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Abstract

Models for bankruptcy prediction are useful in
several real-world scenarios, and multiple re-
search contributions have been devoted to the
task, based on structured (numerical) as well as
unstructured (textual) data. However, the lack
of a common benchmark dataset and evalua-
tion strategy impedes the objective comparison
between models. This paper introduces such a
benchmark for the unstructured data scenario,
based on novel and established datasets, in or-
der to stimulate further research into the task.
We describe and evaluate several classical and
neural baseline models, and discuss benefits
and flaws of different strategies. In particu-
lar, we find that a lightweight bag-of-words
model based on static in-domain word repre-
sentations obtains surprisingly good results, es-
pecially when taking textual data from several
years into account. These results are critically
assessed, and discussed in light of particular
aspects of the data and the task. All code to
replicate the data and experimental results will
be released.

1 Introduction

Since the seminal work of Beaver (1966),
bankruptcy prediction has received considerable
attention by both academics and practitioners. A
sound prediction model has numerous applications.
For instance, successful quantitative methods can
help professionals, such as creditors and investors,
in managing financial risk (Bielecki and Rutkowski,
2013). Furthermore, as Bernanke (1981) has shown
that economy-wide levels of bankruptcy risk play a
structural role in propagating recession, regulators
can use bankruptcy prediction models to monitor
the financial health of key economic actors and
control systematic risk.

A large number of bankruptcy prediction mod-
els have been proposed in literature, such as the
models from Beaver (1966), Ohlson (1980), Odom
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and Sharda (1990), Kim and Kang (2010) and
Mai et al. (2019). However, it appears difficult
to compare these studies and objectively assess
progress in the field. We have identified the fol-
lowing three aspects that make comparison diffi-
cult: (1) the temporal nature and typical class im-
balance of the bankruptcy prediction task leads to
strongly deviating evaluation scenarios, (2) there
is little consensus on the key evaluation metrics,
and (3) there is no standard benchmark dataset.
These issues are further discussed in section 2.2.
In order to overcome these problems, we have de-
signed and described our experimental setup with
reproducibility on a common benchmark in mind.
To that end, scripts to reconstruct the benchmark
and reproduce the presented results are available
at https://github.com/henriarnoUG/
BankruptcyBenchmarkBaselines. Note
that this paper investigates the potential to predict
bankruptcy from textual disclosures only. Extend-
ing this benchmark to the hybrid case of combined
textual and structured features will be part of our
future work.

The contributions of this paper are as follows:
(1) we introduce a reproducible benchmark for text-
based bankruptcy prediction, based on novel and
established economic datasets, (2) classical as well
as neural baseline prediction models are provided,
including results on next-year bankruptcy predic-
tion from multiple years of textual data, and (3)
insights into the results are given along with point-
ers to potential next steps in bankruptcy prediction.

2 Related Work

After a general overview of research on bankruptcy
prediction (Section 2.1), we describe some key as-
pects that make contributions in literature hard to
compare (Section 2.2).
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Three years prior
to bankruptcy

"We are highly leveraged and a substantial portion of our liquidity needs arise from debt service
requirements and from funding our costs of operations and capital expenditures, including
acquisitions... we entered into a new asset-based revolving credit facility (ABL Facility)...
secured by substantially all of our assets..."

One year prior
to bankruptcy

" ... we received a waiver of certain events of default under the TLA arising from the inclusion
of a going concern qualification from our registered public accounting firm, breach of the
EBITDA financial covenant, and cross-default arising from the default under our ABL Facility...
In order to address our liquidity issues and provide for a restructuring of our indebtedness to
improve our long-term capital structure, we have entered into a Restructuring Support Agreement ...
pursuant to a prepackaged plan of reorganization to be filed in a case commenced under chapter 11
of the United States Bankruptcy Code..."

Table 1: Extracts from the MD&A section of a distressed company in our dataset, one year and three years prior to
bankruptcy. Underlined words correspond to the top 20 tokens most informative for imminent bankruptcy in our
respective Binary Bag-of-Words models.

