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Abstract
Linguistic bias in Deep Neural Network (DNN)
based Natural Language Processing (NLP) sys-
tems is a critical problem that needs attention.
The problem further intensifies in the case of
security systems, such as speaker verification,
where fairness is essential. Speaker verifica-
tion systems are intelligent systems that deter-
mine if two speech recordings belong to the
same speaker. Such human-oriented security
systems should be usable by diverse people
speaking varied languages. Thus, a speaker
verification system trained on speech in one
language should generalize when tested for
other languages. However, DNN-based mod-
els are often language-dependent. Previous
works explore domain adaptation to fine-tune
the pre-trained model for out-of-domain lan-
guages. Fine-tuning the model individually for
each existing language is expensive. Hence, it
limits the usability of the system. This paper
proposes the cost-effective idea of integrating
a lightweight embedding with existing speaker
verification systems to mitigate linguistic bias
without adaptation. This work is motivated by
the theoretical hypothesis that attentive-frames
could help generate language-agnostic embed-
dings. For scientific validation of this hypothe-
sis, we propose two frame-attentive networks
and investigate the effect of their integration
with baselines for twelve languages. Empirical
results suggest that frame-attentive embedding
can cost-effectively reduce linguistic bias and
enhance the usability of baselines.

1 Introduction

Mitigating the linguistic bias in Deep Neural Net-
work (DNN) based models is one of the critical
challenges in Natural Language Processing (NLP).
The linguistic bias, specifically in the security sys-
tems, such as speaker verification models, is a
far more critical problem requiring much research.
Speaker verification systems are biometric authen-
tication systems that use speech signals to authenti-
cate a speaker. These systems use the fact that every

speaker has unique traits in their voice (Hansen and
Hasan, 2015). Such systems have real-world ap-
plications in e-commerce, forensics, law, business,
and access control mechanisms (Hansen and Hasan,
2015). These systems can be text-dependent or
text-independent (Hansen and Hasan, 2015). Text-
independent speaker verification systems are more
user-friendly than text-dependent systems. These
systems authenticate a speaker without any con-
straint on the content of speech.

However, speaker verification models often tend
to be language-dependent (Auckenthaler et al.,
2001). The reason is that a robust speaker veri-
fication system would require memory to analyze
the sequential speech data and capture relevant dis-
criminatory information. Memory helps in remem-
bering past information. Remembering the past
and predicting the future can contribute to linguis-
tic content in the embedding (Shain and Elsner,
2020). Therefore, the generated embedding for
speaker verification may contain linguistic detail.

Language-dependent speaker verification mod-
els perform relatively well on test sets containing
speech recordings in the same language as the train-
ing set. However, the performance of these systems
degrades on test sets containing speech recordings
in different languages. The majority of the publicly
available speech datasets are in English. It is a
tedious task to get labeled datasets for various low-
resource languages. Most of the previous works
use domain adaptation to improve the performance
of speaker verification models only for a limited set
of languages (Rohdin et al., 2019; Xia et al., 2019;
Chen et al., 2020). It is also costly to fine-tune
a pre-trained speaker verification model individu-
ally for each existing language. Further, studies
show that the linguistic content in the embedding
increase with the temporal scope of representations
(Chrupała et al., 2020).

Our proposed work is based on the theoretical
hypothesis that frame-level features contain less lin-
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guistic information due to the low-temporal scope
of frames. Thus, frame-level features may help gen-
erate a language-agnostic embedding. Furthermore,
an intelligent selection of frame-level features may
help in enhancing the model’s generalizability to
out-of-domain testing. We aim to address the prob-
lem of language dependency in text-independent
speaker verification systems cost-effectively, with-
out the overhead of domain adaptation. We pro-
pose an idea that incorporates a lightweight em-
bedding with existing speaker verification systems
which may help in improving the generalizability of
these systems to out-of-domain testing. To scientifi-
cally validate the theoretical hypothesis, we present
and investigate two variants of frame-attentive net-
works: FAtNet-v1 and FAtNet-v2. Our proposed
models accept two speech recordings as input and
determine if they belong to the same speaker. The
speakers in the trial pair may be unknown. We qual-
itatively compare the generalization ability of our
proposed models with two strong baselines on four
publicly available data sets. We perform quantita-
tive experiments on 12 languages to assess the inte-
gration of our proposed FAtNet embeddings with
the baselines on publicly available out-of-domain
test sets without domain adaptation. We have re-
leased the code1 to encourage more research on
this problem.

