
Findings of the Association for Computational Linguistics: NAACL 2022, pages 565 - 577
July 10-15, 2022 ©2022 Association for Computational Linguistics

Anti-Overestimation Dialogue Policy Learning for Task-Completion
Dialogue System

Chang Tian† and Wenpeng Yin∗ and Marie-Francine Moens†
†Department of Computer Science, KU Leuven

∗LanguageX Lab, Temple University
chang.tian@kuleuven.be

Abstract

A dialogue policy module is an essential part
of task-completion dialogue systems. Recently,
increasing interest has focused on reinforce-
ment learning (RL)-based dialogue policy. Its
favorable performance and wise action deci-
sions rely on an accurate estimation of ac-
tion values. The overestimation problem is a
widely known issue of RL since its estimate
of the maximum action value is larger than the
ground truth, which results in an unstable learn-
ing process and suboptimal policy. This prob-
lem is detrimental to RL-based dialogue policy
learning. To mitigate this problem, this paper
proposes a dynamic partial average estimator
(DPAV) of the ground truth maximum action
value. DPAV calculates the partial average be-
tween the predicted maximum action value and
minimum action value, where the weights are
dynamically adaptive and problem-dependent.
We incorporate DPAV into a deep Q-network
as the dialogue policy and. Our method can
achieve better or comparable results compared
to top baselines on three dialogue datasets of
different domains with a lower computational
load. In addition, we also theoretically prove
the convergence and derive the upper and lower
bounds of the bias compared with those of other
methods.

1 Introduction

Task-completion dialogue systems are commonly
implemented in two schemes. One is by end-to-end
training, such as (Zhang et al., 2020a). The other
is a pipeline framework (Chen et al., 2017), which
typically consists of four modules that are indepen-
dently trained, as shown in Figure 1a: natural lan-
guage understanding (NLU), dialogue state tracker
(DST), dialogue policy learning (DPL) and natural
language generation (NLG). For this pipeline-style
dialogue system, the conversation text from a user
is first fed to the NLU module, where the user ut-
terance is parsed into semantic slots for DST. DST
manages the inputs of each dialogue turn together

with the dialogue history. Then DST outputs the
current dialogue state embedding to the DPL mod-
ule, where a dialogue action is taken based on cur-
rent dialogue state and knowledge base data. The
NLG module maps the selected dialogue action
into natural language to converse with the user.

Reinforcement learning (RL) algorithms, specifi-
cally Q-learning (Watkins and Dayan, 1992) based
algorithms, have become a mainstream method for
training the dialogue policy module (Peng et al.,
2018; Zhang et al., 2020b). For each step, the pol-
icy agent updates its action value 1 estimate as the
sum of the observed reward and the estimated max-
imal action value in the next state. However, this
update rule suffers from an overestimation prob-
lem (Hasselt, 2010): mostly the estimated maximal
action value is larger than the ground truth. The
overestimation problem causes that the dialogue
policy module has inaccurate action values esti-
mations after the training, which misleads the dia-
logue policy to choose the wrong dialogue action
(see the wrong dialogue action in Figure 2). Some
prior studies have tried to address this problem in
domains like video game playing and multi-agent
systems, but they either suffered from the underesti-
mation problem (Hasselt, 2010; Lan et al., 2020) or
required heavy computational load, such as those
ensemble methods (Anschel et al., 2017; Lan et al.,
2020; Lee et al., 2021).

In this work, we propose dynamic partial av-
erage (DPAV), a novel approach to mitigate the
overestimation problem specifically for the task-
completion dialogue policy. DPAV utilizes the par-
tial average between the predicted maximal action
value and the predicted minimal action value to
estimate the ground truth maximum action value,
where the weights are dynamically adaptive and
problem-dependent. The rationale here is that

1This value is the expected return for taking the action
under a certain state, and it is represented as the Q value of
Q-learning.
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Figure 2: Wrong and correct dialogue actions

DPAV learns the optimal trade-off between the
predicted maximal action value and the predicted
minimal action value so that the dialogue policy
learning procedure will be more reasonable and
stable. Our system not only yields a better dialogue
process (see Figure 2), but also has much lower
computational cost compared to ensemble models.

