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Abstract

Te reo Māori, New Zealand’s only indige-
nous language, is code-switched with English.
Māori speakers are atleast bilingual, and the
use of Māori is increasing in New Zealand
English. Unfortunately, due to the minimal
availability of resources, including digital data,
Māori is under-represented in technological ad-
vances. Cloud-based multilingual systems such
as Google and Microsoft Azure support Māori
language detection. However, we provide ex-
perimental evidence to show that the accuracy
of such systems is low when detecting Māori.
Hence, with the support of Māori community,
we collect Māori and bilingual data to use nat-
ural language processing (NLP) to improve
Māori language detection. We train bilingual
sub-word embeddings and provide evidence to
show that our bilingual embeddings improve
overall accuracy compared to the publicly-
available monolingual embeddings. This im-
provement has been verified for various NLP
tasks using three bilingual databases containing
formal transcripts and informal social media
data. We also show that BiLSTM with pre-
trained Māori-English sub-word embeddings
outperforms large-scale contextual language
models such as BERT on down streaming tasks
of detecting Māori language. However, this
research uses large models ‘as is’ for transfer
learning, where no further training was done
on Māori-English data. The best accuracy of
87% was obtained using BiLSTM with bilin-
gual embeddings to detect Māori-English code-
switching points.

1 Introduction

Te reo Māori (referred to as Māori) is New
Zealand’s only indigenous language, spoken by
4.5% of the total population of 5 million. Māori
speakers are bilingual, and code-switching between
Māori and English is expected. Māori revitalisa-
tion efforts have increased Māori use in the other-
wise English-speaking country. Detecting Māori

language and code-switch instances is a prereq-
uisite to analysing language data. Māori and En-
glish both use the Roman script (specifically, Māori
uses a modified Roman script). Currently, annota-
tions are done manually, making the process time-
consuming and slowing down research and tech-
nology development. Consider the following sen-
tences:
(a) Pērā anō i ngā mate kua hinga atu i te motu.
(b) I want to give no offence to my mate Willie

Jackson, but once a week hardly qualifies as
the significant Māori voice.

where green indicates Māori, red is used to indi-
cate that the word has same spelling in Māori and
English, and the remaining are English. Based on
expert knowledge, we know the word mate is Māori
in sentence (a) and English in sentence (b).

In this research, we focus on two primary tasks:
Task 1: Language Detection (LD) - detecting

Māori language words from input text.
Task 2: Code-switch Detection (CS) - detecting

Māori to English or English to Māori code-
switch points from input text.

There is limited Māori-only and Māori-English
bilingual data available. We collected data in col-
laboration with the Māori researchers, Māori tech-
nology developers and Māori community, where
data-sharing is based on trust. As researchers,
we remain guardians of the data, ensuring data
sovereignty (Stats, 2020). Hence, all the resources
shared from this study are bound by the Kaitiaki-
tanga license (Te-Hiku-Media). This paper presents
some of the first research to use advances in NLP to
detect Māori language and code-switching. No ex-
isting models are using NLP techniques for Māori-
English code-switch detection. Google and Mi-
crosoft Azure’s cloud-based services are the only
options available for language detection, which is
the primary reason for using such large-scale multi-
lingual cloud-based services for comparison in this
paper.
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This paper’s contributions are:
1. Evaluation of detecting Māori using multilin-

gual models, including the cloud-based ser-
vices such as Google and Azure, and large
scale language models such as Bidirectional
Encoder Representations from Transformers
(BERT).

2. Pre-training Māori-English bilingual, and
Māori-only monolingual sub-word embed-
dings using collected data. Experiments using
three different bilingual data for various NLP
tasks show that bilingual embeddings outper-
form monolingual embeddings.

3. Large scale language models such as BERT
–without further training on Māori-English
data– fine-tuned on down streaming tasks of
detecting Māori are outperformed by BiLSTM
with fastText pre-trained sub-word bilingual
embeddings for low-resourced language such
as Māori.