We summarize our main contributions below:

1. Investigate cognitive ideas such as attention,
residual connection for memory, and learn-
ing parameters to generate language-agnostic
embeddings.

2. To validate the theoretical hypothesis scien-
tifically, propose two novel frame-attentive
networks: FAtNet-v1 and FAtNet-v2.

3. Perform qualitative and quantitative experi-
ments for twelve languages using two strong
baselines and four publicly available datasets.

2 Background and Motivation

Language dependency in speaker verification:
The current state-of-the-art explores deep neural
networks (DNN) to solve speaker recognition prob-
lems (Hansen and Hasan, 2015; Li et al., 2018;
Jung et al., 2020, 2019; Nagrani et al., 2017; Sny-
der et al., 2018; Nagrani et al., 2020; Guzewich
et al., 2018; Zhao et al., 2019; Gao et al., 2018).
However, most DNN-based feature extractors are

1https://github.com/vdivyas/FAtNet.git

language-dependent (Oleg et al., 2016). Language
dependency can make the system less usable as
users may belong to different geographic locations
and speak varied languages. It is challenging to get
labeled datasets for various low-resource languages
(Brignatz et al., 2021). Moreover, when tested on
multilingual datasets and features, the models that
show consistent behavior may be helpful in other
applications (such as code-switching) through in-
formation sharing (Belinkov et al., 2019). We know
that there are approximately 7,000 languages in the
world (Huang et al., 2021). One of the critical chal-
lenges in Natural Language Processing (NLP) is to
develop techniques to overcome this linguistic bias
and enhance the usability of the model across the
globe (Huang et al., 2021).

Recent works: Transfer learning is a solution
to address the problem of domain mismatch. How-
ever, it is challenging to get labeled datasets for var-
ious low-resource languages (Brignatz et al., 2021).
Recent works investigate adversarial domain adap-
tation techniques for solving cross-lingual speaker
verification problems (Rohdin et al., 2019; Xia
et al., 2019; Chen et al., 2020; Brignatz et al., 2021).
However, most of these approaches can improve
the performance of speaker verification models for
a limited set of languages as these approaches re-
quire an additional overhead of domain adaptation.

To the best of our knowledge, (Chojnacka et al.,
2021) is the closest work related to our problem
statement where the authors attempt to reduce lin-
guistic bias in speaker verification without domain
adaptation. In (Chojnacka et al., 2021), the au-
thors suggest that training a speaker verification
model in multiple languages can increase its gener-
alizability to out-of-domain languages. However,
they trained the model on an extensive training set
consisting of 1,96,000 speakers and 2,06,18,000
utterances. Training on such an extensive dataset
requires significant computational requirements, of-
ten not feasible in a realistic scenario. In addition
to that, their proposed work involves a combination
of text-dependent and text-independent speaker ver-
ification systems. Our proposed method involves
integrating a lightweight embedding with the exist-
ing text-independent speaker verification models to
reduce linguistic bias in those systems.

Linguistic components in a frame: Speech sig-
nals are non-stationary, and hence they are divided
into frames. A speech signal is assumed to be
stationary within a frame (Malek, 2020). The tem-
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poral scope of a frame is usually a few milliseconds.
Researchers have investigated the role of temporal
scope in their study of phonology in neural models
(Chrupała et al., 2020). Studies show that Repre-
sentational Similarity Analysis (RSA) applied to
local representations results in lower correlations
between phonemes and neural activation patterns
(Chrupała et al., 2020). Thus, considering the low
temporal scope of frames, it is intuitive that they
carry less linguistic information.

Theoretical Hypothesis: Our proposed work in-
vestigates the theoretical hypothesis that utterance-
level embedding captures more linguistic infor-
mation than frame-level embedding. Therefore,
a frame-level embedding can be more language-
robust than an utterance-level embedding. This ab-
stract knowledge of frame-level features can allow
the model to learn relevant discriminatory infor-
mation from frames and ignore the linguistic infor-
mation from speech. Researchers have stated that
some frames tend to be more critical than others for
the final-encoded representation of speech (Havard
et al., 2019). Attention mechanisms are popular in
state-of-the-art speaker verification models (Zhu
et al., 2018; Okabe et al., 2018). We explore the ef-
fectiveness of attention for an intelligent selection
of features within a frame.

3 Proposed Approach

To investigate the theoretical hypothesis, we pro-
pose the following two variants of Frame-Attentive
Networks: FAtNet-v1 and FAtNet-v2.