Overall, our main contributions are as follows:
(i) This is the first work to investigate and handle
the overestimation problem of the reinforcement
learning framework for task-completion dialogue
systems. (ii) We propose a novel and effective ap-
proach, the dynamic partial average DPAV, which
can alleviate the overestimation problem with lower
computational load. (iii) We theoretically prove the
convergence and derive the upper and lower bounds
of our method to claim its effectiveness.

2 Related Work

Dialogue Policy. The dialogue policy module
makes a dialogue decision given the current
state (Zhang et al., 2019). Early methods are rule-
based (Chen et al., 2017). Since handcrafted rules
are non-extensible and resource-consuming (Zhao
et al., 2021), deep reinforcement learning (DRL)
has become a mainstream method for training
dialogue policies (Wu et al., 2019; Wang et al.,
2020; Zhao et al., 2021). Task-completion dia-
logue policy learning is often regarded as an RL
problem (Zhang et al., 2021).

Overestimation Bias. The value-based algo-
rithm Q-learning, a common unit of the dia-
logue policy module, suffers the overestimation
bias (Thrun and Schwartz, 1993; Hasselt, 2010).
Prior studies addressed the problem in multiple
ways, including (1) bias compensation with addi-
tive pseudo costs and (2) a variety of estimators.
Bias-corrected Q-Learning (Lee et al., 2013) sub-
tracts a quantity from the target but this method
cannot address the bias from the function approxi-
mation (Pentaliotis and Wiering, 2021). It is known
that the bias compensation method is labor involved
and time consuming (Anwar and Patnaik, 2008;
Lee and Powell, 2012). Double Q-learning (Has-
selt, 2010) trades overestimation bias for underes-
timation bias using the double estimator. Since
underestimation bias is not preferable (Hasselt,
2010; Lan et al., 2020), Weighted Q-learning pro-
poses (D’Eramo et al., 2016; Zhang et al., 2017) the
weighted estimator for the maximal action value
based on a weighted average of estimated actions
values. However, the weights computation is only
practical in a tabular setting (D’Eramo et al., 2017).
Our work differs from the foregoing in that it pro-
poses a new estimator which could be generalized
into the deep Q-learning network setting.

Overestimation bias is more problematic in the
deep Q-learning network (DQN) algorithm (Fan
et al., 2020) due to the function approximation
errors of DRL. Polishing estimation tricks of a
single model and using ensemble models are two
mainstream solutions. Double Q-learning is sub-
sequently adapted to a neural network as Double
DQN (Van Hasselt et al., 2016), and Duel DQN pro-
poses a new action value estimation scheme (Wang
et al., 2016). But the two methods still suffer the
bias of double estimator and maximum estimator,
respectively. Another approach against overesti-
mation bias is based on the idea of ensembling.
Averaged DQN controls the estimation bias by tak-
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ing the average over action values of multiple tar-
get networks (Anschel et al., 2017). Later, (Lan
et al., 2020) claims that an average operation will
never completely remove the overestimation bias,
and they propose the Maxmin DQN which takes
a minimum from multiple maximums of different
ensemble units to estimate the maximum action
value in a selective process. Then, (Kuznetsov
et al., 2020) recognizes that Maxmin DQN also suf-
fers underestimation bias and that the bias control
is coarse. Recently, the SUNRISE method uses
the uncertainty estimates of the ensemble. But it
only down-weights the biased estimation (Lee et al.,
2021). In this work, the model only uses a value
function instead of a combination of multiple value
functions and tailors the predicted maximum and
minimum of a value function to approximate the
optimal action value. Our work does not move to-
wards underestimation and avoid the computational
complexity of ensemble models.

3 Preliminary

3.1 Problem Definition
Even though an unbiased estimator does not ex-
ist (D’Eramo et al., 2016), the maximum estima-
tor (Watkins and Dayan, 1992) and double estima-
tor (Hasselt, 2010; Van Hasselt et al., 2016) are the
most representative among the relevant works.

