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Abstract

Most studies in cross-device federated learn-
ing focus on small models, due to the server-
client communication and on-device compu-
tation bottlenecks. In this work, we lever-
age various techniques for mitigating these
bottlenecks to train larger language models
in cross-device federated learning. With sys-
tematic applications of partial model train-
ing, quantization, efficient transfer learning,
and communication-efficient optimizers, we
are able to train a 21M parameter Transformer
that achieves the same perplexity as that of
a similarly sized LSTM with ∼ 10× smaller
client-to-server communication cost and 11%
lower perplexity than smaller LSTMs com-
monly studied in literature.

1 Introduction

Federated learning is a distributed training tech-
nique, where a model is trained on data dis-
tributed across clients or edge devices without user-
generated data ever leaving the device, providing an
additional layer of privacy and security (Konečnỳ
et al., 2016b,a; McMahan et al., 2017). We refer
readers to (Li et al., 2020; Kairouz et al., 2021) for
a detailed literature survey on federated learning.
Federated learning has been used in several applica-
tions including virtual keyboard applications (Hard
et al., 2018), keyword spotting (Hard et al., 2020),
and healthcare (Brisimi et al., 2018).

Language models (LM) have many uses in
language-based applications including virtual key-
board (Chen et al., 2019; Zhang et al., 2021) and
automatic speech recognition (Kannan et al., 2018;
Variani et al., 2020; Gruenstein et al., 2021). Re-
cently, there has been increased interest in training
progressively larger and deeper LMs with impres-
sive quality improvements in downstream tasks,
including question answering, text classification,
and text summarization (Devlin et al., 2019; Dai
et al., 2019; Yang et al., 2019; Irie et al., 2019; Ka-

plan et al., 2020). These models tend to be variants
of the Transformer (Vaswani et al., 2017).

Federated learning is typically studied in two
scenarios: cross-silo, where the number of clients
is small, and cross-device, where the number of
clients can be in the order of millions (Hard et al.,
2018). In this work we focus on cross-device,
where devices are typically edge devices such as
cell phones, with limited computation and commu-
nication capabilities. Hence, the major benchmark
LMs tend to be very limited in size (McMahan
et al., 2017, 2018; Caldas et al., 2019a; Reddi et al.,
2020; Sim et al., 2021) because memory, compu-
tation, and communication are critical bottlenecks
(Kairouz et al., 2021). In particular, previous works
that train federated LMs in production settings have
used coupled input forget gate (CIFG) long short-
term memory (LSTM) models with fewer than 4
million parameters (Hard et al., 2018; Chen et al.,
2019; Ramaswamy et al., 2020). These resource
constraints have motivated research into various
efficient algorithms for training larger models with
federated learning (Konečnỳ et al., 2016b; Hamer
et al., 2020). However, most of these techniques are
still evaluated on relatively small models compared
to their server-based counterparts. In this work,
we systematically evaluate multiple strategies for
mitigating communication and computation costs
of training larger LMs to determine if the impres-
sive quality gains from larger models can also be
achieved in cross-device federated learning.

While there are previous works on efficient
Transformers (Tay et al., 2020, 2021), we forgo
these efficient variants as they may actually
be more inefficient when sequences are short
(Katharopoulos et al., 2020; Choromanski et al.,
2021). Additionally, Lin et al. (2020); Liu and
Miller (2020); Hilmkil et al. (2021) trained large
Transformer models in the cross-silo setting, where
devices have more resources, whereas we focus on
the resource-constrained cross-device setting.
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Recent large LMs, such as GPT-3 (Brown et al.,
2020), contain hundreds of billions of parameters,
which is substantially bigger than the memory lim-
its of edge devices. Therefore in this work, we
consider large models to be at most 25 million pa-
rameters, which is still considerably larger than
existing models trained on-device.

The rest of the paper is organized as follows. In
Section 2, we overview our contributions. In Sec-
tion 3, we detail the dataset and models. We then
analyze techniques to reduce the per-round cost
in Section 4, and the number of communication
rounds in Section 5. Finally in Section 6, we com-
bine techniques and demonstrate that large Trans-
formers can be trained using many fewer rounds
and significantly lower communication and compu-
tation cost.

