embeddings.
Similarly, Liu et al. (2020) have used a bi-LSTM
model with BERT and XLNet for the same task.
Not unlike the previous approaches, Dankers et al.
(2020) has also applied bi-LSTM models compar-
ing ELMo and GloVe embeddings to BERT embed-
dings with global and hierarchical attention models.
Traditional machine learning methods, Logistic
Regression, Linear SVC (Support Vector Classi-
fication) and Random Forest Classifier, have been
used recently with feature engineering to detect
metaphors (Wan et al., 2020). In DeepMet, pro-
posed by Su et al. (2020), a siamese neural network
have been utilized, where textual RoBERTa (Liu
et al., 2019) embeddings are computed from the
context, the token in question and its part-of-speech
and fine-grained part-of-speech. DeepMet was
the best performing solution for detecting textual
metaphors in the VUA dataset, based on a recent
shared task (Leong et al., 2020).

There are several recent works on multimodal
detection of a variety of linguistic phenomena. For
example, SVMs (Support Vector Machines) with
word embeddings and feature extraction have been
used for multimodal sarcasm detection (Castro
et al., 2019; Alnajjar and Hämäläinen, 2021). Mit-
tal et al. (2020) uses GloVe embeddings, features
extracted from audio and facial recognition system
output to predict emotion in a multimodal dataset.

These multimodal features are fused using a mem-
ory fusion network (MFN) (Zadeh et al., 2018).
Similarly, Li et al. (2021) detect emotion in a mul-
timodal dataset by modeling the problem from the
point of view of the quantum theory. While the
field has seen increasing research on multimodal
NLP (Tsai et al., 2019; Mai et al., 2020; Sahu and
Vechtomova, 2021), no data or model has been
proposed for multimodal metaphor detection.

3 Our Metaphor Corpus

In this section, we present our video, audio and
textual corpus of manually annotated metaphorical
language. Our selection of the video clips includes
only CC-BY licensed videos on YouTube that have
human authored closed captions in English. The
content of the videos presents mainly real people
talking, which rules out animations and video game
streams. The availability of human authored closed
captioning is important as it speeds up our anno-
tation time and provides us with subtitles that are
already aligned with video and audio. The CC-
BY license was an important selection criterion
because it makes it possible for us to release the
dataset openly.

We used the filters provided by YouTube to
limit our search to videos that were marked as
CC-BY and had closed captioning. However, the
YouTube filter does not distinguish between auto-
matically generated closed captioning and a human
authored one. Fortunately, it is relatively easy to
tell these two apart from each other. Automated
closed captioning tends to appear one word at a
time, whereas human authored closed captioning is
visualized more like traditional subtitles. These cri-
teria greatly reduced the number of eligible videos
to include in our corpus. Apart from these criteria,
we also filtered videos with sensitive and offensive
languages. No further restrictions have been ex-
plicitly placed on the genres or types of videos, as
we do not want to introduce biases for which types
of contents are more likely to contain metaphors.
Therefore, the availability of the metaphors natu-
rally occurring in the corpus is the result of the
ubiquity of the metaphor in everyday language use.
All Youtube queries were conducted in incognito
mode to avoid biased YouTube suggestions based
on our viewing habits.

Figure 1 shows real examples from our corpus
where video can be useful in detecting metaphors.
On the left, the woman wearing a gray shirt is
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sentence
that you can use to really up your <v>game</v>
because while a <t>quick fix</t> can be <v>appetizing</v> and appealing
<t r="domain name">That</t>’s <v>the street address</v> for your website
you’re ready to <v>give it a shot</v>

Table 1: Example of the annotations for the metaphor detection corpus.

Figure 1: Metaphors made visible in the video through
gestures.

talking about sprinkling keywords and showing a
sprinkling gesture. On the right, the woman wear-
ing the wine red shirt says ring that bell and shows
a bell ringing gesture.

Our corpus consists of 27 YouTube videos with
a total duration of 3 hours, 53 minutes and 47 sec-
onds of video. For comparison, a recently released
multimodal dataset for sarcasm detection (Castro
et al., 2019) has the duration of 3 hours, 40 minutes
and 47 seconds. The videos belong mostly to a
start-up domain and many of them deal with issues
of online visibility for a start-up company. This
domain was a consequence of our selection criteria
for videos. It turns out that YouTube has plenty
of high-quality human close-captioned videos re-
leased under the CC-BY license that relate to this
particular domain.

Our corpus provides linguistics researchers with
the ability to study the use of metaphor in a mul-
timodal setting, something that has gained atten-
tion in their field of science as well (Müller and
Cienki, 2009). This can, indeed, foster a wider
interdisciplinary collaboration leading to a deeper
understanding of the phenomenon.

3.1 Annotation

Two expert annotators went through the video files
and annotated metaphors by surrounding them with
v tags for vehicles and t tags for tenors. The
use of experts is motivated by the fact that previ-
ous research has found that non-expert annotators
struggle with metaphors (Hämäläinen and Alnajjar,
2019).

The annotators followed a simple procedure in

annotating the data:

• Is the meaning literal?

• If the meaning of the word is abstract, is it a
dictionary meaning?

• Does the potential metaphor express prag-
matic insincerity?

• If the answer to all of the questions is no,
annotate it as a metaphor.

In other words, if the meaning of a word or a
phrase is not literal, it is annotated as a metaphor.
However, just the mere fact of a word being used
in an abstract way is not enough to mark it as
metaphorical. For example, in the sentence it is
tied to revenue, “tied” is not tagged as a metaphor
just because it is used in a more abstract sense than
the typical concrete sense of tying one’s shoes, for
example. If the abstract meaning of a word ap-
pears in a dictionary, the word is not considered
metaphorical. However, conventional metaphors
that consist of multiple words, and are thus idioms,
are tagged as metaphors. We do not make a distinc-
tion between metaphors and similes.

Pragmatic insincerity (see Grice 1975) is a phe-
nomenon related to sarcasm as one of its precon-
ditions (see Kumon-Nakamura et al. 1995). There
is a certain overlap between metaphors and sarcas-
tic expressions in the sense that both use words in
their non-literal meaning. In order to ensure that
we do not mix these two notions with each other,
it is important to avoid annotating pragmatically
insincere expressions as metaphorical.

Table 1 shows an example of annotations. The
annotations were done directly in the subtitles The
utterances are time stamped and aligned with the
video. In the table, tenors are indicated with <t>
and vehicles with <v>. For deictic tenors, an r
attribute is provided to resolve the deixis by indi-
cating the actual tenor that has appeared earlier in
the conversation. In the examples, game is used
metaphorically to talk about marketing, quick fix is
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called appetizing as though it was something edible
and domain name is contrasted to a physical street
address by direct comparison. Give it a shot is a
conventional metaphor.

All in all, after multiple annotation iterations,
the dataset consists of 304 vehicles and 67 tenors.
This totals to 371 metaphorical expressions. They
vary in length: the shortest tenor is one word, such
as it, while the longest tenor is several words the
discovery of those five noble gases to illuminate
like that. The same goes for vehicles where their
length varies form one word such as dive to multi-
ple words: the history of the internet itself. On a
token level, we have 672 vehicle tokens and 113
tenor tokens, so altogether 785 metaphorical to-
kens.

In total, 6% of the expressions in the corpus are
metaphorical. While this percentage might appear
low, it is natural and more representative of the real
usage of metaphors in typical conversations which
makes this corpus suitable for building metaphor
detection models applicable for real-world scenar-
ios.

Around 55% of the vehicles are conventional
metaphors and 45% are novel metaphors. How-
ever, it is fairly common that same words appear in
the corpus in a metaphorical and non-metaphorical
sense. In our corpus, there are two videos that
deal with actual cooking, in which many food-
related metaphors appear non-metaphorically, such
as sprinkle those in, said metaphorically about key-
words and a little sprinkle, said non-metaphorically
about sugar. Another example is the use of house
non-metaphorically as in come pick it up at my
house and metaphorically as in think of hosting as
your house, where a metaphorical connection is
drawn between hosting and a house.

3.2 Data preparation

As YouTube serves files in several different formats
such as webm, mkv and mp4 the first step is to use
FFmpeg2 to convert all videos into mp4 format. We
also use the same tool to clip the video files into
sentence-length clips based on the time stamps in
the subtitles and extract their audio into wav files.
This process yielded 6,565 video and audio clips
that are aligned with text.

We split the datset randomly so that 70% of sen-
tences that contain metaphors and 70% of sentences
that don’t contain any metaphors are used for train-

2https://ffmpeg.org/

ing, 15 % of both types of sentences for validation
and 15% of both for testing. This way we ensure
that both metaphorical and non-metaphorical sen-
tences are divided proportionally with the same
ratios. These splits are used for all the models.

4 Metaphor Detection

We experiment with uni- and multi-modal models
for metaphor detection. In this section, we describe
the preprocessing steps applied and the experimen-
tal setups conducted.

4.1 Preprocessing

For each modality, we make use of the latest ad-
vances in neural network models to capture impor-
tant features that have achieved state-of-the-art re-
sults in various NLP tasks. As metaphor detection
has been conducted solely based on text, we fol-
low the DeepMet approach by Su et al. (2020) and
process the entire textual content using spaCy (Hon-
nibal et al., 2020) to tokenize it and acquire Uni-
versal Dependencies style syntactic trees (Nivre
et al., 2020) and Penn Treebank parts-of-speech
tags (Santorini, 1990). Similarly to the original ap-
proach, all of our textual models predict metaphors
at the token level given the context surrounding it
and its POS tags as input.

We resample the audio to 16kHz. Audio features
are extracted using Wav2Vec2FeatureExtractor pro-
vided by the Transoformers Python library (Wolf
et al., 2020).

Video features are obtained by taking equally-
distributed 16 frames from a clip and then resize
them into 128x171, followed by normalization and
center cropping to 112x112.

4.2 Textual model

We train two text-only models, both follow the
architecture and approach of DeepMet where we
obtain textual embeddings using RoBERTa (Liu
et al., 2019) and feed them into two transformer
encoding layers which are then combined by apply-
ing global average pooling and concatenation. A
dense fully-connected layer takes in the combined
output of both encoders and predicts whether the
token is metaphorical (c.f., Su et al. 2020 for more
details).

In our first textual model, we train the model
using our corpus, whereas in the second one we
train it using VUA corpus (with a learning rate of

27



0.00001, akin the original paper) and later fine-tune
it using our corpus.

4.3 Audio model
We extend and fine-tune Facebook’s pretrained mul-
tilingual XLSR-Wav2Vec2 large model (Baevski
et al., 2020). The model is trained on Multilingual
LibriSpeech (Pratap et al., 2020), CommonVoice
(Ardila et al., 2020) and Babel (Roach et al., 1996)
for speech recognition. We employ this model to
encode speech into vector representations from raw
audio.

We replace the classification layer of the original
model with a dense fully-connected layer that pro-
duces two outputs, one for each label. Unlike the
textual model, here we classify whether the entire
spoken expression contains a metaphor or not (i.e.,
not on a word level).

4.4 Video model
For our video unimodal model, we incorporate a
pretrained model for human action detection. The
model is based on the 18 layer deep R(2+1)D net-
work (Tran et al., 2018) and it is trained on the
Kinetics-400 (Zisserman et al., 2017) dataset. The
intuition behind using this model is that it was
able to detect actions (e.g., playing organ), ges-
tures (e.g., pointing) and movements (e.g., waving).
Realizing such information is crucial in understand-
ing the context, and would provide further cues for
detecting metaphors.

Similar to the audio model, we substitute the
original classification layer with a fully connected
layer and fine-tune the pretrained model to predict
whether a scene is metaphorical or not.

4.5 Multimodal metaphor detection
We test out three multimodal metaphor detection
models; 1) text and audio, 2) text and video and
3) text, audio and video. The textual model is the
fine-tuned model using the VUA corpus and our
textual corpus.

In all of the models, the final classification layer
of their sub-models are removed. Unimodal models
are combined by concatenating the weights of their
last layer, which are then fed to a classification
layer.

4.6 Common configuration
All of the models described above share common
configurations, unless we explicitly indicate other-
wise. Prior to the last classification layer of all of

our mono- and multimodal models, we introduce a
dropout layer (Srivastava et al., 2014) (with a prob-
ability of 20%) to accelerate training, and reduce
internal covariate shift and overfitting.

We use the cross entropy loss function along
with Adam optimizer (Kingma and Ba, 2014;
Loshchilov and Hutter, 2019) to update the weights
and train the models. All the fine-tuned models are
trained with a learning rate of 0.0001 and for 3 full
epochs.

5 Results

In this section, we follow the evaluation metrics
commonly used for the metaphor detection task by
reporting the precision, recall and F1 scores for the
metaphorical label.

Regarding the textual models, we report three
sets of results, which are for the models trained
on: 1) VUA corpus, 2) our corpus and 3) both
the VUA and our corpus. All the models predict
metaphoricity on the token level. To ensure that
our implementation of the DeepMet approach is
correct, we tested the first model on the VUA test
dataset of the metaphor detection shared task and
achieved an F1-score of 0.68 and 0.73 on all POS
and verb subsets of the data, respectively. These
results are relatively close to the results reported by
the authors.

Table 2 shows the classification results of all
three models on the test set. The test set con-
tained 90 metaphorical tokens and 6,961 non-
metaphorical tokens. The results indicate that the
textual model trained solely on the VUA dataset
performed poorly on our test set. In compari-
son, training the model using our metaphor corpus
only resulted in a great increase of correct predic-
tions. Nonetheless, combining both corpora by
fine-tuning the first model with our corpus pro-
duced the winning model, which managed to spot
76% of the metaphorical tokens correctly.

We believe that the huge differences between the
first and second textual models, despite the larger
size of VUA’s training dataset, are due to the dif-
ferences in domains. The VUA corpus contains
academic texts, conversation, fiction, and news
texts, whereas our corpus is dominated by con-
versations on the web and start-ups. It is evident
that by exposing the model to general domains (i.e.,
VUA’s corpus) and, thereafter, concentrating it on
the start-up domain, the model was able to identify
the highest number of metaphorical usages.
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Trained on Precision Recall F1-score
VUA 0.04 0.33 0.07
Ours 0.38 0.63 0.47
VUA + Ours 0.53 0.76 0.62

Table 2: Classification results of the textual monomodal
models on the test set of our corpus, for the metaphorical
label.

Results from the other models (unimodal or mul-
timodal) that involving audio and video showed
that adding these modalities actually did not help
improving the model - rather, they are detrimental
to the model performance on metaphor detection.
We extend two possible explanations for this failure.
First, it is possible that because the visual and audio
cues of metaphor are subtle, these models failed to
learn from such a small amount of annotated data.

Second, it is unclear that the specific models we
are using for audio and video modalities encode
the information relevant for the metaphor detec-
tion task. For instance, whereas it is impossible to
completely disentangle what exactly the Wav2Vec
model is encoding, we can conjecture that it en-
codes information about phoneme identity consid-
ering it is optimized for the speech recognition task.
Therefore, it may not be entirely surprising that the
Wav2Vec encoding is not useful for the metaphor
detection task because it is adding redundant or
irrelevant information to the model. It is our future
work (or the future work for the community who
utilizes this dataset) to refine our understanding
of the multimodal encoding for the metaphor de-
tection task (for instance, employing a model that
more directly encodes information about speech
prosody from the audio).

5.1 Error analysis

When looking at the results of the text only model,
we can see that the model identifies metaphors cor-
rectly as metaphors more often than not. There
are some metaphorical tokens in metaphors con-
sisting of multiple words that get classified wrong,
for example, in You could think of hosting as your
house, the tenor hosting and the determinant your
of the metaphorical word house are not identified
as metaphorical, while house is correctly identified.
Another example is the conventional metaphor toot
their own horn, where all other words except for
own are correctly identified as metaphorical.

There are also a fewer number of cases where all

words get identified wrongly as non-metaphorical,
for example, the model did not predict any
metaphorical tokens in It’s where you live, while
in reality it is the tenor and where you live is the
vehicle. Also, individual tenors where the vehicle
comes later get often not recognized such as in Yes,
malware you could think of like, where malware
is the tenor for a vehicle that appears later in the
dialog.

When the tenor and the vehicle co-exist nearby,
the model can get all metaphorical tokens right
such as in It’s kinda like real estate right? where
both the tenor it and the vehicle real estate are cor-
rectly identified. Also many tenorless expressions
are fully recognized correctly as metaphorical, such
as Spreadin’ the love.

There were plenty of cases (61) where the model
predicted a metaphor tag for a token while there
was no metaphor. Curiously, prepositions were of-
ten tagged metaphorical, such as to in ring that bell
to see these episodes first. The actual metaphorical
part ring that bell ends before the preposition to
that has a non-metaphorical meaning in order to.

We can also see that the model was indeed fooled
by cooking terms that were used both metaphor-
ically and non-metaphorically. In Yeah a little
sprinkle, both a and sprinkle were classified as
metaphors, while the context was about sprinkling
sugar. Another similar case was there’s five noble
gases that illuminate, where noble gases and illumi-
nate were erroneously classified to be metaphorical.
This was clearly due to the tenor in the corpus: the
discovery of those five noble gases to illuminate
like that that contained similar words. It is evident
that the model relies on word similarities more than
reaching to a higher pragmatic representation of the
phenomenon, however, this is not an unexpected
behavior from a machine learning model.

There are also cases where the model detects a
metaphor, that could theoretically be a metaphor,
but is not because of the way it was used in the cor-
pus. For example, the model predicts Give it a go
as metaphorical in the expression button, "Give it a
go.", where people are talking about a button with
a particular text rather than using the expression
metaphorically. Another such an example is flying
in (money flying). Such an expression might be
used metaphorically, but in this case this was a note
for the hearing impaired as money was actually
flying on the video.
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6 Discussion and Conclusions

In this work, we have only focused on metaphor
as a strictly linguistic phenomenon and we have
built a multimodal dataset where these linguistic
metaphors have been tagged in terms of tenors and
vehicles. However, it is apparent that metaphor is
a phenomenon that occurs on a higher level of our
cognitive capacities than mere language. There are
several cases in our corpus, where we can evidence
the existence of a metaphor but it is never expressed
verbally. For example in Figure 2, money flying
cannot be a metaphor when inspected purely from
the point of view of language and its relation to
the video when money is actually flying in the
scene. However, it is a metaphor on a higher level
in the sense that the entire scene where money was
flying was to indicate someone becoming rich. In
other words, stating a fact that is happening is not
metaphorical if the fact is literally taking place,
however the fact itself might be metaphorical.

Figure 2: Money actually flying on the video.

At the same time, as evidenced by our error anal-
ysis, there are certainly cases where video modality
could help in disambiguating whether something
is said metaphorically or not. For instance, talk-
ing about sprinkling in a kitchen environment (see
Figure 3) is a very strong sign that the word is po-
tentially non-metaphorical. Integrating these weak
cues into a multimodal system is, however, not an
easy task given that the current methods for video
processing are limited in their coverage.

Therefore, in the future, it would be useful to
annotate metaphors also in the other modalities.
Money flying can be a visual metaphor, and so can
a sound effect, and they can exist independently
from each other in different modalities. Perhaps the
reason why our multimodal attempts failed was that
metaphor can be independent of the other modali-
ties. Producing such a dataset where these modal
specific metaphors are also annotated for video and

Figure 3: Sprinkling used in a kitchen in reference to
sugar.

audio is definitely a huge undertaking that requires
research in its own right.

It is clear that our model can detect metaphors
correctly, but also the mistakes it makes highlight
that despite using a large RoBERTa model, the
meaning representation the model has cannot reach
to such a nuanced level as to confidently detect
metaphors. Metaphor is a figurative device that can-
not be explained by semantics, but rather requires
pragmatic inspection. It is not clear based on our re-
search and other contemporary approaches whether
the current word or sentence embedding models are
sufficient to navigate in the depths of pragmatics
and subjective interpretation in any other way than
learning some irrelevant co-occurring phenomena
from a biased corpus. At the same time there is no
such thing as an unbiased corpus, either, given that
bias (and mostly heuristics causing it) is a funda-
mental part of our cognition as human beings.

In this paper, we have presented a new open and
multimodal dataset for metaphor detection. Be-
cause we have focused strictly on CC-BY licensed
videos, we can make the entire dataset available on
Zenodo. In our current work, we have not taken
the context widely into account when predicting
metaphoricity, but rather resorted to a very local
context. The fact that the videos can be published
in full length makes it possible for any future work
to explore different ways of including contextual
cues freely.
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Abstract

Tamarian, a fictional language introduced in
the Star Trek episode Darmok, communicates
meaning through utterances of metaphorical
references, such as “Darmok and Jalad at
Tanagra” instead of “We should work together.”
This work assembles a Tamarian-English dic-
tionary of utterances from the original episode
and several follow-on novels, and uses this
to construct a parallel corpus of 456 English-
Tamarian utterances. A machine translation
system based on a large language model (T5) is
trained using this parallel corpus, and is shown
to produce an accuracy of 76% when translat-
ing from English to Tamarian on known utter-
ances.1

1 Introduction

Science fiction and fantasy literature has long cre-
ated constructed languages for their characters,
from Elvish in Lord of the Rings and Klingon in
Star Trek to Heptapod in Arrival (Cheyne, 2008).
These languages often have many of the same syn-
tactic or semantic features as human languages, and
some (such as Klingon) have been developed to a
level where full dictionaries (Okrand, 1992) and
online translators are available.2

An unconventional language was proposed in an
episode of Star Trek: The Next Generation called

“Darmok”, where a race of aliens called the Tamari-
ans speak a language that is communicated exclu-
sively through metaphors. Instead of direct refer-
ence (e.g. “I want to give this to you”), Tamari-
ans speak in metaphorical references grounded in
stories (e.g. “Temba, his arms wide”) that (like
symbols) have learned associations with their true
meaning meaning. In the Darmok story, the un-
usual nature of the language poses a challenge for
both the automated translation systems and the

1Data and code available at: https://github.com/
cognitiveailab/darmok

2https://www.translate.com/klingon-english

T5

“translate-tamarian: 
they put aside their 
differences and worked
towards a common goal.”

“darmok and jalad
at tanagra.”

Figure 1: An example of translating English to the
metaphor-grounded Tamarian language using T5.

characters in the story to learn. The creator of
the language, Joe Mendowsky was inspired by the
difficulty of translating across cultures (Block and
Erdmann, 2012), and Tamarian has since been the
subject of repeated informal study (Bogost, 2014)
in the 30 years since the episode aired.

This work investigates the feasibility of translat-
ing this artificial metaphor-rich language via our
new parallel corpus of English-Tamarian phrases
(Figure 1). Our machine translation system based
on a large language model (Raffel et al., 2020, T5)
has 76% accuracy in translating English phrases
to Tamarian metaphorical utterances. This sug-
gests automatically translating metaphor-grounded
languages may be feasible, though we discuss sev-
eral pragmatic challenges in representing complex
expressions and generating a parallel corpus pre-
venting scaling the approach.

2 English-Tamarian Parallel Corpus

Comparatively few Tamarian utterances have been
authored, effectively limiting the size and scope of
the effort. To maximize the number of available ut-
terances, all utterances from the original broadcast
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Tamarian Utterance Inferred Meaning English Example

1 Darmok and Jalad at Tanagra Working together Knowing they would both be needed, they went to-
gether.

2 Temba, his arms wide. Giving The child offered his toy to his friend.
3 Kira at Bashi. Story-telling They described what had happened to those who

listened.
4 Chenza at court, the court of silence. Incontestability The results were beyond reproach.
5 Zima at Anzo, Zima and Bakor. Persistence They continued their task, undeterred from past fail-

ures.
6 Fendit, refusing the flame. Refusing help She preferred to work alone, without assistance.
7 Chatha and Teribium, the fire warm. Hospitality Their household was offered for rest and comfort.
8 Jeral, her arms weary. Being tired She was spent at the end of the day.
9 Pirakee, with clouds parted. Visibility She turned on a flashlight, making it easier to see.

10 Hammat dancing. Liking something It filled them with delight.

Table 1: Example Tamarian utterances, their inferred meaning, and an English example from the parallel corpus.

episode, as well as those in three licensed nov-
els featuring a Tamarian main character were used
(Beyer, 2012, 2014, 2015). Approximately twenty
utterances are provided in the Darmok episode,
while an additional forty-eight are used in the nov-
els, for a total of sixty-eight utterances.

Tamarian-to-English dictionary: To create a
parallel English-Tamarian corpus, first a Tamarian-
to-English dictionary that captures the inferred
meaning of each Tamarian utterance was required.
The meanings of the twenty broadcast utterances
was ascertained from a Reddit thread with exten-
sive discussion of the topic.3 The meanings of the
remaining forty-eight utterances was inferred as
best as possible from the surrounding context of
where they appeared in their respective novels.

Tamarian-English Parallel Corpus: Training a
machine translation system requires a parallel cor-
pus, where utterances of one language are paired
with utterances of a second language, where the
utterances in both languages have the same mean-
ing. Tamarian utterances abstractly refer to specific
types of situations that could be applicable to many
circumstances. Thus, for each Tamarian utterance
a set of k English examples were manually au-
thored, with ten examples authored for thirty-nine
utterances, and five examples authored for eleven
utterances. Eighteen Tamarian utterances were not
included in the parallel corpus as they have rel-
atively narrow meanings, and generating a large
number of parallel examples for them in English
proved challenging. The final parallel corpus con-
tains fifty Tamarian utterances, paired with 456
parallel English utterances (Table 1).

3https://www.reddit.com/r/
DaystromInstitute/comments/4ggwo5/the_
tamarian_language_an_analysis/

3 Translation Model

Approach: Here, English-to-Tamarian is mod-
eled as a sequence-to-sequence (seq2seq) learning
task, using English utterances as the source sen-
tence, and a single Tamarian translation of that
English utterance as the target sentence.

Models: Modeling used T5 (Raffel et al., 2020),
a large pre-trained multi-task language model. T5
includes pre-training for a variety of tasks, includ-
ing question answering, summarization, and trans-
lation. Several model sizes were explored, includ-
ing T5-small (66M parameters), T5-base (220M
parameters) and T5-large (220M parameters). The
model prompt took the form of:

translate English to Tamarian: {src}

where {src} is the English source sentence to trans-
late (e.g. “She offered it to them”). The model then
generated a corresponding target sequence corre-
sponding to the Tamarian translation of the source
sentence (e.g. “Temba. His arms wide.”). The
model was implemented using the Huggingface
Transformers library (Wolf et al., 2020).

Dataset splits: Due to small dataset, we use 5-
fold crossvalidation: with 60% of data used for
training, 20% for development, and 20% for test.
For utterances with ten examples, this corresponds
to six train, two development, and two test samples
per run, while for utterances with five examples,
this corresponds to three train, one development,
and one test sample per run.

Evaluation Metrics: Translation performance
was evaluated using SACREBLEU (Post, 2018), a
metric that measures translation performance using
n-grams, while taking partial matches into account.
Here, because only fifty Tamarian utterances are
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Translation Performance
Dev. Test

Model BLEU Acc. BLEU Acc.

T
5 T5-Small 38 34.4% 41 38.0%

T5-Base 71 72.8% 70 72.4%
T5-Large 80 82.4% 74 76.4%

Table 2: Average English-to-Tamarian translation perfor-
mance on both development and test sets. BLEU measures
per-token accuracy, while Acc. refers to the average binary
classification accuracy of choosing the correct Tamarian utter-
ance for a given English input sentence.

available, and their surface presentation is generally
constant, we also consider evaluating translation
as an N -class classification task where a given En-
glish input sentence can be classified as one of fifty
Tamarian utterances.

4 Results

Models were trained until performance (BLEU)
asymptoted on the development set, at thirty
epochs. The best performing model achieves a
translation accuracy of 76% on the unseen test
set, which corresponds to translating approximately
three out of four English utterances from the corpus
correctly into Tamarian (Table 2).

5 Discussion

As a constructed language for a fictional universe,
Tamarian is a low resource language with fewer
than one hundred known utterances. What might
it take to grow Tamarian (or a metaphorically-
grounded Tamarian-like language) into a more com-
plete artificial language similar to Klingon? This
section attempts to address the challenges of scal-
ing beyond this work in the context of two cen-
tral difficulties: growing the parallel corpus of
metaphors, and challenges associated with the se-
mantics of translating complex ideas in Tamarian.

5.1 Growing the Parallel Corpus

Growing the vocabulary of metaphors in Tamar-
ian presents a unique challenge for constructed
languages. Where human languages typically ex-
presses base-level semantics at the level of the mor-
pheme or word, Tamarian’s most atomic construc-
tion is a single metaphor, making approaches that
start with translating a dictionary challenging to
adapt. One approach to growing Tamarian would
be to continue the current manual approach, identi-
fying a set of atomic events that convey common sit-
uations (such as eating, giving, taking, or helping),

Tamarian Utterance Inferred Meaning

Gesture/Context Hypothesis

Temba, his arms wide. Hand me the blue screw-
Also: Pointing at item driver I am pointing at

Specificity Hypothesis

Jeral, her gift. Give me a blue
screwdriver on the left

Modifier Hypothesis

Temba, his arms wide. Giving
Paris, in the garage. Screwdriver
Tolanis painting, in winter. Blue
Bakor, examining. Look to the left

Table 3: Examples of the three hypotheses for how fine-
grained semantics could be inferred or composed in Tamarian.

and authoring utterances grounded in an expanded
Tamarian mythology—for example, “Timba, his
stomach rumbling” to convey the notion of hunger.
The prerequisite for having an exhaustive list of
possible event schemas to translate would likely
make this approach challenging to scale.

Automatic Generation: An alternate approach
was suggested by Picard in Darmok – to use the
existing body of human literature (such as the Epic
of Gilgamesh) to build a Tamarian-like language
grounded in metaphors inferred from classic litera-
ture. Picard suggests that “Gilgamesh and Enkidu
at Uruk” might be an utterance to represent a cen-
tral component of the story – two people who were
first in conflict coming together in friendship. Such
an automatic approach to building a Tamarian-like
language is in principle feasible, potentially mak-
ing use of recent successes in automatic summariza-
tion to extract key elements of a story in templated
form (e.g. {PERSONX} AND {PERSONY} AT

{LOCATION}) to generate novel utterances. One of
the challenges with this approach is that narratives
often contain many events, specified both at a low-
level (e.g. Enkidu entering the city of Uruk) and
high-level (e.g. Gilgamesh and Enkidu eventually
forming a friendship in spite of their differences),
and identifying only a single idea to be represented
by the utterance would be difficult.

5.2 The Challenge of Translating
Fine-grained Semantics

It has been hypothesized that Tamarian may not be
well suited to expressing fine-grained semantics,
and would present challenges for translating utter-
ances such as “Hand me the blue screw driver on
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the left“ (Bogost, 2014). While the few observed
multi-utterance exchanges of Tamarian have (so
far) typically conveyed steps in a story, we present
three hypotheses for how fine-grained semantics
might be achieved, with examples shown in Ta-
ble 3:

1. Gesture/Context hypothesis: The spoken
Tamarian language may ground ambiguity
through gestures or other situated contextual
cues, as the Tamarian captain does when he
utters “Temba, his arms wide” (take) and ges-
tures to a weapon.

2. Specificity hypothesis: Though impractical,
the Tamarian language may have many utter-
ances to refer to very specific situations.

3. Modifier hypothesis: Unobserved classes of
utterances may serve as modifiers, providing
additional clarification to an utterance.

There is partial observation of both the ges-
ture/context and modifier hypotheses provided in
the original Darmok episode, and we believe the
modifier hypothesis likely provides a mechanism
for composing larger units of meaning akin to a
generative grammar.

The more fundamental challenge of extend-
ing Tamarian is that every sentence must be con-
nected to an underlying mythology: if you want
to translate a sentence you must first create a uni-
verse (Sagan et al., 1983). While we can invent
Tamarian sounding proper nouns, a more funda-
mental challenge is to build a world where there
are characters who would have or invent a screw-
driver, a character who could successfully use it,
a character who would use it incorrectly, and per-
haps someone else who could address when you’ve
accidentally stripped the head of the screwdriver.

Thus, the challenge is not just creating enough
examples but also building the cultural cannon to
support those examples. While this is a unique
linguistic challenge for Tamarian, it follows the
course of other constructed languages: Quenya
was developed alongside the backstory of Middle
Earth (Lewis, 1995) and the creator of the Klingon
language also ensured that the Klingon mythol-
ogy was recorded in the Klingon language (Schön-
feld et al., 2011). Tamarian foregrounds this chal-
lenge of obtaining enough cultural context to trans-
late (Keesing, 1985; Maitland, 2017).

6 Related Work: (Computational)
Linguistics for Constructed Languages

The elephant in the room is whether it is worth-
while to study constructed languages at all. This
section seeks to answer that question with a re-
sounding yes by discussing the other insights that
have come from scholarly investigations of con-
structed languages.

Tamarian is from the Star Trek Universe, so it
is instructive to spend a little time first with the
oldest Star Trek language, Klingon. Klingon is of-
ten used in NLP education because it has features
that are rare in natural languages but it is incredibly
regular: a morphological analyzer can get 100%
accuracy but still have fascinating properties like
affixes for honorifics, completion, and tense (Wi-
centowski, 2004). Likewise, because Klingon is by
construction meant to feel literally alien, its OVS

structure can also upend students’ part of speech
tagging expectations (Boyd-Graber, 2014).

But Klingon is not just a fun exercise for pro-
grammers and linguists; the creation of parallel
data (as discussed above for Tamarian) also ex-
plores the interplay between culture and transla-
tion. For the translation of Hamlet into Klingon,
cultural adaptation (Peskov et al., 2021) is also
needed: for example, Fortinbras becomes “the most
insuborinate head of the House of Duras” (Kaz-
imierczak, 2010). The art of translation often re-
lies on metaphor (Veale, 2016) and cultural knowl-
edge (Vinay and Darbelnet, 1995), and just as ex-
ploring Klingon can reveal limitations of our un-
derstanding of affix morphology and OVS word
order, Tamarian can help illuminate the limitations
of metaphor in communication.

All extant constructed languages are low re-
source languages, which typically pose challenges
for machine translation (Haddow et al., 2021). Like
how Klingon can emphasize particular aspects of
a language (word order, morphology), Tamarian
helps focus attention on the role of mythology,
inter-personal relationships, and multiword expres-
sions for translation.

7 Conclusion

This paper is an initial English–Tamarian transla-
tion model. This task is difficult because it not
only maps words to words but also maps metaphor
to typical translation phrases. While Tamarian is
a constructed language, it shows large language
models’ ability and limitations for metaphor.
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Abstract

Metaphors are proven to have stronger emo-
tional impact than literal expressions. Although
this conclusion is shown to be promising in
benefiting various NLP applications, the rea-
sons behind this phenomenon are not well stud-
ied. This paper conducts the first study in ex-
ploring how metaphors convey stronger emo-
tion than their literal counterparts. We find
that metaphors are generally more specific than
literal expressions. The more specific prop-
erty of metaphor can be one of the reasons for
metaphors’ superiority in emotion expression.
When we compare metaphors with literal ex-
pressions with the same specificity level, the
gap of emotion expressing ability between both
reduces significantly. In addition, we observe
specificity is crucial in literal language as well,
as literal language can express stronger emo-
tion by making it more specific.

1 Introduction

Metaphors are widely used in human language,
which allows people to communicate not just in-
formation, but also feelings and attitudes. It is
generally believed that metaphors are especially
effective in expressing subjective elements, such
as sentiment and attitude. Recent studies in Psy-
chology and Computational Linguistics thus pro-
vide a wide range of qualitative evidence which
supports the idea that metaphors are closely re-
lated to sentiment. For example, Rentoumi et al.
(2012) use metaphorical expressions as a feature in
sentiment polarity detection and find it can be an
effective indicator. Mao and Li (2021) introduce
a multitask framework which jointly optimizes a
metaphor detection task and aspect-based senti-
ment analysis and observe considerable improve-
ment on both tasks. More importantly, Mohammad
et al. (2016) give the first quantitative finding which
shows that 83.6% of annotated metaphors tend to

∗Corresponding author

Figure 1: hypernym and hyponym relation between
metaphor and literal expressions. Synset here presents
the word sense of the target word based on WordNet
sense dictionary. Blue text indicates metaphor and red
text indicates literal.

have a stronger emotional impact than their literal
counterparts.

However, although researchers conduct fruitful
studies showing how metaphors are closely related
to sentiment, the reason behind this phenomenon is
not well explored. Investigating the mechanism of
metaphor sentiment interaction can be quite promis-
ing. For instance, understanding how metaphor
builds emotional bonds can guide metaphor gen-
eration models (Li et al., 2022a,b) producing em-
pathetic and persuading responses. The result can
also be helpful for sentiment analysis, especially
on metaphor-enriched text (Cabot et al., 2020).

In this paper, we introduce an exploratory an-
swer to the question of how metaphors convey
stronger emotion than literal language. To inves-
tigate this phenomenon, we manually analyse the
metaphor-literal parallel corpus from MOH dataset
(Mohammad et al., 2016, see example in Figure
1) where the more emotional expression is marked
among each metaphor-literal pair. Our study finds
that metaphors might impose emotional impact
on readers via giving more specific expressions,
i.e., making the expression more precise. First,
we find most metaphorical expressions are more
specific than their literal counterparts. In other
words, literal translations of metaphors usually con-
vey more general meanings. It suits our intuition
that metaphors are believed as more vivid. Second,
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Figure 2: Two cases illustrating positions of metaphorical and literal synset in the WordNet hierarchy.

we find metaphor’s stronger emotional impact is
partially from its more specific description. When
we compare metaphors and their literal counter-
parts where both share the same level of specificity,
we find the superiority of metaphors in arousing
emotional impact drops significantly. When we test
the more-specific principle on literal expressions,
we find more specific literal expressions do surpass
general ones on emotional impact.

We use linguistic relation hypernym and hy-
ponym from WordNet (Miller, 1995) to define the
specificity in our analysis. Specifically, hypernym
denotes a word with a broad meaning yet hyponym
denotes a word with a more specific meaning. So if
a literal term is its metaphorical counterpart’s direct
hypernym, we know the metaphor describes a more
specific meaning, or to say in a metaphorical way,
draws a more precise picture. The Figure 1 shows
an example of the above situation: the synset of
the literal expression misuses language is the di-
rect hypernym of the metaphorical synset, which
means the literal expression is more general and
the metaphor is more specific.

In case there is no direct hypernym or hyponym
relation between metaphorical and literal expres-
sion, we compare the place of both in the WordNet
Hierarchy to determine which one is more specific.
In Figure 2, we see clearly that from the top to the
bottom in the WordNet hierarchy, expressions tend
to be more specific. So we can determine the rela-
tive specificity of terms by comparing their relative
position in the hierarchy.

In summary, our contributions are mainly in
two folds: 1) we introduce a novel hypernym-
hierarchy method to measure the specificity of
language expression and find metaphors are usu-
ally more specific than literal counterparts; 2) we
find the reason why metaphor express stronger

Term: rip
Sense/Synset: Synset(‘rip.v.04’)
Sentences: The candidate ripped into his opponent

mercilessly.
Literal: The candidate criticized his opponent

mercilessly.
Emotion: The metaphorical expression is more

emotional.

Table 1: The annotation example of verb rip in the MOH
dataset.

emotion is partially due to its more specific ex-
pression. Our code and data can be found
in https://github.com/liyucheng09/
Metaphors_are_more_emotional

2 The MOH Dataset

Mohammad et al. (2016) create a metaphor dataset
in which verb senses are annotated for both
metaphoricity and emotionality. In addition, the
metaphorical uses are paired with their human-
validated interpretations in the form of literal para-
phrases (i.e., the metaphor’s literal counterpart). In
Table 1, we give an example of the MOH annota-
tion for the verb rip. There are 171 metaphor-literal
parallel annotations in total. We employ the MOH
dataset in our study due to its parallel feature.

3 Experimental Setup

This study tests two research hypotheses:

Hypothesis 1: Metaphors are generally
more specific than their literal counter-
parts. In other words, metaphors are
lower than their literal counterparts in
the WordNet hierarchy.

Hypothesis 2: Metaphors’ stronger emo-
tional impact is partially from metaphors’
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more specific expression. In other words,
more precise expression is one of the rea-
sons why metaphors convey stronger sen-
timent than their literal counterparts.

To compare the specificity of metaphor and its
literal counterpart, the hypernym-hierarchy infor-
mation is assigned to both in parallel.

To explore the role specificity plays in the inter-
action between emotion and metaphor, we first anal-
yse the correlation between specificity and emotion
label of metaphors. We then perform two more
experiments to further test how specificity affects
emotional impact: 1) labelling which one is more
emotional between metaphor and literal counter-
part with the same level of specificity; 2) labelling
which one is more emotional between a more gen-
eral literal expression and a more specific literal
expression. The first test isolates the influence of
specificity in the emotion comparison of metaphor-
literal pair; the second tests whether specificity
empowers literal expression to convey stronger sen-
timent.

3.1 Specificity Test

Synset annotation. To access the hypernym rela-
tion of metaphor-literal data or locate both in the
WordNet hierarchy, synsets of both need to be an-
notated. A synset in WordNet can be seen as a word
sense item thus annotating a synset can be regarded
as a word sense disambiguation task. The overall
annotation procedure is as follows: 1) query Word-
Net with lemmatized target words to obtain synsets
candidates; 2) determine the best suiting synset
for both metaphorical and literal targets based on
synset gloss and example sentence. An example
of synset annotation is in Figure 1, where target
words (i.e., metaphor and its literal counterpart, in
colour) are labelled with synset.
Determining Specificity. After obtaining the
synsets of metaphor-literal pair, there are two ways
to determine the relative specificity of both expres-
sions. For cases where there is a direct hypernym
or direct hyponym relation between metaphorical
and literal synset, we can know the relative speci-
ficity explicitly: the hypernym is more general yet
the hyponym is more specific. For cases where
metaphorical and literal synset are not connected
with such a relation, we locate both terms in the
WordNet hierarchy and compare their relative po-
sition. The locating procedure is as follows: 1)
find their lowest common hypernym in WordNet

hierarchy; 2) compute the number of hops from
their common hypernym to both terms.

The example shown in Figure 1 belongs to the
first situation that is there is a direct relation linking
the two terms. So does the Figure 2 (a) case,
where the literal term and the metaphoric term are
connected via two hops of hypernym relations. So
we know the literal term, as it is the hypernym
of the metaphoric term, is more general than its
metaphoric counterpart. In contrast, examples in
Figure 2 (b) is the second situation, where the
lowest common hypernym has to be found. It takes
two hops from the metaphorical synset to reach the
common nearest common hypernym, but it only
takes one hop for its literal counterpart to arrive
at the common hypernym. So we know the lower
synset (i.e., the metaphorical one) is relatively more
specific than the other. In our experiments, we find
the first situation is the dominant cases, which suits
around 86% (98 out of 114) of metaphor-literal
pairs we tested. And only 14% (16 out of 114)
pairs fall in the second situation.

3.2 Emotional Impact Test

To investigate the emotional impact that comes
from the specificity of expressions, we analyse the
correlation between the specificity and emotion
label of metaphors. To further explore the interac-
tion between specificity and emotional impact, we
conduct two more manual experiments.

First, we compare which is more emotional be-
tween metaphor and its literal counterparts with the
same level of specificity. To perform the compar-
ison, we need to make up literal paraphrase same
specific as the metaphor. We use the sister terms
relation in WordNet to realise it. Two terms are sis-
ter terms as long as they share the same hypernym
in WordNet, which means sister terms are at the
same level in the WordNet hierarchy. We manu-
ally choose an appropriate literal sister term of the
metaphor, and paraphrase the origin sentence with
the literal term to form a literal counterpart has the
same level of specificity. See line 2 in Table 2 for
an example of such a sentence pair. With the paired
data, we employ three human annotators with lin-
guistics backgrounds to judge which expression is
more emotional.

Second, we compare which is more emotional
between more general literal and more specific lit-
eral expression. We use the direct hyponym relation
to realise it. Similarly, we manually choose a direct

41



Term 1 Sentence 1 Term 2 sentence 2 Specific Emotion
Synset(rip.v.04) The candidate ripped into his op-

ponent mercilessly.
Synset(criticize.v.01) The candidate criticized into his

opponent mercilessly.
first first

Synset(rip.v.04) The candidate ripped into his op-
ponent mercilessly.

Synset(barrage.v.01) The candidate admonished his
opponent mercilessly.

same same

Synset(criticize.v.01) The candidate criticized his op-
ponent mercilessly.

Synset(attack.v.02) The candidate scolded his oppo-
nent mercilessly.

second second

Table 2: Examples of sentence pairs in three experiments. The specific column denotes which sentence if more
specific, and the emotion column indicates which sentence is more emotional. Blue text is metaphor and red text is
literal. The three examples are metaphor vs. literal, metaphor vs. specific literal, and literal vs. more specific literal
respectively.

hyponym term of the literal expression and para-
phrase the origin sentence with the more specific
literal term to make up the more specific counter-
part. See line 3 in Table 2 for such a example
sentence pair. We invite the same three annotators
to tackle the emotion annotation, where annotators
have to decide which express is more emotional, or
choose the third option saying that both are simi-
larly emotional.

4 Results

4.1 Metaphor and Specificity

We obtain 114 valid metaphor-literal pairs in the
specificity experiment. 54 instances are invalid
because we find no common hypernym among
the metaphorical and literal terms in WordNet hi-
erarchy. Among all 114 valid cases, 78.9% of
metaphors are lower than their literal counterparts
in the WordNet hierarchy, which means they are
generally more specific. Only 5.2% of pairs show
the opposite result, which means the metaphors are
more general. 15.7% of metaphor-literal pairs are
at the same specificity level. So in summary, we
present a quantitative result that shows metaphors
are generally more specific than literal expressions.
Perhaps that is the reason why metaphors are be-
lieved giving more vivid descriptions.

4.2 Specificity and Emotional Impact

Metaphor Specificity and Emotion. Based on
both emotion and specificity labels of metaphor-
literal pairs, we measure the correlation between
these two dimensions. The results are shown in
Table 3. According to the table, we find that speci-
ficity can be a strong indicator of the emotional
impact. Among all 90 more specific metaphors,
91.1% of them express stronger emotion. From the
emotional dimension, 84.5% of metaphors that ex-
press stronger emotion are also more specific than
their literal counterparts.

Metaphors are .. more specific more general same
more emo. 82 (71.9%) 10 (8.7%) 5 (4.4%)
less/same emo. 8 (7.0%) 8 (7.0%) 1 (0.8%)

Table 3: When metaphors are more specific (general)
than literal expressions, will they be more (less) emo-
tional at the same time?

Metaphors are ... vs. Literal vs. Specific Literal
more emo. 143 (83.6%) 42 (40.0%, ↓ 43.6%)
less emo. 17 (9.9%) 23 (21.9%, ↑ 12.0%)
similarly emo. 11 (6.4%) 40 (38.1%, ↑ 31.7%)
Total 171 105

Table 4: Which is more emotional, metaphor or literal?
Comparisons made between metaphors vs. normal liter-
als and metaphors vs. more specific literals.

Metaphor and More Specific Literal. To in-
vestigate the extent to which specificity influences
the emotional impact of metaphors, we perform
an experiment to compare metaphors with general
literal expressions and literal expressions sharing
the same level of specificity with metaphors. We
construct 105 valid sentence pairs in total. We fail
to make up more because we cannot find a literal
synset with the same specificity of the metaphor
for those cases. The results are presented in Ta-
ble 4. The inner-annotator agreement (IAA) score
for emotion labelling is 0.77 via Krippendorff’s
alpha (Krippendorff, 2011). The first column of
the Table is obtained from MOH’s result. We find
that the superiority of metaphors in expressing sen-
timent drops significantly from 83.6% to 40.0%
when metaphors are compared to more specific lit-
eral expressions. In contrast, when metaphor-literal
pairs share the same specificity, the ratio of express-
ing similar emotional strength increases noticeably.
This results show that specificity is clearly a fac-
tor associating with emotional strength. However,
metaphors still tend to have more emotional im-
pact than more specific literal expressions. So we
believe there are more factors affecting sentiment
expressing ability despite specificity. We leave it
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# instances that are:
more specific is more emotional 32 (34.8%)
more general is more emotional 14 (15.2%)
similarly emotional 46 (50.0%)
Total 92

Table 5: Which is more emotional, literals or more
specific literals?

to future works.
Literal and More Specific Literal. To test
whether the more-specific mechanism also applies
to literal expressions, we compare literal expres-
sions with more specific literal ones. We construct
92 such sentence pairs in total. The IAA score of
emotion labelling in this experiment is 0.82. The
results are shown in Table 5, which illustrate that
more specific expressions do impose a stronger
emotional impact than more general ones. This
demonstrates that specificity can be a stronger in-
dicator in sentiment analysis in both figurative lan-
guage and literal language.
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Abstract

Conceptual metaphors represent a cognitive
mechanism to transfer knowledge structures
from one onto another domain. Image-
schematic conceptual metaphors (ISCMs) spe-
cialize on transferring sensorimotor experi-
ences to abstract domains. Natural language is
believed to provide evidence of such metaphors.
However, approaches to verify this hypothesis
largely rely on top-down methods, gathering ex-
amples by way of introspection, or on manual
corpus analyses. In order to contribute towards
a method that is systematic and can be repli-
cated, we propose to bring together existing
processing steps in a pipeline to detect ISCMs,
exemplified for the image schema SUPPORT
in the COVID-19 domain. This pipeline con-
sists of neural metaphor detection, dependency
parsing to uncover construction patterns, clus-
tering, and BERT-based frame annotation of
dependent constructions to analyze ISCMs.

1 Introduction

Building on the foundation of existing knowledge
to structure and explain new experiences is a com-
mon, well-known cognitive mechanism that, if
depicted as metaphorical projection, can be cap-
tured by conceptual metaphors. In the case of
image-schematic conceptual metaphors (ISCMs),
the structures being transferred are sensorimotor
patterns. Natural language is considered a source
of evidence for the existence of ISCMs, which
has mostly been investigated by a top-down ap-
proach of introspectively identifying examples (e.g.
Lakoff and Johnson (1999); Kovecses (2010)) or
a bottom-up approach of corpus analyses (e.g.
Bennett and Cialone (2014)). Automated ap-
proaches generally focus on detecting whether a
given sequence is metaphoric or not (Leong et al.,
2020) rather than identifying the specific type of
metaphor, with few exceptions (e.g. Dodge et al.
(2015)). However, effective computational tools
for metaphor analysis are important as they can

play a role in improving machine translation (Mao
et al., 2018) and in analyzing the usage and ef-
fect of metaphors, e.g. in political discourse (Prab-
hakaran et al., 2021) or literature (Freeman, 2002).
In this paper, we propose a pipeline, depicted in
Fig. 1, to automatically detect and identify ISCMs
exemplified for the image schema SUPPORT in an
English COVID-19 corpus. In contrast to introspec-
tive methods, the proposed pipeline promises to be
replicable, faster, less subjective and capable of
uncovering novel, previously unknown metaphors.

Extraction of
SUPPORT-
related
sentences,
Sec. 4.1

Divide into
metaphoric
and literal
sentences,
Sec. 4.2

Dependency
parsing and
construct
patterns,
Sec. 4.3

Topic-based
clustering
and frame
analysis,
Sec. 4.4

Identify image-
schematic concep-
tual metaphors for
SUPPORT, Sec. 5.4

Figure 1: Overview of the proposed ISCMs analysis
approach

Image schemas have been proposed by Lakoff
(1987) and Johnson (1987) as cognitive building
blocks to capture recurring sensorimotor interac-
tions with the physical world. These experien-
tial patterns are said to “reveal features of human
thought and language” (Oakley, 2007), since they
are mapped onto conceptual structures. ISCMs
map these experiential, conceptual structures to the
abstract domain. For instance, a person can phys-
ically lean on a concrete physical entity, e.g. a
table, which entails the person pressing their body
weight onto an entity that resists the push force.
This physical experience can be mapped onto the
abstract domain of emotional SUPPORT, such as in
He leans on his friends in these trying times.

Our approach relies on a series of steps to semi-
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automatically identify ISCMs in natural language:
(a) detect whether a sequence is metaphoric or
literal, (b) determine its constructional pattern,
(c) identify its associated topics, and (d) identify
its frames, from which we (e) derive underlying
metaphoric projections. We extract sentences from
the sample of The Coronavirus Corpus1 based on
seed words related to “support”. In order to explore
all metaphors related to SUPPORT, we decided to
chose a specific, abstract domain, i.e., COVID-19
due to its ongoing relevance, abstract nature and
importance to the society at large.

With this first approach to “drum up” SUPPORT

for image schemas, this paper contributes a system-
atic method for detecting and identifying ISCMs in
domain-specific natural language. To this end, con-
structional patterns uncover elements in a sentence
that interact with metaphoric seed words, which
are then frame annotated to provide evidence of
the metaphor type the sentence represents. Further-
more, we contribute to the analysis of conceptual
metaphors in natural language in general since the
pipeline can equally be applied to other types of
metaphors, image schemas and domains.

2 Preliminaries

Within the tradition of embodied cognition, physi-
cal experiences are said to shape higher-level cog-
nition, including natural language. For instance,
we learn as infants that some objects can support
our weight, such as a chair, while others cannot,
such as a flower. This physical support can then
be transferred in He leans on his friends in these
trying times to emotional assistance depicted by
the metaphor ASSISTANCE IS SUPPORT. The
proposed approach relies on theories of semantic
frames and image schemas, which we briefly intro-
duce.

2.1 Frames Semantics and Frames

Frame semantics (Fillmore, 1982) has been highly
influential in cognitive linguistics as it combines
linguistic sequences with knowledge structures to
describe cognitive phenomena. Words or phrases,
so-called lexical units, are associated with frames
based on the common scene they evoke or, as de-
scribed in FrameNet, their common situation types.
Fillmore explicitly compares frames to other no-
tions, such as experiential gestalts (Lakoff and
Johnson, 1980), stating that frames can refer to

1https://www.english-corpora.org/corona/

a coherent schematization of experience. Thus,
widely acknowledged frames provide a theoreti-
cally well-founded and practically validated basis
for detecting ISCMs in natural language sequences.
In fact, an initial yet uncompleted account of image
schemas on the highest level of FrameNet can be
found (Gangemi and Gromann, 2019). The bottle-
neck in utilizing frames is the low recall and pre-
cision of most existing automated tools to identify
frames in natural language, addressed in Section 4.

2.2 Image Schemas

Image schemas capture recurring sensorimotor ex-
periences as so-called gestalts (Johnson, 1987), i.e.,
structure compositions of parts forming a uniform
whole. Image schemas can either be static or dy-
namic (Lakoff and Núñez, 2000), where the for-
mer are classified as orientational (e.g. ABOVE),
topological (e.g. CONTACT), or force-dynamic
(e.g. SUPPORT). Image schemas are simple spa-
tial events built from spatial primitives (Mandler,
1992). The image schema SUPPORT is built from
CONTACT between two objects were one depends
on the other (Mandler, 1992; Besold et al., 2017).
CONTACT is defined as two objects physically
touching and only with force dynamics, i.e., appli-
cation or exertion of force, constitutes SUPPORT.