As illustrated in Figure 1 and Figure 2, the time-
delay neural network (TDNN) paths are similar in
both the FAtNet versions and the details are as fol-
lows: The model accepts a pair of Mel-frequency
cepstral coefficients2 (MFCC) for speaker verifica-
tion (Chen et al., 2020; Zhu et al., 2018; Khoury
et al., 2014). MFCCs finetune the features to what
human beings hear (Lyons). Let d be the dimen-
sion of input MFCCs and l1 and l2 be the number
of frames in the given pair for speaker verification.
The values of l1 and l2 may differ due to the dura-
tion variability issue. The models were trained on
3-second chunks of speech (Nagrani et al., 2020).
Eighty-dimensional MFCCs of shape (94,80) gen-
erated using these audio clips for training are input
to the model. As shown in Figure 1 and Figure

2We compared the performance of 80-dimensional MFCCs
with 300-dimensional spectrogram (Nagrani et al., 2017) as
inputs to FAtNet-v1. Details are present in the Appendix
section.

Figure 1: Architecture diagram for FAtNet-v1.

2, we pass each of the input MFCCs to the Adap-
tiveAvgPool2d layer to get features of shape (b, 94,
80), where b is the batch-size (Yu et al., 2019). It
allows the model to accept variable duration speech
recordings during test time without any special aug-
mentation strategy. It facilitates easy integration of
FAtNet embedding with other speaker verification
models and enhances the usability of the models.

The next step is to compute frame-level features
for further analysis. The abstract knowledge of
frame-level features can reduce the linguistic infor-
mation in the final embedding. We use four stacked
TDNN3 layers to extract the frame-level features
(Vijayaditya Peddinti, 2015). Given two speech
recordings as input, the problem is to determine if
they belong to the same speaker or not. Thus, we
have two such TDNN paths for input audio clips.

FAtNet-v1: We concatenate the frame-level fea-
tures obtained for both the input speech recordings
as shown in Figure 1. We apply batch normaliza-
tion. We further pass these concatenated features
through an eight-head frame-level attention block.
In each frame, attention gives more weight to rele-
vant features.

3Hyper-parameter detail for the stacked TDNN layers is
present in the Appendix section.
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Figure 2: Architecture diagram for FAtNet-v2.

FAtNet-v2: We pass the frame-level features
obtained for the input speech recordings through
separate four-head attention blocks. Thus, we get
embeddings 1 and 2 as shown in Figure 2. In each
frame, the attention block gives more weight to
relevant features. We then concatenate the outputs
to get embedding 3.

Attention: Attention mechanisms are popular
in state-of-the-art speaker verification models (Zhu
et al., 2018; Wu et al., 2020). Our proposed FAt-
Net attention mechanism is inspired by (Vaswani
et al., 2017; Moshnoi). The frame-level features
are sent through a multi-head residual self-attention
block, as shown in Figure 1 and Figure 2, respec-
tively. The input to the attention block can be a
tensor of shape (b, l, d) where b is the batch size,
l is the number of frames, and d is the number of
features or dimensions in each frame. Let dv be the
dimension of linear space where the input needs
to be projected, and nv is the number of heads in
the multi-head self-attention block. We pass the
same tensor to the attention block as the query ten-
sor, key tensor, and, value tensor. The idea is to
use the query tensor and key tensor to generate a
weight tensor for the value tensor. The first step in-
volves passing each of the three tensors: query, key,
and value through separate fully-connected layers
consisting of dv ∗ nv output units and applying
the ReLU activation function to get the modified
query, key and value tensors, say Q, K, and V ,
respectively. After adequate reshaping, the dimen-
sions of Q, K, and V should be (b, l, nv, dv).

For each example i, the following computation
is performed within the attention block using Q,

K, and V :

1. K i
permute := K i.permute(0, 2, 1)

2. probi := Qi*K i
permute

3. probi
scaled :=

prodi√
dv

4. weightsi
attn:=Softmax(prodi

scaled, dim = -1)

5. rprodi := weightsi
attn*V i

We further include a residual connection that acts
as a memory to combine the initial set of frame-
level features with rprodi. So, to compute the out-
put of the residual attention block, we add rprodi
to the original query tensor and pass it through a
fully-connected layer consisting of dout neurons
and apply ReLU .

The remaining layers are similar in both FAtNet-
v1 and FAtNet-v2. The details are as follows:
The generated attentive-frames are batch normal-
ized. Then these are passed through a fully con-
nected layer for fine-grained analysis. We fur-
ther apply a leaky-relu activation function with
L2-normalization. We aggregate these frame-level
features by computing a mean and then pass them
through a fully connected layer consisting of two
units for speaker verification.