Maximum estimator (ME). This method is used
by deep Q-learning to approximate the ground truth
maximum action value of the following state by
maximizing over a set of action values Q (st+1, ·).
It represents the target yDQN for taking a possible
action a under the state st+1 as:

yDQN = rt+1 + γmax
a

Q
(
st+1, a;θ

−) (1)

where rt+1 is the reward, γ is the discount value
for future rewards and θ− is parameters of the tar-
get network. As Smith and Winkler (2006) found,
the estimate of ME is larger than the ground truth
(i.e., the estimated maximum value of the follow-
ing state, maxaQ

(
st+1, a;θ

−) is overestimated),
which results in the biased loss:

L(θ) =

E
⟨st,at,rt,st+1⟩∼m

[(
yDQN −Q (st, at;θ)

)2]
,

(2)

where m is the RL experience replay pool and θ is
parameters of the DQN model. Thus, the Q (st, ·)
will not be perfectly accurate after training,

Double estimator (DE). This method (Hasselt,
2010; Van Hasselt et al., 2016) is used by deep
Q-learning to solve the overestimation problem of
ME in DQN. The Double DQN has two estimators,
and one estimator decides the action index while
the other estimator evaluates the action value of the
selected action. Then Double DQN (DDQN) uses
the evaluated action value to estimate the ground
truth maximum action value of state st+1:

yDDQN =

rt+1 + γQ(st+1, argmax
a

Q
(
st+1, a;θ

+
)
;θ−).

(3)
However, DE suffers from the underestimation
problem and does not guarantee better estimation
than ME (Lan et al., 2020).

3.2 Problem in Dialogue Policy
Q-learning is a common unit of RL-based dialogue
policies. The overestimation bias of ME propa-
gates into model action values Q (st, ·). In dia-
logue Q (st, ·) represent the dialogue action values,
which are the expected returns the dialogue system
will receive after taking an action under the state st.
Since Q (st, ·) are biased, the dialogue policy can-
not issue accurate actions accordingly. This hurts
dialogue performances.

Example. We use a dialogue turn to show the
negative effects of the overestimation bias. In Fig-
ure 1b, the dialog state tracker module outputs state
embedding, dialogue policy processes state embed-
ding and predicts the wrong dialogue action B in-
stead of the correct action A based on the biased
action values.

4 Method

4.1 Dynamic Partial Average
Q-learning suffers from overestimation bias be-
cause of the ME (Hasselt, 2010). To reduce the
bias, in this work, we propose the dynamic partial
average (DPAV) estimator. DPAV utilizes the par-
tial average between the predicted maximal action
value and the minimal action value to estimate the
ground truth maximal action value Q∗(st+1) of the
target of Q-learning update, The mathematical for-
mula of the DPAV estimator of Q-learning is as
follows:
Q∗(st+1) ≈ (1− λt) ∗max

a′
Q
(
st+1, a

′; θ′
)

+ λt ∗min
a′′

Q
(
st+1, a

′′; θ′
)
= QDPAV (st+1),

(4)
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λt is a float number between [0,1] that is dynamic
in time and problem-dependent such that the DPAV
can take the average between the maximum and
minimum of the action values. The weights as-
signed to the maximum and minimum are not the
same, so it is a partial average.

The DPAV estimator is deployed in Q-learning
as DPAV Q-learning, so that we have the action
value function Q update formula as:

Q (st, at)← (1− αt)Q (st, at) + αty
DPAV ,

yDPAV = rt+1 + γ ∗QDPAV (st+1).
(5)

where γ is the discount factor for the future action
value and αt is the step size. λt in QDPAV (st+1)
decays according to a predefined rate as training
progresses, the decay formula is as follows:

λt+1 = λt ∗ d, (6)

where d is the decay rate that is set to the fixed
value in training. So 1− λt will give more weight
to the maximal action value during the training.

To apply DPAV to the complex dialogue pol-
icy learning setting, this paper combines it with
the deep Q-learning network (DQN) and proposes
DPAV DQN. Its loss function is adapted from Equa-
tion 2 to the formula:

Lθ =

E
⟨st,at,rt+1,st+1⟩∼m

[(
yDPAV −Q (st, at; θ)

)2]
.