4. Providing baseline results for detecting low-
resourced Māori and code-switch between
Māori-English language pair.

2 Te reo Māori (The Māori Language)

Māori is a Polynesian language belonging to the
Austronesian family. Phonologically, Māori has
ten consonants /p t k m n N f r w h/. The Māori
vowel system is described by five short vowels /i
e a o u/ (Bauer et al., 1993). Orthographically,
there is mostly a one-to-one mapping of a Māori
phoneme to a grapheme, except for two digraphs,
‘wh’, which is /f/, and ‘ng’ which is /N/. In mod-
ern orthography, long vowels are denoted with a
macron (e.g. ā). In older texts, they are sometimes
expressed as double vowels (e.g. aa), with an um-
laut (e.g. ä), or ignored completely (that is, ā is writ-
ten a). In addition, there is some regional variation
in the way words are spelt (e.g. Aorangi vs Aoraki).
English, in contrast, has a highly non-phonemic or-
thography. The Māori syllable structure consists of
a nucleus, which may be occupied by a vowel (or
a diphthong), and an optional onset (syllable start)
occupied by a single consonant (consonant clusters
are not present in Māori) (Harlow, 2007).

3 Related Work

Research using NLP for tasks relating to Māori
is relatively young. Examples include statistical
machine translation for Māori-English pair (Mo-
haghegh et al., 2014) and the inclusion of Māori

language detection and translation using cloud ser-
vices Google and Azure (Keegan, 2017). (Keegan,
2017) indicates that although the growth of cloud
services for Māori translations is welcoming, due
to the minimal availability of digitised Māori data,
the resulting output is inaccurate. Google also ac-
knowledges that for low-resource languages, the
quality of language detection and automatic ma-
chine translation is far from perfect (Google-AI-
Blog).

We present the first research that uses deep learn-
ing techniques to detect a code-switch between
Māori and English. Hence, except for the Google
and Azure cloud services (more details in Sec-
tion 5.1), we are limited by the availability of
systems for Māori language detection and Māori-
English code-switch detection for comparison. We
use approaches that were inspired by the litera-
ture on other language pairs. Examples include
XNLI (Cross-lingual Natural Language Inference)
cross-lingual classification benchmark (Conneau
et al., 2018) where the bidirectional long short-term
memory (BiLSTM) model was used across sev-
eral low resource languages, including Swahili and
Urdu; and code-switch detection using BiLSTM
and Character-LSTM for language pair English-
Hindi (Lal et al., 2019; Mukherjee et al., 2019).
XNLI benchmark uses fastText common-crawl em-
beddings (denoted as E300 in this paper) and aligns
it with the MUSE library. Comparison among deep
learning models shows that adding background in-
formation through sub-word pre-trained embed-
dings trained using fastText and in the form of
lexicons improves the overall performance of deep
neural networks on databases of low-resource lan-
guages (Adouane et al., 2018).

Transformers such as BERT is the state-of-the-
art in many NLP tasks, including language detec-
tion, named entity recognition, and machine trans-
lation (Devlin et al., 2019; Conneau et al., 2020).
There are many large scale multilingual models,
such as XLM-R (Conneau et al., 2020) and multilin-
gual BERT (mBERT) (Devlin et al., 2019) trained
in more than 100 languages. Research shows that
for languages that are under-sampled during train-
ing, the effectiveness of large scale multilingual
models such as mBERT are sub-optimal (Wu and
Dredze, 2020; Wang et al., 2020). In comparison to
the contextual representations such as BERT, em-
beddings with sub-word representation are more
data-efficient when data availability is limited (Wu
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Data # Sentences # Words Text Labels Task

Hansard data0 2,021,261 36,757,230 formal word-level & sentence level language labels LD, CS

MLT corpus 2,500 50,000 informal tweet level labels: relevance/irrelevance LD
(Trye et al., 2019)

RMT corpus 79,018 1,000,000 informal Māori words are identified and labelled LD
(Trye et al., 2022)

Table 1: Databases used for experimental evaluations. LD: Language Detection, CS: Code-Switch Detection.

and Dredze, 2020). Furthermore, (Muller et al.,
2021) provide evidence to show that many under-
sampled or unseen languages during training –such
as Maltese or Narabizi– code-mixed with French
perform worse when using mBERT compared to
an RNN with non-contextual dependency parsing
baseline. It has been shown that for such unseen or
under-sampled languages, there is a need to further
train or fine-tune directly with available raw data in
the unseen target languages (Muller et al., 2021).

