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Abstract

Novelty or surprise is a fundamental attribute
of creative output. As such, we postulate that a
writer’s creative use of language leads to word
choices and, more importantly, corresponding
semantic structures that are unexpected for the
reader. In this paper we investigate measures of
surprise that rely solely on word distributions
computed by language models and show em-
pirically that creative language such as humor
and metaphor is strongly correlated with sur-
prise. Surprisingly at first, information content
is observed to be at least as good a predictor of
creative language as any of the surprise mea-
sures investigated. However, the best prediction
performance is obtained when information and
surprise measures are combined, showing that
surprise measures capture an aspect of creative
language that goes beyond information content.

1 Introduction

Language is used primarily as a means for commu-
nicating information. It is thus appropriate that in-
formation theory (Shannon, 1948) has provided the
foundation for numerous studies into properties of
natural language, as in (Shannon, 1951; Hale, 2001;
Piantadosi et al., 2011; Gibson, 2019), among many
others. Under the information theory framework,
a communication channel is posited between the
speaker and the listener, and correspondingly the
goal of the speaker is to employ the channel as
efficiently as possible while also minimizing the
risk of miscommunication. Maximizing the use
of the communication channel is achieved when
speakers choose their words such that their infor-
mation rate is close to the channel capacity, which
can be seen as determining speakers to construct ut-
terances such that information is spread uniformly
across them. This is known as the Uniform Infor-
mation Density (UID) hypothesis (Fenk and Fenk-
Oczlon, 1980; Jaeger and Levy, 2006), operational-
ized as a tendency for regression towards the mean

Figure 1: Creative language detection requires as input
not only the Text (T), but also the Reader (LM).

information content across the language (Meister
et al., 2021). The UID hypothesis can explain a
variety of linguistic phenomena, such as the op-
tional omission of syntactic relativizers (Jaeger and
Levy, 2006), or the shortened phonetic duration of
highly predictable language units (Aylett and Turk,
2004). UID has also been construed to imply that
speakers avoid producing words with an informa-
tion content1 that is too high or too low (Meister
et al., 2022) relative to the expected information
rate of the channel, or the entire language. While
this holds true for most communicative uses of lan-
guage, there are at least two types of situations
when words have an information content much
higher than expected, as illustrated in Figure 1.

First, there is the case when the listener has no
clear expectation of what the speaker will utter next,
such as when introducing a new discourse entity
through a definite or indefinite article, especially at
the beginning of a story when not much context is
available. In this case, the next word distribution
has a high entropy, all words have a relatively low
probability, hence high information content. The
word ’sun’ in the sentence2 shown in Figure 1 is
in this category. Second, there are situations when
language is used in creative ways, when speakers
deliberately produce words or phrases that are in-
teresting or unexpected, often with the purpose of
inducing particular kinds of emotion in the listener,
as is the case with the word ’glides’ in Figure 1.
In this paper, we aim to characterize such creative
use of language solely through distribution-based

1Computed as negative log of word probability − log p(x).
2First line in a poem by Tomas Tranströmer.
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measures that are designed to discriminate creative
language from normal language. In both situations
discussed above the information content is high,
therefore, at least theoretically, information content
alone is not sufficient to discriminate between the
two. As such, we propose that surprise be used
as the main discriminating factor. We emphasize
that determining whether an input text exhibits cre-
ativity or surprise requires specifying a reference
reader, as shown in the example from Figure 1,
which distinguishes the task explored in this paper
from related tasks such as humor detection or figu-
rative language classification, where novelty with
respect to a reference reader is not a concern.

2 Definitions and Measures of Surprise

The ability to produce surprising outputs is a cor-
nerstone of creativity, which in turn is widely con-
sidered to be an essential component of intelligent
behavior (Boden, 1991). Surprise is a powerful
driver for creativity and discovery. As such, sur-
prise has been used to guide search algorithms in
models of computational creativity and discovery
(Yannakakis and Liapis, 2016). Owing to its im-
portance for the creative process, surprise has also
become one of the core criteria for the evaluation of
creative artifacts (Maher et al., 2013). As reviewed
in (Itti and Baldi, 2009), surprise is an essential con-
cept in many studies on the neural basis of behavior,
with surprising stimuli shown to be strong attrac-
tors of attention. Surprise, or violation of expecta-
tion, has also been hypothesized to be an essential
mechanism through which music and stories elicit
emotion. According to (Meyer, 1961), the principal
emotional content of music arises from the com-
poser’s manipulation of expectation. Composers
build expectations in time, which then they pur-
posely violate in order to elicit tension, prediction,
reaction, and appraisal responses (Huron, 2008).
In text and narratives, surprise can be employed
with substantial emotional impact at multiple lev-
els, spanning from word-level, as in "Elon Musk
has just blasted the world ’s most powerful rocket
into landfill" where the original word "space" was
purposely replaced with "landfill" for humorous
effect, to story-level, as in the various types of plot
twists that are used to draw the reader emotionally
in the story, e.g. peripeteia or deux ex machina.

In this section, we attempt to characterize word-
level surprise using probability distributions com-
puted by language models. We first consider a

number of measures of surprise in the context of
a general probability distribution p over an event
space X , followed by more specialized surprise
measures that are targeted to the special case of
X being a language vocabulary. As such, we are
interested in measuring how surprising the occur-
rence of an event x ∈ X is for the audience p.
An event x is improbable if its probability p(x) is
very small. Since improbable events are rare, it
is tempting to consider the occurrence of an im-
probable event as being surprising. Weaver (1948)
pondered on whether low probability implies sur-
prise, "an improbable event is often interesting. But
is an improbable event always interesting?", and
concluded "we shall see that it is not", providing
a simple, prototypical example in which improba-
ble events are intuitively not surprising: a uniform
distribution over an event space that has a large
cardinality, as in dealing off a single bridge hand of
thirteen cards from a shuffled pack of cards. There
are more than 635 billion configurations of thirteen
cards, all equally likely. Whatever bridge hand is
dealt, although its probability is very small, it will
not be, or feel, surprising. "Any hand that occurs is
simply one out of a number of exactly equally likely
events, some one of which was bound to happen".
What makes an event interesting or surprising is not
that its probability is small in an absolute sense, it
is that it is small in comparison to the probabilities
of the other alternative events.