2 Our contributions

We explore two regimes: small models typically
studied in cross-device federated learning with
fewer than 5M parameters and new larger models
with at most 25M parameters. We study two archi-
tectures: CIFG-LSTM (Hochreiter and Schmidhu-
ber, 1997), or LSTM for simplicity, (Hard et al.,
2018) and Transformer (Vaswani et al., 2017). Our
contributions are the following:

• We are the first to investigate Transformer
LMs with 25M parameters for cross-device
federated learning, which we find outperform
LSTMs of similar size.

• We demonstrate that large models substan-
tially outperform small models on standard
tasks but at much higher communication and
computation costs, requiring 4× the commu-
nication cost per round.

• We investigate quantization and partial model
training to address the per round communica-
tion and computation cost. With quantization,
we achieve similar perplexity with half the
download cost and one quarter of the upload
cost, reducing total communication cost by
62.5%. Partial model training can further re-
duce the upload cost by 60%.

• We study transfer learning as a method of re-
ducing the number of communication rounds
and show that centralized pretraining on a suit-
able alternate corpus reduces the total commu-
nication rounds by 3×.

• We show that the combination of above tech-
niques can be used to train a Large Trans-
former with the same perplexity as that of a
similarly sized LSTM with∼ 10× the smaller
client-to-server communication cost.

3 Dataset and models

In this section, we describe the models and dataset
used in the rest of the paper. We train on
the Stack Overflow federated dataset from TFF
(2018), which contains posts from the public forum
grouped by username. Following trends in training
Transformers, we use sentence-piece (Kudo and
Richardson, 2018) for sub-word tokenization with
a vocabulary size of 4K. The sentence-piece model
is computed based on the entire Stack Overflow
training corpus in an offline process on server. Dur-
ing federated learning, this fixed sentence-piece
model is transmitted to each client to encode the
local text data. Doing so provides greater coverage
for cross-dataset applications as well as potential
downstream speech applications such as ASR (Li
et al., 2021; Sim et al., 2021). We measure per-
formance on next-subword prediction using test
perplexity. See Appendix A for descriptive dataset
statistics. All experiments were implemented using
JAX (Bradbury et al., 2018) and FedJAX (Ro et al.,
2021) federated simulation libraries.

We first did a hyperparameter search for each
model and size (≤ 5M and≤ 25M), with FedAdam
(Reddi et al., 2020), or FedAvg for simplicity, with
200 clients per round for 3K rounds, resulting in
four models: Small LSTM (4.7M), Large LSTM
(18.8M), Small Transformer (4.1M), and Large
Transformer (21M).

Figure 1: Test perplexity over communication rounds
for each class and size of model.

We then trained the chosen architectures with
800 clients per round for 10K rounds in Figure 1.
As expected, the larger variants significantly out-
perform their smaller counterparts with the Large
Transformer achieving the best perplexity. How-
ever, the larger models are more expensive to train
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per round and although the Large Transformer
achieves the best perplexity, it only surpasses the
Large LSTM after 4K rounds. Next, we focus
on techniques to reduce this cost per round and
number of rounds. For more details about the ar-
chitecture search, the selected models, and their
performance, see Appendix A.

4 Cost per round

The larger models have 18.8M and 21M param-
eters (150MB and 168MB, at 32 bits per param-
eter) which need to be downloaded, trained, and
uploaded at each round, a strain on both commu-
nication and computation on device. There are
often strict time or transfer byte limits for each
round of training, which can prohibit some devices
from training these models due to slower trans-
fer/processing speeds (Kairouz et al., 2021). We
show that we can significantly reduce these costs by
partial model training and quantization techniques.

Partial model training: Training only a subset
of the model can reduce the computational cost of
training and has been examined in both federated
(Caldas et al., 2019b; Yang et al., 2021) and non-
federated (Kovaleva et al., 2019) settings. Addition-
ally, reducing the number of trainable parameters
can also decrease communication cost since only
the trainable parameters need to be uploaded.

Figure 2: Test perplexity as a function of number of
trainable variables.

We follow the Partial Variable Training (PVT)
per client per round strategy (Yang et al., 2021)
as it only freezes a subset of the original model
and can be applied generally to multiple model
architecture types. For more experiment details, see
Appendix B. We report test perplexity as a function
of number of trainable variables in Figure 2. Large
LSTM seems to be able to handle more aggressive
parameter freezing compared to Large Transformer
in terms of quality regression. However, training
only 40% of variables for the Large Transformer
(6.3M) achieves better performance than the full
Large LSTM (18.8M).