4 Databases

Due to the low-resource nature of the Māori lan-
guage, extensive databases are currently are un-
available. We collected text data from differ-
ent sources to form the Māori-English Words
(MEW) database, as summarised in Table 2. MEW
database contains legal context, stories, social me-
dia posts and newspaper articles. The unlabelled
MEW database is used to pre-train bilingual and
Māori-only monolingual embeddings. We use
three labelled databases for experiments: Hansard
database, MLT corpus, and RMT corpus. Details
of these databases are provided in Table 1.

Hansard database contains the New Zealand Par-
liament debates from 2003 onwards. Together
with experts in Māori (Te-Hiku-Media), we have
labelled the Hansard database, where English or
Māori labels are assigned using linguistic rules and
manual checking. Each sentence in the databases
is marked as Māori, English or bilingual. Each
word of each sentence is labelled as Māori or En-
glish. The resulting data includes 102,559 bilin-
gual, 1,909,876 English-only and 8,826 Māori-only
sentences.

The Māori Loanword Twitter (MLT) corpus is
a small database, where each tweet is labelled as
‘relevant’ and ‘irrelevant’, based on the presence of
a pre-determined set of Māori loanwords in a given
tweet. Given detecting Māori language in tweets
is a prerequisite to this task, we consider this task
also as a Māori language detection task.

Name and Database # Words

Māori only
D1: Te Taka Database*1 9,862,131
D2: Nga Mahi corpus (James et al., 2020) 81,036
D3: Māori Wikipedia 431,280
D4a: LMC Corpus2 5,486,328
Total size of Māori-only database = 92 MB

Māori and English
D4b: LMC Corpus 7,197,059
D5: Niupepa (Māori Newspapers)3 5,050,988
D6: Twitter Corpus*(Trye et al., 2019) 48,289,375

Total size of bilingual data = 0.4 GB

Table 2: Māori-English Words (MEW) database.‘*’ in-
dicates private collections of data.

Reo Māori Twitter (RMT) corpus contains
tweets, where at least 80% of text is in Māori. RMT
corpus provides a list of 879,000 Māori words
across the tweets. We use this corpus also for the
language detection task where the aim is to detect
the Māori words identified in the RMT corpus.

5 Language Models and Classifiers

This section provides details of the language mod-
els and classifiers we used. We evaluate the perfor-
mance of cloud-based language detection systems
from Google and Azure for Māori. We represent
text as bag-of-words and sub-word embeddings us-
ing fastText. We use logistic regression and multi-
nomial naive Bayes as baseline classifiers for lan-
guage detection. We also use neural networks such
as RNNs and CNNs to train and evaluate language
detection and code-switch detection tasks. Further-
more, we fine-tune transformer models, BERT and
mBERT, for the down streaming task of language
detection.

0https://www.parliament.nz/en/pb/
hansard-debates/rhr/

1Private collection of te reo Māori text data, Te Taka Kee-
gan, The University of Waikato, New Zealand, 2021

2http://nzetc.victoria.ac.nz/tm/
scholarly/tei-legalMaoriCorpus.html.

3http://www.nzdl.org/cgi-bin/library.
cgi?a=p&p=about&c=niupepa.
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5.1 Cloud-based Online Tools

Google Translate4 and Microsoft Azure Cognitive
Services language detection5 are two popular cloud-
based online tools that can detect multiple lan-
guages. Google supports 108 languages, including
New Zealand English and Māori. Google’s RNN-
based GNMT (Google Neural Machine Trans-
lation) model (Wu et al., 2016) showed signif-
icant improvements in enabling translations to
cover many languages, including low-resourced
languages. Google recently replaced the GNMT
model with a hybrid model (transformer encoder
and RNN decoder). This model has shown signifi-
cant improvements compared to the other machine
translation systems. Azure’s cognitive services can
translate 100+ languages, including Māori. Azure’s
early-stage neural network model (Xiong et al.,
2017) included a CNN-BiLSTM architecture. Re-
cently, Azure has combined several machine learn-
ing algorithms and neural networks to provide vari-
ous cognitive services.