Herskovits (1987) proposes that an object sup-
ports another if its weight presses or pulls upon
it, where the supporting object resists the push or
pull force. Prototypically, one entity rests on a
horizontal upward-facing SURFACE of the other.
SUPPORT can also involve other topological prop-
erties (Herskovits, 1987): an object can be hanging
from, adhering to or being joined by nails, screws
or other devices with the supporting entity. Con-
ceptual metaphors are not merely a linguistic phe-
nomenon, but rather a cognitive mechanism that en-
ables the projection of recurring experiences onto
abstract domains and structures our subjective ex-
periences (Lakoff and Johnson, 1999). They can
be specialized to image-schematic metaphors (Hed-
blom et al., 2015), which transfer the skeletal struc-
ture of image schemas to abstract target domains.

3 Related Work

Metaphor detection is often framed as binary clas-
sification task, in which each word of a sen-
tence is either labeled as being used metaphori-
cally or literally. Tong et al. (2021) provide an
overview of architectures used for metaphor detec-
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tion, datasets, and other metaphor-related tasks.
Another overview (Rai and Chakraverty, 2020)
takes many different approaches to computational
metaphor processing into account, additionally, re-
flecting on the different theoretical and linguis-
tic views on the definition of metaphors. In a
recent shared task on metaphor detection, fine-
tuning pre-trained language models led to the best
results (Leong et al., 2020).

There is, moreover, a tradition of analyzing syn-
tactic patterns of metaphoric language (Sullivan,
2013), e.g. verb-prep-noun in which the verb rep-
resents the source domain and the noun the tar-
get domain. Such patterns build a core assump-
tion of various researchers with the goal of auto-
matically identifying source-to-target domain map-
pings. For instance, Shutova et al. (2017) explore
unsupervised methods for identifying clusters of
source and target concepts as well as the connec-
tions between them, limiting their approach to
verb–object/subject constructions. Dodge et al.
(2015) use multiple constructional patterns to find
metaphor candidates that are then further analyzed
by identifying evoked frames and checking their
relations in MetaNet. Rosen (2018) trains a feed-
forward neural network to predict one out of 77
source domains given a target domain referent and
dependencies from a contextual sentence deemed
as relevant. Compared to conceptual metaphors,
image schemas have received little attention from
computational linguists. Existing approaches to
extract image schemas include unsupervised clus-
tering (Gromann and Hedblom, 2017) and classi-
fying sentences with neural language models (Wa-
chowiak and Gromann, 2022). In terms of method
and domain, Wicke and Bolognesi (2020) extract
sentences from a COVID-19 corpus also based on
seed words and apply topic modeling to analyze the
frame WAR. A broader range of COVID-19-related
metaphors is considered by Semino (2021).

In contrast to previous work, we do not make
any assumptions about syntactic patterns or word
classes, but compute statistics on syntactic patterns
after we identify metaphoric language with a lan-
guage model.

4 Method

As shown in Fig. 1, in order to identify image-
schematic conceptual metaphors, we first compile
a list of seed words related to “support”, which
we use to extract sentences from an English cor-

pus on COVID-19. Each occurrence of a seed
word in the corpus is automatically annotated as
literal or metaphoric. With dependency parsing
the constructional pattern for each sentence with
metaphoric seed words are created. These patterns
are important to identify the elements directly re-
lated to metaphoric seed words, for which we then
obtain frame–semantic relations. The overall topic
of each sentence is analyzed by way of clustering
and frames and topics serve as a basis to identify
its conceptual metaphor.

4.1 Extraction of SUPPORT-Related Sentences

As a first step, we compile a list of seed words
related to SUPPORT by taking the top 100 words
related to “support” from relatedwords.org,
which bases its results on combined similarity met-
rics from resources such as ConceptNet and word
embeddings. Moreover, we add words related to
physical senses of “support” in WordNet synsets,
FrameNet frames, and MetaNet frames. Based
on these seed words, we extract sentences related
to the image schema SUPPORT from the publicly
available sample of The Coronavirus Corpus2 con-
sisting of 3.2 million words.

Seed words that entirely resulted in sentences
unrelated to senses of SUPPORT as defined in Sec-
tion 2.2 were excluded, e.g. “stomach” only related
to the body part and not the related verb or “brook”
could only be found in named entities, such as
Brook Park. The resulting list of seed words with
its count of sentences is provided in Section 5.1.

4.2 Automatic Metaphor Detection

Given the list of SUPPORT-related sentences, we
automatically labeled each word of a sentence as
literal or metaphoric. For this sub-task, we trained
a metaphor-detection model on the VU Amster-
dam Metaphor Corpus (Steen, 2010), which was
annotated at word-level according to the metaphor
identification protocol presented in the same paper.
Based on the success of large pre-trained language
models in a recent shared task on metaphor detec-
tion using the same corpus (Leong et al., 2020), we
used the multilingual pre-trained language model
XLM-RoBERTa (Conneau et al., 2020).

We trained the model with a learning rate of 2e-5
for eight epochs and loaded the model with the best
validation performance at the end. We used the
same train–test split as in the shared task and used

2https://www.corpusdata.org/formats.asp
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randomly allocated 10% of the training data for
validation. Code and model are publicly available3.

4.3 Dependency Parsing for Comparison of
Syntactic Structure

For each seed word, we investigated its syntactic
function and relation to other words in the sentence
by using the part-of-speech tagger and dependency
parser from Stanford’s neural NLP library Stanza
(Qi et al., 2020). We provide statistics on incoming
and outgoing relations to and from the seed words
in Table 1. We first identify all dependency rela-
tions to and from the seed words, and then remove
the relations with the following tags: cc, conj, fixed,
flat, list, parataxis, orphan, goeswith, reparandum,
punct, root, dep, aux, mark, det. They are consid-
ered as having no direct relevance for our purposes,
for instance, only indicating function or coordina-
tion words. Some seed words used as nouns only
have compound relations, with most of the syntac-
tic information being stored in the relations of the
compound word. Thus, we also extract the incom-
ing and outgoing relations of the words constituting
a compound together with the seed word. All ele-
ments identified in this step are then annotated with
frames to identify the conceptual metaphor.

4.4 Identifying Topics and Conceptual
Metaphors

We clustered the extracted sentences, allowing us
to group similar sentences semantically. With this
procedure, we quickly explore how SUPPORT is
used in a literal and metaphorical sense. We cre-
ated the clusters by using the BERTopic-library
(Grootendorst, 2022). BERTopic represents each
sentence using BERT-based sentence embeddings
(Reimers and Gurevych, 2019). In a second step, it
reduces the dimensionality using UMAP (McInnes
et al., 2018), before clustering the resulting data
points using the density-based hierarchical cluster-
ing algorithm HDBSCAN (McInnes et al., 2017).

Each sentence is automatically annotated with
semantic frames by utilizing BERT-for-FrameNet
(Minnema and Nissim, 2021) in its configuration
of only predicting frames and not jointly predict-
ing also semantic roles, relying on BERT layer 12.
Frames related to each seed word and its dependent
words or compounds are then manually analyzed
and compared. While most frame parsers experi-

3https://github.com/lwachowiak/Multilingual-M
etaphor-Detection

ence relatively low recall and precision, the BERT-
for-FrameNet model returned a considerably higher
number of frames than previous approaches. Nev-
ertheless, specific seed words were almost never
annotated, which could potentially be alleviated by
querying other resources, such as Wikidata. How-
ever, for this case study, we opted for analyzing the
frame-annotated sentences. The code and data for
our approach are publicly available4.

5 Results and Analysis

5.1 Extraction of SUPPORT-Related Sentences
Our final list of SUPPORT-related seed words and
their frequencies is:

advocacy (54), affirm (19), aid (315), as-
sist (242), assistance (331), back (2154),
back up (41), backbone (16), backing
(18), backup (17), base (906), bear (142),
bear out (2), bolster (37), boost (223),
brace (37), bracket (15), buttress (2),
commitment (191), corroborate (2), de-
fend (102), endorse (41), endorsement
(10), establish (250), financial backing
(2), financial support (51), foot (271),
help (2985), hold (1169), hold up (40),
lifeline (22), livelihood (92), maintain
(511), maintenance (95), patronage (5),
prop (23), prop up (16), reinforcement
(4), resource (563), sponsorship (10),
stand (508), subscribe (119), substanti-
ate (4), support (2317), supporter (104),
supportive (40), sustain (92), sustenance
(11), undercarriage (1), underpin (15),
unsupported (10), uphold (34).

5.2 Automatic Metaphor Detection
Our metaphor-detection model achieves an accu-
racy of 95% on the test set. For the label literal,
it achieves an F1 score of 0.97 with a precision of
0.96 and a recall of 0.98; and an F1 score of 0.76
for the label metaphoric with a precision of 0.82
of and a recall of 0.71. Its performance is, thus,
comparable with the best-performing model of the
2020 metaphor-detection task (Leong et al., 2020).

The frequency of seed words in each sentence
classified as metaphoric or literal is depicted in Fig.
2, which reveals that some seed words are more
regularly used in a metaphoric sense than others.
While words like “boost”, “maintain”, and “hold”

4https://github.com/lwachowiak/ISCMs/
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Figure 2: Seed words with over 75 samples ordered by how often they were used metaphorically

are used more than 70% of the time metaphorically,
“establish”, “livelihood”, or “subscribe” are used
less than 5% of the time metaphorically. These
labels and statistics give us a good indication of
which sentences to explore further in order to iden-
tify conceptual metaphors based on SUPPORT and
which sentences’ syntactic structure to investigate.

5.3 Dependency Parsing for Comparison of
Syntactic Structure

For each sentence, we compute a constructional
pattern centered on the seed word using depen-
dency parsing as described in Section 4.3. For
each pattern, we count how many seed words are
used metaphorically in that syntactic constellation.
Thus, the highest possible count for any pattern
is 52 — the number of seed words. Counting all
sentences per pattern would dip the statistics to-
wards frequent patterns for a specific seed word
that, however, is not necessarily an overall frequent
pattern. The resulting most frequent constructional
patterns grouped by word class of the seed word
and examples are shown in Table 1. Word classes
and dependency relations are presented in word
order and concatenated by an underscore. If the
dependency tag stands after the word class, it is
an incoming relation to the seed word, if after the
word class, it is an outgoing relation from the seed
word, e.g. verb_obj ⟨⟨noun⟩⟩ indicates the relation
obj going from the verb to the seed noun.

A variety of common patterns was detected for
both, verb and noun seed words, where the seed
words represent the source domain. The noun seed
words appear most frequently as the object of a
verb, with only one of the ten most common pat-

terns having the seed word as the subject. More-
over, five of the patterns contain a nominal modifier
relation. For verb seed words, the target domain
noun frequently occurs as object, frequently co-
occurring with a preceding noun or verb. Patterns
for adjective and adverb seed words are much rarer,
and we did not include those only occurring once.

5.4 Identifying Topics and Conceptual
Metaphors

For an exploration of the senses and themes of SUP-
PORT-related words used in the Coronavirus dis-
course, we conducted a cluster analysis of different
subsets of sentences. To obtain clusters of mostly
metaphorical sentences, we clustered all 2,322 sam-
ples based on the seed word “support” (76% la-
beled as metaphoric); to obtain clusters of mostly
literal sentences, we clustered all 2,988 samples
based on the seed word “help" (13% metaphoric).
BERTopic successfully clustered 1,288 sentences
with the seed word “support” and 1,442 sentences
with the seed word “help”, grouping the rest of
the sentences in a cluster of outliers. Fig. 3 and
4 show the two resulting cluster hierarchies, with
more similar clusters being iteratively grouped to-
gether. Each cluster can be identified by the three
words representing it best according to their Term
Frequency-Inverse Document Frequency (TF-IDF).
The TF-IDF value assumes each cluster to be a
document and offsets the frequency of a word by
the number of clusters containing the same word.

The results show that financial support is
one of the most common contexts in which
the seed word “support” is being used. A
sentence from the cluster 23_billion_package_

48



Table 1: The most common constructional patterns of metaphorical ⟨⟨seed words⟩⟩. Count indicates how many
unique seed words labeled as metaphoric appeared in such a pattern. Abbreviations: prep=preposition, adj=adjective,
noun=noun or noun phrase, ppr=personal pronoun, adv=adverb; acl=clausal modifier of noun, advcl=adverbial
clause modifier, amod=adjectival modifier, nmod=nominal modifier, nmod:poss=possessive nominal modifier,
nsubj=nominal subject, obj=object, obl=oblique nominal, xcmop=open clausal complement

Noun Seed Words
Dependency Pattern Language Example (order as in sentence) Count
verb_obj ⟨⟨noun⟩⟩ give a ⟨⟨lifeline⟩⟩ 12
noun_nmod case_prep ⟨⟨noun⟩⟩ nmod_noun supply on the ⟨⟨back⟩⟩ of demand 11
verb_obj ⟨⟨noun⟩⟩ nmod_noun form ⟨⟨backbone⟩⟩ (of) speech 10
verb_obj amod_adj ⟨⟨noun⟩⟩ (COVID-19 restrictions) won broad ⟨⟨support⟩⟩ 10
verb_obj nmod:poss_ppr ⟨⟨noun⟩⟩ (citizens) strengthen their (politicians) ⟨⟨backbones⟩⟩ 9
verb_obl case_prep ⟨⟨noun⟩⟩ put (the industry) on ⟨⟨hold⟩⟩ 9
⟨⟨noun⟩⟩ nmod_noun verb_nsubj ⟨⟨backing⟩⟩ (of a) brand becomes (invaluable) 8
verb_obl prep_case amod_adj ⟨⟨noun⟩⟩ (government needs to) get on the “front ⟨⟨foot⟩⟩” 7
⟨⟨noun⟩⟩ nmod_noun ⟨⟨boost⟩⟩ (to) economy 6
verb_obl case_prep ⟨⟨noun⟩⟩ nmod_noun go (ahead) on ⟨⟨foot⟩⟩ (of) advice 6

Verb Seed Words
acl_noun ⟨⟨verb⟩⟩ obl_noun team ⟨⟨standing⟩⟩ (on) the front lines (of the outbreak) 14
verb_xcomp ⟨⟨verb⟩⟩ obj_noun (war on corruption) continues to ⟨⟨bear⟩⟩ fruits 12
verb_advcl ⟨⟨verb⟩⟩ obj_noun cut (down on expenses) to ⟨⟨sustain⟩⟩ (these difficult) times 11
nsubj_noun ⟨⟨verb⟩⟩ obj_noun righteousness ⟨⟨upholds⟩⟩ (the) nation 10
acl_noun ⟨⟨verb⟩⟩ obj_noun evidence to ⟨⟨back⟩⟩ (this) fear 9
nsubj_noun ⟨⟨verb⟩⟩ obj_noun obl_noun businesses ⟨⟨bearing⟩⟩ the brunt (for) months 9
verb_ccomp nsubj_noun ⟨⟨verb⟩⟩ obj_noun ensure everyone ⟨⟨maintains⟩⟩ (stable) housing 9
nsubj_noun ⟨⟨verb⟩⟩ obj_noun authority ⟨⟨boosts⟩⟩ measures 8
njsub_noun ⟨⟨verb⟩⟩ obj_noun advcl_verb unit ⟨⟨held⟩⟩ a protest to reiterate (their demands) 8
xcomp_verb ⟨⟨verb⟩⟩ obl_noun to rebuild (our economy) ⟨⟨based⟩⟩ (on a green energy) future 8

Adjective and Adverb Seed Words
⟨⟨adj⟩⟩ amod_noun ⟨⟨unsupported⟩⟩ market 3

spending is for example 6bn of new funding to
support NHS. Some clusters revolve around finan-
cial, political, and other forms of support for spe-
cific groups: artists, football clubs, farmers, busi-
nesses, students, children, or journalists. A sample
from cluster 20, identified by the keywords “mu-
sic”, “artists”, and “great”, is simply the phrase
Support for Artists. Another interesting example
from the same cluster shows that support can also
go the other way around and music can take the
role of the support-giver: ... the songs they ’re
turning to right now for support, peace, hope, and
inspiration. Another type of support is life support
given in the context of COVID, such as in To leave
the ICU, Dr Monika said Mr Efendi must first be
taken off breathing support. All these examples are
covered by the already existing metaphors ASSIS-
TANCE IS SUPPORT and HELP IS SUPPORT in
MetaNet. However, the clusters give a more fine-
grained overview of what types of assistance and
help can be given, as well as who the supporting
and the supported entity are.

In comparison to “support”, the seed word “help”
is used in more diverse contexts in this corpus, re-
sulting in a larger number of clusters. As before,
different groups can be identified as giver and re-

ceiver of help, e.g. journalists as in If you can
help us, please click the button to ensure we can
continue to provide quality independent journalism
you can trust. “Help” is used in a literal way and
does not evoke the physical SUPPORT frame. How-
ever, in many sentences “help” could be replaced
with “support” without changing the meaning of
the sentence other than adding a metaphoric sense.

To more closely investigate the types of
metaphors, all elements dependency-related to
metaphoric seed words were automatically anno-
tated with frames utilizing BERT-for-FrameNet.
These frames provide insights into the potential
type of metaphor of SUPPORT-related words and
were counted once per seed word. Fig. 5 shows the
top 14 most frequent frames. From the metaphori-
cally labelled seed words, only 45% were provided
with a frame, where the 1,429 examples of “back”
and a surprisingly large 1,345 variations of “sup-
port” (including supportive, unsupported, etc.) re-
mained without a frame. Nevertheless, an overall
picture of types of frames related to SUPPORT can
be obtained as shown in Fig. 5.

Besides the typical frames related to ASSIS-
TANCE IS SUPPORT, Fig. 5 shows the interesting
case of BODY PARTS as in get back on their feet
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Figure 3: Clusters of sentences containing the word
“support’. Clusters have a unique ID, followed by the
words representing the cluster based on TF-IDF values.

and be on the front foot in the sense of being at
an advantage. Adapting MetaNet metaphors, this
could be interpreted as RECOVERY IS BODILY
SUPPORT since get back on their feet means recov-
ery, while nimble on their feet indicates endanger-
ment. The orientation here is important since the
front foot and best foot forward represent an advan-
tage and the back foot puts one at a disadvantage,
which collocates this metaphor with PROGRESS
IS FORWARD MOTION. The expression drag-
ging their feet, annotated with the frame MANIP-
ULATION, relates it to a lack of support by body
parts, i.e., MANIPULATION IS LACK OF BOD-
ILY SUPPORT.

The frame TAKING SIDES is mostly related to
“support” and “back” as in backing the campaign
and requires one person to metaphorically push or
pull the weight of one side, so TAKING SIDES IS
SUPPORT. For SELF MOTION the most frequent
contender is “step”, where similar to “foot” forward
is progress, e.g. people have stepped forward for
this, and backwards or away is withdrawal of sup-
port, e.g. he backed away from calling for a quar-
antine. Thus, a specialization of the PROGRESS
IS FORWARD MOTION could be PROGRESS
IS SUPPORT BY SELF MOTION, which can be
backed by examples of the frames SELF MOTION
as well as BODY PARTS, e.g. put our best foot
forward. The frame COMPLIANCE mostly re-
lates to abide, but provides interesting cases for

Figure 4: Clusters of sentences containing the seed word
“help”. Clusters have a unique ID, followed by the words
representing the cluster based on TF-IDF values.

Figure 5: Frequent frames associated with seed words

“upholding” as in upholding the rule of law which
indicates COMPLIANCE IS SUPPORT, since up-
holding in its literal sense to keep elevated requires
the pulling of weight. One highly frequent frame in
terms of occurrence across sentences that, however,
only occurs with the two seed words “step” and
“boost” is CAUSE CHANGE OF POSITION ON
A SCALE. For instance, in the sentence of He will
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step down as CEO it is collocated with ACTIV-
ITY STOP leading to ACTIVITY STOP CAUSES
CHANGE OF POSITION ON A SCALE. The seed
word “bear” is frequently annotated with TOLER-
ATING as in patients bear the pain, indicating that
TOLERATING IS SUPPORT.

This frame annotation step provides an excellent
method for analyzing the (lack of) semantic rich-
ness of seed words, e.g. “aid” always relates to AS-
SISTANCE and “abide” always to COMPLIANCE.
In contrast, the seed word “hold” relates to 13 dif-
ferent frames. While not all meanings of all seed
words directly relate to ISCMs of SUPPORT, the
above examples show that this method can still fa-
cilitate their exploration. Nevertheless, with a rep-
resentative amount of human-curated data, a more
rigorous evaluation can be foreseen, also taking
other sources of metaphoric and image-schematic
information into account. In any case, the final for-
mulation of ISCMs will most likely always benefit
from human refinement.

6 Discussion and Conclusion

In this paper, we presented a method to semi-
automatically explore image-schematic conceptual
metaphors, their related topics and constructional
patterns in natural language. A pipeline returns
syntactic patterns, thematic clusters, and frames
for seed words related to a specific image schema.
This approach enables the analysis of how the im-
age schema SUPPORT is used within the context
of COVID-19 in a more systematic and compre-
hensive way than possible with introspective meth-
ods. Besides detecting examples of well-known
metaphors, it allowed us to uncover new metaphors,
e.g. RECOVERY IS BODILY SUPPORT. To this
end, building constructional patterns in a bottom-up
manner without prior assumptions was important.
In terms of topics, a wide variety of supporters and
support recipients could be detected.

To apply the same method to other image
schemas, a set of related seed words would need
to be compiled as input to the method. For in-
stance, a seed word list for the image schema CON-
TAINMENT could include words such as “inside”,
“boundary”, or “vessel”. One drawback of this seed
word approach is that polysemy in the sense of mul-
tiple literal or even metaphoric meanings of a seed
words is not explicitly considered. Nevertheless,
given that no repositories of ISCMs exist and repos-
itories on conceptual metaphors, such as MetaNet,

contain a limited number of natural language ex-
amples or ISCMs, this semi-automated approach
is an important step forward to drum up support of
ISCMs.

As a knowledge extraction approach rooted in
cognitive science, a natural next step would be to
explore the taxonomic structures of frames pro-
vided by MetaNet, FrameNet or similar resources
to query interdependencies between and relations
among ISCMs. Furthermore, existing semantic re-
sources, such as DBpedia and Wikidata, should be
utilized to increase the number of annotated frames.

Currently, this approach heavily relies on recent
advances of methods in computational linguistics
brought together in a pipeline. Errors of one step
are then propagated to the next. From the set of
analysis steps, the metaphor detection performed
best. The part-of-speech tags assigned in the pro-
cess of dependency parsing are highly problematic
for specific seed words, such as “back” that is fre-
quently mistagged as noun or adverb when used
as verb, negatively affecting the obtained depen-
dency relations and constructional patterns. An-
other shortcoming is that the clustering method
groups many samples into a cluster of outliers. The
number of identified outliers, however, is so large
that valuable information is inevitably lost, and
only a subpart of the semantic topics is represented
in the results. For the frame parsing, the return of
frames per sentence was considerably higher than
with similar approaches (as also reported in (Min-
nema and Nissim, 2021)), however, the number of
frames for seed words was less than half of the
overall count of sentences. Very short, heading-
like sequences that lack context were generally not
frame-annotated at all, e.g. standing in line for
essentials. This reinforces the need to supplement
frame parsing with other processes and resources.

To improve the pipeline and reduce the amount
of manual labor required, it would be beneficial to
be able to automatically label the target domains
for which a specific image schema is used — a
step that currently is mostly done manually with
the resulting frames and clusters, due to the lack of
frame coverage. In order to automatically identify
the target domain, we plan to train a sequence-to-
sequence model, e.g. T5 (Raffel et al., 2019), to
predict the target domain given a source domain
and a contextualizing sentence. For instance, the
sample SUPPORT: He leans on his friends in these
trying times should be labeled as ASSISTANCE.
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Abstract

We compare sequential fine-tuning with a
model for multi-task learning in the context
where we are interested in boosting perfor-
mance on two tasks, one of which depends
on the other. We test these models on the
FigLang2022 shared task which requires partic-
ipants to predict language inference labels on
figurative language along with corresponding
textual explanations of the inference predic-
tions. Our results show that while sequential
multi-task learning can be tuned to be good at
the first of two target tasks, it performs less
well on the second and additionally struggles
with overfitting. Our findings show that simple
sequential fine-tuning of text-to-text models is
an extraordinarily powerful method for cross-
task knowledge transfer while simultaneously
predicting multiple interdependent targets. So
much so, that our best model achieved the (tied)
highest score on the task1.

1 Introduction and Motivation

The transfer of information between supervised
learning objectives can be achieved in Pre-trained
Language Models (PLMs) using either multi-task
learning (MTL) (Caruana, 1997) or sequential fine-
tuning (SFT) (Phang et al., 2018). MTL involves
simultaneously training a model on multiple learn-
ing objectives using a weighted sum of their loss,
while SFT involves sequentially training on a set
of related tasks. Recent work has extended the
SFT approach by converting all NLP problems into
text-to-text (i.e., sequence-to-sequence where both
input and output sequences are natural text) prob-
lems (Raffel et al., 2019). The resultant model –
T5 – has achieved state-of-the-art results on a vari-

*Equal Contribution
1To ensure reproducibility and to enable other researchers

to build upon our work, we make our code and mod-
els freely available at https://github.com/Rachneet/
cross-task-figurative-explanations

ety of tasks such as question answering, sentiment
analysis, and, most relevant to this work, Natural
Language Inference (NLI).

In this work, we focus our efforts on the trans-
fer of information from multiple related tasks for
improved performance on a different set of tasks.
In addition, we compare the effectiveness of SFT
with that of MTL in a context where one of the
target tasks is dependent on the other. Given the
dependence of one of the target tasks on the other,
we implement an end-to-end multi-task learning
model to perform each of the tasks sequentially:
an architecture referred to as a hierarchical feature
pipeline based MTL architecture (HiFeatMTL, for
short) (Chen et al., 2021). While HiFeatMTL has
been previously used in different contexts (see Sec-
tion 3), it has, to the best of our knowledge, not
been used with, or compared to, text-to-text mod-
els. This is of particular importance as such mod-
els are known to enable transfer learning (Raffel
et al., 2019) and it is crucial to determine if tradi-
tional MTL methods can boost cross-task knowl-
edge transfer in such models.

Specifically we participate in the FigLang2022
Shared Task2, which extends NLI to include a
figurative-language hypothesis and additionally re-
quires participants to output a textual explanation
(also see Section 2). FigLang2022 is ideally suited
for the exploration of knowledge transfer, as PLMs
have been shown to struggle with figurative lan-
guage and so any gains achieved are a result of
knowledge transfer. For example, Liu et al. (2022)
show that in the zero- and few-shot settings, PLMs
perform significantly worse than humans. This is
especially the case with idioms (Yu and Ettinger,
2020; Tayyar Madabushi et al., 2021), on which
T5 does particularly poorly (see Section 4). Addi-
tionally, FigLang2022’s emphasis on explanations
of the predicted labels provides us with the oppor-

2https://figlang2022sharedtask.github.io/
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tunity to test cross-task knowledge transfer in a
setting where one target task depends on the other
(HiFeatMTL) – this is especially so given the eval-
uation methods used (detailed in Section 2).

We evaluate the effectiveness of boosting per-
formance on the target tasks through the transfer
of information from two related tasks: a) eSNLI,
which is a dataset consisting of explanations asso-
ciated with NLI labels, and b) IMPLI, which is an
NLI dataset (without explanations) that contains
figurative language. More concretely, we set out to
answer the following research questions:

1. Can distinct task-specific knowledge be trans-
ferred from separate tasks so as to improve
performance on a target task? Concretely, can
we transfer explanations of literal language
from eSNLI and figurative NLI without expla-
nations from IMPLI?

2. Which of the two knowledge transfer tech-
niques (SFT or HiFeatMTL) is more effective
in the text-to-text context?

2 The FigLang2022 Shared Task

FigLang2022 is a variation of the NLI task which
requires the generation of a textual explanation for
the NLI prediction. Additionally, the hypothesis
is a sentence that employs one of four kinds of
figurative expressions: sarcasm, simile, idiom, or
metaphor. Additionally, a hypothesis can be a cre-
ative paraphrase, which rewords the premise using
more expressive, literal terminology. Table 1 shows
examples from the task dataset.

Entailment
Premise I respectfully disagree.
Hypothesis I beg to differ. (Idiom)
Explanation To beg to differ is to disagree

with someone, and in this
sentence the speaker is
respectfully disagreeing.

Contradiction
Premise She was calm.
Hypothesis She was like a kitten in a den

of coyotes. (Simile)
Explanation A kitten in a den of coyotes

would be scared and not calm.

Table 1: An entailment and contradiction pair from the
FigLang2022 dataset.

FigLang2022 takes into consideration the qual-
ity of the generated explanation when assessing
the model’s performance by use of an explanation
score, which is the average between BERTScore
and BLEURT and ranges between 0 and 100. The

task leaderboard is based on NLI label accuracy at
an explanation score threshold of 60, although the
NLI label accuracy is reported at three thresholds
of the explanation score (i.e. 0, 50, and 60) so as
to provide a glimpse of how the model’s NLI and
explanation abilities are influenced by each other.

3 Related Work

NLI is considered central to the task of Natural
Language Understanding, and there has been sig-
nificant focus on the development of models that
can perform well on the task (Wang et al., 2018).
This task of language inference has been indepen-
dently extended to incorporate explanations (Cam-
buru et al., 2018) and figurative language (Stowe
et al., 2022) (both detailed below). Chakrabarty
et al. (2022) introduced FLUTE, the Figurative
Language Understanding and Textual Explanations
dataset which brought together these two aspects.

Previous shared tasks involving figurative lan-
guage focused on the identification or represen-
tation of figurative knowledge: For example,
FigLang2020 (Klebanov et al., 2020) and Task
6 of SemEval 2022 (Abu Farha et al., 2022) in-
volved sarcasm detection, and Task 2 of SemEval
2022 (Tayyar Madabushi et al., 2022) involved the
identification and representation of idioms.

The generation of textual explanations necessi-
tates the use of generative models such as BART
(Lewis et al., 2020) or T5 (Raffel et al., 2019).
Narang et al. (2020) introduce WT5, a sequence-to-
sequence model that outputs natural-text explana-
tions alongside its predictions and Erliksson et al.
(2021) found T5 to consistently outperform BART
in explanation generation.

Of specific relevance to our work are the IM-
PLI (Stowe et al., 2022) and eSNLI (Camburu et al.,
2018) datasets. IMPLI links a figurative sentence,
specifically idiomatic or metaphoric, to a literal
counterpart, with the NLI relation being either en-
tailment or non-entailment. Stowe et al. (2022)
show that idioms are difficult for models to han-
dle, particularly in non-entailment relations. The
eSNLI dataset (Camburu et al., 2018) is an explana-
tion dataset for general NLI. It extends the Stanford
Natural Language Inference dataset (Bowman et al.,
2015) with human-generated text explanations.

Hierarchical feature pipeline based MTL archi-
tectures (HiFeatMTL) use the outputs of one task
as a feature in the next and are distinct from hier-
archical signal pipeline architectures wherein the
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outputs are used indirectly (e.g., their probabili-
ties) (Chen et al., 2021). HiFeatMTL has previ-
ously been used variously (Fei et al., 2019; Gong
et al., 2019; Song et al., 2020), including, for exam-
ple, to provide PoS and other syntactic information
to relatedness prediction, the output of which is, in
addition to the syntactic features, passed to an en-
tailment task (Hashimoto et al., 2017) (see also the
survey by Chen et al. (2021)). To the best of our
knowledge, this is the first work to use HiFeatMTL
with, and to compare against, text-to-text models
and their ability to transfer knowledge across tasks.

4 Methods

We set out to answer the research questions in Sec-
tion 1 by evaluating the effectiveness of SFT and
HiFeatMTL on the transfer of task-specific knowl-
edge from separate tasks, namely, explanations
from eSNLI and figurative language from IMPLI.
We use T5 for all our experiments as it has been
shown to be effective in explanation generation (Er-
liksson et al., 2021). We run all our hyperparameter
optimisation and model variations using T5-base
(evaluated on a development split consisting of 10%
of the training data) before then transferring over
the best performing settings to T5 large (trained on
all of the training data) which is used to make pre-
dictions on the test set. While we find this method
adequate in finding a good set of hyperparame-
ters, the best setting for a smaller model need not
necessarily be a good setting for larger models, es-
pecially given that some capabilities emerge only
in larger models (Wei et al., 2022).

4.1 Exploratory Experiments

The first phase of our experiments was dedicated to
using our development split to determining the best
hyperparameters for T5, specifically the learning
rate, and the number of beams, the two parame-
ters that we found T5 to be extremely sensitive to.
We do not experiment with prompt optimisation,
but rather our prompts are based on what T5 was
trained on (See listing 1).

S o u r c e _ t e x t :
f i g u r a t i v e h y p o t h e s i s : < h y p o t h e s i s > p r e m i s e :

< premise >
t a r g e t _ t e x t :

< l a b e l > e x p l a n a t i o n : < e x p l a n a t i o n >

Listing 1: Our default prompt used for T5.

An additional consideration of this initial phase
was whether it was more effective to independently
perform the task of NLI before subsequently gener-

ating explanations. However, we find that incorpo-
rating the gold inference labels does not improve
the quality of explanations generated.

Knowledge Transfer To determine those forms
of figurative language that T5 finds challenging
and how effective knowledge transfer is, we test
T5 fine-tuned just on FigLang2022, and sequen-
tially on IMPLI followed by FigLang2022. The
results of these experiments are presented in Table
2, which correspond to the observations made by
Stowe et al. (2022) that idioms are particularly chal-
lenging for NLI models. Crucially, we find that the
performance of the model does improve when first
trained on IMPLI, thus establishing that knowledge
transfer is possible in T5 through SFT.

Type FigLang IMPLI → FigLang
Metaphor 81.97 83.61 (+ 2.0%)
Simile 65.38 66.92 (+ 1.5%)
Idioms 72.50 78.13 (+ 6.0%)
Creative Paraphrase 98.36 98.36
Sarcasm 100 99.54 (- 0.5% )

Table 2: T5 performance (acc) on the various labels of
FigLang2022, before and after training on IMPLI.

Importantly, we found that training for more
epochs on the IMPLI dataset led to improved infer-
ence label accuracy but led to poorer explanations,
which suggests knowledge transfer as oppsed to,
for example, the advantage of additional training
data. Since we were more interested in transferring
figurative information from IMPLI, we optimise on
Acc@0 (label accuracy) when training on IMPLI
and Acc@60 (the evaluation metric relevant to the
task) when training on the final FigLang dataset.

4.2 Experimental Setup
Training Regime In establishing the most ef-
fective method of knowledge transfer, we com-
pare SFT with HiFeatMTL trained on: a) FigLang,
b) eSNLI → FigLang, c) IMPLI → FigLang, d)
eSNLI → IMPLI → FigLang, and e) IMPLI →
eSNLI → FigLang. The training sets of both
eSNLI and IMPLI are truncated to the same length
as that of FigLang to ensure that the model does
not over-fit on those other tasks.

4.3 Sequential Fine-Tuning
In SFT, we fine-tune the model on each of the rel-
evant datasets in sequence. When training on the
IMPLI dataset, which does not have associated ex-
planations, we use the same prompt (Listing 1) but
with no associated explanation. The number of
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training epochs is established based on the change
in loss on the development set and was found to be
3 for IMPLI and 10 for the other two datasets.

4.4 Multi-Task Learning
We experiment with a hierarchical feature pipeline
for multi-task learning as the output inference label
is likely to be important in generating the explana-
tion. This involved creating an end-to-end model
wherein, during the forward pass, T5 is used to
predict the inference labels based on the hypothesis
and the premise. This label, in addition to the hy-
pothesis and premise are then used as input to T5
to generate an explanation. During the backward
pass, the overall loss of the model is calculated as
the weighted sum of the loss associated with each
of the two steps above. Importantly, the weights
of the T5 model used in the two steps are shared.
Figure 1 provides an illustration.

Figure 1: Our HiFeatMTL architecture. Note that we do
not use GPT in our experiments, although it is possible
to use GPT in place of T5.

As in the case of SFT, we fine-tune the model
on each of the relevant datasets in sequence. When
training on the FigLang dataset, we found it ef-
fective to train the model twice: fist with a higher
weight to the loss associated with the inference
(90%) and a second time with a higher weight to the
loss associated with explanations (also 90%). Due
to the summing of losses, we found that the model
loss was not a good indicator of overfitting and
instead determined the number of training epochs
experimentally (10 for all datasets).

5 Results and Discussion

Table 3 shows the full shared task results from
the CodaLab leaderboard3 as of the competition’s

3Our CodaLab submissions appear under the name
“rachneet”: https://codalab.lisn.upsaclay.fr/
competitions/5908

end date of 20 Aug, 2022. Our results (Team
UKPChefs) are highlighted in bold.

Rank Team Name Acc@0 Acc@50 Acc@60
*1st UKPChefs 0.925 0.869 0.633
*1st TeamCoolDoge 0.947 0.889 0.633
2nd vund 0.936 0.865 0.607
3rd hoho5702 0.911 0.854 0.548
4th yklal95 0.847 0.779 0.517
5th tuhinnlp 0.443 0.443 0.443
6th peratham.bkk 0.590 0.203 0.033

Shared Task Baseline 0.817 0.748 0.483

Table 3: Shared task results from all teams (ours –
UKPChefs – in bold). Asterisks represent tied results.

The results of our experiments using SFT and
HiFeatMTL are presented in Table 4. The results
on the development set and those on the test set
are not directly comparable: not only do we use
different models, we also train on all the complete
training data before evaluating on the test set. The
drop in performance of the HiFeatMTL model on
the test set on Acc@60, which consistently outper-
forming SFT on Acc@0 across both the develop-
ment and the test sets is surprising. This seems to
indicate that HiFeatMTL, while an effective way
of boosting performance on the earlier of multiple
dependent objectives, seems to be less effective on
subsequent tasks (in this case, explanation genera-
tion). Additionally, HiFeatMTL also seems prone
to overfitting, as the FigLang test set introduced
novel idioms and similes previously unseen in the
training set, into the test set.

While the gain in accuracy when using the addi-
tional datasets could be due to the corresponding
addition of training data, it should be noted that
IMPLI does not have explanations and eSNLI con-
tains no figurative language. As such, the improved
scores indicate the transfer of figurative informa-
tion from one task (IMPLI) and explanation gener-
ation capabilities from another (eSNLI).

As such, in addressing the research questions,
our results indicate that: a) distinct task-specific
knowledge (i.e. explanations or figurative lan-
guage) can indeed be transferred from separate
tasks so as to improve performance on a target task,
and b) SFT seems to be a more effective way of
transferring knowledge across tasks when we are
concerned with the latter of a sequence of tasks (as
in this case), while HiFeatMTL seems effective in
boosting the performance of the first.
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Dataset 1 Dataset 2 Dataset 3 Acc@0 Acc@50 Acc@60
Dev Test Dev Test Dev Test

SF
T

FigLang - - 84.99 93.27 78.49 87.80 56.18 61.74
eSNLI FigLang - 86.06 92.67 80.74 87.20 57.77 63.27
IMPLI FigLang - 86.59 93.20 80.74 87.33 56.97 60.93
eSNLI IMPLI FigLang 86.32 92.47 80.08 86.87 58.17 63.33
IMPLI eSNLI FigLang 84.99 92.73 79.42 87.33 55.38 62.00

H
iF

ea
tM

T
L FigLang - - 91.24 94.67 82.07 86.54 55.11 55.13

eSNLI FigLang - 91.50 94.14 82.07 86.40 55.91 53.80
IMPLI FigLang - 89.50 N/A 81.27 N/A 55.78 N/A
eSNLI IMPLI FigLang 90.97 94.54 80.35 85.94 53.92 54.27
IMPLI eSNLI FigLang 89.37 N/A 80.34 N/A 53.52 N/A

Shared Task Baseline - 81.70 - 74.80 - 48.30

Table 4: Results of the SFT and HiFeatMTL models on the development and test splits of the FigLang2022 task.
Experiments on the dev set were performed using T5-Base and those on the test set on T5-Large trained on the
complete training set. Results marked N/A were not obtained due to the limits on the number of submissions.

6 Knowledge Transfer vs Bias

Recent works on NLI have shown that for some
datasets, models are able to correctly predict the
label using only the hypothesis, without consid-
ering the premise (Glockner et al., 2018; Guru-
rangan et al., 2018; McCoy et al., 2019). This is
caused by the model exploiting spurious correla-
tions or patterns in the data, rather than acquiring
task-relevant knowledge. As such, we wish to anal-
yse if this is the case with our models: namely,
whether our models employ figurative language
knowledge from the hypothesis when predicting
NLI labels.

We perform the following experiments using T5
large on our validation set: we train only the hy-
pothesis, only on the premise, and compare these
results with a model trained on both (the standard
training regime). The results (Table 5) indicate that,
while the model can achieve reasonable accuracy
while relying solely on the hypothesis, the signif-
icant improvement in accuracy (on both Acc@0
and Acc@60) when considering both the hypoth-
esis and the premise indicates that, to a certain
extent, the model is using knowledge of figurative
language to predict the NLI labels and correspond-
ing explanations.

Setting Acc@0 Acc@50 Acc@60
Regular 92.16 87.92 66.14
Hyp-Only 65.47 60.96 45.95
Prem-Only 56.31 47.81 33.74

Table 5: T5-large performance on the FigLang dataset
with either the hypothesis or premise removed.

7 Conclusions and Future work

In this work we set out to establish the possibility of
effectively transferring knowledge across tasks in

the context where we are interested in boosting the
performance of two dependent tasks. As such, we
evaluate the effectiveness of SFT and HiFeatMTL
for transferring distinct task-specific knowledge
from different tasks and find that both of these
methods are good at achieving this: SFT on the
last task and HiFeatMTL on the first. We find that
using SFT to transfer information across tasks is,
in this instance, so effective that we are ranked first
on the FigLang 2022 task.

In extending this work, we intend to test
these methods on a variety of sequentially
dependent tasks as well as incorporating the
use of more efficient MTL methods including
AdapterFusion (Pfeiffer et al., 2021) and Adap-
terDrop (Rücklé et al., 2021).
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Limitations

This work only deals with English, and since En-
glish makes up a majority of the training data for
PLMs, performance may drop across other lan-
guages. Additionally, we only address figurative
language within the context of the NLI task, and
thus do not make broader claims about our model’s
ability to handle figurative language, to generate
explanations or generalise across other generative
models. This also extends to the comparisons be-
tween models that we present.

Model Explanations This work is involved in
the generation of explanations associated with lan-
guage inference predictions. Importantly, there is
no guarantee (and very unlikely) that the gener-
ated explanations are indeed faithful to the process
of predicting inference labels (also see Jacovi and
Goldberg (2020)).

Carbon Footprint All initial experiments are
performed on smaller models and the best perform-
ing model architectures and parameters are trans-
ferred over to larger models to minimise the carbon
footprint of our experiments. Despite this, the use
of large language models does contribute to the
climate crisis.
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Abstract

This paper describes our two-stage system1 for
the Euphemism Detection shared task hosted
by the 3rd Workshop on Figurative Language
Processing in conjunction with EMNLP 2022.
Euphemisms tone down expressions about sen-
sitive or unpleasant issues like addiction and
death. The ambiguous nature of euphemistic
words or expressions makes it challenging to
detect their actual meaning within a context. In
the first stage, we seek to mitigate this ambi-
guity by incorporating literal descriptions into
input text prompts to our baseline model. It
turns out that this kind of direct supervision
yields remarkable performance improvement.
In the second stage, we integrate visual super-
vision into our system using visual imageries,
two sets of images generated by a text-to-image
model by taking terms and descriptions as in-
put. Our experiments demonstrate that visual
supervision also gives a statistically significant
performance boost. Our system achieved the
second place with an F1 score of 87.2%, only
about 0.9% worse than the best submission.

1 Introduction

Recent advances in large pretrained language mod-
els allowed the computational linguistics com-
munity to tackle more knowledge-intensive tasks
which require commonsense reasoning (Talmor
et al., 2019; Bisk et al., 2020; Lin et al., 2021),
and figurative language understanding (Pedinotti
et al., 2021; Liu et al., 2022). In this work, we
focus on a figurative language understanding task
called euphemism detection. Euphemisms attempt
to smooth harsh, impolite, or blunt expressions
about taboo or sensitive topics like death and un-
employment (Holder, 2008). For instance, when
we speak of older people we often refer to senior
citizens instead of a direct expression that can be
seen as offensive.

1Code is available at github.com/ilkerkesen/euphemism

Identifying euphemisms is challenging due to
their natural ambiguity, i.e., the meaning of the
term shifts depending on the context: ‘Over the
hill’ could either mean someone or something is
physically over some hill (literal), or someone or
something is old, past one’s prime (figurative) (Lee
et al., 2022). One cannot distinguish these two
different senses without sufficient context. Thus,
these terms are referred as potentially euphemistic
terms (PETs) (Gavidia et al., 2022). Here, we pro-
pose a two-stage method for the Euphemism De-
tection shared task hosted by the 3rd Workshop on
Figurative Language Processing at EMNLP 2022.

In the first stage, we manually collect literal de-
scriptions for each PET. We then incorporate these
descriptions into input text prompts to help the
model distinguish figurative from literal usage. We
demonstrate that this kind of extraneous linguis-
tic supervision improves a strong baseline by a
large margin. In the second stage, we attempt to
answer the question, “Is visual supervision also
useful to infer the meaning behind a PET?” To
answer this question, we use a text-to-image model
which takes terms and descriptions as input, and we
generate two sets of images, which we denote as
visual imageries. Our experiments show that using
visual imagery provides the best results. A paired
t-test points out that the improvement is statistically
significant. Our qualitative analysis also suggests
visual imageries are beneficial for analyzing PETs.

The rest of this paper is organized as follows.
Section 2 describes our proposed solution. In Sec-
tion 3, we share the details of our evaluation setup
and design choices. Section 4 reports our experi-
mental results. In Section 5, we briefly review the
relevant literature. Section 6 outlines our conclu-
sions and discuss the limitations of our approach.

2 Approach

In this section, we first formulate the euphemism
detection task by describing a simple baseline
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model, and then explain how we extend it with
the literal term descriptions and visual imagery.

2.1 Vanilla Baseline
Given a textual context C with a potentially eu-
phemistic term (PET) T , the aim of euphemism
detection is to decide whether the candidate term
T is euphemistic (y = 1) or not (y = 0). Here, we
only pick a sentence S = [w1, w2, ..., wn] which
contains a candidate term T , and ignore the rest of
the context C at first. We use a pretrained language
model LM as our initial baseline as below.

ei = EMBED(wi),
ŷ =

{
1 p̂ ≥ 0.5,

0 otherwise.p̂ = LM(e1, e2, ..., en),

ei denotes the word embedding of the ith token wi,
p̂ is the probability that the candidate term T is eu-
phemistic, and ŷ is the predicted label. EMBED is
the embedding layer and LM denotes the language
model that produces the probability p̂.

2.2 Literal Descriptions
We extend the baseline model by supplying extra
supervision with literal descriptions D for each
candidate term T (which we collect manually). To
make use of the literal descriptions, we create a tex-
tual prompt X = [x1, x2, ..., xn] for each sentence
S, term T and description D as below.

X = [Term: T, Description: D, Sentence: S].

Then, we change the formulation,

ei = EMBED(xi)

p̂ = LM(e1, e2, ..., en),

where ei is the embedding for the ith token of the
input prompt X .

2.3 Visual Imagery
We subsequently move beyond the text-only base-
lines by integrating visual modality into the Lit-
eral Descriptions baseline in the form of visual
imagery. To accomplish this, we generate two
sets of images IT = [I

(1)
T , I

(2)
T , ..., I

(k)
T ] and ID =

[I
(1)
D , I

(2)
D , ..., I

(k)
D ], for each term and description

pair, respectively. We denote these set of images
as visual imageries. To obtain the visual imageries,
we feed a text-to-image model T2I with terms and
descriptions as input language,

I
(k)
T ∼ T2I(T ), I

(k)
D ∼ T2I(D).

Next, we use a pretrained visual encoder (VE)
to embed visual imageries.

vT =
1

K

K∑

k=1

VE(I(k)T ), vD =
1

K

K∑

k=1

VE(I(k)D )

where vT denotes the visual imagery embedding
of the candidate term T and vD denotes the visual
imagery embedding of the corresponding literal
description D. K is the number of images per term
T and description D. Thus, we reformulate the
literal descriptions baseline as follows,

ei = EMBED(xi)

p̂ = LM(fp(vT ), fp(vD), e1, e2, ..., en)

We make sure visual imagery embeddings are com-
patible with the word embeddings and language
model LM by applying a linear projection layer
fp. We train each baseline using the negative log-
likelihood objective.

3 Data and Implementation

Data. The euphemism detection dataset consists
of two separate splits for training and testing pur-
poses with 1573 and 394 examples, respectively.
The test split is unlabeled. The whole data includes
131 different PETs. Since there is no data sup-
plied for validation, we reserve 20% of the training
data for this purpose. We only select the sentences
with PETs and remove repetitive patterns of punc-
tuation "@ @ @ ..." to decrease computational
requirements by shortening the input language. We
manually collect literal descriptions within 6 hours,
and try to avoid impolite expressions like insults or
slang phrases.

Implementation. We use DeBERTa-v3 base and
large as our language model (He et al., 2021a,b).
We generate the visual imageries IT and ID
by using an open-source DALL-E implementa-
tion (Ramesh et al., 2021; Dayma et al., 2021).2

The number of images per visual imagery K is set
to 9. We extract visual imagery embeddings vT and
vD using CLIP’s ViT-L/14 as our visual encoder
(Radford et al., 2021). fp is a single linear layer,
and we randomly initialize its weights. We use
Adam optimizer with weight decay (Kingma and
Ba, 2015; Loshchilov and Hutter, 2018). The learn-
ing rate is set to 5e−6 and 3e−6 for the experiments

2https://github.com/kuprel/min-dalle
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Model LM validation test

Vanilla Baseline Base 79.84 ±2.23 -
+ Desc. Base 86.39 ±1.05 83.58
+ Desc. Large 88.89 ±1.35 85.74
+ Desc. + Imag. Large 90.11 ±1.59 87.16

Table 1: Quantitative results on the labeled data using F1
as evaluation metric. The last two columns respectively
show the average score over different validation splits,
and the ensemble performance achieved on the test split.

with DeBERTa-v3-base and DeBERTa-v3-large, re-
spectively. We train our models for a maximum
of 50 epochs using Tesla V100s and mixed preci-
sion. A typical experiment takes less than one hour
with a batch size of 16. Due to the small dataset
size, we perform multiple experiments and reserve
a different portion of the labeled data for validation
in each experiment. We report mean and standard
deviation over all experiments, and use ensembling
to evaluate our system on the test set.

4 Experimental Analysis

4.1 Quantitative Results

Table 1 presents the quantitative results of our ex-
periments as ablation studies. We perform several
experiments in a curriculum, where each following
experiment activates a different feature (e.g. literal
descriptions). We first implement a vanilla baseline
using DeBERTa-v3-base, which lacks descriptions
and imagery.
Using Literal Descriptions. In our first ablative
analysis, we incorporate the literal term descrip-
tions into the vanilla baseline described in Section
2.2. Integrating this supervision results in substan-
tial performance improvement, i.e. ≈ 6.5 points
using F1 as evaluation metric.
Larger Language Model. We implement the lit-
eral descriptions model using a larger language
model which is the large architecture of the
DeBERTa-v3 model. Using a bigger LM gives
2 points performance improvement.
Visual Imagery. We now report on the visual im-
agery model explained in Section 2.3. This model
additionally uses two different visual embedding
vectors, denoted as visual imageries, which are gen-
erated by a text-to-image model using terms and
descriptions. By using this extra visual supervision,
we obtain 1.22 and 1.42 F1 score increments in val-
idation and testing phases. A paired t-test is applied

to determine the significance of the results: We ob-
tained a p-value of 0.032, which points out that this
improvement is statistically significant (p<0.05).

4.2 Qualitative Analysis

Figure 1 wraps up our qualitative analysis, where
we share the collected descriptions and the gener-
ated visual imageries for some euphemistic terms.
The first two examples show that if a term has a
dominant literal meaning, the text-to-image V2I
model produces images conveying the literal mean-
ing instead of the figurative one. V2I can also pro-
duce visuals based upon individual word meanings
as a consequence of being completely unconscious
to the figurative meaning. This can be seen on the
third example, where the model generates lunch
images instead of vomiting for phrase ‘lose one’s
lunch’. Moreover, V2I can generate unrelated im-
ages for some terms as one can see on the pro-life
and able-body examples. On the other hand, the
text-to-image model V2I is well aware of some eu-
phemism candidates as in the case with the last two
examples. This phenomenon arises when the term
has just one single meaning which is euphemistic.

In summary, a text-to-image model can be a com-
plementary tool for analyzing figurative language:
one can observe how models process these expres-
sions. By looking at the produced images, we can
recognize the terms with dominant literal mean-
ings (e.g. late) or single euphemistic meaning (e.g.
lavatory).

5 Related Work

Euphemisms. Recently, euphemisms have at-
tracted the attention of the natural language pro-
cessing community. Zhu et al. (2021) and Zhu and
Bhat (2021) extract euphemistic phrases by using
masked language modeling. A few work practices
sentiment-oriented methods to recognize candidate
euphemism phrases (Felt and Riloff, 2020; Gavidia
et al., 2022; Lee et al., 2022). Most notably, Ga-
vidia et al. (2022) replace PETs with their literal
meanings and observe how the sentiment scores
change. They demonstrate that using literal mean-
ings produces higher scores for offensive speech
and negative sentiment. Similarly, we also put lit-
eral meanings to use, but differently, by creating a
textual input prompt. In this work, we also use the
euphemism dataset they created.
Knowledge-augmented Language Understand-
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Term Description IT ID

late old person,
elderly

pass on death, dying

lose one’s
lunch

vomit,
vomiting,
throwing up

pro-life
a person
opposes
abortion

able-
body not disabled

lavatory restroom,
toilet

senior
citizen

old person,
elderly

Figure 1: Examples of collected literal descriptions for
euphemistic terms and their visual imageries.

ing. External knowledge3 can be either unstruc-
tured (i.e. text) or structured (i.e. graph). To
benefit from unstructured knowledge, a text re-
triever collects related entries from an external
corpus (Karpukhin et al., 2020; Guu et al., 2020).
Conversely, structured knowledge integration may
happen in two ways: explicit methods prefer to
use knowledge in their input (Weijie Liu, 2020;
Zhang et al., 2019), and implicit methods try to
learn knowledge in their objective (Xiong et al.,
2019; Shen et al., 2020). Some exceptions (Yu

3Please check Zhu et al. (2022) for a comprehensive review
of the related literature.

et al., 2022a; Shangwen Lv and Hu, 2020) com-
bines both: they learn to predict graph embeddings
and use these embeddings as input in their model
concurrently. Similar to us, Yu et al. (2022b); Xu
et al. (2021); Chakrabarty et al. (2021) also insert
descriptions into their textual inputs.
Visually-aided Language Understanding. Sev-
eral methods have been proposed to aid language
learning with external visual knowledge. Most of
these methods experiment on machine translation
(MT). Calixto et al. (2019) propose a latent variable
model for multi-modal MT, to learn an association
between an image and its target language descrip-
tion. Long et al. (2021); Li et al. (2022) first synthe-
size an image conditioned on the source sentence,
then use both the source sentence and the synthe-
sized image to produce translation. Caglayan et al.
(2020) obtain a lower latency in simultaneous MT
by supplying visual context. Differently, Vokeniza-
tion (Tan and Bansal, 2020) extend BERT (Devlin
et al., 2019) by implementing visual token predic-
tion objective to learn a mapping between tokens
and associated images. Most relevantly, Lu et al.
(2022) improve text-only language understanding
performance in low-resource settings by using gen-
erated imagination as visual supervision.