Weaver’s insight is also in agreement with the
interpretation of "surprise as violation of expecta-
tion", which is hypothesized to be a major factor
underlying emotion in music (Meyer, 1961). In this
context, the term expectation refers to the kind that
is engineered by composers in their music or by
writers in their stories. Informally, a strong expec-
tation is created when one or more potential out-
comes are much more likely than other outcomes.
More formally, an expectation regarding a random
variable x is created when, prior to its value being
observed, its context h makes a potential outcome
x = j more likely than other outcomes, as mea-
sured through the probability p(x = j|h). Upon
observing outcome x = k, we call it surprising
if it confounds the expectation of seeing outcome
x = j, i.e. p(x = k|h) ≪ p(x = j|h). Like in
Weaver’s argument above, the relative likelihood
requirement for creating expectations immediately
rules out uniform distributions.

The intuitive lack of surprise when observing
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events sampled from a uniform distribution makes
Shannon’s surprisal inadequate as a measure of
surprise. It is thus important that the notion of sur-
prise is not equated with surprisal. The surprisal
of an event x is an information-theoretic quantity
defined as the negative log probability of x, i.e.
− log p(x). Since surprisal is based solely on the
event probability, monotonically decreasing with
it, using surprisal to model surprise has the same
conceptual deficiency as saying that rare events
are surprising, as originally observed by Weaver
(1948). Henceforth, to avoid confusion, we will
refer to − log p(x) as the information content of x.

2.1 Quantifying Surprise

In this section, we describe a number of measures
of surprise that are meant to capture the notion of
small relative probability associated with surprising
events. These measures are summarized in Table 1.

One of the first measures of surprise was the
surprise index λ1 proposed by Weaver (1948):

λ1(p, x) =
E[p]

p(x)
(1)

Weaver’s surprise index is multiplicative: if X
and Y are independent with distributions p and
q, then the surprise index of the joint event [x, y] is
λ1(pq, [x, y]) = λ1(p, x)λ1(q, y).

Observing that the numerator E[p] with which
p(x) is compared is somewhat arbitrary, Good
(1956) generalized Weaver’s surprise index to the
following multiplicative (λc) and additive (Λc) ver-
sions, for c > 0:

λc(p, x) =
(E[pc])1/c

p(x)
(2)

Λc(p, x) = log λc(p, x) (3)

Of all possible values for c, Good recommended
as the most natural λ0 and λ1, together with their
logarithmic versions Λ0 and Λ1, respectively:

λ1(p, x) =
E[p]

p(x)
(4)

Λ1(p, x) = logE[p]− log p(x) (5)

λ0(p, x) =
exp(E[log p])

p(x)
(6)

Λ0(p, x) = E[log p]− log p(x) (7)

The additive measure Λ0 is appealing because it
can be interpreted in information theoretic terms

as the difference between the Shannon informa-
tion content I(p, x) = − log p(x) and the Shannon
entropy H(p):

Λ0(p, x) = − log p(x)− E[− log p] (8)

= I(p, x)−H(p) (9)

Howard (2009) observes that Weaver’s index can be

written as λ1(p, x) = E

[
p

p(x)

]
, whereas Good’s

index can be written as the mean of the log of the

same variable, i.e. Λ0(p, x) = E

[
log

p

p(x)

]
.

Observing that additive surprise indexes like Λ0

more easily exceed a given value when the dimen-
sionality is increased, Good (1988) advocated for
using the tail-area probability as a surprise mea-
sure:

t(p, x) =
∑

x′:p(x′)≤p(x)

p(x′) (10)

However, the tail-area does not necessarily select
outcomes that occur with small relative probability,
for example when there are n alternative outcomes
with slightly different probabilities that are all close
to 1/n. Howard (2009) points out that this behavior
is connected to the fact that tail-area is not continu-
ous in the outcome probabilities p(x) and proposes
a new measure of surprise called s-value:

sv(p, x) = 1−
∑

x′
min(p(x′), p(x)) (11)

= 1− [t(p, x) + nx · p(x)] (12)

where nx is the number of discrete outcomes with
probability greater than p(x). The s-value is con-
tinuous in p(x) and, unlike the tail-area, selects for
outcomes that conform with the basic intuition of
small relative probability. It is equivalent with the
probability mass contained in the area under the
pdf curve that is above the p(x) level.

If we use the term expectation with its psycho-
logical meaning of anticipation of an occurrence
that may take place in future, a number of alterna-
tive definitions of surprise quantify the gap between
the psychological expectation of a future event, i.e.
the probability of the most likely event mp, and its
realization, i.e. the probability of the actual event
x that happened. Correspondingly, the Expectation
Realization (ER) gap can be defined as:

ψ(p, x) = Expectation − Realization

= max
x′

p(x′)− p(x)

= p(mp)− p(x) (13)
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Name Formula Unit
Good’s surprise index Λ0(p, x) = − log p(x)−H(p) Information (bits)
Howard’s s-value sv(p, x) = 1−

∑

x′
min(p(x′), p(x)) Probability mass

Mode ER gap Ψm(p, x) = − log p(x) + log p(mp) Information (bits)
Core ER gap ΨC(p, x) = − log p(x) + log p(Cp) Information (bits)

Table 1: Selected measures of surprise that capture the notion of small relative probability.

where mp = argmax
x

p(x) is the largest mode of

the distribution p, i.e. the expected, most likely
outcome. Similar to Weaver and Good’s surprise
indexes, one can define a multiplicative version:

ψ(p, x) = Expectation/Realization

= p(mp)/p(x) (14)

as well as an additive version:

Ψm(p, x) = logExpectation − logRealization

= log p(mp)− log p(x)

= I(p, x)− I(p,mp) (15)

The ER measures for surprise are continuous in
p(x) and conform to the basic intuition of a sur-
prising event having a small relative probability.
We note that the simple ER gap from 14 has been
previously proposed by Macedo et al. (2004), who
found it to correlate well with human ratings of
surprise. We prefer the additive version from 15
due to its information theoretic interpretation.

