
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP), pages 10 - 17
December 8, 2022 ©2022 Association for Computational Linguistics

AstBERT: Enabling Language Model for Financial Code Understanding
with Abstract Syntax Trees

Rong Liang
Ant Group

liangrong.liang@antgroup.com

Tiehua Zhang∗

Ant Group
zhangtiehua.zth@antgroup.com

Yujie Lu
Ant Group

lyj272836@antgroup.com

Yuze Liu
Ant Group

liuyuze.liuyuze@antgroup.com

Zhen Huang
Ant Group

hz101346@antgroup.com

Xin Chen
Ant Group

jinming.cx@antgroup.com

Abstract
Using the pre-trained language models to under-
stand source codes has attracted increasing at-
tention from financial institutions owing to the
great potential to uncover financial risks. How-
ever, there are several challenges in applying
these language models to solve programming
language related problems directly. For in-
stance, the shift of domain knowledge between
natural language (NL) and programming lan-
guage (PL) requires understanding the semantic
and syntactic information from the data from
different perspectives. To this end, we propose
the AstBERT model, a pre-trained PL model
aiming to better understand the financial codes
using the abstract syntax tree (AST). Specif-
ically, we collect a sheer number of source
codes (both Java and Python) from the Alipay
code repository and incorporate both syntactic
and semantic code knowledge into our model
through the help of code parsers, in which AST
information of the source codes can be inter-
preted and integrated. We evaluate the perfor-
mance of the proposed model on three tasks,
including code question answering, code clone
detection and code refinement. Experiment re-
sults show that our AstBERT achieves promis-
ing performance on three different downstream
tasks.

1 Introduction

Programming language and source code analysis
using deep learning methods have received increas-
ing attention in recent years. Using pre-trained
model such as such as BERT (Devlin et al., 2019),
AlBERT (Lan et al., 2020) receive a great success
on different NLP tasks. Inspired by that, some
researchers attempt to apply this technique to com-
prehend source codes. For instance, CodeBERT
(Feng et al., 2020) is a pre-trained model using
six different programming languages from GitHub,
demonstrating a good performance comparing with
different embedding techniques.

∗Corresponding Author

Although pre-trained models are now widely
used for different purposes, it is rare to see how
to apply such techniques to financial service codes.
It is believed that re-training the model using finan-
cial service code could help uncover the code haz-
ards before being released and circumvent any eco-
nomic damage (Guo et al., 2021). Existing research
points out that the use of domain knowledge is crit-
ical when it comes to training a well-performing
model, and one way to solve this problem is to pre-
train a model using specific domain corpora from
scratch (Hellendoorn et al., 2019). However, pre-
training a model is generally time-consuming and
computationally expensive, and domain corpora
are often not enough for pre-training tasks, espe-
cially in the financial industry, where the number
of open-sourced codes is limited.

To this end, we propose an AstBERT model, a
pre-trained language model aiming to better un-
derstand the financial codes using abstract syntax
trees (AST). To be more specific, AST is a tree
structure description of code semantics. Instead
of using source code directly, we leverage AST
as the prominent input information when training
and tuning AstBERT. To overcome the token explo-
sion problem that usually happens when generating
the AST from the large-scale code base, a prun-
ing method is applied beforehand, followed by a
designated AST-Embedding Layer to encode the
pruned code syntax information. To save the train-
ing time and resources, we adopt the pre-trained
CodeBERT (Feng et al., 2020) as our inception
model and continue to train on the large quantity of
AST corpus. In this way, AstBERT can capture se-
mantic information for both nature language (NL)
and programming language (PL).

We train AstBERT on both Python and Java cor-
pus collected from Alipay code repositories, which
contains about 0.2 million functions in java and 0.1
million functions in python. Then we evaluate its
performance on different downstream tasks. The

10



main contributions of this work can be summarized
as follows:

• We propose a simple yet effective way to en-
hance the pre-trained language model’s ability
to understand programming languages in the
financial domain with the help of abstract syn-
tax tree information.

• We conduct extensive experiments to verify
the performance of AstBERT on code-related
tasks, including code question answering,
code clone detection and code refinement. Ex-
periments results show that AstBERT demon-
strates a promising performance for all three
downstream tasks.