6 Conclusion

In this paper, we described our two-stage method
for the euphemism detection task. We first col-
lected literal descriptions for PETs, inserted these
descriptions into the model input, and showed that
such linguistic supervision greatly boosts perfor-
mance. We then supplied extra visual supervi-
sion using a text-to-image model, where we de-
note this kind of supervision as visual imageries.
We achieved a statistically significant performance
increase by using visual imageries in addition to
the term descriptions. Our qualitative analysis on
visual imageries also suggests that a text-to-image
model can be a functional tool to break down how
models interpret figures of speech.
Limitations. Due to working with a small-scale
dataset, we were able to manually collect descrip-
tions for the PETs. Collecting these descriptions
using an automatic retrieval system would be more
sophisticated. We also did not perform a detailed
analyses of the results, which could help shed light
on the contribution of each model component.
Acknowledgements. This work was supported in
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Abstract

Novelty or surprise is a fundamental attribute
of creative output. As such, we postulate that a
writer’s creative use of language leads to word
choices and, more importantly, corresponding
semantic structures that are unexpected for the
reader. In this paper we investigate measures of
surprise that rely solely on word distributions
computed by language models and show em-
pirically that creative language such as humor
and metaphor is strongly correlated with sur-
prise. Surprisingly at first, information content
is observed to be at least as good a predictor of
creative language as any of the surprise mea-
sures investigated. However, the best prediction
performance is obtained when information and
surprise measures are combined, showing that
surprise measures capture an aspect of creative
language that goes beyond information content.

1 Introduction

Language is used primarily as a means for commu-
nicating information. It is thus appropriate that in-
formation theory (Shannon, 1948) has provided the
foundation for numerous studies into properties of
natural language, as in (Shannon, 1951; Hale, 2001;
Piantadosi et al., 2011; Gibson, 2019), among many
others. Under the information theory framework,
a communication channel is posited between the
speaker and the listener, and correspondingly the
goal of the speaker is to employ the channel as
efficiently as possible while also minimizing the
risk of miscommunication. Maximizing the use
of the communication channel is achieved when
speakers choose their words such that their infor-
mation rate is close to the channel capacity, which
can be seen as determining speakers to construct ut-
terances such that information is spread uniformly
across them. This is known as the Uniform Infor-
mation Density (UID) hypothesis (Fenk and Fenk-
Oczlon, 1980; Jaeger and Levy, 2006), operational-
ized as a tendency for regression towards the mean

Figure 1: Creative language detection requires as input
not only the Text (T), but also the Reader (LM).

information content across the language (Meister
et al., 2021). The UID hypothesis can explain a
variety of linguistic phenomena, such as the op-
tional omission of syntactic relativizers (Jaeger and
Levy, 2006), or the shortened phonetic duration of
highly predictable language units (Aylett and Turk,
2004). UID has also been construed to imply that
speakers avoid producing words with an informa-
tion content1 that is too high or too low (Meister
et al., 2022) relative to the expected information
rate of the channel, or the entire language. While
this holds true for most communicative uses of lan-
guage, there are at least two types of situations
when words have an information content much
higher than expected, as illustrated in Figure 1.

First, there is the case when the listener has no
clear expectation of what the speaker will utter next,
such as when introducing a new discourse entity
through a definite or indefinite article, especially at
the beginning of a story when not much context is
available. In this case, the next word distribution
has a high entropy, all words have a relatively low
probability, hence high information content. The
word ’sun’ in the sentence2 shown in Figure 1 is
in this category. Second, there are situations when
language is used in creative ways, when speakers
deliberately produce words or phrases that are in-
teresting or unexpected, often with the purpose of
inducing particular kinds of emotion in the listener,
as is the case with the word ’glides’ in Figure 1.
In this paper, we aim to characterize such creative
use of language solely through distribution-based

1Computed as negative log of word probability− log p(x).
2First line in a poem by Tomas Tranströmer.
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measures that are designed to discriminate creative
language from normal language. In both situations
discussed above the information content is high,
therefore, at least theoretically, information content
alone is not sufficient to discriminate between the
two. As such, we propose that surprise be used
as the main discriminating factor. We emphasize
that determining whether an input text exhibits cre-
ativity or surprise requires specifying a reference
reader, as shown in the example from Figure 1,
which distinguishes the task explored in this paper
from related tasks such as humor detection or figu-
rative language classification, where novelty with
respect to a reference reader is not a concern.

2 Definitions and Measures of Surprise

The ability to produce surprising outputs is a cor-
nerstone of creativity, which in turn is widely con-
sidered to be an essential component of intelligent
behavior (Boden, 1991). Surprise is a powerful
driver for creativity and discovery. As such, sur-
prise has been used to guide search algorithms in
models of computational creativity and discovery
(Yannakakis and Liapis, 2016). Owing to its im-
portance for the creative process, surprise has also
become one of the core criteria for the evaluation of
creative artifacts (Maher et al., 2013). As reviewed
in (Itti and Baldi, 2009), surprise is an essential con-
cept in many studies on the neural basis of behavior,
with surprising stimuli shown to be strong attrac-
tors of attention. Surprise, or violation of expecta-
tion, has also been hypothesized to be an essential
mechanism through which music and stories elicit
emotion. According to (Meyer, 1961), the principal
emotional content of music arises from the com-
poser’s manipulation of expectation. Composers
build expectations in time, which then they pur-
posely violate in order to elicit tension, prediction,
reaction, and appraisal responses (Huron, 2008).
In text and narratives, surprise can be employed
with substantial emotional impact at multiple lev-
els, spanning from word-level, as in "Elon Musk
has just blasted the world ’s most powerful rocket
into landfill" where the original word "space" was
purposely replaced with "landfill" for humorous
effect, to story-level, as in the various types of plot
twists that are used to draw the reader emotionally
in the story, e.g. peripeteia or deux ex machina.

In this section, we attempt to characterize word-
level surprise using probability distributions com-
puted by language models. We first consider a

number of measures of surprise in the context of
a general probability distribution p over an event
space X , followed by more specialized surprise
measures that are targeted to the special case of
X being a language vocabulary. As such, we are
interested in measuring how surprising the occur-
rence of an event x ∈ X is for the audience p.
An event x is improbable if its probability p(x) is
very small. Since improbable events are rare, it
is tempting to consider the occurrence of an im-
probable event as being surprising. Weaver (1948)
pondered on whether low probability implies sur-
prise, "an improbable event is often interesting. But
is an improbable event always interesting?", and
concluded "we shall see that it is not", providing
a simple, prototypical example in which improba-
ble events are intuitively not surprising: a uniform
distribution over an event space that has a large
cardinality, as in dealing off a single bridge hand of
thirteen cards from a shuffled pack of cards. There
are more than 635 billion configurations of thirteen
cards, all equally likely. Whatever bridge hand is
dealt, although its probability is very small, it will
not be, or feel, surprising. "Any hand that occurs is
simply one out of a number of exactly equally likely
events, some one of which was bound to happen".
What makes an event interesting or surprising is not
that its probability is small in an absolute sense, it
is that it is small in comparison to the probabilities
of the other alternative events.

Weaver’s insight is also in agreement with the
interpretation of "surprise as violation of expecta-
tion", which is hypothesized to be a major factor
underlying emotion in music (Meyer, 1961). In this
context, the term expectation refers to the kind that
is engineered by composers in their music or by
writers in their stories. Informally, a strong expec-
tation is created when one or more potential out-
comes are much more likely than other outcomes.
More formally, an expectation regarding a random
variable x is created when, prior to its value being
observed, its context h makes a potential outcome
x = j more likely than other outcomes, as mea-
sured through the probability p(x = j|h). Upon
observing outcome x = k, we call it surprising
if it confounds the expectation of seeing outcome
x = j, i.e. p(x = k|h) ≪ p(x = j|h). Like in
Weaver’s argument above, the relative likelihood
requirement for creating expectations immediately
rules out uniform distributions.

The intuitive lack of surprise when observing
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events sampled from a uniform distribution makes
Shannon’s surprisal inadequate as a measure of
surprise. It is thus important that the notion of sur-
prise is not equated with surprisal. The surprisal
of an event x is an information-theoretic quantity
defined as the negative log probability of x, i.e.
− log p(x). Since surprisal is based solely on the
event probability, monotonically decreasing with
it, using surprisal to model surprise has the same
conceptual deficiency as saying that rare events
are surprising, as originally observed by Weaver
(1948). Henceforth, to avoid confusion, we will
refer to − log p(x) as the information content of x.

2.1 Quantifying Surprise

In this section, we describe a number of measures
of surprise that are meant to capture the notion of
small relative probability associated with surprising
events. These measures are summarized in Table 1.

One of the first measures of surprise was the
surprise index λ1 proposed by Weaver (1948):

λ1(p, x) =
E[p]

p(x)
(1)

Weaver’s surprise index is multiplicative: if X
and Y are independent with distributions p and
q, then the surprise index of the joint event [x, y] is
λ1(pq, [x, y]) = λ1(p, x)λ1(q, y).

Observing that the numerator E[p] with which
p(x) is compared is somewhat arbitrary, Good
(1956) generalized Weaver’s surprise index to the
following multiplicative (λc) and additive (Λc) ver-
sions, for c > 0:

λc(p, x) =
(E[pc])1/c

p(x)
(2)

Λc(p, x) = log λc(p, x) (3)

Of all possible values for c, Good recommended
as the most natural λ0 and λ1, together with their
logarithmic versions Λ0 and Λ1, respectively:

λ1(p, x) =
E[p]

p(x)
(4)

Λ1(p, x) = logE[p]− log p(x) (5)

λ0(p, x) =
exp(E[log p])

p(x)
(6)

Λ0(p, x) = E[log p]− log p(x) (7)

The additive measure Λ0 is appealing because it
can be interpreted in information theoretic terms

as the difference between the Shannon informa-
tion content I(p, x) = − log p(x) and the Shannon
entropy H(p):

Λ0(p, x) = − log p(x)− E[− log p] (8)

= I(p, x)−H(p) (9)

Howard (2009) observes that Weaver’s index can be

written as λ1(p, x) = E

[
p

p(x)

]
, whereas Good’s

index can be written as the mean of the log of the

same variable, i.e. Λ0(p, x) = E

[
log

p

p(x)

]
.

Observing that additive surprise indexes like Λ0

more easily exceed a given value when the dimen-
sionality is increased, Good (1988) advocated for
using the tail-area probability as a surprise mea-
sure:

t(p, x) =
∑

x′:p(x′)≤p(x)

p(x′) (10)

However, the tail-area does not necessarily select
outcomes that occur with small relative probability,
for example when there are n alternative outcomes
with slightly different probabilities that are all close
to 1/n. Howard (2009) points out that this behavior
is connected to the fact that tail-area is not continu-
ous in the outcome probabilities p(x) and proposes
a new measure of surprise called s-value:

sv(p, x) = 1−
∑

x′
min(p(x′), p(x)) (11)

= 1− [t(p, x) + nx · p(x)] (12)

where nx is the number of discrete outcomes with
probability greater than p(x). The s-value is con-
tinuous in p(x) and, unlike the tail-area, selects for
outcomes that conform with the basic intuition of
small relative probability. It is equivalent with the
probability mass contained in the area under the
pdf curve that is above the p(x) level.

If we use the term expectation with its psycho-
logical meaning of anticipation of an occurrence
that may take place in future, a number of alterna-
tive definitions of surprise quantify the gap between
the psychological expectation of a future event, i.e.
the probability of the most likely event mp, and its
realization, i.e. the probability of the actual event
x that happened. Correspondingly, the Expectation
Realization (ER) gap can be defined as:

ψ(p, x) = Expectation − Realization

= max
x′

p(x′)− p(x)

= p(mp)− p(x) (13)
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Name Formula Unit
Good’s surprise index Λ0(p, x) = − log p(x)−H(p) Information (bits)
Howard’s s-value sv(p, x) = 1−

∑

x′
min(p(x′), p(x)) Probability mass

Mode ER gap Ψm(p, x) = − log p(x) + log p(mp) Information (bits)
Core ER gap ΨC(p, x) = − log p(x) + log p(Cp) Information (bits)

Table 1: Selected measures of surprise that capture the notion of small relative probability.

where mp = argmax
x

p(x) is the largest mode of

the distribution p, i.e. the expected, most likely
outcome. Similar to Weaver and Good’s surprise
indexes, one can define a multiplicative version:

ψ(p, x) = Expectation/Realization

= p(mp)/p(x) (14)

as well as an additive version:

Ψm(p, x) = logExpectation − logRealization

= log p(mp)− log p(x)

= I(p, x)− I(p,mp) (15)

The ER measures for surprise are continuous in
p(x) and conform to the basic intuition of a sur-
prising event having a small relative probability.
We note that the simple ER gap from 14 has been
previously proposed by Macedo et al. (2004), who
found it to correlate well with human ratings of
surprise. We prefer the additive version from 15
due to its information theoretic interpretation.

The measures of surprise proposed so far are
summarized in the top 3 rows of Table 1. The mea-
sures were selected based on their properties, as
follows: Good’s surprise index and the Mode ER
gap for their information-theoretic interpretation,
and Howard’s s-value for its probability mass in-
terpretation. Of the 3 measures, the s-value and
the mode ER gap also have the desirable property
that they are non-negative for any outcome x, and
become zero when x is the most likely outcome.

2.1.1 The Core Expectation Realization Gap
In this paper, we estimate surprise using the proba-
bility distribution computed by a language model.
However, this creates a mismatch between the lex-
ical level used to support the distribution and the
semantic level that was used to annotate the creative
examples. Most often, creativity implies surprise
in terms of meaning, not necessarily in terms of the
particular words chosen to express that meaning.
Thus, the use of lexical distributions to estimate

semantic surprise can lead to poor estimates of sur-
prise in cases where a strong semantic expectation
can be expressed with a large number of words.
For example, to determine that "Congressmen" is
surprising in the metaphor "an infestation of [Con-
gressmen]", it is not sufficient that the realization
x = "Congressmen" in the context "an infestation
of x" has a low probability. We also need a mea-
sure that tells us there is a strong expectation for
what x is anticipated to be in the phrase "an infes-
tation of x". In this example, the expectation is
especially strong in terms of the semantic category
of x, i.e. the reader strongly expects to see an in-
stance from the PESTS category. Because this is a
large category, there is a large set of words that can
be reasonably expected in this context, resulting in
a weak word-level expectation. Hence, the mode
of the distribution used by the ER gap Ψm will
not have a sufficiently high probability to make the
Ψm pass a surprise threshold. The partition of the
category expectation into many small word-level
expectations leads to an increase in entropy, which
adversely affects Good’s surprise index Λ0 as well.

For lack of an effective LM-based approach to
compute probability distributions over semantic
spaces, we designed an alternative version of the
ER gap measure called Core ER gap, where the
largest mode of the distribution mp is replaced
with the Core of the distribution Cp, comprising all
the events x ∈ X whose probability passes a pre-
defined threshold, i.e. Cp = {x ∈ X|p(x) > τ}.
By appropriately setting the lower bound τ , we ex-
pect to capture in the core Cp all words belonging
to the most expected semantic categories in a given
context. Due to its information theoretic interpreta-
tion, we consider only the additive version:

ΨC(p, x) = logExpectation − logRealization

= log p(Cp)− log p(x)

= I(p, x)− I(p, Cp) (16)

This version of the new Core ER gap measure is
listed at the bottom of Table 1.
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3 Datasets of Creative Language

We built two datasets of creative language exam-
ples: a HUMOR dataset and a METAPHOR dataset.
The humor examples were extracted from the Hu-
microedit dataset (Hossain et al., 2019), which con-
sists of regular English news headlines paired with
versions of the same headlines that contain simple
replacement edits designed to make them funny.
Each funny headline was scored by five judges, re-
sulting in a curated dataset of over 15,000 headline
pairs. As positive examples for humor, we ran-
domly selected 400 examples from a subset of the
humorous headlines that were originally created
using single-word replacements and that had an
average annotator score of 1.8 or higher. The pos-
itive examples for metaphor were extracted from
the English section of the LCC Metaphor dataset
(Mohler et al., 2016) where the average annotator
rating was 3.0 or above and where the source field
of the metaphor was a single word. Furthermore,
as explained below, we further applied a filtering
step designed to preserve only metaphors that are
novel to the language model, leaving a total of 268
positive examples of metaphor.

While a metaphor may appear creative to a per-
son hearing it for the first time, it will sound com-
pletely unoriginal to a listener who has heard it and
used it so many times that it has become part of
their normal use of language. Similarly, a line that
triggered laughter upon its first utterance, when
repeated multiple times will normally get a smile
at best from an audience already habituated to it.
Therefore, it is important that creativity be deter-
mined with reference to a listener’s experience. In
general, judgements of creativity require specify-
ing a reference model, e.g. the listener, the reader,
or the audience, consuming the output produced
by the speaker, the writer, or the composer, respec-
tively. Consequently, based on the premise that
creativity requires novelty, building an evaluation
dataset annotated with creative uses of language
requires fixing a reference reader and ensuring that
examples annotated as creative are 1) novel for this
reader and 2) evaluated with respect to the same
reader. Since the proposed measures of surprise
will necessitate access to the reader’s contextual
word distributions, in this paper we set the refer-
ence reader to be a generic reader whose knowledge
of language is modeled by a large language model
(LM), such as BERT (Devlin et al., 2019) if both
the left and the right context of a word are used, or

OPT (Zhang et al., 2022) if only using the previous
discourse as context. Given that BERT was trained
on the BooksCorpus and English Wikipedia, it is
safe to assume that its pre-training data was not con-
taminated with any of the humorous headlines from
Humicroedit, and therefore the humorous headlines
appear novel to the reader modeled by BERT. How-
ever, we cannot say the same for the metaphor
examples, as many of them are commonly used
and likely to be found in BERT’s pre-training cor-
pus, e.g. "floating ideas", "deep understanding",
"stealing dreams", "crushing insurgencies", "leap
of faith", "seeds of discontent", to list just a few. To
ensure that the metaphor examples included in the
dataset are novel with respect to the reader mod-
eled by BERT, since we did not have access to the
exact pre-training data, we devised a conservative
filtering where the base metaphor phrases were fil-
tered out if a Google search returned less than 25
documents containing the phrase or its variations.
For example, given the annotated metaphor "the
bureaucracy barrier", we removed the article and
also searched for "bureaucratic barrier" and "bar-
rier of bureaucracy". Furthermore, we removed
examples where the source word is repeated in the
sentence context, as in "this [prison]s is the prison
of [poverty]t".

In terms of negative examples, for humor we
used the 400 original titles corresponding to the
400 humorous examples. We further augmented
these negative examples with nouns (as tagged by
NLTK’s POS tagger) selected at random from news
articles downloaded from the CNN website in July
2022, such that the number of positive examples
represents 10% of the total number of examples in
each dataset. Regular news articles are expected to
use regular language, without novel humor or novel
metaphors. This is not to say the news articles do
not contain metaphors, but when that happens they
are metaphors that are commonly used and thus un-
surprising for a generic reader. To summarize, the
label distribution in the two datasets is as follows:

1. The Humor dataset, 4000 examples:

(a) 400 positive examples, one-word substi-
tution in news headlines that made them
humorous, extracted from examples in
the Humicroedit dataset with high inter-
annotator agreement.

(b) 400 negative examples, using the substi-
tuted word from the original titles used
in the 400 positive examples above.
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(c) 3200 negative examples, using random
content words from CNN news articles.

2. The Metaphor dataset, 3760 eamples:

(a) 268 positive examples, the annotated
one-word source domain field of
metaphors from the LCC Metaphor
dataset that had high inter-annotator
agreement and were rare on the internet.

(b) 2412 negative examples, a subset of the
3200 selected at 1.(c) above.

The imbalanced label distribution was meant to ad-
dress the fact that instances of creative language
are relatively rare, although the exact proportion
in general is hard to estimate due to the fact that
certain types of text, e.g. poetry, are expected to
be substantially more creative than other types, e.g.
news articles. We note that the labels in the re-
sulting dataset are likely to be noisy: metaphors
that we annotated as creative, even though uncom-
mon ad litteram on the internet, may still have been
present in the LM’s pre-training data in a differ-
ent form, such as using a synonym for any of the
words in the expression. Furthermore, it is pos-
sible that the CNN news articles included in the
dataset contain instances of creative language, al-
beit very few. Overall though, it is expected that a
good measure of surprise would show substantial
discriminative power between the soft positive vs.
soft negative examples in this dataset. Hardening
the dataset would require the development of feasi-
ble annotation guidelines for determining whether
the reference LM (the reference reader) has been
exposed (through its pre-training data) to any given
expression, and then going over each example and
using the annotation criteria to determine the label.

4 Experimental Evaluation

All the distribution-based measures of surprise eval-
uated in this section were calculated using the prob-
ability distributions computed by the BERT Large
model (cased) available on the HuggingFace web-
site3. This is done by taking the word that is labeled
in the dataset, masking it, and asking BERT to out-
put the token distribution at the masked position,
using a context size of 15 tokens to the left and to
the right. Due to the WordPiece subword tokeniza-
tion used by BERT, sometimes the word that need
to be labeled is split into multiple tokens, where the

3https://huggingface.co/bert-large-cased

first token is distinguished from the continuation to-
kens using the double hashtags ’##’, as for example
’disrespect’ = ’di’ + ’##s’ + ’##res’ + ’##pect’. In
these cases, we use the probability of the first token
as a proxy for the probability of the entire word –
preliminary experiments where the simple product
or the geometric mean of all the token probabilities
were used did not show a significant difference in
the results, likely due to the fact that continuation
tokens often receive a very high probability.

A starting assumption in these experiments is
that the input text is well formed, e.g. it does not
contain ungrammatical phrases or typos. While
we recognize that real text may contain ill formed
language that could be incorrectly detected as sur-
prising by the various surprise measures proposed
in this paper, we do not consider this to pose a
significant challenge as such text could be feasibly
detected and filtered out using current state-of-the-
art NLP tools. Furthermore, a simple way to filter
out ill formed language and typos is to ignore to-
kens that belong to the tail of the LM distribution,
a procedure that we will investigate in future work.

The support of the raw LM distribution is mod-
ified to exclude continuation tokens, non-content
words, and punctuation symbols for the reasons ex-
plained below, after which the probabilities of the
remaining tokens are renormalized so that their to-
tal probability mass is still 1. Continuation tokens
sometimes receive a high probability at the masked
position. For example, in the annotated metaphor
"[tax]t [sorcery]s is a mystery to me", when the
source word "sorcery" is masked the continuation
token "##ation" receives the highest probability,
corresponding to the reasonable completion "tax-
ation is a mistery to me". Since the masked word
cannot be continuation in our task, all continua-
tion tokens are eliminated from the distribution
support. Depending on the context, non-content
words such as determiners and prepositions may
receive a high probability at the masked position,
as for example in the metaphor text "we had our
own little electoral “irregularities” down here in
Portsmouth’s First Ward, where we suffer from
[constipated]s [democracy]t". Determiners such
as ’a’ or ’the’ receive a relatively high probability
for occurring at the masked position for the source
field. Since metaphors and one-word humorous
word substitutions are content words, we remove
non-content words from the distribution support.
Punctuation symbols may also receive a relatively
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creative Humor creative Metaphor

Measures P R F1 F1m AuC P R F1 F1m AuC

Random baseline 10.0 50.0 16.7 – – 10.0 50.0 16.7 – –

All positive baseline 10.0 100.0 18.2 – – 10.0 100.0 18.2 – –

Information content I(p, x) 32.0 86.5 46.7 50.3 46.2 27.6 79.2 40.8 47.8 38.2

Good’s surprise index Λ0(p, x) 28.2 73.5 40.7 45.2 39.4 27.8 75.6 40.5 47.3 33.8

Howard’s s-value sv(p, x) 22.5 85.3 35.5 43.9 38.1 21.9 85.9 34.8 47.3 34.3

Mode ER gap Ψm(p, x) 30.7 82.5 44.7 48.6 44.1 27.8 78.7 41.0 47.6 35.9

Core ER gap ΨC(p, x) 31.6 85.8 46.2 49.8 45.6 27.8 79.2 41.1 48.1 38.3

Info ∧ Entropy [I(p, x), H(p)] 32.7 87.8 47.6 53.4 47.4 27.4 80.8 40.8 47.7 37.2

Info ∧Mode Info [I(p, x), I(p,mp)] 31.7 86.3 46.4 52.7 46.4 27.6 80.0 40.9 47.8 37.9

Info ∧ Core Info [I(p, x), I(p, Cp)] 33.0 88.3 48.0 53.2 49.3 27.7 79.5 41.0 48.1 38.2

Info ∧ Entropy ∧Mode Info ∧ Core Info 33.4 88.0 48.4 53.6 49.5 29.8 82.7 43.6 53.1 42.3

Contextual Embeddings + 2-layer FCN 80.3 89.8 84.5 87.1 91.2 93.7 94.1 93.7 95.1 95.6

Table 2: Results from comparative evaluation of surprise measures on detecting creative use of language.

high probability in some contexts, as such they
are excluded as well from the distribution support.
In the metaphor example "communism thrives on
an empty stomach and [democracy]t [relaxes]s on
a full one", symbols such as commas ’,’ and the
dashes ’–’ are predicted with a high probability at
the masked source position.

4.1 Quantifying Discriminative Power

To estimate the discriminative power of the various
surprise measures, we use them as input features
for a simple binary binary logistic regression model.
During training of this linear classifier, given the
imbalanced label distribution, positive examples
are given 9 times the weight of negative examples
in the cross-entropy cost function. Evaluation is
done in a 10-fold setting, where each dataset is
shuffled and partitioned into 10 equally-sized folds,
then 9 folds are used as training and the remaining
fold as testing. This training-testing procedure is re-
peated 10 times so that test results are obtained for
each fold. Care was taken to ensure that test folds
are not contaminated with information from train-
ing. Thus, metaphor examples that had the same
target word were always placed in the same fold.
The original title and the humorous title obtained
by one-word substitution were also always placed
in the same fold. Precision (P), recall (R), and F1-
measure are computed by pooling results across
the 10 folds. Furthermore, by varying a threshold
over the probabilistic output of the classifier, we
create precision vs. recall graphs and use them to
calculate two additional scores: the maximum F1

measure across all confidence thresholds (F1m) and
the area under the curve (AuC).

4.2 Results and Discussion

For each dataset, Table 2 show the performance of
2 simple baselines, 5 standalone distribution-based
measures, and 4 combinations of information-
based measures. The ’random’ baseline assigns
labels uniformly at random, whereas the ’all posi-
tive’ baseline labels every example as positive. In
terms of combinations, for each of the 3 informa-
tion measures we used the two terms in the measure
as separate features. Therefore, since Good’s sur-
prise index is written as information content minus
entropy, we evaluated a binary classifier that uses
information content and entropy as two separate
features. Similarly, the information content and
mode information combination corresponds to the
Mode ER Gap, whereas the information content
and core information combination corresponds to
the Core ER Gap. Finally, we use all these infor-
mation terms as features in an overall combination,
as shown at the bottom of the table.

The results show that all standalone measures
do much better than random, showing that they do
capture an important signal in terms of creative
use of language. Somewhat surprisingly, no sur-
prise measure does better than information content,
despite the proven theoretical deficiency of using
information content to model surprise. Of the 4
surprise measures, the Core ER Gap performs the
best, being slightly under information content on
Humor and slightly better than information content
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on Metaphor. We hypothesize that an important
reason for the lower performance of standalone sur-
prise measures is the fact that the LM probabilities
are miscalibrated. While calibration of probability
distributions for classification tasks downstream of
LM has been investigated in a number of recent
works (Wang et al., 2020; Desai and Durrett, 2020;
Park and Caragea, 2022), we are not aware of any
work targeting calibration of the LM distribution it-
self. It is known for example that the tail of the LM
distribution is unreliable (Holtzman et al., 2019),
giving too much probability mass to words that
should not be acceptable in the given context, e.g.
resulting in ungrammatical phrases. The Mode and
Core ER gaps ignore the the tail of the distribu-
tion completely, which may explain their relatively
better performance when compared with Good’s
surprise index and Howard’s s-value.

Since theoretically the average, mode, and core
information are important for quantifying the level
of surprise, instead of adding them directly to in-
formation content as was done in the surprise mea-
sures, we aimed to alleviate the miscalibration issue
by training a linear model to optimize the trade-
off between each of them and information content.
The results in Table 2 show that, overall, when all
types of information-based measure are combined,
there is a substantial 3% increase in overall perfor-
mance (AuC) over information content alone, on
both datasets. The improvements in F1 measure are
statistically significant at p < 0.01, as measured us-
ing a one-tailed paired T-test over the results from
the 10 folds. Overall, these results empirically sup-
port the theoretical observation that surprise mea-
sures capture aspects of creative language use that
go beyond simple information content.

Finally, although the focus of this paper is on the
discriminative power of surprise measures that are
based solely on word-level distributions, the last
line of Table 2 shows the performance of a classifier
that uses the contextual representations produced
by the frozen LM as input to a fully connected net-
work (FCN) consisting of 2 hidden layers and one
output logistic regression node. Unsurprisingly, the
use of contextual embeddings as input to the FCN
leads to much better results, likely due to its better
capacity for modeling semantic-level surprise.

Humor ∨ Metaphor ≠⇒ Creative We would like
to emphasize here that the detection of creative lan-
guage evaluated in this section, although using ex-
amples drawn from humor and metaphor datasets,

is quite different from the metaphor or humor detec-
tion tasks pursued in related work. The metaphor
detection task (Leong et al., 2020) is unconcerned
with whether the metaphor is commonly used vs.
novel or surprising to the reader. In comparison,
as argued in Section 3, creative language detec-
tion requires specifying a reference reader and the
examples that are annotated as creative, be they
humor or metaphor, need to be novel to this reader.

4.3 Error Analysis

Upon looking at the errors in which the trained
classifier had the most confidence, we discovered
a few major sources of errors. First, in terms of
false negative, sometimes the metaphor word that
is tagged as the source is made highly predictable
by the presence of other words in the context, as
in "[democracy]t is the thinly gloved [hand]s of
repressive power", where the likelihood of hand
is high due to the preceding ’gloved’. A possible
solution could be to mask the entire phrase ’thinly
gloved hand’ when asking the LM to compute the
probability distribution, and utilizing an encode-
decoder LM such as T5 to produce a probability
distribution over phrases. There also also instances
of parallel metaphors in the same sentence, where
one metaphor is highly predictive of the other, as
in ""If [poverty]t is a [fire]s and aid is a firefighter,
good governance is the water".

In terms of false positive, there are words that are
associated with high information content because
BERT does not have knowledge of named entities
or types of events mentioned in the text. For exam-
ple, in the title "Texas church [shooter] was Atheist,
thought Christians stupid", the word shooter had a
very low probability, likely due to BERT not hav-
ing been trained on text referencing shootings in
places of worship. Likewise, ’Harvey’ receives a
very low probability in the sentence "Trump has
pledged $1 million to [Harvey] relief". In a way,
these examples, although they were considered as
negative by default, they are indeed surprising for
the reference reader modeled by BERT.

5 Related Work

Owing to its essential role in our daily lives, there
have been numerous computational approaches to
humor recognition, as reviewed for example in
(West and Horvitz, 2019; Hossain et al., 2019). Hu-
mor generation has presented a challenging prob-
lem in AI since the early 1990s, leading to the
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development of various template-based and neural
approaches (Amin and Burghardt, 2020). The im-
portant role that surprise plays in humor generation
has been previously recognized in theories of hu-
mor, such as the surprise theory of laughter (Toplyn,
2014) and other prominent models that posit humor
is evoked by incongruity within a text, such as the
two-stage model of Suls (1972). According to in-
congruity theories of humor, a text conveys at least
two interpretations, of which one is more salient.
As readers process the text, the salient interpreta-
tion is activated until a text segment is encountered
that contradicts it and thus promotes the previously
unexpected interpretation. Surprise arises from his
sudden revision of understanding.

Metaphors are pervasive in everyday communi-
cation, as well as in creative writing such as novels
and poetry. Metaphors enhance the communica-
tive aspects of language by connecting concepts
from new domains, often abstract, with more fa-
miliar ones, usually concrete (Lakoff and Johnson,
1980). Metaphorical expressions have many uses,
from helping frame an issue in order to emphasize
some aspects of reality (Boeynaems et al., 2017),
to creating a strong emotional effect (Blanchette
and Dunbar, 2001; Citron and Goldberg, 2014).
The ubiquity of metaphors means their computa-
tional treatment (Veale et al., 2016) has received
significant attention in the NLP community, as sur-
veyed by Shutova (2015) and more recently Tong
et al. (2021). A distinction is made in the litera-
ture between conventional metaphors, which are
entrenched in the conceptual system, and novel
metaphors, which are unfamiliar. In this paper,
we further recommend that novelty judgements be
made relative to a reference reader. Our use of
a large LM to model the reference reader is sup-
ported by the fact that pre-trained LMs encode
conventional metaphorical information, as shown
recently in the probing study of Aghazadeh et al.
(2022). Even though metaphor is widely seen as a
creative tool and surprise is an essential component
of creative artifacts, we are not aware of any work
investigating the role of surprise in discriminating
between conventional vs. novel metaphors.

Computational approaches to humor and
metaphor are part of a larger inquiry into identify-
ing and formalizing the basic processes underlying
human creativity. In the growing field of computa-
tional creativity4, surprise has been proposed as one

4https://computationalcreativity.net

of the major criteria for the evaluation of creative
artifacts (Maher et al., 2013). Surprising outputs
were shown to attract the attention of the observer
(Itti and Baldi, 2006), but also to guide the creative
process itself: in a study of the creative design
process followed by architects (Suwa et al., 2000),
surprising discoveries in design sketches were ob-
served to cause reformulations of design goals,
which in turn led to further unexpected discoveries,
due to designers reading more off a sketch than
what they originally intended to put there (Schon
and Wiggins, 1992). In this paper we emphasize
that surprise, and by extension creativity, needs to
be defined relative to a reference reader or audience.
Consequently, generative architectures that aim to
learn patterns of surprise and expectation from data
need to contain a separate model for the reference
reader, as implemented in the composer-audience
models from (Bunescu and Uduehi, 2019) for bi-
nary sequences and (Uduehi and Bunescu, 2021)
for basic geometrical shapes.

6 Conclusion and Future Work

Aiming to characterize creative language, we intro-
duced a number of measures of surprise that are
based solely on the probability distributions com-
puted by a reference LM, considered to model a
reference reader. Experimental evaluations show
that, in combination with information content,
the surprise measures improve detection of novel
metaphors or humor, providing empirical evidence
for the role of surprise in creative use of language.
The code and data will be made publicly available5.

Future work includes refining the datasets, cali-
brating the LM probabilities, developing semantic-
level measures of surprise, and evaluating the pro-
posed measures with respect to a reference reader
that only knows the literal meaning of words. An
interesting future extension to other types of word-
level humor such as puns was suggested by a re-
viewer, where surprise measures would be com-
bined with measures of character-level similarity
such as edit distance.
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Abstract

Euphemism is a type of figurative language
broadly adopted in social media and daily con-
versations. People use euphemisms for polite-
ness or to conceal what they are discussing.
Euphemism detection is a challenging task
because of its obscure and figurative nature.
Even humans may not agree on if a word ex-
presses euphemism. In this paper, we propose
to employ bidirectional encoder representations
transformers (BERT), and relational graph at-
tention network in order to model the semantic
and syntactic relations between the target words
and the input sentence. The best performing
method of ours reaches a macro F1 score of
84.0 on the euphemism detection dataset of the
third workshop on figurative language process-
ing shared task 2022.

1 Introduction

Euphemism is a sophisticated language phe-
nomenon in which one usually uses a polite word
or expression instead of a more direct one to avoid
shocking or upsetting someone1. For example, “We
are very sorry that he has passed away”. Here,

“pass away” does not mean dissipation intuitively,
but death, which can make unpleasant things sound
more polite. Due to its obscure and figurative na-
ture, euphemism detection which aims to predict
a text as euphemism or non-euphemism becomes
a particularly challenging classification task. With
the usage of euphemisms becoming prevalent on
social media and in daily conversation, euphemism
detection has received growing research attention
to facilitate the understanding of natural language’s
sentiment and semantics.

Felt and Riloff (2020) make the first at-
tempt to recognize euphemisms and dysphemisms.
They identify synonym phrases of given seed
euphemism-related phrases by a weakly super-
vised bootstrapping algorithm and then classify

1https://www.ldoceonline.com/dictionary/euphemism

the phrases using sentiment cues and contextual
sentiment analysis. With the advent of Pre-trained
Language Models (PLMs), euphemism detection
methods based on PLMs such as BERT (Devlin
et al., 2019) have been proposed. Zhu and Bhat
(2021) propose an automatic euphemistic phrase de-
tection method without human effort. They first ex-
tract quality phrases and select euphemistic phrase
candidates by computing embedding similarities.
Then they use SpanBERT to rank and classify all
candidates.

Despite existing work have achieved promising
results, there are still several challenges to tackle.
On the one hand, existing euphemism detection
work mainly focus on mining characteristics of tar-
get words/phrases that triggered the euphemism
phenomenon. They emphasize too much the eu-
phemism of target words while ignoring the context
circumstances where the target words sit. On the
other hand, the first step of these methods is often
to extract euphemism candidate words or phrases
based on domain expertise or existing data anno-
tations. If the first step is not done well, it will
influence the subsequent classification and ranking,
which may cause error propagation and lead to poor
performance. We observe that euphemisms are es-
sentially polysemy. In this sense, we argue that
the meanings of euphemism target words/phrases
are closely related to the context in which they are
located semantically and syntactically.

Shed light on the great performance achieved
by BERT and Graph Neural Network (Veličković
et al., 2017) on the aspect-based sentiment analysis
task, we propose to employ BERT and Relational
Graph Attention Network (RGAT) (Wang et al.,
2020) to deal with euphemism detection. Specifi-
cally, our model contains two isolated sub-models,
BERT-Concat and RGAT-BERT. For BERT-Concat,
the model’s input is the concatenation of the input
sentence and target words. We use BERT-Concat
to enhance the information of target words and
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capture the sequential semantic knowledge of the
input sentence and target words. RGAT-BERT is
adopted mainly to capture the syntactic information
between target words and their corresponding con-
texts. The graph is built on the dependency tree. To
enhance the syntactic connections between target
words and the essential contexts, RGAT reshapes
the dependency tree in which target words are root.
It also prunes the reshaped tree to avoid the noise
that unimportant contexts bring. Finally, we design
a voting mechanism to ensemble the results of the
two sub-models, which can leverage the advantages
of the two.

We conduct experiments on the euphemism de-
tection dataset. Empirical experimental results
demonstrate the effectiveness of our proposed
method. We ended up fourth in the third work-
shop on figurative language processing shared task
2022.

2 Related Work

In this section, we briefly review the related work
on euphemism detection.

Existing work mainly focus on identifying eu-
phemistic words. Magu and Luo (2018) pro-
vide an unsupervised word embedding’s similar-
ity method to identify euphemisms (code words)
in hate speech. Felt and Riloff (2020) use senti-
ment analysis to recognize the euphemistic and dys-
phemistic language. They adopt a bootstrapping
algorithm for finding near-synonym phrases and
then classify the collected phrases as euphemistic,
dysphemistic, or neutral using lexical sentiment
cues and contextual sentiment analysis.

With the advent of pre-trained language mod-
els, a lot of euphemism detection methods based
on PLMs have been proposed. Zhu et al. (2021)
propose a self-supervised euphemistic detection
method. They first extract candidate phrases from
a base corpus and then filter out ones associated
with euphemistic seed phrases through embedding
similarity computing. Finally, they use pre-trained
language models to classify these phrases. Similar
to (Felt and Riloff, 2020), Zhu et al. (2021) rely
on a set of predefined seed phrases, which may
not be generalized to different datasets. Zhu and
Bhat (2021) improve Zhu et al. (2021)’s approach
by adding an automatic paraphraser. Kapron-King
and Xu (2021) investigate gender differences in
euphemism usage and they find that women do not
use euphemisms more than men through empirical

sentence

{sentence, target}

reshape

dependency tree

BERT

RGAT-BERT

voting

BERT-concat RGAT-BERT

Eu.Non-Eu.

softmax

softmax

Eu.Non-Eu.

Eu.Non-Eu.

target words oriented 
dependency tree

prune

Figure 1: Structure of our model, which contains BERT-
Concat(left) and RGAT-BERT(right). Eu. and Non-
Eu. denote euphemism and non-euphemism classes
respectively.

analysis. Gavidia et al. (2022) present a corpus of
potentially euphemistic terms, which promotes the
development of euphemism detection. We observe
that most work on euphemism detection focus on
euphemistic terms. They pay less attention to the
contexts and the connections between euphemistic
terms and their corresponding contexts in a sen-
tence, which may lose important information.

3 Model

In this section, we introduce our method for eu-
phemism detection in detail. The overview of our
proposed method is shown in Figure 1. We first
introduce the pre-processing of the dataset, and
then the BERT model and the RGAT-BERT model.
Finally we elucidate the model ensembling process.

3.1 Data Pre-processing
The original data includes text IDs, utterances, and
euphemistic labels. We pre-process the text to
(1) extract target words and their position, (2) re-
move the unexpected punctuation. Since the tar-
get is marked with “<>” symbols, for the conve-
nience of subsequent model implementation, we
extract the target and mark the position of the left
character start point and the right character end-
point. Then we remove the unexpected punctua-
tion marks “@@@@@@@@@@”, “<” and “>”.
“@@@@@@@@@@” is a feature of GloWbE
corpus that obscures spans of text. The removal of
the above marks will not affect the meaning of the
input utterance. The input sentence is denoted as
s = {ws

1, w
s
2, ..., w

s
n} and the corresponding target
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words is represented as t = {wt
i , w

t
i+1, ..., w

t
k}. n

is the length of the input sentence. k is the length
of target words.

3.2 BERT-Concat

We design the BERT-Concat model to enhance
the information of target words and capture the
sequential semantic knowledge of the input sen-
tence and target words. The input of BERT-Concat
is {s, t}. Note that the concatenation happens at
the sequence length, not the hidden dimension. We
also try to concatenate the input sentence and target
words at the hidden dimension, but the experimen-
tal results are not good. The reason may be that
the hidden size of the new representation is too
large after concatenating, which may increase the
complexity of the model and introduce irrelevant
noisy information.

The training objective is to minimize the cross-
entropy loss of the euphemism label probability
distribution.

LCE(θ) =
∑

cross-entropy(y, P (ŷ)),

where y is the ground-truth of the euphemism label,
and P (ŷ) is the predicted score. θ is the parameter
set of the model.

3.3 RGAT-BERT

The syntactic structure is an important tool for un-
derstanding natural language. The relationships
between words can be denoted with directed edges
and labels. Sometimes the context that is important
to understand target words may not be found in
the sequence structure but in the syntactic struc-
ture. Therefore, the use of graph neural networks
and syntactic trees can solve the mistakes caused
by sequential attention mechanisms. We leverage
RGAT-BERT to capture the syntactic information
between target words and their corresponding con-
texts.

Firstly, we extract the original dependency graph
by syntax parsing tools. Note that the root of the
current dependency graph may not be target words.
Then the structure of the dependency tree is rooted
in the euphemism target words by reshaping and
pruning the ordinary dependency analysis tree. The
new dependency tree is encoded by the relational
graph attention network(RGAT) model.

The reconstructed tree can be represented by
a graph G with N nodes, where each node is a
word in the utterance, and the edges of the graph
represent the dependencies between words. The

neighborhood nodes of node i areNi. The graph at-
tention network(Veličković et al., 2017) iteratively
updates each node by aggregating the representa-
tion of neighborhood nodes with multiple heads of
attention. Training the BERT model can obtain the
hidden layers. The whole RGAT formula comes
from (Wang et al., 2020). The attention formula is
as follows:

hl+1
atti

= ||Kk=1

∑

jϵNi

αlk
ijW

l
kh

l
j (1)

αlk
ij = attention(i, j), (2)

where l means the number of the layer and i and j
mean the number of the node. And hl+1

atti
means the

attention head, ||Kk=1xi is the concatenation of vec-
tors from x1 to xk, αlk

ij is a dot-product attention
which comes from attention(i, j) computed by
the k-th attention at layer l, W l

k is an input transfor-
mation matrix. K means the number of attention
headers.

The graph attention mechanism aggregates the
representations of neighborhood nodes along the
dependency path. However, neighborhood nodes
with different dependencies should have different
effects. Therefore, RGAT uses additional relation-
ship headers to expand the original network. The
dependency relationship is mapped into a vector
representation to calculate a relationship header.
RGAT contains M relationship headers. The cal-
culation formula is as follows:

hl+1
reli

= ||Mm=1

∑

jϵNi

βlmij W
l
mh

l
j (3)

glmij = σ(relu(rijWm1 + bm1)Wm2 + bm2) (4)

βlmij =
exp(glmij )

∑Ni
j=1 exp(g

lm
ij )

, (5)

where rij is the relation embedding between nodes
i and j. The final representation of each node is as
follows:

xl+1
i = hl+1

atti
||hl+1

reli
(6)

hl+1
i = relu(Wl=1x

l+1
i + bl+1). (7)

The hidden representation is then passed through
a fully connected softmax layer and mapped to
probabilities over the euphemistic labels. BERT is
used as a basic encoder in the RGAT-BERT model.
The training objective of RGAT-BERT is also to
minimize cross-entropy loss. For a more detailed
description of RGAT, please refer to the original
paper (Wang et al., 2020).
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Dataset Eu. Non-Eu. Total Avg ℓ
Train 1106 466 1572 65.7
Test / / 393 65.8

Table 1: The detailed statistics of the dataset. Eu. and
non-Eu. mean the number of euphemism and non-
euphemism samples respectively. Avg ℓ denotes the
average length of texts in the number of tokens.

3.4 Model Ensembling

We adopt a voting strategy for ensembling the re-
sults of BERT-Concat and RGAT-BERT. Specifi-
cally, there is a set of predicted labels by different
models. For each sample, if more than half models
saying that the sample belongs to the euphemistic
class, then the voting result is euphemism. On the
contrary, if more than half models saying that the
sample belongs to the non-euphemistic class, then
the voting result is non-euphemism.

4 Experiment

In this section, we will introduce the dataset and
experimental settings, and then analyze the results.

4.1 Dataset

We use the official euphemism dataset provided
by the third workshop on figurative language pro-
cessing shared task 2022. The statistics are shown
in Table 1. We observe that the training dataset is
unbalanced. The number of euphemistic samples
is more than twice as large as the number of non-
euphemistic samples. The original dataset does not
contain a validation set. We randomly choose 200
samples from the training set as a validation set
to fine-tune the parameters. In the validation set,
there are 133 euphemism and 67 non-euphemism.

4.2 Baselines

We adopt LSTM (Hochreiter and Schmidhuber,
1997), RGAT (Wang et al., 2020), and BERT (De-
vlin et al., 2019) as the baseline methods for com-
parison. Each utterance in the given dataset con-
tains only one euphemism, there is no case of mul-
tiple euphemisms mixed in one utterance. So we
take the sentences as input directly for the above
baseline models.

4.3 Experimental Settings

We train our models on Nvidia Telsa V100-16GB
GPUs. For the BERT-Concat model, we set the
learning rate to 5e − 5, the batch size to 16, and
the maximum sequence length to 512. We imple-
ment RGAT-BERT for euphemism detection based

Method Precision Recall Macro F1

LSTM 73.4 71.0 71.7
RGAT 77.6 73.5 73.9
BERT 78.4 76.9 77.5

BERT-Concat 76.7 81.4 78.4
RGAT-BERT 81.1 83.4 82.1
Ensembled 84.2 83.8 84.0

Table 2: The precision, recall, and macro F1 (%) on the
test set. Best results as bold.

on the released source code 2 in their paper. For
the RGAT-BERT model, the learning rate is set
to 5e − 5, the batch size is 8, and the dropout
is 0.3. For other parameters of RGAT-BERT, we
use the default settings in the source code. For
each method, we train them with five seeds among
{2022, 2021, 2019, 142, 42}. The difference be-
tween macro F1 scores of different seeds is within
2%. For model ensembling, we selected 7 high-
est results of the two models and vote on the final
labels. We use BERT-base as the backbone model.

4.4 Experimental Results

The overall experimental results are shown in Ta-
ble 2. We observe that: (1) RGAT model outper-
forms LSTM model, which shows that involving
syntactic information is more effective than rely-
ing solely on sequential information intra-sentence.
(2) Fine-tuning with pre-trained language models
performs better than traditional deep neural mod-
els. By using only BERT model, the macro F1

score reaches 78.4. It demonstrates the power of
large-scale pre-trained language models. This indi-
cates that though euphemisms are obscure, they are
commonly used, so euphemism detection tasks can
make better use of the knowledge in the pre-trained
language models. (3) There is a slight improve-
ment using BERT-Cocat compared to the basic
BERT model. RGAT-BERT outperforms BERT-
Concat with a large margin of 3.7 on the macro
F1 score. This demonstrates that syntactic connec-
tions between target words and their corresponding
contexts can better understand the meaning of eu-
phemism. (4) Ensembling the two models achieves
the best performance since model ensembling can
leverage the advantages of the two models.

5 Conclusion

In this paper, we have proposed to leverage trans-
formers and relational graph attention networks to
detect euphemisms. Specifically, on the one hand,

2https://github.com/shenwzh3/RGAT-ABSA
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we utilize BERT-Concat to capture sequential se-
mantic information between target words and their
corresponding contexts. On the other hand, we
adopt RGAT-BERT to learn the syntactic connec-
tions between target words and essential contexts.
Experimental results show that ensembling the two
sub-models can achieve promising performance on
the euphemism detection shared task of the third
workshop on figurative language processing.

Limitations

At present, we view euphemism detection from the
perspective of the task itself and specific datasets.
Our model is not much integrated with the eu-
phemistic theory linguistically. Later, we will ex-
plore the different meanings between original target
words and their euphemistic usage by text matching
strategies.
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Abstract

Figurative language (e.g., “he flew like the
wind”) is challenging to understand, as it is
hard to tell what implicit information is being
conveyed from the surface form alone. We hy-
pothesize that to perform this task well, the
reader needs to mentally elaborate the scene
being described to identify a sensible meaning
of the language. We present DREAM-FLUTE,
a figurative language understanding system that
does this, first forming a “mental model” of sit-
uations described in a premise and hypothesis
before making an entailment/contradiction de-
cision and generating an explanation. DREAM-
FLUTE uses an existing scene elaboration
model, DREAM, for constructing its “mental
model.” In the FigLang2022 Shared Task eval-
uation, DREAM-FLUTE achieved (joint) first
place (Acc@60=63.3%), and can perform even
better with ensemble techniques, demonstrating
the effectiveness of this approach.1 More gen-
erally, this work suggests that adding a reflec-
tive component to pretrained language models
can improve their performance beyond standard
fine-tuning (3.3% improvement in Acc@60).

1 Introduction

Understanding figurative language is a particu-
larly challenging problem in NLP since the un-
derlying meaning of the utterance is very different
from the surface meaning of its constituent words
(Stowe et al., 2022). In this paper we focus on the
task of recognizing and explaining textual entail-
ment between a premise and hypothesis involving
figurative language (FigLang 2022 Shared Task
in Chakrabarty et al., 2022). We propose DREAM-
FLUTE,2 a system that makes use of scene elabora-
tion for building a “mental model” of the situations

1We make our code and models publicly available at
https://github.com/allenai/dream.

2Using DREAM (Gu et al., 2022) on FLUTE: Figura-
tive Language Understanding through Textual Explanations
(Chakrabarty et al., 2022).

Figure 1: Overview of DREAM-FLUTE: It first uses
DREAM (Gu et al., 2022) to generate an elaboration of
the situation in the premise and hypothesis (separately),
then uses this additional context for entailment classi-
fication and explanation generation. DREAM-FLUTE
(consequence), using the “likely consequence” elabo-
ration dimension as additional context, achieved top
scores. Such systems also form the building blocks of
DREAM-FLUTE (ensemble), our best system.

presented in the premise and hypothesis to detect
textual entailment between them (see Figure 1).

The design of DREAM-FLUTE builds upon the
scene elaboration model, DREAM, presented by
Gu et al. (2022). DREAM uses a T5-based (Raffel
et al., 2020) sequence-to-sequence model to gen-
erate additional, pertinent details about each given
situation in the input text, along key conceptual
dimensions informed by cognitive science, story
understanding and planning literature (Minsky,
1974; Dyer, 1983; Mueller et al., 1985; Mueller,
1990). Using such scene elaboration as addi-
tional context has been shown to improve question-
answering (QA) performance on different mod-
els and across different downstream tasks such as
ETHICS (Hendrycks et al., 2021), CODAH (Chen
et al., 2019) and Social IQA (Sap et al., 2019).
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To adapt it for the figurative language under-
standing shared task, we made three significant
extensions to using DREAM that have not been pre-
viously explored. First, we incorporate DREAM
for elaborating the premise and hypothesis in a
natural language inference (NLI) task involving fig-
urative language understanding (Chakrabarty et al.,
2021; Stowe et al., 2022). We hypothesize that such
additional, pertinent details could also improve a
model’s ability to judge whether there is an en-
tailment or contradiction between the premise and
hypothesis. This could be especially helpful for the
instances that use figurative language, where the
underlying meaning might be opaque to the model:
further elaborating the context can make certain
inferences more explicit. Second, beyond improve-
ments on label prediction accuracy (i.e. choosing
from multiple-choice options) shown in Gu et al.
(2022), our work uncovers the use of such addi-
tional context for improving explanation quality.
And lastly, we exploit the dimensions in DREAM
to train different models for an ensemble system
representing a cognitive continuum (Figure 2), fur-
ther improving accuracy and explanation quality.

Our approach is easily adaptable to other lan-
guage models, and task-agnostic in format (e.g.
QA or NLI) and domain (e.g. ethical decisions
or figurative language understanding). We demon-
strate the effectiveness of our single model system
in terms of achieving top scores in the task, as well
as the flexibility of implementing an ensemble sys-
tem that not only yields further improvements for
this task but also allows customization to suit the re-
quirements of different downstream applications.

2 Approach

We first describe our single model systems in Sec-
tion 2.1. Next, we present a two-step “classify then
explain” pipeline in Section 2.2. In Section 2.3, we
take advantage of all information learned by the dif-
ferent models and propose an ensemble approach
inspired by cognitive science.

2.1 Single Model Systems

Given an input <Premise, Hypothesis> sentence
pair, the task has two goals: (1). first classify the
relationship between the premise and hypothesis
(entailment or contradiction); then (2). generate
a textual explanation about why the premise en-
tails/contradicts the hypothesis. Figure 1 shows
an example. We further consider two additional

pieces of information for performance improve-
ments: (1). the type of the figurative language
(simile, metaphor, sarcasm, idiom, and creative
paraphrase) which is provided in the training data
(but not the test data); (2). the elaboration of sit-
uations in the premise-hypothesis pair provided
by DREAM, which gives additional information
about the consequence, emotion, motivation, or so-
cial norm of the input. In Appendix A, we provide
intuitive examples showing why such additional in-
formation could help this figurative language task.