The measures of surprise proposed so far are
summarized in the top 3 rows of Table 1. The mea-
sures were selected based on their properties, as
follows: Good’s surprise index and the Mode ER
gap for their information-theoretic interpretation,
and Howard’s s-value for its probability mass in-
terpretation. Of the 3 measures, the s-value and
the mode ER gap also have the desirable property
that they are non-negative for any outcome x, and
become zero when x is the most likely outcome.

2.1.1 The Core Expectation Realization Gap
In this paper, we estimate surprise using the proba-
bility distribution computed by a language model.
However, this creates a mismatch between the lex-
ical level used to support the distribution and the
semantic level that was used to annotate the creative
examples. Most often, creativity implies surprise
in terms of meaning, not necessarily in terms of the
particular words chosen to express that meaning.
Thus, the use of lexical distributions to estimate

semantic surprise can lead to poor estimates of sur-
prise in cases where a strong semantic expectation
can be expressed with a large number of words.
For example, to determine that "Congressmen" is
surprising in the metaphor "an infestation of [Con-
gressmen]", it is not sufficient that the realization
x = "Congressmen" in the context "an infestation
of x" has a low probability. We also need a mea-
sure that tells us there is a strong expectation for
what x is anticipated to be in the phrase "an infes-
tation of x". In this example, the expectation is
especially strong in terms of the semantic category
of x, i.e. the reader strongly expects to see an in-
stance from the PESTS category. Because this is a
large category, there is a large set of words that can
be reasonably expected in this context, resulting in
a weak word-level expectation. Hence, the mode
of the distribution used by the ER gap Ψm will
not have a sufficiently high probability to make the
Ψm pass a surprise threshold. The partition of the
category expectation into many small word-level
expectations leads to an increase in entropy, which
adversely affects Good’s surprise index Λ0 as well.

For lack of an effective LM-based approach to
compute probability distributions over semantic
spaces, we designed an alternative version of the
ER gap measure called Core ER gap, where the
largest mode of the distribution mp is replaced
with the Core of the distribution Cp, comprising all
the events x ∈ X whose probability passes a pre-
defined threshold, i.e. Cp = {x ∈ X|p(x) > τ}.
By appropriately setting the lower bound τ , we ex-
pect to capture in the core Cp all words belonging
to the most expected semantic categories in a given
context. Due to its information theoretic interpreta-
tion, we consider only the additive version:

ΨC(p, x) = logExpectation − logRealization

= log p(Cp)− log p(x)

= I(p, x)− I(p, Cp) (16)

This version of the new Core ER gap measure is
listed at the bottom of Table 1.
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3 Datasets of Creative Language

We built two datasets of creative language exam-
ples: a HUMOR dataset and a METAPHOR dataset.
The humor examples were extracted from the Hu-
microedit dataset (Hossain et al., 2019), which con-
sists of regular English news headlines paired with
versions of the same headlines that contain simple
replacement edits designed to make them funny.
Each funny headline was scored by five judges, re-
sulting in a curated dataset of over 15,000 headline
pairs. As positive examples for humor, we ran-
domly selected 400 examples from a subset of the
humorous headlines that were originally created
using single-word replacements and that had an
average annotator score of 1.8 or higher. The pos-
itive examples for metaphor were extracted from
the English section of the LCC Metaphor dataset
(Mohler et al., 2016) where the average annotator
rating was 3.0 or above and where the source field
of the metaphor was a single word. Furthermore,
as explained below, we further applied a filtering
step designed to preserve only metaphors that are
novel to the language model, leaving a total of 268
positive examples of metaphor.

While a metaphor may appear creative to a per-
son hearing it for the first time, it will sound com-
pletely unoriginal to a listener who has heard it and
used it so many times that it has become part of
their normal use of language. Similarly, a line that
triggered laughter upon its first utterance, when
repeated multiple times will normally get a smile
at best from an audience already habituated to it.
Therefore, it is important that creativity be deter-
mined with reference to a listener’s experience. In
general, judgements of creativity require specify-
ing a reference model, e.g. the listener, the reader,
or the audience, consuming the output produced
by the speaker, the writer, or the composer, respec-
tively. Consequently, based on the premise that
creativity requires novelty, building an evaluation
dataset annotated with creative uses of language
requires fixing a reference reader and ensuring that
examples annotated as creative are 1) novel for this
reader and 2) evaluated with respect to the same
reader. Since the proposed measures of surprise
will necessitate access to the reader’s contextual
word distributions, in this paper we set the refer-
ence reader to be a generic reader whose knowledge
of language is modeled by a large language model
(LM), such as BERT (Devlin et al., 2019) if both
the left and the right context of a word are used, or

OPT (Zhang et al., 2022) if only using the previous
discourse as context. Given that BERT was trained
on the BooksCorpus and English Wikipedia, it is
safe to assume that its pre-training data was not con-
taminated with any of the humorous headlines from
Humicroedit, and therefore the humorous headlines
appear novel to the reader modeled by BERT. How-
ever, we cannot say the same for the metaphor
examples, as many of them are commonly used
and likely to be found in BERT’s pre-training cor-
pus, e.g. "floating ideas", "deep understanding",
"stealing dreams", "crushing insurgencies", "leap
of faith", "seeds of discontent", to list just a few. To
ensure that the metaphor examples included in the
dataset are novel with respect to the reader mod-
eled by BERT, since we did not have access to the
exact pre-training data, we devised a conservative
filtering where the base metaphor phrases were fil-
tered out if a Google search returned less than 25
documents containing the phrase or its variations.
For example, given the annotated metaphor "the
bureaucracy barrier", we removed the article and
also searched for "bureaucratic barrier" and "bar-
rier of bureaucracy". Furthermore, we removed
examples where the source word is repeated in the
sentence context, as in "this [prison]s is the prison
of [poverty]t".

