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Abstract

Pre-trained language models (PLMs) can pro-
vide a good starting point for downstream
applications. However, it is difficult to gen-
eralize PLMs to new tasks given a few labeled
samples. In this work, we show that Relation
Graph augmented Learning (RGL) can improve
the performance of few-shot natural language
understanding tasks. During learning, RGL
constructs a relation graph based on the label
consistency between samples in the same batch,
and learns to solve the resultant node classi-
fication and link prediction problems on the
relation graph. In this way, RGL fully exploits
the limited supervised information, which can
boost the tuning effectiveness. Extensive ex-
perimental results show that RGL consistently
improves the performance of prompt-based
tuning strategies.1

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), have become the standard workhorse
for nowadays natural language processing tasks.
A direct way of leveraging these PLMs is to fine-
tune them by taking gradient descent w.r.t. the
objective of downstream tasks. However, tuning
the large PLM by a few labeled samples has
a high risk of overfitting (Dodge et al., 2020;
Zhang et al., 2021; Gunel et al., 2020). Besides,
as PLMs are trained by an objective different
from the downstream tasks, the ability of PLM
may not be fully exploited. Recently, prompt-
based tuning methods emerge and obtain promising
results on tuning PLMs to new tasks with a few
labeled samples (Liu et al., 2021). In particular,
these methods use prompts to reformulate the
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1Codes are available at https://github.com/PaddlePaddle/
PaddleNLP/tree/develop/examples/few_shot/RGL.

downstream tasks into the same form of pre-
training tasks such that the gap between pre-
training and fine-tuning is reduced (Brown et al.,
2020; Schick and Schütze, 2021a). Concretely,
prompt-based tuning strategies rewrite the input
sequence into a cloze question with masks (Schick
and Schütze, 2021a). The input sequence is
rewritten as prompts, while the corresponding label
is replaced by answer tokens. Some methods use
hard prompts and answers which use text strings
with certain semantic meaning (Schick and Schütze,
2021b; Tam et al., 2021; Gao et al., 2021), while
others take learnable parameters as soft prompts
and answers (Liu et al., 2021; Li and Liang,
2021; Lester et al., 2021). One can use multiple
prompts to boost the performance of prompt-based
tuning (Brown et al., 2020; Schick and Schütze,
2021b). While the above strategies improve
few-shot performance, they pay less attention to
exploiting the relations among the limited number
of labeled samples.

In this work, we propose a simple yet effective
relation graph augmented approach which can
enhance the performance of prompt-based tuning
strategies PLM in few-shot natural language under-
standing tasks. Specifically, our proposal aims at
fully exploiting the limited supervised information
via Relation Graph augmented Learning, we
thus call the proposed method RGL. RGL first
constructs a batch-wise relation graph, where every
node refers to a labeled sample and the edge
between nodes refers to the similarity between
the two samples. RGL establishes the edge in the
relation graph w.r.t whether the two samples are
from the same class and regularizes the similarity
of representations learned by PLMs between
every two samples to fit the edge of the relation
graph. RGL can easily scale up as the relation
graph is constructed w.r.t. only a mini-batch
of sampled data points per iteration. Empirical
results on benchmark datasets show that RGL can
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consistently improve the performance of prompt-
based tuning.

2 Related Works

The related works are briefly reviewed below.

Few-Shot Learning. Few-shot learning (FSL)
targets at generalizing to new tasks with a few
labeled samples (Wang et al., 2020). FSL has
been applied to many natural language processing
applications such as text classification (Bao et al.,
2020) and named entity typing (Yang and Katiyar,
2020). Typical solutions in FSL include data
augmentation which directly generate more labeled
samples (Dopierre et al., 2021), metric learning
which learns to embed samples into a space
where samples can be easily discriminated (Geng
et al., 2020), and meta-learning which learns a
good initialized model from a set of related tasks
which is then fine-tune to each task (Bao et al.,
2020). Recently, several methods propose to
tune pre-trained language models to downstream
few-shot tasks (Liu et al., 2021). We follow
this line, and further propose to conduct model
tuning on learned relation graphs. Our approach
can be incorporated into existing prompt-based
tuning strategies, increasing the effectiveness of
supervised signals and bringing in performance
gains.