System 1: Using original data Given the
<Premise, Hypothesis, Label, Explanation> in
the original data, we first trained a sequence-to-
sequence model for the figurative language task
using the following input-output format:

Input <Premise> <Hypothesis>
Output <Label> <Explanation>

System 2: Jointly predicting the type of fig-
urative language Using type of figurative
language provided as part of the training set
(Chakrabarty et al., 2022), one of our models jointly
predicts the type of figurative language, together
with the target label and explanation:

Input <Premise> <Hypothesis>
Output <Figurative-Language-Type> <Label>

<Explanation>

Systems 3: DREAM-FLUTE - Providing
DREAM’s different dimensions as input con-
text We adapt DREAM’s scene elaborations
(Gu et al., 2022) for the figurative language under-
standing NLI task by using the DREAM model
to generate elaborations for the premise and hy-
pothesis separately. This allows us to investigate if
similarities or differences in the scene elaborations
for the premise and hypothesis will provide useful
signals for entailment/contradiction label predic-
tion and improving explanation quality. Figure 1
gives an overview of such systems and the input-
output format is:

Input <Premise> <Premise-elaboration-from-
DREAM> <Hypothesis> <Hypothesis-
elaboration-from-DREAM>

Output <Label> <Explanation>

where the scene elaboration dimensions from
DREAM are: consequence, emotion, motivation,
and social norm. We also consider a system incor-
porating all these dimensions as additional context.
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Figure 2: A cognitive continuum implemented to account for different levels of intuition and analysis.

2.2 Two-step System: Classify then explain

In contrast to Systems 1 to 3 where the entail-
ment/contradiction label and associated explana-
tion are predicted jointly, System 4 uses a two-step
“classify then explain” pipeline. Previous work on
generating explanations have discussed the differ-
ence between predicting and generating respective
rationalizations in a pipeline vs. jointly. Wiegr-
effe et al. (2021) showed that for reasoning tasks
pipelines work less well than models which jointly
predict and explain. Hase et al. (2020) compared
rationalizing methods (first predict label and then
the explanation) to reasoning methods (predict the
explanation first), and showed that rationalization
methods perform better. It is therefore of interest to
compare such different approaches for explanation
generation also for the figurative language task.

2.3 Ensemble System: A cognitive continuum

We take advantage of ensembling to use informa-
tion learned by Systems 1 to 4 together in DREAM-
FLUTE (ensemble). For entailment/contradiction
label prediction, the top 5 system variants were
chosen based on validation Acc@0 (Table 1 green
italicized) scores, and used for majority voting.

Brachman and Levesque (2022) note that several
psychologists claim “there is a cognitive contin-
uum between endpoints that they call intuition and
analysis.” Likewise, in rationalizing, our different
system variants can be viewed as different points
on this continuum. For generating explanations,
Systems 1 to 4 were used as building blocks for
DREAM-FLUTE (ensemble) (excluding the model
with social norm due to its low scores on the val-
idation set) to implement such a continuum that
includes various levels of intuition and analysis
(Figure 2). Specifically, given the entailment la-
bel from majority voting, the ensemble looks for
the first of the ordered models that agrees with the
ensemble label, then uses its explanation.

Our approach first considers more salient factors
(Systems 2, 3 (consequence, emotion)) which can

inform the content and style of explanation: likely
consequence of the actions and the emotions of
characters, which can possibly tease apart whether
the sentence pairs entail/contradict,3 as well as type
of figurative language which can inform the style
of explanation.4 Next, we take a step back and look
at the bigger picture, in considering all DREAM
dimensions (Gu et al., 2022) (System 3 (all dimen-
sions)). Then we examine some of the less salient
dimensions more closely (Systems 3 (motivation),
4). And finally, we use the explanation in the case
when there is no context at all (System 1). More
details about this ordering and the pseudocode for
ensembling can be found in Appendix C.

3 Experiment Settings

Data This shared task has a two-phases time-
line: the development phase then the test phase.
During the development phase, ∼7500 samples are
provided as the training set. We used a 80-20 split
to create our own training (6027 samples) and vali-
dation (1507 samples) partitions on which we build
our models. Later at the test phase, separate 1500
test samples (without gold labels) are released on
which all models are tested. Note that our model
is primarily developed during the training phase
without having access to the test data.
Model We train all models with a T5-3B back-
bone using the data formats detailed in Section 2.1.
The size of the model is the same as the officially
provided fine-tuned T5 baseline. We use the Hug-
gingface implementation (Wolf et al., 2019, 2020),
based on PyTorch (Paszke et al., 2019). For each
system, we fine-tune the 3B version of T5 (Raffel
et al., 2020) for 3 epochs using an Adam Opti-
mizer and a learning rate of 5e-05, selecting the
best checkpoint based on the lowest validation loss.

3E.g. If one situation involves an action leading to good
outcome whereas another leads to bad outcome, that is a
clear sign (that gives you strong intuition) for contradiction.
Whereas, if the premise and hypothesis both describe situa-
tions where a person would be happy, that provides intuition
for entailment. See Table 2 for examples from task data.

4See Appendix A and Table 3.
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System Our validation partition Official test partition
Acc@0 Acc@50 Acc@60 Acc@0 Acc@50 Acc@60

T5-3B (official baseline) – – – 76.7 69.1 44.3
1 Original data 94.8 89.0 66.9 94.7 88.7 60.4
2 + Figurative language type 94.9 89.8 66.5 94.6 87.8 61.3
3 DREAM-FLUTE

emotion 94.2 89.3 65.0 93.9 88.3 61.7
motivation 95.4 90.2 66.2 94.5 87.7 60.3
consequence 94.3 90.1 65.8 94.7 88.9 63.3
social norm 93.1 88.3 64.2 92.3 86.4 60.6
all 4 dimensions 95.2 89.4 66.6 94.3 87.7 60.0

4 Classify then explain 95.0 90.5 66.6 95.1 89.4 61.1
5 DREAM-FLUTE (ensemble) 96.4 92.1 67.0 95.9 89.8 63.7

Table 1: Results on our validation set and the official test set. Amongst the non-ensemble methods, System 3 with
likely consequence, i.e. DREAM-FLUTE (consequence), performed the best on the test set in terms of Acc@60
which was used for ranking submissions on the leaderboard. This system was already ranked first, but further gains
can still be achieved using ensembling in System 5, DREAM-FLUTE (ensemble). Green italics indicates systems
selected for label prediction in the ensemble system, using validation Acc@0.

A more detailed list of hyperparameters used can
be found in Appendix D.
Evaluation There are two major evaluation
metrics: (1). accuracy, which measures if predicted
NLI labels are correct; (2). explanation score,
which measures if generated explanations are of
high quality. The explanation score is computed as
the average of BERTScore (Zhang et al., 2020) and
BLEURT (Sellam et al., 2020) on the generated
explanation against given references. The overall
performance metric, Acc@s (Table 1), is a com-
bination of accuracy and explanation score where
a prediction (label and explanation) counts as cor-
rect only when: (a) the label is correct, and (b) the
explantion score is at least s (where s = 0, 50 and
60). On the official leaderboard, all models are
ranked according to Acc@60.

4 Results and Discussion

4.1 Better explanation quality
Table 1 shows the performance of our systems.
Based on test Acc@60, the following strategies
improve explanation quality compared to the setup
with just the original data: predicting figurative lan-
guage type, using emotion, likely consequence, so-
cial norm, two-step “classify then explain” pipeline,
and ensembling. Each non-ensemble system can
be seen as guiding the model to focus on a par-
ticular direction when reasoning about the entail-
ment/contradiction relationship between a sentence
pair. Table 2 and Appendix F present examples
of how each DREAM dimension helps uncover
implicit meaning in the input. DREAM-FLUTE

(consequence), by incorporating the likely conse-
quence scene elaboration from DREAM, was al-
ready ranked first based on test Acc@60,5 which
requires explanations to be of high quality. Fig-
ure 1 shows another example of how elaborating
along this dimension can be useful. On top of that,
DREAM-FLUTE (ensemble), an ensemble system
that makes further use of context achieves further
improvements (Acc@60 = 63.7%). The ensemble
approach allows for considering these different di-
rections and rationalizing with varying levels of
intuition and analysis, then choosing one that fits
the current sentence pair, potentially boosting ex-
planation quality.

4.2 Better label prediction accuracy

This ensemble system is also our best submission
overall with Acc@0 = 95.9%, Acc@50 = 89.8%,
where Acc@0 is equivalent to computing label ac-
curacy alone. The better label prediction accuracy
could be attributed to using the different individual
systems for majority voting, which mimics arriving
at a decision by considering different perspectives,
ultimately leading to a more well-thought decision.

4.3 Effect of DREAM generated context

We qualitatively analyze how DREAM-generated
context helps in the figurative language understand-
ing task. Table 2 presents examples from our vali-
dation set for DREAM dimensions “consequence”
and “emotion” comparing predictions from System

5See results of shared task at https://codalab.lisn.
upsaclay.fr/competitions/5908#results.
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Premise Hypothesis
Gold
label

T5’s answer
+ explanation

DREAM
context

DREAM-FLUTE’s
answer + explanation

My decision-
making skills
are not purely
based on
emotions
and gut.

My personal
feelings
color my
judgment
in this case.

(C)

(E): My personal
feelings color
my judgment in
this case means
that I am
influenced
by my emotions
and gut when
making decisions.

[Consequence]
Pre: I make
more balanced
and informed
decisions.
Hypo: I make
a decision that
is not in
the best interests
of the company.

(C): To have personal
feelings color
one’s judgment
means to make
decisions based
on them, but
this context describes
making decisions
based on facts and
not emotions.

We laid
in the
field of
green grass
and relaxed.

We laid
in fields
of gold.

(E)

(C): Gold is a type
of metal that is used
to make jewelry,
while green grass
is a type of grass that
is used for lawns
and gardens.

[Emotion]
Pre: I (myself)’s
emotion is happy.
Hypo: I (myself)’s
emotion is happy.

(E): Gold is a
color that is associated
with happiness,
so the fields
of gold are
associated with
happiness.

Table 2: Examples from the validation set where DREAM generated context consisting of consequence and
emotion helped our proposed model DREAM-FLUTE (System 3) in figurative language understanding. For both the
examples a T5-based model that did not have access to additional context (System 1) gave wrong label prediction.
DREAM context helped improve both answer accuracy and explanation quality. Labels: (E), (C) refer to Entailment,
Contradiction respectively. (Appendix F presents examples where motivation, social norm helped DREAM-FLUTE.)

1 (trained using just original data) with those from
System 3 (DREAM-FLUTE, which uses scene elab-
oration from DREAM). These examples illustrate
that similarities and differences along the scene
elaboration dimensions provide useful signals to
guide entailment/contradiction label prediction and
improve explanation quality.

4.4 More flexibility beyond FigLang2022
The day-to-day mental activities of humans take
place on different parts of the cognitive continuum
(Brachman and Levesque, 2022). DREAM’s scene
elaborations give us the different building blocks
to implement to such a continuum, and therefore
use various levels of intuition and analysis to better
come to a decision and rationalize. This approach
also allows customization to suit the requirements
of different downstream applications, by changing
the order of factors to consider on the continuum
(e.g. social norm may be more salient for ethical de-
cisions) and considering different pertinent factors
(i.e. in place of the figurative language type).

5 Conclusion

In this work we showed how DREAM-FLUTE,
a competitive system for the figurative language

understanding NLI task, can be built by utiliz-
ing scene elaborations from an existing model,
DREAM. Compared to a model without such scene
elaborations, DREAM-FLUTE makes use of scene
elaboration for building a “mental model” of sit-
uations in the premise and hypothesis to make in-
ferences more explicit, thus improving label pre-
diction accuracy and explanation quality. DREAM-
FLUTE (ensemble) uses different elaborations to
form building blocks for implementing a contin-
uum with varying levels of intuition and analysis,
modeling deriving answers and rationalizing by
considering different positions on a cognitive con-
tinuum. This novel use of DREAM not only ob-
tained the highest scores for the figurative language
understanding shared task, but could also easily
be applied to the situational QA tasks in Gu et al.
(2022), and beyond. Our approach is easily adapt-
able to other language models, and task-agnostic
in format (e.g. QA or NLI) and domain (e.g. ethi-
cal decisions or figurative language understanding).
More generally, our work demonstrates that adding
a reflective component helps to improve answer
accuracy and explanation quality in pretrained lan-
guage models.
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Limitations

Our approach is designed for applications involv-
ing natural language understanding for short text
(around 1-3 sentences), e.g. in the figurative lan-
guage NLI task and situational QA tasks tackled
in the original DREAM paper. Building on a bet-
ter understanding for short text, we hope our work
can inspire future efforts towards extending the
approach for long text too. The current approach
presented also requires the use of GPU resources
for model training. However, we also demonstrate
that using DREAM scene elaboration as additional
context yields improvements on label prediction
accuracy for an off-the-shelf NLI model, without
any training (Table 4 in Appendix E).

Ethics Statement

Like any other large-scale language model, despite
the best intentions, there is a risk of our models
producing biased or offensive statements as part
of the free-form rationalization. We release our
models for research purposes only.
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A Examples from training set

We randomly sampled around 100 examples from
the training set and manually looked at the targeted
explanations to get a sense of how explanations
for this task look like. We observed that the expla-
nation style may depend on the type of figurative
language involved. Table 3 shows some of these
examples. For instance, when the type of figurative
language is sarcasm, the explanation often starts
by describing what is usually the case and then
goes into how one of the sentences describes an
unusual or unexpected situation. Whereas, if the
type is idiom, then the explanation often involves
elucidating what the idiom means. This motivated
the design of System 2.

Further, we noticed that the gold explanations
often involve elements like emotion and motiva-
tion of characters. In the first example in Table
3, for example, identifying the emotions in the
premise and hypothesis directly helps us identify
the contradiction — in that the person’s emotion is
scared in one case and fearless in another. There-
fore, we explored elaborating the situations in the
given premise and hypothesis along such dimen-
sions using DREAM (Gu et al., 2022). By using
DREAM to generate scene elaborations and using
that as additional context to the input, we have the
different variations of DREAM-FLUTE (System 3).

B Details of input prompt

In training our T5 based sequence-to-sequence
models, whenever the target output is the entail-
ment/contradiction label and explanation, we ap-
pend the question “Is there a contradiction or entail-
ment between the premise and hypothesis?” to the
input to prompt the model for the NLI task. In the
case of System 2, where the model jointly predicts
the type of figurative language then the label and
explanation, we first append the question “What
is the type of figurative language involved?” to
the input, then append the usual contradiction or
entailment question.

C Algorithm for ensembling

The order of systems used in rationalizing when
implementing the cognitive continuum described
in Section 2.3 is as follows: likely consequence,
emotion, type of figurative language, all DREAM
dimensions, motivation, two-step “classify then
explain,” no context. Algorithm 1 shows more

Algorithm 1: Ensemble - a cognitive continuum
Input: Individual systems’ predicted label and

explanation
Output: Ensemble label; Ensemble explanation
ensemble_label =

majority_vote(top5_Acc@0_systems_labels)
ensemble_explanation = None
// ordered_systems takes an order
described in Section C

for system_prediction ∈ ordered_systems do
if system_prediction.label == ensemble_label

then
ensemble_explanation =

system_prediction.explanation
break

end
end

details on how to obtain the ensemble label and
explanation from the individual systems.

Note that beyond the figurative language under-
standing task, this ensembling approach represent-
ing a cognitive continuum could be applied to other
tasks, with the possibility of modifying the order
of component systems to better suit different appli-
cations.

D Hyperparamters used during training

The following hyperparameters were used during
training:

• learning_rate: 5e-05

• train_batch_size: 1

• eval_batch_size: 1

• seed: 42

• distributed_type: multi-GPU

• num_devices: 2

• total_train_batch_size: 2

• total_eval_batch_size: 2

• optimizer: Adam with betas=(0.9,0.999) and
epsilon=1e-08

• lr_scheduler_type: linear

• num_epochs: 3.0
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Type of
figurative
language

Premise Hypothesis Gold label Gold Explanation

Sarcasm
Yesterday two gangs
were fighting just
in front of my home.

Yesterday I saw
two gangs fighting
right in front of my
house and it totally
didn’t make me
scared at all.

Contradiction

The sight of two
gangs fighting is
often very violent
and can invoke fear
in people, so someone
who saw it and wasn’t
scared is not
being truthful.

Idiom

If you want fresh food,
just go with your gut
feeling and you will
find villagers happy to
sell or trade what
they have.

If you want fresh
food, just follow your
noses and you will find
villagers happy to sell
or trade what they have.

Entailment

To follow your nose
means to trust one’s
instinct, which is what
you would need to do in
order to find fresh food.

Table 3: Examples from Chakrabarty et al. (2022)’s training set. Text in bold illustrate how the style of explanation
may depend on the type of figurative language involved.

E Baseline: Off-the-shelf MNLI model

Without any training on the task data, we can simi-
larly achieve better label prediction accuracy if we
provide additional context from DREAM as input.
Table 4 shows that with the off-the-shelf RoBERTa
MNLI model (Liu et al., 2019), we achieve im-
provements in accuracy when providing the emo-
tion of characters, and even more improvements if
we provide all 4 dimensions generated by DREAM.
Since this model is unable produce any explana-
tions, we measure only Acc@0 scores.

System Our validation partition
Acc@0 Acc@50 Acc@60

RoBERTa MNLI 73.9 – –
+ DREAM emotion 77.4 – –
+ DREAM 4 dimensions 79.3 – –

DREAM-FLUTE(ensemble) 96.4 92.1 67.0
(our model)

Table 4: Comparing off-the-shelf RoBERTa MNLI
model (Liu et al., 2019) to our proposed model on our
validation set.

F Analysis: Effect of DREAM generated
context

Table 5 presents validation set examples for
DREAM dimensions “motivation” and “social
norm” where this additional context helped the
model correct its prediction.
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Premise Hypothesis
Gold
label

T5’s answer
+ explanation

DREAM context
DREAM-FLUTE’s
answer + explanation

After years
of service
& contribution
to the company,
he was
finally
promoted.

The company
released him
after many
years of
service.

(C)

(E): The company
released the
employee after
many years of
service.

[Motivation]
Pre: Company’s
motivation is to
recognize his
hard work.
Hypo: Company’s
motivation is
to get someone
else to work.

(C):To release
someone
means to let them
go from a position,
while to promote
someone means to
give them a
higher position.

Sure, he
snorted just to
make me feel
even better
about the
already great
situation.

Sure, he
snorted, just
rub it in.

(C)

(E): To rub it in
means to make
someone feel
better about an
already great
situation,
which is what
he did by
snorting.

[Social Norm]
Pre: It’s good to
make people feel
better about
a situation.
Hypo: It’s rude to
rub something in
someone’s face
when they don’t
want to.

(C):To rub it in
means to make
someone feel bad
about themselves,
but in this sentence
he is making the
speaker feel better
about the already
great situation.

Table 5: Examples from the validation set where DREAM generated context consisting of motivation and social
norm helped our proposed model DREAM-FLUTE (System 3) in figurative language understanding. For all these
examples a T5-based model that did not have access to additional context (System 1) gave wrong label prediction.
DREAM context helped improve both answer accuracy and explanation quality. Labels: (E), (C) refer to Entailment,
Contradiction respectively.
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Abstract

Transformers have achieved a state of the art
performance across most natural language pro-
cessing tasks. However, the performance of
these models often degrades when being trained
on data that exhibits skewed class distributions
(class imbalance) common social media data.
This is because training tends to be biased to-
wards head classes that have majority of the
data points . Most of the classical methods
that have been proposed to handle this prob-
lem like re-sampling and re-weighting often
suffer from unstable performance, poor appli-
cability and poor calibration. In this paper, we
propose to use Bayesian methods and Venn-
Abers predictors for well calibrated and robust
training against class imbalance. Our proposed
approach improves f1−score over the base-
line RoBERTa (A Robustly Optimized Bidirec-
tional Embedding from Transformers Pretrain-
ing Approach) model by about 6 points (79.0%
against 72.6%) when training with class imbal-
anced data.

1 Introduction

The phenomena of skewed class distribution also
known as class imbalance is ambiguous and com-
mon in most real-world datasets and natural lan-
guage processing (NLP) tasks (Tayyar Madabushi
et al., 2019). Instead of preserving an ideal uni-
form distribution over each category of labels, most
large-scale datasets exhibit skewed class distribu-
tions with a long tail having some target distri-
butions with significantly more observations than
others (Yang and Xu, 2020).

Although transformer-based models (Vaswani
et al., 2017) have achieved a state of the art per-
formance across several tasks in NLP, their perfor-
mance tends to degrade when trained on long-tailed
data. The main challenge lies in the sparsity of tail
classes leading to estimation of the decision bound-
aries severely biased towards head classes (classes
with more observations) (Pan et al., 2021a).

Class imbalance problem can be tackled at ei-
ther model training or model inference phases.
Approaches to handle class imbalance at training
phase can be classified into re-weighting or re-
sampling and those at model inference phase are
mostly calibration techniques (Menon et al., 2020;
Tian et al., 2020) which adjusts a classifier’s confi-
dence scores without changing the internal weights
or architectures (Pan et al., 2021b) of the underly-
ing models.

Post-processing calibration techniques have
been found to be efficient since they requires no fur-
ther training of the model and are effective on mul-
tiple class imbalanced classification benchmarks
in computer vision (Kang et al., 2020; Pan et al.,
2021b). Inspired by the success of post-processing
calibration techniques, we experiment with tech-
niques that are theoretically known to produce well
calibrated predictions; Bayesian inference for neu-
ral networks (Blundell et al., 2015; Wen et al., 2018;
Gal and Ghahramani, 2016) and Venn-Abers pre-
dictors (Vovk and Petej, 2014, 2012).

We test these methods by participating in the
shared task at the third Workshop on Figurative
Language Processing 2022 at EMNLP 2022 (Con-
ference on Empirical Methods in Natural Language
Processing). The training dataset exhibited a long
tail distribution with 70% of the training texts con-
taining euphemism (Gavidia et al., 2022; Lee et al.,
2022).

Euphemisms are mild or indirect expressions
that are used in place of more unpleasant or of-
fensive ones common in social media data. They
are used to show politeness when discussing sensi-
tive topics or as a way to make unpleasant things
sound better for example saying "laid to rest" in-
stead of "buried" or "armed conflict" instead of
"war" (Lee et al., 2022). With the need to curb inap-
propriate material on social media, people use these
euphemisms to bypass media censoring software
and thus automatically identifying texts containing
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these statements is a timely task. Several compu-
tational techniques have been proposed for the eu-
phemism task (Gavidia et al., 2022; Lee et al., 2022;
Zhu and Bhat, 2021). To the best of our knowledge,
this is the first attempt to combine Bayesian trans-
formers and Venn-Abers predictors for this task.
The contributions of this work are:

• We show that fine-tuning transformers with
Bayesian methods boosts performance over
naive training in imbalanced class setting.

• We propose an an approach to combine
Bayesian transformers and Venn Predictors
for long tail distribution learning.

• We propose a euphemism detection method
with considering of the class imbalance.

2 Background and Related Work

2.1 Euphemism Detection

Machine learning approaches have been proposed
for euphemism detection (Kapron-King and Xu,
2021; Magu and Luo, 2018; Gavidia et al., 2022;
Lee et al., 2022). Sentiment analysis methods have
been utilized to recognize and classify euphemistic
language in text (Felt and Riloff, 2020; Lee et al.,
2022). Magu and Luo, 2018 used word embed-
dings and network analysis to identify euphemisms
in the context of hate speech (Magu and Luo, 2018).
Self supervised methods (Zhu and Bhat, 2021; Zhu
et al., 2021) have also been employed. Our method-
ology is different from methods in literature in
that we consider the long tailed distribution na-
ture of the task and we also present apply novel
techniques from Bayesian inference and Venn pre-
dictors which have not been used before in this
task.

2.2 Learning under skewed class distributions

The dominant solutions to learning data with
long-tailed distributions can be classified into re-
sampling, re-weighting, confidence calibration and
regularization. Re-sampling strategies flatten the
data distribution, popular techniques are over-
sampling (Buda et al., 2018; Byrd and Lipton,
2019; Shen et al., 2016) and under-sampling (He
and Garcia, 2009; Haixiang et al., 2017). However,
under-sampling may discard most of the data points
and over-sampling results into over-fitting on the
minority classes.

Cost sensitive learning (loss re-weighting) is an-
other widely used method which works by assign-
ing weights for different training samples. class-
balanced loss assigns weights to classes propor-
tional to the inverse of their frequency in the
dataset (Huang et al., 2016, 2019). But optimiz-
ing deep learning models with this method under
extreme class class imbalance may deteriorate per-
formance (Zhong et al., 2021). Focal loss (FL)
is a weighted version of cross-entropy loss with
sample-specific weight. Label distribution-aware
margin loss (LDAM) derives a generalization er-
ror bound for imbalanced training and proposes
a margin-aware weighted cross-entropy loss (Cao
et al., 2019) by minimizing margin-based gener-
alization bound achieving significant performance
boost over unweighted cross-entropy loss.

Post-processing methods of handling class im-
balances re-calibrate the posterior distribution from
the predicted confidence scores at test time. Ex-
amples of the methods are are logit adjustment
(Menon et al., 2020) and posterior calibration (PC)
(Tian et al., 2020).

2.3 Bayesian modeling with transformers

Deep learning models especially those based
on the transformer architecture (Vaswani et al.,
2017) have achieved a state-of-the-art performance
across several tasks. BERT (Devlin et al., 2019)
(Bidirectional Embedding from Transformers) and
RoBERTa (Liu et al., 2019) (Robustly Optimized
BERT Pretraining Approach) are among the most
influential transformer variants in NLP. Despite
their impressive performance, deep learning mod-
els tend to be produce over-confidence scores that
are not calibrated which may deteriorate perfor-
mance in imbalanced learning settings (Blundell
et al., 2015).

Unlike the traditional neural networks trained
with Maximum Likelihood Estimation (MLE) that
fit a point estimate for the neural network’s weights,
Bayesian inference puts a prior distribution p(w)
over the weights and approximates the posterior dis-
tribution p(w|D) ∝ p(w)p(D|w). The predictive
distribution of an unknown label ỹ of a test data
item x̃ is given by p(ỹ|x̃) = Ep(w|D)[p(ỹ|x̃, w)],
we observe that taking an expectation over the pos-
terior distribution of the weights is equivalent to
using an ensemble of unaccountably infinite num-
ber of neural networks which would results into a
boost in performance over a single neural network
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Model Precision Recall f1-score
BERT-base 0.712 0.714 0.713
RoBERTa-base (Baseline) 0.745 0.719 0.726
RoBERTa-Platt Scaling 0.702 0.710 0.706
RoBERTa-Venn-Abers 0.736 0.728 0.731
RoBERTa-bayesian 0.732 0.761 0.743
RoBERTa-LDAM 0.769 0.779 0.774
RoBERTa-bayesian-LDAM 0.769 0.819 0.787
RoBERTa-Bayesian-LDAM-Venn-Abers (Ours) 0.794 0.786 0.790

Table 1: Accuracy, precision and f1−score in percentages on the test data set for baseline model (RoBERTa-base)
and our proposed approach (RoBERTa-Bayesian-LDAM-Venn-Abers), LDAM stands for label-distribution-aware
margin loss

(Blundell et al., 2015).
However computing the posterior distribution

over the weights often involve high dimensional
integrals that are intractable and cannot be obtained
in closed form. Popular approaches that have been
proposed to produce approximates of these dis-
tribution are based on monte-carlo estimates and
variational inference. Popular methods that utilise
Bayesian principles for approximating the poste-
rior distribution over neural networks are Bayes
by Backprop (Blundell et al., 2015) and Flipout
(Wen et al., 2018) and monte-carlo dropout (Gal
and Ghahramani, 2016).

Flipout (Wen et al., 2018) is an efficient method
for decorrelating the gradients within a mini-batch
by implicitly sampling pseudo-independent weight
perturbations for each example. Bayes by Back-
prop (Blundell et al., 2015) learns a probability
distribution on the weights of the neural networks
by minimizing the expected lower bound on the
marginal likelihood. Monte Carlo dropout (Gal
and Ghahramani, 2016) casts dropout training dur-
ing training of neural networks as approximate
Bayesian inference in deep Gaussian processes.

2.4 Venn-Abers Prediction
Venn-Abers predictors (Vovk and Petej, 2012) are
a special case of Venn predictors (Vovk and Petej,
2014) which are distribution-free probabilistic pre-
dictors that have a guarantee of being valid under
a sole assumption of the training examples being
exchangeable. They work by transforming the out-
put of a scoring classifier which in our case is a
machine learning model into a multi-probabilistic
prediction that has calibration guarantees.

More formally, assume we are given training
samples D = {(x, y)}ni=1 consisting of two com-
ponents; a data point x ∈ X and its label y ∈ Y .

Given a test data point xn+1, the Venn predictor
outputs a multi probabilistic prediction in the form
of a probability distribution over possible values of
the label.

A venn taxonomy B is a measurable function
B that assigns to each n ∈ {1, 2, ...} and each
sequence (d1, ...dn) ∈ Dn an equivalence relation
∼ on {1, ..., n}. The relation has to be equivariant
in the sense that for each n and each permutation
ϕ of {1, ..., n},

(i ∼ j|d1, ...dn) ⇒ (ϕ(i) ∼ ϕ(j)|dϕ(1), ..., dϕ(n))
(1)

where (i ∼ j|d1, ...dn) means that i is equivalent
to j under the relation assigned by B to (d1, ...dn).
A venn predictor with a Venn taxonomy B outputs
a pair (p0, p1) where

py =
|{i ∈ B(n+ 1|d1, ..., dn, (xn+1, y))|yi = 1}|

|B(n+ 1|d1, ...dn, (xn+1, y))|
(2)

where B(j|d1, .., dn) the class of the equivalence
of j is defined as follows:

B(j|d1, .., dn) = {i ∈ {1, ..., n}|(i ∼ j|d1, ...dn)}
(3)

p0 and p1 express the predicted probabilities of the
test object xn+1 belonging to a certain class.

3 Methodology

The dataset D = {(x, y)}ni=1 is divided into 3
splits; Dtrain for training the model, Dvalidation

for selecting the best models and calibration step,
Dtest for testing our approaches. We fine-tune
RoBERTa (Liu et al., 2019) with standard cross
entropy loss and with label-distribution-aware mar-
gin loss (LDAM) function (Cao et al., 2019). We
first experiment with training our models in non-
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Bayesian way using the standard maximum likeli-
hood estimation and also in a Bayesian way by ap-
plying Bayesian layers in our neural network. The
Bayesian layers used for our experimentation are
Monte carlo dropout (Gal and Ghahramani, 2016).

To calibrate our predictions, we perform in-
ference on the validation dataset Dvalidation of
size k with our trained model and obtained un-
calibrated confidence scores denoted as {z1, ..., zk}
for each test data point x. Venn-Abers predictors
proceeds by fitting an isotonic regression on the
set (z1, y1), ...(zk, yk), (z, 0) and the computing
the score s(xi) for each calibration data points
(xi, yi). Let g be an increasing function on the
set s(x1), ...s(xk) that maximizes the likelihood∏k

i=1 pi where:

pi =

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0
(4)

Thus the multi-probabilistic prediction for x is the
pair

(p0, p1) = (g0(s0(x)), g1(s1(x))) (5)

The estimated label for a text data point x is the
probability that minimizes the regret of the loss
function calculated as in Equation 6.

p =
p1

1− p0 + p1
(6)

4 Results and Discussion

4.1 Datasets

The dataset used for experiments is an Euphemism
detection (ED) dataset (Gavidia et al., 2022; Lee
et al., 2022) released by Third Workshop on Figu-
rative Language Processing 2022 at EMNLP 2022
shared task on Euphesim Detection. This was a
binary classification problem for identifying text
expression that was euphemistic. The training data
consisted of 1572 training points and test data con-
sisted of 393 texts. Of the 1572 training texts, only
466 (30%) were did not contain euphemism.

4.2 Experimental Setup

We conduct experiments with pretrained trans-
former language models; RoBERTa (Liu et al.,
2019), Bayesian methods and Venn-Abers predic-
tors . Experiments are done for 50 epochs, max
length of 512, batch size of 50 and the learning
rate was set at 0.0005. The final submission were

evaluated using f1-score. Transformers are im-
plemented using hugging-face transformer library
(Wolf et al., 2019), bayesian layers are imple-
mented using Bayesian torch and baal (Krishnan
and Tickoo, 2020; Atighehchian et al., 2022) and
conformal predictors were implemented using reli-
abots (Shafer and Vovk, 2008).

4.3 Discussion

To assess the impact of Bayesian fine-tuning and
Venn predictors, we perform experiments on the
euphemisms detection dataset (Lee et al., 2022) de-
scribed in section 4.1. Table 1 shows a combination
of different models and their results on the test set.
F1-score, recall and accuracy measures were used
to evaluate the performance of different models as
shown in Table 1. RoBERTa achieves a a slightly
better performance compared to BERT (72.6% ver-
sus 71.3%). The observation is re-enforced by the
impact of the architecture design of the pre-trained
model on downstream tasks.

Experiments results on the test as shown in Fig-
ure 1 reveal that calibrating confidence scores of
RoBERTa using Venn Abers predictors improves
performance of the model by 1.2%. This is con-
sistent with other results that report improved per-
formance with post-hoc posterior calibration but
naive calibration using platt scaling degrades per-
formance of the model (Tian et al., 2020). Fine-
tuning RoBERTa with a Bayesian layer boosts per-
formance (about 2%) compared to the traditional
fine-tuning, This is because Bayesian layers in a
neural networks can be seen an ensemble of many
networks at test time.

The biggest performance boost comes from train-
ing our models with a label distribution aware mar-
gin loss function (LDAM) and differed weighting,
and this demonstrated the importance of cost sensi-
tive learning when the data distribution is skewed.
Finally our best system which we submitted for
competition to the euphemism shared tasks was
a combination of RoBERTa, Bayesian learning,
cost sensitive learning and Venn Abers Predictors
(RoBERTa-bayesian-LDAM-Venn-Abers) with an
f1−score of 79% as shown in Table 1.

5 Conclusion

In this work, we have presented an approach for im-
proving classification performance of transformer
model when the data exhibits skewed class distribu-
tions. Data exhibits skewed class distribution when
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majority of the data points belong to some classes
while other classes have very few data points. The
situation makes naive training of neural networks
hard since they tend to biased towards head classes.
Our approach is based on cost sensitive Bayesian
learning with Venn predictors for robust training
against the class imbalance. Experiments the Eu-
phemisms detection dataset which had class im-
balance show that this method improves over tra-
ditional fine tuning by about 6% in terms of f−
score (79.0% versus 72.6%). As future work, we
would like to investigate how these finding extend
beyond the euphemisms detection dataset.
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Abstract

Idiomatic expressions (or idioms) are phrases
where the meaning of the phrase cannot be de-
termined from the meaning of the individual
words in the expression. Translating idioms
between languages is therefore a challenging
task. Transformer models based on contex-
tual embeddings have advanced the state-of-
the-art across many domains in the field of
natural language processing. While research
using transformers has advanced both idiom
detection as well as idiom disambiguation,
idiom translation has not seen a similar ad-
vancement. In this work, we investigate two
approaches to fine-tuning a pretrained Text-to-
Text Transfer Transformer (T5) model to per-
form idiom translation from English to German.
The first approach directly translates English
idiom-containing sentences to German, while
the second is underpinned by idiom paraphra-
sing, firstly paraphrasing English idiomatic ex-
pressions to their simplified English versions
before translating them to German. Results of
our evaluation show that each of the approaches
is able to generate adequate translations.

1 Introduction

In the past decade, we have seen an increase in the
accuracy of machine translation (MT) approaches
(Wang et al., 2021). Some of the contributing fac-
tors to this increase is the introduction of the atten-
tion mechanism and contextual embedding models
(Liu et al., 2020), as well as the wider availabi-
lity of datasets. According to Škvorc et al. (2022)
however, the same increase in accuracy has not
been achieved for idiom translation. Idioms are de-
fined as “a group of words established by usage as
having a meaning not deducible from those of the
individual words” (University of Oxford, 2022).

Since datasets used for MT are, in general, not
rich in idioms (Fadaee et al., 2018; Saxena and
Paul, 2020; Zhou et al., 2022; Škvorc et al., 2022;
Eryiğit et al., 2022), MT models can suffer from

this by not being able to distinguish between an
idiom and an expression that can be interpreted
literally. This can result in a wrong or meaningless
translation, as can be seen in Figure 1. However,
there are also idioms which can be interpreted liter-
ally, depending on the context in which it was used.
For instance, the idiom “breaking the ice” could
have an idiomatic meaning “to get a conversation
started”, but its literal meaning is also valid, e.g.,
in the context of someone breaking ice cubes for a
cocktail. Such idiomatic expressions make it even
more challenging for models to correctly translate
sentences containing them. To further complicate
the issue, some multi-word expressions (MWEs)
such as “to pass on” and “to come out”, are often
used in their idiomatic sense but can also be used
in their literal sense.

Figure 1: Example of an idiom-containing German sen-
tence with its wrong (literal) and correct translations in
English.

With the emergence of the attention mechanism
(Yu et al., 2020), transformer models and contex-
tual embeddings (Devlin et al., 2018) came the
rapid advancement of the state of the art in many
NLP tasks, e.g., question answering and machine
translation (Raffel et al., 2020). In this work, we
aim to improve the translation of idiomatic ex-
pressions by employing contextual embeddings.

We focus on investigating two different
approaches for fine-tuning transformer models for
the translation of sentences containing idiomatic
expressions. Parallel corpora containing idiomatic
expressions are scarce (Fadaee et al., 2018; Saxena
and Paul, 2020; Zhou et al., 2022; Škvorc et al.,
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2022; Eryiğit et al., 2022), but owing to the avai-
lability of a parallel corpus of idiom-containing
English sentences and their corresponding German
translations (Fadaee et al., 2018), we have cho-
sen English and German as our source and tar-
get languages, respectively. The first approach
utilises this dataset for idiom-to-idiom translation,
i.e., translation of an idiom-containing sentence in
English to its equivalent idiom-containing sentence
in German. The second approach, meanwhile, is
based on idiom paraphrasing, i.e., conversion of
an English idiom-containing sentence to its para-
phrase, followed by translation of the latter to Ger-
man. On top of assessing the performance of these
approaches based on evaluation metrics, we de-
signed a strategy for human-based evaluation to
determine: (1) how fluent their translations are in
German, and (2) how well their translations pre-
serve the meaning of source sentences.

To the best of our knowledge, ours is the
first work to investigate the extent to which
transformer models, specifically the Text-to-Text
Transfer Transformer (T5) kind (Raffel et al.,
2020), can translate idiom-containing sentences
from one language to another. Based on the
transformer encoder-decoder architecture (Vaswani
et al., 2017), T5 provides a unified framework for
casting many NLP problems (e.g., text classifi-
cation, question answering) as a sequence-to-
sequence learning task, and thus lends itself well to
the problem of translating idiomatic expressions.

2 Related Work

Neural machine translation (NMT) models (Is-
abelle et al., 2017) and statistical machine trans-
lation (SMT) models (Salton et al., 2014a)
have shown difficulty in translating idiomatic ex-
pressions (Chakrawarti et al., 2017; Dankers et al.,
2022). The meaning of an idiom is generally
different from the joint meaning of the words com-
posing it, and therefore translation models tend to
make errors from the literal translation of indivi-
dual words.

In recent years, a number of transformer models,
e.g., BERT (Devlin et al., 2018), BART (Lewis
et al., 2019) and T5 (Raffel et al., 2020), have
been successfully applied to a wide range of na-
tural language processing tasks. The advantage of
these models is that, for any word (token), they
use a contextual embedding representation which
is based not only on the word itself, but also on

its context (i.e., surrounding words to the left and
right). They have achieved ground-breaking re-
sults in almost every NLP task (Liu et al., 2020).
Context is key for the comprehension of idiomatic
expressions, hence such contextual embeddings
could potentially be helpful in understanding them.
While the use of transformer models to understand
idiomatic expressions has been explored in seve-
ral papers (Kurfali and Östling, 2020; Zhou, 2021;
Zhou et al., 2022; Tan and Jiang, 2021; Škvorc
et al., 2022), very little research has been done on
idiom translation based on these models.

There are multiple tasks involved in the transla-
tion of idiom-containing sentences. The first one
involves the identification of idiomatic expressions
within a sentence (Fazly et al., 2009). Škvorc et al.
(2022), for instance, showed that transformer mo-
dels can be used to successfully identify idiomatic
expressions. Idiom identification is followed by
sense disambiguation, which involves determining
whether an idiom is used literally or idiomatically
in the containing sentence (Sporleder and Li, 2009;
Kurfali and Östling, 2020; Tan and Jiang, 2021).
Transformers have also advanced the state of the
art in this task (Kurfali and Östling, 2020; Tan and
Jiang, 2021). A further task is the translation or
paraphrasing of idioms, depending on the intended
application. Much research has been shown to at-
tempt paraphrasing idioms to replace them with
their literal meaning (Liu and Hwa, 2016; Zhou,
2021; Zhou et al., 2022; Tien-Ping and Jia Jun,
2021). The work of Zhou et al. (2022) demon-
strated how BART can be used for this purpose.

With respect to datasets for idiom paraphra-
sing, there are various mono-lingual English idiom
datasets (Saxena and Paul, 2020; Zhou et al., 2021;
Adewumi et al., 2021). Among these datasets, the
PIE dataset (Zhou et al., 2021) stands out, as it
contains both idiomatic expressions and their non-
idiomatic counterparts.

When it comes to translation to another language
rather than paraphrasing within a single language,
Salton et al. (2014b) employed SMT to firstly sub-
stitute idioms with their simplified meanings before
translation to the target language, after which the
translated expressions were substituted with idioms
in the target language.

Little research can be found when it comes to
the direct translation of idiomatic expressions from
a source to a target language. A major contribu-
ting factor to this could be the scarcity of paral-
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lel corpora suitable for this task. A few papers
on translation introduced their own datasets. An
example is the work of Agrawal et al. (2018) where
the authors introduced a parallel corpus of idiom-
containing sentences in seven Indian languages and
English, on which NMT and SMT models were
trained. Fadaee et al. (2018) similarly created an
English-German parallel corpus of sentences with
idiomatic expressions, and evaluated the perfor-
mance of NMT and SMT models based on it. Other
corpora that support the development of idiom
translation include a Russian-English (Aharodnik
et al., 2018) and a Chinese-English dataset (Tang,
2022).

3 Methodology

The focus of this work is idiom translation. We
thus consider idiom identification as outside of our
scope, and make the assumption that input sen-
tences contain idiomatic expressions. Furthermore,
in some of our models (described below), the idio-
matic expression itself is included as part of the
input.

Below, we describe each of the two approaches
we propose for idiom translation, one underpinned
by idiom-to-idiom translation from the source to
target language, and the other based on idiom
paraphrasing within the source language followed
by translation to the target language. In both
cases, a T5 model was fine-tuned for a sequence-to-
sequence learning task, where the input is provided
in the form of a sequence of tokens and the model
produces another sequence as its output. The task
that the model needs to learn, is defined by prepend-
ing a prefix to the input sequence.

T5 models come in different sizes. In this
work, we employed the t5-small implementa-
tion1 which has around 60 million parameters and
yet is feasible to train with limited computational
resources. It comes pretrained for language model-
ling based on the Colossal Clean Crawled Corpus
(Raffel et al., 2020) and fine-tuned for a number of
downstream NLP tasks including translation.

3.1 Idiom-to-idiom Translation

In this approach, a model was developed to trans-
late an idiom-containing sentence from the source
language (English) to the target language (Ger-
man).

1https://huggingface.co/t5-small

Dataset. The dataset used in training and evalua-
ting our single translation model is the IdiomTrans-
lationDS dataset by Fadaee et al. (2018). It consists
of English-German sentence pairs where each of
the sentences is an idiom-containing translation of
the other. The idioms contained in each sentence
pair are also provided. The dataset contains a total
of 3498 sentence pairs sourced from the WMT trai-
ning set (Bojar et al., 2017), distributed between a
training and test set with 1998 and 1500 sentence
pairs, respectively. Our analysis showed that cer-
tain idiomatic expressions appeared very frequently
in this dataset. For instance, “to pass on”, “to be in
the know” and “in a nutshell” are contained in 513,
120 and 84 sentence pairs, respectively.

Data Cleaning. Manual inspection of the sen-
tence pairs (carried out by two conversational Ger-
man speakers) showed that some of the provided
German sentences are not correct translations of
their corresponding English sentences. To elimi-
nate noise from the training and test sets, these
pairs were manually removed, reducing the size
of the training and test sets by 13.3% (265 pairs
removed) and 15.2% (228 pairs removed), respec-
tively. Furthermore, Unicode characters from other
languages (Arabic and Mandarin) which appeared
in some of the source and target sentences, were
automatically removed.

As the original dataset did not provide predefined
training and validation subsets, 15% of the pairs in
the training set were randomly selected and held
out to comprise a validation set.

Model Training. A T5 model was fine-tuned in
different ways in order to develop different versions
of our idiom-to-idiom translation model. This was
carried out by varying the prefix prepended to the
input sequence and/or specifying the pre-identified
idiomatic expression within a given sentence.

The authors of T5 already provide a model
that had been fine-tuned for a number of down-
stream tasks, including English-to-German trans-
lation (Raffel et al., 2020). As a starting point,
the T5 model was further fine-tuned for the exis-
ting English-to-German translation task using our
cleansed IdiomTranslationDS dataset. This re-
quired prepending the input sequences with the pre-
fix “translate English to German:”. Additionally,
we sought to define a new task for which to fine-
tune T5, hence we trained another model whereby
the input sequences were prepended with a custom
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prefix, “translate English to German with idiom:”.
For both of the above fine-tuning tasks, we also

investigated the effect of specifying the idiom con-
tained within a given sequence. To this end, a suffix
indicating the pre-identified idiom was appended to
an input sequence. For example, the suffix “idiom:
to be in the picture” was appended to the original
input sequence “She’s not in the picture.” Four
different translation models were obtained by fine-
tuning the t5-small model for 50 epochs, for
each of the following tasks: (1) Predefined trans-
lation: based on continuing to fine-tune T5 for
the already existing English-to-German translation
task, using the original input format; (2) Idiom-
aware predefined translation: similar to task (1) but
with the idiom appended at the end of the input
sequence; (3) Custom translation: based on defi-
ning a new downstream task for T5, whereby we
introduced the custom prefix “translate English to
German with idiom:”; and (4) Idiom-aware custom
translation: similar to task (3) but with the idiom
appended at the end of the input sequence. Table 1
presents some examples that illustrate the different
ways in which we fine-tuned the T5 model.

3.2 Idiom Paraphrasing and Translation

The second approach consists of a pipeline divided
into two sub-tasks, each underpinned by a different
model. The first sub-task is concerned with con-
verting English idiom-containing sentences to their
English paraphrases by training a paraphrasing
model. This is followed by the second sub-task of
translating the resulting paraphrases to German. It
is worth noting that in the context of this approach,
we define paraphrase as a simplification of the orig-
inal idiom-containing sentence, allowing a reader
to understand its meaning even if they are unfamil-
iar with the idiom. For example, a paraphrase of
the sentence “He feels he can paddle his own canoe
after turning 18” is “He feels he can be self-reliant
after turning 18.”

Dataset. To train the paraphrasing model, the PIE
dataset (Zhou et al., 2021) was used. This dataset
consists of English idiom-containing sentences as
well as their corresponding paraphrases (also in
English). Additionally, the dataset also specifies
which tokens in a sentence corresponds to an idiom,
as well as the meaning (sense) of that idiom. A
total of 823 (non-unique) idioms are included in
the dataset with a total of 5170 sentences, where
each idiom has at least five sentence pairs per sense

(as some idioms have multiple senses).

Data Cleaning. Although our analysis of the
dataset showed that the data is mostly clean, se-
veral pre-processing operations were nevertheless
applied. Some extraneous characters (e.g., ¾, ™)
were removed. Also, variations in punctuation
(e.g., different types of quotation marks) were nor-
malised. Tokenisation seems to have been ap-
plied (by the dataset creators) on the data, e.g.,
“don’t” appears as “do n’t”. However, this seems
to be have been done inconsistently across the
samples. Tokenised contractions were therefore
merged again, considering that T5 does not require
input sequences to be tokenised, as it comes with
its own tokeniser.

The dataset was subdivided into training, valida-
tion and test sets following a 70-15-15% split.

Model training: Idiom paraphrasing. We ex-
plored a number of ways to fine-tune a T5 model
for paraphrasing, while also exploiting the fact
that a t5-small model fine-tuned specifically
for general paraphrasing, is already available. This
model, t5-small-tapaco2, was fine-tuned on
the TaPaCo dataset (Scherrer, 2020).

As our baseline, the original t5-small model
was fine-tuned by introducing a new task specified
by a custom prefix “id_par:” (short for “idiom
paraphrasing”). This was necessary as none of
the downstream tasks that T5 was originally fine-
tuned for, were concerned with paraphrasing. To
make the model aware of the idiom contained in
a given sentence, we also appended the idiomatic
expression itself, as supplied in the dataset.

Meanwhile, the t5-small-tapaco model
which had already been fine-tuned for general para-
phrasing, already recognises the predefined pre-
fix “paraphrase:”. To fine-tune this specific model,
we prepared the input sequences in our dataset by
prepending the said prefix.

In summary, fine-tuning for the following
tasks was performed (for 50 epochs), resul-
ting in three types of paraphrasing models (ex-
emplified in Table 2): (1) Custom paraphra-
sing with t5-small: based on fine-tuning
t5-small whereby we introduced a custom pre-
fix “id_par:” and appended the idiom at the end
of the input sequence; (2) Predefined paraphra-
sing with t5-small-tapaco: based on conti-

2https://huggingface.co/hetpandya/
t5-small-tapaco
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Model Variant Example Input Sequence
Predefined translate English to German: She’s not in the picture
Idiom-aware predefined translate English to German: She’s not in the picture. idiom: to be in the picture
Custom translate English to German with idiom: She’s not in the picture.
Idiom-aware custom translate English to German with idiom: She’s not in the picture. idiom: to be in the picture

Table 1: Examples showing how t5-small was fine-tuned for different tasks resulting in four translation model
variants.

nuing to fine-tune t5-small-tapaco for para-
phrasing, with the predefined prefix “paraphrase:”
prepended to input sequences; and (3) Custom
paraphrasing with t5-small-tapaco: based
on fine-tuning t5-small-tapaco with the cus-
tom prefix “id_par:” and the idiom appended at
the end of each input sequence.

Translation. The second sub-task is concerned
with the translation of the English paraphrases
(resulting from the first sub-task) to German. As
the paraphrase model is presumed to have per-
formed simplification of the idiomatic expressions
contained in the input sentences, this sub-task can
be cast as general translation from English to Ger-
man. We leveraged the original t5-small model
for this purpose, as it had already been fine-tuned
for the English-to-German translation task.

4 Evaluation and Results

In order to evaluate our approaches, both automatic
and human-based evaluation were conducted. Be-
low, we first discuss the results of automatically
evaluating each of the idiom-to-idiom translation
and idiom paraphrasing models, followed by the
results of human-based evaluation.

4.1 Automatic Evaluation

As part of our automatic evaluation, the follow-
ing metrics were used: BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and COMET (Rei et al., 2020). COMET, in particu-
lar, has a variant known as Referenceless COMET,
that we also used to estimate the quality of a gene-
rated translation even without a gold standard trans-
lation to compare with.

It is worth noting that an absolute score obtained
by any of the above metrics is difficult to interpret
on its own. Nevertheless, when viewed relative to
each other, such scores are helpful in comparing the
performance of different models and approaches
(bearing in mind that for each of BLEU, METEOR
and COMET, higher scores are desirable).

4.1.1 Idiom-to-idiom Translation
The BLEU, METEOR, COMET and Referenceless
COMET scores obtained by our different idiom-
to-idiom translation models on the cleansed Idiom-
TranslationDS test set are presented in Table 3.
According to all metrics, the best results were ob-
tained by the model that was based on continuing to
fine-tune T5 for the predefined English-to-German
translation task using the IdiomTranslationDS trai-
ning set, without the idiomatic expression specified
in the input sequence. To investigate whether the
performance improvement obtained by this model
(over the baseline model) is statistically significant,
a paired t-test was performed for all scores. This re-
sulted in p-values of 0.010, 0.056, 0.016 and 0.546
for BLEU, METEOR, COMET and Referenceless
COMET, respectively. Considering a significance
threshold of 0.05, we can say that the performance
improvement based on BLEU and COMET is sig-
nificant.

4.1.2 Idiom Paraphrasing and Translation
To evaluate the performance of our second
approach, we firstly conducted a comparison of our
different models for the idiom paraphrasing sub-
task. On the basis of that, the best-performing para-
phrasing model was selected and integrated with
our chosen English-to-German translation model to
form a pipeline, whose performance was evaluated
separately.

Shown in Table 4 are the results of evaluating
our idiom paraphrasing models on our cleansed
PIE validation set using the BLEU and METEOR
metrics. Based on both scores, the best-performing
paraphrasing model is the one that was based on
fine-tuning t5-small-tapaco for our custom
task using the cleansed PIE training set.

To realise the pipeline for our second approach,
our Custom t5-small-tapaco model was inte-
grated with the original t5-smallmodel that was
already fine-tuned for general English-to-German
translation. This combination was evaluated on the
cleansed PIE test set, the results of which are shown
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Model Variant Example Input Sequence
Custom t5-small id_par: The comedian had the audience in stitches. idiom: in stitches
Predefined t5-small-tapaco paraphrase: The comedian had the audience in stitches.
Custom t5-small-tapaco id_par: The comedian had the audience in stitches. idiom: in stitches

Table 2: Examples showing how different paraphrasing model variants based on t5-small and
t5-small-tapaco were fine-tuned based for different tasks.

Translation Model BLEU METEOR COMET Ref. COMET
Pretrained t5-small (Baseline) 0.145 0.493 0.241 0.100
Fine-tuned for Predefined task 0.151 0.498 0.257 0.101
Fine-tuned for Idiom-aware predefined task 0.146 0.495 0.255 0.097
Fine-tuned for Custom task 0.147 0.489 0.052 0.052
Fine-tuned for Idiom-aware custom task 0.142 0.492 0.242 0.095

Table 3: Evaluation results based on the cleansed IdiomTranslationDS test set. Referenceless COMET (Ref.
COMET) scores were obtained by averaging over all test sentences. Each of the fine-tuned translation models is
based on t5-small.

in Table 5. Compared to a baseline approach of
translating an English idiom-containing sentence
to German using the original t5-small model,
our proposed pipeline-based approach obtained im-
proved performance based on the Referenceless
COMET metric. A paired t-test was performed and
resulted in a p-value of 0.013, confirming that the
improvement is statistically significant.

4.2 Human-based Evaluation
To complement the automatic evaluation carried
out (described in Section 4.1), we sought the help
of volunteer human participants in evaluating the
outputs of our two approaches to idiomatic expres-
sion translation. To this end, a survey was built
(using the Qualtrics platform3) to evaluate: (1) the
extent to which each of our approaches generated
fluent German sentences; and (2) how well each
of our approaches generated German sentences
that preserved the meaning of the original idiom-
containing English sentences.

Survey design. The survey begins with a self-
assessment section, which enabled us to ensure that
responses were collected only from participants
who are at least proficient/conversational in both
English and German4.

The core of the survey consists of two sections,
each one intended to evaluate each of our two
approaches. In each section, five questions were
presented to a participant, where each question

3https://www.qualtrics.com
4We did not collect any personal information hence ethics

approval of the survey was not required.