In terms of negative examples, for humor we
used the 400 original titles corresponding to the
400 humorous examples. We further augmented
these negative examples with nouns (as tagged by
NLTK’s POS tagger) selected at random from news
articles downloaded from the CNN website in July
2022, such that the number of positive examples
represents 10% of the total number of examples in
each dataset. Regular news articles are expected to
use regular language, without novel humor or novel
metaphors. This is not to say the news articles do
not contain metaphors, but when that happens they
are metaphors that are commonly used and thus un-
surprising for a generic reader. To summarize, the
label distribution in the two datasets is as follows:

1. The Humor dataset, 4000 examples:

(a) 400 positive examples, one-word substi-
tution in news headlines that made them
humorous, extracted from examples in
the Humicroedit dataset with high inter-
annotator agreement.

(b) 400 negative examples, using the substi-
tuted word from the original titles used
in the 400 positive examples above.
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(c) 3200 negative examples, using random
content words from CNN news articles.

2. The Metaphor dataset, 3760 eamples:

(a) 268 positive examples, the annotated
one-word source domain field of
metaphors from the LCC Metaphor
dataset that had high inter-annotator
agreement and were rare on the internet.

(b) 2412 negative examples, a subset of the
3200 selected at 1.(c) above.

The imbalanced label distribution was meant to ad-
dress the fact that instances of creative language
are relatively rare, although the exact proportion
in general is hard to estimate due to the fact that
certain types of text, e.g. poetry, are expected to
be substantially more creative than other types, e.g.
news articles. We note that the labels in the re-
sulting dataset are likely to be noisy: metaphors
that we annotated as creative, even though uncom-
mon ad litteram on the internet, may still have been
present in the LM’s pre-training data in a differ-
ent form, such as using a synonym for any of the
words in the expression. Furthermore, it is pos-
sible that the CNN news articles included in the
dataset contain instances of creative language, al-
beit very few. Overall though, it is expected that a
good measure of surprise would show substantial
discriminative power between the soft positive vs.
soft negative examples in this dataset. Hardening
the dataset would require the development of feasi-
ble annotation guidelines for determining whether
the reference LM (the reference reader) has been
exposed (through its pre-training data) to any given
expression, and then going over each example and
using the annotation criteria to determine the label.

4 Experimental Evaluation

All the distribution-based measures of surprise eval-
uated in this section were calculated using the prob-
ability distributions computed by the BERT Large
model (cased) available on the HuggingFace web-
site3. This is done by taking the word that is labeled
in the dataset, masking it, and asking BERT to out-
put the token distribution at the masked position,
using a context size of 15 tokens to the left and to
the right. Due to the WordPiece subword tokeniza-
tion used by BERT, sometimes the word that need
to be labeled is split into multiple tokens, where the

3https://huggingface.co/bert-large-cased

first token is distinguished from the continuation to-
kens using the double hashtags ’##’, as for example
’disrespect’ = ’di’ + ’##s’ + ’##res’ + ’##pect’. In
these cases, we use the probability of the first token
as a proxy for the probability of the entire word –
preliminary experiments where the simple product
or the geometric mean of all the token probabilities
were used did not show a significant difference in
the results, likely due to the fact that continuation
tokens often receive a very high probability.

A starting assumption in these experiments is
that the input text is well formed, e.g. it does not
contain ungrammatical phrases or typos. While
we recognize that real text may contain ill formed
language that could be incorrectly detected as sur-
prising by the various surprise measures proposed
in this paper, we do not consider this to pose a
significant challenge as such text could be feasibly
detected and filtered out using current state-of-the-
art NLP tools. Furthermore, a simple way to filter
out ill formed language and typos is to ignore to-
kens that belong to the tail of the LM distribution,
a procedure that we will investigate in future work.

The support of the raw LM distribution is mod-
ified to exclude continuation tokens, non-content
words, and punctuation symbols for the reasons ex-
plained below, after which the probabilities of the
remaining tokens are renormalized so that their to-
tal probability mass is still 1. Continuation tokens
sometimes receive a high probability at the masked
position. For example, in the annotated metaphor
"[tax]t [sorcery]s is a mystery to me", when the
source word "sorcery" is masked the continuation
token "##ation" receives the highest probability,
corresponding to the reasonable completion "tax-
ation is a mistery to me". Since the masked word
cannot be continuation in our task, all continua-
tion tokens are eliminated from the distribution
support. Depending on the context, non-content
words such as determiners and prepositions may
receive a high probability at the masked position,
as for example in the metaphor text "we had our
own little electoral “irregularities” down here in
Portsmouth’s First Ward, where we suffer from
[constipated]s [democracy]t". Determiners such
as ’a’ or ’the’ receive a relatively high probability
for occurring at the masked position for the source
field. Since metaphors and one-word humorous
word substitutions are content words, we remove
non-content words from the distribution support.
Punctuation symbols may also receive a relatively
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creative Humor creative Metaphor