5.2 Bag of words

Bag of words (BOW) is an effective method (Gold-
berg, 2017; Joulin et al., 2017) to represent text as
a sparse vector, where the order of words in a docu-
ment is not considered. The number of occurrences
of a word or a binary value indicating that the word
is present in the document is stored.

5.3 Word Embeddings

For language processing tasks, continuous word
representations such as word embeddings trained
on large unlabelled databases facilitate effective
representation learning (Bojanowski et al., 2017;
Joulin et al., 2016). Here, we use fastText (Bo-
janowski et al., 2017) to learn word embeddings,
as novel words not present during training can
also be represented using fastText-based embed-
dings. This can be beneficial for a low-resource
setting. FastText supports two word embeddings
models: continuous bag-of-words (CBOW) and
Skip-grams (Mikolov et al., 2013). The CBOW
predicts the specific word from the source context.
Skip-gram predicts the source context from the spe-
cific word. The embeddings in this research are
trained to the specifications of Wikipedia and com-
mon crawl fastText models (Grave et al., 2018) (re-

4https://translate.google.com/
5https://azure.microsoft.com/en-us/

services/cognitive-services/translator/

Embeddings Model Data Size # Unique
Words

Monolingual Embeddings
E300 (Grave et al., 2018) downloaded 7GB 2,000,000
Māori-300/300SG D1 - D4a 3GB 49,315

Bilingual Embeddings
Model-Māori-Eng-300 D1 - D6 3GB 303,505
(and 300SG)

Table 3: Outline of fastText pre-trained 300 dimensional
embeddings. The MEW database (Table 2) was used for
training. ‘SG’: Skipgram model, otherwise it is CBOW.

ferred to as E300) for both CBOW and Skip-gram6.
E300 uses the CBOW method, character n-grams
of length 5, window of size 5, and 10 negative sam-
ples per positive sample with 300 dimensions. The
learning rate is 0.05. Table 3 provides details of
our bilingual embeddings, which are available to
on request, including E300 details for comparison.

5.4 Baseline Classifiers

We used multinomial naive Bayes (John and Lang-
ley, 1995) and logistic regression (LR) (Cox, 1958)
to classify text features represented by BOW and
static word embeddings. LR is a statistical model
used to analyse databases where independent vari-
ables determine an outcome. Naive Bayes (John
and Langley, 1995) is an easy to build supervised
learning algorithm, which applies Bayes’ theorem
with the “naive” assumption of independence.

5.5 Convolutional Neural Network (CNN)

CNN for text (Kim, 2014) combines one-
dimensional convolutions with a max-over-time
pooling layer and a fully connected layer. If xi:i+j

is a concatenation of words from a sentence, each
word, xi, xi+1, ... is mapped to its k-dimensional
embeddings using word embeddings. A new fea-
ture is produced using convolution. Max-over-time
pooling is applied over the feature map to capture
the most important feature value. The final predic-
tion is made by computing a weighted combination
of the pooled values and applying Softmax activa-
tion function.

5.6 Recurrent Neural Networks (RNN)

RNNs (Rumelhart et al., 1986) are designed to
handle sequential data, such as text, where the

6Embeddings trained on a 4 core Intel i7-6700K CPU @
4.00GHz with 64GB of RAM. Average time: <30 minutes.
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data contains complex temporal dependencies and
hidden information. Long Short Term Memory
networks (LSTM) (Hochreiter and Schmidhuber,
1997) are modified RNNs designed to overcome the
issue of vanishing gradient with RNNs. LSTM has
a gating mechanism consisting of input gate, for-
get gate, and output gate, ensuring a constant error
flow and avoiding long-term dependency problems.
The memory in LSTM is stored in an internal state,
and the three gates play a vital role in deciding
which information is to be included, added or re-
moved from the memory. Over time, the memory
cells learn which information is essential based on
the weights. Bidirectional RNNs are widely used
extensions where the input sequence is fed from
beginning to end and from end to beginning. For
BiLSTM (Grave et al., 2018), given there are two
LSTM layers, the hidden layer output is split into
two - for forward and backwards passes over the
input.