2.1 Bankruptcy Prediction Research
Beaver (1966) pioneered bankruptcy prediction lit-
erature with a discriminant model based on finan-
cial ratios. Subsequently, well-chosen structured
financial variables were proposed to predict fail-
ure, along with increasingly advanced prediction
models. Statistical models, such as discriminant
analysis (Beaver, 1966; Altman, 1968), have been
dominant in the past but rely on stringent assump-
tions about the data (Balcaen and Ooghe, 2006).
Today, machine learning models are commonplace
as they rely on fewer assumptions and learn di-
rectly from the data. Odom and Sharda (1990)
used neural networks to predict bankruptcy, Kim
and Kang (2010) have built an ensemble model
and Hosaka (2019) generates predictions through a
convolutional neural network with ratios presented
as images. Keasey and Watson (1987) were the
first to include non-financial variables in a corpo-
rate failure model, Shumway (2001) has shown
that market-driven variables are strongly related
to bankruptcy and Cecchini et al. (2010) found
that textual disclosures can be used to discriminate
between bankrupt and non-bankrupt firms. The
information value of textual data was further es-
tablished by Mayew et al. (2015) as they found
that the opinion of management on the future of
the company and the linguistic tone of the Man-
agement Discussion and Analysis has significant
explanatory power for corporate failure. Mai et al.
(2019) provide large-sample evidence of the pre-
dictive power of textual disclosures and show that
deep learning models yield superior results when
using textual data together with traditional account-
ing features. Furthermore, the authors compare
two deep learning architectures based on skip-gram
word representations (Mikolov et al., 2013) and

conclude that an average embedding model leads
to better results than a ConvNet architecture. De-
spite this promising work, bankruptcy prediction
models using textual data are scarce.

2.2 Need for a Reproducible Benchmark

The following aspects prevent a straightforward
comparison of research contributions, and may be
avoided by a common benchmark along with the
tools to reproduce experimental results, one of the
goals of this work.

Temporal nature and class imbalance of
bankruptcy data: Due to the temporal nature of
the data and the typically much smaller fraction of
positive cases (enterprises going bankrupt), many
strategies have been proposed to construct training
data and define evaluation sets. The data source
that serves as a basis for the model typically con-
tains annual (or more fine-grained) observations for
each firm in the sampling period. In earlier work
(Beaver, 1966; Altman, 1968) the explanatory vari-
ables were selected only once for each firm in the
dataset. In the ‘paired sampling’ approach (Altman,
1968), the independent variables for failed firms
were retained in the year before failure, together
with those for a paired healthy firm in that same
year, to induce a balanced dataset from which a ran-
dom evaluation set is sampled. Shumway (2001)
has shown that such an approach leads to poor
out-of-sample prediction performance and incor-
rect statistical inference. As an alternative, hazard
models can be estimated by treating each firm-year
sample as an independent observation, with the
bankruptcy status by the end of the following year
as the prediction target. Typically, the observations
prior to some date are used for model training, and
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observations after this date are used to estimate the
out-of-period prediction performance (Shumway,
2001; Mai et al., 2019). Sometimes even a random
split is used, independent of time (Mai et al., 2019).
In the work of Volkov et al. (2017), the explana-
tory variables for a number of consecutive years are
used as input, with company status as the prediction
target in the year afterwards. The class imbalance
is managed through undersampling of healthy com-
panies. Evaluation is done on a held-out subset of
companies, which is therefore artificially balanced
as well. Undersampling, oversampling, and data
augmentation techniques are investigated by Vegan-
zones and Séverin (2018). Training and evaluation
are done on a non-overlapping subset of firms, with
a one-year shift in between, while also maintaining
a predefined artificial ratio between the number of
healthy and bankrupt firms (for both training and
evaluation).

In our considered population (public companies
in the US, see Section 3.1), all companies are
known, as well as their yearly reports so far, and the
goal is predicting bankruptcy for all of these firms
in the near future (the coming year). This is sim-
ulated in our evaluation scenario, where we make
predictions for all companies not (yet) bankrupt
and observed through annual reports up to a given
year, on their bankruptcy status the year afterwards
(as further detailed in section 3.2).

Large variety of evaluation metrics: The
choice of evaluation metrics is often linked to the
experimental setup, e.g., depending on whether a
balanced test set is used. The evaluation scenario
also influences the choice of threshold used for
metrics like accuracy, precision, or recall. For ex-
ample, Volkov et al. (2017) select a threshold that
maximises the F2-measure. Alternatively, Vegan-
zones and Séverin (2018) select the threshold that
minimises the expected cost of misclassification
with equal weights. Aggregated metrics that avoid
the use of a threshold, such as area under the ROC
curve (AUC), decile rank, and cumulative accuracy
profile ratio (CAP) are regularly reported as well
(Mai et al., 2019).