Measures P R F1 F1m AuC P R F1 F1m AuC

Random baseline 10.0 50.0 16.7 – – 10.0 50.0 16.7 – –

All positive baseline 10.0 100.0 18.2 – – 10.0 100.0 18.2 – –

Information content I(p, x) 32.0 86.5 46.7 50.3 46.2 27.6 79.2 40.8 47.8 38.2

Good’s surprise index Λ0(p, x) 28.2 73.5 40.7 45.2 39.4 27.8 75.6 40.5 47.3 33.8

Howard’s s-value sv(p, x) 22.5 85.3 35.5 43.9 38.1 21.9 85.9 34.8 47.3 34.3

Mode ER gap Ψm(p, x) 30.7 82.5 44.7 48.6 44.1 27.8 78.7 41.0 47.6 35.9

Core ER gap ΨC(p, x) 31.6 85.8 46.2 49.8 45.6 27.8 79.2 41.1 48.1 38.3

Info ∧ Entropy [I(p, x), H(p)] 32.7 87.8 47.6 53.4 47.4 27.4 80.8 40.8 47.7 37.2

Info ∧ Mode Info [I(p, x), I(p,mp)] 31.7 86.3 46.4 52.7 46.4 27.6 80.0 40.9 47.8 37.9

Info ∧ Core Info [I(p, x), I(p, Cp)] 33.0 88.3 48.0 53.2 49.3 27.7 79.5 41.0 48.1 38.2

Info ∧ Entropy ∧ Mode Info ∧ Core Info 33.4 88.0 48.4 53.6 49.5 29.8 82.7 43.6 53.1 42.3

Contextual Embeddings + 2-layer FCN 80.3 89.8 84.5 87.1 91.2 93.7 94.1 93.7 95.1 95.6

Table 2: Results from comparative evaluation of surprise measures on detecting creative use of language.

high probability in some contexts, as such they
are excluded as well from the distribution support.
In the metaphor example "communism thrives on
an empty stomach and [democracy]t [relaxes]s on
a full one", symbols such as commas ’,’ and the
dashes ’–’ are predicted with a high probability at
the masked source position.

4.1 Quantifying Discriminative Power

To estimate the discriminative power of the various
surprise measures, we use them as input features
for a simple binary binary logistic regression model.
During training of this linear classifier, given the
imbalanced label distribution, positive examples
are given 9 times the weight of negative examples
in the cross-entropy cost function. Evaluation is
done in a 10-fold setting, where each dataset is
shuffled and partitioned into 10 equally-sized folds,
then 9 folds are used as training and the remaining
fold as testing. This training-testing procedure is re-
peated 10 times so that test results are obtained for
each fold. Care was taken to ensure that test folds
are not contaminated with information from train-
ing. Thus, metaphor examples that had the same
target word were always placed in the same fold.
The original title and the humorous title obtained
by one-word substitution were also always placed
in the same fold. Precision (P), recall (R), and F1-
measure are computed by pooling results across
the 10 folds. Furthermore, by varying a threshold
over the probabilistic output of the classifier, we
create precision vs. recall graphs and use them to
calculate two additional scores: the maximum F1

measure across all confidence thresholds (F1m) and
the area under the curve (AuC).

4.2 Results and Discussion

For each dataset, Table 2 show the performance of
2 simple baselines, 5 standalone distribution-based
measures, and 4 combinations of information-
based measures. The ’random’ baseline assigns
labels uniformly at random, whereas the ’all posi-
tive’ baseline labels every example as positive. In
terms of combinations, for each of the 3 informa-
tion measures we used the two terms in the measure
as separate features. Therefore, since Good’s sur-
prise index is written as information content minus
entropy, we evaluated a binary classifier that uses
information content and entropy as two separate
features. Similarly, the information content and
mode information combination corresponds to the
Mode ER Gap, whereas the information content
and core information combination corresponds to
the Core ER Gap. Finally, we use all these infor-
mation terms as features in an overall combination,
as shown at the bottom of the table.

The results show that all standalone measures
do much better than random, showing that they do
capture an important signal in terms of creative
use of language. Somewhat surprisingly, no sur-
prise measure does better than information content,
despite the proven theoretical deficiency of using
information content to model surprise. Of the 4
surprise measures, the Core ER Gap performs the
best, being slightly under information content on
Humor and slightly better than information content
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on Metaphor. We hypothesize that an important
reason for the lower performance of standalone sur-
prise measures is the fact that the LM probabilities
are miscalibrated. While calibration of probability
distributions for classification tasks downstream of
LM has been investigated in a number of recent
works (Wang et al., 2020; Desai and Durrett, 2020;
Park and Caragea, 2022), we are not aware of any
work targeting calibration of the LM distribution it-
self. It is known for example that the tail of the LM
distribution is unreliable (Holtzman et al., 2019),
giving too much probability mass to words that
should not be acceptable in the given context, e.g.
resulting in ungrammatical phrases. The Mode and
Core ER gaps ignore the the tail of the distribu-
tion completely, which may explain their relatively
better performance when compared with Good’s
surprise index and Howard’s s-value.

Since theoretically the average, mode, and core
information are important for quantifying the level
of surprise, instead of adding them directly to in-
formation content as was done in the surprise mea-
sures, we aimed to alleviate the miscalibration issue
by training a linear model to optimize the trade-
off between each of them and information content.
The results in Table 2 show that, overall, when all
types of information-based measure are combined,
there is a substantial 3% increase in overall perfor-
mance (AuC) over information content alone, on
both datasets. The improvements in F1 measure are
statistically significant at p < 0.01, as measured us-
ing a one-tailed paired T-test over the results from
the 10 folds. Overall, these results empirically sup-
port the theoretical observation that surprise mea-
sures capture aspects of creative language use that
go beyond simple information content.

Finally, although the focus of this paper is on the
discriminative power of surprise measures that are
based solely on word-level distributions, the last
line of Table 2 shows the performance of a classifier
that uses the contextual representations produced
by the frozen LM as input to a fully connected net-
work (FCN) consisting of 2 hidden layers and one
output logistic regression node. Unsurprisingly, the
use of contextual embeddings as input to the FCN
leads to much better results, likely due to its better
capacity for modeling semantic-level surprise.