5.7 Transformers

BERT (Devlin et al., 2019) is one of the early
transformer models that apply bidirectional train-
ing of encoders (Vaswani et al., 2017) to lan-
guage modelling. The 12-layer BERT-base model
with a hidden size of 768, 12 self-attention heads,
110M parameter neural network architecture was
pre-trained from scratch on BookCorpus and En-
glish Wikipedia. The mBERT-base (Devlin et al.,
2019) model uses the same pre-training objective
as BERT-base and is pre-trained with Wikipedia
text of 104 languages with most articles. In this
research, we use BERT and mBERT to refer to
BERT-base and mBERT-base. It is vital to point out
that this research does not pre-train BERT models
(both BERT-base and mBERT-base) from scratch
or continuously on the very limited available Māori
language data. Instead, this research only per-
forms fine tuning on down streaming task. There
are evidence on mBERT performance of zero-shot
tasks (Keung et al., 2020), and hence the decision
to limit this study to only fine-tuning. Pre-training
BERT models is out of scope of this current re-
search.

6 Experimental Setup

We experiment with various language models and
classifiers for two main tasks: language detection
(LD) and code-switch detection (CS). Our ultimate
goal is to find a combination of language modelling

and NLP techniques to improve the overall accu-
racy of LD and CS tasks. We use three databases
to evaluate these tasks with details provided in Ta-
ble 1. We use the Hansard database sentences as
the primary data for training and testing. All three
datasets were pre-processed by lower-casing and
using regular expressions to remove punctuation us-
ing Python 3.9 library with Pandas data frame. All
experimental results are obtained from a random
seeds training-testing scheme; 70% of the shuffled
data is used for training, with 10% for validation
and 20% for testing, and averaged over three runs.
The variation of these three independent runs is
within a range of ±0.015.

To represent text we use both fastText pre-trained
embeddings (see Table 3) and sparse vectors ob-
tained from BOW representations. An overview of
code-switch detection using trained models such as
BiLSTM and CNN is presented in Figure 1. This
diagram is an example to demonstrate the system
we used for end-to-end code-switch detection using
neural networks. Step 1 includes training and eval-
uating a neural network. We use the training set
of the Hansard database to train the model and use
validation loss as the stopping condition to avoid
over-fitting. In step 2, we load the trained model
and detect languages at the word level on testing
data. Once the language detection is done, the
points in the sentence where the language labels
switch from Māori to English or from English to
Māori are marked as code-switch points.

Neural network models presented in this re-
search are implemented using Keras/Tensorflow.
Adam (Kingma and Ba, 2015), an adaptive learning
rate optimisation algorithm, is used as the optimiser
for neural networks. Softmax activation function
is used in the output layer of the network. We use
a combination of dropout (Srivastava et al., 2014),
with a rate of 0.5, and early stopping (Zhang et al.,
2017) to avoid over-fitting. We use a maximum
length of 250 tokens (or words) for BiLSTM and
CNN, and padding for sentences with less than the
maximum length. The term tokens and words is
used interchangeably in this paper. The embed-
dings layer is with a dimension of 300. The hidden
units of BiLSTM are 128, and the hidden units of
one-dimensional convolutions are 128. For both
CNN and BiLSTM, categorical cross-entropy is
used as the loss function.

We also fine tune pre-trained transformers,
BERT and mBERT on the down streaming task
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Figure 1: Code-switch detection using neural networks. Example shows ‘English’ words {Everyone, who, spoke, at,
those, meetings, did, so, with} are detected as ‘English’ and ‘aroha’ detected as ‘Māori’.

of language detection. We use batch size of 16,
maximum sequence length of 256 and learning rate
of 1e-5. For both BERT and mBERT, the loss and
accuracy were reported at each epoch. For both
BERT and mBERT, the model converges fast, need-
ing an average of 5 epochs per run.

All evaluations were done using Sklearn met-
rics7. Evaluations using baseline classifiers such as
multilingual naive Bayes and LR with BOW and
static features from embeddings require CPU only8

machines and are very quick to train and evaluate.
Neural networks require GPU devices9 for efficient
training and testing. The average training time for
CNN was 150-180 minutes, and BiLSTM was 300-
360 minutes, while BERT and mBERT required
240 minutes per epoch being trained for an aver-
age of 5 epochs. The testing time for trained deep
learning models is rapid, requiring a few minutes.
The code used in this research is made available10.