Quantization: To reduce communication costs,
various quantization strategies can decrease the
number of bits required to represent model pa-
rameters (Bernstein et al., 2018; Reisizadeh et al.,
2020; Gandikota et al., 2021; Vargaftik et al., 2021).
We examine stochastic k-level uniform quantiza-
tion (Alistarh et al., 2017; Suresh et al., 2017) as
it can be applied to model parameters on down-
load (server-to-client) and model updates on upload
(client-to-server) communication with adjustable
levels of compression, and compare with TernGrad,
an upload technique (Wen et al., 2017).

We focus analysis on larger models which are
more affected by quantization. The LSTM ap-
pears more "quantizable" during download than
the Transformer, with less regression in Figure 3.
The perplexity of the Transformer with 16 down-
load bits matches that of the baseline Transformer
and with 12 bits its perplexity is close to that of the
LSTM.

Figure 3: Test perplexity over communication rounds
for varying download quantization levels, with upload
quantization fixed to 8 bits. Dashed line shows the base-
line without quantization.

For both the models, 8 bit upload matches the
corresponding baselines, or even 6 bits for the
LSTM in Figure 4. TernGrad, requiring log2(3)
bits, outperforms the 4 bit in the Transformer but
not for the LSTM in Figure 5. More details are in
Appendix C.

Figure 4: Test perplexity over communication rounds
for varying upload quantization levels, with download
quantization fixed to 16 bits. TernGrad is comparable
to uniform with about 1.6 bits. Dashed line shows the
baseline without quantization.
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Figure 5: Test set perplexity versus total communica-
tion cost (download + upload) in a single round of
training, for each quantization algorithm. Uniform set-
tings include points for varying quantization bits.

5 Number of communication rounds

Transfer learning: Transfer learning leverages
pretrained models to improve model quality
(Houlsby et al., 2019). By pretraining, the number
of communication rounds required for model con-
vergence can be significantly reduced (Stremmel
and Singh, 2020).

We use two datasets for pretraining: a large cor-
pus of digitized books (Zhang et al., 2021) and
the One Billion Word Benchmark (LM1B) (Chelba
et al., 2014). After pretraining using synchronous
SGD for 30M steps, we finetune on Stack Over-
flow using FedAvg. For additional details, see Ap-
pendix D. We report results for each of the pretrain-
ing datasets and random initialization in Figure 6.

Books consistently outperforms LM1B for both
the LSTM and Transformer. Pretraining greatly
benefits the Large Transformer compared to the
Large LSTM, reducing the number of rounds
needed to reach the final 10K without pretraining
by 4K rounds. Furthermore, at round 2K, the Large
Transformer already outperforms the Large LSTM,
making the number of rounds needed for training
similar to that of smaller models used in mobile
keyboard prediction (Hard et al., 2018).

Figure 6: Test perplexity over communication compar-
ing pretraining corpora. Dashed line is the final per-
plexity reached by the randomly initialized model.

Different optimizers: Since the introduction of
FedAvg, several variations continue to be devel-
oped (Li et al., 2018; Hamer et al., 2020; Reddi

Figure 7: Test perplexity over communication rounds
for each model and algorithm.

Figure 8: Test perplexity over total uploaded gigabytes
per client for each class of model.

et al., 2020). Specifically, we examine MimeLite
(Karimireddy et al., 2020) and FedProx (Li et al.,
2018) as they have been shown to reduce the to-
tal amount of rounds required for provable con-
vergence. However, in Figure 7, FedProx and
MimeLite do not improve convergence speed over
FedAvg. More details can be found in Appendix E.

6 Combination of techniques

We experiment with combining partial model train-
ing, quantization, and transfer learning to train effi-
cient larger models. For these experiments, we
train on just 40% of trainable parameters with
PVT and warm start after pretraining on the Books
corpus. Combining download quantization with
these techniques did not perform as well, so we
only apply 8 bit uniform quantization on upload,
which is the tightest communication bottleneck
(Statista.com (2021) reports that mobile upload
speeds worldwide are over 4× slower than down-
load as of May 2021). For the full experiment
details, refer to Appendix F. We report the test
perplexity in terms of total upload communication
cost in Figure 8. Restricting for small upload costs
(< 200GB), the efficient models outperform all oth-
ers with the efficient Large Transformer yielding
the best perplexity. Furthermore, the efficient Large
Transformer also achieves the same perplexity as
the Large LSTM with no efficient techniques.
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7 Conclusion

We systematically studied several techniques for ad-
dressing the communication and computation bot-
tlenecks of federated learning. We further demon-
strated that these techniques, individually or in
combination, can scale to larger models in cross-
device federated learning. Extending this study to
other architectures and efficient strategies remains
an interesting open question.