Humor ∨ Metaphor ≠⇒ Creative We would like
to emphasize here that the detection of creative lan-
guage evaluated in this section, although using ex-
amples drawn from humor and metaphor datasets,

is quite different from the metaphor or humor detec-
tion tasks pursued in related work. The metaphor
detection task (Leong et al., 2020) is unconcerned
with whether the metaphor is commonly used vs.
novel or surprising to the reader. In comparison,
as argued in Section 3, creative language detec-
tion requires specifying a reference reader and the
examples that are annotated as creative, be they
humor or metaphor, need to be novel to this reader.

4.3 Error Analysis

Upon looking at the errors in which the trained
classifier had the most confidence, we discovered
a few major sources of errors. First, in terms of
false negative, sometimes the metaphor word that
is tagged as the source is made highly predictable
by the presence of other words in the context, as
in "[democracy]t is the thinly gloved [hand]s of
repressive power", where the likelihood of hand
is high due to the preceding ’gloved’. A possible
solution could be to mask the entire phrase ’thinly
gloved hand’ when asking the LM to compute the
probability distribution, and utilizing an encode-
decoder LM such as T5 to produce a probability
distribution over phrases. There also also instances
of parallel metaphors in the same sentence, where
one metaphor is highly predictive of the other, as
in ""If [poverty]t is a [fire]s and aid is a firefighter,
good governance is the water".

In terms of false positive, there are words that are
associated with high information content because
BERT does not have knowledge of named entities
or types of events mentioned in the text. For exam-
ple, in the title "Texas church [shooter] was Atheist,
thought Christians stupid", the word shooter had a
very low probability, likely due to BERT not hav-
ing been trained on text referencing shootings in
places of worship. Likewise, ’Harvey’ receives a
very low probability in the sentence "Trump has
pledged $1 million to [Harvey] relief". In a way,
these examples, although they were considered as
negative by default, they are indeed surprising for
the reference reader modeled by BERT.

5 Related Work

Owing to its essential role in our daily lives, there
have been numerous computational approaches to
humor recognition, as reviewed for example in
(West and Horvitz, 2019; Hossain et al., 2019). Hu-
mor generation has presented a challenging prob-
lem in AI since the early 1990s, leading to the
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development of various template-based and neural
approaches (Amin and Burghardt, 2020). The im-
portant role that surprise plays in humor generation
has been previously recognized in theories of hu-
mor, such as the surprise theory of laughter (Toplyn,
2014) and other prominent models that posit humor
is evoked by incongruity within a text, such as the
two-stage model of Suls (1972). According to in-
congruity theories of humor, a text conveys at least
two interpretations, of which one is more salient.
As readers process the text, the salient interpreta-
tion is activated until a text segment is encountered
that contradicts it and thus promotes the previously
unexpected interpretation. Surprise arises from his
sudden revision of understanding.

Metaphors are pervasive in everyday communi-
cation, as well as in creative writing such as novels
and poetry. Metaphors enhance the communica-
tive aspects of language by connecting concepts
from new domains, often abstract, with more fa-
miliar ones, usually concrete (Lakoff and Johnson,
1980). Metaphorical expressions have many uses,
from helping frame an issue in order to emphasize
some aspects of reality (Boeynaems et al., 2017),
to creating a strong emotional effect (Blanchette
and Dunbar, 2001; Citron and Goldberg, 2014).
The ubiquity of metaphors means their computa-
tional treatment (Veale et al., 2016) has received
significant attention in the NLP community, as sur-
veyed by Shutova (2015) and more recently Tong
et al. (2021). A distinction is made in the litera-
ture between conventional metaphors, which are
entrenched in the conceptual system, and novel
metaphors, which are unfamiliar. In this paper,
we further recommend that novelty judgements be
made relative to a reference reader. Our use of
a large LM to model the reference reader is sup-
ported by the fact that pre-trained LMs encode
conventional metaphorical information, as shown
recently in the probing study of Aghazadeh et al.
(2022). Even though metaphor is widely seen as a
creative tool and surprise is an essential component
of creative artifacts, we are not aware of any work
investigating the role of surprise in discriminating
between conventional vs. novel metaphors.

Computational approaches to humor and
metaphor are part of a larger inquiry into identify-
ing and formalizing the basic processes underlying
human creativity. In the growing field of computa-
tional creativity4, surprise has been proposed as one

4https://computationalcreativity.net

of the major criteria for the evaluation of creative
artifacts (Maher et al., 2013). Surprising outputs
were shown to attract the attention of the observer
(Itti and Baldi, 2006), but also to guide the creative
process itself: in a study of the creative design
process followed by architects (Suwa et al., 2000),
surprising discoveries in design sketches were ob-
served to cause reformulations of design goals,
which in turn led to further unexpected discoveries,
due to designers reading more off a sketch than
what they originally intended to put there (Schon
and Wiggins, 1992). In this paper we emphasize
that surprise, and by extension creativity, needs to
be defined relative to a reference reader or audience.
Consequently, generative architectures that aim to
learn patterns of surprise and expectation from data
need to contain a separate model for the reference
reader, as implemented in the composer-audience
models from (Bunescu and Uduehi, 2019) for bi-
nary sequences and (Uduehi and Bunescu, 2021)
for basic geometrical shapes.

6 Conclusion and Future Work

Aiming to characterize creative language, we intro-
duced a number of measures of surprise that are
based solely on the probability distributions com-
puted by a reference LM, considered to model a
reference reader. Experimental evaluations show
that, in combination with information content,
the surprise measures improve detection of novel
metaphors or humor, providing empirical evidence
for the role of surprise in creative use of language.
The code and data will be made publicly available5.

Future work includes refining the datasets, cali-
brating the LM probabilities, developing semantic-
level measures of surprise, and evaluating the pro-
posed measures with respect to a reference reader
that only knows the literal meaning of words. An
interesting future extension to other types of word-
level humor such as puns was suggested by a re-
viewer, where surprise measures would be com-
bined with measures of character-level similarity
such as edit distance.

Acknowledgements

We would like to thank the anonymous reviewers
for their suggestions and constructive feedback.