Graph Structure Learning. Graph structure
learning methods target at jointly learning graph
structure and node embeddings of input samples
(Zhu et al., 2021). Usually, these methods
iterate over two steps: (i) estimate the adjacency
matrix which encodes graph structure using node
embeddings; and (ii) apply graph neural networks
(GNNs) on this updated graph to obtain new
node embeddings. Recently, graph structure
learning has been used to estimate relation graphs
among samples to facilitate effective propagation of
label information (Satorras and Estrach, 2018; Ro-
dríguez et al., 2020; Wang et al., 2021a,b). These
methods estimate relation graphs which encode the
similarity between sample embeddings. In contrast,
our RGL models similarity between samples by
class prediction vectors without introducing extra
parameters.

3 Background

Following the problem definition of (Schick and
Schütze, 2021b; Gao et al., 2021), the target of this

paper is to generalize a pre-trained language model
(PLM) to text classification tasks with a few labeled
examples. Each task T with label space Y consists
of three datasets: (i) training dataset Dtrain =
{(xi, yi)} containing a few labeled examples where
xi is the sequence and yi is the corresponding
label, (ii) development(validation) dataset Ddev
containing the same number of samples as Dtrain
and is used for model selection, and (iii) testing
dataset Dtest containing unlabeled samples to be
predicted.

In prompt-based tuning, each input sample
(xi, yi) is reformulated as a pattern-verbalizer pair
(PVP) (Schick and Schütze, 2021a) in terms of
(p(xi), v(yi)). The pattern mapping function p(·)
maps xi to a cloze question with masks. For
example, a single sentence

“xi = [CLS]s[SEP]”

can be mapped as

“p(xi) = [CLS]s It was [MASK].[SEP]”,

where [CLS] and [SEP] are special start and end
tokens. And a sentence pair

“xi = [CLS]s1[SEP]s2[SEP]”

can be mapped as

“p(xi) = [CLS]s1[MASK], s2[SEP]”.

The verbalizer v(·) maps yi to tokens expressing
the semantic meaning of yi. For examples,
“positive/negative” can be mapped as “good/bad”.
With PVPs, the token embedding h[MASK]

i of
[MASK] is taken as the representation of xi.
The class prediction ŷi contains the conditional
probability distribution of each possible class
label given xi, whose entry corresponds to yi is
estimated as

q(yi|xi)=
exp(p([MASK]=v(yi)|p(xi)))∑

yj∈Y exp(p([MASK]=v(yj)|p(xi)))

=
exp(w>v(yi) · h

[MASK]
i )

∑
yj∈Y exp(w

>
v(yj)

· h[MASK]
i )

, (1)

where wv is the logit vector of token v existing in
the vocabulary. Let yi be a one-hot vector with
all 0s but a single one denoting the index of the
ground truth class label yi ∈ {1, . . . , C}. The
model is optimized w.r.t. the loss LCE defined as

LCE =
∑N

i=1
− log(ŷi)

>yi, (2)

where (·)> denotes the transpose operation.
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4 RGL: Our Proposed Method

In this section, we present the proposed RGL
(Figure 1). We manage to exploit more supervised
signals out of the training samples by constructing
and learning on batch-wise relation graphs, which
can boost the effectiveness of prompt-based tuning.

Figure 1: A high-level illustration of prompt-based
tuning with the proposed RGL (marked by the square
with blue dotted lines).