4 Experimental Setup

4.1 Datasets

Training datasets: We trained separate models of
FAtNet-v1 on publicly available VoxCeleb-14 and
VoxCeleb-2 dev sets5 (Nagrani et al., 2017; Chung
et al., 2018). FAtNet-v2 was trained on VoxCeleb-2
dev set (Zhao et al., 2019). VoxCeleb-1 speech cor-
pus contains recordings from 1,251 speakers, out of
which 799 and 215 speakers belong to the USA and
UK, respectively, where English is a dominant lan-
guage. It consists of utterances from 1,211 speakers
in the dev set and 40 speakers in the test set. The
VoxCeleb-2 dataset consists of 5,994 speakers in
the dev set. We used the same dev-test split as given
in (Nagrani et al., 2017; Chung et al., 2018). The
VoxCeleb datasets contain mostly English speech
recordings (Chen et al., 2021). Details about the
training setup are present in the Appendix section.

Test datasets: Experiments were conducted us-
ing trial pairs from the following publicly available

4VoxCeleb-1: https://www.robots.ox.ac.uk/
~vgg/data/voxceleb/vox1.html

5VoxCeleb-2: https://www.robots.ox.ac.uk/
~vgg/data/voxceleb/vox2.html
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datasets: VoxCeleb-16 test set (mostly English)
(Nagrani et al., 2017), LibriSpeech7 test set (En-
glish) (Panayotov et al., 2015), Aishell-1 test set8

(Non-English) (Bu et al., 2017), and Voxforge9 test
set (Non-English) (Voxforge.org). Aishell-1 is a
Mandarin speech corpus. Voxforge test set con-
tains speech recordings in 10 different languages,
namely, Bulgarian, Dutch, French, German, Greek,
Italian, Portuguese, Russian, Spanish, and Turk-
ish. We randomly generated the trial pairs for
LibriSpeech, Aishell-1, and Voxforge from these
publicly available datasets. The VoxCeleb-1 test
set, LibriSpeech test set, Aishell-1 test set, and
the Voxforge test set contain 37720, 47402, 23800,
and 51856 trial pairs, respectively. The majority
of the publicly available speech datasets are in the
English language. VoxCeleb (used to train the mod-
els) datasets contain speech recordings in mostly
English. Therefore we primarily investigate the
effectiveness of this work on Non-English test sets
without domain adaptation.

4.2 Baselines

We performed experiments using two publicly
available baselines: RawNet-210 (Jung et al., 2020)
and VGG-M11 (Nagrani et al., 2017).

RawNet-2: RawNet-2 is an improved version
of RawNet (Jung et al., 2019). It takes raw wave-
form as input and extracts speaker embedding. The
model is pre-trained on VoxCeleb-2 for the speaker
identification task to obtain 1024-dimensional em-
bedding (Jung et al., 2020). Speech recordings
from the trial pair are fed to the model individu-
ally as inputs. Thus, we get two 1024-dimensional
embeddings for each input audio in the trial pair.
We compute a cosine-similarity score of these two
embeddings for the speaker verification task.

VGG-M: The VGG-M model was trained on
the entire VoxCeleb-1 dataset for speaker iden-
tification (Nagrani et al., 2017). It generates
a 4096-dimensional discriminative embedding.
We used this pre-trained model to construct a
siamese network for speaker verification. We fine-

6VoxCeleb-1 : https://www.robots.ox.ac.uk/
~vgg/data/voxceleb/meta/veri_test.txt

7LibriSpeech: https://www.openslr.org/12
8Aishell-1: https://www.openslr.org/33/
9Voxforge: http://www.voxforge.org/

10We used the pre-trained RawNet-2 model available in
https://github.com/Jungjee/RawNet

11We used the pre-trained VGG-M model avail-
able in https://github.com/Derpimort/
VGGVox-PyTorch

tuned the siamese network on VoxCeleb-1 dev for
speaker verification. Speech recordings from a
trial pair are inputs to the VGG-M models (frozen
weights). We concatenate the generated 4096-
dimensional embeddings to get a single 8,192-
dimensional embedding. After batch normaliza-
tion, we pass this embedding through a fully con-
nected layer (consisting of 512-units) and apply
the ReLU activation function. Then, after perform-
ing L2−normalization, this 512-dimensional em-
bedding (VGG-embedding) is fed to another fully
connected layer consisting of two units for speaker
verification.