2 Related Work

In this part, we describe existing pre-trained mod-
els and datasets in code language interpretation in
detail.

2.1 Datasets in Code Understanding

It is inevitable to leverage a high-quality dataset in
order to pre-train a model that excels in code under-
standing. Some researchers have started to build up
the dataset needed for the code search task in (Nie
et al., 2016), in which different questions and an-
swers are collected from Stack Overflow. Also, a
large-scale unlabeled text-code pairs are extracted
and formed from GitHub by (Husain et al., 2019).
Three benchmark datasets are builed by (Heyman
and Van Cutsem, 2020), each of which consists of
a code snippet collection and a set of queries. An
evaluation dataset developed by (Li et al., 2019)
consists of natural language question and code snip-
pet pairs. They manually check whether the ques-
tions meet the requirements and filter out the am-
biguous pairs. A model trained by (Yin et al., 2018)
on a human-annotated dataset is used to automati-
cally mine massive natural language and code pairs
from Stack Overflow. Recently, CoSQA dataset
constructed by (Huang et al., 2021) that includes
20,604 labels for pairs of natural language queries
and codes. CoSQA is annotated by human annota-
tors and it is obtained from real-world queries and
Python functions. It is rare to find open-sourced
public source code in the financial domain, and we
therefore retrieve both Python and Java code from
the Alipay code repositories.

2.2 Models in Code Understanding

Using deep learning network to solve language-
code tasks has been studied for years. A Multi-
Modal Attention Network trained by (Wan et al.,
2019) represents unstructured and structured fea-
tures of source code with two LSTM. A masked
language model(Kanade et al., 2019) is trained on
massive Python code obtained from GitHub and
used to obtain a high-quality embedding for source
code. A set of embeddings (Karampatsis and Sut-
ton, 2020) based on ELMo (Peters et al., 2018) and
conduct bug detection task. The results prove that
even a low-dimensional embedding trained on a
small corpus of programs is very useful for down-
stream task. Svyatkovskiy et al. use GPT-2 frame-
work and train it from scratch on source code data
to support code generative task like code comple-
tion (Svyatkovskiy et al., 2020). CodeBERT (Feng
et al., 2020) is a multi-PL (programming language)
pretrained model for code and natural language,
and it is trained with the new learning objective
based on replaced token detection. C-BERT pro-
posed by (Buratti et al., 2020) is pre-trained from
C language source code collected from GitHub to
do AST node tagging task.

Different with previous work, AstBERT is a sim-
ple yet effective way to use pre-trained model in
code interpretation field. Instead of training a large-
scale model from scratch, it incorporates AST in-
formation into a common language model, from
which the code understanding can be derived.

3 AstBERT

In this part, we describe the details about AstBERT.

3.1 Model Architecture

Figure 1 shows the main architecture of AstBERT.
Instead of using source code directly, the pruned
AST information is used as the input. For each
source code token, the AST information is attached
in the front, and the position index is used to show
the order of the input. There are four embedding
modules at the AST embedding layer. Token em-
bedding is similar to what is in BERT (Devlin et al.,
2019), one key difference is that the vocabularies
used are AST keywords. The token is then encoded
to a vector format. Additionally, in AstBERT, AST-
segment and AST-position are used to integrate the
structure information of AST, the detail of their
function will be introduced in subsection 3.3. After
the AST embedding layer, the embedding vectors

11



Figure 1: The model structure of AstBERT: An easy and
effective way to enhance pre-trained language model’s
ability for code understanding

Figure 2: AST-based code representation of a financial
code snippet

are then forwarded to a multi-layer bidirectional
AST-Mask-Transformer encoder (Vaswani et al.,
2017) to generate hidden vectors. The difference
is that we use AST-Mask-Self-Attention instead of
Self-Attention to calculate the attention score, the
detail of which will be unveiled in subsection 3.4.
In the output layer, the hidden vectors generated by
AST-Mask-Transformer encoder will be used for
classification or sequence generation tasks.