4.1 Defining the Relation Graphs
Consider a mini-batch B = {(xi, yi)}Ni=1 con-
taining N randomly sampled sequence-label pairs,
whose indexes are kept in I = {1, . . . , N}. We
try to exploit more supervised information by
modeling its relation graph. Let G = {V, E}
denotes the relation graph among the N training
samples in B. In particular, V is a set of nodes
where each node vi ∈ V corresponds to one
training sample xi, and E = {eij} is a set of edges
between the N training samples. In this paper, we
mainly consider text classification tasks. Hence,
we establish the edge eij between a node vi and
another node vj if these nodes come from the same
class. Formally, eij is set to

eij =

{
1 if yj = yi

0 otherwise
. (3)

Note that (3) is just an example of defining eij in
classification tasks, which is simple but already
enough to obtain good performance. One can also
define eij in other ways flexibly, such as modeling
both the intra-class and inter-class relations (Kim
et al., 2019), using auxiliary information to calcu-
late it, and defining real-valued eij for regression
tasks.

4.2 Learning with Relation Graphs
On the relation graph G of mini-batchB, we expand
the origin classification task into two problems:
(i) a node classification problem to predict the
correct class of each node, and (ii) a link prediction
problem to connect nodes of the same classes and
disconnect nodes from different classes.

The node classification problem corresponds
exactly to the original classification task. Therefore,
we obtain class prediction ŷi of vi (corresponding
to xi) by (1) and calculate LCE loss by (2).

As for the link prediction problem, we establish
êij between vi and vj based on the relevance
between ŷi and ŷj :

êij = g(ŷi, ŷj), (4)

where ŷi, ŷj are obtained by (1), and g(·, ·) is
simply set as cosine similarity in this paper.
There exist other choices to obtain êij . One
can define eij and êij differently: leveraging
auxiliary relation graphs or calculating based on
representation similarity such as g(h[CLS]

i ,h[CLS]
j )

and g(h[MASK]
i ,h[MASK]

j ). We use ŷi, ŷj as they
carry more semantic information relevant to each
class, which are more predictive and obtain better
empirical performance. One may also consider
using parameterized g(·, ·) instead of using cosine
similarity. However, considering the limited
number of labeled samples, we avoid bringing in
extra parameters to reduce the risk of overfitting.
To measure the losses of link prediction, We design
LLink loss as

−
∑

i∈I

∑

j∈A(i)
eij log(êij)+(1−eij) log(1−êij), (5)

where

A(i) = {j ∈ I and i 6= j}. (6)

For each mini-batch B , we optimize the model
to minimize the combination of node classification
loss LCE and link prediction loss LLink as a whole:

LCE + αLLink, (7)

where α is a hyperparameter to control the
contribution of this LLink.

4.3 Comparisons with SCL
The most relevant work to RGL is SCL(Gunel
et al., 2020) which applies supervised contrastive
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learning (SCL) on a batch level while fine-tuning
PLM (rather than prompt-based tuning PLM). SCL
optimizes for the following objective:

LCE + βLSCL, (8)

where LSCL is defined as:

−
∑

i∈I

∑

j∈P(i)
log

exp(f(xi)·f(xj)/τ)∑
k∈A(i) exp(f(xi)·f(xk)/τ)

, (9)

where τ is a hyperparameter. P(i) takes the form
of

P(i) = {j ∈ A(i) : yj = yi}, (10)

where A(i) is defined in (6). f(xi) in (9) refers
to the representation of xi. In the original
paper (Gunel et al., 2020), f(xi) is set as token
embedding h[CLS]

i of [CLS]. While considering
prompt-based tuning strategies (Liu et al., 2021),
we follow routine and set f(xi) = h[MASK]

i in SCL.
Comparing (5) to (9), it can be observed that

RGL enforces more strict constraints between
samples. By constructing relation graphs and
learning to approximate the edge labels êij defined
in (3), RGL rules samples from the same class to
be connected and otherwise disconnected. While
SCL does not use any precise measures (e.g., edge
labels) to constrain similarities/distances between
intra/inter-class samples. SCL only encourages
samples from the same class to be close, without
explicitly pushing those from different classes to
be farther apart. Another difference is that RGL
estimates edge labels êij using the prediction ŷi

and ŷi to regularize the task-dependent representa-
tions, while SCL uses representation of xi (outputs
of PLM) which can be irrelevant to the target task.