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. 2017. Qsgd: Communication-
efficient sgd via gradient quantization and encoding.
Advances in Neural Information Processing Systems,
30.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-
zadenesheli, and Animashree Anandkumar. 2018.
signsgd: Compressed optimisation for non-convex
problems. In International Conference on Machine
Learning, pages 560–569. PMLR.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex
Olshevsky, Ioannis Ch Paschalidis, and Wei Shi.
2018. Federated learning of predictive models from
federated electronic health records. International
journal of medical informatics, 112:59–67.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu,
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Appendix

A Dataset and models

Figure 9: Stack Overflow train split sub-word statistics.

Table 1: Selected architectures for each model and size range. The values in [ ] are the possible hyperparameter
values searched over. Layer Size refers to the LSTM layer dimension and MLP layer dimension for Transformer
and # Layers refers to number of LSTM layers and number of Transformer blocks.

Model # Parameters Embedding Size Layer Size # Layers
[128, 256, 512, 1024] [512, 1024, 2048] [1, 2, 4, 6, 8]

Small LSTM 4.7M 256 2048 1
Small Transformer 4.1M 128 2048 6

Large LSTM 18.8M 1024 2048 1
Large Transformer 21.0M 512 2048 6

Table 2: Test metrics after 10K rounds of training for each class of model and number of clients per round. The
results in bold indicate the best for each size range.

Model # Clients Perplexity
Small LSTM 200 35.31
Small LSTM 400 34.93
Small LSTM 800 34.80

Small Transformer 200 40.18
Small Transformer 400 39.38
Small Transformer 800 38.66

Large LSTM 200 30.97
Large LSTM 400 30.79
Large LSTM 800 30.83

Large Transformer 200 30.64
Large Transformer 400 29.81
Large Transformer 800 29.15

For the baseline architecture search, Table 1 details the selected architectures as well as the search
ranges for each dimension. The final hyperparameters were selected based on the test perplexity after 3K
rounds of training using FedAvg with 200 clients per round. From here on, we fix the Adam optimizer
with β1 at 0.9, β2 at 0.999, and epsilon at 1e−8. Additionally, based on the distribution of average
sequence lengths across Stack Overflow clients in Figure 9, we fix the max sequence length for training
and evaluation to 30.

Table 2 contains the results for each selected model after 10K rounds of training using FedAvg with
200, 400, and 800 clients per round. As expected, the best results are achieved by using 800 clients per
round. Thus, from here on, we report results for 800 clients per round only. For these experiments, we
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Table 3: Selected hyperparameters for each model and size range. The values in [ ] are the possible hyperparameter
values searched over. Batch Size, # Examples, and Clipnorm here apply to the client local SGD steps. LR is
learning rate.

Model Batch Size # Examples Clipnorm Client LR Server LR
[8, 16] [1200, 1600] [0.0, 16.0] [0.01, 0.1, 0.5, 1.0, 2.0] [0.001, 0.01]

Small LSTM 16 1200 16.0 1.0 0.001
Small Transformer 16 1200 0.0 0.1 0.001

Large LSTM 16 1200 16.0 1.0 0.001
Large Transformer 16 1200 0.0 0.5 0.001

Figure 10: Test set perplexity as a function of number of gradient computations for comparing the centralized and
federated averaging baselines.

also search over client learning rate, client batch size, client max number of examples (with client number
of epochs fixed to 1), client `2 norm for clipping, and server learning rate. The search ranges as well as
selected values for each model are detailed in Table 3. For all following experiments, we fix client batch
size to 16 and client max number of examples to 1200 since the larger batch size consistently performed
the best and Figure 9 shows that 1200 sequences is more than enough to cover the vast majority of clients
with the number of epochs fixed at 1. We also search over the same ranges for all following experiments
where applicable for consistency.

As an additional baseline comparison, we also train each model using synchronous SGD to observe
model quality in terms of number of gradient computations. These centralized baselines provide a rough
estimate of an upper bound on model quality for federated learning. To produce a reasonable comparison
between the federated and centralized experiments, we compare by number of gradient computations.
We approximate the number of gradient steps taken for federated learning with 200 clients per round for
10K communication rounds. We train the centralized models using the Adam optimizer and run periodic
evaluation on the test set at the same frequency as the federated experiments. We report and compare final
metrics between centralized training and federated averaging on the test set in Figure 10. Observing the
test perplexity over gradient steps, it is evident that the relative rankings of the models remain consistent
between centralized and federated baselines. Additionally, by 10K rounds, the large federated models
seem to approach somewhat close in perplexity to their centralized counterparts.