Use of private datasets: The final reason that
makes model comparison hard is the lack of a stan-
dard benchmark dataset. Bankruptcy prediction lit-
erature either reports results on proprietary datasets
(Matin et al., 2019) or on data obtained by man-
ual collection or custom web scraping strategies

(and kept private) (Cecchini et al., 2010; Wang
et al., 2020). For a comprehensive overview of
data sources used in recent corporate failure liter-
ature we refer the reader to the work of Mai et al.
(2019). Our datasets are based on the combina-
tion of existing sources, i.e., the UCLA-LoPucki
Bankruptcy Research Database (BRD)1 and the
public EDGAR-CORPUS (Loukas et al., 2021).
This allows researchers to reconstruct the same
train, validation and test data from these sources,
even if we are not allowed to make the resulting
datasets public directly.

3 Methodology

In the next sections, we describe the data sources
(Section 3.1) and motivate our design choices
for the benchmark (Section 3.2), document pre-
processing (Section 3.3), and the selected evalua-
tion metrics (Section 3.4).

3.1 Data Sources
Our study makes use of the EDGAR-CORPUS, a
novel economic dataset containing 10-k reports
from all publicly traded companies in the US,
spanning 25 years (Loukas et al., 2021). As
we need information on bankruptcies as predic-
tion target, these reports were matched with the
UCLA-LoPucki Bankruptcy Research Database
(the BRD)2, through the unique Central Index Key
to identify companies. The BRD contains informa-
tion on all Chapter 7 and Chapter 11 filings of the
United States Bankruptcy Code since 1997 and is
updated monthly.

Consistent with prior work (Cecchini et al., 2010;
Mayew et al., 2015; Mai et al., 2019), we limit the
10-k reports to section 7: “Management Discussion
and Analysis”. According to the U.S. Securities
and Exchange Commission3, it “... gives the com-
pany’s perspective on the business results of the
past financial year. This section, known as the
MD&A for short, allows company management to
tell its story in its own words.” It also contains the
risks and uncertainties that could materially affect
the company. As an example, consider the extracts
from the MD&A’s of a distressed firm in Table 1.

Public company bankruptcy is a rare event. Fig-
ure 1 shows that the number of 10-k reports filed by

1https://lopucki.law.ucla.edu/
2The BRD does require a paid annual subscription or a

one-time purchase for academic single use.
3https://www.sec.gov/fast-

answers/answersreada10khtm.html
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non-bankrupt companies heavily exceeds the yearly
number of Chapter 7 and Chapter 11 cases. Note
how the influence of the Dot-com crisis (2000), the
financial crisis (2007-2008), and the COVID crisis
(2020) on our population can be observed. Table 2
provides additional statistics for the aligned data
sources.

3.2 Task Definition and Setup
3.2.1 Determining the prediction time window
Prior work has not always been very transparent
about the temporal aspect of the textual and numer-
ical data in their models, but this requires special
attention in order to arrive at a correct setup. A 10-k
report is characterised by two dates, as schemati-
cally shown in Fig. 2: (1) the fiscal year-end tPR of
the one-year time window TPR (‘period of report’)
used to calculate the financial statements, and (2)
the filing date tFD on which the report is filed with
the SEC. Since in practice tFD ≥ tPR, there may
be a period after tPR yielding textual information
in the MD&A (i.e., before tFD), not present in the
financial statements. It is therefore important to use
the one-year period directly after tFD as the predic-
tion time window Tprediction when the textual data
is used as input to the model. In the extreme case
of bankruptcy in between tPR and tFD (‘potential
bankruptcy’ in Fig. 2), it would lead to leakage and
artificially high prediction accuracies if the year
directly after tPR were used for prediction. It is
possible, though, that information on an imminent
bankruptcy shortly after tFD is already included in
the report, but this does not present a conceptual
problem for the prediction setup.