4.3 Input strategy
For simplicity, we feed the input features to the
model without any test time augmentation. The
adaptive average pooling layer of the FAtNet model
handles the duration variability issue. FAtNet is
not a siamese network, and the weights of both the
TDNN paths are learned separately. We pass the
features from each input audio clip in the trial pair
through both the TDNN paths. We further compute
a mean as shown below: Assuming mfcc1 and
mfcc2 are the MFCC features obtained for clips in
the trial pair.

FAtNet-v1:

1. prob1 := model(mfcc1, mfcc2)
2. prob2 := model(mfcc2, mfcc1)
3. probfinal := mean(prob1, prob2)

FAtNet-v2:

1. emb1a,emb2a := model(mfcc1, mfcc2)
2. emb2b,emb1b := model(mfcc2, mfcc1)
3. emb1 := mean(emb1a, emb1b)
4. emb2 := mean(emb2a, emb2b)
5. probfinal := CosineSimilarity(emb1, emb2)

4.4 Evaluation Metric
Equal Error Rate (EER) is a standard evaluation
metric for biometric systems (Hansen and Hasan,
2015). Therefore, we investigate the effectiveness
of this work in terms of EER. A lower EER score
indicates a better performance.

5 Experiments and Results

5.1 Experimental validation of hypothesis
Our proposed approach aims to reduce the linguis-
tic bias in the existing speaker verification systems
by integrating a language-agnostic embedding. To
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scientifically validate the theoretical hypothesis, we
explore the effect of integrating FAtNet embedding
with baselines for out-of-domain test sets.

Consider a trial pair (clip1.wav, clip2.wav)
having MFCCs, say, (mfcc1,mfcc2) and spec-
trograms, say, (spec1, spec2).

VGG-M ⊕ FAtNet-v1: In this integration,
we directly pass MFCC’s for the trial pair, say
(mfcc1,mfcc2), through the FAtNet-v1 model to
get 1024-dimensional FAtNet embedding. We also
pass spectrograms, say (spec1, spec2), through
the VGG-M siamese baseline to get the 512-
dimensional VGG-embedding. After concatenat-
ing these embeddings, we pass it to a fully con-
nected layer of 1024 neurons. Finally, after ap-
plying ReLU and L2−normalization, we pass it
through another fully connected layer consisting
of 2 units for speaker verification. We fine-tuned
the last two fully connected layers on the VoxCeleb
training set for speaker verification.

RawNet-2 ⊕ FAtNet-v2: For this integration,
we obtained the 512-dimensional FAtNet embed-
dings for speech recordings in trial pair by feed-
ing (mfcc1,mfcc2) through the FAtNet-v2 model.
We get these FAtNet embeddings from steps 3 and
4 of the input strategy (described in section 4.3)
for FAtNet-v2. We obtained the 1024-dimensional
RawNet embeddings for recordings by feeding
them to the RawNet-2 baseline. We compute cosine
similarity after concatenating audio1’s FAtNet-v2
embedding with its RawNet-2 embedding and au-
dio2’s FAtNet-v2 embedding with its RawNet-2
embedding.

As illustrated in Table 1, we observe significant
improvements in the performance of baselines on
out-of-domain test sets after integration with FAt-
Net embeddings. This observation suggests that
with a very little overhead, our proposed FAtNet
embeddings may help improve the performance of
these baselines on out-of-domain test sets without
domain adaptation.

5.2 Language-specific analysis

For an extensive validation of the observations from
the previous experiment, we created separate test
sets for 11 different languages using the Voxforge
dataset. The Bulgarian test set consists of 3,110
trial pairs. The other test sets contain 20,000 trial
pairs each. Figure 3 and Figure 4 show that in-
tegrating the baselines with our proposed FAtNet
embedding consistently reduced the equal error

Figure 3: Figure showing that integrating VGG-M with
FAtNet-v1 consistently reduced the EER on test sets
generated for speech in different languages.

Figure 4: Figure showing that integrating RawNet-2
with FAtNet-v2 consistently reduced the EER on test
sets generated for speech in different languages.

.

rate. This observation further verifies that the FAt-
Net embedding can help in reducing the language
dependency of baselines and increase their gener-
alizability on out-of-domain test sets. We observe
an absolute improvement of 2.64% on the Dutch
(Non-English) test set after integrating FAtNet-v1
with VGG-M. We observe an absolute improve-
ment of 3.65% on the Portuguese (Non-English) set
after integrating RawNet-2 with FAtNet-v2. Thus,
the highest absolute improvements observed in the
language-specific test sets were in Non-English test
sets (Dutch and Portuguese).