B Partial model training

In our experiments with PVT, we vary the percentage of trainable variables from 10% to 90% in increments
of 10. As before, we search over the hyperparameters in Table 3 and find them to be mostly consistent
with baseline other than client learning rate. Following Yang et al. (2021), we use the per client per round
(PCPR) configuration, where the frozen variables vary from round to round and from client to client, as
this was shown to achieve the highest accuracy. Specifically, we only freeze subsets of the multiplicative
vectors and matrices of the original model. This corresponds to the embedding and weights of the LSTM,
and for the Transformer, the weights of the MLP layer, attention matrices, layer normalization in each
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Table 4: Test perplexity after 10K communication rounds of training for each class of model and PVT % of
trainable variables.

Model Trainable % # Parameters Perplexity
Small LSTM 100% 4.7M 34.80

Small Transformer 100% 4.1M 38.66

Large LSTM 100% 18.8M 30.83
Large LSTM 40% 7.5M 31.53
Large LSTM 20% 3.8M 32.93

Large Transformer 100% 21.0M 29.15
Large Transformer 40% 8.4M 30.45
Large Transformer 20% 4.2M 32.61

Figure 11: Test perplexity over communication rounds for the large models with select percentages of trainable
variables denoted by X% with 100% indicating all trainable variables are trained (i.e. baseline).

block, and embedding. We also note though that although overall the number of trainable variables might
average to the desired percentage (e.g. 10%), for certain architectures, like LSTM, that don’t have that
many freezable variables (only one layer’s weight matrix and embedding matrix), the number of trained
variables will be much more variable from round to round. On the other hand, for architectures, like
Transformer, that have more freezable variables (6 blocks’ weight matrices and attention matrices and
embeddings), the number of trained is much more consistent between rounds.

We report test set perplexity over communication rounds for the large architectures and varying degrees
of PVT in Figure 11 with the number of clients per round set to 800. Looking at Table 4, it is evident
that both large models can handle some percentage of partial freezing up until a certain point and that
the Large Transformer with only 40% of trainable variables can reach a similar perplexity as the Large
LSTM with 100% trainable variables by 10K rounds or so. However, training for the full 10K rounds can
be a communication bottleneck so PVT would need to be combined with another technique to reduce the
number of rounds needed.

C Quantization

In stochastic k-level uniform quantization (Suresh et al., 2017), values in each layer are converted into one
of k evenly distributed values between the layer min and max, stochastically assigned to the closest target
value either above or below the real value. The lower the k value, the more the data is being compressed,
as the number of bits used to store the value equals log2(k). For download quantization, we explore k
values corresponding to between 8 and 28 bits. For upload quantization, which can be a larger bottleneck
in edge devices (Statista.com, 2021), we explore k values corresponding to between 1 and 28 bits. On
upload, we also try applying zero-centering during uniform quantization as well as trying the TernGrad
(Wen et al., 2017) algorithm, which quantizes values in each vector v into only one of three values, 0 and
±max(|v|), corresponding to log2(3) (∼ 1.585) bits per parameter. While TernGrad is designed to use L
infinity clipping (`∞), we experiment with and without this for completeness.
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Figure 12: Test set perplexity over communication rounds for varying upload quantization levels, with download
quantization fixed to 16 bits. The dotted line shows baseline perplexity achieved after 10K rounds without any
quantization.

While `∞ clipping did make a significant difference in the TernGrad experiment for Transformers,
performing much better with it than without, it did not have a large effect on the TernGrad performance in
the LSTM in Figure 12. TernGrad and its counterpart uniform quantization to ∼ 1.585 bits performed
the same, as long as `∞ clipping was applied. It is clear from the uniform 2-bit experiments as well that
`∞ clipping is important when quantizing into these lower number of bits; the 2-bit experiment without
clipping performs much worse than the Terngrad without clipping, although enabling clipping allows
2-bit to perform slightly better than Terngrad’s log2(3) bits with clipping. Zero-centering did not seem to
affect upload behavior much for either model, marginally improving the LSTM and marginally degrading
the Transformer.