(7)
The algorithm of the dynamic partial average
deep Q-learning network is summarized in Algo-
rithm 1.2

The intuition behind this approach is that the
predicted maximal action value overestimates the
ground truth, so DPAV uses the predicted mini-
mal action value to shift the estimate towards the
ground truth. Because the predicted action values
accuracy is improved in training, DPAV assigns less
weight to the predicted minimum to avoid shifting
towards the small estimate too much. DPAV re-
duces the overestimation bias in the target of the
training loss, so it is less biased. This improves
the dialogue action values accuracy of the DPAV
DQN dialogue policy, so this dialogue policy issues
more accurate dialogue actions accordingly which
improve dialogue performances.

2In the algorithm, if the state st+1 is a terminal state, it
means the Markov decision process ends. And in the dialogue,
it means the dialogue ends.

Additionally, this method has a lower compu-
tational complexity compared to those of ensem-
ble models. Even if the latter could trade time
complexity for space complexity by parallel com-
puting, they still have high computational com-
plexity in general as shown in the Table 2. And
this method achieves better or comparable perfor-
mances according to the Figure 3. The upper and
lower bounds of the DPAV DQN estimation bias
are also reasonable compared with those of other
methods. A detailed explanation is found in section
4.3.

Algorithm 1: DPAV DQN
Initialize replay memory D to capacity N ,
action-value function Q with random
weights, and decay rate d

for episode =1,...,M do
Initialise state s1
for j=1,...,T do

With probability ϵ select a random
action aj , otherwise select
aj = maxaQ

∗ (sj , a; θ)
Execute action aj in environment,

observe reward rj+1 and come into
state sj+1. Store transition
(sj , aj , rj+1, sj+1) in D, and set
sj = sj+1

Sample random minibatch of
(st, at, rt+1, st+1) from D

Set yt =





rt+1

if terminal state st+1

yDPAV

non-terminal state st+1

Perform a gradient descent step on
Lθ=(yt −Q (st, at; θ))

2 to update
θ

Replace target parameter θ− ←− θ
after every L iterations. Update
average weight λt+1 ←− λt ∗ d
after every U iterations.

end
end

4.2 Convergence

In this subsection we show in Theorem 1 that in the
limit DPAV Q-learning converges to the optimal
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policy. The proof3 of this result using the Lemma
1 (Singh et al., 2000) is in the Appendix A.2.

Theorem 1. In a Markov decision process, the
approximate action value function Q as updated by
DPAV Q-learning in Equation 5 converges to the
optimal action value function q∗ with probability
one if an infinite number of experience tuples in the
form of (st, at, rt+1, st+1) are given by a learning
policy for each state action pair and if the following
conditions are satisfied:
1. The Markov decision process is finite (i.e. | S×
A×R |<∞, S means the set of states, A means
the set of actions, andR is the set of rewards.).
2. γ ∈ [0, 1).
3. αt(s, a) ∈ [0, 1],

∑
t αt(s, a) =

∞,
∑

t α
2
t (s, a) < ∞ w.p.1, and ∀s, a ̸= st, at :

αt(s, a) = 0. αt(s, a) is the step size of a Q-
learning update.

4.3 Upper and Lower Bound

As shown in (D’Eramo et al., 2016; Hasselt, 2010),
considering a set of M ≥ 2 independent random
variables X = {X1, . . . , XM}, each random vari-
able Xi has a mean µi = E [Xi] and a variance
σi = Var [Xi]. In many problems, one is inter-
ested in the maximum expected value in such a
set µ∗ = maxiE {Xi}. Without knowledge of
the functional form and parameters of the under-
lying distribution of each variable Xi, it is im-
possible to find µ∗ analytically. Given a set of a
limited number of samples, S = {S1, . . . , SM},
Si corresponds to the subset of samples drawn
from the unknown distribution of the random vari-
able Xi. The maximum estimator (Watkins and
Dayan, 1992) and double estimator (Hasselt, 2010)
are the most representative methods to estimate
µ∗. ME estimation: µ̂ME

∗ (S) = maxi µ̂i(S) =
maxiE {Si} ≈ µ∗. DE splits the set S into
SA =

{
SA
1 , . . . , S

A
M

}
and SB =

{
SB
1 , . . . , SB

M

}
.

DE estimation: µ̂DE
∗

(
SA, SB

)
= µ̂a∗

(
SB

)
=

E
[
SB
a∗
]
≈ µ∗, with a∗ = argmaxi µ̂i(S

A).