5.3 Linguistic study with augmentation

To get more linguistic insights, we study the perfor-
mance of standalone FAtNet models using test-time
augmentation (TTA) to feed input data to the mod-
els. We call the input strategy described in section
4.3 as S0. In TTA Strategy, each input audio record-
ing in the test set is either repeated several times
or clipped to make its duration equal to 30-second
(Nagrani et al., 2020). We further clip them into
3-second chunks. We create a batch of all possible
pairs. So, we get a batch of 100 pairs. Finally, we
feed the entire batch to the model (as shown for S0).
For FAtNet-v1, we average out the probabilities in
the end. For FAtNet-v2, we compute the average
of 100 sets of obtained embedding1’s to get the
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Model FAtNet Train set Test Set EER (%) Rel. Imp. (%)
VGG-M - Voxforge 9.190 -

VGG-M ⊕ FAtNet-v1 VoxCeleb-1 dev Voxforge 7.665 +16.594%
VGG-M ⊕ FAtNet-v1 VoxCeleb-2 dev Voxforge 7.618 +17.106%

VGG-M - Aishell-1 9.999 -
VGG-M ⊕ FAtNet-v1 VoxCeleb-1 dev Aishell-1 9.139 +8.601%
VGG-M ⊕ FAtNet-v1 VoxCeleb-2 dev Aishell-1 6.866 +31.333%

RawNet-2 - Voxforge 7.012 -
RawNet-2 ⊕ FAtNet-v2 VoxCeleb-2 dev Voxforge 5.341 +23.831%

RawNet-2 - Aishell-1 6.202 -
RawNet-2 ⊕ FAtNet-v2 VoxCeleb-2 dev Aishell-1 3.832 +38.213%

Table 1: Table showing the relative improvements in the performance of VGG-M and RawNet-2 baselines after
integration with FAtNet embeddings.

Figure 5: Figure showing the stability of the proposed
FAtNet models on out-of-domain test sets. We achieved
a better performance using the S1 test-time augmenta-
tion strategy as compared to S0.

final tensor for embedding1. We do the same for
embedding2. Then, we compute the cosine similar-
ity between final embedding1 and embedding2. We
call this input strategy S1.

Observations: Figure 5 shows that we achieved
a better performance using S1 as compared to S0.
Interestingly, FAtNet-v2 achieved better perfor-
mance on out-of-domain (Non-English) test sets
than FAtNet-v1. It is reasonable as FAtNet-v2 con-
tains two 4-head attention blocks, whereas FAtNet-
v1 contains only a single 8-head attention block.
It indicates that an intelligent selection of frame-
level features individually from each audio clip
enhances the language robustness of the model for
out-of-domain sets.

5.4 Qualitative comparison with the baselines

In this experiment, we compare the generalization
capabilities of our proposed networks with the base-

Figure 6: Figure showing that baselines’ performance
degraded on Non-English test sets without domain adap-
tation. On the contrary, the performance of FAtNet
models improved on those sets without adaptation.

lines. We observe from Figure 6 that the baseline
models performed relatively well on the VoxCeleb-
1 test set (mostly English) and LibriSpeech (En-
glish) test set. However, the performance of base-
lines degraded on the other two out-of-domain mul-
tilingual test sets, namely, Aishell-1 (Mandarin)
and Voxforge (Non-English).

On the contrary, we observe that the performance
of FAtNet models improved for out-of-domain mul-
tilingual test sets. FAtNet models generalized well
to out-of-domain test sets without domain adap-
tation. It illustrates the language dependency in
VGG-M and RawNet-2 baselines. The relatively
poor performance of FAtNet models on VoxCeleb-
1 and LibriSpeech test sets may be due to other
variability issues in these datasets. VoxCeleb-1 is a
dataset collected in noisy unconstrained conditions.
LibriSpeech corpus (derived from audiobooks) con-
sists of high prosodic variations. It suggests that
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frame-attentive networks are generalizable but not
robust to noise or prosodic variations.

5.5 Ablation Study

Intending to investigate which component of FAt-
Net models makes them language robust, we did
an ablation study. FAtNet models contain two
parts: the TDNN module and the attention block.
We trained a simple TDNN-based model on the
VoxCeleb-2 dev set. The architecture of this model
remains the same as FAtNet models, except that
this TDNN-based model does not contain the at-
tention block. It is observed from Figure 7 and
Figure 8 that our proposed FAtNet models outper-
formed the TDNN model on most of the test sets.
The plots suggest that frame-level features make
the model language robust. An intelligent selection
of features using attention can help in enhancing
performance. Thus, our proposed FAtNet mod-
els consisting of this TDNN model and attention
blocks are language robust.