(described in more detail below) is intended to
assess the quality of a generated German trans-
lation of an English idiom-containing sentence.
Out of these five questions, two were fixed, i.e.,
shown to every participant, to allow us to calculate
agreement between participants. The other three
questions were based on random selection from
a pool of 12 English idiom-containing sentences
which were automatically translated by each of our
approaches.

The first section was designed to evaluate the out-
puts of our best-performing idiom-to-idiom trans-
lation model. Each question presents an Eng-
lish idiom-containing sentence (drawn from the
cleansed IdiomTranslationDS test set) and the Ger-
man translation generated by the said model. A
participant is asked to rate the translation in terms
of fluency and meaning preservation on a scale of
1 to 5, with the values corresponding to: (1) “Very
bad/Incomprehensible”, (2) “Bad”, (3) “Adequate”,
(4) “Good”, and (5) “Very good/Flawless”. An op-
tion for “I don’t know” was also made available.
An example question is shown in Appendix A.

The second section was designed similarly to
the first section, except for the English idiom-
containing sentences having been drawn from the
cleansed PIE test set and their translations having
been generated by our pipeline-based approach.

The survey, containing a total of 10 translation
quality assessment questions spread across the two
sections, was published for one week and obtained
responses from a total of 53 participants.
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Paraphrasing Model BLEU METEOR
Custom t5-small (Baseline) 0.755 0.843
Predefined t5-small-tapaco 0.768 0.856
Custom t5-small-tapaco 0.774 0.859

Table 4: Results of evaluating our idiom paraphrasing models based on the cleansed PIE validation set.

Paraphrasing Translation
BLEU METEOR Ref. COMET

Pretrained t5-small (Baseline) NA NA 0.0075
Custom t5-small-tapaco+Pretrained t5-small 0.768 0.852 0.0147

Table 5: Results of evaluating our combined idiom paraphrasing and translation approach, on the PIE test dataset.
Referenceless COMET (Ref. COMET) scores were obtained by averaging over all test sentences.

Inter-rater agreement. In order to assess the re-
liability of the ratings collected through the survey,
inter-rater agreement was calculated based on the
fixed questions5 that were presented to all parti-
cipants. As a preliminary step, we removed any
responses where the “I don’t know” option was
selected instead of a rating from 1 to 5, eliminating
only two responses. We then calculated the value
of Krippendorff’s alpha (Hayes and Krippendorff,
2007) with the help of an implementation available
from PyPi6. A value of 0.22 for alpha was obtained,
which can be interpreted as fair agreement between
our participants (Hughes, 2021). We do acknowl-
edge that this implies that the rating task was not
straightforward, and that a much higher agreement
could have been obtained had we recruited only
native German speakers (who also speak English),
which we did not have access to at the time of this
study.

Results. For each question in each section of the
survey, the ratings given by participants were col-
lected and analysed. The results for the idiom-to-
idiom translation approach and the pipeline-based
approach are visualised7 in Figures 2 and 3, respec-
tively. Each of the figures shows a box plot for
every question, with the box ranging from the first
to the third quartile and the whiskers extending to
the minimum and maximum scores. It is worth
noting that the set of 14 questions used in assessing
the first approach (idiom-to-idiom translation) is
different from the set of 14 questions used to assess

5There were a total of four fixed questions given that two
were included in each of the two sections.

6https://pypi.org/project/
krippendorff/

7The box plots were produced based on code from https:
//github.com/mctenthij/CDS_paper

the second approach (pipeline consisting of idiom
paraphrasing and translation).

The median for every question is given by a ver-
tical line, while the mean rating8 is indicated by
a star (⋆). The dotted line represents the average
score over all questions. The idiom-to-idiom trans-
lation model obtained an average fluency of 3.73,
while that obtained by the pipeline-based approach
is 3.65 (out of 5). In terms of meaning preservation,
very similar average scores were obtained, i.e., 3.30
and 3.29 (out of 5) for the idiom-to-idiom transla-
tion and pipeline-based approaches, respectively.

5 Discussion

With respect to the first approach underpinned by
idiom-to-idiom translation, our results showed that
the best-performing model is the one that was based
on continuing to fine-tune t5-small for the pre-
defined English-to-German translation task. This
shows that a T5 model that was fine-tuned for the
predefined translation task, is better at translating
English idiom-containing sentences to their idiom-
containing German counterparts, compared to a
model that was trained for a completely new idiom
translation task. This is unsurprising considering
that T5 was fine-tuned for general translation on
the WMT 2014 English-German dataset with 4.5
million sentence pairs (Vaswani et al., 2017), while
the cleansed IdiomTranslationDS dataset that we
used to fine-tune T5 for the new, custom idiom
translation task, includes only 1733 pairs.

When it comes to the second approach which is
based on a pipeline of idiom paraphrasing and trans-
lation models, our results demonstrate that fine-

8The average number of ratings collected for the randomly
selected questions is 13.25.
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(a) Fluency scores (b) Meaning preservation scores

Figure 2: Box plots of the scores provided by participants for each survey question assessing the quality of the
outputs of our idiom-to-idiom translation model. Questions are denoted using the convention F#-1 or R#-1, where
F and R indicate a fixed and randomly selected question, respectively, and 1 means that the question was used to
evaluate the first approach.

(a) Fluency scores (b) Meaning preservation scores

Figure 3: Box plots of the scores provided by participants for each survey question assessing the quality of the
outputs of the pipeline-based approach. Questions are denoted using the convention F#-2 or R#-2, where F and R
indicate a fixed and randomly selected question, respectively, and 2 means that the question was used to evaluate the
second approach.

tuning t5-small-tapaco (a T5 model that had
already been trained for general English paraphra-
sing) for our newly proposed custom paraphrasing
task, leads to improved performance. Moreover,
when this paraphrasing model is combined with the
original T5 model for general English-to-German
translation, better performance on the translation
task is obtained, in comparison with using only the
original T5 model.

Although the two approaches are not directly
comparable with each other (i.e., the first approach
is aimed at keeping the idiom in a German trans-
lation while the second one is aimed at generating
a German translation of a non-idiomatic English
paraphrase), our human-based evaluation shows
that the first approach—the one based on idiom-

to-idiom translation—seems to produce outputs
which are marginally better that those of the second.
This can be expected: as the second approach is
based on a pipeline of paraphrasing and transla-
tion sub-tasks, any errors from the paraphrasing
model would have been propagated to the transla-
tion model, affecting the quality of the final out-
puts. This is an issue that does not apply to the first
approach since it performs direct translation.

6 Conclusions and Future Work

In this paper, we demonstrate how T5 models can
be exploited in idiom translation: by fine-tuning
them for idiom-to-idiom translation (first approach)
and idiom paraphrasing (second approach). On the
one hand, automatic evaluation showed that con-
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tinuing to fine-tune the original T5 model for the
predefined translation task on an idiom translation
dataset, yielded optimal performance for idiom-to-
idiom translation. On the other hand, fine-tuning a
T5 model that had already been trained on a general
paraphrasing task, for a custom idiom paraphrasing
task, led to the best performance for idiom para-
phrasing. Combining the said paraphrasing model
with the original T5 model for general translation,
resulted in improved results for idiom translation,
compared with using just the latter. Human-based
evaluation showed that both approaches produce
translations of adequate quality.

To further advance research in idiom transla-
tion, we propose possible directions that can be
pursued in the future. Firstly, a high-quality dataset
with a much larger number of idiom-containing sen-
tence pairs can be developed to facilitate better fine-
tuning of T5 models for a custom idiom-to-idiom
translation task. Moreover, it would be beneficial
to create one dataset that can support the develop-
ment of both idiom-to-idiom translation and idiom
paraphrasing approaches. For instance, one can
enrich the IdiomTranslationDS dataset by includ-
ing paraphrases of idioms in English and German.
Furthermore, our work has highlighted the fact that
idiom translation datasets are scarce. When more
such datasets become available, one can assess the
extent to which our approaches can be applied to
other language pairs.

To mitigate the current lack of large datasets for
idiom translation, one could cast the idiom transla-
tion problem as a prompt-based learning task (Liu
et al., 2021): a framework that makes it possible to
apply pretrained language models to downstream
tasks (such as translation) without the need for
large amounts of data for fine-tuning.
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Abstract
We introduce EUREKA, an ensemble-based ap-
proach for performing automatic euphemism
detection. We (1) identify and correct poten-
tially mislabelled rows in the dataset, (2) curate
an expanded corpus called EuphAug, (3) lever-
age model representations of Potentially Eu-
phemistic Terms (PETs), and (4) explore using
representations of semantically close sentences
to aid in classification. Using our augmented
dataset and kNN-based methods, EUREKA1

was able to achieve state-of-the-art results on
the public leaderboard of the Euphemism De-
tection Shared Task, ranking first with a macro
F1 score of 0.881.

1 Introduction

Euphemisms are mild or indirect expressions used
in place of harsher or more direct ones. In every-
day speech, euphemisms function as a means to
politely discuss taboo or sensitive topics (Danescu-
Niculescu-Mizil et al., 2013), to downplay certain
situations (Karam, 2011), or to mask intent (Magu
and Luo, 2018). The Euphemism Detection task
is a key stepping stone to developing natural lan-
guage systems that are able to process (Tedeschi
et al., 2022; Liu et al., 2022; Jhamtani et al., 2021)
and generate non-literal texts.

In this paper, we detail our methods to the Eu-
phemism Detection Shared Task at the EMNLP
2022 FigLang Workshop2. We achieve perfor-
mance improvements on two fronts:

1. Data – We explore various data cleaning and
data augmentation (Shorten and Khoshgoftaar,
2019; Feng et al., 2021; Dhole et al., 2021) strate-
gies. We identify and correct potentially misla-
belled rows, and we curate a new dataset called

∗ Equal contribution by S. Keh and R. Bharadwaj
† Equal contribution by E. Liu and S. Tedeschi

1Our code is available at https://github.com/
sedrickkeh/EUREKA

2https://sites.google.com/view/
figlang2022/home?authuser=0

EuphAug by extracting sentences from a large un-
labelled corpus using semantic representations of
the sentences or euphemistic terms in the initial
training corpus.

2. Modelling – We explore various representa-
tional and design choices, such as leveraging the
LM representations of the tokens for euphemistic
expressions (rather than the [CLS] token) and in-
corporating sentential context through kNN aug-
mentation and deep averaging networks.

Using these methods, we develop a system called
EUREKA which achieves a macro F1 score of 0.881
on the public leaderboard and ranks first among
all submissions. We found the data innovations
to be more significant in our case, indicating that
euphemistic terms can be classified with some accu-
racy if potentially euphemistic spans are identified
earlier in the pipeline.

2 Task Settings and Dataset

2.1 Task Settings
The task and dataset are specified by the Eu-
phemism Detection Shared Task, which uses a sub-
set of the euphemism detection dataset of Gavidia
et al. (2022). The goal of the task is to classify a Po-
tentially Euphemistic Term (PET) enclosed within
delimiter tokens as either literal or euphemistic in
that context. The training set contained 207 unique
PETs and 1571 samples, of which 1106 are classi-
fied as euphemisms.

2.2 Data Cleaning
Gavidia et al. (2022) characterize common sources
of ambiguity and disagreement among annotators.
However, while exploring the data, we also spotted
some rows which were, beyond a reasonable doubt,
mislabelled (Table 1). This is an artifact of many
human-annotated datasets (Frenay and Verleysen,
2014) and is a potential source of noise that could
negatively affect performance (Nazari et al., 2018).
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Sentence Containing PET Sense
(Euph.)

Sense
(Non-Euph.)

Label
(Original)

Label
(Corrected)

Does your software collect any information about me, my listen-
ing or my surfing habits? Can it be <disabled>?

Handicapped Switched off 1 0

Europe developed rapidly [...] Effective and <economical> move-
ment of goods was no longer a maritime monopoly.

Prudent or
frugal

Related to
the economy

0 1

The Lancers continued to hang on to the <slim> one-point line
as Golden West started a possession following [...]

Thin (physical
appearance)

Thin (non-
physical)

1 0

Table 1: Examples of incorrectly labelled sentences identified by our data cleaning pipeline. The label is 1 if the
term is used euphemistically, 0 otherwise.

Motivated by this, we design a data cleaning
pipeline to quickly identify and correct such er-
rors (Figure 1). Since the goal is simply to correct
as many errors as possible (rather than to be per-
fectly accurate), we take a few heuristic liberties in
our design choices. First, to maximize yield and
avoid dealing with less impactful PETs, we filter
out PETs which appear <10 times or are classi-
fied as positive/negative >80% of the time. This
leaves us with 33 PETs. We then manually curate a
sense inventory (euphemistic vs. non-euphemistic
senses) using context clues and BabelNet defini-
tions (Navigli and Ponzetto, 2012, v5.0). To ensure
the quality of the sense inventory, we have multiple
members of our team look through the assigned
euphemistic and non-euphemistic senses and verify
their appropriateness. Next, for each sentence, we
replace the PET with its euphemistic meaning and
calculate the BERTScores (Zhang* et al., 2020)
between the initial sentences and PET-replaced sen-
tences. Replacing euphemistic PETs should not
change the semantics drastically and hence should
result in a high BERTScore, while replacing non-
euphemistic PETs would lead to a low BERTScore.
To identify potentially misclassified sentences, we
therefore look for positively-classified sentences
with low BERTScores or negatively-classified sen-
tences with high BERTScores. We heuristically
set this threshold at the halfway mark: if a sen-
tence is among the top half of BERTScores and
has a negative label (or among the bottom half and
has a positive label), then we flag it as "potentially
mislabelled". We end up with 203 potentially mis-
labelled sentences.

Once these potentially mislabelled sentences
have been identified, we go through them man-
ually and correct the ones which we identify as
incorrectly labelled, such as the ones in Table 1. In
cases where we are unsure of what the label should
be (e.g. ambiguous cases as mentioned in Gavidia
et al. (2022)), we leave the original label. As was

done with the sense inventories, multiple members
of our team then verify that the corrections made
are appropriate. Although this still involves some
human labor, it is much more tractable as compared
to having to go through the entire dataset. Out of
the 203 potentially mislabelled rows, we modify
the labels of 25 of them.

2.3 EuphAug Corpus
In addition to data cleaning, we also use data aug-
mentation techniques to gather an extended corpus,
which we call EuphAug. We explore two variants
of EuphAug, as outlined below:

1. Representation-Based Augmentation – We
search in an external corpus for additional sen-
tences in which specific PETs appear, then assign
a label to these PETs based on their vector repre-
sentations. We call this procedure EuphAug-R.

Let our training set (provided by task organiz-
ers) be S. Consider a PET p, which appears in
sentences s1, s2, . . . sk ∈ S, with corresponding
labels ls1 , ls2 , . . . lsk ∈ {0, 1}. We search in an
external corpus C (i.e., WikiText) for n sentences
c1, . . . , cn containing the PET p. Finally, for each
sentence c1, . . . , cn we assign label lcj as follows:

Algorithm 1 EuphAug-R
Task: Given sentence cj containing PET p, assign lcj .
for si ∈ {s1, s2, . . . sk} do

Find disti = dist(si, cj)
Find M = argmax{dist1, dist2, . . . , distk}.
Find m = argmin{dist1, dist2, . . . , distk}.
if distM ≥ δ ∧ (| distM - δ | > | distm - ϵ |) then

Add cj to augmented corpus with label lcj = lsM
else if distm ≤ ϵ∧ (| distm - ϵ | > | distM - δ |) then

Add cj to augmented corpus with label lcj = 1− lsM
else

Do not add cj to augmented corpus.
end if

where δ and ϵ are manually-tuned thresholds, and
dist(a, b) represents the cosine distance between
the sentential embeddings 3 of a and b. In other

3https://www.sbert.net/
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Figure 1: Example of our data cleaning pipeline to automatically identify potentially mislabelled sentences. Red
indicates positively classified sentences and blue indicates negatively classified sentences.

words, we augment our corpus with a sentence cj
only if it is sufficiently similar to, or sufficiently
different from, all sentences containing the PET
in S. We set n = 20 as the maximum number of
sentences extracted from C for a PET p, and obtain
a corpus of around 4700 additional examples.

2. Sense-Based Augmentation – While EuphAug-
R aims to augment the dataset by finding existing
sentences which already contain the PETs, this
sense-based approach, instead, considers sentences
which contain the senses of the PETs. This is done
using the sense inventories created in Section 2.2
and searching the WikiText corpus. For instance,
to find new sentences containing "disabled", we do
not search directly for appearances of “disabled”.
Rather, we search for instances of “handicapped”
and replace these occurrences with “disabled” to
obtain our positive examples. We then search for
instances of “switched off” and replace those oc-
currences with “disabled” to obtain our negative
examples. We call this expanded corpus EuphAug-
S. We sample at most 20 new sentences for each
sense (if there are less than 20 occurrences in Wiki-
Text, we take all of those present). In addition,
some words have senses which cannot be summa-
rized concisely in a single expression (e.g. “slim”
in Table 1), so we drop these from our search terms.
The final EuphAug-S contains 950 rows.

3 Methodology

For our baseline model, we use a pretrained
RoBERTa-large model (Liu et al., 2019). For eval-
uation, we use the macro F1-score, as specified by
the shared task description.

3.1 PET Embeddings

We leverage the embeddings of PET expressions.
While models usually perform classification by
passing the [CLS] token embedding to a final
classifier layer, we instead pass the embeddings
of PET tokens. If there are multiple tokens within
the PET, we take the sum of these tokens. We
hypothesize that [CLS] embeddings lose out on
the discriminatory power due to pooling of all the
embeddings in a sentence, and that using the PET
embeddings as signals can better allow the model
to focus specifically on the PET senses.

3.2 Making use of context

Additionally, we explore using context outside of
the PET embeddings. Intuitively, euphemistic and
non-euphemistic terms tend to be used in slightly
different contexts, with euphemistic terms often
being used to discuss sensitive topics. We experi-
ment with two ways to make use of this additional
context, as detailed below.

3.2.1 kNN Augmentation
Inspired by work on retrieval-based language mod-
els (Alon et al., 2022; Khandelwal et al., 2019), we
augment the baseline model with a kNN store of
the training set, and interpolate the classification
probabilities of the base model and a kNN-based
model. We follow the usual setup for such a model,
with the exception that y is a binary variable indi-
cating euphemistic/non-euphemistic rather than a
token from the vocabulary.

In Equation 1, N refers to the 5 closest neigh-
bours to x in the training set retrieved through co-
sine similarity with the [CLS] token generated
by RoBERTa, or f(x). (ki, vi) refers to the key
and value, in this case [CLS] tokens for other sen-
tences, and a binary variable, respectively. In Equa-
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Feature Tested Model Dataset P R F1
- RoBERTa-large Original 0.8756 0.8168 0.8399
1) Data Cleaning RoBERTa-large Cleaned 0.8617 0.8300 0.8435

2) Data Augmentation RoBERTa-large Original+EuphAug-R 0.8529 0.8388 0.8452
RoBERTa-large Original+EuphAug-S 0.8728 0.8306 0.8481

3) PET Embedding RoBERTa-large+PET Original 0.8694 0.8408 0.8533

4) Additional Context RoBERTa-large+KNN Original 0.8769 0.8210 0.8411
RoBERTa-large+DAN Original 0.8481 0.7983 0.8181

Final Models
RoBERTa-large+PET Cleaned 0.8728 0.8471 0.8582
RoBERTa-large+PET Cleaned+EuphAug-S 0.8692 0.8584 0.8633
RoBERTa-large+PET+KNN Cleaned 0.8792 0.8517 0.8635

Final Ensemble Model 1 + Model 2 + Model 3 - 0.8994 0.8788 0.8884

Table 2: We independently test 4 features. The final models leverage one or more of these features, and the final
ensemble combines the 3 final models. Results are averaged over 10 random seeds. For the final ensemble, since we
are just interested in the best possible model, we pick the best random seeds from each model instead of averaging.
The three best seeds have F1-scores of 0.8734, 0.8864, and 0.8842, which is slightly improved by our ensembling.

Figure 2: Models and datasets used in the ensemble.

tion 2, this value is combined with the probabilities
from the base PET model.

pkNN(y|x) ∝ ∑
(ki,vi)∈N 1(yi=vi) exp (−d(ki,f(x))) (1)

p(y|x)=λpkNN (y|x)+(1−λ)pPET (y|x) (2)

3.2.2 Deep Averaging Network
Additionally, we experiment with a Deep Averag-
ing Network (DAN) over embeddings for all the
tokens of the sentence (Iyyer et al., 2015). For a
sentence with tokens x1, ..., xN , we take the mean
vector for the entire sentence: z = 1

N

∑N
i=1 xi. We

then pass the mean vector through a linear layer
with dropout before a second linear layer which
outputs to R2. Note that unlike the original DAN,
we do not drop out tokens, as this was found to hurt
performance in preliminary experiments.

3.3 Ensembling

Our final model consists of an ensemble of 3 differ-
ent models, as shown in Figure 2 and Table 2. For
this ensemble, we simply consider a majority vote
of the outputs of the 3 models.

4 Experiments and Results

4.1 Implementation Settings

We split our dataset into train-validation-test splits
with an 80-10-10 ratio. Note that this splitting is
done before any data cleaning or augmentation,
so the validation and test sets are not affected by
these processes. Further implementation details are
provided in Appendix A.

4.2 Automatic Evaluation Results

The main results are shown in Table 2. We indepen-
dently test 4 features, namely data cleaning, data
augmentation, PET embedding, and kNN. Based
on the results of these tests, our final models then
use combinations of some or all of these features.
From the results in Table 2, we make the following
observations:

1. The data augmentation methods lead to slight
increases in performance. This is true for both
data cleaning and augmentation, demonstrating
the usefulness of reducing noise and adding high-
quality training data. In general, augmentation
methods lead to larger gains because adding more
data is especially useful in our task, where each
PET may appear in the original training data only
a few times.

2. Using embeddings of the PET embeddings
(instead of the [CLS] classifier token) signifi-
cantly increases performance. As hypothesized,
this is likely because the [CLS] token may have
too wide of a scope since it needs to represent the
entire sentence, while the PET tokens can specifi-
cally give us information about the PET terms we
are trying to classify.
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3. KNN models lead to slight increase, while
DAN models lead to significant decrease, in per-
formance. In general, our changes in the data
side have much greater effects than our changes
in the modelling side. For kNN, we think that the
neighbors may provide slight signals but are likely
drowned out by the original logits, which leads to
incremental changes.

We note that the advantages of the kNN method
may increase with more data, as this method ben-
efits greatly from a larger datastore. However, as
EuphAug-S has a relatively large number of exam-
ples compared to the training data, we decided to
construct the datastore based on only the original
training data, as we did not know if there was any
significant domain shift between the test data and
EuphAug-S, and we did not judge the additional
samples to be worth this risk.

These three observations motivate our choices for
final models to ensemble. In addition, we sub-
mit our final ensembled model to the Shared Task
leaderboard, and it received an F1 score of 0.881,
ranking first place among all submissions.

5 Related Work

Euphemism detection is a relatively underexplored
task. In this paper, we use the euphemism PET
dataset gathered by Gavidia et al. (2022). Lee et al.
(2022) also use this dataset, but for the task of
extracting PETs from a given sentence. In the past,
other methods have focused specifically on certain
types of euphemisms, such as drugs (Zhu et al.,
2021), firing/lying/stealing (Felt and Riloff, 2020),
and hate speech (Magu and Luo, 2018).

Below, we further detail some of the meth-
ods and techniques previously explored in this
area. Zhu et al. (2021) use BERT and the masked
language model objective to create candidate eu-
phemisms based on input target keywords of sen-
sitive topics. Zhu and Bhat (2021) extend this to
multi-word euphemistic phrases using SpanBERT.
Similar to the previous paper, they also generate
and filter a list of euphemistic phrase candidates,
then rank these candidates using probabilities from
the masked language model. Meanwhile, Felt and
Riloff (2020) use sentiment analysis methods to
detect euphemisms, exploring various properties
associated with sentiment such as affective polarity,
connotation, and intensity.

Other studies contextualize euphemism detec-
tion in a specific use case. For instance, Magu and

Luo (2018) train models to detect hateful content
or euphemistic hate speech. They employ word em-
beddings and network analysis, creating clusters
of euphemisms by using eigenvector centralities
as a ranking metric. Furthermore, euphemism de-
tection can also be used in crime detection. Yuan
et al. (2018) analyze jargon from cybercrime mar-
ketplaces to find patterns in phrases or code words
commonly used in underground communications.
However, these two methods use static word em-
beddings, which do not take into account the con-
text. This may affect performance, as context
is very important for euphemisms. In contrast,
our method uses context-aware embeddings of
transformer-based models.

6 Conclusion and Future Work

We proposed EUREKA, a method for classifying
euphemistic usage in a sentence. This is an ensem-
ble model that uses ideas such as data cleaning,
data augmentation, representations of Potentially
Euphemistic Terms (PETs), and k-nearest-neighbor
predictions. Our EUREKA system achieves a score
of 0.881 and ranks first on the public leaderboard
for the Shared Task.

In the future, we hope to extend our methods
to dysphemisms or other figurative language in-
stances. It is also interesting to consider a zero-
shot setting for euphemism detection, where eu-
phemisms during test time are unseen during train-
ing. Figurative language generation, rather than
detection, could also be a fruitful area to explore.

Limitations

Our current model and classifer are deficient in
terms of their interpretability on certain aspects,
and it would be interesting to explore more inter-
pretable models to ensure that the features used to
classify euphemisms can transfer to other scenar-
ios. The models and datasets are limited to English
(Bender and Friedman, 2018), and euphemisms
in other languages are definitely worth exploring.
However, this was not in the scope of the shared
task

Due to computational resources, we were not
able to explore larger models. For example, it is
possible that larger models such as GPT-J or GPT-
Neo would perform better on this task. However,
we leave this to future work.
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Appendix A Implementation Settings

For most methods, we use a batch size of 4, learn-
ing rate of 5e-6, and we train for 10 epochs. Train-
ing was done mostly on a Google Colaboratory en-
vironment using Tesla V100, P100 GPUS, and on
a workstation having NVIDIA Quadro RTX 6000
with 24GB of VRAM. With RoBERTa-large, train-
ing for 10 epochs took around 30-40 minutes. We
use the HuggingFace library (Wolf et al., 2020) for
model implementation, as well as for implement-
ing the Trainer function. All other hyperparameters
(e.g. learning rate decay, warmup steps, etc.) fol-
low the default ones used by the Trainer function
in HuggingFace.
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Abstract
One of the remarkable characteristics of the
drug trafficking lexicon is its elusive nature.
In order to communicate information related
to drugs or drug trafficking, the community
uses several terms that are mostly unknown to
regular people, or even to the authorities. For
instance, the terms jolly green, joystick, or jive
are used to refer to marijuana. The selection of
such terms is not necessarily a random or sense-
less process, but a communicative strategy in
which figurative language plays a relevant role.
In this study, we describe an ongoing research
to identify drug-related terms by applying ma-
chine learning techniques. To this end, a data
set regarding drug trafficking in Spanish was
built. This data set was used to train a word
embedding model to identify terms used by
the community to creatively refer to drugs and
related matters. The initial findings show an
interesting repository of terms created to con-
sciously veil drug-related contents by using fig-
urative language devices, such as metaphor or
metonymy. These findings can provide prelim-
inary evidence to be applied by law agencies
in order to address actions against crime, drug
transactions on the internet, illicit activities, or
human trafficking.

1 Introduction

Drug trafficking is a sensitive issue, apart from
being a social taboo to some people. Unfortunately,
this is a growing phenomenon that is impacting our
lives on different layers. Our language is a sample
of such impact. Nowadays, it is common to hear
or read about drugs everywhere, but the words to
name them are not necessarily the ones we are used
to hear. Terms such as cocaine, marijuana, crack,
or heroine have been replaced by new items, which
at first glance seem to be totally unconnected to
the context of drugs. Joy, candy, horse, or insulin
are new labels used by the community to refer to
drug-related contents. Some of them turn quite
frequent in mass media and, consequently, in our

daily communication; therefore, one can find them
registered in specialized dictionaries or lexicons.
Some others, on the other hand, are completely
obscure to regular people, or even to the authorities.

In this context, the drug trafficking lexicon does
not refer exclusively to the jargon to name drugs,
but also to the terms used to refer to matters related
to them. For instance, production of illegal sub-
stances (colitas (joint)), criminal gangs (tacuaches),
or even, political speech (sembrar (use/fabricate
false evidence)). In this respect, the drug trafficking
lexicon is not only used by drug traffickers or by
drug addicts. It has reached all social strata and is
used by different actors. Furthermore, the drug traf-
ficking lexicon underlines how this phenomenon
permeates society through language: The fact of
constantly being exposed to such lexicon makes
this phenomenon something natural to everyone.
Therefore, the consequences of violence, corrup-
tion, or institutional collapse derived from the use
and sale of illegal drugs tend to be normalized.

Given this context, below we describe an on-
going research to identify drug-related terms by
applying machine learning techniques. Our focus
is on making explicit what people consciously (cre-
atively) aim to veil regarding the drug trafficking
lexicon. Specifically, we are interested in applying
NLP techniques to identify figurative devices, such
as metaphor or metonymy, as they are understood
in Cognitive Grammar (see Langacker (1990)). To
this end, we built a data set about drug traffick-
ing in Spanish. This data set contains documents
from different sources, such as press, blogs, song
lyrics, or political speech. All of them were re-
trieved from Mexican sites; thus, the data set could
be regarded as representative of the Mexican di-
alect and setting. The data set was used to train
a simple word embedding model to identify links
between the known terms and the ones created by
means of figurative language. For instance, items
such as cocaine, heroine, or drug (known terms)

118



share similar representations with the ones found
in woman, or insulin (figurative terms).

With this study, we aim to provide preliminary
evidence that can be applied by law agencies, for
instance, to address actions against crime, drug
transactions on the internet, illicit activities, human
trafficking, among others.

The rest of the article is organized as follows: In
Section 2 we describe and exemplify the notion of
drug trafficking lexicon. Likewise, we provide a
brief review about the scientific papers about the
topic. In Section 3 we introduce the data set and
detail the experiments that we carried out. In Sec-
tion 4 we report the results and discuss the possible
implications. Finally, in Section 5 we present the fi-
nal remarks and some pointers to address the future
work.

2 The drug trafficking lexicon

At first glance, the drug trafficking lexicon could be
regarded as slang, or even as a non-standard vocab-
ulary. Either way, it is common to think that it is
only used by some isolated social groups. However,
this type of language has gone from marginaliza-
tion to daily speech in several countries. Mexico is
a fair example of it. For instance, in the Mexican
context, it is quite natural to hear in the news about
levantones to refer to someone that has been kid-
napped, and likely killed, by a criminal gang. In
fact, the Dictionary of Mexican Spanish (El Cole-
gio de México) has registered the term levantón,
from the verb levantar (to lift up) as the action of
kidnapping someone violently.

As noted from the example, the drug trafficking
lexicon describes more than drug names. It used
to depict a reality in which violence, corruption,
and institutional collapse predominate; everything
derived from the phenomenon of drug trafficking.

With respect to its features, it is necessary to
specify that the drug trafficking lexicon is not a lan-
guage properly; i.e. as far as it has been reported, it
has no linguistic particularities to be considered an
independent system. It is featured, on the contrary,
by a set of lexical items (some of them neologisms)
and phrases, whose meaning is often completely
obscure to most people.

In this regard, the drug trafficking lexicon has
compiled an interesting linguistic inventory, which
has been fed from different sources, such as mass
and social media, literature, political speech, and
popular folklore. In this respect, in the field of

Linguistics, some researchers have addressed their
approaches from lexicographical perspectives. In
particular, some of them have focused on the Latin
American context. For instance, Acosta and Mora
(2008) conducted a study about the criminal slang
and drugs in Colombian prisons. They showed
how such criminal jargon is characterized by a fre-
quent use of linguistic devices, such as metaphors
and metonymies (this seems to be repeated in the
language of drug trafficking in Mexico, since the
technical lexicon associated with crime is impreg-
nated with metaphorical expressions (see Mattiello
(2008)). More recently, in a research about the
phenomenon of drug trafficking in the North Amer-
ican context, Saldívar (2022) described that one
of the semantic fields in which this type of lexi-
con changes constantly is that of drug names. He
stressed that this fact is evident in the creation of
new terms, as well as in the reassignment of new
meanings to the existing ones, both in English and
Spanish. Likewise, Pressacco (2022) described vi-
olence and drug trafficking in Mexico from the so
called narco language. The author distinguishes
two classes to categorize this language: literal and
figurative. Finally, she provides an interesting list
of terms, phrases and constructions to exemplify
the drug dealers argot.

In different locations and specialized areas, San-
martín (1998) analyzed the jargon of the criminals
in Spain. She described some linguistic mecha-
nisms to characterize this lexicon, in particular,
synonymy and polysemy. On the other hand, Tor-
regrosa and Sánchez-Reyes (2015), in their study
about English law enforcement, analyzed the use
of conceptual metaphors related to drugs for educa-
tional purposes in the training of lawyers. Finally,
in a computational approach, Reyes and Saldívar
(2022) worked with narco language from a NLP
perspective. They suggested a representation of
narco-related concepts by identifying triggers of
criminal content in corpus.

3 Unveiling figurative language

In this section, we firstly describe the data set used
to build the word embedding model; then, we detail
the processes to identify the figurative terms.

3.1 Data set

In order to train a vector model to represent the
linguistic characteristics of this phenomenon, we
gathered a specialized data set about drug traffick-
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ing in Spanish. It is worth noting that, given the
particularities of the topic (see Section 1), it is un-
likely to find a large and public data set to be used.
That is why we built a data set with documents of
different genres to cover, as much as possible, a
broad scenario about the topic. As we have previ-
ously pointed out, the documents come from Mexi-
can sources only. This fact could be understood as
a local application rather than a generic one. How-
ever, according to Bender and Friedman (2018)
when explaining the notion of data statements, this
reduction could provide the necessary context to
allow the community to better understand how the
experimental results could be generalized.

Table 1: General statistics per category.

Category Tokens Types

Blogs 229,338 29,585
Political 399,006 20,891
Essays 543,718 43,601
Literature 370,794 38,726
Narcocorridos 79,664 12,554
Press 728,165 83,514

The data set is divided in six categories accord-
ing to the genres that we took into consideration
to gather the documents: Blogs, political speech,
essays, literature, narcocorridos (song lyrics about
drug dealers), and press. Due to the linguistic differ-
ences across genres, the data set is imbalanced. For
instance, with respect to the amount of documents,
we collected a few set of texts for the categories
essays and literature, compared to the amount of
texts for the category blogs and press. This impacts
on the size of each category. Thus, an essay about
drug trafficking is more extensive (and elaborated)
than a post in a blog; likewise, the specificity of
information devoted to this phenomenon by the
politicians in their speeches is completely different
to the one reported by the journalists in the news. In
addition, the amount of drug-related content is not
necessarily the same across the six categories. For
instance, compared to the narcocorridos, literature
contains lesser specific information. This is due
to the documents in the latter category are stories
about drug trafficking within a narrative plot, while
the former contains lyrics specifically written to
drug dealers.

In order to balance the data set, we randomly
select 50,000 words per category. In Table 1, we

provide some statistics for each category based on
the distinction type/token.

The data set is available upon request for aca-
demic purposes.

3.2 Word embeddings representation

In the past years, one of the most effective learning
techniques employed in Machine Learning is word
embeddings. They could be defined as representa-
tions of words in a vector space by grouping similar
items (see Mikolov et al. (2013b)). This technique
has been used to model linguistic information with
excellent outcomes. For instance, Bakarov (2018)
has explained that word embeddings are able to ef-
ficiently predict syntactic and semantic properties
in natural language.

Almeida and Xexéo (2019) divide this technique
into two main models: Prediction-based (local data
models) and count-based (global data models). Al-
though the use of word embeddings is growing in
Machine Learning and other fields, some authors
have reported a few drawbacks regarding their im-
plementation in fine-grained tasks. One of the most
important drawbacks is the unclear differentiation
between semantic relatedness and semantic simi-
larity (Bakarov, 2018).

Given the efficiency to represent linguistic prop-
erties, there are various word embeddings imple-
mentations. For instance, Word2Vec, FastText,
or GloVe. In this study, we have adopted the
Word2Vec algorithm, as described by Mikolov et al.
(2013a,b).

The Word2Vec algorithm emphasizes the mean-
ing and semantic relations between words by com-
puting their co-occurrence in different documents.
In this respect, Dessì et al. (2021) highlight that
this algorithm is focused on modeling the context
of words by exploiting ML and statistics in such a
way the word vectors that share some regularities,
regardless of the document they come from, are
located nearly in the vector space. Therefore, the
resulting representations allow the recognition of
relatedness between words. This is why we have
selected the algorithm to carry out the vector repre-
sentation.

This algorithm can be trained using Continuous
Bag-Of-Words (CBOW) or Skip-grams. We trained
different models using the Skip-gram representa-
tion and modifying the vector dimension, window
distance, and word frequency. It is worth men-
tioning that we also trained some models using a
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CBOW representation in a preliminary setup; how-
ever, the outcomes were not as informative as with
the skip-grams. Finally, in order to tune the vectors
and come up with an integral model, we trained a
final average model by finding the centroid of all
the skip-grams representations. To this end, the
Spearman’s correlation coefficient was used to cal-
culate the models’ similarity (Hellrich and Hahn,
2016). The centroid model was used to run the
experiments reported below.

3.3 Figurative terms identification

According to Saldívar (2022), apart from its cryptic-
ity, one of the characteristics of the drug trafficking
lexicon is its speed of change. This fact makes it
elusive. Therefore, in order to identify the figura-
tive terms, we firstly decided to use some known
terms to build a dictionary. This resource groups
items reported in the specialized literature as proto-
typical of the domain. Thus, they are used as seeds
to identify a set of unrelated terms. For instance, a
known term registered in the dictionary is dinero
(money), this term is a seed to locate what others
items appear close to it in the vector space. Some
of the items are known terms (morralla (cash)),
but there are others apparently unrelated (cabezón
(big head)). The latter terms are the ones we are
interested in, since they are likely figurative terms
to refer to the known term. Cabezón is a metonymy
to refer to the 100 dollars bills because Franklin’s
head in these bills is bigger. So, an utterance such
as Antes contaba morralla, ahora puros cabezones
(I was used to cash counting, now big heads count-
ing only) makes sense both semantically and prag-
matically.

The dictionary contains 439 terms. According
tho the previous explanation, the first step was to
look for the 439 terms in our data. Of those terms,
only 183 appeared in our documents. The sec-
ond step consisted in reducing the range of search.
Thus, for each known term, we retrieved its 10
most similar words. This produces a total of 1,830
possible figurative terms to be analyzed. In Fig-
ure 1, we show the 10 most similar words for the
term coca (abbreviation of cocaine).

In this figure, we can observe some known terms
linked to the drug trafficking context: Yerba (mar-
ijuana), cristal, chochos, ice (cocaine), heroína
(heroine), and opio (opium), which most people
relate automatically to the drug trafficking lexi-
con. However, there are other items that, at first

Figure 1: 10 most similar terms for the term coca.

glance, are totally unconnected to drugs: tomate
(tomato), aguacate (avocado), or chiva (female
goat). Initially, these items should be discarded
due to they do not belong to the drug trafficking
context. Nonetheless, given our interest in identify-
ing figurative terms, they become the spotlight. If
the vectors of these items are similar to the vectors
of the known terms, then this could hypothetically
be a sign about some semantic similarity.

In order to confirm this hypothesis, we focused
on retrieving the vectors for each unknown term in
such a way we could map the figurative usages. For
instance, considering the information depicted in
Figure 1, we first removed the known terms (yerba,
cristal, chochos, heroína, opio, and cocaína); then,
we retrieved the vectors for the unrelated terms
(tomate, aguacate, and chiva). Finally, given the
seed term (coca in this example), we mapped the
known term and the unknown terms considering
their distributional patterns in the vector space. In
Figure 2, we show the 10 most similar terms for the
presumably unrelated terms aguacate and chiva.

4 Results

The result of the previous processes is a set of 505
drug-related terms; i.e. an average of 3 unrelated
items per known term.

Subsequently, we analyzed the vectors of the
505 candidates in order to recognize elements to
connect them to the drug trafficking context. This
is clearer if we observe Figure 2: From the 10 most
similar words for aguacate, the items churros (mar-
ijuana), mulas (drug trafficker), tachas (cocaine),
and fuman (inflectional form of the verb to smoke)
are totally drug-related. The same fact for chiva.
The words inyecto, meto (inflectional forms of the
verbs to inject and to do drugs, respectively), and
chochos are commonly used by the community to
refer to drugs. This fact corroborates that some
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Figure 2: 10 most similar terms for aguacate and chiva.

of the unconnected items are closely linked to the
context of drugs. However, there were others items
whose vectors proved the contrary. For instance,
tomate, from Fig. 1, whose 10 most similar words
referred to food only.

Given this result, it could be stated that some
unconnected items are, in fact, figurative terms to
implicitly express drug-related content. Nonethe-
less, such assumption should be assessed by the
experts; i. e. we could identify some unrelated
terms regarding drug trafficking; however, we are
not capable of saying that they mean anything to
the community. In addition, there is not labeled
data to compare our findings. Therefore, in order
to provide arguments to validate our findings, we
contacted an expert on the topic in Mexico. This
expert has published several academic papers and
some books about narco and, specifically, about
narco language.

Prior to contacting the expert, we grouped the
unrelated terms in clusters with the purpose of iden-
tifying an underlying semantic structure. To this
end, we ran a similarity analysis for the 505 terms
considering their co-occurrences in the whole data
set. Figure 3 shows a sample of the clusters pre-
sented to the expert.

4.1 Evaluation

Once we contacted the expert, we asked him to
revise the 505 terms to check whether or not they

are terms used in a drug-related context. If so, to
confirm, as far as he knows, whether or not they
are used to refer or name any term cryptically.

The feedback provided by the expert is summa-
rized as follows: With respect to the first task, he
validated all the 505 terms as part of the domain.
However, regarding the second task, he marked
only 151 terms as terms used to refer to drug-
related content in a cryptic manner; i. e. around
70% are already terms in usage in that context, al-
though we did not know (it is worth stressing that
we are not part of the community), and only 30%
are items, cryptic enough, to be considered figu-
rative terms. In addition, the expert provided the
equivalents for the unknown terms. For instance,
terms such as cuete (gun) and insulina (insulin), or
yongo (yongo) were translated to syringe and place
to do drugs, respectively1.

4.2 Discussion

The feedback given by the expert confirmed that
this approach is identifying drug-related terms effi-
ciently. Although some of the 505 terms are already
known in the domain, their usage is not very fre-
quent to be registered in some lexical resource. For
instance, they are not part of the terms we used to
build our dictionary (see 3.3). In this respect, this is
evidence about the dynamism of any language. The
drug trafficking lexicon, in particular, must be very
dynamic due to it expresses outlaw issues mainly.

With respect to the 151 cryptic terms, they con-
firm such dynamism. They are obscure enough to
be able to determine what they mean in the drug
trafficking context. However, beyond the fact that
they can be considered as figurative terms, it is nec-
essary to identify what kind of figurative device
underlies them. In this regard, we are in the pro-
cess of manually analyzing the linguistic contexts
of the 151 terms in order to recognize patterns to
explain their usage in this domain. Nonetheless
this is work in progress, we have noticed that some
of the terms, in fact, rely on figurative language
to create an implicit link between the unrelated
terms and the known term. For instance, consid-
ering the information depicted in Figure 3, terms

1To better understand the information given in Figure 3,
we provide the translations (not the equivalents) for the known
terms in each cluster: aspirina (aspirin), cobija (blanket), raya
(line), cajuela (trunk), cocinar (to cook), polvo, polvito (dust),
hierba (grass), dulce (candy), hielo (ice), nieve (snow), cristal
(glass), hielera (icebox), narcomensaje (narco-message), sa-
banas (sheets), goma (gum), enteipar (to apply masking tape
on someone), arete (earring), bajón (downer).
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Figure 3: Sample of clusters given the similarity analy-
sis.

such as nieve (referring to the drug named crys-
tal) or insulina (referring to a syringe and/or the
action of being injected) in the green and purple
clusters, respectively, are understandable if we as-
sume a metaphoric and metonymic frame. Thus,
the term nieve (snow) is metaphorically mapped to
polvo (powder) and then to cristal (crystal). First, a
feature like the color is the link to secure the com-
parison. Subsequently, a component (polvo) of the
whole (crystal) is used to connect to the same drug
by profiling its rock-like appearance. Something
similar happens to the second term. The insulina
(insulin) is a legal drug to be injected into the di-
abetic patients. Many drugs are supposed to be
injected to enhance the effect. Therefore, by using
this term, the speaker is metonymically connecting
a component (syringe) of the whole action (to be
injected with one of such drugs).

It is also necessary to highlight that not all the
terms can be explained by means of an underlying
figurative device. There are terms that appear from
other linguistic mechanisms. However, as have
been reported by some experts on the topic, figura-
tive language (especially metaphor, metonymy, and
analogy) is quite frequent to create terms within
the domain, either for cryptic purposes, attenuation,
or as a simple exercise of creativity (see (Saldívar,
2022; Torregrosa and Sánchez-Reyes, 2015; Mat-
tiello, 2008)).

5 Conclusions and future work

In this study we have approached an unusual phe-
nomenon in Natural Language Processing: the drug
trafficking lexicon. Our focus was on automati-
cally identifying possible figurative terms to refer

to drug-related contents in Spanish. To this end, we
used a data set about drug trafficking in Mexico and
built a word embedding model to identify the terms.
The results showed that the model could identify
a set of supposed unrelated terms to the domain.
Those terms were validated by a human expert;
however, only 30% of them are cryptic terms. This
means, although they are known by the community,
people out of the drug trafficking context do not
know them. Therefore, they can be used to veil
criminal content. Finally, we have outlined a possi-
ble explanation about their successful usage within
the domain. In this respect, although this is still
work in progress, we have suggested that this can
be explained in terms of figurative devices, such
as metaphor and metonymy, which according to
the Cognitive Linguistics foundations (Langacker,
1990), are part of our conceptual structure.

As future work, it is planned to collect data from
other variants to extend the scope of this approach,
as well as to deepen the analysis of the linguistic
mechanisms to better understand how this lexicon
works to successfully communicate veiled informa-
tion within a complex linguistic system. Thus, the
insights could shed light on how this social phe-
nomenon has linguistically permeated our society
in broader terms. To conclude, we consider that
works like this one could provide evidence to be
applied to address actions against different illicit
activities.

Limitations

Some of the limitations of this study rely on the
data. As mentioned in the manuscript, the data set
built to carry out the experiments was gathered con-
sidering only one specific dialect. Although the in-
sights could be representative of the phenomenon,
they cannot be generalized to the entire system.
This is manly due to the social particularities of
drug trafficking. For instance, the drug names or
gangs depend on social elements extracted from the
culture. However, the underlying figurative mecha-
nism is consistent from dialect to dialect, and from
language to language, as reported in the literature
(see Lakoff (1987); Lakoff and Johnson (1980);
Langacker (1987); Goldberg (1997), and others).
Another issue regarding the data is the lack of la-
beled data to compare the results, as well as to use
them to prove how our approach performs. In this
regard, it is worth highlighting that topics like this
one can represent a major challenge when collect-
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ing data in some countries. Given the corruption
and lawless of some governments, it could be very
risky to find proper data and collect a representative
corpus.

The human validation is also a limitation. It
is unusual to have only one vision to validate the
outcomes; however, it is very difficult to find spe-
cialists about the topic. This impacts on the number
of available experts to assess our findings.

Finally, the manual analysis of the results must
be concluded in order to provide a complete de-
scription of the figurative devices present in the
data. In addition, although we have focused on
the figurative terms, we notice that several of the
known terms were generated by means of figurative
language. Therefore, they should be explained to
present a more comprehensive description of the
phenomenon.
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Abstract

Metaphor detection has been a challenging
task in the NLP domain both before and after
the emergence of transformer-based language
models. The difficulty lies in subtle seman-
tic nuances that are required to be able to de-
tect metaphor and in the scarcity of labeled
data. We explore few-shot setups for metaphor
detection, and also introduce new question-
answering data that can enhance classifiers that
are trained on a small amount of data. We
formulate the classification task as a question-
answering one, and train a question-answering
model. We perform extensive experiments for
few shot on several architectures and report the
results of several strong baselines. Thus, the
answer to the question posed in the title is a
definite “Yes!”

1 Introduction

In the past year, pretrained language models es-
tablished themselves as the foundation for state-
of-the-art solutions for most of the common NLP
tasks. Usually, one should fine tune a model on
a dataset specific to her task and domain so as to
achieve high performance, and this requires labeled
data, which is not always available in the necessary
quantity. In the past few years, a large body of
work has been dedicated to transfer learning be-
tween domains and models (Alyafeai et al., 2020),
and application of models trained on one task to an-
other task by prompting (Brown et al., 2020; Schick
and Schütze, 2021). These techniques reduce the
amount of training data needed for a specific task,
and enable the sharing of semantic knowledge be-
tween models.

Metaphor detection is a highly challenging task
in the NLP domain. It relies on word level, delicate

semantics that are not trivial even for humans, and,
thus, even though pretrained language models do
encode some metaphoric information (Aghazadeh
et al., 2022), the task is not considered solved. As
for languages other than English – high quality
language models are already often available (Seker
et al., 2021; Antoun et al., 2020), but metaphor
detection without appropriate labeled data is very
difficult (Schneider et al., 2022), and this is why
few-shot is a relevant scenario to study.

As Su et al. (2020) suggest, metaphor detection
can be viewed as a reading-comprehension task
where one needs to answer a question whether a
specific word is metaphoric or literal in the context
of a given sentence. They formatted metaphor de-
tection as a classification task of the full sentence
(global context), the word in question and a short
sentence fragment that contains this query word
(local context). The texts, along with POS tags of
each word, are fed into the classifier to obtain a
prediction. Similar to the vast majority of classi-
fication tasks, this classifier is expected to learn
how to identify metaphors based on the labels it is
provided during training, but the input itself does
not suggest that the task is regarding metaphor.

We take the reading-comprehension approach
further in two respects: First, we experiment with
several phrasings of explicit natural-language ques-
tions about whether the query token is metaphoric
within the context of the sentence. Thus we em-
ploy the capability of large language models to
understand delicate semantics (at least up to some
point) by querying the models directly. Second,
we design our classifier with a backbone of a yes–
no question-answering model. Given the context
sentence, we ask explicitly, “Is the word in ques-
tion metaphoric in this context?” We evaluate our
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model in a few-shot scenario and compare it to
several baselines.

2 Related Work

Over the past few years, as in other fields in NLP,
transformer-based architectures have dominated
the models for metaphor detection. Leong et al.
(2020) report the results of the 2020 shared task,
and can be referred to for prior models that are not
transformer based.

DeepMet (Su et al., 2020), the highest-scoring
system in that shared task, transforms metaphor
detection into a reading comprehension task, query-
ing for the label of each token given its context in
the sentence. The classification model is a siamese
network that encodes two contexts for the token
– the entire sentence and the sentence fragment
wherein the token is located. The model is also
fed with the POS tag of the token in question.

MelBERT (Choi et al., 2021) is a transformer-
based model that applies two theoretical concepts
of metaphor identification: (1) A metaphor’s literal
meaning is different from its metaphorical meaning
in the sentence. (2) The metaphor is unusual in the
context of the sentence. MrBERT (Song et al.,
2021) employs a similar architecture to MelBERT,
adding the encoded grammatical local context of
the query token.

Few-shot learning refers to learning from a small
number of training examples. One few-shot tech-
nique for NLP is pattern exploiting training (PET)
(Schick and Schütze, 2021) over the RoBERTa ar-
chitecture. PET, requiring task-specific unlabeled
data, uses natural language patterns to represent
the inputs as cloze style questions. Answers are
then filled in by the predictions of the language
model. ADAPET (Tam et al., 2021) extends PET by
providing denser supervision during fine-tuning,
outperforming PET without the need of unlabeled
data.

GPT-3 (Brown et al., 2020) takes few-shot abili-
ties forward and demonstrates strong performance
without directly fine-tuning on task-specific data.
Instead, in the few-shot scenario, at inference time
it is presented with a few labeled instances as a part
of the query.

3 Metaphor Detection Model

Metaphor detection can be regarded as a token-
classification task within a sentence. The word in

question in a given sentence can be classified either
as metaphoric or literal.

In this work, we experiment with the formula-
tion of metaphor detection as a yes–no question
answering (QA) task with two concatenated inputs:
a question and a passage, that is, a text segment to
which the question refers. For each word in ques-
tion, we suggest several different constructions of
questions and passages. These formulations are
shown in Table 1 and are referred to as f1–f3. We
add f4 to assess the contribution of a question-like
phrasing.

Our suggested architecture for metaphor detec-
tion is presented in Figure. 1. We begin by fine-
tuning a RoBERTa base model (Liu et al., 2019)
on QA data (see Section 4.1). Next, this model
is fine-tuned on different sizes of metaphor data,
phrased as questions.

The results are compared to the RoBERTa base
model and to DeepMet. Since we are aiming to
analyse the advantages of the QA model in a few-
shot scenario, rather than to outperform the state of
the art, our baseline models are ones that are simi-
lar in terms of architecture and additional resources.
Training on the entire VUA dataset we are experi-
menting with, the RoBERTa baseline achieves the
F1 score of 71.4, while MelBERT, the current state
of the art, attains an F1 of 72.3.

4 Data

4.1 Yes–No Question-Answering Datasets

BoolQ. BoolQ (Clark et al., 2019) is a reading
comprehension dataset comprised of 13K yes–no
questions on various topics, each question relates to
a different passage. The train split consist of 9.4K
instances, with a ratio of 0.62 positive:negative
labels.

WordNet. We utilize WordNet (Fellbaum, 1998)
to extract yes–no questions to train a question an-
swering model. WordNet curates a large collec-
tion of English lexemes, along with their differ-
ent senses and different usage examples for each.
When the different meanings are completely unre-
lated (like the word bank used for a financial insti-
tution or for sloping land), we rely on the context
to determine the right meaning. This is somewhat
related to the task of metaphor detection due to the
fact that the model needs to address the alternative
meanings a word may have.

For each word and sentence example, we con-
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Figure 1: Our suggested metaphor detection model is fine-tuned on top of a yes–no question answering model.

Question Passage
f1 Is <e> word </e> used metaphorically? sentence
f2 Is <e> word </e> used metaphorically in <s> sentence </s>? metaphor definition
f3 Does <e> word </e> mean as if or like word? sentence
f4 word sentence

Table 1: Different formulations of questions for metaphor detection. For metaphor definition we use, “Metaphor is a
figure of speech in which a word or phrase is applied to an object or action to which it is not literally applicable”,
taken from Merriam-Webster.

struct two sets of questions and passages using the
following pattern:

Question: Does <e> word </e> mean definition?
Passage: sentence example

The correct definition is used to form a pair of
question and passage with a “Yes” answer, and a
random definition is chosen from the rest of the
glosses for word to form a question with a “No”
answer. This construction requires WordNet entries
with more than one definition. We split the dataset
into a training set of 32K instances and evaluation
set of 7.5K instances. Both splits are fully balanced
in respect to positive and negative labels. Note that
there is no overlap of words between the two splits.