We present overall macro-F1 score and weighted-
7https://scikit-learn.org/stable/

modules/generated/
84 core Intel i7-6700K CPU @ 4.00GHz with 64GB of

RAM.
912 core Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz,

GV100GL
10Pre-trained bilingual and monolingual embed-

dings are available for researchers on request. Ex-
perimental details, model implementations, and
trained language models are available for researchers,
all bound by the Kaitiakitanga license: https:
//github.com/MaoriEnglish-Codeswitch/
MaoriEnglish-CodeSwitch-Detection

F1 score to provide different insights (Toftrup et al.,
2021; Khanuja et al., 2020). We also provide F1-
scores of each label where appropriate. Macro-
F1 provides average per-language results and is
equally important to all languages. The weighted-
F1 score considers the popularity of the languages
in the data set.

The Nemenyi posthoc test (95% confidence
level) identifies statistical differences between
learning methods. Critical Difference (CD) plots
show the average ranking of individual F1 scores
obtained using various language models. The lower
the rank, the better the model is. The difference in
average ranking is statistically significant if there
is no bold line connecting the two settings.

7 Experimental Results

The results are presented for the language detec-
tion (LD) tasks and code-switch detection (CS)
tasks. The language detection task is a crucial first
step for detecting code-switching (Rijhwani et al.,
2017; Barman et al., 2014). First, we present the
results of the language detection tasks using the
three databases (Table 1), followed by the results
of the code switch task using the Hansard database.
As indicated in the experimental setup, all exper-
imental results are obtained from a random seeds
training-testing scheme and averaged over three
runs. The variation of these three independent runs
is within a range of ±0.015.
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Figure 2: Pie Chart of the languages detected by Google (left) and Azure (right) at word level for the test set of the
Hansard Database. The gold-standard label for all the words used here is ‘Māori’.

7.1 Task 1: Language Detection

7.1.1 Cloud-based Online Tools
To analyse the effectiveness of using Google Trans-
late and Azure services to detect Māori (and En-
glish), we experimented with the test set of the
Hansard database where the sentences are either
monolingual (Māori or English) or code-switched.
Google Translate detected 99.7% of the English
words, and Azure detected 97.8% of the English
words correctly. Figure 2 presents pie charts of the
resulting language detection for ‘Māori’ word (i.e.
the gold-standard labels for the words is ‘Māori’).
For Māori words, Google Translate detected with
an accuracy of 65.2%, and Azure detected with
an accuracy of 52%. Although the accuracy of
Google Translate was better than Azure, the error
rate of both services are too high for Māori lan-
guage detection. In addition, apart from wrongly
detecting Māori words as English, around 14-21%
of the words were classified as various other lan-
guages by both cloud services. We acknowledge
that cloud-based services such as Google and Azure
are multilingual and hence low-resource languages
such as Māori are dominated by the resource-rich
languages during training. This will inevitably in-
fluence the accuracy of LD of Māori using Google
and Azure’s cloud services. However, given there
is no other system available to detect Māori, it was
still vital to evaluate the outcome of the above men-
tioned cloud-based services.

7.1.2 Baseline Classifiers
LD task using the Hansard database is a multi-class
classification problem at the sentence level (classes:
Māori, English or Code-Switched sentence). The
LD task using MLT corpus is a binary classification
problem of relevant/irrelevant tweets based on the
usage of the Māori loanwords. Table 4 presents

Model Data Results
Multi-class Macro-F1

Multinomial NB (BOW) Hansard 0.887
LR (BOW) Hansard 0.913

LR (Eng300) Hansard 0.831
LR (Māori-Eng-300) Hansard 0.853
LR (Māori-Eng-300SG) Hansard 0.859

Binary F1-score

LR (Eng300) MLT corpus 0.833
LR (Māori-300SG) MLT corpus 0.812
LR (Māori-Eng-300) MLT corpus 0.849
LR (Māori-Eng-300SG) MLT corpus 0.846

Table 4: Macro-F1 scores and F1-scores for the test set
of Hansard database and labelled MLT corpus respec-
tively, where BOW or sentence level features are used
to represent text. Bold: best results for each task.

overall macro-F1 and F1 scores for the LD task
using Hansard database and MLT corpus, respec-
tively, where BOW and static word embeddings
at the sentence level (or tweet level) are used to
represent the text. We obtain embeddings for each
sentence by computing the vector sum of the em-
beddings for each word in the sentence. This vec-
tor sum is then normalised to have length one, to
ensure that sentences of different lengths have rep-
resentations of similar magnitudes. The bilingual
embeddings perform better than monolingual em-
beddings for both Hansard and MLT corpus. How-
ever, BOW outperforms static embeddings feature
representation for LR.