3.2 Input and Pruning

We introduce the pruning process in this part. As
shown in Figure 2, the AST contains the complete

Figure 3: AST pruning process

information of the source code and provide the
brief description for each token. For example, the
getValueAsDouble is the name for MethodCallExpr
(one of the AST node types) and the TEST_var is
an argument for MethodCallExpr. We know the
Double is a type of the variable var from AST. Such
AST information reveals the semantic knowledge
of the source code.

In general, the length of AST from the com-
piled codes is greater than the plain source code,
as shown in Figure 3, the AST from Python stan-
dard library contains a number of nodes such as
lineno, endlineno and so on. Taking the snippet
result = test1 + 1 as an example, both the original
and pruned AST trees can be seen in Figure 3. It
is clearly noticed that there exists a large amount
of redundant information such as line number and
code column offset in the original AST tree, leading
to intractable AST exploration problem for large
code corpus (Wan et al., 2019). Therefore, after
generating AST, we will prune this tree by remov-
ing the meaningless and uninformed node to avoid
unintended input for the model.

3.3 AST Embedding Layer

As mentioned above, we use the pruned AST as
the input for model, and it will pass AST embed-
ding layer first. The details of the AST embedding
layer are unveiled in Figure 4, from which token-
embedding vectors, AST-segment embedding vec-
tors, AST-position embedding vectors and segment

12



Figure 4: The overview of AST embedding representations

embedding vectors are generated. Taking the code
snippet in Figure 2 as an example, we can see the
additional AST information account for most of
the tokens in the input, which unexpectedly causes
changes in the meaning of the original code. To
prevent this from happening, we use AST-segment
embedding to distinguish between AST tokens and
source code tokens. It is known that in BERT all the
order information for input sequence is contained
in the position embedding, allowing us to add differ-
ent position information for input. Here, except for
the AST-segment, we use an index combination of
hard-position and AST-position to convey the order
information. As seen in Figure 4, the index combi-
nation of name(SimpleName) is (3,1), which means
it locates at the 3rd position in the input sequence
dimension while being the 1st AST token. In the
front of name(SimpleName), there is only one ex-
tra AST token named Type(ClassOrInterfaceType).
Segment embedding is similar to BERT. The out-
put of the embedding layer is simply the sum of all
embedding vectors from these four parts. The re-
sult is then passed into the AST-Mask transformer
encoder to generate hidden vectors.

3.4 AST-Mask Transformer
Since the branch in AST contains the spe-
cific semantic knowledge to describe the role
of the code token, it is rational to make
AST tokens only contribute to the code to-
kens on the same branch. For example, in

Figure 5: The explanation of AST-Mask-Transformer

Figure 2, [Type=ClassOrInterfaceType] only de-
scribe the role of the [Double] and has noth-
ing to do with [Var]. Therefore, the em-
bedding of [Var] should not be affected by
[Type=ClassOrInterfaceType]. As demonstrated in
Figure 5, the Type=ClassOrInterfaceType should
not make a contribution to the embedding of
[CLS] tag that often used for classification by-
pass the [Double]. This is because that the
[Type=ClassOrInterfaceType] is a tag in the branch
of [Double] and should only correlate to [Double].
To prevent the AST information injection from
changing the semantic of the input, AstBERT em-
ploys Mask-Self-Attention(Xu et al., 2021) to limit
the self-attention region in Transformer(Vaswani
et al., 2017). We use AST matrix M to describe
whether the AST token and code token are on the

13



same branch, MAST is defined as follow:

MASTi,j =

{
1 wi ⊕ wj

0 wi ⊗ wj

(1)

where, wi ⊕wj indicates that wi and wj are on the
same AST branch, while wi ⊗ wj are not. i and j
are the AST-position index. The AST mask matrix
is then used to calculate the self-attention scores.
Formally, the AST-mask-self-attention is defined
as follow:

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv (2)

Si+1 = softmax(
Ki+1TQi+1MAST√

dk
) (3)

hi+1 = Si+1V i+1 (4)

where Wq, Wk, Wv are trainable model parameters.
hi is the hidden state from the ith AST-mask-self-
attention blocks. dk is the scaling factor. If hik and
hij are not in same AST branch, the MASTkj

will
make the attention score Si+1

kj to 0, which means
hik makes no contribution to the hidden state of hij .