4.2 VUA Metaphor Dataset
We train and evaluate on the widely used VUA cor-
pus (Steen et al., 2010), with the splits provided in
(Leong et al., 2020); see Table 2 for details. The
metaphoric tokens that are annotated in this corpus
are of four parts of speech: nouns, verbs, adjec-
tives and adverbs. We use VUA in two different
formats: the original, token classification format,
and the yes–no question answering format, denoted
VUAqa.

5 Experiments

5.1 QA Models
We begin by training several QA models, each on
a different dataset: (a) The BoolQ model is trained

Sentences Tokens Positive fraction
Train 12109 72611 18%
Test 4080 22198 17%

Table 2: Number of sentences, tokens and percentage
of positive tokens in the VUA dataset.

on the entire BoolQ data. (b) WordNet is trained
on the entire WordNet. (c) Mix is trained on both
the BoolQ and WordNet datasets.

The models are RoBERTa-base fine–tuned on
two inputs – a question, followed by a passage (De-
vlin et al., 2019). We train for 10 epochs with batch
size 32 and learning rate 1×10−5. The number
of training epochs is selected over the validation
splits.

5.2 Metaphor Detection Models

We fine-tune each QA model on different subsets
of VUAqa, each subset of a different size, up to
500 sentences. Since each sentence contains mul-
tiple query tokens, for each sentence from VUA
there are several training instance in VUAqa, and
thus 500 sentences annotated for metaphors on a
token level transform into a few thousand train-
ing examples for all models that perform sequence
classification for the single token in question. Each
experiment is repeated four times with different
random seeds, and we report the average F1 score
and its standard deviation. In these experiments,
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(a) BoolQ model (b) WordNet model (c) Mix model

Figure 2: Average F1 score over different training-set sizes, averaged over random seeds. Shaded areas indicate the
standard deviation.

our aim is to analyze the competence of the under-
lying QA models in a zero- and few-shot scenario.
We use a single set of parameters for all QA-based
models. Specifically, a learning rate of 1×10−5,
batch size of 32, and 2 epochs. Following (Chen
et al., 2020), we balance the weight at a ratio of 1:3
in favor of the positive label.

We use the following two baselines:
(a) A RoBERTa based sequence classifier that
is fine-tuned on top of the RoBERTa pretrained
model, similar to the baseline in (Choi et al., 2021).
The input to this model is the concatenation of the
sentence and the token in question, with the sep-
aration token in between. This baseline evaluates
the contribution of the underlying question model.
Note that this input is different than f4, since for
f4, the token in question is the first input to the
classifier. Since f4 is an input to a QA underlying
model that accepts the question first, we maintain
this order. However, for the baseline, since there is
no QA model involved, we keep the recommended
order for such classification tasks.
(b) DeepMet. For each dataset size, we fine tune
four models with different random seeds and the
results are averaged, similarly as for the QA-based
models.

For the RoBERTa baseline, we tune hyper-
parameters for each training data size with the tech-
nique suggested by (Zheng et al., 2022). Specif-
ically, we experimented with batch size of 32,
learning rate in {1×10−5, 3×10−5} and number
of training epochs in {2, 3}. DeepMet is evalu-
ated with its default hyper-parameters. We also
experimented with a RoBERTa token base classifi-
cation, a baseline suggested in (Chen et al., 2020).
While performing similarly to the sequence classi-
fier when both were trained on the full data (Choi

et al., 2021), for the few-shot scenario it is infe-
rior to the sequence based classifier, and thus we
omit it from the figures. We include the score of a
classifier that randomly predicts “Metaphor” with
the probability of the positive class over the entire
dataset (18%), and the score of the classifier that
always predicts “Metaphor”.

We begin with the evaluation of the different
input patterns for our three models. Figure 2 shows
the performance of the four patterns for each model.
There is a clear advantage to all question-based
patterns, with pattern f3 being the dominant one.
Zero-shot is only relevant for our models, since the
RoBERTa baseline is fine-tuned over a pretrained
model and not a classification model. For all our
models, the results in zero-shot mode are lower
than the “always metaphor” baseline; thus, our
architecture is not appropriate for this scenario.

Next, we assess the contribution of the underly-
ing QA models. From Figure 2, we conclude that
there is an overall advantage to the WordNet model
over the BoolQ one across most patterns, and the
Mix model is the best of all three.

In Figure 3, we compare our best model, namely,
Mix with f3, with the best RoBERTa baseline and
with DeepMet. Our model outperforms both base-
lines by a significant margin. In addition, we see a
smaller standard deviation for our model, indicat-
ing that this architecture is more stable for small
training datasets.

6 Conclusions and Future Work

QA-based models were shown to be effective for
metaphor detection when training data is very lim-
ited. We analyzed the contribution of the question-
like phrasing and the underlying QA model, and
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Figure 3: Mix model compared with the two baselines,
RoBERTa and DeepMet.

report strong baselines for the few-shot scenario.
Another contribution is the use of WordNet.

Transformer-based language models are pretrained
on unlabeled data, thus many linguistic resources
that were previously extensively used are less
needed now. We have shown how the high-quality
annotated data from WordNet can be utilized to
train a QA model that can answer questions about
semantics. We believe that similar techniques can
generate high-quality datasets for training models
for other NLP tasks.

As future work, we suggest exploring natural
language inference models as underlying models
for metaphor detection. Those models have been
shown to be strong zero-shot models for various
NLP tasks, so they can probably be of assistance in
the metaphor domain. Another direction we aim to
explore is the combination of our QA based tech-
nique with models such as DeepMet and MelBERT.
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Abstract

Euphemisms are often used to drive rhetoric,
but their automated recognition and interpreta-
tion are under-explored. We investigate four
methods for detecting euphemisms in sentences
containing potentially euphemistic terms. The
first three linguistically-motivated methods rest
on an understanding of (1) euphemism’s role
to attenuate the harsh connotations of a taboo
topic and (2) euphemism’s metaphorical under-
pinnings. In contrast, the fourth method fol-
lows recent innovations in other tasks and em-
ploys transfer learning from a general-domain
pre-trained language model. While the latter
method ultimately (and perhaps surprisingly)
performed best (F1 = 0.74), we comprehen-
sively evaluate all four methods to derive addi-
tional useful insights from the negative results.

1 Introduction

Euphemism is a ubiquitous figurative language tool,
wherein the speaker refers to taboo topics in in-
direct, metaphorical terms to convey politeness
or formality. Identifying euphemism can reveal
tacit facts about the speaker’s intention and the
context of the utterance (Gómez, 2009), but there
has been minimal work exploring how this might
be done computationally (Felt and Riloff, 2020;
Gavidia et al., 2022). In this paper, we compare
the performance of four methods for automated eu-
phemism detection. The first two methods identify
euphemism based on expected sentiment differ-
ences between euphemisms and their automatically
generated non-euphemistic paraphrases. The third
method exploits the metaphorical underpinnings
of euphemism, following the hypothesis that the
euphemism’s root word will have more possible
senses than its single-word literal paraphrase. In
contrast to these linguistically-driven methods, the
last method fine-tunes a popular pre-trained lan-
guage model (Devlin et al., 2019, BERT) for the
task of euphemism detection. We find strong, and

perhaps surprising, evidence that the last method
outperforms the alternatives.

Our contribution in this paper is twofold. First,
we demonstrate the utility of pre-trained language
models for novel figurative language processing
tasks. Second, we demonstrate our process of trans-
lating linguistic theory of euphemism into empiri-
cal models. Although our results show that those
methods need to be refined, it is our hope that this
transparency will minimize redundancy in future
research. Thus, our work is well-aligned with Nis-
sim et al. (2017)’s position that reporting negative
results in shared tasks can produce useful insights.

2 Related Work

2.1 Linguistic Theories of Euphemism

We frame our study of euphemism detection
through the lens of established linguistic theory.
Gómez (2009) explains euphemism from a cogni-
tive and pragmatic perspective, emphasizing that
euphemism suspends the negative connotations of
taboo concepts to serve a discursive purpose within
a given context. It is not merely a lexical substitu-
tion at the linguistic level; rather, it is a socially-
motivated cognitive strategy that has the effect of
signaling politeness to the interlocutor. Euphemism
is thus characterized by both the speaker’s inten-
tional indirectness and the hearer’s recognition of
their attempt to veil the concept’s offensiveness.

Fernández (2008) highlights that euphemism is
almost always predicated on a metaphor. Using
metaphor to express a taboo concept makes dis-
cussion of the taboo more permissible in public
discourse. Hence, the function of euphemism is
to neutralize a topic by speaking of it in vague
terms. The ambiguity of the individual words in
a euphemistic expression masks the overtly unac-
ceptable features of the concept for which it stands.

These two theories delineate two hallmarks of
euphemism: It produces a change in perceived sen-
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timent, and it relies on an abstract metaphor to
stand for a concrete concept. We use these linguis-
tic facts as the foundation for our sentiment- and
word sense-based solutions.

2.2 Euphemism Detection in NLP

Zhu and Bhat (2021) presented the first attempt at
euphemistic phrase detection. From a raw text cor-
pus of online posts, they mine euphemistic phrase
candidates that represent target keywords and then
apply a masked language model (MLM) based on
SpanBERT (Joshi et al., 2019) to rank the candi-
date phrases in order of confidence. Their work was
limited to euphemisms in the drug domain, with
downstream applications in content moderation. In
contrast, we designed our models to generalize to
euphemism at large, independent of topic. We also
employ MLMs in two of our methods, but for the
purpose of generating single-word paraphrases, not
to compute model confidence.

Recently, Gavidia et al. (2022) created the first
corpus of sentences containing potentially eu-
phemistic terms (PETs). To do so, they compiled a
list of 184 PETs on a variety of taboo topics such as
death, sexual activity, and substances. Then, they
extracted sentences from the U.S.-dialect subsec-
tion of the Corpus of Global Web-Based English
(Davies and Fuchs, 2015, GloWbE) that contained
an instance of one of those PETs. PETs either
did or did not function as a euphemism, depen-
dent on context. They used RoBERTa-based senti-
ment analysis (Liu et al., 2019) to show that PETs
function as euphemisms when replacing them with
literal paraphrases causes an increase in negative
and offensive sentiment. This work informed the
sentiment-based technique in two of our methods.
Subsequently, Lee et al. (2022) expanded on their
work by developing a method that mines single
and multi-word expressions, filters them based on
similarity to sensitive topics, and identifies the eu-
phemistic PETs based on the phrases that caused
the greatest sentiment shift when paraphrased.

3 Dataset and Task Description

Our work was conducted as part of a shared task
with the goal of creating a system that determines
whether or not a given sentence containing a PET
is euphemistic. The data was sourced from Gavidia
et al. (2022)’s corpus of PETs. The training dataset
consisted of 1572 utterances, with PETs demar-
cated within angled brackets. An utterance was

Index Utterance Label

81

...locked up in a military
<detention camp> on vague
charges of being a Terrorist
sympathizer...

1

Table 1: Sample entry from the training dataset.

defined as the sentence containing the PET along
with the preceding and following sentences to pro-
vide additional context. Utterances were assigned
labels of 1 or 0, with 1 indicating that the PET was
euphemistic and 0 indicating that it was not. A con-
densed example of an entry in the training dataset
is shown in Table 1. The test dataset consisted of
393 unlabeled utterances. Similar to the training
data, each utterance included three sentences, with
the PET denoted within angle brackets.

4 Methods

We explored four methods for euphemism detec-
tion, broadly categorized by their reliance on en-
gineered, linguistically-driven features or transfer
learning. In the first two methods, we expected that
if the original sentence contained a euphemism,
then substituting the PET with a synonymous non-
euphemistic term should produce a difference in the
sentiment between the original and the generated,
paraphrased sentence. The third approach relies
on the premise that euphemisms are metaphorical
extensions of the head of the phrase, while their
non-euphemistic paraphrases have more specific se-
mantic scope. The fourth approach employs BERT,
a popular transformer-based model that we fine-
tuned to detect euphemism. We provide further
details regarding the intuition and implementation
guiding each of these approaches in §4.1-4.3.

4.1 Sentiment-based Methods

Consider the PET armed conflict for which the
non-euphemistic paraphrase is war. Armed conflict,
more indirect and ambiguous, evokes less nega-
tive and offensive sentiment than its synonym war,
which is more direct and richer in emotional con-
tent. On the other hand, consider the sentence Her
ideas were <underdeveloped>. In this context, the
PET underdeveloped is not functioning as a eu-
phemism. Substituting it with a non-euphemistic
paraphrase such as weak has little effect on the sen-
tence’s sentiment. Following this, the underlying
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Feature Description

NEGATIVE_DIFF

SENTDIFF(o, p) when
measuring Sd(·) along the
negative dimension
(d=negative).

NEUTRAL_DIFF
SENTDIFF(o, p) when
d=neutral.

POSITIVE_DIFF
SENTDIFF(o, p) when
d=positive.

OFFENSIVE_DIFF
SENTDIFF(o, p) when
d=offensive.

Table 2: Sentiment-based features computed based
on measured differences in negative, neutral, positive,
and offensive sentiment between the original and para-
phrased versions of the sentence.

intuition guiding our sentiment-based methods was
that there may be a greater difference in sentiment
between the original sentence and the paraphrase
when the original PET was euphemistic.

4.1.1 Paraphrasing Using Back-Translation

We used back-translation between English and Ger-
man to generate the paraphrase for each utterance,
implemented using Ma (2019)’s NLP augmenta-
tion (nlpaug) library. We anticipated that the origi-
nal sentence would lose many figurative elements
through the process of back-translation, leading the
PET to be replaced by a semantically consistent
but literal paraphrase. We then computed the dif-
ference in sentiment between the original sentence
o and back-translated paraphrase p, where Sd(·) is
a measure of sentiment for a given input along a
specific dimension d:

SENTDIFF(o, p) = Sd(o)− Sd(p) (1)

Sentiment was measured along five dimensions
(Lee et al., 2022, negative, neutral, positive, non-
offensive, and offensive) using the RoBERTa (Liu
et al., 2019) sentiment and offensiveness models.
We used differences in negative, neutral, positive,
and offensive sentiment as features (Table 2) for a
logistic regression model to classify sentences as
euphemistic or non-euphemistic. We used Python’s
scikit-learn library1 to implement our classifier,
leaving all hyperparameters at their default values.

1https://scikit-learn.org/stable/

4.1.2 Paraphrasing Using MLM

As an alternative to back-translation, we also gen-
erated paraphrases using MLM and masking out
PETs. Because MLM accounts for sentence con-
text, we expected that the tokens replacing the PET
would be influenced by the overall sentiment of
the sentence. Thus, if the context was indicative
of taboo or sensitive content, then the MLM’s sug-
gestions should reflect that sentiment. From the
set of suggested replacements for each PET, we se-
lected the token that was most similar in meaning
to the original PET. To do this, we generated an
embedding for the original PET and each of the
token suggestions using the Sentence Transform-
ers framework (Reimers and Gurevych, 2019). We
ignored MLM tokens that were either stopwords or
identical to the original PET.

We selected the MLM token that had the highest
cosine similarity to the PET, with the expectation
that this token would be a non-euphemistic para-
phrase of it. The selected token was substituted
for the PET in the original sentence. We then cal-
culated negative, neutral, positive, and offensive
sentiment differences between the original sentence
and the paraphrase as explained in §4.1.1, using
those shifts as features for classification.

4.2 Word Sense-based Method

In the third approach, rather than analyzing sen-
timent differences, we compared the number of
word senses between the syntactic head of the PET
and its single-word non-euphemistic paraphrase.
Consider the euphemism expecting used instead of
pregnant. Expect, the lemma of the euphemism,
has much wider semantic scope than pregnant. In
replacing a very specific term with a more vague,
metaphorical one, euphemism functions to reduce
the explicitly taboo undertones of the target con-
cept (Fernández, 2008). We captured this apparent
ambiguity of the euphemistic term compared to
the concreteness of its non-euphemistic paraphrase
through measured polysemy. The euphemism is
expected to be built on a word with more senses
than the non-euphemistic word it replaces.

The non-euphemistic paraphrase of the PET in
each utterance was determined using the same
MLM technique described in §4.1.2. Because the
PET can be a multi-word expression, and senses
are counted for individual words, we extracted the
syntactic head of each PET. If the PET was a single
word, then the head was the word itself. Otherwise,
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the head was identified as the root token of the
PET’s dependency parse (predicted using Python’s
spaCy2 library). For example, if the euphemism
lay off was used in the context of firing employees,
then the head of the PET would be the verb lay.

We used WordNet (Fellbaum, 1998) to find the
number of word senses for the lemmas of both the
chosen MLM token and the head of the original
PET. If a lemma did not appear in the WordNet
dictionary, then its number of senses was set to one.
The number of word senses of the head of the PET
and of the chosen MLM token were used as fea-
tures for a logistic regression model to classify the
test utterances as euphemistic or non-euphemistic.
Similarly to our first approach, we used Python’s
scikit-learn library3 to implement our logistic
regression classifier, with default hyperparameters.

4.3 Transfer Learning Method

Our final method was a fine-tuned BERT (Devlin
et al., 2019) model. Specifically, we fine-tuned the
bert-base-cased pre-trained model from Hug-
ging Face4 for euphemism detection using the
Trainer API. The model was pretrained on data
from BookCorpus (Zhu et al., 2015) and English
Wikipedia.5 We anticipated that this model would
offer a strong baseline to which the other models
could be compared, while also facilitating study
into the extent that general-domain pre-training
data can be leveraged for this task. Input was tok-
enized using AutoTokenizer, also from the Hugging
Face library. We set the model to pad shorter input
sequences to the maximum sequence length, and
truncate longer input sequences to the maximum
acceptable input length for the model (512 tokens).

5 Evaluation

We compared the performance of all methods us-
ing precision, recall, and F1-measure, following
task guidelines. The sentiment-based methods de-
scribed in §4.1 were excluded from our shared task
submission and thus not evaluated on the test data,
due to their observed under-performance during
validation experiments. Our validation experiments
were evaluated using a withheld subset of 20% of
the training data. In Table 3, we report all mod-
els’ performance on the the validation set, enabling

2https://spacy.io/
3https://scikit-learn.org/stable/
4https://huggingface.co/bert-base-cased
5https://en.wikipedia.org/

Method P R F1

Sentiment-BT 0.34 0.50 0.41
Sentiment-MLM 0.35 0.50 0.41
Word Sense 0.59 0.51 0.44
BERT 0.83 0.92 0.87

Table 3: Performance comparison among all models on
a held-out validation subset of the training data.

Method P R F1

Word Sense 0.50 0.55 0.43
BERT 0.74 0.75 0.74

Table 4: Performance comparison among shared task
submissions on the test data.

comparison between all techniques described in §4.
In Table 4, we report the performance of the two
top-performing methods, Word Sense (§4.2) and
BERT (§4.3), on the test dataset as evaluated by the
shared task submission portal.

6 Discussion

The results show that BERT unquestionably outper-
forms the sentiment- and word sense-based meth-
ods. This illustrates that a fine-tuned model pre-
trained on general-domain data can be successfully
leveraged for euphemism detection. Close inspec-
tion of the predictions from the three linguistically-
driven methods revealed that they overwhelmingly
classified sentences as euphemistic. We suspect
that they learned to reliably detect the presence of
figurative language but require further refinement
to discriminate between euphemism and other figu-
rative language phenomena (e.g., metaphor).

Sentiment-BT likely under-performed because
we found that PETs remained surprisingly intact
through the process of back-translation. Hence,
there were few sentiment differences between the
original and paraphrased sentences. Similarly, the
tokens selected in Sentiment-MLM may have fit the
sentence context but were not literal paraphrases
of the PET. Beyond Sentiment-MLM, this may also
explain the failure of Word Sense relative to BERT.
If the paraphrases themselves are unreliable, then
it entails that subsequent downstream comparisons
of sentiment or polysemy between the original and
paraphrased sentences will also be inaccurate.
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7 Conclusion

In this paper, we explored linguistically-driven and
transfer learning methods to detect euphemism.
Our linguistically-driven methods drew upon dif-
ferences in sentiment and word sense frequency
between euphemisms and their paraphrases. Our
transfer learning method fine-tuned BERT for eu-
phemism detection and proved to be the most suc-
cessful. We motivate our sentiment- and word
sense-based methods using linguistic theory and
report their results despite under-performance to
highlight the scope for future improvement. In our
next steps, we aim to devise techniques for more
accurately paraphrasing euphemisms (simultane-
ously driving the dial forward towards euphemism
understanding), allowing us to further investigate
linguistically-driven approaches. We will also
study whether fine-tuning source models intended
for metaphor detection or sentiment analysis will
further improve upon our transfer learning results.

Limitations

We acknowledge that the linguistically-driven mod-
els in this paper are only applicable to data where
the PET has been explicitly demarcated. To deploy
these models in a real-world setting, we would have
to create a system that is capable of not only detect-
ing the presence of a euphemism but can identify it
from data that has not been annotated.

Furthermore, in addition be being limited to eu-
phemisms in English, our proposed models are
trained only on American dialectal data. This calls
into question the cross-cultural validity of our mod-
els. Specifically, the target concepts that necessi-
tate euphemism and the metaphors that those eu-
phemisms are built upon are culturally-dependent
constructs, posing a challenge for building general-
izable euphemism detection models.
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Abstract
Metaphors frame a given target domain using
concepts from another, usually more concrete,
source domain. Previous research in NLP has
focused on the identification of metaphors and
the interpretation of their meaning. In contrast,
this paper studies to what extent the source do-
main can be predicted computationally from
a metaphorical text. Given a dataset with
metaphorical texts from a finite set of source
domains, we propose a contrastive learning ap-
proach that ranks source domains by their like-
lihood of being referred to in a metaphorical
text. In experiments, it achieves reasonable per-
formance even for rare source domains, clearly
outperforming a classification baseline.

1 Introduction

Metaphors foster meaning in language by establish-
ing a mapping between two conceptual domains,
where concepts rooted in a usually rather concrete
source domain are projected to a usually rather ab-
stract target domain (Lakoff and Johnson, 2003).
In other words, metaphors explain one concept in
terms of another concept. For example, in the sen-
tence “the sales tax would generate $12 billion in
annual tax revenues”, the target domain taxation is
described through concepts from the source domain
machine, as indicated by the verb “generate”.

Recent research suggests that even state-of-the-
art NLP models face problems with making infer-
ences on figurative language such as metaphors
(Chakrabarty et al., 2021). To better comprehend
the meaning intended by metaphorical language,
additional levels of understanding need to be incor-
porated. So far, past research in natural language
processing has focused on the distinction of literal
from metaphorical text (Shutova et al., 2010) as
well as on the interpretation of metaphors in terms
of understanding their literal meaning from their
intended meaning and vice versa (Shutova et al.,
2012; Stowe et al., 2021). For these tasks, the map-
ping between source and target domain has often

been used as an effective cue. To the best of our
knowledge, however, no work directly attempts the
actual identification of the conceptual domains of
metaphors from a given sentence. A reason behind
may lie in the theoretical unboundedness of the
number of concepts (and, as a result, the space of
metaphors) associated with a single concept.

In this paper, we study to what extent source
domains can be predicted computationally from
given metaphorical sentences. We restrict our view
to the slightly simplified setting in which a set of
possible source domains is predefined (but possibly
large). Conceptually, this makes the task a classi-
fication problem: Given the sentence, assign it to
the correct source domain.

However, for larger numbers of source domains,
it may be hard to learn a reliable classification
model, particularly when annotated metaphor data
is limited. Instead, we therefore propose a con-
trastive learning approach (Zhang et al., 2022)
based on our hypothesis that the source domain
and the metaphorical sentences are related linguisti-
cally. The approach ranks all source domains based
on the similarity of their embeddings to the embed-
ding of the given sentence. At inference time, it
then chooses the top-ranked source domain.

We evaluate our approach on the corpus of Gor-
don et al. (2015), covering 1429 English metaphor-
ical sentences and 138 source domains. With an
accuracy of 0.619, our approach clearly outper-
forms transformer-based classification baselines,
especially on rare source domains. Even though
the unboundedness problem remains, we thereby
contribute towards a better computational under-
standing of metaphorical language. To go beyond,
we expect that modeling external knowledge about
source domains will be needed.

2 Related Work

As stated above, past NLP research has tackled
the study of metaphors mostly in the form of two
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Sentence Metaphor Src. Domain

The sad news is with the ex-
ception of very few no firearm
organisation is doing anything
of the slightest value in fight-
ing gun control.

fighting Struggle, War

This is the historical context
of Obama’s election victory.

victory Competition,
Game, War

They attack ""rich people""
while enjoying all the spoils
of their luck, I have zero prob-
lems with earned wealth, but
these clowns literally lucked
out in life.

attack War

Table 1: Example sentences from the dataset having
one or more than one concepts grouped as the source
domain.

tasks: metaphor identification (Mao et al., 2018;
Do Dinh and Gurevych, 2016) and metaphor inter-
pretation (Beust et al., 2003; Shutova, 2010). Most
works in these research fields build on the work of
Lakoff and Johnson (2003) on the interpretation
of intended meanings in metaphorical expressions.
The author theorized different metaphors in terms
of mapped concepts (source and target domains).
Approaches to metaphor interpretation have partic-
ularly witnessed unsupervised extraction of source
domains and target domains to interpret the in-
tended meaning of metaphorical expressions (Li
et al., 2013; Yu and Wan, 2019). In contrast, we
seek to predict the source domain, even if it is not
mentioned in the text.

Notable research combining metaphor identifi-
cation and interpretation has been carried out by
Shutova et al. (2013). The authors first identi-
fied metaphors by verb and noun clustering, fol-
lowed by interpreting the intended meaning of the
metaphors by addressing it as a paraphrasing task.

Li et al. (2013) modeled explicit conceptual
metaphors (where the source domain and the target
domain are situated as excerpts of text in the sen-
tence) and implicit conceptual metaphors (where
the two domains are not apparent), where they ex-
tracted source and target domains in an unsuper-
vised approach. A limitation of their work is that
no evaluation is provided regarding how authentic
the source domains and the target domains are that
are excavated.

Recently Stowe et al. (2021) have interpreted
metaphors by extracting source and target domains
from the semantic space of their associated con-

< 10

10–50

51–80

81–140

67.4%

26.8%

1.4%

4.3% # Source domains with 
occurrences in the specified ranges

Figure 1: Insights into the distribution of the given data:
67.4% of the source domains are referred to in less than
10 metaphors, 4.3% occur between 81 to 140 times, etc.

cepts in FrameNet (Ruppenhofer et al., 2016), to
generate metaphorical expressions. We comple-
ment this study in that we assess how well source
domain prediction works when the set of domains
is known in advance.

Ahrens and Jiang (2020) developed an algorithm
to identify source domains from text with the help
of lexical resources like WordNet, which partially
addressed the unboundedness problem of source
domains. However, their work is essentially an an-
notation procedure for source domain verification.

The only datasets suitable for our purposes are
the one of Shutova and Teufel (2010), where source
and target domains have been annotated manually,
and the one of Gordon et al. (2015) where both
conceptual source and target domains and their
linguistic triggers are given. We rely on the latter,
since the former one has only 761 samples.

3 Data

To study the task of predicting the source domain
of metaphors, we need data where source domains
are annotated. We employ the dataset of Gordon
et al. (2015), which was originally created to ex-
plore how the meaning shift (Shutova et al., 2013)
happens between source and target domains. The
dataset contains 1771 metaphorical sentences, span-
ning 70 source domains annotated for the linguistic
metaphors (metaphorical text excerpts in the sen-
tence corresponding to source and target domains).
We use the “source linguistic metaphor” and hence-
forth refer to it simply as metaphor. For example,
in the sentence “An invasion of wealth may not suit
their interests”, the metaphor is “invasion” and the
annotated source domain is War.

Table 1 shows three example metaphors from the
dataset. As can be seen, some metaphors pertain to
more than one source domain. For example, in the
sentence “This is the historical context of Obama’s
election victory”, the metaphor “victory” has the
source domains Competition, Game, and War. In
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Figure 2: Our contrastive learning approach: During training, we optimize the transformer models based on Multiple
Negatives Ranking Loss. At inference, we select the source domain most similar to a given metaphorical sentence.

this paper, we see such cases as composite source
domains, that is, if a metaphor in a given sentence
has multiple source domains, we treat them as one
new source domain. As a result, the total number
of source domains in our work is 138. Figure 1
shows the distribution of source domains in the
whole dataset, underlining the complexity of the
problem and the sparsity of the data.

4 Approach

For a predefined set of domains, we here model
source domain prediction as a ranking task. Given
a metaphorical sentence as input, we rank all can-
didate domains by their likelihood of being the
source domain based on their semantic similarity
to the sentence. Then, we choose the top-ranked
domain as the predicted source domain.

To that end, we develop a contrastive learning
approach which compares the semantic represen-
tations of the input sentence and the candidate do-
mains. Figure 2 gives an overview.

4.1 Training Phase
On a training set, our approach learns to minimize
the semantic distance of the correct source domain
from the given metaphorical sentence. For rep-
resenting the data at hand, we build on the re-
cent success of sentence transformers (Reimers
and Gurevych, 2019), which leverage efficient rep-
resentations for different downstream tasks. We
fine-tune a sentence transformer as follows:

1. We pass the sentence (concatenated with its
metaphor by a separator token) and each
source domain through two transformer-based
encoders with shared weights, in order to ob-
tain an embedding for each. Our central idea

revolved around exploring how our approach
works. To test the approach to it’s full poten-
tial we refrain from using large transformer
based encoders like T5 (Raffel et al., 2020)
- which we think may affect the model per-
formance to the extent, where understanding
what is responsible for a good model perfor-
mance - the approach or the encoder - would
be difficult. Hence, we simply use BERT (De-
vlin et al., 2019) and DistilBERT (Sanh et al.,
2019) 1 as encoders for creating the sentence
representations.

2. For a vector of sentences x and corresponding
correct source domains y, that is, with only
positive instance pairs (xi, yi) with xi ∈ x
and yi ∈ y like Reimers and Gurevych (2020)
we rely on Multiple Negatives Ranking Loss
(Henderson et al., 2017), where xi along with
each domain yj , j ̸= i, is used as a negative
pair. Let k = |X| = |Y | be the number of
pairs, then we compute the loss as:

L(x,y, θ)

= −1

k
·

k∑

i=1

logPapprox(yi|xi)

= −1

k
·

k∑

i=1

(
S(xi, yi)− log

k∑

j=1

eS(xi,yj)
)

In line with Henderson et al. (2017), S(x, y) is
the score of an instance computed from the sen-
tence embeddings. The ranking function is defined

1Specifically, we use ‘bert-base-uncased’ and ‘distilbert-
base-uncased’ as the pre-trained checkpoints. These are the
variants with the lowest number of parameters of BERT and
DistilBERT respectively.
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Approach Encoder Accuracy

Majority baseline – 0.063

Classification baseline BERT 0.421
DistilBERT 0.473

Contrastive learning BERT 0.619
DistilBERT 0.612

Table 2: Main results: Accuracy of our approach and
the baselines. Using BERT, our approach performs best.

by θ which is a vector storing the current parame-
ters of the transformer-based encoders. Following
the idea of contrastive learning, the loss will be
minimized, if positive instances get high scores
and negative instances low scores.

4.2 Inference Phase
At inference time, the input is just a sentence con-
catenated with its metaphor. We pass this input
through the encoder to obtain its embedding. Us-
ing a ranking evaluator, we next compute the cosine
similarity in terms of the paired cosine distance be-
tween the sentence embedding and the pre-encoded
embeddings of each of the candidate source do-
mains. Then, we take the most similar source do-
main as our predicted output, that is, the one whose
embedding has the minimum distance to the sen-
tence embedding.

5 Experiments

This section reports on first experiments that we
carried out to evaluate our approach to source do-
main prediction against different baselines. The
goal was to study whether and when contrastive
learning provides advantages over standard classi-
fication in the given task. 2

5.1 Experimental Setup
We relied on the following experimental setup:

Data From the dataset described in Section 3, we
omitted two instances that were corrupt. We also
removed a few duplicates: These instances had the
same sentence and source domain, but a different
value for some attribute that we did not use (e.g.,
“schema slot”). Afterwards, we split the remaining
1429 texts randomly into 70% for training (1000
texts), 10% for validation (128 texts), and 20% for
testing (301 texts). The split is preserved for re-
producibility. We evaluate our model with top-1

2The experiment code can be found at https://github.
com/webis-de/FIGLANG-22.

accuracy score with our ranking evaluator as men-
tioned previously.

Majority Baseline To assess how much can be
learned from the data, we employ a majority base-
line that always predicts the majority source do-
main found in the training set.

Classification Baselines As discussed initially,
the given task conceptually defines a classifica-
tion problem. Accordingly for baselines, we
fine-tune attention-based sequence-to-sequence lan-
guage transformers in symmetry with the encoders
of our contrastive learning approach, namely BERT
and DistilBERT, to directly classify the source
domains.3 We report the final score in terms
of the average accuracy over 20 iterations of
each model. We optimized both models with
AdamW (Loshchilov and Hutter, 2017) in six
epochs, batches of size 32, a learning rate of 5−5.

Contrastive Learning (Approach) The two con-
figurations of our approach follows the concept
discussed in Section 4. Also here, we report the
average accuracy over 20 iterations for each model.
We optimized both variants in 6 epochs, batches of
size 32, and a learning rate of 5−5.

5.2 Main Results

Table 2 presents the results of all evaluated mod-
els on the test set. The majority baseline achieves
an accuracy of 0.063. While the classifier based
on DistilBERT predicts a little less than half of all
source domains correctly (0.473), our contrastive
learning approaches clearly outperform all base-
lines, supporting our hypothesis. Still, the highest
accuracy (0.619 based on BERT) reveals room for
improvement, possibly suggesting a need for more
knowledge about source domains and their connec-
tions to the concepts being mentioned.

5.3 Results across Source Domains

One major challenge regarding the task is the num-
ber of source domains involved and their distribu-
tion. As shown in figure 1, 67.4% of the source
domains occur in less than 10 metaphors - indicat-
ing there are less than 10 instances of these source

3Due to the high number of source domains (i.e., classes
here) in the data, we considered grouping similar source do-
mains and performing the classification in a two step process.
We decided against, though, since many of the source domains
occur rarely only (see Figure 1), so we would lose a substantial
amount of information during grouping.
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# Src. Domain Occurrences

Approach Encoder < 10 10–50 51–80 81–140

Classification BERT 0.000 0.214 0.504 0.823
baseline DistilBERT 0.000 0.376 0.522 0.856

Contrastive BERT 0.480 0.694 0.511 0.632
learning DistilBERT 0.512 0.664 0.500 0.615

Table 3: Result analysis: Accuracy on different subsets
of the test set, partitioned based on the occurrences of
the source domains in accordance with Figure 1.

domains in the dataset. This is particularly impor-
tant because this represents the real-life scenario
about how source domains occur in metaphors. Ide-
ally, an approach for identifying source domains
should be able to perform well in this scenario.

To see how our approach compares to the clas-
sification baseline across the distribution of the
source domains in the dataset, we partitioned the
test instances into four subsets depending on the
occurrences of source domains (using the ranges
from Figure 1).

Table 3 reports the average accuracy over 5 itera-
tions on each subset, keeping all other hyperparam-
eters same as discussed previously. As can be seen,
our approach consistently outperforms the classifi-
cation baselines in the case of rarer source domains
(< 10 and 10–50), which denotes the vast major-
ity of the dataset. In contrast, the classification
baselines perform better on the subsets with fre-
quent source domains (51–80 and 81-140) While
this suggest that more data may make classifica-
tion suitable, the unboundedness of metaphors ren-
ders sufficient data unlikely in general. We thus
conclude that our approach generalizes better to
real-world scenarios with multiple source domains
likely to be present in scanty data distributions.

6 Conclusion

Understanding a metaphor includes the recogni-
tion of the source domain from which concepts are
projected to the target domain being discussed. In
this paper, we have proposed a contrastive learn-
ing approach to recognize the source domain from
a given metaphorical text computationally, when
the set of domains is predefined. Experiments sug-
gest that the approach works reasonably well, par-
ticularly for source domains that are represented
scarcely, which we expect to likely happen often
in real-world situations. However, the obtained re-
sults also reveal notable room for improvement. In

future work, we plan to investigate the impact of
modeling external knowledge about the domains
as well as the recognition of source domains in
unbounded settings.

Acknowledgments

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation), under project number TRR 318/1
2021 – 438445824.

Limitations

In our work, we have formulated our approach on
the assumption that a given set of metaphors have
a finite predefined set of source domains. In a real-
world scenario, however, the possible candidates
for a source domain of a metaphor are theoreti-
cally unbounded. Hence, while our assumption is
a start towards modeling source domain prediction,
it definitely leaves questions to be answered in this
context. Moreover, we restricted our view to classi-
fication and contrastive learning approaches in this
paper as an initial investigation of the task. Other
NLP techniques may be worth considering, such as
few-shot learning and active learning. We plan to
investigate these in the future to get a better idea of
the capabilities of our approach. Finally, we point
that the observations we make in this paper about
metaphor may not all generalize to other languages
than English. Metaphor use has language-specific
peculiarities that we left untouched here.
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Abstract

Figurative language is ubiquitous in human
communication. However, current NLP mod-
els are unable to demonstrate a significant un-
derstanding of instances of this phenomena.
FigLang shared task on figurative language un-
derstanding posed the problem of predicting
and explaining the relation between a premise
and a hypothesis containing an instance of the
use of figurative language. We experiment with
different variations of using T5-large for this
task and build a model that significantly outper-
forms the task baseline. Treating it as a new
task for T5 and simply finetuning on the data
achieves the best score on the defined evalua-
tion. Furthermore, we find that hypothesis-only
models are able to achieve most of the perfor-
mance.

1 Introduction

Figurative language is an important component
of discourse, ranging from daily interactions to
books. It is used as a tool to convey complex
and deeper emotions that are often difficult to ex-
press literally (Ghosh et al., 2015). Despite the fact
that Transformer-based pretrained language models
(LMs) get even larger, they are still unable to com-
prehend the physical world, cultural knowledge, or
social context in which figurative language is em-
bedded. Large-scale crowdsourced datasets often
contain these phenomena inherently. To show true
conceptual understanding of figurative language,
the model should not only be able to correctly
differentiate a figurative instance from its literal
counterpart, but also explain its decision. These
natural language explanations should be readily
comprehensible by an end-user who needs to as-
sert a model’s reliability (Camburu et al., 2018;
Wiegreffe and Marasovic, 2021).

This paper describes the experiments and sub-
mission of the LUNR lab at Stony Brook Univer-

∗First two authors have equal contribution

sity, USA to the shared task on Figurative Lan-
guage Understanding (Chakrabarty et al., 2022b)
organized at EMNLP 2022. Given a premise and
a hypothesis, the shared task required predicting
the relation between them as well as an explanation
for the same. We use variations in input format,
separator and sequential fine-tuning techniques to
build our final model.

Since the task involves predicting the label as
well as an explanation for it, in this paper we vary
the order of generation of each target in our mod-
els. Prior work (Khashabi et al., 2020) highlighted
the importance of separator tokens. It helps the
model distinguish between different portions of the
input. Additionally, since this task is not a com-
mon one, variations in input format and keywords
dictate how well a model performs. To that end,
we experimented with different formats prescribed
for T5 models as well as a simple one for an un-
seen, new task. Finally, we also experimented with
sequential fine-tuning on several related datasets to
improve performance on the shared task.

Our final model is a simple T5-large model fine-
tuned on the task data, trained to generate the ex-
planation before the label. The input format does
not contain any task-specific keys and does not re-
semble any of the ones described in Raffel et al.
(2020). The model uses a "\n" separator, which
is a prominent part of how UnifiedQA (Khashabi
et al., 2020) was built over T5. It improves sig-
nificantly over the task baseline. We observe that
(1) treating this as a new task leads to best model
performance, (2) the dataset contains artifacts that
hypothesis-only models use to reach significant per-
formance, and (3) knowing the type of phenomena
being encapsulated does not help the model.

2 Related Work

The model’s ability to explain decisions has been
investigated in previous studies. Rajani et al. (2019)
presents a novel Common Sense Explanations
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(CoS-E) dataset to explore commonsense reasoning
and propose a novel method, CAGE for automati-
cally generating explanations that achieve state-of-
the-art performance. Camburu et al. (2018) intro-
duces a large corpus of human-annotated explana-
tions for the Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015a) dataset which is col-
lected to enable research in generation of free-form
textual reasoning. Bastan et al. (2022) introduces
SuMe dataset which generates relation between en-
tities and an explanation for why this relation exists
or how this relation comes about.

None of the previous work explored the possi-
bility of different data formats. In this work we
evaluate different combinations of the explanation
and label generations. We also study the effect of
the pretrained model on similar tasks as a sequen-
tial pretraining.

3 Data

The shared task data (Chakrabarty et al., 2022a)
contains 9,000 high-quality literal, figurative sen-
tence pairs with entail/contradict labels and the
associated explanations. The benchmark spans five
types of figurative language: Paraphrase, Sarcasm,
Simile, Metaphor, and Idiom. The definition of
each type is explained as follows:

Paraphrase is a rephrasing of something that is
written. All sentences in this category belongs to
the entailment category.

Sarcasm is using phrases which have the oppo-
site meaning from what they are intended to convey.
It can be used for creating contradiction labels.

Simile is using a figure of speech to compare
something with something else. It can be used for
both entailment and contradiction labels.

Metaphor is when a word or phrase used to de-
scribe something that it cannot literally describe.
It can be used for both entailment and contradic-
tion labels. It can be used for both entailment and
contradiction labels.

Idiom is established by usage as having a mean-
ing not derived from their individual meanings. It
can be used for both entailment and contradiction
labels.

A noteworthy property of this data is that both
the entailment/contradiction labels and the expla-
nations are w.r.t the figurative language expression
(i.e., metaphor, simile, idiom) rather than other
parts of the sentence. The task is challenging be-
cause it inherently requires 1) relational reasoning

using background commonsense knowledge, and 2)
finegrained understanding of figurative language.

We split 7,500 examples into a 80-20 train and
dev set randomly. These sets are then used to build
models for the overall shared task.

4 Experiment Design

We use the T5 (Raffel et al., 2020) family of models
for our submission. Particularly, we build over T5-
large.

Since this is a new task for T5, we experiment
with various input and output formats. We build
models where the label is placed before and after
explanation on the target side. Large language
models have also been shown to be sensitive to the
choice of separators. To this end, we build models
that conform to different input/output formats as
well as separators.

Prior work has shown that pretraining on large
amounts of data similar to the task improves the
downstream performance of models. To this end,
we use e-SNLI (Camburu et al., 2018) to sequen-
tial fine-tuning our model before finetuning on
downstream task data to obtain a final model. e-
SNLI is an extension of the SNLI dataset (Bowman
et al., 2015b) with an additional layer of human-
annotated natural language explanations of the en-
tailment relations. Similarly, SuMe Bastan et al.
(2022) is a biomedical mechanism explanation
dataset which contains a set of supporting sentence
about two main entities, the relation between the
entities, and a sentence explaining the mechanism
behind this relation. They explored the genera-
tion of explanation and target label at the same
time given the supporting sentences, using different
transformer based models. They use [explanation.
label] as the output format while we explore all
possible orders and separator tokens. We used the
model pretrained on SuMe dataset and finetuned
on this task.

Poliak et al. (2018) used hypothesis-only models
showed that statistical irregularities may allow a
model to perform natural language inference in
some datasets beyond what should be achievable
without access to the context. Motivated by that,
we also build hypothesis-only models to analyze
whether models require contexts to perform this
NLI + explanation task.
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5 Results

5.1 Evaluation

To evaluate the performance of each model, we
use two generations and three classifications met-
rics. For generations, we use BLEURT (Sellam
et al., 2020) and BERTScore (Zhang et al., 2019)
which have been proven to be more effective than
tradition ROUGE scores. In order to evaluate the
quality of explanations, we compute the average be-
tween these two scores. NLI label accuracy is then
reported based on three explanation average score
thresholds. We compute the accuracy@0 meaning
accuracy on all generated data, accuracy@50 mean-
ing accuracy of the generated label for all texts with
average explanation score higher than 50, and ac-
curacy@60 which is the accuracy of the generated
label for all texts with average explanation score
higher than 60. This evaluation scheme has been
defined by the task organizers themselves.

5.2 Task Results

The baseline model released for the task is T5-
3B finetuned on this dataset (Chakrabarty et al.,
2022b). Our best model is a T5-large finetuned on
task data in using RTE keywords with the "[SEP]"
separator, and predicting the label before the expla-
nation. It significantly improves upon the baseline
set for the shared task despite being much smaller
in terms of number of parameters. Particularly, we
observe that Acc@60 is much lower than Acc@50,
which means that the average accuracy of the gen-
erated label drops as the average explanation score
threshold goes up from 50 to 60 (becomes stricter).

Acc@0 Acc@50 Acc@60

Our Model 0.889 0.824 0.517
Baseline 0.767 0.691 0.443

Table 1: Results on shared task test set

6 Analysis

We analyse the performance of the numerous mod-
els that we have built to understand the impact of
various design decisions that we took — input for-
mat, sequential fine-tuning, and order of required
predictions. Further, we also want to understand
the impact of artifacts present in the dataset itself
on model performance. We use the evaluation de-
scribed in subsection 5.1 on the dev set for analysis.

6.1 How does input format affect
performance?

The data input formats vary in two aspects — task-
specific keywords and the separator. Specifically,
the task-specific keywords can correspond to a new
task for T5 (no keywords), RTE and MNLI (Ap-
pendix D.2 and D.3 of Raffel et al. (2020) respec-
tively). We experiment with three possible separa-
tors between pieces of input text - ‘ ’ (whitespace),
[SEP] (the sep token), and "\n" (the newline char-
acter). Both \n and [SEP] are predefined to the
tokenizer as one unique token before training.

The effects of these design choices can be seen in
Table 2. We find that treating this as a new task (and
not using any predefined task-specific keywords)
yields the best model performance. Furthermore,
predicting the label before predicting its explana-
tion is better than the opposite. This is in line with
the expected order of performing both tasks — one
would predict the relation between the pair before
explaining it. We also see that using the [SEP] to-
ken is better for the label before explanation setting
except when using the MNLI task format.

6.2 Does sequential fine-tuning help?

Prior work has shown that sequential fine-tuning
on similar tasks often helps models. Both e-SNLI
(Camburu et al., 2018) and SuMe (Bastan et al.,
2022) are tasks where models have to predict labels
as well as explain it. We built models that were first
psequential fine-tuning on one of these datasets and
then finetuned on the task data. The results of these
two experiments are shown in Table 3.

We found that the sequential fine-tuning
paradigm actually hurts model performance sig-
nificantly, no matter which task is used with the
model first. We hypothesize that while these se-
lected tasks are similar in terms of what the model
has to predict, they do not capture any aspects of the
figurative language phenomena. So, introducing a
model to these tasks does not necessarily nudge it
towards the right domain.

6.3 Label before explanation vs explanation
before label

We explored different order of generation for the
label and the explanation. First, for each data, we
set the label to be generated before the explanation
(lbe) then we changed the order and first generated
the explanation before the label (ebl).

The results are shown in Table 2. We find that
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Keyword Label Position Seperator Model Name Acc@0 Acc@50 Acc@60

- after - ebl-no 0.830 0.778 0.557
- after [SEP] ebl-sep 0.789 0.737 0.513
- after \n ebl-slashn 0.822 0.766 0.557
- before - lbe-no 0.838 0.773 0.531
- before [SEP] lbe-sep 0.899 0.830 0.584
- before \n be-slashn 0.844 0.789 0.539

mnli after - mnli-ebl-no 0.790 0.737 0.514
mnli after [SEP] mnli-ebl-sep 0.779 0.721 0.512
mnli after \n mnli-ebl-slashn 0.814 0.747 0.540
mnli before - mnli-lbe-no 0.799 0.754 0.537
mnli before [SEP] mnli-lbe-sep 0.711 0.672 0.451
mnli before \n mnli-lbe-slashn 0.788 0.738 0.529

rte after - rte-ebl-no 0.737 0.690 0.486
rte after [SEP] rte-ebl-sep 0.797 0.748 0.537
rte after \n rte-ebl-slashn 0.833 0.767 0.531
rte before - rte-lbe-no 0.797 0.745 0.510
rte before [SEP] rte-lbe-sep 0.891 0.827 0.590
rte before \n rte-lbe-slashn 0.741 0.698 0.476

Table 2: Model performance with different input formats on the dev set. The first column shows the task specific
keyword we used in finetuning. It’s either nothing, the same as ‘mnli’ task, or ‘rte’ task. The second column
indicates whether the label is generated before or after the explanation. lbe means that the model was trained
to generate the label before the explanation while ebl indicates the opposite. The third column indicates which
separator was used between the label and the explanation. We either used no token, [SEP] token, or \n token. Model
name comes from the combination of the previous three columns. This notation is used in all other tables as well.
Treating the shared task as a new T5 task, using the [SEP] token as separator, and predicting the label before the
explanation helps us build the best model.

Model Name Acc@0 Acc@50 Acc@60

lbe-sep 0.899 0.830 0.584
esnli-mnli-ebl-sep 0.73 0.666 0.413

sume-mnli-ebl-slashn 0.696 0.672 0.502
sume-mnli-lbe-sep 0.729 0.669 0.410

Table 3: Effect of sequential fine-tuning on model per-
formance on shared task data. We only include the best
possible model scores obtained in the no-, esnli- and
sume- sequential fine-tuning regime. Clearly, sequential
fine-tuning only has a negative impact on model perfor-
mance.

predicting the label before moving on to the expla-
nation is better for the model in both a new task and
the RTE task setup. However, the opposite is true
for MNLI. Why the pattern does not hold remains
an open research issue.

6.4 Presence of artifacts in the dataset

Poliak et al. (2018) showed the presence of artifacts
in several popular NLI datasets. We use a similar

Model Name Acc@0 Acc@50 Acc@60

lbe-sep 0.672 0.627 0.423
mnli-lbe-no 0.696 0.634 0.418
rte-lbe-no 0.680 0.622 0.416

Table 4: Performance of hypothesis-only models on the
task. The table only includes the best performing model
from each input format task type (new, mnli and rte).

approach and build hypothesis-only models to test
the presence of artifacts in this dataset and task.
Ideally, these models should perform very poorly
on this data since they do not have access to the
premise and have to judge incomplete inputs.

Table 4 shows that models are able to achieve
high enough Acc@0 scores, showing that the over-
all dataset contains some artifacts. Technically, if a
significant portion of the dataset can be correctly
classified without looking at the premise (well be-
yond the most-frequent-class baseline), it shows
that it is possible to perform well on the datasets
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Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.854 0.803 0.542
mnli-ebl-no 0.847 0.786 0.567
rte-ebl-no 0.862 0.804 0.584

Table 5: Performance of models when they are also
provided the type of phenomena captured in the premise-
hypothesis. We only include the best performing model
from each input format task type (new, mnli and rte).

without modeling natural language inference hence
the data relies on annotation artifacts (Gururangan
et al., 2018). However, it is also clear that using
Acc@60 shows the weakness of the explanations
generated by these models. Overall, we posit that
using hypothesis-only models alone are also effec-
tive in performing this task.

6.5 Does knowing the type of figurative
language phenomena help?

Wang et al. (2019) showed that additional knowl-
edge is useful in improving NLI models. The
dataset is annotated with the type of figurative phe-
nomena encapsulated in the premise-hypothesis
pair. Using this additional information can help a
model predict the relation between the pair better,
and nudge it towards the correct explanation.

Performance for such models is listed in Table 5.
We find that knowing the type of phenomena hurts
the model as compared to just simply finetuning
with vanilla task inputs and outputs. It is unclear
why this additional knowledge has a negative im-
pact. One assumption can be because this addi-
tional information is not available at the test data,
we can only use this information during training.
This study is done on the development set. We
trained a model with this additional information,
but at the time of evaluation we didn’t use this as
this is not available in the test set.

7 Conclusion

Figurative language is an important component of
discourse, often used as a tool to convey complex
emotions usually difficult to express literally. The
shared task is designed to test whether models can
predict the relation between a pair of sentences that
contains figurative language as well as explain that
phenomena. We experiment with building several
models based on T5-large varying the input format,
order of prediction and sequential fine-tuning.

Our final model is a simple T5-large model fine-
tuned on the task data, trained to generate the ex-
planation before the label. The input format does
not contain any task-specific keys and does not re-
semble any of the ones described in Raffel et al.
(2020) but uses a "\n" separator. It improves sig-
nificantly over the task baseline. We observe that
(1) treating this as a new task leads to best model
performance, (2) the dataset contains artifacts that
hypothesis-only models use to reach significant per-
formance, and (3) knowing the type of phenomena
being encapsulated does not help the model.

8 Limitations

Our approach is fundamentally limited by the limits
of the fine-tuned transformer based models since
we only used one specific t5-large model. Fur-
ther, it might be computationally prohibitive to try
larger models since in requires more resources and
computational machines. We focus on exploring
different preprocessing steps, whereas a significant
amount of errors stem from the capacity of the
model in generating good explanations.
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A Sequential Fine-tuning

The extended results of the model pretrained on
SuMe (Bastan et al., 2022) is shown in Table 6 and
the results of the model pretrained on e-snli (Cam-
buru et al., 2018) and fine-tuned on this task is
shown in Table 7. Since the sequential fine-tuning
on esnli is time and resource consuming, we only
explored a few set of preprocessing on this task.

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.606 0.541 0.324
ebl-sep 0.653 0.593 0.379
ebl-slashn 0.648 0.624 0.455
lbe-no 0.674 0.615 0.375
lbe-sep 0.696 0.637 0.388
lbe-slashn 0.687 0.655 0.460
mnli-ebl-no 0.684 0.628 0.408
mnli-ebl-sep 0.701 0.641 0.410
mnli-ebl-slashn 0.696 0.672 0.502
mnli-lbe-no 0.714 0.643 0.394
mnli-lbe-sep 0.729 0.669 0.410
mnli-lbe-slashn 0.689 0.661 0.488
rte-ebl-no 0.676 0.625 0.402
rte-ebl-sep 0.691 0.604 0.347
rte-ebl-slashn 0.680 0.662 0.488
rte-lbe-no 0.713 0.652 0.402
rte-lbe-sep 0.701 0.643 0.397
rte-lbe-slashn 0.682 0.657 0.472

Table 6: SuMe Pretrained Models Performance

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.727 0.655 0.375
mnli-ebl-sep 0.73 0.666 0.413

Table 7: ESNLI Pretrained Models Performance

B Hypothesis-only Models

The hypothesis-only experiments show the pres-
ence of artifacts in this dataset. The full perfor-
mance of these models are shown in Table 4.

C Effect of Knowing the Phenomena

The extended results of the model with the type
information is shown in Table 5.