7.1.3 Neural Networks
After evaluating the performance of baseline classi-
fiers, we further proceed with LD task using neural
networks. As the size of the labelled MLT corpus
is small, it is insufficient for training and evaluating
neural networks. Table 5 presents macro-F1 and
weighted-F1 scores obtained using the test set of
the Hansard database for performance comparison
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Model Macro-F1 Weighted-F1
Monolingual Embeddings
CNN (E300) 0.946 0.985
CNN (Māori-300) 0.905 0.986
CNN (Māori-300SG) 0.914 0.990
BiLSTM (E300) 0.943 0.996
BiLSTM (Māori-300) 0.926 0.995
BiLSTM (Māori-300SG) 0.940 0.995

Bilingual Embeddings
CNN (Māori-Eng-300) 0.963 0.995
CNN (Māori-Eng-300SG) 0.969 0.996
BiLSTM (Māori-Eng-300) 0.984 0.997
BiLSTM (Māori-Eng-300SG) 0.989 0.997

Contextual Embeddings
BERT-base 0.931 0.988
mBERT-base 0.946 0.991

Table 5: Comparison of results for the Hansard database
(test set) with various models. Bold: best results.

Figure 3: Critical difference plots identifying statistical
differences between models presented in Tables 4 & 5.

Model Training Testing Accuracy
data data (Māori)

Google Wikipedia RMT 68.2%
BiLSTM (E300) Hansard RMT 56.6%
BiLSTM (Māori-Eng-300) Hansard RMT 85.4%
BiLSTM (Māori-Eng-300SG) Hansard RMT 85.6%

Table 6: Accuracy of Māori words detection in RMT
corpus using Hansard-based trained models (Table 5).

across language models. The macro-F1 score is
an unweighted average score of all the classes. In
comparison, weighted-F1 scores are higher than
macro-F1 scores across the models. The imbal-
anced distribution in the data, where labels are
predominantly English, is reflected in the scores
where the minority classes penalise the macro-F1
scores. Bilingual embeddings (Māori-Eng-300)
consistently perform better than monolingual em-
beddings. BiLSTM with Māori-Eng-300SG em-
beddings are the best across all models, including
BERT-base and mBERT-base. Skip-gram models
are better than CBOW. In comparison, English-only
embeddings E300 outperform Māori-only mono-
lingual embeddings. One possible explanation for
this is the lack of training data for Māori-only em-
beddings compared to E300.

Figure 3 presents critical difference plots across
the models presented in Table 5 and BOW repre-

sentation presented in Table 4. BiLSTM (Māori-
Eng-300SG) has the lowest rank, and multinomial
naive Bayes (BOW) has the highest rank with no
bold line connecting the two, indicating the dif-
ference in average ranking is statistically signifi-
cant. Bold lines are connecting BiLSTM (Māori-
Eng-300SG) with mBERT and BERT-base in the
CD-plot, indicating that the difference in average
ranking is not statistically significant. A 4-6 % im-
provement was observed between BERT/mBERT
and BiLSTM (Māori-Eng-300SG).

To further evaluate the language models, we used
the models trained with the Hansard data to detect
Māori words in the RMT corpus. Table 6 presents
the accuracy of the detection. We also present the
accuracy of Māori language detection using Google
Translate for comparison. Evidently, BiLSTM with
Māori-Eng-300SG embeddings model trained on
the training set of the Hansard database has the
best accuracy. As observed with other databases,
the accuracy of the bilingual embeddings is higher
than the monolingual embeddings. However, the
accuracy of BiLSTM with E300 embeddings is
considerably lower than other models, including
Google. One possible reason is the lack of vocab-
ulary in E300 for the informal language used in
RMT data (Tweets).