3.2.2 Dealing with missing 10-k reports
The dataset contains yearly 10-k reports from the
first time a company appears, starting from the year
2000, until 2021 or until bankruptcy. However,
some reports are missing for a number of compa-
nies, and our analysis reveals the following three
scenarios. First, some companies stop reporting
from a certain point in time onwards, without filing
for bankruptcy. This may be due to a merger or an
acquisition, but that particular information is not
present in the data. Second, there may be gaps in
the sequence of yearly reports. This arises when
a company either does not submit a 10-k report
(due to unknown reasons) or because of data qual-
ity issues. Third, we observe that some companies
headed towards bankruptcy tend to fail in their re-
porting in the year(s) leading up to the bankruptcy
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Figure 1: The number of bankruptcies (including the
mean) (left y-axis) and the number of 10-k reports filed
(right y-axis) per year.

period 2000-2021
avg. reports per year 7599 ± 1477
avg. bankruptcies per year 39 ± 26
avg. new enterprises per year 1467 ± 1376
avg. doc. length (# tokens) 6492 ± 1138

Table 2: Summary statistics of our aligned data sources.

tPR tFD

TPR

TMD&A

tPR
- 1 year

tFD
+ 1 year

Tprediction

bankruptcy
potential

Figure 2: Timeline containing the characterising dates
(tPR, tFD) of a 10-k report and corresponding periods
(TPR, TMD&A, Tprediction)

filing. A naive approach would be to simply discard
all instances with missing reports. However, this
would make the evaluation scenario biased, since
missing reports are not distributed uniformly over
the data, due to the different scenarios described
above.

Consider our 2019 test set with a history of three
years (discussed later in this section) as an exam-
ple, of which close to 45% of companies have
at least one missing report during the three-year
history. The relative frequency of bankruptcy is
0.27% for the entire population, 0.00% for compa-
nies with only missing data (cf. an M&A event),
0.35% for companies with no missing data and
0.93% for companies where the data in only the
year before prediction is missing. Therefore, we do
not remove these companies and keep them in our
dataset which results in a more realistic evaluation
scenario.
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3.2.3 Construction of input and target per
firm-year

In order to create time-agnostic firm-year samples
(following Shumway (2001)) during the construc-
tion of our train, validation and test sets (see fur-
ther), we process a given year and company as
follows:

1. Determine Tprediction: If a 10-k report was
filed by the company in the considered year,
Tprediction is the period between tFD and tFD +
1 year (cf. Figure 2). Otherwise, we use the
one-year period starting the same day as the
latest available tFD, but in the considered year.

2. Assign target label: If the company filed for
bankruptcy during Tprediction, the label is 1,
otherwise 0. Note that potential firm-year in-
stances with a bankruptcy filing before tFD are
invalid for the considered year, as explained
above.

3. Collect textual data: The MD&A text from
the report filed at tFD is used for the one-year
history setting, as well as from the two pre-
vious years for the three-year scenario. For
missing reports, the token ‘missing’ is used.

3.2.4 Train / validation / test segmentation
Training data: We construct two training sets
in total. The first, using data up to 2015, is used
for initial training while leaving sufficient data for
validation during hyperparameter tuning. The sec-
ond, with data up to 2017, is used to train the final
models. They are constructed as follows:

1. We leave out all reports with a tFD later than
2015 (2017), to ensure a proper temporal split
between training and evaluation data.

2. For every firm and every year between the
first year of the training data and 2015 (2017),
we construct a firm-year instance as described
above.

3. To reduce the impact on the training process
of instances without any reports in their con-
sidered history (i.e., the one-year or three-year
history, respectively), 95% of those are ran-
domly removed.

Validation data: We construct two validation
sets, one for 2017 and one for 2018, both to be
used for hyperparameter tuning. First, we filter out

companies that have not filed any reports during the
5 years leading up to and including 2017 (2018).
For each of these companies, one firm-year sample
is created according to the method described above
for the year (and hence tFD, even when the report
is missing) 2017 (2018).

Test data: In the same way, we construct two
test sets, one for 2019 and one for 2020 (denot-
ing the calendar year containing tFD), for the final
evaluation of the trained models.

3.3 Pre-processing

When dealing with textual data it is common to
perform document pre-processing in order to de-
crease the dimensionality of the problem and re-
duce the computational cost of encoding the doc-
uments. We perform four pre-processing steps for
the Bag-of-Words models presented in sections 4.1-
4.3. First, we lowercase all documents. Second,
we remove stopwords and punctuation. Third, we
lemmatize each word in the documents through the
NLTK library (Loper and Bird, 2002). Inflicted
word forms such as paying and payed are trans-
formed into the root form pay. Finally, we replace
uncommon words by the token ‘_UNK_’ (for ‘un-
known’). A word is deemed uncommon when it
does not appear in the 50,000 most frequent words
in the training set. When dealing with transformer
models (Vaswani et al., 2017), such as the Long-
former (Beltagy et al., 2020), these steps are typ-
ically not required and might even lead to deteri-
orating performance. Preprocessing then consists
of proper tokenization of the input text. We use
the tokenization tools from Huggingface 4, which
allow transforming the input text into a sequence
of well-chosen word pieces.