We collect massive Python and Java codes from
Alipay code repositories and generate the AST for
these source code (Python code using standard AST
API, Java code using Javaparser). We use these
processed AST information to continue the pre-
train of the model. The technique of pre-training is
inspired by the masked language modeling (MLM),
which is proposed by (Devlin et al., 2019) and
proven effective.

4 Experiments

We test the performance of our proposed model on
different code understating tasks using the differ-
ent released test datasets. We also look into the
ablation studies.

4.1 Dataset
Code Question Answering CoSQA (Huang et al.,
2021) consists of 20,604 query-code pairs col-
lected from the Microsoft Bing search engine. We
randomly split CoSQA into 20,000 training and
604 validation examples. We also build AliCoQA
dataset based on the code collected from the Ali-
pay code repositories. We use the search logs from
AntCode search engine as the source of queries and

manually design heuristic rules to find the queries
of code searching intent. For example, queries with
the word of tutorial or example are likely to locate
a programming description rather than a code func-
tion, so we remove such queries. Then, we use
the CodeBERT matching model (Feng et al., 2020)
to retrieve high-confidence codes for every query
and manually check 5,000 query-code pairs to con-
struct AliCoQA. We randomly split AliCoQA into
4,500 training and 500 validation samples.

Code Clone Detection We use BigCloneBench
dataset (Svajlenko et al., 2014) and discard samples
with no labels. Finally, we randomly split it into
901,724 training set and 416,328 validation set.

Code Refinement BFP (Tufano et al., 2019)
dataset constains two subsets based on the code
length. For BFP_small dataset, the numbers of
training and validation are 46,680 and 5,835, re-
spectively. For the BFP_medium dataset, the num-
bers of training and validation are 52,364 and 6,545.
We collect code from Alipay code repositories and
build AliCoRF dataset. Firstly, we identify com-
mits having a message containing the words, such
as fix, solve, bug, problem and issue. Following
that, for each bug-fixing commit, we extract the
source code before and after the bug-fix. Finally,
we manually check 9,000 bug-fix pairs to construct
AliCoRF and randomly split it into 8,000 training
set and 1,000 validation set.

Evaluation Metric Following the settings in the
previous work, we use accuracy as the evaluation
metric on code question answering, and F1 score
on code clone detection. We also use accuracy as
the evaluation metric on code refinement, in which
only the example being detected and fixed properly
will be considered successfully completing the task.
We give one example case for this task in Figure
6. In this example, the model successfully fixes the
method name from getMin to getMax.

4.2 Parameter Settings

We follow the similar parameter settings in previ-
ous works (Huang et al., 2021; Svajlenko et al.,
2014; Tufano et al., 2019). On code question an-
swering task, we set dropout rate to 0.1, maximum
sequence length to 512, learning rate to 1e-5, warm-
up rate to 0.1 and batch size to 16. On code clone
detection task, learning rate is set to be 2e-5, batch
size to be 16 and maximum sequence length to
be 512. On code refinement task, we set learn-
ing rate to 1e-4, batch size to 32 and maximum

14



Datasets
ACC F1

TASK Model AliCoQA CoSQA BFP_small BFP_medium AliCoRF BigCloneBench

Question Answering

BERT 0.402 0.399 \ \ \ \
RoBERTA 0.434 0.421 \ \ \ \
CodeBERT 0.532 0.526 \ \ \ \
AstBERT 0.588 0.571 \ \ \ \

Code Refinement

LSTM \ \ 0.100 0.025 0.111 \
Transformer \ \ 0.147 0.037 0.152 \
CodeBERT \ \ 0.164 0.052 0.176 \
GraphCodeBERT \ \ 0.173 0.091 0.182 \
AstBERT \ \ 0.176 0.089 0.183 \

Code Clone

CDLH \ \ \ \ \ 0.820
ASTNN \ \ \ \ \ 0.930
FA-AST-GMN \ \ \ \ \ 0.950
RoBERTa \ \ \ \ \ 0.957
CodeBERT \ \ \ \ \ 0.965
GraphCodeBERT \ \ \ \ \ 0.971
AstBERT \ \ \ \ \ 0.973

Table 1: Experiment results of different tasks on different dataset

Figure 6: One case of AstBERT output for code refine-
ment task.

sequence length to 256. For all experiments, we
use the Adam optimizer to update model parame-
ters (Kingma and Ba, 2015).