We explore the patterns of communication cost for each experiment setting in Figure 5. We calculate
the approximate download and upload MB for each experiment by multiplying the model’s number of
parameters by the number of download or upload bits to get total bits transported.

Examining Figure 5, we note the baseline points for each set of experiments as the lowest and rightmost,
getting the best perplexity but also highest communication cost. Starting from there, we see trends of no
perplexity degradation as we apply conservative quantization to the Large LSTM and Transformer settings
and move left in the plot. We then reach an elbow in the points for each setting right around where the
Terngrad point is, from which point perplexity degrades drastically without much communication cost
savings as the points head up in two lines as upload quantization is reduced, with one line corresponding
to experiments with download 16 bits and the other to download 12 bits. While the Terngrad point for
the Large Transformer falls at the outermost point in the "elbow" and therefore gives the best tradeoff
for cost versus perplexity, there is one uniform quantization point that does better than the Large LSTM
Terngrad, which is download 12 bits and upload 6 bits. It makes sense that this does well as we saw that
the LSTM was able to use these settings without much regression from the baseline performance, while
the Transformer could only quantize to 16 download bits and 8 upload bits without regressions.
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Table 5: Selected hyperparameters for each centrally trained model and dataset. The values in [ ] are the possible
hyperparameter values searched over.

Model Dataset Clipnorm Learning Rate
[0, 16] [1e−5, 5e−5, 1e−4,

5e−4, 1e−3, 5e−3, 1e−2]
Small LSTM Book 16.0 5e−5

Small LSTM LM1B 0.0 5e−5

Large LSTM Book 0.0 5e−5

Large LSTM LM1B 0.0 5e−5

Small Transformer Book 0.0 1e−4

Small Transformer LM1B 16.0 1e−4

Large Transformer Book 16.0 5e−5

Large Transformer LM1B 16.0 5e−5

D Transfer learning

To find the best models pretrained on the Books and LM1B datasets, we train for 30M steps of synchronous
SGD searching over learning rate and clip norm. Like our other centrally trained models, the batch size is
fixed to 16 and Adam is used with β1 at 0.9, β2 at 0.999, and epsilon at 1e−8. See Table 5 for the selected
hyperparameters.

Next we warmstart each models with the parameters from the best corresponding pretrained centralized
model and train using FedAvg for 10K rounds. We sweep over clip norm and client learning rate. See
Table 6 for the selected hyperparameters. Clip norm is omitted in Table 6, since for all hyperparameter
sweeps 16 was the best value. The Book dataset outperforms the LM1B dataset in all model architectures
across LSTM and Transformer. Investigating the difference between the two datasets and their similarities
to the Stackoverflow dataset to determine why Books always outperformed LM1B remains an interesting
open question.

E Different optimizers

In an effort to improve communication efficiency of the larger language models, we examine two
communication-efficient federated algorithms: MimeLite and FedProx. By comparing the speed and point
of convergence of these algorithms in number of rounds, we can determine if the overall communication
cost of training can be decreased. As before, we fix the model architectures for each class of model and
conduct a basic search over learning hyperparameters using the same common search space as Table 3 with
the addition of the following algorithm specific hyperparameter sweeps. For MimeLite, we use Adagrad
(Duchi et al., 2011) for the base optimizer as this setup was shown to perform the best by Karimireddy
et al. (2020) for Stack Overflow. For the MimeLite Adagrad base optimizer, we sweep over base learning
rates of [0.01, 0.03, 0.1, 0.3, 1.0] and epsilons of [1e−1, 1e−3, 1e−5, 1e−7] and fix the server learning rate
to 1.0. For FedProx, we sweep over µ values of [0, 0.1, 0.01, 0.001, 0.0001] which controls the weight of
the L2 squared norm.

We report test perplexity over 10K federated training rounds with 800 clients per round in Figure 7
and Table 7. While FedProx does slightly outperform FedAvg, it does not significantly alter the speed of
training in terms of number of communication rounds. Thus, we chose to continue using FedAvg in the
combination experiments for consistency across experiments and more accurate comparisons.

F Combination of techniques

For the combination experiments, we conducted a joint search over a smaller range of hyperparameters for
each technique to keep the total search space reasonable. For PVT, we restricted the possible percentages
to 20%, 30%, and 40% of trainable variables as those were shown to yield good performance while
cutting model size to less than half the original size. For uniform quantization, we restricted the search of

18



Table 6: Test set metrics after 10K communication rounds of training for each class of model and pretrain dataset.
The client learning rate listed is the best performing learning rate found from a hyperparameter sweep.Reported ∆
metrics are the change in quality relative to Table 2.