7.1.4 In Summary
The results suggest that the bilingual embeddings
perform better than monolingual embeddings (both
the downloaded Eng300 and Māori only models)
for the LD task. This finding was verified across the
Hansard database (Tables 4, 5) and the MLT corpus
(Table 4). Further evidence is provided in Māori
words detection using RMT corpus (Table 6). We
also observed that the bilingual embeddings outper-
formed the contextual embeddings. One possible
reason for this finding is the lack of vocabulary
in BERT models, as no further training was per-
formed using Māori data. This research only fine
tunes the BERT models for down streaming tasks.
As emphasised before, the Māori data availability
is the biggest limitation to this research. Among
the experimented models for LD task, BiLSTM
with Māori-Eng-300SG performed the best.

7.2 Task 2: Code-Switch Detection

For evaluation of the code-switch detection be-
tween Māori-English pair, we require word-level la-
bels and hence, only the Hansard database was used
for this task. We use selected trained models pre-
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Figure 4: F1-scores for Māori and English calculated at
the word level for the Hansard database.

Model CS: Accuracy
CNN (E300) 35%
BiLSTM (E300) 83%
BiLSTM (Māori-Eng-300) 67%
BiLSTM (Māori-Eng-300SG) 87%

Table 7: Accuracy of code-switch detection in the
Hansard data (bilingual sentences of the test set) us-
ing the trained models, as shown in Figure 1.

sented in Section 7.1, and identify the code-switch
points (see Figure 1). Figure 4 presents word-level
F1 scores of Māori and English for CS task. For
English words, all systems perform equally well.
However, for Māori, cloud-based multilingual sys-
tems perform poorly, and BiLSTM with bilingual
embeddings shows a substantial improvement in
F1 score, as observed before. It is vital to point out,
cloud-based services such as Google and Azure are
multilingual models and these systems have to clas-
sify between large number of languages. Hence,
the poor performance with detecting Māori is not
surprising, especially when compared to models
which only have to classify between English and
Māori. However, we include the results of large
scale models here to emphasise the fact that the
only existing tool that can detect Māori have lim-
itations. Furthermore, Table 7 presents the accu-
racy of detecting the code-switch points of the test
set of the Hansard database. Among the reported
results, CNN with E300 performed poorly, and
BiLSTM with Māori-Eng-300SG outperformed the
other models.

8 Discussion and Conclusions

This research is the first attempt to use advances
in NLP in two tasks - Māori (a low-resourced
language) language detection, and Māori-English
code-switch detection. Our experiments show that
the accuracy of existing cloud-based systems to de-
tect Māori is very low. Hence, there is the need to
have more specialised systems for detecting Māori.

We collected data in collaboration with Māori
researchers for training and evaluations. Experi-
ments obtained across tasks using three databases
show that our bilingual embeddings outperformed
downloaded, pre-trained English-only embeddings
trained on large databases. Among the models
tested, BiLSTM with bilingual embeddings trained
using the Skip-gram model is the best for both
tasks. We provide evidence to show BERT-base
used on the down-streaming task of language detec-
tion –where Māori is under-represented or unseen
by the model vocabulary– is not always the best
solution (as also observed by (Wu and Dredze,
2020; Wang et al., 2020)). For most low-resourced
languages, including Māori, the Wikipedia data is
significantly smaller than English, resulting in a
reduced vocabulary. Due to limited resources, con-
tinuous training or training from scratch of models
such as BERT-base is not possible.

For future work, it is a possibility to use ideas
such as Extend M-BERT (Wang et al., 2020) and
explore more efficient pre-training techniques to
improve the accuracy of BERT like models for lan-
guage detection of low-resource languages such
as Māori. In addition, hybrid models using hand-
crafted rules based on the phonotactic differences
between the languages and deep learning-based
methods are a promising pathway for future work.

The availability of digitised Māori and bilingual
data is limited, which restricts the ability to train
large language models. In addition, considering
this is the first deep learning-based research in this
area, comparison with published work is not pos-
sible. We overcome these limitations by respect-
ing the available data and data sovereignty for this
research. We provide experimental results using
cloud services such as Google and Azure, as these
are the only available systems that can detect Māori.
The study reported here is a much-needed contri-
bution to Māori language technology development.
Word embeddings developed in this research are
available to other researchers on request, bound by
the Kaitiakitanga license.
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