5https://github.com/uoseremen/SurpriseCreativeLanguage

76

https://computationalcreativity.net
https://github.com/uoseremen/SurpriseCreativeLanguage


References
Ehsan Aghazadeh, Mohsen Fayyaz, and Yadollah

Yaghoobzadeh. 2022. Metaphors in Pre-Trained Lan-
guage Models: Probing and Generalization Across
Datasets and Languages. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2037–
2050, Dublin, Ireland. Association for Computational
Linguistics.

Miriam Amin and Manuel Burghardt. 2020. A survey
on approaches to computational humor generation.
In Proceedings of the The 4th Joint SIGHUM Work-
shop on Computational Linguistics for Cultural Her-
itage, Social Sciences, Humanities and Literature,
pages 29–41, Online. International Committee on
Computational Linguistics.

Matthew Aylett and Alice Turk. 2004. The smooth
signal redundancy hypothesis: A functional ex-
planation for relationships between redundancy,
prosodic prominence, and duration in spontaneous
speech. Language and Speech, 47(1):31–56. PMID:
15298329.

Isabelle Blanchette and Kevin Dunbar. 2001. Analogy
use in naturalistic settings: The influence of audience,
emotion, and goals. Memory & Cognition, 29(5):730–
735.

Margaret A. Boden. 1991. The Creative Mind: Myths
and Mechanisms. Basic Books, Inc., New York, NY,
USA.

Amber Boeynaems, Christian Burgers, Elly Konijn, and
Gerard Steen. 2017. The impact of conventional
and novel metaphors in news on issue viewpoint.
International Journal of Communication, 11(0).

Razvan Bunescu and Oseremen Uduehi. 2019. Learning
to surprise: A composer-audience architecture. In
ICCC, pages 41–48.

Francesca M. M. Citron and Adele E. Goldberg. 2014.
Metaphorical sentences are more emotionally engag-
ing than their literal counterparts. Journal of Cogni-
tive Neuroscience, 26(11):2585–2595.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295–302, Online.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

August Fenk and Gertraud Fenk-Oczlon. 1980. Kon-
stanz im kurzzeitgedächtnis - konstanz im sprach-
lichen informationsfluß? Zeitschrift für experi-
mentelle und angewandte Psychologie, 27:400–414.

Futrell R. Piantadosi S. P. Dautriche I. Mahowald K.
Bergen L. Levy R. Gibson, E. 2019. How efficiency
shapes human language. Trends in cognitive sciences,
23(5):389––407.

I. J. Good. 1956. The Surprise Index for the Multivariate
Normal Distribution. The Annals of Mathematical
Statistics, 27(4):1130 – 1135.

I. J. Good. 1988. Surprise index. Encyclopedia of
Statistical Sciences, 7(1):1–5.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The Curious Case of Neural Text
Degeneration.

Nabil Hossain, John Krumm, and Michael Gamon. 2019.
“president vows to cut <taxes> hair”: Dataset and
analysis of creative text editing for humorous head-
lines. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
133–142, Minneapolis, Minnesota. Association for
Computational Linguistics.

J. V. Howard. 2009. Significance testing with no alter-
native hypothesis: A measure of surprise. Erkenntnis
(1975-), 70(2):253–270.

David Huron. 2008. Sweet Anticipation: Music and the
Psychology of Expectation. MIT.

Laurent Itti and Pierre Baldi. 2009. Bayesian surprise at-
tracts human attention. Vision Research, 49(10):1295
– 1306.

Laurent Itti and Pierre F. Baldi. 2006. Bayesian surprise
attracts human attention. In NIPS. MIT Press.

T. Jaeger and Roger Levy. 2006. Speakers optimize
information density through syntactic reduction. In
Advances in Neural Information Processing Systems,
volume 19. MIT Press.

George Lakoff and Mark Johnson. 1980. Metaphors we
Live by. University of Chicago Press, Chicago.

Chee Wee (Ben) Leong, Beata Beigman Klebanov,
Chris Hamill, Egon Stemle, Rutuja Ubale, and Xi-
anyang Chen. 2020. A report on the 2020 VUA and
TOEFL metaphor detection shared task. In Proceed-
ings of the Second Workshop on Figurative Language
Processing, pages 18–29, Online. Association for
Computational Linguistics.

77

https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
https://aclanthology.org/2020.latechclfl-1.4
https://aclanthology.org/2020.latechclfl-1.4
https://doi.org/10.1177/00238309040470010201
https://doi.org/10.1177/00238309040470010201
https://doi.org/10.1177/00238309040470010201
https://doi.org/10.1177/00238309040470010201
https://doi.org/10.1177/00238309040470010201
https://doi.org/10.3758/BF03200475
https://doi.org/10.3758/BF03200475
https://doi.org/10.3758/BF03200475
https://ijoc.org/index.php/ijoc/article/view/7093
https://ijoc.org/index.php/ijoc/article/view/7093
https://doi.org/10.1162/jocn_a_00654
https://doi.org/10.1162/jocn_a_00654
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1214/aoms/1177728079
https://doi.org/10.1214/aoms/1177728079
https://aclanthology.org/N01-1021
https://aclanthology.org/N01-1021
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://www.aclweb.org/anthology/N19-1012
https://www.aclweb.org/anthology/N19-1012
https://www.aclweb.org/anthology/N19-1012
http://www.jstor.org/stable/40267421
http://www.jstor.org/stable/40267421
https://doi.org/https://doi.org/10.1016/j.visres.2008.09.007
https://doi.org/https://doi.org/10.1016/j.visres.2008.09.007
http://papers.nips.cc/paper/2822-bayesian-surprise-attracts-human-attention.pdf
http://papers.nips.cc/paper/2822-bayesian-surprise-attracts-human-attention.pdf
https://proceedings.neurips.cc/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/c6a01432c8138d46ba39957a8250e027-Paper.pdf
https://doi.org/10.18653/v1/2020.figlang-1.3
https://doi.org/10.18653/v1/2020.figlang-1.3


Luis Macedo, R. Reisezein, and A. Cardoso. 2004.
Modeling forms of surprise in artificial agents: em-
pirical and theoretical study of surprise functions.
In Proceedings of the 26th Annual Meeting of the
Cognitive Science Society.