5 Experiments

All the experiments are conducted on a 32GB
NVIDIA Tesla V100 GPU.

Experimental Settings. We use RoBERTa-
large2 (Liu et al., 2019) as the PLM. We take
PET3 (Schick and Schütze, 2021b) as the basic
prompt-based tuning method. Upon PET, we
compare the benefits of applying the proposed
RGL versus SCL (Gunel et al., 2020). All the
hyperparameters are selected using the provided
development set via grid search following Gao et al.
(2021). We use Adam optimizer. We first select

2https://huggingface.co/roberta-large.
3https://github.com/timoschick/pet.

learning rate from {1e − 5, 2e − 5, 5e − 5} and
batch size from {2, 4, 8} for PET. Then, we select
hyperparameter α in RGL and hyperparameters β
and τ in SCL from [0 : 0.2 : 1] separately. We train
all methods for a maximum number of 1000 steps
and evaluate the performance on development set
every 100 steps.

Dataset. Experiments are performed on a variant
of GLUE benchmarks (Wang et al., 2018) for few-
shot setting, which is provided by Gao et al.
(2021). Gao et al. (2021) provide 5 different
training sets and developing sets where each of
them consist of 16 labeled samples per class.
The averaged performance over these 5 splits are
reported. We also evaluate the proposed RGL
on the SuperGLUE (Wang et al., 2019) variant
proposed by Schick and Schütze (2021b), whose
results are put in Appendix due to space limit.

Results. Table 1 shows the results. As shown,
both RGL and SCL can bring in additional
performance gain. In particular, RGL can improve
the performance of PET by 2.38% on average,
while SCL only improves PET by 1.46% on
average. Moreover, RGL obtains more stable
results as the variances are smaller than the others.

16 32 64 128 256
number of training samples per class

90

92

94

96

98

100

ac
c

(%
)

PET

PET+SCL

PET+RGL

Figure 2: Effect of labeled samples.

Model Analysis. Figure 2 plots the effect of
varying the number of labeled training samples.
As shown, all methods obtain better performance
given more training samples, while PET+RGL
consistently outperforms the others. We further
consider different ways of obtaining êij in (4):
(i) w/ h[CLS] which sets êij = cos(h[CLS]

i ,h[CLS]
i )

where cos(·, ·) denotes cosine similarity; (ii)w/
h[MASK] which sets êij = cos(h[MASK]

i ,h[MASK]
i );

and (iii) w/ ŷ which is the one adopted in RGL
and sets êij = cos(ŷi, ŷj). Results in Figure 3
show that RGL outperforms the others. This
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

PET 92.7(0.9) 47.4(2.5) 87.0(1.2) 90.3(1.0) 84.7(2.2) 91.2(1.1) 84.8(5.1) 9.3(7.3)

PET+SCL 92.9(1.9) 48.0(1.9) 87.1(1.8) 90.3(1.5) 84.9(2.4) 91.2(1.7) 85.5(2.6) 20.9(16.5)
relative ↑ +0.2 +0.6 +0.1 +0.0 +0.2 +0.0 +0.7 +11.6

PET+RGL 93.4(0.5) 49.3(1.2) 87.3(0.8) 90.3(0.9) 85.6(1.5) 91.4(1.5) 86.8(2.9) 22.7(14.1)
relative ↑ +0.7 +1.9 +0.3 +0.0 +0.9 +0.2 +2.0 +13.4

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

PET 68.3(2.3) 70.5(1.9) 77.2(3.7) 64.5(4.2) 69.1(3.6) 74.5(5.3) 65.5(5.3) 71.0(7.0)

PET+SCL 69.5(3.2) 71.3(3.1) 77.2(2.9) 69.2(2.7) 69.3(4.1) 75.8(4.0) 66.7(3.7) 71.6(6.5)
relative ↑ +1.2 +0.8 +0.0 +4.7 +0.2 +1.3 +1.2 +0.6

PET+RGL 70.8(2.3) 72.7(1.9) 77.5(1.7) 70.3(1.7) 69.7(2.6) 77.0(6.7) 68.8(1.8) 72.5(6.2)
relative ↑ +2.5 +2.2 +0.3 +5.8 +0.6 +2.5 +3.3 +1.5

Table 1: Test performance obtained on GLUE variant (Gao et al., 2021).

w/ ŷ w/ h[CLS] w/ h[MASK]

86

88

90

92
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96

98

100
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c
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89.6

Figure 3: Estimating êij in different ways.

validates that class prediction carries more relevant
information to discriminate samples.