Interestingly, the TDNN model outperformed
FAtNet-v1 and FAtNet-v2 on Aishell-1 and Lib-
riSpeech. FAtNet-v1 outperformed TDNN on
LibriSpeech, but FAtNet-v2 could not show that
FAtNet-v1 can better handle prosodic variations
than FAtNet-v2. It is reasonable as FAtNet-v1 con-
tains a single attention block that selects intelligent
features after concatenating the frame-level fea-
tures of both the audio clips. Thus, the number of
dimensions of each frame sent to the FAtNet-v1
attention block is higher than FAtNet-v2. However,
FAtNet-v2 performed better on out-of-domain test
sets than TDNN, whereas FAtNet-v1 performed
poorly on the Aishell-1 test set compared to TDNN.
The presence of two separate attention blocks (spe-
cific for each audio clip) in FAtNet-v2 makes it
more language robust than FAtNet-v1.

6 Discussion

This work investigates the cost-effective idea of
integrating the lightweight frame-attentive embed-
ding with heavier and stronger baselines to mitigate
the linguistic bias in such baselines without adap-
tation. After comprehensive experimentation on
twelve languages and ablation studies, we observed
that the proposed method showed significant and
consistent improvements in reducing the linguistic
bias in the baselines. Some final considerations:

Model complexity: Table 2 illustrates that the
FAtNet models consist of fewer parameters as com-

Figure 7: Comparing the performance of TDNN model
with FAtNet-v1. We used the S0 strategy (FAtNet-v1
version) for both these models.

Figure 8: Comparing the performance of TDNN model
with FAtNet-v2. We used the S0 strategy (FAtNet-v2
version) for both these models.

pared to the baselines. Thus, the proposed frame-
attentive networks take less time to train. The
VGG-M and the RawNet-2 occupy 71.7MB and
53.6MB of disk space. Our proposed FAtNet-v1
and FAtNet-v2 occupy 41MB and 32.6MB of space.
Thus, FAtNet models are lighter than the baselines.

Model #Parameters
VGG-M 17909219

RawNet-2 13379378
FAtNet-v1 10226690
FAtNet-v2 8127490

Table 2: Table showing details about the number of
parameters in the proposed networks and the baselines.

Cost-effectiveness: Mitigating the linguistic
bias without adaptation is crucial for enhancing the
usability of the model across the globe. However,
it is also an extremely challenging problem that re-
quires complex decision-making. Consequently, it
requires more parameters in the network and some
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additional overhead. Below we discuss the over-
head of some of the popular methods to mitigate
the problem of linguistic bias:

1. Fine-tuning the pre-trained model individu-
ally for each language could help mitigate this
issue. However, considering that there are
approximately 7,000 languages in the world
(Huang et al., 2021), it is costly to adapt
the models individually for each existing lan-
guage.

2. Training heavy and highly complex models
on extensive datasets could help enhance the
model’s generalizability to out-of-domain test-
ing. However, this approach requires sig-
nificant computational overhead and storage
space.

FAtNet models have lower complexity than the
baseline models. We purposefully integrated our
proposed lightweight embeddings with heavier and
stronger baselines. We observed significant im-
provements after integrating the lightweight FAt-
Net embeddings with the baselines. Hence, with a
very little overhead, FAtNet embeddings may help
enhance the generalizability of baselines. There-
fore, as compared to the overhead of the above two
approaches, our proposed approach cost-effectively
enhances the usability of baseline models across
the globe.

7 Conclusions and Future Work

In this paper, we introduced the cost-effective idea
of utilizing a lightweight frame-level embedding
for reducing linguistic bias in existing speaker ver-
ification systems without the overhead of domain
adaptation. We also explored applying attention
to individual frames to focus on relevant frame-
level discriminative information. For an in-depth
analysis of our proposed theoretical hypothesis, we
proposed two variants of frame-attentive networks:
FAtNet-v1 and FAtNet-v2. We investigated the
effect of their integration with the baselines for
twelve languages. Empirical results showed con-
sistent improvements in the performance of base-
lines on out-of-domain test sets without domain
adaptation after integration with the FAtNet embed-
ding. Qualitative comparison with baselines sug-
gested that the proposed models are comparatively
more generalizable. Additionally, we did an abla-
tion study of our proposed networks. It turns out

that frame-level embedding captures less linguis-
tic information from speech than utterance-level
embedding. An intelligent selection of features
from frames can further improve the performance
of speaker verification models.