3.4 Evaluation Metrics

Following Mai et al. (2019), we report the Area
Under the Receiver Operating Curve (AUC) as
main evaluation metric. The AUC is often used
to quantify the overall prediction performance of
binary decision models. It aggregates the informa-
tion in the Receiver Operator Curve (ROC), which
quantifies the trade-off between the true positive
rate (or recall) and the false positive rate at vari-
ous classification thresholds. However, in certain
scenarios, a high true positive rate may be more rel-
evant than a low false positive rate. Therefore, we

4https://huggingface.co/
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Single year history Three year history

Binary TF-IDF W2V Longformer Binary TF-IDF W2V Longformer

AUC 0.79 (0.84) 0.80 (0.85) 0.88 (0.90) 0.78 (0.79) 0.90 (0.92) 0.92 (0.96) 0.95 (0.95) 0.85 (0.84)
AP 0.07 (0.05) 0.16 (0.16) 0.08 (0.12) 0.01 (0.03) 0.03 (0.06) 0.10 (0.10) 0.04 (0.09) 0.02 (0.02)
rec@100 0.19 (0.18) 0.26 (0.31) 0.37 (0.31) 0.04 (0.07) 0.15 (0.22) 0.37 (0.29) 0.22 (0.24) 0.11 (0.02)
CAP 0.56 (0.68) 0.59 (0.72) 0.75 (0.80) 0.52 (0.58) 0.82 (0.84) 0.83 (0.92) 0.89 (0.89) 0.71 (0.68)

1 0.56 (0.67) 0.74 (0.71) 0.70 (0.73) 0.56 (0.51) 0.78 (0.73) 0.70 (0.91) 0.85 (0.84) 0.41 (0.40)
2 0.74 (0.78) 0.74 (0.84) 0.78 (0.80) 0.70 (0.71) 0.89 (0.87) 0.93 (1) 0.93 (0.93) 0.78 (0.80)
3 0.78 (0.84) 0.78 (0.87) 0.85 (0.80) 0.74 (0.76) 0.96 (0.93) 0.96 (1) 1 (0.98) 0.93 (0.91)
4 0.78 (0.87) 0.78 (0.87) 0.96 (0.91) 0.74 (0.82) 0.96 (1) 0.96 (1) 1 (1) 0.93 (0.93)
5 0.78 (0.87) 0.78 (0.87) 0.96 (0.98) 0.74 (0.87) 0.96 (1) 0.96 (1) 1 (1) 0.93 (0.96)

Table 3: Bankruptcy prediction results on the test sets: 2019 (2020), for several bag-of-words models: with binary
one-hot vectors (Binary), TF-IDF, and mean word-to-vec (W2V) representations, as well as a Longformer classifier,
and for single-year vs. three-year text inputs. Reported metrics are the area-under-the-ROC-curve (AUC), average
precision (AP), recall@100 (rec@100), cumul. accuracy profile ratio (CAP), and cumul. decile rank (1-5).

also report the Recall@100. It quantifies the pro-
portion of positive cases (bankrupt firms) present
in the 100 highest ranked ones, out of all positive
samples (all bankrupt firms in the considered year).
In our context, this metric evaluates the models
in their effectiveness to detect as many distressed
enterprises as possible for a given budget (e.g., the
manpower to investigate a hundred firms). The
Cumulative Accuracy Profile Ratio (CAP) is a
ranking based metric with a strong emphasis on
recall of the positive class. It summarises the in-
formation in the CAP curve, which plots the cu-
mulative proportion of positive samples against the
percentage of the ranked data taken into account.
The Cumulative Decile Rank is also a recall ori-
ented metric. It gives the cumulative proportion
of all positive samples (bankrupt firms) in each
decile when ranking the samples according to the
classifier score. Although we consider recall more
important for the bankruptcy case from the perspec-
tive of the ‘given budget’ scenario outlined above,
we report a precision oriented metric as well. The
Average Precision (AP) is the weighted mean of
the precision at each classification threshold with
the increase in recall as weight.