4.3 Results of Code Question Answering
We use CoSQA (Junjie Huang et al. 2021) dataset
to verify the code question answering task. In this
task, the test sample is the query-code pair and
labeled as either “1” or “0”, indicating whether
the code can answer the query. These query-code
pairs are collected from Microsoft Bing search en-
gine and annotated by human. We train different
benchmark models using our dataset and evalu-
ate the performance of each on CoSQA for code
question answering:(i) BERT proposed by (Devlin
et al., 2019); (ii) RoBERTA proposed by (Liu et al.,

Datasets
ACC F1

Model CoSQA AliCoQA BFP AliCoRF BigCloneBench
AstBERT 0.571 0.588 0.176 0.183 0.973
-w/o AST-position 0.552 0.558 0.174 0.181 0.970
-w/o AST-Mask-Self-Attention 0.539 0.544 0.165 0.178 0.966

Table 2: Ablation study

2019); (iii) CodeBERT proposed by (Feng et al.,
2020); and (iv) AstBERT. From Table 1, we can
see the BERT and RoBERTA achieve a similar
yet relative low Acc score in this task. This is be-
cause these two models are pre-trained by natural
language corpus and not integrated with any code-
related domain knowledge. CodeBERT achieves a
better performance than the RoBERTA, similar to
the results published by (Huang et al., 2021). Our
AstBERT achieves the best performance compared
with all benchmarks. This clearly demonstrates that
the integration of AST information into the model
can further improve model’s ability for understand-
ing semantic and syntactic information in the codes.
We also evaluate our AstBERT on AliCoQA and
the results show that in financial domain dataset
AstBERT also achieves the best performance.

4.4 Results of Code Clone Detection

Code clone detection is an another task when it
comes to measuring the similarity of code-code
pair, which can help reduce the cost of software
maintenance. We use BigCloneBench (Svajlenko
et al., 2014) dataset for this task and treat this task
as a binary classification to fine-tune AstBert. The
experimental results are also shown in the Table
2. The CDLH model is proposed by (Wei and
Li, 2017) to learn representations of code by AST-

15



based LSTM and use hamming distance as opti-
mization objective. The ASTNN model (Zhang
et al., 2019) encodes AST subtrees by RNNs to
learn representation for code. The FA-AST-GMN
model (Wang et al., 2020) uses a flow-augmented
AST as the input and leverages GNNs to learn the
representation for a program. The GraphCode-
BERT (Guo et al., 2021), which is a pre-trained
model using data flow at the pre-training stage to
leverage the semantic-level structure of code, learns
the representation of code. The experiment shows
that our AstBERT achieves the best results in code
clone detection task.

4.5 Results of Code Refinement
In general, code refinement is the task of locat-
ing code defects and automatically fixing them,
which has been considered critical to uncovering
any financial risks. We use both BFP_small and
BFP_medium datasets (Tufano et al., 2019) to ver-
ify the performance of all models and show re-
sults in the Table 1. This is a Seq2Seq task, and
we record relevant accuracy for each benchmark
model. We take the results of LSTM and Trans-
former as recorded in (Guo et al., 2021). It is
observed in the table that Transformer outper-
forms LSTM, which indicates that Transformer
has a better ability of learning the representation
of code. Both CodeBERT and GraphCodeBERT
are pre-trained models, which present state-of-the-
art results at their time. Our AstBERT achieves a
better performance than other pre-trained models
on BFP_small dataset, while obtaining the compet-
itive result on BFP_medium dataset. This again
demonstrates the effectiveness of incorporating the
AST information in the pre-trained model is help-
ful to the code understanding, including the code
refinement task.