Visualization. Figure 4 plots the t-SNE visu-
alization of the learned sample embeddings. It
apparently shows that, when combining RGL
with both fine-tuning and PET, the distances of
deep representations between any two inter-class
samples are much longer than the intra-class
distances. Furthermore, PET+RGL can separate
two classes of samples with clear margin while
concentrating samples of every class closely to the
center of the group, resulting in better discriminate
ability.

6 Conclusion

We present RGL, a simple yet effective rela-
tion graph augmented prompt-based tuning ap-
proach for few-shot natural language understanding

Figure 4: t-SNE visualization on SST-2 task.

tasks. During learning, RGL constructs batch-
wise relation graphs based on label consistency
between samples, and explicitly tunes the pre-
trained language models to solve the resultant node
classification and link prediction problems. In this
way, RGL fully exploits the limited supervised
information. In this paper, we provide one way
of relation graph learning. This can be further
extended to broader applications, where other ways
of relation graph learning worth trying. In addition,
one can explore how to avoid the interference of
noisy samples.
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A Results on SuperGLUE Variant

In addition to PET (Schick and Schütze, 2021b), we
also combine the proposed RGL with other prompt-

based tuning strategies. We take P-tuning4 (Liu
et al., 2021) as the representative for joint prompt
and PLMtuning, and WARP5 (Hambardzumyan
et al., 2021) as the representative for prompt tuning
with a fixed PLM. WARP is only evaluated on CB
and RTE as in the original paper.

In the original papers, both P-tuning and WARP
use SuperGLUE (Wang et al., 2019) variant pro-
posed by Schick and Schütze (2021b) to evaluate
the few-shot performance and use ALBERT6 (Lan
et al., 2020) as the PLM. We adopt their setting
for fairness. Schick and Schütze (2021b) provide
one training set which consists 32 samples per task
and a testing set. Schick and Schütze (2021b) also
use unlabeled samples, which are not used in this
paper. Following Liu et al. (2021), a development
set consisting of 32 samples per task are randomly
drawn for model selection. As only one split is
provided, we initialize the parameter with five
random seeds and report the averaged results over
five runs.

BoolQ MultiRC WiC WSC
(acc) (EM) (F1a) (acc) (acc)

P-tuning 75.2(5.2) 32.1(1.0) 74.9(1.9) 55.3(1.5) 80.8(2.5)
+RGL 77.4(0.8) 33.5(0.2) 75.6(1.2) 57.3(2.9) 81.7(1.0)

relative ↑ +2.2 +1.4 +0.7 +2.0 +0.9

CB RTE COPA
(acc) (F1) (acc) (acc)

P-tuning 87.5(3.0) 82.1(6.0) 74.7(1.0) 82.3(2.5)
+RGL 88.1(2.1) 84.2(2.3) 75.5(1.3) 83.7(5.1)

relative ↑ +0.6 +2.1 +0.7 +1.4

WARP 82.2(3.0) 77.5(7.2) 72.8(0.5)
+RGL 84.3(2.1) 80.5(4.7) 73.2(1.0)
relative ↑ +2.1 +3.0 +0.4

Table 2: Test performance obtained on SuperGLUE
variant (Schick and Schütze, 2021b).

Table 2 shows the results obtained on Super-
GLUE variants. The results show that RGL can
consistently boost the performance when it is
combined with P-tuning and WARP.

4https://github.com/THUDM/P-tuning.
5https://github.com/YerevaNN/warp.
6https://huggingface.co/albert-xxlarge-v2.
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