4 Models

Sections 4.1-4.3 introduce our bag-of-words (BoW)
models (which discard word order), followed by a
neural sequence encoder model that does account
for word order (Section 4.4), and some training
details (Section 4.5).

4.1 Binary Bag-of-Words Model

As a trivial baseline (referred to as ‘Binary’) we rep-
resent our documents as vocabulary-sized binary

vectors with ‘1’ at a particular position indicating
the presence of the corresponding word. As vo-
cabulary, all occurring unigrams and bigrams are
initially considered as features, and reduced to the
20 most informative ones through univariate feature
selection, to be used in a logistic regression clas-
sifier. This baseline intends to quantify how well
the occurrence of a small set of keywords allows
predicting bankruptcy. The model for three-year
history is obtained the same way, from the joint
BoW over the considered years.

4.2 TF-IDF Bag-of-Words Model
The second model is similar to the Binary baseline,
but considers term frequency - inverse document
frequency (TF-IDF) features (Manning et al., 2008)
rather than binary ones, combined with feature se-
lection and an L2-regularized logistic regression
classifier. The number of features to retain and the
inverse regularisation strength are treated as hyper-
parameters. The three-year model is constructed
the same way, after concatenating the texts per year.

4.3 Word2Vec Average Embedding Model
As a final bag-of-words model (W2V), we imple-
ment the best performing architecture proposed by
Mai et al. (2019), based on the Word2Vec model of
Mikolov et al. (2013). First, the pre-processed data
is used to train skip-gram word representations of
dimension 100 (consistent with Mai et al. (2019)).
Documents are then represented by the mean word
vector over all occurring words. These serve as
input to a two-layer feed-forward neural network
with ReLU activations (Glorot et al., 2011) and
standard dropout (Srivastava et al., 2014), followed
by a sigmoid output. During training, we minimize
the binary cross entropy loss with an L2-penalty,
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using the Adam optimizer (Kingma and Ba, 2014).
The learning rate, weight decay (L2-penalty), hid-
den layer width, and dropout rate are treated as
hyperparameters. When performing classification
based on a history of three years, the document rep-
resentations of each year are concatenated, result-
ing in a 300-dimensional input to the first hidden
layer of the neural network.

4.4 Longformer
For our most advanced neural model, we encode
the documents through the Longformer of Beltagy
et al. (2020). This transformer-based model is able
to handle sequences up to 4096 tokens through its
attention mechanism that scales linearly with the
input text length (as opposed to the quadratic be-
havior in earlier Transformer models such as BERT
(Devlin et al., 2018). Given the mean document
length of over 6k words in our corpus (cf. Table 2),
we considered the Longformer a plausible base-
line. We process the first 4096 tokens of each doc-
ument with the Longformer model and retain the
768-dimensional pooled output as the document
representation that feeds the same feed-forward
classification neural network as described above.
For dealing with a history of three years, the indi-
vidual representations per year are again concate-
nated, and the input size of the first hidden layer
is adjusted accordingly. During training, these rep-
resentations are kept static (i.e., the Longformer
weights are not further fine-tuned on our classifica-
tion task).

4.5 Training Details
The classical models (Sections 4.1 and 4.2) are
implemented in scikit-learn5 and the hyperparame-
ters are optimised through a grid search procedure.
As constructing the vocabulary of all tokens in the
training data is expensive, we choose to undersam-
ple the majority class until a 90%-10% distribu-
tion was reached. The neural models (Sections 4.3
and 4.4) are implemented in PyTorch5 while the
Word2Vec model was trained with Gensim5 and
the forward pass through the Longformer was per-
formed with Huggingface4. Since hyperparameter
optimisation for deep learning models is expensive,
we made use of the Tree-Structured Parzen Estima-
tion algorithm to find the optimal hyperparameter
settings (Bergstra et al., 2011) implemented in Op-
tuna5. The hyperparameters are tuned to maximise
the weighted AUC of the 2017 and 2018 validation
data, and the obtained values are then used to train

Top 15 selected unigrams and bigrams

waiver (0.26), _UNK_ million (0.21), restructuring (0.21),
severance (0.20), subordinated (0.20), financial covenant (0.15),
indenture (0.14), lender (0.14), interest payment (0.14),
senior secured (0.14), asset sale (0.12), senior (0.09),
cross default (0.09), indebtedness (0.07),
event default (0.05), credit facility (0.05)

Table 4: Top 15 tokens with largest logistic regression
coefficients (shown in parentheses) of the Binary bag-
of-words model with single year history.

the final models using training data up to 2017, to
be tested on the 2019 and 2020 test sets.6

5 Results and Discussion

Table 3 presents the out-of-period test performance
metrics for our text-based bankruptcy prediction
models, taking a single year or three years of his-
tory into account.