Our analysis points to vital problems for future
work. For instance, it may be worthwhile to ex-
plore standalone domain-invariant architectures.
This work focuses on the scenario where the in-
put speech recordings within a trial pair are in the
same language. However, it may be helpful to ex-
plore this idea further for bilingual speakers where
the input speech recordings in the trial pair are in
different languages.
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A Training Setup

We cropped the silent parts of speech recordings
and clipped them into chunks of 3-seconds. We
generated MFCCs of 80-dimensions as acoustic in-
puts to the model using the Librosa library (McFee
et al., 2015). We randomly generated separate train-
ing sets consisting of 5,25,000 and 23,88,000 trial
pairs for models trained on VoxCeleb-1 dev and
VoxCeleb-2 dev sets, respectively. The training
set consists of an equal number of positives and
negatives. We shuffled the training examples be-
fore each epoch. The batch size was 128. We
trained the proposed models under the joint su-
pervision of softmax loss and center loss. Cen-
ter loss helps in reducing intra-speaker variations,
whereas the softmax loss helps in increasing the

inter-speaker variations.(Li et al., 2018). We use
Adam and RMSProp for FAtNet and center loss,
respectively (Li et al., 2018; Paszke et al., 2017).
For training on VoxCeleb-1 dev, the learning rate
was 0.005 and 0.2 for Adam (for FAtNet) and RM-
Sprop (for center loss), respectively. The learn-
ing rates were reduced after every ten epochs us-
ing step_lr scheduler with the gamma value of
0.5 and 0.3 for Adam and RMSprop, respectively.
For training on VoxCeleb-2 dev, the learning rate
was as low as 0.0005 for both Adam (for FAt-
Net) and RMSprop (for center loss), respectively.
It is due to more steps being performed in one
epoch while training on VoxCeleb-2 dev. We com-
puted the total loss as follows: total_loss :=
softmax_loss + 0.01 ∗ center_loss (Li et al.,
2018). We used GeForce GTX 1080 GPU.

B Effect of training set size on model
performance

Figure 9: Figure showing the effect of training set size
on the performance of FAtNet-v1. Observation: The
FAtNet-v1 model trained on the VoxCeleb-2 dev set per-
forms better than the model trained on the VoxCeleb-1
dev set for most of the test sets. It indicates that increas-
ing the size of the training set can help in improving the
performance of speaker verification models.

In this experiment, we study the effect of train-
ing set size on the model performance. It can help
visualize the improvements in increasing the num-
ber of speakers in the training set. For this experi-
ment, we trained separate models of FAtNet-v1 on
VoxCeleb-1 dev and VoxCeleb-2 dev respectively.
As shown in Figure 9, the model trained on the
VoxCeleb-2 dev set outperformed that trained on
the VoxCeleb-1 dev set for most of the test set. It
is reasonable as the VoxCeleb-2 dev set is more di-
verse and multilingual than the VoxCeleb-1 dev set.
For the LibriSpeech test set, the model trained on
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the VoxCeleb-1 dev set performed slightly better
than that trained on the VoxCeleb-2 dev set. It is
reasonable due to the high proportion of English
speech recordings in VoxCeleb-1 and LibriSpeech
being an English speech corpus. Thus, we used the
FAtNet models trained on the VoxCeleb-2 dev set
for experiments (unless explicitly specified other-
wise).

C Choice of Input Features

We compared the performance of 80-dimensional
MFCCs with 300-dimensional spectrogram (Na-
grani et al., 2017) as inputs to FAtNet-v1. As illus-
trated in Table 3, we achieved better performance
using the MFCC features.

Test Set MFCC Spectrogram
VoxCeleb-1 14.682 20.668
LibriSpeech 13.527 20.919

Voxforge 10.694 20.274
Aishell-1 9.521 21.143

Table 3: Table showing the EER(%) on training FAtNet-
v1 using MFCC and Spectrogram features, respectively.

D Hyper-parameter details for the
stacked TDNN

Table 4 illustrates the hyper-parameter detail for the
four stacked TDNN layers in the proposed frame-
attentive networks. We set the dropout and stride
to 0.1 and 1, respectively, for all four layers.

Hyper-parameter #1 #2 #3 #4
Input dimension 80 512 512 512

Output dimension 512 512 512 512
Context-size 3 5 3 1
Batch-norm False False True True

Table 4: Hyper-parameter detail for the stacked TDNN
layers in FAtNet models.
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