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.638 0.578 0.363
ebl-sep 0.637 0.576 0.381
ebl-slashn 0.676 0.612 0.404
lbe-no 0.684 0.604 0.410
lbe-sep 0.672 0.627 0.423
lbe-slashn 0.672 0.611 0.398
mnli-ebl-no 0.639 0.563 0.362
mnli-ebl-sep 0.670 0.596 0.378
mnli-ebl-slashn 0.661 0.593 0.390
mnli-lbe-no 0.696 0.634 0.418
mnli-lbe-sep 0.676 0.618 0.411
mnli-lbe-slashn 0.674 0.603 0.402
rte-ebl-no 0.632 0.569 0.366
rte-ebl-sep 0.637 0.574 0.363
rte-ebl-slashn 0.634 0.561 0.351
rte-lbe-no 0.680 0.622 0.416
rte-lbe-sep 0.678 0.628 0.398
rte-lbe-slashn 0.679 0.607 0.409

Table 8: Hypothesis Only Performance

Model Name Acc@0 Acc@50 Acc@60

ebl-no 0.854 0.803 0.542
ebl-sep 0.826 0.766 0.520
ebl-slashn 0.839 0.780 0.543
lbe-no 0.754 0.712 0.490
lbe-sep 0.742 0.690 0.488
lbe-slashn 0.740 0.694 0.496
mnli-ebl-no 0.847 0.786 0.567
mnli-ebl-sep 0.834 0.776 0.560
mnli-ebl-slashn 0.819 0.771 0.528
mnli-lbe-no 0.741 0.694 0.503
mnli-lbe-sep 0.756 0.709 0.487
mnli-lbe-slashn 0.755 0.713 0.509
rte-ebl-no 0.862 0.804 0.584
rte-ebl-sep 0.816 0.786 0.536
rte-ebl-slashn 0.821 0.775 0.533
rte-lbe-no 0.738 0.705 0.485
rte-lbe-sep 0.762 0.713 0.525
rte-lbe-slashn 0.758 0.719 0.509

Table 9: Type Added Performance
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Abstract

This paper describes our submissions to the
EMNLP 2022 shared task on Understanding
Figurative Language as part of the Figurative
Language Workshop (FigLang 2022). Our sys-
tems based on pre-trained language model T5
are divide-and-conquer models which can ad-
dress both two requirements of the task: 1) clas-
sification, and 2) generation. In this paper, we
introduce different approaches in which each
approach we employ a processing strategy on
input model. We also emphasize the influence
of the types of figurative language on our sys-
tems.

1 Introduction

Recent years have witnessed the great rise of Ar-
tificial Intelligence (AI). Due to the performance
of AI, many downstream tasks from any fields are
solved efficiently. One of the central topic in AI is
Natural Language Understanding (NLU) in which
Natural Language Inference (NLI) or Recogniz-
ing Textual Entailment (RTE) plays an important
role, which was pointed out in (MacCartney and
Manning, 2008).

While RTE was defined as a task of determin-
ing whether a natural language hypothesis h can
be inferred from a given premise p (MacCartney,
2009), Figurative Language Understanding (FLU)
was considered as a task of determining whether
any figure of speech depends on a non-literal mean-
ing of some or all of the words used (Chakrabarty
et al., 2022). Therefore, FLU can be framed as a
kind of RTE task (Chakrabarty et al., 2022; Stowe
et al., 2022).

In addition, the EMNLP 2022 shared task
requires not only to generate the label (en-
tail/contradict), but also to generate a plausible
explanation for the prediction, whose example is
shown in Table 1. Especially, the entail/contradict
label and the exploration are related to the mean-
ing of the figurative language expression. This is a

Premise The place looked impenetrable and inescapable
Hypothesis The place looked like a fortress.
Label Entailment

Explanation
A fortress is a military stronghold,
hence it would be very hard to walk into,
or in other words impenetrable and inescapable.

Table 1: Examples of relations between a premise and a
hypothesis: E (Entailment), C (Contradiction).

challenging task that require to propose a approach
that could tackle both tasks: 1) classification, 2)
generation.

Over the past few years, a number of high-
performance systems have been created solving
several NLP tasks based on pre-trained transformer
models (Vaswani et al., 2017; Devlin et al., 2019;
Lewis et al., 2019; Raffel et al., 2020b). However,
there have still been very few works related to fig-
urative language due to the lack of high-quality
datasets and the challenge of this task.

Therefore, thanks to the exclusive dataset of the
shared task, in this paper, we advocate different
approaches which are mainly based on pre-trained
language model T5 (Raffel et al., 2020b), combin-
ing to employ various input processing strategies
to tackle the task.

In this paper, we conduct an investigation into
the benefit of using state-of-the-art seq2seq pre-
trained language models (T5) to evaluate figurative
language understanding task in EMNLP 2022. We
also employ a divide-and-conquer model with dif-
ferent potential input processing strategies to im-
prove the performance of our system. Then, we
point out the importance of the types of figurative
language in this task.

2 System Description

In all our submissions, we considered both two
tasks: the NLI task, and the explanation generation
task as two seq2seq tasks. Therefore, we fine-tuned
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two tasks jointly as a simultaneous computation
model which first predicts label, and then the expla-
nation. In addition, we also used the attribute about
types of Figurative Language across the data as a
predictor and treated it as seq2seq tasks. Therefore
we have 3 component models based on fine-tuning
pre-trained model T5 (Raffel et al., 2020b): NLI
predictor, Type predictor, and Generator.

2.1 T5

T5 transformer is a encoder-decoder model or
sequence-to-sequence model. It is a “unified frame-
work that converts every language problem into a
text-to-text format” (Raffel et al., 2020b). Com-
pared to other transformers which take in natural
language data by converting to corresponding nu-
merical embeddings, T5 takes in data in the form
of text, and also produce the text as an output. This
text-to-text nature does not require any the change
of hyper-parameters and loss functions when learn
NLP tasks (Grover et al., 2020). Furthermore, T5
has been trained on a multi-task mixture of unsu-
pervised and supervised tasks in which include our
NLI task and generation task. Therefore, T5 model
is one of the most prominent pre-trained models
that we can use.

Figure 1: Overview of input and output of T5.

<prefix>: Input sentences

Encoder Decoder

Output

2.2 NLI predictor and Type predictor

In this two component models, the premise and
hypothesis sentences are concatenated and fed to
the encoder, then while the decoder of NLI task is
the label prediction (entail/contradict), the decode
of Type predictor is the type prediction (Paraphrase,
Sarcasm, Simile, Metaphor, Idiom). The overview
of two component models are shown in Fig.2

Figure 2: Overview of two component models. Red
diagram is NLI predictor, the green diagram is Type
predictor.

Premise: <sentence>; 
hypothesis: <sentence>

Encoder Decoder

Entail/Contradict

Premise: <sentence>; 
hypothesis: <sentence>

Encoder Decoder

Types

2.3 Generator
We employed different input processing strategies
each submission in the Generator. Specifically, in
the first submission, we simply used the premise
and hypothesis sentences as a input of the encoder
as same as NLI predictor did. However, the per-
formance of the model is not too well, so we tried
to add valuable attributes such as NLI predictor,
and Type predictor to the left of the input of the
encoder. Therefore, we conducted experiments for
submission 2, 3, 4 by adding a NLI predictor, a
Type predictor, and a NLI predictor + a Type pre-
dictor to the left of the input, respectively. Besides,
The 5th submission is similar to the 3rd submission,
except the parameters of the model. The model is
depicted in Fig.3.

3 Experiments

3.1 Experimental setting
Following the given evaluation metrics, in all our
experiments, we report the Accuracy@60 based on
evaluation scripts from the task organizing commit-
tee.

As described in Section 2, our approaches de-
pends on pre-trained language model T5. We use a
model namely T5large downloaded from the Hug-
ging Face library (Raffel et al., 2020a). The net-
work’s parameters are optimized using the AdamW
(Loshchilov and Hutter, 2017) and a linear learning
rate scheduler, which are suggested by the Hug-
ging Face default setup. The hyperparameters that
we tune include the number of epochs, batch size,
and learning rate. In particular, we set batch size
of 32, and learning rate of 3e-4 for all component
models. For NLI predictor and Type predictor, we
use 20 epochs. For Generator, the model is trained
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Figure 3: Overview of submissions. While the component (1), (1)+(2), (1)+(3) is considered as a input model of the
1st, 2nd, 3rd submission respectively, the 4th one has all 3 components as a input model.

<prefix>: <Input sentence> (1) NLI predictor (2) Type Predictor (3)

Explanation

Generator

<prefix>: <Input sentence>

Submissions Input model Score Size (bytes)
1 premise, hypothesis 58.26 39154
2 NLI predictor, premise, hypothesis 57.93 38015
3 Type predictor, premise, hypothesis 60.53 42532

4
NLI predictor, Type predictor,
premise, hypothesis

59.80 37763

Table 2: Official results of our system on test dataset.

on 40 epochs. All experiments in this paper are
conducted on Google Colab Pro.

3.2 Result and Discussion
For producing the results on the test dataset, we
splited the training dataset into the training dataset
and development dataset with 7300 samples, and
200 samples respectively for fine-tuning the pre-
trained language model T5large.

Our latest system achieved the official score
60.53 which ranked 3rd on the shared task. On each
of the submissions, the systems obtained scores
58.26, 57.93, 60.53, and 59.80 respectively. Table
2 gives the detailed results of each submissions.

Comparing the detailed scores, we found that our
submitted systems varied in performance mainly
due to the difference of input model of the sub-
missions. As described in Table 2, the system in
which the input of model is the combination of NLI
predictor, premise and hypothesis performed the
worst, while the one which has the type predictor
combining with input sentences (premise and hy-

pothesis) outperformed the rest of our experiments.
Therefore, the types of figurative language were
indicated to be an integral role in understanding
figurative language.

Depending on the input models, the Generator
has different outputs, as shown in the Table 3. Com-
pared to the models which add only one compo-
nent into the input models: NLI predictor or Type
predictor, the model of submission 4 had more
information that consists of two input sentences,
NLI predictor, and Type Predictor. However, the
Generator did not produce adequate explanations
as we expected. Therefore, the strategy including
more information may not be a good choice when
generating outputs in this case. Despite that, more
efforts are required to explore the real reason be-
hind the results, then we can learn and employ the
input processing strategies reasonably to improve
the performance of the system.

4 Conclusion and Future Work

In this paper, we have presented our system for
the EMNLP 2022 Shared Task on the Figurative
Language Understanding. Our systems are built
on fine-tuning pre-trained language model T5 with
different input processing strategies, which is a
divide-and-conquer model which integrated two or
three components: NLI predictor, Type predictor,
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Sample Explanation NLI predictor Type Predictor

"premise": "I stubbed my toe last night and cursed angrily."
"hypothesis": "Stubbing my toe last night and
cussing out loud made me so happy."
"Predicted Label": Contradiction

"Stubbing one’s toe is usually a very painful experience and
can result in people feeling angry and cursing loudly
which is not a happy feeling."
"Stubbing your toe and cursing loudly is not a good thing
because it can cause pain and discomfort." X

"Stubbing one’s toe and cursing loudly is not a good thing
and so being happy about it cannot be justified." X

"Stubbing your toe and cursing loudly is not a good way to
spend a night in bed and so someone who is happy
about it cannot be considered rational."

X X

Table 3: Examples of explanation produced by the systems.

and Generator. The performance of models are re-
lied how successful the Type predictor is, which
means the attribute about types of Figurative Lan-
guage should be considered as an integral factor of
the input of model.

Due to limited time and resources, we had not
conducted thorough enough experiments to get bet-
ter results, but the system and the involvement in
this challenge bring us a good groundwork for fur-
ther study. In the future, we plan to expand the
experiment by employing and fine-tuning other pre-
trained language models. Furthermore, we may
also explore different strategies making the most
of what we have for the input of models.
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Abstract

Euphemisms are mild words or expressions
used instead of harsh or direct words while
talking to someone to avoid discussing some-
thing unpleasant, embarrassing, or offensive.
However, they are often ambiguous, thus mak-
ing it a challenging task. The Third Work-
shop on Figurative Language Processing co-
located with EMNLP 2022 organized a shared
task on Euphemism Detection to better under-
stand euphemisms. We have used the adver-
sarial augmentation technique to construct new
data. This augmented data was then trained
using two language models, namely, BERT and
Longformer. To further enhance the overall
performance, various combinations of the re-
sults obtained using Longformer and BERT
were passed through a voting ensembler. We
were able to achieve an F1 score of 71.5 using
the combination of two adversarial Longform-
ers, two ad- versarial BERT, 1 non adversarial
BERT.

1 Introduction

Euphemisms are mild words or expressions used
instead of harsh or direct words while talking to
someone to avoid discussing something unpleas-
ant, embarrassing, or offensive. They are often
used as a sign of politeness while discussing sensi-
tive or taboo topics (Bakhriddionova, 2021), for in-
stance, using the term "Let go" instead of the word
"Fired," using "Put down" instead of "euthanized,"
or any similar phrase that would make it sound
less unappealing or unpleasant (Karam, 2011). Eu-
phemism can also be employed to disguise the truth
(Rababah, 2014) to minimize a threatening situa-
tion to create a favorable image. For instance, when
the phrase "enhanced interrogation techniques" is
used, they mean "torture" or use "armed conflict"
instead of "war". This figurative behavior of eu-
phemisms makes it ambiguous and challenging for
natural language processing techniques to handle
these words since they can be interpreted literally

in some situations. Moreover, humans might dis-
agree with what constitutes a euphemism (Gavidia
et al., 2022).

In the past, many computational approaches
for processing have been employed. A sentiment
analysis-based approach was used by (Felt and
Riloff, 2020) to handle x-phemisms (a term used
to refer to both euphemisms and dysphemisms).
In their work, they found synonym pairs and used
a weakly supervised bootstrapping algorithm to
generate semantic lexicon. These lexicons were
then used to classify phrases as euphemistic, dys-
phemistic, or neutral. (Zhu et al., 2021) worked
on detecting euphemisms used for dug names on
the internet and identifying the terms these eu-
phemisms refer to. Similarly, (Magu and Luo,
2018) also worked on a similar problem state-
ment. However, (Zhu et al., 2021) and (Magu and
Luo, 2018) interpreted euphemisms as code words,
which is different from those of the shared task
organizers. Both (Zhu and Bhat, 2021) and (Zhu
et al., 2021) considered the detection and identifi-
cation of euphemism as a masked language model
(MLM) problem where they filtered out words that
did not fit their list of euphemisms.

This paper defines our participation in the Eu-
phemism Detection shared task (Lee et al., 2022) or-
ganized for the Third Workshop on Figurative Lan-
guage Processing co-located with EMNLP 2022.
We have used the adversarial augmentation tech-
nique in combination with transformers to detect
euphemisms. A detailed explanation of our pro-
posed approach is given in Section 3.

2 Task & Data Description

Euphemism Detection is a binary classification
shared task that focuses on detecting euphemisms
in a given input statement. This shared task aims to
study the performance of Natural Language Models
on euphemisms. The data provided in the shared
task comprised a Euphemism Corpus created by
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Figure 1: Architecture of the proposed pipeline. Here TL indicates the Token length used for training.

(Gavidia et al., 2022). The raw data used for the
creation of this dataset is extracted from the Corpus
of Global Web-Based English (GloWbE) (Davies
and Fuchs, 2015), which contains text data from
websites, blogs, and forums of twenty different
English-speaking countries. The training data pro-
vided to the participants comprised 1572 sentences,
of which 466 were labeled "0," and the rest were
labeled "1". The testing data consists of 393 data
points. The participants were expected to classify
the sentences into "0" (not euphemistic) and "1" (is
euphemistic) classes.

3 Methodology

This section gives a detailed description of the
pipeline proposed. Section 3.1 and Section 3.2 pro-
vides a detailed overview of the preprocessing per-
formed on the data and the augmentation technique
used before passing the data through the models.
Section 3.4 details the models used for the training.

3.1 Data Pre-Processing
The data in its raw form is often unstructured and
comprises punctuations, unusual text, and symbols,
which make it unfit for the distillation of correct
features causing the model to underperform. Thus,
it is essential to preprocess the data before using it.
In this paper, we have performed basic preprocess-
ing involving tokenization (splitting the sentences
into words), conversion of words into lowercase,
removal of stopwords (such as a, the, an), and re-
moval of punctuation and emojis using the NLTK
library (Loper and Bird, 2002).

3.2 Augmentation
Deep learning models require a large dataset to pro-
duce higher accuracy. However, the training data
for the task comprised merely 1572 data points.
Moreover, the data was imbalanced (as mentioned

in Section 2, which could cause the model to overfit
on the predominant label ("1"). Thus, data augmen-
tation was performed for the label "0" of the dataset
using the Adversarial attack technique available
in TextAttack1 (Morris et al., 2020). TextAttack
iterates through the dataset and generates an adver-
sarial perturbation (changes in the input that causes
the model to misclassify) for each correct predic-
tion that the model makes. There are two ways to
generate adversarial perturbation:

1. Visual: is the method in which a text sequence
similar to the original sequence is generated
by changing a few characters or introducing
realistic "typos" that humans would make.

2. Semantic: is the method in which the gen-
erated sentence is semantically similar to the
original. This is done by paraphrasing the
sentence or using synonyms.

TextAttack supports both of these adversarial per-
turbation techniques. Each attack by TextAttack is
built using these four components. The first com-
ponent is Goal Function that determines whether
the attack was successful. Constraints component
checks whether the perturbation made preserves
the semantics or not.Transformations component
generates a set of potential perturbations through
deletion, insertion, or substitution of words, char-
acters, and phrases.The Search Method component
explores the transformation space to select the best
perturbation. The augmentation of the data was
done in two steps:

1. Class Imbalance Removal : We augment
466 instances of ’0’ labels with their adver-
sarial representation, which brought the final

1https://github.com/QData/TextAttackaugmenting-text-
textattack-augment
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instance of non-euphemism instances to 932
and total data instances to 2038

2. Adversarial Augmentation: We test the dual
context training setup discussed in section 3.3.
and generate the adversarial version of all the
2038 instances.

3.3 Dual Context training setup

Inspired by the Siamese BERT(Reimers and
Gurevych, 2019) , we tried using a dual context
setup in which the input given to the language
model was as follows:
Input text: Original instance [SEP ] Adversarial
augmented instance

Here the input to the language model is the orig-
inal instance from the training data and the adver-
sarial augmented text instance from the text attack
separated by a token [SEP ]. The following setup
aims at leveraging two different perspectives of the
same instance to make the model more robust to
the other contextual representations of Euphemism.
The following structure increased the input length
of the system.

In the case of unaugmented data the input text
can be understood as follows:
Input text: Original instance [SEP ] Original in-
stance

3.4 Modeling

In this paper, we have used BERT(Devlin et al.,
2018) and Longformer (Beltagy et al., 2020) lan-
guage models to detect euphemisms. This section
gives a detailed explanation of their respective ar-
chitectures.

3.4.1 BERT
Bidirectional Encoder Representations from Trans-
formers (BERT) is used for pre-training deep bi-
directional transformers on unlabeled data to de-
velop a language understanding. The sentences
are passed through BERT as a sequence of tokens.
Before feeding the word sequences, 15% of the
words are replaced by [MASK] in each sequence.
A [CLS] is appended at the beginning of the first
line, and a [SEP] is appended at the end of each
sentence. A token, sentence, and positional embed-
ding are added to each token, as shown in Figure 2.
The truncation or padding of the sequence is done
based on the maximum sequence length used.The
maximum sequence length used for each case was
determined by finding the average length of the

Figure 2: BERT input representations

text in the dataset. These encoded sentences are
then passed through the transformer model. This
pre-trained can then be fine-tuned d by adding the
output layer depending on the task at hand.

3.4.2 Longformer
The major drawback of transformer models like
BERT is that they cannot attend to sequence lengths
longer than 512. This is because the memory
and computational requirements of self-attention
grow quadratically. Thus Longformer: The Long-
Document Transformer, a transformer whose atten-
tion pattern rises linearly with the input sequence,
was proposed. To achieve this reduced complexity
Longformer combines several attention patterns:

1. Sliding Window: Each token in the sequence
will only attend to tokens that fall under an
arbitrary window whose size is assumed to be
"w" (w/2 tokens on the right and w/2 tokens
on the left). If this is done for "l" layers, each
token would have attended to (l ∗w) adjacent
tokens. This is the reach of the attention for
a given token and is known as the receptive
field.

2. Dilated Sliding Window: To further improve
the performance of the sliding window atten-
tion a dilatation of size "d" is taken. Here "d"
represents the number of gaps between each
token in the window. The reception field of
this dilated sliding window will be (l ∗w ∗ d).

3. Global Attention (full self-attention): To en-
sure support for long-term dependencies, the
model utilizes global self-attention where, in-
stead of using three different hidden vectors
query (Q), key (K), and value (V), two sepa-
rate sets of vectors Q_s, K_s, V_s (for sliding
window), and Q_g, K_g, V_g (for global at-
tention) are used.

3.5 Ensembler

To enhance the overall performance of the proposed
pipeline, the results obtained by training:
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Figure 3: Comparison of transformer self attention and
Longformer attention patterns

• Longformer on augmented data with the max-
imum sequence length of 600

• Longformer on augmented data with the max-
imum sequence length of 650

• BERT on augmented data with the maximum
sequence length of 450

• BERT on the preprocessed data with a maxi-
mum sequence length of 450

• BERT on the preprocessed data with a maxi-
mum sequence length of 500

are passed through a voting ensembler, and the
label with highest frequency is selected as the final
label for that sentence, as depicted in Figure 1.

4 Results and Discussion

Euphemism in speech is generally difficult to iden-
tify semantically for human beings and thus makes
it even more challenging task for the AI to map the
understanding and undergo right identification. Our
submission aims to handle the task of identifying
the Euphemism in a given sentence by modelling
Longformer and BERT in an adversarial setup.

4.1 Experimental Setting
To train the language models, we used an 80:10:10
split. We use the default hyperparameters to train
BERT and Longformers. We use a learning rate
of 1e-5 and an LR scheduler with Polynomial De-
cay and train the model for three epochs. We use
the AdamW optimizer and set the batch size to 4.
We trained the models on Tesla P100-PCIE-16GB
GPU. The experimentations using the dual context
setup yielded lower scores than the other submis-
sions to the leaderboard. We aim to focus more on
this proposed methodology and refine our approach
for further research into the idea of making a model
robust through multiple representation learning.

4.2 BERT Results Analysis
In this section we report our evaluations for the Ad-
versarial Bert and Vanilla BERT. The BERT (TL:
450, UA))2 yielded the lowest F1 score of 0.667

2’TL’ refers to token length, ’UA’ refers to Unaugmented
Data, ’A’ refers to adversarial augmented data

among all the experimentation. The main aim of
our evaluation was to highlight the performance
improvement using adversarial augmentation. On
close observation in Table 1, it can be noticed that
use of augmented data improved the F1 score for
BERT to 0.671 (TL:450) and 0.681 (TL:500). The
improvement in the F1 scores can be attributed to
the robustness introduced by fine tuning the lan-
guage model on the adversarial examples. It is to
be noted that with better hyper parameter tuning
the results could have been improved.

4.3 Longformer Results Analysis
The introduction of adversarial augmentation,
along with dual context input, increases the aver-
age token length of the sentences in the given data
set. This increase in average token size highlighted
the shortcoming of the BERT model, which can
only work up to 512 tokens, and brought about the
requirement for Longformers. The results in Table
1 highlight the improvement in the performance
of the Longformers. We achieved an F1 score of
0.689 with TL:600 and 0.704 with TL:650. The ad-
versarial examples helped create a more dynamic,
robust embedding space for the Longformer to ex-
ploit and make better predictions than the BERT.
Though Longformer has been known to perform
less than BERT in many of the Natural Language
Inference tasks in our case, they take the lead and
leverage the dual context adversarial setup quite
well.

4.4 Ensemble Modelling Results Analysis
We leveraged the individual performance of Long-
formers3 and BERT4 in a combined way by prepar-
ing three different variations of Voting Ensemble
to report our results.

1. B(TL:450, UA)+ B(TL:450, A)+B(TL:500,
A): The following ensemble yielded a F1
Score of 0.709 which was comparable to
the individual performance of the Long-
former(TL:650). The ensemble of B perform
significantly better than individual B varia-
tions by minimum of 4%

2. LF (TL:600, A)+ LF(TL:650, A)+B(TL:500,
A): Ensemble of 2 LF and the best individual
B variation reported the F1 score of 0.713
which was a slight gain from the LF(TL: 650,
A).

3Longformer has been referred to as ’LF’ in section 4.3
4BERT has been referred to as ’B’ is section 4.3
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Model and Technique Precision Recall F1 Score
BERT (TL: 450, UA) 0.655 0.702 0.667
BERT (TL: 450, A) 0.660 0.701 0.671
BERT (TL : 500, A) 0.674 0.693 0.681
Longformer (TL : 600, A) 0.681 0.701 0.689
Longformer (TL : 650, A) 0.714 0.699 0.704
Ensemble (Longformer (TL : 600, A)+Longformer (TL : 650, A)+
BERT (TL: 450, UA)+BERT (TL: 450, A)+BERT (TL: 500, UA) 0.716 0.714 0.715

Ensemble (Longformer (TL : 600, A)+Longformer (TL : 650, A)+
BERT (TL: 500, A)

0.708 0.719 0.713

Ensemble (Longformer (TL : 600, A)+BERT (TL: 450, A)+
BERT (TL: 500, A)

0.723 0.702 0.709

Table 1: Experimentation results of model variations. Here ’TL’ is maximum token length. ’A’ represents that the
model was trained on the adversarial augmented data, and ’UA’ indicates the model trained on unaugmented data

3. LF (TL:600, A)+ LF(TL :650, A)+ B(TL:450,
UA)+ B(TL:450, A)+ B(TL: 500, UA): This
ensemble was the best performing submis-
sion in this task for our team. The ensem-
ble reported F1 score of 0.715. The results
are comparable to the previous ensemble thus
highlighting the dominance of LF in ensemble
setup

5 Conclusion

In this paper, we proposed an Adversarial Pertur-
bated (TextAttack) BERT and Longformer model,
which aims to create a robust model capable of iden-
tifying the Euphemism in text. We experimented
with different token lengths and eventually created
a voting ensemble model that combined our other
experiments into a single encapsulation. The en-
semble of two adversarial Longformers, two adver-
sarial BERT, and one non-adversarial produced an
F1 score of 0.715, which was our best submission.
The use of dual context input to the models falls
short of the expected performance boost and mo-
tivates us to look further into the concept of using
multiple representations. We aim to experiment
with different methods to combine these represen-
tations into a single exemplary representation that
can pass into these language models to solve the
downstream tasks.

6 Limitations

In this paper, we propose using dual context input
with an adversarial training set up to approach the
challenge of Euphemism Detection. The approach
currently failed to make a significant impact, as
reflected by our system performance on the leader-

board. On further analysis, the lack of high per-
formance can be attributed to a selection non ideal
set of hyperparameters while training the system.
Combining two different contextual representations
requires introducing an Attention module or exper-
imenting with other methods to that can result in a
better pair encoding of the input.
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Abstract
Figurative language is widespread in human
language (Lakoff and Johnson, 2008), posing
potential challenges in NLP applications. In
this paper, we investigate the effect of figura-
tive language on the task of question answering
(QA). We construct FigurativeQA, a test set of
400 yes-no questions with figurative and non-
figurative contexts, extracted from product re-
views and restaurant reviews. We demonstrate
that a state-of-the-art RoBERTa QA model has
considerably lower performance in question an-
swering when the contexts are figurative rather
than literal, indicating a gap in current mod-
els. We propose a general method for improv-
ing the performance of QA models by convert-
ing the figurative contexts into non-figurative
by prompting GPT-3, and demonstrate its ef-
fectiveness. Our results indicate a need for
building QA models infused with figurative lan-
guage understanding capabilities.

1 Introduction

Understanding figurative language can be a chal-
lenging task for humans, let alone for machines
(Zayed et al., 2020). Although native speakers
may effortlessly infer the meaning of similes and
metaphors, it may be particularly difficult for non-
native speakers to understand. Effects of the pres-
ence of figurative language has been studied for
various downstream NLP tasks such as machine
translation (Dankers et al., 2022), recognizing tex-
tual entailment (Chakrabarty et al., 2021), and dia-
log models (Jhamtani et al., 2021), inter-alia.

To the best of our knowledge, there is no prior
line of work investigating question answering (QA)
on figurative text. Figurative language has a lim-
ited presence in existing question answering (QA)
datasets in popular use such as SQuAD (Rajpurkar
et al., 2018) and Natural Questions (Kwiatkowski
et al., 2019), where the contexts are typically literal
and factual, constructed from Wikipedia passages.1

1From a rough check of the SQuAD dev set, we observe

While figurative language has a limited presence
in many QA datasets, it does occur regularly in
some domains, such as the reviews domain. User-
written reviews, especially those with highly pos-
itive or highly negative ratings tend to use strong
opinions and are more likely to contain figurative
language (Mohammad et al., 2016). We show that
it can be challenging for existing QA models to
draw inferences from this kind of figurative text.

We propose a new task of answering questions
from text that is figurative, and consequently, more
challenging to answer. For this task, we present
a test dataset, FigurativeQA, consisting of 400
questions and accompanying figurative contexts
constructed from Amazon product reviews (Nicu-
lae and Danescu-Niculescu-Mizil, 2014) and Yelp
restaurant reviews (Oraby et al., 2017). We lever-
age existing resources for figurative contexts (Nic-
ulae and Danescu-Niculescu-Mizil, 2014; Oraby
et al., 2017) and manually construct question-
answer pairs from these contexts. Further, we
create non-figurative versions of this dataset, both
automatically by prompting GPT-3 (Brown et al.,
2020) as well as manually. We show that it is harder
to answer questions from figurative context for cur-
rent state-of-the-art models. In fig. 1, we show ex-
amples of figurative contexts from Amazon product
reviews and Yelp restaurant reviews, a question an-
swer pair for the contexts, along with automatically
and manually constructed non-figurative versions
of the context.

The contributions of this work are the following:

• FigurativeQA, a test set of 400 yes/no
question-answer pairs with figurative and non-
figurative contexts. For the 200 figurative con-
texts, we also provide manually created literal

that the questions themselves are also mostly non-figurative.
We found two examples of figurative questions out of 5,928
answerable questions in the SQuAD dev set, one of them
being "Who is eligible to toss their name in the hat to be First
Minister?".
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Figurative Context: The album , like almost everything Krush has released , slays .
Question: Is the album good?
Answer: Yes
Non-fig. version (manually created): The album is really good, like most of Krush’s work.
Non-fig. version (from GPT-3): The album is really good, like almost everything Krush has released.
Figurative Context: Although, the menu items doesnt SCREAM French cuisine. Most foods looks like
you can get at any American place.
Question: Is the menu authentic french?
Answer: No
Non-fig. version (manually created): The menu items aren’t typical of French cuisine. Rather, they are
common at most American eateries.
Non-fig. version (from GPT-3): Although, the menu items doesn’t look very French. Most foods look like
you can get at any American place.

Figure 1: Examples of figurative contexts from FigurativeQA. Example 1 is from Amazon product reviews and
Example 2 from Yelp restaurant reviews.The figurative text fragments within the contexts are shown in bold and
italics.

contexts for comparison.

• We show that it is harder to answer questions
from figurative contexts for models trained on
QA data with non-figurative contexts, and that
manually changing the figurative context to
a meaning-preserving non-figurative version
improves performance.

• We propose a method to use GPT-3 to automat-
ically produce non-figurative contexts from
figurative ones, and demonstrate that it im-
proves our QA system on the FigurativeQA
dataset.

The outline of the paper is as follows: after re-
viewing related work (§2), we introduce our new
QA dataset for figurative language (§3). We next in-
troduce a general method for converting figurative
language to non-figurative language by prompting
GPT-3 (§4), which we use to improve our base-
line QA model. We then present our experimental
results (§5), and finally conclude (§6).

2 Related Work

Handling of figurative language is of significance
in many downstream NLP tasks such as machine
translation (Mao et al., 2018; Dankers et al., 2022),
recognizing textual entailment (Chakrabarty et al.,
2021), sentiment analysis (Qadir et al., 2015),
among others. Chakrabarty et al. (2021) inves-
tigate the robustness of state-of-the-art entailment
models on figurative examples on test sets for
similes, metaphors, and irony. Chakrabarty et al.
(2022) test figurative language understanding in

pre-trained language models by evaluating continu-
ation of text in narratives, while (Liu et al., 2022)
investigate non-literal reasoning capabilities of lan-
guage models on a Winograd-style non-literal lan-
guage understanding task.

The idea of converting metaphors to their lit-
eral counterparts has been previously explored for
machine translation by Mao et al. (2018), where
metaphors in English text are first identified and
then converted to a literal version, by making use
of word embeddings and WordNet, before doing
machine translation into Chinese. In dialog sys-
tems, a similar approach was employed by Jham-
tani et al. (2021), where idioms and metaphors in
utterances are converted to literal versions using
a dictionary lookup-based method. Our work is
closest to Jhamtani et al. (2021), except that we
explore the robustness of QA systems in a machine
comprehension setup, instead of dialog models, to
figurative language, which, to the best of our knowl-
edge, is a first. Our automatic approach to creating
rephrased non-figurative versions of figurative text
is done using pre-trained language models, rather
than rule-based methods which have been shown
to be error-prone (Jhamtani et al., 2021).

Related QA datasets include the FriendsQA
dataset (Yang and Choi, 2019), which is a dialog-
based QA dataset constructed from dialogs from
the TV series Friends. While it does contain
metaphors and sarcasm, it may not be ideal to test
figurative language understanding as it is unclear
how much of the dataset is actually figurative. The
dialogic nature of the dataset further contributes
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to making it challenging. Another dataset that
requires figurative language understanding is the
RiddleSense dataset (Lin et al., 2021), which com-
prises of riddles, but unlike ours, it’s modeled as an
open domain QA task, rather than a machine com-
prehension task. Parde and Nielsen (2018) show
that questions about novel metaphors from litera-
ture are judged to be deeper than non-metaphorical
or non-conventional metaphors by humans, but
their focus is on generating deep questions, rather
than testing the robustness of QA models.

3 FigurativeQA Dataset

The figurative data in FigurativeQA comes from
two sources: Amazon product reviews (Niculae and
Danescu-Niculescu-Mizil, 2014), and Yelp restau-
rant reviews (Oraby et al., 2017). For comparison,
we also extract non-figurative contexts from each
of these sources to form the non-figurative split of
FigurativeQA. We construct a question answering
dataset on top of these contexts. For simplicity,
we only work with yes-no questions. Fig 1 shows
examples from the FigurativeQA dataset. The data
statistics from each source (Amazon and Yelp) and
each split (figurative and non-figurative) are sum-
marized in Table 1.

We select figurative texts for annotation with
question-answer pairs from Amazon product re-
views using the following procedure. Niculae
and Danescu-Niculescu-Mizil (2014) construct a
dataset of figurative comparisons extracted using
comparator patterns (such as "like", "as", or "than")
from Amazon product reviews, and then obtain 3
sets of figurativeness scores (on a scale of 1 to
4) on Amazon Mechanical Turk (with scores of
1–2 binned as literal and 3–4 as figurative). Of
the 1260 comparisons in this dataset, we extract
the sentences which have an average figurativeness
score of greater than 3. This leaves us with 254 sen-
tences, of which we manually pick 100 instances,
and construct a yes-no question for each sentence.

We select examples for annotating with question-
answer pairs from Yelp reviews using a similar pro-
cedure. Oraby et al. (2017) construct a dataset for
NLG in the restaurant domain from Yelp reviews,
which comes labeled with sentiment information
(1-2 rating for negative, 3 for neutral and 4-5 for
positive). Since positive or negative reviews are
more likely to contain figurative language, from
the set of positive and negative reviews, we ex-
tract instances using comparator patterns such as

avg. category Yes No
context
length

fig. 9 Amazon 52 48
16 Yelp 50 50

non-fig. 10 Amazon 50 50
14 Yelp 49 51

Table 1: Number of yes-no questions from Amazon
product reviews and Yelp restaurant reviews for figura-
tive and non-figurative contexts, and average length of
context (number of words)

"like", "as", or "than", similar to the procedure in
Niculae and Danescu-Niculescu-Mizil (2014). We
then manually choose 100 instances that contain
rich, figurative language, and construct a yes-no
question for each.

The figurative contexts from FigurativeQA tend
to contain more similes, since comparator patterns
("like", "as", or "than") were used to extract the text.
However, we observe that many of these examples
also contain other kinds of figurative constructs
such as metaphor, idiom, hyperbole, sarcasm, etc,
because the nature of the reviews text is such that
it is replete with figurative expressions.

For each context in FigurativeQA, we construct
a yes-no question. For the figurative contexts, we
make sure to pose a question such that answering it
would require understanding of the figurative text
present in the context. For the non-figurative con-
texts, we construct questions that look similar to the
ones for the figurative contexts. Additionally, for
the figurative contexts extracted from Amazon and
Yelp, we manually create non-figurative counter-
parts that preserve the meaning and overall content.

4 Non-Figurative Contexts from GPT-3

We obtain non-figurative versions of the figurative
contexts from FigurativeQA by prompting GPT-
3 (da-vinci-002). Please refer to Appendix A for
model details and the prompts we used.

As an intrinsic evaluation of the effectiveness
of our prompting method, we manually evaluate
the correctness of the non-figurative/literal contexts
generated by prompting GPT-3. Table 2 shows the
results from the manual evaluation of the GPT-3
outputs. We observe that GPT-3 performs fairly
well in converting figurative language in Figura-
tiveQA to literal, with nearly 81% and 75% of the
outputs in Amazon and Yelp, respectively, judged
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Amazon Context (original, figurative): Second , the final confrontation was more like a footnote in the
story than a real ending .
[CORRECT] Non-fig. context (from GPT-3): Second, the final confrontation was less
significant than it should have been given its place in the story.
Context (original, figurative): Her misty , vaguely dreamlike writing can pull a reader into
the world of 1900s New Orleans and its society , but her heroine sometimes feels more like a
vessel than a fully-realized person .
Figurative Context: Not a storybook , by any means , this one is more like a visit to the zoo .
[INCORRECT] Non-fig. context (from GPT-3): This story is not like a fairytale, it’s more
like a visit to the zoo.
Context (original, figurative): The books are like potato chips - you can’t eat just one .
[SAME] Non-fig. context (from GPT-3): The books are like potato chips - you can’t eat just
one .

Yelp Context (original, figurative): i had the chicken fajitas , which came with a giant flour tortilla
that was as hot as hades .
[CORRECT] Non-fig. context (from GPT-3): i had the chicken fajitas , which came with a
really big and hot flour tortilla.
Context (original, figurative): this is as authentic thai as much as imitation crab is authentic
crab .
[INCORRECT] Non-fig. context (from GPT-3): this is as inauthentic thai as much as
imitation crab is inauthentic crab.
Context (original, figurative): the same thing with the steak and potatoes , it was almost as if
they tried to decorate the plate with salt .
[SAME] Non-fig. context (from GPT-3): the same thing with the steak and potatoes , it was
almost as if they tried to decorate the plate with salt .

Figure 2: Examples of non-figurative contexts generated from GPT-3, for Amazon and Yelp. The figurative text
fragments within the contexts are shown in bold and italics.

Amazon Yelp
correct 81% 75%
incorrect 15% 19%
same 4 % 6%

Table 2: Evaluation of non-figurative outputs from GPT-
3. Correct means the GPT-3 output is non-figurative
and correctly preserves the meaning. Same means
GPT-3 produced the exact same output as the input
(no change). All other outputs are incorrect.

to be correct. In fig. 2, we show examples of non-
figurative text generated from GPT-3.

5 Experiments and Results

As a baseline, we run RoBERTa-base (Liu et al.,
2019) finetuned on the training set of BoolQ (Clark
et al., 2019). The performance on FigurativeQA
is summarized in Tables 3 and 4. We find that
the RoBERTa QA model performs poorly on the
figurative contexts compared to the non-figurative
contexts, and that manually changing the figurative

language to non-figurative language improves per-
formance. This indicates that automatic conversion
of figurative language to non-figurative language
may improve performance.

Amazon Yelp
Fig (orig.) 83.43 ± 1.1 66.84 ± 2.61
Fig (man. non-fig) 93.5 ± 1.12 90 ± 1.44
Non-fig (orig.) 92 ± 1.42 89.6 ± 1.68

Table 3: Accuracy of RoBERTa-base fine-tuned on
BoolQ, on the figurative split, manually created non-
figurative version of the figurative split, and non-
figurative split of FigurativeQA. (We reran experiments
1000 times with bootstrap resampling. The numbers
reported are the mean and std-dev.)

To improve upon the baseline model, we pass
the automatic non-figurative contexts from GPT-3
(§4) to our RoBERTa-base model. We find that
this procedure improves the performance on fig-
urative language split, and has no effect on the
non-figurative language split, and improves overall
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performance on FigurativeQA. As an additional
comparison, we also prompt GPT-3 as a QA model
and report its performance on FigurativeQA.2

Amazon Yelp
Baseline: Fig 83.43±1.1 66.84±2.61
Ours: Fig 86.51±1.13 73.5 ±1.66
Baseline: Non-fig 92±1.42 89.6±1.68
Ours: Non-fig 92.45±1.12 89.4±1.69
Baseline: Overall 87.71±0.89 78.21±.6
GPT-3: Overall 64.58±1.71 60.1±3.1
Ours: Overall 89.5±3.18 81.46±1.19

Table 4: QA performance on FigurativeQA. Our
method uses GPT-3 prompting (zero-shot) to convert
the figurative contexts to literal (We reran experiments
for 1000 times with bootstrap resampling. The numbers
reported are the mean and std-dev. The numbers in bold
are the best results.)

6 Conclusion and Future Work

We show that current QA models do not perform
so well when answering questions from figurative
contexts as compared to non-figurative text. On
manually created non-figurative versions of these
contexts, we are able to show significant improve-
ments. However, the manual annotation being an
expensive step, we use an automatic method of
prompting of GPT-3 and were still able to achieve
performance gains. This highlights a need to build
QA models that can handle figurative text. In the
future, we would like to do a fine-grained analysis
of QA performance on different kinds of figura-
tive constructs, including similes, metaphors, irony,
idioms, rhetorical questions, hyperbole, personifi-
cation, etc.

Limitations

Our dataset contains the specific domains of Ama-
zon and Yelp reviews, and is English-only. Results
and conclusions may not generalize to other do-
mains or languages.
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A Appendix A: Prompting GPT-3 for
figurative text

We use the da-vinci-002 model with temperature
set to 0.3 and max-length set to 100. We used a
prompt with 5 examples, as shown in Fig. 3.

For the following inputs, if the text contains figurative
language, convert it to a literal version. Otherwise,
output the same text as the input.

Input: It’s inevitable. Their love was built on sand
and this is why their marriage has landed on the
rocks.
Output: It’s inevitable. Their love was unstable and
this is why their marriage has failed.

Input: The weather forecast predicted a heatwave this
week across most of the country.
Output: The weather forecast predicted a heatwave
this week across most of the country.

Input: During the heatwave, the entire house was like
a furnace.
Output: During the heatwave, the entire house was
uncomfortably hot.

Input: The brisket is nothing to write home about.
Output: There is nothing particularly remarkable
about the brisket.

Input: The fries were served cold.
Output: The fries were served cold.

Input: The lamb had a melt in the mouth texture.
Output: The lamb was soft and well-cooked.

Input: The adapter worked like a charm.
Output: The adapter worked perfectly.

Figure 3: GPT-3 prompt to generate non-figurative
versions of the figurative contexts.

B Appendix B: Prompting GPT-3 for QA

We use the da-vinci-002 model with temperature
set to 0.3 and max-length set to 100. We used a
prompt with 2 examples, as shown in Fig. 4.

Based on the passage, answer the following question
with a yes or a no.

Passage:
Windows Movie Maker (formerly known as Win-
dows Live Movie Maker in Windows 7) is a discon-
tinued video editing software by Microsoft. It is a
part of Windows Essentials software suite and offers
the ability to create and edit videos as well as to pub-
lish them on OneDrive, Facebook, Vimeo, YouTube,
and Flickr.
Question: Is windows movie maker part of windows
essentials?
Answer: yes

Passage:
Both Jersey and Bank of England notes are legal
tender in Jersey and circulate together, alongside the
Guernsey pound and Scottish banknotes. The Jersey
notes are not legal tender in the United Kingdom
but are legal currency, so creditors and traders may
accept them if they so choose.
Question: Is jersey currency legal tender in the uk?
Answer: no

Figure 4: GPT-3 prompt to get yes-no answers.
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Abstract

This work builds upon the Euphemism De-
tection Shared Task proposed in the EMNLP
2022 FigLang Workshop, and extends it to few-
shot and zero-shot settings. We demonstrate a
few-shot and zero-shot formulation using the
dataset from the shared task, and we conduct
experiments in these settings using RoBERTa
and GPT-3. Our results show that language
models are able to classify euphemistic terms
relatively well even on new terms unseen dur-
ing training, indicating that it is able to capture
higher-level concepts related to euphemisms.

1 Introduction

Euphemisms are figures of speech which aim to
soften the blow of certain words which may be
too direct or too harsh (Magu and Luo, 2018; Felt
and Riloff, 2020). In the EMNLP 2022 FigLang
Workshop Euphemism Shared Task, participating
teams are given a set of sentences with potentially
euphemistic terms (PETs) enclosed in brackets, and
the task is to classify whether or not the PET in a
given sentence is used euphemistically.

In this task/dataset, however, there are many
PETs which are repeated throughout both the train-
ing and testing sets (more details in Section 3). In
addition, several PETs are classified as euphemistic
almost 100% of the time during training. This
raises an important question: is the model actually
learning to classify what a euphemism is, or is it
simply reflecting back things it has seen repeatedly
during training? How do we know if the model
we train can truly capture the essence of what a
euphemism is? Even among humans, this is a very
nontrivial task. If one hears the phrase “lose one’s
lunch” for the first time, for example, it may not
be immediately obvious that it is a euphemism for
throwing up. However, when used in a sentence,
the context clues together with an understanding
of the meanings of the words “lose” and “lunch”
will allow a human to piece together the meaning.

For a machine to be able to do this, however, is not
trivial at all.

To this end, we test this by checking whether
a model can correctly classify PETs it has never
seen during training. This leads us to our few-
shot/zero-shot setting. The two key contributions
of our paper are as follows: 1) We propose and
formulate the few-shot and zero-shot euphemism
detection settings; and 2) We run initial baselines
on these euphemisms using RoBERTa and GPT-3,
and we present a thorough analysis of our results.

2 Related Work

Compared to other figures of speech like sim-
iles (Chakrabarty et al., 2020) and metaphors
(Chakrabarty et al., 2021), work on euphemisms
has been limited. Recently, Gavidia et al. (2022);
Lee et al. (2022) released a new dataset of diverse
euphemisms and conducted analysis on automati-
cally identifying potentially euphemistic terms. In
the past, Felt and Riloff (2020) used sentiment anal-
ysis techniques to recognize euphemistic and dys-
phemistic phrases. Other studies also focused on
specific euphemistic categories such as hate speech
(Magu and Luo, 2018) and drugs (Zhu et al., 2021).

In terms of zero-shot figurative language detec-
tion, the existing literature has also been quite lim-
ited. The few existing studies (Schneider et al.,
2022) mostly focus on metaphors and on low-
resource settings. This leaves out less common
figures of speech such as euphemisms, and the low-
resource formulation is also not exactly identical
to the zero-shot setting we explore in this paper.

3 Task and Dataset

Our task is similar to the FigLang 2022 Workshop
Shared Task on Euphemism Detection. Given a
sentence containing a potentially euphemistic term
(PET), we want to determine whether the PET is
used euphemistically. The key difference with our
task is that we perform the binary classification on
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Ave. Test Size Ave. # of unique
PETs in test

Standard 295.0 93.3
Few-Shot (k=1) 279.6 35.0
Few-Shot (k=3) 281.2 35.4
0-shot (random) 280.6 34.3

Death 174.0 14.9
Sexual Activity 45.0 10.4

Employment 176.0 23.5
Politics 161.0 20.9

Bodily Functions 26.0 7.0
Physical/Mental 299.0 36.0

Substances 88.0 9.1

Table 1: Dataset statistics for the few-shot and zero-shot
settings. Because there is some stochasticity involved
in dataset creation, we take averages over 10 samples.

a few-shot/zero-shot setting. Similarly, we use the
dataset proposed by Gavidia et al. (2022), which
contains 1965 sentences with PETs, split across
129 unique PETs and 7 different euphemistic cate-
gories (e.g. death, employment, etc.) Furthermore,
the dataset also contains additional information
such as the category and the status of the PET (“al-
ways euph” vs “sometimes euph”).

4 Methodology

4.1 Constructing the Few-Shot Setting
For the k-shot setting, we want the PETs in the
validation/test set to have appeared in the train-
ing set only k times. Let our set of PETs be
P = {p1, p2, . . . pN}. We construct the test set as
follows. First, we randomly sample a PET pi from
P , then find all sentences s1, s2, . . . sM containing
PET pi. Out of these M sentences, we sample k
sentences sj1 , sj2 , . . . sjk to keep in our training
set, moving all the (M − k) remaining sentences
sj to our test set. We repeat this process until we
reach the desired size for our validation/test set.
In our case, we stop when the validation and test
each reach around 15% of our entire dataset (±2%
to account for the fact that it’s unlikely to reach
15% exactly). In practice, we sample 30% for the
validation+test set combined, then randomly split
this 30% into two sets of 15% in order to increase
the PET diversity in both the validation and the test
splits. For the k-shot setting, we use k = 1 and
k = 3. The dataset statistics for the k-shot datasets
can be found in Table 1.

4.2 Constructing the Zero-Shot Setting
For the zero-shot setting, we want the PETs in the
validation/test set to never have appeared in the
training set. There are two ways to achieve this:

1. Random Sampling – The construction for this
is similar to that of the few-shot setting, except
here, we don’t sample sj1 , sj2 , . . . sjk to keep in
the training set but rather move all M sentences
s1, s2, . . . sM to our validation/test set.

2. Type-based – Rather than randomly choosing
assorted PETs to holdout into our test set, we in-
stead choose the test set PETs to all come from a
single category, while the training set will come
from the remaining categories. These categories
are provided alongside the sentences in the dataset
by Gavidia et al. (2022), and there are 7 categories
in total. Because some categories may contain
more sentences (and more PETs) than others, then
the sizes of the training splits of these categories
will be different. To address this, we subsample
from the training splits of the categories with ex-
cess rows to match the training category with the
least number of rows. This way, we ensure that
all categories have an equal number of rows of
training data, and so any changes in performance
will be likely due to the data quality (rather than
due to simply having more/less data). At the end,
this gives us a training size of 1367 rows for each
category. For the test splits, different categories
also have different sizes, but we choose to leave the
test split sizes unchanged and opted not to do the
sampling like we did for the training step because
the smallest testing category has size 26 (“bodily
functions”), while some other categories had test
sizes of 200+ (“physical/mental”), so we found it
impractical to force the test sizes to be identical.
Statistics for these datasets can be found in Table 1.
In theory, having larger test sets will mostly affect
the variance, but the mean should not be affected
that much. We comment more on this in Section 6.

4.3 Models

We consider two different types of baseline models.
First, we consider networks which we can reason-
ably fine-tune. For this group, we select RoBERTa
(Liu et al., 2019), covering both the RoBERTa-base
model and the RoBERTa-large model, which have
been extensively used for classification. The ratio-
nale behind choosing RoBERTa was twofold. First,
RoBERTa is a commonly used standard for various
classification tasks and has generally been shown to
perform better than other simple transformer-based
models such as BERT (Devlin et al., 2019). Second,
it has empirically been shown to work sufficiently
well when dealing with euphemisms, as Lee et al.
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(2022) used RoBERTa-based sentiment and offen-
siveness models to search for euphemisms.

In addition, we also try out large language mod-
els such as GPT-3 (davinci) (Brown et al., 2020),
which has been known to work well on zero-shot
and few-shot settings. We are interested to find
out whether the large-scale pretraining provides
GPT-3 with the capability to implicitly model the
concept of “euphemism-hood”, which is built from
several other adjacent concepts such as politeness
and tone. We hence explore using both zero-shot
and few-shot prompts for GPT-3.

5 Experiment Setup

5.1 RoBERTa Implementation Settings

For both RoBERTa-base and RoBERTa-large, we
fine-tune for 10 epochs, taking the model with the
best validation performance (F1) as our final model.
For RoBERTa-base, we use a learning rate of 1e-5
and a batch size of 16, while for RoBERTa-large,
we use a learning rate of 5e-6 and a batch size
of 4. All other hyperparameters such as learning
rate decay and warmup steps are according to the
default settings of HuggingFace’s trainer function.

5.2 GPT-3 Implementation Settings

We use the largest version of GPT-3 (davinci). For
the zero-shot settings, we prompt it with the phrase
“Is the word [PET] used euphemistically in the
following sentence: [SENT]”, where [PET] and
[SENT] represent the euphemistic term and current
sentence in question. Here, we conduct a small
amount of prompt engineering. For instance, we
also tried out “Does this sentence contain a eu-
phemism: [SENT]” or adding “(Yes/No)” before
or after our current formulation. We found that our
current formulation performs the best among these
variations, which is why we choose to report that
in Table 2. Meanwhile, for few-shot settings, we
simply repeated our zero-shot prompt, followed by
either “Yes” or “No” corresponding to the label,
and a line break to separate different examples.

Another key challenge with GPT-3 is mapping
the responses to 0/1 binary classes. Because GPT-3
is a generative model, it may not necessarily just
answer yes/no; instead, it may generate long para-
graphs or unrelated characters. To do this mapping,
we use a rule-based method. First, if the first 3 char-
acters of the response is “yes” or if the first 2 char-
acters are “no”, then we can immediately map them.
Next, we gather a list of “1-class” phrases and a list

of “0-class” phrases. Here, “1-class” phrases in-
clude “is a euphemism”, “is used euphemistically”,
“can be considered a euphemism”, “it seems like
it”, etc. In other words, when these phrases appear
in a sentence, then the label is most likely a 1. This
likewise holds for “0-class” phrases which are in-
dicative of the label being 0. This includes phrases
such as “not a euphemism” or “does not appear to
be euphemistic”. Lastly, GPT-3 sometimes gen-
erates random noise, irrelevant sentences, or says
something like “I’m not sure” or “I can’t answer
that”. For these remaining cases, we choose to just
ignore them from our scoring. Based on our exper-
iments, this happened only around 4% of the time,
so we believe the change to be not that significant.
The full list of “1-class” and “0-class” phrases can
be found in the Appendix.

6 Results and Analysis

Table 2 shows the results of running all 3 models
on both the zero-shot and the few-shot settings. We
make the following observations below:

1. The overall results are generally quite good.
The standard RoBERTa-large setting (i.e. no k-
shot/zero-shot) attains an F1 score of 0.836, while
a zero-shot model attains an F1 score of 0.740,
which is a relatively high F1 score, considering
that all the examples during test time were unseen
during training. This shows that the model is able
to learn something beyond simply just memorizing
the PETs during training, and that it is able to some-
what capture the essence of what makes a phrase
euphemistic. Perhaps it is able to track discrepan-
cies in sentiment (Lee et al., 2022) or discrepancies
in other features such as politeness. At this point,
it is difficult to discern exactly why the zero-shot
performance is good, and it is an interesting point
to explore further in the future.