When taking a single year of history into ac-
count, the W2V model is superior in terms of AUC,
recall@100 and CAP while the TF-IDF model
achieves the best results in terms of AP. For the
2019 test set, the TF-IDF model contains a slightly
higher proportion of positive samples in the first
decile but the W2V model is superior from the sec-
ond decile onwards. When taking three years of
history into account, the W2V model achieves the
best results for the AUC and CAP metrics while
the TF-IDF model performs better with respect to
AP and recall@100. When looking at decile rank,
the W2V models performs best, having ranked all
bankrupt companies in the top 30% of the samples
for the 2019 test set.

For each model, AUC and CAP are better when
taking three years of history into account compared
to a single year of history. The same applies for the
decile rank (except for the TF-IDF model and the
Longformer model in the first decile). AP is gener-
ally worse when using a longer history, except for
the Binary model with test set 2020 and the Long-
former model with test set 2019. The recall@100
metric varies over the two setups.

We observe that the Binary models based on a
mere 20 keywords perform surprisingly well, al-
though not on par with the TF-IDF and W2V mod-
els. Note that the latter are based on many more

5Scikit-learn: https://scikit-learn.org/stable/
PyTorch: https://pytorch.org/
Optuna: https://optuna.org/
Gensim= https://radimrehurek.com/gensim/

6The considered hyperparameter ranges can be accessed
through the GitHub repository.
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features (in particular, hyperparameter tuning led
for the TF-IDF model to 25.000 (10.000) features
for single (three) year history). The relatively good
performance of the Binary baseline suggests that
the presence of few very informative words is a
strong indicator for impending bankruptcy. As an
illustration, we list the top 15 unigrams and bi-
grams selected by the single year Binary model in
table 4 and underline these features in the extracts
in table 1.

Furthermore, the Longformer model performs
significantly worse than the other models. Since we
do not finetune the generic pre-trained Longformer
model on the our end task, the resulting generic
document representations appear unable to capture
those features in the text that are important for
bankruptcy prediction.

The W2V model leads overall to the best results,
in particular for AUC (on which model selection
was performed over the validation set) and CAP,
and better than the Longformer over the entire line.
Even though it is based on the mean representation
over all words, it appears the relevant information
regarding bankruptcy prediction is still sufficiently
present. As opposed to the Longformer, the W2V
document representations come from in-domain
data (i.e., pretrained on 10-k reports).

Finally, we critically evaluate the observed per-
formance improvements for the three-year w.r.t.
single-year history setting. The Binary and TF-IDF
models are by construction unable to distinguish
the different years, but in principle the W2V and
Longformer models could learn to capture a deterio-
rating financial situation over three years of history.
However, when evaluating our final W2V models
on the test sets with only complete observations
(i.e., discard test instances with missing reports),
we get the following results. The single year of
history AUC is 0.93 (0.94) and the recall@100 is
0.48 (0.36) while the three year history AUC is
0.93 (0.93) and recall@100 was 0.24 (0.28). These
results imply that our models taking three years of
history into account only lead to better performance
metrics as they are able to generate meaningful pre-
dictions for companies with some missing reports.
Building more expressive models that can leverage
the changes in the documents over the years present
an interesting avenue for future research.

6 Conclusion and Future Work

Bankruptcy prediction models are valuable in many
real-world applications and have received consider-
able research attention. However, assessing actual
progress in the field is not obvious due to the lack of
a common benchmark. In this work, we introduce
such a benchmark for bankruptcy prediction using
textual data along with several baseline models that
demonstrate the predictive value of the textual data.
We give a detailed discussion on our benchmark
and evaluation design choices and share our code
to reproduce the experiments.

In future work, we will focus on more advanced
models to take into account the temporal evolu-
tion of enterprises’ financial situation and more ad-
vanced language representations (i.e., by finetuning
transformer encoders). We also plan to extend the
benchmark with structured financial data to build
hybrid prediction models.
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