Model Dataset # Clients Client Learning Rate ∆ Perplexity
[0.01, 0.1, 0.5, 1.0, 2.0]

Small LSTM Book 200 1.0 0.24
Small LSTM Book 400 0.5 1.09
Small LSTM Book 800 0.5 1.66

Small LSTM LM1B 200 1.0 0.53
Small LSTM LM1B 400 0.5 1.72
Small LSTM LM1B 800 0.5 2.36

Large LSTM Book 200 0.5 0.59
Large LSTM Book 400 0.1 0.79
Large LSTM Book 800 0.5 0.94

Large LSTM LM1B 200 0.5 0.91
Large LSTM LM1B 400 0.1 1.09
Large LSTM LM1B 800 0.5 1.3

Small Transformer Book 200 0.1 0.35
Small Transformer Book 400 0.1 1.83
Small Transformer Book 800 0.1 3.34

Small Transformer LM1B 200 0.1 0.42
Small Transformer LM1B 400 0.1 1.97
Small Transformer LM1B 800 0.1 3.49

Large Transformer Book 200 0.5 −1.92
Large Transformer Book 400 0.1 −0.76
Large Transformer Book 800 0.1 −0.04
Large Transformer LM1B 200 0.1 −1.81
Large Transformer LM1B 400 0.1 −0.64
Large Transformer LM1B 800 0.1 0.14

upload to 6 or 8 bits and download to 16 or 32 bits since the Transformer was shown to be able to handle
aggressive upload quantization but required more care on download quantization. Finally, for transfer
learning, we warmstarted after pretraining on the Books corpus. As in previous experiments, we also
search over the common hyperparameter space defined in Table 3, where applicable.

Similar to previous experiments, we use 800 clients per round and train for 10K rounds with FedAvg.
Figure 13 and Table 8 contain the results for the large models with and without the efficient techniques
applied. We apply two levels of quantization on download, 16 and 32 bits, and observe that the Large
LSTM is more amenable to download quantization compared to the Large Transformer as the regression
between the two levels is much smaller for the LSTM than the Transformer. However, the Transformer with
16 bit download quantization still outperforms all efficient LSTMs though it requires more communication
rounds to do so than the efficient Transformer with 32 bits for download. For the remaining analysis, we
focus on the efficient Transformer using 32 bits for download. It is clear that for the Large Transformer,
applying efficient techniques yields better quality in earlier communication rounds. Although there are
regressions in the final model quality after 10K rounds of training, this could be attributed to previously
observed issues with increased amounts of labeled data diminishing the value pretraining (Zoph et al.,
2020). However, the Efficient Large Transformer still reaches the same final perplexity as the Large
LSTM which had no efficient techniques applied. Furthermore, when considered in terms of actual
communication cost, as is done in Figure 8, the efficient models yield much better performance at smaller
total communication costs.
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Table 7: Test perplexity after 10K communication rounds of training for each class of model and federated algo-
rithm.

Model Algorithm Perplexity
Small LSTM FedAvg 34.80
Small LSTM MimeLite 34.81
Small LSTM FedProx 34.66

Small Transformer FedAvg 38.66
Small Transformer MimeLite 39.88
Small Transformer FedProx 38.57

Large LSTM FedAvg 30.83
Large LSTM MimeLite 31.00
Large LSTM FedProx 30.76

Large Transformer FedAvg 29.15
Large Transformer MimeLite 30.39
Large Transformer FedProx 29.04

Table 8: Test perplexity and total communication costs in gigabytes after 10K communication rounds of training
for each class of model and setup. If the number of download bits is unspecified, the standard 32 bits was used.

Model Download Cost (GB) Upload Cost (GB)
Small LSTM 188 188 34.80

Small Transformer 164 164 38.66

Large LSTM 752 752 30.83
Large Transformer 840 840 29.15

Efficient Large LSTM (download 32 bits) 752 75 32.57
Efficient Large Transformer (download 32 bits) 840 84 30.83

Efficient Large LSTM (download 16 bits) 376 75 32.76
Efficient Large Transformer (download 16 bits) 420 84 32.32

Figure 13: Test perplexity over communication rounds for the large models with and without efficient techniques
applied.

Perplex.
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