Mary Lou Maher, Katherine A. Brady, and Douglas H.
Fisher. 2013. Computational models of surprise in
evaluating creative design. In Proceedings of the
Sixth International Conference on Computational
Creativity (ICCC).

Clara Meister, Tiago Pimentel, Patrick Haller, Lena
Jäger, Ryan Cotterell, and Roger Levy. 2021. Revisit-
ing the Uniform Information Density hypothesis. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 963–
980, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022. Typical Decoding for Natural Lan-
guage Generation. arXiv:2202.00666 [cs]. ArXiv:
2202.00666.

Leonard Meyer. 1961. Emotion and Meaning in Music.
University of Chicago.

Michael Mohler, Mary Brunson, Bryan Rink, and Marc
Tomlinson. 2016. Introducing the LCC metaphor
datasets. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 4221–4227, Portorož, Slovenia.
European Language Resources Association (ELRA).

Seo Yeon Park and Cornelia Caragea. 2022. On the Cali-
bration of Pre-trained Language Models using Mixup
Guided by Area Under the Margin and Saliency. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5364–5374, Dublin, Ireland. As-
sociation for Computational Linguistics.

Steven T. Piantadosi, Harry Tily, and Edward Gibson.
2011. Word lengths are optimized for efficient com-
munication. Proceedings of the National Academy of
Sciences, 108(9):3526–3529.

Donald A Schon and Glenn Wiggins. 1992. Kinds of
seeing and their functions in designing. Design stud-
ies, 13(2):135–156.

C. E. Shannon. 1948. A mathematical theory of com-
munication. The Bell System Technical Journal,
27(3):379–423.

C. E. Shannon. 1951. Prediction and entropy of printed
english. The Bell System Technical Journal, 30(1):50–
64.

Ekaterina Shutova. 2015. Design and Eval-
uation of Metaphor Processing Systems.
Computational Linguistics, 41(4):579–623.
_eprint: https://direct.mit.edu/coli/article-
pdf/41/4/579/1807226/coli_a_00233.pdf.

Jerry M. Suls. 1972. Chapter 4 - A Two-Stage Model
for the Appreciation of Jokes and Cartoons: An
Information-Processing Analysis. In JEFFREY H.
GOLDSTEIN and PAUL E. McGHEE, editors, The
Psychology of Humor, pages 81–100. Academic
Press, San Diego.

Masaki Suwa, John Gero, and Terry Purcell. 2000. Un-
expected discoveries and s-invention of design re-
quirements: Important vehicles for a design process.
Design Studies, 21(6):539–567.

Xiaoyu Tong, Ekaterina Shutova, and Martha Lewis.
2021. Recent advances in neural metaphor process-
ing: A linguistic, cognitive and social perspective.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4673–4686, Online. Association for Computa-
tional Linguistics.

Joe Toplyn. 2014. Comedy Writing for Late-Night
TV: How to Write Monologue Jokes, Desk Pieces,
Sketches, Parodies, Audience Pieces, Remotes, and
Other Short-Form Comedy.

Oseremen O. Uduehi and Razvan C. Bunescu. 2021.
Adversarial learning of expectation and surprise: Ex-
periments with geometric shapes. In ICCC, pages
286–290.

Tony Veale, Ekaterina Shutova, and Beata Beigman Kle-
banov. 2016. Metaphor: A Computational Perspec-
tive. Synthesis Lectures on Human Language Tech-
nologies, 9(1):1–160. Publisher: Morgan & Claypool
Publishers.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3070–3079, Online. Association for Computa-
tional Linguistics.

Warren Weaver. 1948. Probability, rarity, interest, and
surprise. The Scientific Monthly, 67(6):390–392.

Robert West and Eric Horvitz. 2019. Reverse-
Engineering Satire, or “Paper on Computational Hu-
mor Accepted despite Making Serious Advances”.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):7265–7272. Number: 01.

Georgios N. Yannakakis and Antonios Liapis. 2016.
Searching for surprise. In Proceedings of the Seventh
International Conference on Computational Creativ-
ity, pages 25–32, PAris, France.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

78

https://doi.org/10.18653/v1/2021.emnlp-main.74
https://doi.org/10.18653/v1/2021.emnlp-main.74
http://arxiv.org/abs/2202.00666
http://arxiv.org/abs/2202.00666
https://aclanthology.org/L16-1668
https://aclanthology.org/L16-1668
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.18653/v1/2022.acl-long.368
https://doi.org/10.1073/pnas.1012551108
https://doi.org/10.1073/pnas.1012551108
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1162/COLI_a_00233
https://doi.org/10.1162/COLI_a_00233
https://doi.org/https://doi.org/10.1016/B978-0-12-288950-9.50010-9
https://doi.org/https://doi.org/10.1016/B978-0-12-288950-9.50010-9
https://doi.org/https://doi.org/10.1016/B978-0-12-288950-9.50010-9
https://doi.org/10.1016/S0142-694X(99)00034-4
https://doi.org/10.1016/S0142-694X(99)00034-4
https://doi.org/10.1016/S0142-694X(99)00034-4
https://doi.org/10.18653/v1/2021.naacl-main.372
https://doi.org/10.18653/v1/2021.naacl-main.372
https://doi.org/10.2200/S00694ED1V01Y201601HLT031
https://doi.org/10.2200/S00694ED1V01Y201601HLT031
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
http://www.jstor.org/stable/22339
http://www.jstor.org/stable/22339
https://doi.org/10.1609/aaai.v33i01.33017265
https://doi.org/10.1609/aaai.v33i01.33017265
https://doi.org/10.1609/aaai.v33i01.33017265
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Searching-for-Surprise.pdf
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