2. The “bodily functions” category performs
quite poorly, while the “substances” category
performs quite well. For the “bodily functions”,
this can easily be explained by the dataset size and
test set quality. Among the categories, “bodily
functions” by far had the least number of test ex-
amples at 26 (see Table 1). In fact, there appears
to be some correlation between the performance
and the size of the test set, as the “sexual activity”
category (second-smallest test set) also exhibits rel-
atively poor performance. In addition, the “bodily
functions” category has a disproportionately high
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RoBERTa-base RoBERTa-large GPT-3 (davinci)
P R F1 P R F1 P R F1

Standard Model - 0.850 0.799 0.824 0.877 0.812 0.836 - - -

Few-Shot k=1 0.802 0.744 0.759 0.818 0.748 0.769 0.565 0.551 0.546
k=3 0.834 0.795 0.808 0.879 0.798 0.825 0.624 0.599 0.617

Zero-Shot (Random) - 0.770 0.699 0.715 0.798 0.726 0.740 0.537 0.543 0.507

Zero-Shot (Type-based)

Death 0.782 0.735 0.742 0.803 0.748 0.761 0.453 0.457 0.448
Sexual Activity 0.647 0.606 0.622 0.633 0.603 0.615 0.533 0.550 0.477

Employment 0.778 0.790 0.781 0.782 0.817 0.792 0.537 0.532 0.479
Politics 0.754 0.622 0.645 0.826 0.645 0.688 0.537 0.558 0.484

Bodily Functions 0.500 0.240 0.324 0.500 0.416 0.480 0.500 0.192 0.278
Physical/Mental 0.757 0.663 0.689 0.750 0.680 0.693 0.517 0.510 0.489

Substances 0.897 0.858 0.878 0.913 0.883 0.895 0.553 0.551 0.486

Table 2: Experiment results for RoBERTa-base, RoBERTa-large, and GPT-3 (davinci). Results are averaged over 5
experiments with different dataset splits.

number of items with label 1 (i.e. euphemistic
usage), which can skew the F1-score quite a bit.
Observe that the macro precision is 0.5 for all 3
models, which tends to happen when the distribu-
tion is very skewed and gets a precision of exactly
1.0 for one class and exactly 0.0 for the other class.
Meanwhile, for the “substances” category perform-
ing well, we speculate that this could be because a
lot of these words are quite common. Words like
“weed” and “sober” are used quite commonly, as
opposed to other euphemisms, which are less com-
monly used in everyday conversations (e.g. “ethnic
cleansing” is a rare phrase).

3. GPT-3 generally performed quite poorly.
Furthermore, GPT-3 performance seems to be
independent of category. For all 7 categories, as
well as the randomly sampled zero-shot set, the
GPT-3 model has F1 scores between 0.47 and 0.50
for almost all of them. This is a sharp contrast
with the RoBERTa model, which varies quite sig-
nificantly depending on the category. In addition,
the GPT-3 performance is much lower than the
RoBERTa performance. We hypothesize that this
can be solved with additional prompt engineering
or prompt tuning (Li and Liang, 2021; Lester et al.,
2021). This poor performance can also be a pos-
sible cause for the lack of category dependence –
perhaps the model is not good enough to discern
the subtle differences between these categories in
the same way that the RoBERTa models do.

4. The few-shot performance is better than the
zero-shot performance. The 3-shot performance
for RoBERTa is almost at level of training the
standard model. This should not come as a sur-
prise, since having at least 1 appearance in the
training set is already quite a lot of information
provided to the model. Furthermore, the initial

dataset had 1965 sentences split across 129 unique
PETs, which averages out to around 15 sentences
per PET. It is thus notable that being shown 3 exam-
ples gives almost the same performance as being
shown 15 examples. This suggests that maybe a lot
of the learning happens in the early stages, or that
many sentences are actually redundant for training
purposes. Another interesting area for future explo-
ration would be in trying to find which sentences
are the most “instructive” and hence best included
within the training set for few-shot settings.

5. The GPT-3 model greatly benefited from the
few-shot setting. Comparing the k = 1 and k = 3
GPT-3 results with the zero-shot results, we see that
there is a marked increase in performance when a
few examples were given as prompts to GPT-3.
This is consistent with the findings of Brown et al.
(2020) regarding GPT-3’s capacity to perform in-
context learning. This also makes intuitive sense,
as simply providing GPT-3 with a single sentence
to classify with no additional context can be quite
difficult. In the first place, the GPT-3 model may
not even fully know the task from a zero-shot set-
ting. With just 3 examples, the F1 score increases
from 0.507 to 0.617, which is a significant increase.

7 Conclusion and Future Work

In this paper, we explored zero-shot and few-
shot settings for the Euphemism Detection task.
We formulated the problem settings and crafted
zero-shot and few-shot datasets from the EMNLP
2022 FigLang Workshop Euphemism Shared Task
dataset. We tried two type of models, namely
RoBERTa and GPT-3. We found promising results
that these language models (especially fine-tuned
RoBERTa) were able to perform quite well, even
on completely unseen euphemistic terms.
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While our results were overall good, the results
for GPT-3 were quite poor. In the future, we believe
that further prompt engineering or prompt tuning
will definitely be helpful in improving the perfor-
mance of GPT-3 (Li and Liang, 2021; Lester et al.,
2021). Furthermore, this idea of few-shot and zero-
shot detection is not exclusive to euphemisms. We
believe that checking the performance of language
models to classify unseen examples is something
that will be important to check for a lot of figures
of speech and will be important in our quest to
process and generate figurative text.

Limitations

As mentioned in the body, a key limitation to our
work is the lack of prompt engineering or prompt
tuning. We tried some manually crafted prompts,
but this does not seem to be enough to get GPT-3
to perform at the level it is expected to.
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A GPT3 Implementation: Positive and
negative phrases

Note that all sentences are converted to lowercase
first before doing a search with these phrase lists.
The “1-class” phrases and “0-class” phrases are
shown below:

“1-class”: ["is used euphemistically", "can be
used euphemistically", "is being used euphemisti-
cally", "may be used euphemistically", "might be
used euphemistically", "is a euphemism", "is used
as a euphemism", "is being used as a euphemism",
"can be used as a euphemism", "may be used as
a euphemism", "might be used as a euphemism",
"appears to be a euphemism", "appears to be used
euphemistically", "could be used euphemistically",
"could be used as a euphemism", "could be a eu-
phemism", "is considered a euphemism", "could be
considered a euphemism", "can be considered a eu-
phemism", "could be seen as a euphemism", "can
be seen as a euphemism", "could be considered
euphemistic", "can be considered euphemistic", "i
think so", "i believe so"]

“0-class”: ["not used euphemistically", "not be-
ing used euphemistically", "not a euphemism", "not
used as a euphemism", "not being used as a eu-
phemism", "does not appear to be a euphemism",
"does not appear to be used euphemistically", "i
don’t think so", "i don’t believe so", "i do not think
so"]
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Abstract
Creative texts can sometimes be difficult to un-
derstand as they balance on the edge of com-
prehensibility. However, good language skills
and common sense can allow advanced lan-
guage users to both interpret creative texts and
reject some linguistic input as nonsense. The
goal of this work is to evaluate whether cur-
rent language models can make the distinc-
tion between creative language use and non-
sense. To test this, we have computed the mean
rank and pseudo-log-likelihood score (PLL) of
metaphorical and nonsensical sentences. We
have also fine-tuned RoBERTa for binary classi-
fication between the two categories. There was
a significant difference in the mean ranks and
PLL scores of the categories, and the classifier
reached around 75-88% accuracy. The results
raise interesting questions on what could have
led to such satisfactory performance.

1 Introduction

The ultimate goal of Natural Language Understand-
ing (NLU) models is to reach a human-like level of
language comprehension. However, a good com-
mand of language manifests itself not only in being
able to interpret advanced usages of a language,
but also in discriminating the uninterpretable, erro-
neous cases. While automatic grammar checkers
are already in place, semantic incongruity is more
difficult to trace. The task is further complicated
by the existence of figurative language, where a
listener is required to go an extra step (when com-
pared to literal language) in order to decode the
meaning. The borderline between creative, but still
understandable text, and nonsense can be seen as
the cusp of comprehensibility.

One of the types of figurative language is
metaphors, which are convenient to research due
to their ubiquity. Linguistic metaphors can be de-
fined as expressions of an understanding of one
concept in terms of another, where there is some
similarity between the two. While metaphor per

se signifies a shift in meaning, they do vary in
the degree of metaphoricity and creativity. The
most threadbare metaphors which are so commonly
used that they become unnoticeable are conven-
tional metaphors, for example, “he takes a few
moments to reply”. On the other side of the scale of
metaphoricity there are creative metaphors, where
a novel meaning emerges in a sentence, for ex-
ample, “the ATM coughed up my card” (Cardillo
et al., 2010). However, even when it comes to novel
metaphors, language users should still be able to
infer the meaning - otherwise, they are just non-
sense.

Professor Irving Massey has suggested that dis-
tinguishing between a metaphor and nonsense
could be a new Turing test (Massey, 2021). The
professor claims that switching between literal and
metaphorical senses is an aesthetic gesture inacces-
sible for computers, and that “the ability to experi-
ence metaphor is the very definition of the human”.
While admittedly for the time being there is no way
to track aesthetic experiences of a computer, the
(in)ability of computational models to make the
distinction between a metaphor and mere nonsense
might be worth looking at.

While we sometimes deify metaphors as “a hall-
mark of human intelligence” (Cardillo et al., 2010),
and assume that the interpretation of metaphors, es-
pecially of novel metaphors, demands human cog-
nitive skills and real world experiences, it is also
possible that there are enough clues encoded at the
linguistic level that they would help a non-human
to distinguish between metaphors and nonsense.

In order to test whether the ability to demys-
tify metaphors is a skill exclusively possessed by
mortals, we are going to measure and compare the
PLL scores of metaphors and nonsense, as well as
use mean ranks of predictions on masked words to
test how well the nonsensicality can be explained
by plausibility (language model probability). Fi-
nally, a binary classifier based on a pre-trained lan-
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guage model is going to be trained in order to check
whether the current language models are able to
distinguish between metaphors and nonsense.

2 Related Works

A study by Pedinotti et al. (2021) hints that
language models might already have acquired a
human-like intuition of sentence plausibility. The
authors of the study have found out that the pseudo-
log-likelihood scores (PLL) of sentences obtained
using BERT (Devlin et al., 2019) correlated with
the plausibility ratings of human annotators. The
best performing model in the Corpus of Linguistic
Acceptability (CoLA) (Warstadt et al., 2019) task in
the GLUE benchmark (Wang et al., 2018), ERNIE,
surpasses even the human baseline (75.5 vs. 66.4
MCC), discriminating linguistically unacceptable
sentences better than human participants.

However, another study conducted by Gupta
et al. (2021) found that the BERT family of mod-
els are easily susceptible to adversarial examples
and fail to even recognize incoherent, ungrammat-
ical utterances, giving similarly confident scores
to input that was perturbed to be nonsensical as to
its meaningful counterpart. Findings like this are
evidence that, when discriminating between mean-
ingful and nonsensical sentences, the models might
be relying on some spurious correlations or annota-
tor artifacts rather than the targeted divergence in
comprehensibility.

3 Data and Experiments

3.1 Dataset
To the best of our knowledge, there’s only one
dataset that is annotated for both metaphors and
nonsense - the one by Pedinotti et al. (2021), which
the authors have kindly agreed to share. The dataset
consists of 300 matched sentences, 100 for each of
the three categories: metaphors (47 conventional
and 53 creative), literal sentences, and nonsensical
sentences.

In order to have more input sentences for the
experiments, the dataset was further extended by
adding 200 pairs of matched metaphorical and
literal sentences from Cardillo et al. (2010) and
Cardillo et al. (2016). These datasets were orig-
inally aimed at aiding the research of human
metaphor comprehension, and contains 400 pairs
(280 in Cardillo et al. (2010) and 120 in Cardillo
et al. (2016)) of matched literal and metaphorical
sentences, which had been carefully normalized

Type Example
Met-Ped I could almost taste victory.
Non-Ped I could almost wash victory.
Met-Car Her orders were a sharp bark.
Non-Gen His orders were a sharp crust.
Non-BEL Our homework buys more sky.

Table 1: Metaphor and nonsense examples from Ped
(Pedinotti et al., 2021), Car (Cardillo et al., 2010), BEL
(O’Neill et al., 2020) and the automatically Generated
datasets.

along a number of dimensions, including length,
naturalness, and figurativeness.

Since the Cardillo et al. datasets do not include
nonsense sentences, to have a balanced dataset,
200 nonsensical sentences were added. 100 of
them were automatically generated (and manually
handpicked from several options) by shuffling ei-
ther subjects (for nominal metaphors) or subject
complements (for predicate metaphors) across the
sentences. Another 100 were generated with the
help of BackTranslationAugmenter perturbation
technique from the TextAttack framework (Mor-
ris et al., 2020), or by swapping places of verb
arguments in a sentence.1

By generating the nonsense sentences from the
metaphorical ones, we hoped to create a normal-
ized dataset where the sentences between the cat-
egories would have similar syntactical structures
and similarly plausible words. However, part of
our experiments was also repeated on an extended
dataset where we added the rest of the sentences
(200 pairs) from the Cardillo et al. datasets, and
randomly picked 200 nonsensical sentences from
a corpus of sentences “without semantic context”
by O’Neill et al. (2020). See Table 1 for example
sentences from each dataset.

3.2 Experiments

With the chosen set of data, several experiments
have been conducted. The first two explore prop-
erties of the dataset and whether the plausibility of
the data can be a sufficient indicator for nonsense
classification, and in the third set of experiments, a
binary classifier has been trained.

3.2.1 Experiment 1: Plausibility
Following the Pedinotti et al. (2021) study, a
pseudo-log-likelihood score (PLL) has been com-

1Our code and data are available at https://github.
com/bgriciute/Metaphors-vs-Nonsense.
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puted for every sentence in the picked datasets.
This was done in order to check whether the same
tendencies as pointed in the Pedinotti et al. (2021)
paper, could be observed on a larger scope, as well
as for comparing the datasets.

Since models like BERT are bidirectional, they
cannot be used for computing sentence probability.
An alternative way to get a probability-like score is
to use PLL (Wang and Cho, 2019). The PLL score
is computed by masking one token at a time, cal-
culating its probability given all the other context
words, and then summing the log-probabilities of
all the words in the sentence. For the scoring, an
MLM Python library by Salazar et al. (2020) has
been used.

3.2.2 Experiment 2: Mean Ranks
Another strategy chosen to test how probable a
string is according to a language model was to see,
what rank a masked target word would get among
the predictions of a model.

In the sentences from the Pedinotti et al. (2021)
dataset, the target words (single words that are used
metaphorically or nonsensically) were masked.
The masked sentences were then fed to the BERT
(Devlin et al., 2019) language model. To compare
the predictability of the target words, we looked
at which ranking position the target word that was
masked would appear when sorted by probability.

3.2.3 Experiment 3: Classifier
For the classification experiments, we chose to fine-
tune a pre-trained RoBERTa (Liu et al., 2019) lan-
guage model. It has been chosen after conducting
some primary experiments where it did perform bet-
ter than BERT or MultiBERT. The roberta-base
version by HuggingFace(Wolf et al., 2020) was
fine-tuned with Adam optimizer and a learning rate
of 1e-6 for 8 epochs, picking afterwards a model
from the best epoch for testing. The classification
was performed on different combinations between
metaphorical, literal, and nonsensical sentences.

Additionally, we have also trained a Naive Bayes
classifier in order to validate that the classification
task on the target dataset requires a more complex
method than a bag-of-words approach.

4 Results

Experiment 1
Table 2 indicates average PLL scores of each type
of sentences (where applicable) for each of the
aforementioned datasets that have been chosen for

Pedinotti Cardillo O’Neill
Literal -17.8 -17.8 -

Metaphor -26.4 -23.5 -
Nonsense -33.1 -30.13 -44.7

Table 2: Average PLL score of the different categories
across datasets (the nonsense sentences in the Cardillo
column are automatically generated).

the final training. Additionally, Figure 1 illustrates
the distribution of the scores within each category.
The PLL scores reveal, in accordance with the re-
sults of the Pedinotti et al. (2021) experiments, a
difference between the three categories, the literal
sentences being most plausible, followed by the
metaphors, and nonsense sentences, meaning that
the RoBERTa model finds nonsense sentences the
least plausible.

Figure 1: PLL scores of the literal and metaphorical
sentences from Cardillo et al. (2010, 2016) datasets,
and nonsensical sentences automatically generated from
them.

It is interesting to note that the metaphori-
cal sentences from the Pedinotti et al. (2021)
dataset were on average less probable than the
ones from Cardillo et al. (2010) (-26.4 versus -
23.5 PLL), even though both conventional and cre-
ative metaphors were scored together. On the other
hand, the nonsensical sentences manually created
by Pedinotti et al. (2021) were evaluated by the
model as way more probable than the sentences
from the O’Neill et al. (2020) dataset which have
been created by automatically shuffling words in
the sentences (-33.1 vs. -44.7 PLL).

Experiment 2
In Experiment 2, we could also observe a signifi-
cant difference between the ranks of sentences from
different categories. Figure 2 gives a violin plot
of the ranks of sentences from different categories.
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Categories Accuracy
lit-non 92.5%
lit-met 85.0%

met-non 75.0%
met-non (ext.) 88.0%

Table 3: Accuracy of the fine-tuned RoBERTa classi-
fier between the different categories: lit - literal, met -
metaphorical, and non - nonsense. The last experiment
was also repeated on an extended dataset.

One can observe that the median ranks of nonsen-
sical sentences were way higher than the ones of
target words in literal or metaphorical sentences,
meaning that the target words were less predictable.

Figure 2: Ranks of target words among mask predictions
sorted by probability of the sentences from Pedinotti
et al. (2021) dataset.

Experiment 3
Table 3 summarizes the accuracy of the trained
classifiers. We run several combinations categories.
The three first numbers report the accuracy of
models trained on the joined dataset consisting
of 100 sentences for each category from Pedinotti
et al. (2021) and 200 sentences from Cardillo et al.
(2010) (or automatically generated) with 80/10/10
split for train/dev/test sets. The last experiment
was conducted on a dataset with additional 200
metaphorical sentences from Cardillo et al. (2010)
and 200 nonsensical from (O’Neill et al., 2020).

The Naive Bayes classifier received 22.5% accu-
racy when discriminating between metaphors and
nonsense, suggesting that bag-of-words approach
for the target classification task is not sufficient.

5 Discussion

The experiment results have demonstrated that lan-
guage models can see the difference in plausibil-

ity between nonsense and metaphorical sentences.
Such finding can be a useful probe when investigat-
ing what do models know about the language. The
ability of models to distinguish between nonsense
and metaphors (especially creative ones) suggest
that the language models have an intuition that even
highly unusual phrases/sentences can make sense.

The findings can also be brought up in a dis-
cussion about the nature of metaphors. While
it could seem that, in order to understand some
metaphor (and, it this way, to distinguish it from
nonsense), extensive world-knowledge and an as-
sociative thinking is needed, our results suggest
that, unless the models have also already acquired
the aforementioned assets, metaphors can be dis-
tinguished from nonsense based on their linguistic
form as well.

Furthermore, using a metaphor vs. nonsense
classifier could be useful in ranking translated (lit-
erary) sentences, to see if the metaphors have been
used correctly.

6 Future Work

While we were trying our best to ensure the training
and testing data is free of unintended biases, further
research would be needed to find out whether there
really are no artifacts left. It is not clear whether
the models are really relying on semantic accept-
ability in the case of our classifiers. It can also
be that models are taking advantage of annotation
artifacts when making decisions. One way to test
for this would be to remove the target word from
the sentences and try to train a classifier on the rest
of the sentence.

7 Conclusion

The conducted experiments have shown that the
current language models are able to pick the dif-
ference in plausibility between metaphorical and
nonsensical sentences. The classifier between these
two categories is also performing well, reaching
about 75-88% accuracy (depending on the size of
the training dataset). However, further research
is needed to see whether this classification per-
formance comes from distinguishing the semantic
acceptability of the sentences, or if it is due to lin-
guistic artifacts in the sentences that models can
rely on when making the decision.
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Limitations

For reliable results, the classification experiments
should be repeated on a larger, more varied dataset,
with extensive hyperparameter tuning and model
comparison.
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Abstract

We present the results of the Shared Task on
Understanding Figurative Language that we
conducted as a part of the 3rd Workshop on Fig-
urative Language Processing (FigLang 2022)
at EMNLP 2022. The shared task is based on
the FLUTE dataset (Chakrabarty et al., 2022),
which consists of NLI pairs containing figura-
tive language along with free text explanations
for each NLI instance. The task challenged
participants to build models that are able to not
only predict the right label for a figurative NLI
instance, but also generate a convincing free-
text explanation. The participants were able
to significantly improve upon provided base-
lines in both automatic and human evaluation
settings. We further summarize the submitted
systems and discuss the evaluation results.

1 Introduction

Figurative language such as metaphors, similes or
sarcasm plays an important role in enriching human
communication, allowing us to express complex
ideas and emotions in an implicit way (Roberts
and Kreuz, 1994; Fussell and Moss, 1998). How-
ever, understanding figurative language still re-
mains a bottleneck for natural language process-
ing (Shutova, 2011). In spite of the fact that
Transformer-based language models (LMs) get
larger (Brown et al., 2020; Raffel et al., 2020), they
are still incapable of comprehending the physical
world, cultural knowledge, or social context of fig-
urative language (Bisk et al., 2020).

In recent years, there have been several bench-
marks dedicated to figurative language understand-
ing, which generally frame “understanding” as a
recognizing textual entailment (a.k.a natural lan-
guage inference (NLI)) task — deciding whether
one sentence (premise) entails/contradicts another
(hypothesis) (Chakrabarty et al., 2021; Stowe et al.,
2022; Srivastava et al., 2022). However, similar to
general NLI datasets, these benchmarks suffer from

spurious correlations and annotation artifacts (Mc-
Coy et al., 2019; Poliak et al., 2018). These can
allow large language models (LLMs) to achieve
near human-level performance on in-domain test
sets, yet turn brittle when evaluated against out-of-
domain or adversarial examples (Glockner et al.,
2018; Ribeiro et al., 2016, 2020). To tackle these
problems, research in NLI has argued that it is not
enough to correctly predict the entail/contradict la-
bels, but also to explain the decision using natural
language explanations that are comprehensible to
an end-user assessing model’s reliability (Camburu
et al., 2018; Majumder et al., 2021; Wiegreffe et al.,
2021), leading to novel datasets such as e-SNLI
(Camburu et al., 2018).

In this paper, we report on the shared task that
aim to test the ability of models to not only predict
the right label, but also provide a free-text expla-
nation to the instance. This task was conducted as
part of the 3rd Workshop on Figurative Language
Processing (FigLang 2022) at EMNLP 2022. Sec-
tion 2 provides a description of the shared task,
datasets, and evaluation metrics. Section 3 con-
tains brief summaries of each of the participating
systems whereas Section 4 reports a comparative
analysis of the participating systems.

2 Datasets and Task Description

As stated earlier, this shared task is based on the
FLUTE dataset that was released by Chakrabarty
et al. (2022). FLUTE consists of pairs of premises
(literal sentences) and hypotheses (figurative sen-
tences), with the corresponding entailment or con-
tradiction labels (NLI instances), along with expla-
nations for each instance (Table 1). This dataset
is based on four types of figurative language - id-
iom, metaphor, sarcasm, and simile. Note, given
sarcasm is the opposite of the literal meaning, we
would only have contradictions in the dataset, thus
we also generate a literal hypothesis that entails the
literal premise. Table 1 contains a few examples
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Type Premise (literal) Hypothesis (figurative*) Label Explanation

Paraphrase 
+ Sarcasm 

My next door neighbors are 
always arguing in our shared 
hallway.

It's so annoying to have to hear my 
next door neighbors argue all the time 
in our shared hallway.

E
The sound of arguing neighbors can often 
be very disruptive and if it happens all the 
time in a common space like a shared 
hallway it is natural to find it annoying.

It's so pleasant to have to hear my 
next door neighbors argue all the time 
in our shared hallway.

C
The sound of arguing neighbors can often 
be very disruptive and so someone 
considering it to be pleasant is not really 
accurate.

Simile 

The assembly hall was now 
hot and moist, more so than 
usual. In fact, the assembly hall was now 

like a steam sauna.

E
A sauna is a hot and moist environment, so 
the simile is saying that the hall is even 
hotter and more moist than usual.

The assembly hall was now 
cold and dry, more so than 
usual.

C
A steam sauna is a small room or hut where 
people go to sweat in steam, so it would be 
hot and humid, not cold and dry.

Metaphor

He mentally assimilated the 
knowledge or beliefs of his 
tribe. He absorbed the knowledge or beliefs 

of his tribe.

E To absorb something is to take it in and 
make it part of yourself.

He utterly decimated his 
tribe's most deeply held 
beliefs.

C
Absorbed typically means to take in or take 
up something, while "utterly decimated" 
means to destroy completely.

Idiom 

Lady Southridge was wringing 
her hands, trying hard and 
desperately to salvage the 
bleak and miserable situation 
so that it somehow looks 
positive. Lady southridge was wringing her 

hands, trying to grasp at straws.

E
To grasp at straws means to make a 
desperate attempt to salvage a bad 
situation, which is exactly what Lady 
Southridge is trying to do.

Lady Southridge was wringing 
her hands, doing absolutely 
nothing to overturn the bleak 
and miserable situation so 
that it somehow looks 
positive.

C
To grasp at straws means to make a 
desperate attempt to salvage a bad 
situation, but the sentence describes not 
doing anything to change the situation

Table 1: FLUTE examples of figurative text (hypothesis) and their respective literal entailment (E) and contradiction
(C) premises, along with the associated explanations. * For simile, metaphor, and idiom, figurative examples are the
hypothesis whereas for sarcasm, we have both figurative and literal hypotheses.

Entails Contradicts Total
Paraphrase 1339 - 1339
+ Sarcasm - 2678 2678
Simile 750 750 1500
Metaphor 750 750 1500
Idiom 1000 1000 2000

Table 2: Dataset statistics showing distribution of Figu-
rative Language across FLUTE.

taken fro the dataset. FLUTE contains 9,000 high
quality <literal, figurative> sentence pairs with en-
tail/contradict labels and the associated examples.
Please refer to Table 2 for the dataset statistics.

2.1 Evaluation Setup

To evaluate the participant models, we built a
test set by randomly selecting 750 instances (i.e.,
<premise, hypothesis> pairs with associated expla-
nations) from the sarcasm dataset, and 250 exam-
ples each from simile, metaphor and idiom datasets,
for a total of 1,500 instances. Below we describe
several automatic metrics and human evaluations
we consider to assess the models’ ability to under-
stand figurative language.

Automatic Metrics To judge the quality of the
explanations we compute the average between
BERTScore (Zhang et al., 2020) 1 and BLEURT
(Sellam et al., 2020), which we refer to as explana-
tion score (between 0 and 100). Instead of report-
ing only label accuracy, we report label accuracy
at three thresholds of explanation score (0, 50, and
60). Accuracy@0 is equivalent to simply com-
puting label accuracy, while Accuracy@50 counts
as correct only the correctly predicted labels that
achieve an explanation score greater than 50.

Human Evaluation We also measure the qual-
ity of the generated textual explanations via the
MTurk platform. We recruit crowd workers with at
least 98% HIT approval rate. We compute human
judgement scores (Hscore), identical to the e-ViL
score in Kayser et al. (2021). We used instances
that were used for evaluation in (Chakrabarty et al.,
2022), and selected those on which all systems pre-
dicted correctly (a total of 150 samples, around
50 per figurative language type). We present five

1We use the DeBERTa-mnli version that has shown to have
highest correlation with human judges (He et al., 2020).
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textual explanations generated by the models and
ask three workers the following question: Given
the two sentences, does the explanation justify the
answer above? We provide four options: Yes (1),
Weak Yes (23 ), Weak No (13 ), and No (0). For each
explanation, we average the scores by the three an-
notators and report the sample average in Table 4
as Hscore.

3 Participants and Results

Training Phase The shared task started on July
10, 2022, when the training data and the auxiliary
scripts were made available to all the registered
participants. Participants were allowed to choose
to partition the training data further to a validation
set for tuning the hyper parameters. Likewise, they
can also elect to use the training data to perform
cross-validation.

Evaluation Phase In this phase, test instances for
evaluation are released. We released the test data
on August 15, 2022. Submissions were accepted
until August 20, 2022. Out of all the submissions,
five shared task system papers are accepted to the
Workshop. Predictions are submitted to the Co-
dalab site and evaluated against the gold labels
of the test instances. We used Codalab for the
shared task because it is easy to use, provided easy
communication with the participants (e.g., allow
mass-emailing to the participants), as well as tracks
all the submissions updating the leader-board in
real-time. We allowed up to five submissions per
day for each participant team. We did setup our
own GPU-based evaluation using a custom Docker
architecture. The leader-board displayed the accu-
racy@60 scores on the descending order.

In total we have five participating teams along-
side the organizing team of shared task. We de-
scribe the participating systems in the following
section.

Team Acc@60 Hscore

TeamCoolDoge 63.33 (1) 74.98 (2)
rachneet 63.33 (1) 75.28 (1)
vund 60.73 (2) 71.82 (5)
yklal95 51.73 (3) 73.73 (4)
baseline 48.33 (4) 74.39 (3)

Table 3: Automatic (Accuracy@60) and Human evalu-
ation results (Hscore) by team with rank in parenthesis.

Baseline (Chakrabarty et al., 2022) The base-
line is the system described in Chakrabarty et al.
(2022). This system is trained to predict labels
and rationales jointly using a T5-3B model (Raf-
fel et al., 2020). Unlike other teams (Chakrabarty
et al., 2022) verbalized inputs using natural lan-
guage instruction: Does the sentence "P" entail
or contradict the sentence "H"? Please answer
between "Entails" or "Contradicts" and explain
your decision in a sentence.

TeamCoolDoge (Gu et al., 2022b) present
DREAM-FLUTE which first uses DREAM (Gu
et al., 2022a) to generate an elaboration of the sit-
uation in the premise and hypothesis (separately),
then uses this additional context for classifica-
tion and explanation generation. They hypothe-
size that such additional, pertinent details could
also improve a model’s ability to judge whether
it is an entailment or contradiction between the
premise and hypothesis. This posit this could be
especially helpful for the instances that use fig-
urative language, where the underlying meaning
might be opaque to the model and that further elab-
orating the context can make certain inferences
more explicit. They take as input <Premise>
<Premise-elaboration-from-DREAM> <Hypothe-
sis> <Hypothesis-elaboration-from-DREAM> and
fine-tune a T5-3B model to then jointly generate
Label and Explanation. While the scene elabora-
tion dimensions from DREAM can vary across the
categories of consequence, emotion, motivation,
social norm the winning submission is based on
consequence elaboration dimension. It should be
noted that the underlying model is similar to the
baseline model (ablation without using DREAM),
however the performance differs due to different
hyperparameters.

Rachneet (Bigoulaeva et al., 2022) focus their
efforts on the transfer of information from multiple
related tasks for improved performance on FLUTE.
They compare the effectiveness of Sequential Fine
Tuning with that of MultiTask Learning in a con-
text where one of the target tasks is dependent on
the other. Their final submission which led to the
highest Acc@60 on the FLUTE test set is a T5 (Raf-
fel et al., 2020) based model where the label and
rationales are predicted jointly. In particular their
best submission is a sequentially fine-tuned model
where they first finetune on eSNLI (Camburu et al.,
2018) followed by IMPLI (Stowe et al., 2022) and
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Team idiom metaphor sarcasm simile
TeamCoolDodge
(AI2) 74.85 (1) 72.47 (3) 75.71 (1) 77.33 (2)

rachneet
(UKP) 72.22 (3) 77.27 (1) 73.13 (4) 79.11 (1)

vund (UIT) 70.76 (4) 71.46 (4) 72.09 (5) 73.78 (3)
yklal95 (SBU) 70.76 (4) 76.01 (2) 73.64 (3) 73.78 (3)
debanjan
(us) 73.98 (2) 76.01 (2) 74.68 (2) 71.11 (4)

Table 4: Human evaluation results (Hscore) by team by figurative language type with rank in parenthesis.

finally FLUTE (Chakrabarty et al., 2022).

Vund (Phan et al., 2022) considered both the
tasks: the NLI task, and the explanation genera-
tion task as two seq2seq tasks. They fine-tuned
the two tasks separately as a simultaneous com-
putation model. In addition, they also used the
attribute about types of Figurative Language across
the data as a predictor and treated it as seq2seq
tasks. Therefore they have 3 component models
based on fine-tuning pre-trained model T5 (Raffel
et al., 2020) : NLI predictor, Type predictor, and
Generator. Unlike other teams that predict label
and rationale jointly here the team uses T5-large
model in a pipeline fashion.

yklal (Lal and Bastan, 2022) propose a sim-
ple T5-large model fine-tuned on the FLUTE data,
trained to generate the explanation before the label.
The input format does not contain any task-specific
keys and does not resemble any of the ones de-
scribed in Raffel et al. (2020). The model uses
a newline separator, which is a prominent part of
how UnifiedQA (Khashabi et al., 2020) was built
over T5.

4 Analysis

The best performing teams according to both
human and automatic evaluation were Team-
CoolDoge, rachneet, and vund (Table 3). For au-
tomatic metric we report Accuracy@60, i.e., ac-
curacy score that counts as correct only the cor-
rectly predicted labels that achieve an explanation
score greater than 60. We notice in Table 3 that
TeamCoolDoge and rachneet have attain the high-
est score in case of accuracy score where team vund
is slightly behind.

Likewise, human evaluation results (Table 4)
show relatively small difference between teams, in-
dicating plausibility of explanations across systems

and across different types of figurative language.
These results support the high automatic evaluation
scores the teams have achieved. Some discrepan-
cies in human and automatic evaluation are present
(e.g., the team TeamCoolDodge did not achieve the
highest human score for metaphors and similes).
This can be explained by high standard deviation in
the human score (around 0.3, or one step increment
in the answer), however, future work may explore
spurious cues and lack of correlation in automatic
metrics.

Across types of figurative language, explana-
tions for similes and metaphors achieve higher hu-
man scores for the best submissions. This could
be explained by the visual nature of comparisons
drawing from commonsense property identification
which can benefit from elaboration as used in the
DREAM framework used by TeamCoolDoge.

5 Conclusion

This paper summarizes the results of the shared task
on understanding figurative language organized as
part of the 3rd Workshop on the Figurative Lan-
guage Processing at EMNLP 2022 (FigLang 2022).
This shared task aimed to not only predict the cor-
rect label for a figurative NLI instance but also gen-
erate a convincing explanation for the same. We
provided basic description of each of the participat-
ing systems who submitted a shared task system
paper (i.e. four qualifying submissions). All of the
submitted systems by the participants attain higher
accuracy than the baseline. We also conducted hu-
man evaluation via MTurk platform that shows the
quality of explanations generated by the systems
is comparable. Finally, to conclude, we hope the
shared task will promote further exploration into
figurative language understanding.
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Abstract

This paper presents The Shared Task on Eu-
phemism Detection for the Third Workshop
on Figurative Language Processing (FigLang
2022) held in conjunction with EMNLP 2022.
Participants were invited to investigate the eu-
phemism detection task: given input text, iden-
tify whether it contains a euphemism. The in-
put data is a corpus of sentences containing
potentially euphemistic terms (PETs) collected
from the GloWbE corpus (Davies and Fuchs,
2015), and are human-annotated as containing
either a euphemistic or literal usage of a PET.
In this paper, we present the results and analyze
the common themes, methods and findings of
the participating teams.

1 Introduction

Euphemisms are mild or indirect expressions that
are used in place of other ones when discussing
potentially offensive or sensitive topics. Their lin-
guistic functions include (politeness, concealment,
and neutralization of unappealing words/phrases).
Despite being an important element of language
use, their figurative nature poses a challenge for
natural language processing (NLP).

There are numerous challenges to working with
euphemisms. One is the phenomenon of the “eu-
phemism treadmill”, by which words/phrases gain
or lose euphemistic meanings over time (Pinker,
2003). Another is that researchers may not agree
on what euphemisms are. For example, Zhu and
Bhat (2021); Zhu et al. (2021) treat code words
as euphemisms, but our working definition does
not. Even when restricted to our working defi-
nition, however, annotators were found to some-
times disagree in the task of labeling example sen-
tences as euphemistic (Gavidia et al., 2022). For
all these reasons, the words/phrases in this shared
task are referred to as potentially euphemistic terms
(PETs). The main challenge, which is the focus
of this shared task, is the ambiguity of PETs: the

same words/phrases that may be euphemistic in
one context may be literal in another. For example,

Asked to choose between jobs and the environment,
a majority – at least in our warped, first-past-the-
post system – will pick jobs. (non-euphemistic)

This summer, the budding talent agent was
between jobs and free to babysit pretty much any
time. (euphemistic)

We propose the Shared Task on Euphemism De-
tection: given input text, identify whether it con-
tains a euphemism; i.e., distinguish between eu-
phemistic and literal usages of the same PETs in
different contexts. The data used is a corpus of
texts containing PETs, collected by Gavidia et al.
(2022), which contains parallel euphemistic and
literal examples for a range of PETs. 46 partici-
pants spanning 13 teams attempted the task, and
we received 9 system descriptions.

Due to a lack of extensive research in this area,
it is unclear how NLP techniques, such as language
models (LMs), will perform on euphemism detec-
tion. The purpose of this shared task is to (1) ex-
plore the ability of NLP techniques for this task and
(2) investigate what methods could further improve
upon their performance.

2 Related Work

There is not much work on automatic detection of
euphemisms. The most directly related work is
by Magu and Luo (2018), Felt and Riloff (2020),
Kapron-King and Xu (2021), Zhu et al. (2021)
and Zhu and Bhat (2021). Felt and Riloff (2020)
present the first effort to recognize euphemisms and
dysphemisms (derogatory terms) using NLP. The
authors use the term x-phemisms to refer to both.
They first identify three sensitive topics (lying,
stealing, and firing). They use a weakly supervised
algorithm for semantic lexicon induction (Thelen
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and Riloff, 2002) to generate lists of near-synonym
phrases for each topic semi-automatically. Felt
and Riloff (2020) experiment with two methods
to classify phrases as euphemistic, dysphemistic,
and neutral: 1) dictionary-based method addressing
affect, connotation, intensity, arousal, and domi-
nance; 2) contextual sentiment analysis to classify
x-phemisms. The important product of this work
is a gold-standard dataset of human x-phemism
judgements. The important lesson here is that Felt
and Riloff (2020) show that sentiment connota-
tion and affective polarity are useful for identifying
x-phemisms, but not sufficient. While the perfor-
mance of Felt and Riloff (2020)’s system is rela-
tively low and the range of topics is very narrow,
this work certainly inspires further investigations.

Zhu et al. (2021) define two tasks: 1) euphemism
detection (based on the input keywords, produce a
list of candidate euphemisms) 2) euphemism iden-
tification (take the list of candidate euphemisms
produced in (1) and output an interpretation). Zhu
et al. (2021) select sentences matched by a list
of keywords, create masked sentences (mask the
keywords in the sentences) and apply the masked
language model proposed in BERT (Devlin et al.,
2018) to filter out generic (uninformative) sen-
tences and then generate expressions to fill in the
blank. These expressions are ranked by relevance
to the target topic.

Euphemisms are also related to the language
of politeness (e.g., Danescu-Niculescu-Mizil et al.
(2013); Rababah (2014)), which plays a role in
applications involving dialogue and social interac-
tions in different contexts.

Other shared tasks have proposed a similar clas-
sification task on other types of figurative language.
Ghosh et al. (2020) report on a sarcasm detection
task run on conversation data from Twitter and
Reddit, while Madabushi et al. (2022) report on an
idiom detection and embedding task.

3 Task Setting

Participants were given a dataset of PET-containing
texts created by Gavidia et al. (2022). In this sec-
tion, we describe the dataset and the classification
task.

3.1 Dataset Description

The corpus of PETs was formed by taking a list
of PETs (single and multi-word expressions, col-
lected from a variety of sources) and extracting

texts from the GloWBe corpus (Davies and Fuchs,
2015) (only the US-English portion) which con-
tained them. Each text sample comprised up to 3
sentences: the sentence that the PET appeared in,
as well as the preceding and following sentences,
if available. In total, the dataset contains 1,965
text samples spanning 129 different PETs and 7
topics/categories. Of these, 1,382 were annotated
to contain a euphemistic usage of a PET, and the
remaining 583 a literal usage. Thus, the dataset is
imbalanced (an aspect which multiple teams explic-
itly considered in their approaches). The full details
of the data, including the distribution amongst the
PETs and topics, can be found in the original paper
(Gavidia et al., 2022).

The training and test sets were created using an
80-20 split. The range of PETs which appeared
in each split was balanced as much as possible,
given that several PETs only appeared once as a
euphemistic or literal example. Details of the split
are summarized in Table 1.

Split Rows Euphemistic Literal
Rows PETs Rows PETs

Train 1572 1106 122 466 54
Test 393 276 121 117 55

Table 1: Train-Test Split Details

A simplified version of the dataset was created
for the participants, where each row contained only
(1) the text sample with the PET denoted in brack-
ets, and (2) its label (a ’1’ for euphemistic, and a
‘0’ for literal). This version omitted information
about each row, such as meta-information about
the PET: the specific morphological variant present
in the row, the topic category (e.g., "death", "poli-
tics", etc.), and whether it always appeared in the
dataset as a euphemism (“always-euphs”) or only
sometimes (“sometimes-euphs”). This information,
however, was available to the participants via a
Github link to the full dataset (which several teams
chose to leverage).

3.2 Task Description
The shared task was set up as a competition on
Codalab1. Participants were invited to develop sys-
tems trained on the training data (see Table 2 for
some examples) and submit answer labels on the
test set, which would be compared to the labels in

1https://codalab.lisn.upsaclay.fr/
competitions/5726
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the original dataset for evaluation. The evaluation
metric used to rank submissions was the macro-F1
score.

Text Label
More likely it’ll harm them. With
less products to make, Foxxcom will
have to <lay off> workers. With more
workers seeking jobs those other facto-
ries will be able to resist demands for
higher wages.

1

We do NOT need some self-imposed
book cop telling us what to read or not
to read. <Lay off>. Get over it.

0

After about 30 minutes of waiting,
a fight broke out between an older
African American man and an African
American woman of <a certain age>.
After making a lot of noise and land-
ing a few blows to their respective bod-
ies, the armed security guards escorted
them out of the terminal.

1

Table 2: Example Rows from the Dataset

4 Participants and Results

8 teams that participated in the task also submit-
ted descriptions of their systems, with one author
additionally exploring a zero-shot/few-shot variant
of the task. A summary of their performances is
shown in Table 3. In this section, we describe the
methods used by the best-performing teams, and an-
alyze the common themes between the approaches
and motivations of all the submissions.

4.1 Best Submissions
The best-performing team (Keh et al., 2022)
(macro-F1 0.881) explores a variety of data and
modeling modifications, and combine the best-
performing ones into an ensemble of three models
to improve upon a baseline RoBERTa-large model
(Liu et al., 2019). On the data side, they explore
two methods of data augmentation, and find that
adding examples containing similar/opposite word
senses to PETs (for positive and negative exam-
ples) works best; this highlights the potential sig-
nificance of sense-based approaches for this task.
They also explore identifying and correcting 25 po-
tentially mislabeled rows from the dataset, report-
ing an improvement of 0.0036 points over the base
model and a final score ∼0.007 higher when using

their “cleaned” dataset. While it is unclear how
this cleaning would affect other systems in general,
their investigation hints at the potential for not only
human disagreement but also human error in la-
beling figurative language. On the modeling side,
they find that classifying on the tokens of the PETs,
rather than the [CLS] token, yields significant a per-
formance increase. They also experiment with two
methods of incorporating extra context and find that
k-Nearest Neighbor (kNN) (5NN in this case) aug-
mentation yields slight improvements. They report
the best improvement by combining the following
three models: (1) a RoBERTa-large model classi-
fying on the PET token(s), (2) the same, but using
their sense-augmented dataset, and (3) the same as
(1), but interpolating the classification probabilities
of its base model and the 5NN classifier.

The second-best performing team (Kesen et al.,
2022) achieved a macro-F1 of 0.872 using addi-
tional supervision and, interestingly, incorporat-
ing visual imagery into their approach. Using
DeBERTa-v3 (He et al., 2021) as their baseline (the
“large” version of which performs best), they incor-
porate additional supervision by including PETs
themselves, as well as their (manually collected)
literal descriptions, in their inputs. The authors
found this to greatly improve performance, reason-
ing that such direct supervision could help mitigate
ambiguity inherent to the task. This is a similar
result to (Keh et al., 2022), where extra attention
on the PETs themselves is effective. They then
obtain imageries of both the PETs and their literal
descriptions using a text-to-image model, and ob-
tain image embeddings using a pretrained visual
encoder. These are incorporated into training, and
yields statistically significant performance improve-
ments. Qualitative analysis of the images for each
PET reveals insights into how LMs might under-
stand figurative expressions.

4.2 Analysis of Methods

Below, we describe approaches that we observed
in multiple submissions. Since the objective was to
explore different aspects of this task, we find these
insights to be valuable, even if they did not score
high.

4.2.1 Using PET Embeddings Directly
Multiple teams found that explicitly involving the
tokens of the PET for classification led to signifi-
cant improvement. Kesen et al. (2022) and Wang
et al. (2022) include the PET in their inputs by con-
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Rank Username Macro-F1 Title of Paper
1 vgangal 0.88 EUREKA: Euphemism Recognition Enhanced Through

KNN-based Methods and Augmentation (Keh et al., 2022)
2 ilker 0.87 Detecting Euphemisms with Literal Descriptions and Visual

Imagery (Kesen et al., 2022)
3 Wanderer 0.85 A Prompt Based Approach for Euphemism Detection

(Maimaitituoheti, 2022)
4 liuyiyi 0.84 Euphemism Detection by Transformers and Relational Graph

Attention Network (Wang et al., 2022)
5 peratham.bkk 0.82 TEDB System Description to a Shared Task on Euphemism

Detection 2022 (Wiriyathammabhum, 2022)
6 PaulTrust 0.79 Bayes at FigLang 2022 Euphemism Detection shared task:

Cost-Sensitive Bayesian Fine-tuning and Venn-Abers [...]
(Trust and Kadusa, 2022)

7 devika 0.74 An Exploration of Linguistically-Driven and Transfer Learning
Methods for Euphemism Detection (Tiwari and Parde, 2022)

8 gunetsk99 0.72 Adversarial Perturbations Augmented Language Models for
Euphemism Identification (Kohli et al., 2022)

Table 3: Results of submitted systems to the Shared Task on Euphemism Detection

catenating it to each input text prior to learning.
Keh et al. (2022) run their final classification on
the PET embedding, rather than that of the [CLS]
token. These changes were a significant feature
of these teams’ best approaches. It appears that
providing direct supervision/focusing the model-
ing procedure on the PET helps, perhaps because
the PET is the semantic focus of the task (rather
than other words in the data, which are not always
important).

4.2.2 Using the Literal Meanings of PETs

Each PET is detailed in Gavidia et al. (2022) to
have a literal meaning or paraphrase, which is the
more offensive or unpleasant “real meaning” that
the PET substitutes. Several teams chose to inte-
grate literal meanings of each input PET into their
methods, though they opted to generate their own
literal meanings, rather than use the ones from the
original paper. This seemed to be effective, as the
two best-performing teams found it to improve per-
formance — Kesen et al. (2022) appended literal
meanings to their inputs and used them to generate
image embeddings, while Keh et al. (2022)(b) used
literal meanings to select examples for data aug-
mentation — in conjunction with direct supervision
on the PET (4.2.1). Tiwari and Parde (2022) para-
phrased PETs with their literal meanings in attempt
to obtain sentiment shifts, but this did not work
well for classification, likely because the paraphras-

ing mechanism did not produce quality paraphrases
that could serve as literal meanings for the PETs.

4.2.3 Addressing Data Imbalance/Inadequacy

Multiple teams addressed the fact that the dataset
was imbalanced (see 1). Maimaitituoheti (2022)
found that their approach scored an F1 of 0.914
versus 0.789 on the euphemistic and literal exam-
ples, respectively, suggesting that the model perfor-
mance could indeed be skewed towards the higher-
volume euphemistic examples.

(Trust and Kadusa, 2022) experimented with
multiple modeling enhancements, such as Bayesian
modeling, exclusively to address the imbalance
issue and found that they improved performance.
Kohli et al. (2022) sought to address the imbal-
ance by using adversarial perturbations to augment
the ‘0’ label, and found it to increase performance
slightly. As aforementioned, Kesen et al. (2022)
augment the dataset by strategically selecting sen-
tences from other corpora (albeit for general aug-
mentation, rather than to achieve a balance) and
similarly report slight performance increases, but,
like Kohli et al. (2022), they do not exclusively use
the augmented data in their final approach. These
results generally support the intuition that address-
ing data inadequacies helps models learn, but only
partially for this shared task.
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4.2.4 Incorporating Additional Context

While this task necessitates making use of contex-
tual differences between input texts, several teams
attempted to incorporate additional information
from the context. Wang et al. (2022) model syntac-
tic connections between the PET and other words in
the text as a relational graph, finding that using this
as an input to BERT is effective (though no base-
line or example parse is provided). As aforemen-
tioned in Section 4.1, Kesen et al. (2022) slightly
improve performance by using the k-nearest neigh-
bors for each input as additional context. Kohli
et al. (2022) finds that simply using longer input
sequence lengths than standard BERT allows for
(512) generally improves performance, although
it is not clear at what sequence length this would
cease to be the case. All these methods to incor-
porate more input context seemed to generally im-
prove performance.

4.2.5 Linguistic Transparency

Some teams attempted solutions that would pro-
mote model explainability. Kesen et al. (2022)
claim that images of PETs and their literal mean-
ings are a way to gain insight into how models
interpret PETs, but while this is an interesting way
to probe models’ current understanding of figura-
tive expressions, it is unclear how models might
use these images to enhance classification in an un-
derstandable way. The two-model ensemble used
by Wang et al. (2022) attempt to incorporate lin-
guistic (semantic and syntactic) information of the
PET and its context, though without compelling
examples of how these may help classification, the
improvements seem somewhat unexplainable. Fi-
nally, Tiwari and Parde (2022) interestingly pur-
sued an approach that is based exclusively on the
linguistic intuition that euphemisms produce sen-
timent shifts, but using these shifts alone for this
task was ineffective.

On the other hand, methods which found success
using transformers are not very transparent. Wiriy-
athammabhum (2022) test various transformers and
obtain their best result by combining a CNN vari-
ant with the highest-performing one, but it is not
clear what this network is learning, as is typically
the case with neural networks. Furthermore, Keh
(2022) find that transformers work decently for this
task in the zero-shot setting (see 4.2.6), but admit
that it’s not clear what BERT is learning in order
to do so.

4.2.6 Zero/Few-shot Learning

Maimaitituoheti (2022) train a RoBERTa model
using prompt-tuning because it has been shown to
work well (better than regular fine-tuning) with few-
shot examples. While our task was not formulated
as a zero/few-shot task, several PETs appeared only
a few times in the data and were effectively few-
shot examples. Keh (2022) notably re-formulate
the task for the zero/few-shot setting. When PETs
were randomly selected to be zero-shot examples,
RoBERTa-large achieved a score of 0.740, show-
ing that the model was able to “learn” something
about euphemisms (not simply memorizing) and
apply it to examples with PETs unseen during train-
ing. They also show that few-shot examples ben-
efit the model greatly, with 3-shot performance
(0.825) nearly matching the baseline performance
(0.836). Furthermore, they found that GPT3, which
typically works well in the zero/few-shot setting,
worked badly for this task.

5 Discussion and Findings

Here, we describe some common findings of the
submitted systems that may be useful for future
work.

5.1 More Data is Better

Having more examples of each PET generally led
to better performance. Kesen et al. (2022) and Keh
et al. (2022) improved performance by augment-
ing the dataset. Maimaitituoheti (2022) showed
that performance on the euphemistic label is bet-
ter, likely because there were many more exam-
ples than the non-euphemistic label. Compellingly,
Keh (2022) showed in their zero/few-shot task
that 3-shot learning was much better than 1-shot.
The results of this task call for larger datasets of
euphemisms, perhaps from a variety of different
sources.

5.2 BERT Works

All teams experimented with some variation of
BERT and reported decent scores using unmodified
BERT models, the highest being 0.839 (Kesen et al.,
2022) using RoBERTa-large. The zero-shot inves-
tigation by Keh (2022), too, shows that RoBERTa
picks up something during training that is general-
izable to other euphemisms. Overall, pre-trained
transformers seem to provide a solid baseline from
which to launch euphemism work.
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5.3 Linguistic Intuitions

Because euphemisms (as well as other types of
figurative language) are often commonly used ex-
pressions, it is likely that large language models
have some existing “knowledge” about these col-
locations. One could interpret the success of using
PET embeddings directly (Kesen et al., 2022; Wang
et al., 2022) as evidence that models can leverage
this knowledge for the task.

Another linguistic notion is that euphemisms’
function may lead to changes in sentiment, which
has been found to potentially be useful for identify-
ing euphemisms (Felt and Riloff, 2020; Lee et al.,
2022), but it remains somewhat unclear whether it
is useful for the disambiguation proposed in this
task. Wiriyathammabhum (2022) do find that trans-
formers pre-trained specifically on sentiment were
more helpful than those pre-trained on other tasks
(e.g., sarcasm or hate speech detection). Tiwari
and Parde (2022) try a non-transformer-based ap-
proach based on the intuition that PETs should
produce higher sentiment shifts in euphemistic sen-
tences when paraphrased with its literal meaning,
but found it was difficult to generate such para-
phrases. This corroborates our own past experi-
mentation (?), and it seems that future approaches
based on sentiment shifts have to address the need
for better paraphrasing mechanisms, or consider
using them to supplement a larger input feature set.

6 Conclusions and Future Work

We present the results of “The Shared Task on Eu-
phemism Detection for the Third Workshop on Fig-
urative Language Processing” and summarize the
various systems submitted, as well as common find-
ings. Overall, we find that results are promising:
even when dealing with the difficult issue of an
especially polite and indirect form of figurative
language, current NLP techniques such as trans-
formers and augmentation seem to work quite well.
Teams explored a variety of intriguing methods to
enhance the baseline performance of these models,
some of which were even linguistically transpar-
ent. If one considers that labeling euphemisms
is subject to human disagreement, the F1-scores
achieved by the teams are even more compelling
since they may be near, if not already at, the level
of human agreement on the task. The results of this
shared task establish a baseline for future work on
euphemisms and figurative language in general.

Future work on this task could be expanding

on the dataset to include more examples and a
wider range of PETs, testing further enhancements,
and improving performance by ensembling vari-
ous combinations of the best-performing improve-
ments. Future work for euphemism detection in
general could be to expand from the disambigua-
tion task; e.g. identifying where euphemisms are
in a text, providing interpretations of a euphemism,
or even euphemistic language generation.

Limitations

While the data used denoted where the target PET
was in each text sample, this information is not
provided in raw text. Identifying the PET in a text
sample is a challenge that future approaches, espe-
cially those seeking to focus models on the PET,
will need to consider. Additionally, this shared task
was run on a dataset that could be significantly ex-
panded and balanced. The dataset also contained
potentially subjective labels that were only made
by two human annotators; this could be made more
robust by ensembling more annotators. Finally,
this task was based on a dataset comprising only
of texts of US English, and it is unclear how these
results would transfer cross-lingually to other kinds
of euphemisms.
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When we created the shared task, we tried to
be compliant with the ACL Ethics Policy. Eu-
phemisms are expressions that ‘hide’ prejudices
by using softened language. Models capable of
recognizing and interpreting euphemisms should
be better at detecting biases related to gender, age,
race, or socioeconomic background, detrimental to
the society.
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