4.6 Ablation Studies
In this subsection, we explore the effects of the
AST-position and AST-Mask-Self-Attention for
AstBERT on three tasks. “w/o AST-position”
refers to fine-tuning AstBERT without AST-
position. “w/o AST-Mask-Self-attention” means
that each token in input, regardless of its position
in the AST tree, calculates the attention scores
with other tokens. As shown in Table 2, we have
made the following observations: (i) Without AST-
position or AST-Mask-Self-Attention, the perfor-
mance of AstBERT on code question answering
has shown a clear decline; (ii) It also can be seen

that the model without AST-Mask-Self-Attention
demonstrates an even worse performance than with-
out AST-position, which confirms sufficient AST
tokens can help incorporate the syntactic structures
of the code. The same trend can also be observed
on code clone detection and code refinement. We
can conclude that the AST-position and the AST-
Mask-Self-Attention play a pivotal role in incorpo-
rating the AST information into the model.

5 Conclusion

In this paper, we propose AstBERT, a simple
and effective way to enable pre-trained language
model for financial code understanding by inte-
grating semantic information from the abstract
syntax tree (AST). In order to encode the struc-
tural information, AstBERT uses a designated AST-
Segment and AST-Position in the embedding layer
to make model incorporate such AST information.
Following that, we propose the AST-Mask-Self-
Attention to limit the region when calculating at-
tention scores, preventing the input from deviat-
ing from its original meaning. We conduct three
different code understanding related tasks to eval-
uate the performance of the AstBERT. The ex-
periment results show that AstBERT outperforms
baseline models on both code question answering
and clone detection. For code refinement task,
the model achieves state-of-the-art performance on
BFP_small dataset and competitive performance
on BFP_medium dataset.

References
Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott Mc-

Carley, Yunhui Zheng, Gaetano Rossiello, Alessan-
dro Morari, Jim Laredo, Veronika Thost, Yufan
Zhuang, et al. 2020. Exploring software natural-
ness through neural language models. arXiv preprint
arXiv:2006.12641.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT, pages 4171–4186.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In EMNLP, pages 1536–1547.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, et al. 2021. Graphcodebert:

16



Pre-training code representations with data flow. In
ICLR, pages 1–21.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2019. Global
relational models of source code. In ICLR, pages
1–12.

Geert Heyman and Tom Van Cutsem. 2020. Neural code
search revisited: Enhancing code snippet retrieval
through natural language intent. arXiv preprint
arXiv:2008.12193.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20,000+ web queries for code
search and question answering. arXiv preprint
arXiv:2105.13239.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. 2019. Pre-trained contex-
tual embedding of source code. In arXiv preprint
arXiv:2001.00059.

Rafael-Michael Karampatsis and Charles Sutton. 2020.
Scelmo: Source code embeddings from language
models. arXiv preprint arXiv:2004.13214.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR, pages
1269–1272.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In ICLR, pages 1–17.

Hongyu Li, Seohyun Kim, and Satish Chandra. 2019.
Neural code search evaluation dataset. arXiv preprint
arXiv:1908.09804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on
Services Computing, 9(5):771–783.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,
Chanchal K Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In ICSME, pages 476–480.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and
Neel Sundaresan. 2020. Intellicode compose: Code
generation using transformer. In ESEC/FSE, pages
1433–1443.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine trans-
lation. ACM Transactions on Software Engineering
and Methodology, 28(4):1–29.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip S Yu. 2019. Multi-modal
attention network learning for semantic source code
retrieval. In ASE, pages 13–25.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin.
2020. Detecting code clones with graph neural net-
work and flow-augmented abstract syntax tree. In
SANER, pages 261–271.

Huihui Wei and Ming Li. 2017. Supervised deep fea-
tures for software functional clone detection by ex-
ploiting lexical and syntactical information in source
code. In IJCAI, pages 3034–3040.

Wenwen Xu, Mingzhe Fang, Li Yang, Huaxi Jiang,
Geng Liang, and Chun Zuo. 2021. Enabling lan-
guage representation with knowledge graph and struc-
tured semantic information. In CCAI, pages 91–96.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In MSR, pages 476–486.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In ICSE, pages 783–794.

17