4.3.1 Bias
We start with representing the main results about
the bias of Maximum Estimator (ME) and Double
Estimator (DE) reported in (Van Hasselt, 2013).
As for the direction of the bias, ME is positively
biased, while DE is negatively biased. ME is

3Lemma 1 was also used to prove the convergence of
SARSA (Rummery and Niranjan, 1994) and Double Q-
learning (Van Hasselt et al., 2016)

bounded by: Bias
(
µ̂ME
∗

)
≤

√
M−1
M

∑M
i=1

σ2
i

|Si| .
For the bound of DE, (Van Hasselt, 2013) conjec-
tures the following lower bound: Bias

(
µ̂DE
∗

)
≥

−1
2

(√∑M
i=1

σ2
i

|SA
i | +

√∑M
i=1

σ2
i

|SB
i |

)
. M means

the number of sample means, σi means the vari-
ance of the ith sample mean. For the bias of DPAV
estimator, we have the following bounds.

Theorem 2. For any given set X of M random
variables: Bias

(
µ̂DPAV
∗

)
≤ Bias

(
µ̂ME
∗

)
, and

Bias
(
µ̂DPAV
∗

)
≥ Bias

(
µ̂DE
∗

)
.

Explanation. ME uses the maximum of sample
means to estimate the ground truth maximal ex-
pected value (MEV), while DPAV takes the par-
tial average over the maximum and minimum of
sample means. The minimum will shift the DPAV
estimation towards the ground truth, so the upper
bound of the DPAV estimator bias will be smaller
than that of ME. DE uses the minimum of sample
means to estimate the ground truth in the worst case,
however, the DPAV estimator mitigates this bias
through importing the maximum into the partial
average shifting the estimation towards the ground
truth. So its lower bound is larger than that of DE.

4.3.2 Variance

Since the MSE loss of an estimator is the sum
of its squared bias and its variance, so we should
also consider its variance to evaluate its good-
ness. Van Hasselt (2013) proved that both the vari-
ance of ME and the one of DE could be upper
bounded by the sum of variances of sample means:
Var

(
µ̂
ME/DE
∗

)
≤∑M

i=1
σ2
i

|Si| .

Theorem 3. The variance of DPAV estima-
tor is upper bounded by: Var

(
µ̂DPAV
∗

)
≤

σ2
Max/Min

|SMax/Min| ≤
∑M

i=1
σ2
i

|Si| .

Explanation. Because the DPAV estimator uti-
lizes the partial average between the maximum and
minimum of sample means to estimate the ground
truth. The weights assigned to the maximum and
minimum are in the range (0,1), and the sum of
weights is 1. According to the variance math prop-
erties (Casella and Berger, 2021), the estimation
variance is smaller than the larger one among the
variances of maximum and minimum of sample
means. Therefore, it is also smaller than the maxi-
mal variance of all sample means.
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Task Intents Slots User goals
Movie-ticket booking 11 16 128
Restaurant reservation 11 30 3525
Taxi ordering 11 29 2830

Table 1: The statistics of the datasets.

5 Experiments

5.1 Dataset and Evaluation Metrics
We evaluate the DPAV DQN method and baselines
on three public task-completion dialogue datasets4:
movie-ticket booking (Li et al., 2016, 2017), restau-
rant reservation and taxi ordering (Li et al., 2018).
The statistics of the datasets are given in Table 1
(see Appendix B.1 for details)

The evaluation metrics are success rate and av-
eraged reward. Success rate is the ratio of the
number of tasks successfully completed by the dia-
logue system in evaluation to the total number of
dialogues in the test set. Averaged reward refers to
the average of the cumulative rewards obtained by
the dialogue system for completing each dialogue
of the test set.

5.2 Baselines
To benchmark our method performance, we use
different DQN variants as baselines in dialogue
policy module for comparison: (1) DQN policy is
learned with standard DQN algorithm (Mnih et al.,
2015). (2) Duel DQN policy is learned by the duel
network structure (Wang et al., 2016).(3) Double
DQN policy uses Double Estimator of Q-learning
to train (D’Eramo et al., 2016). (4) Averaged DQN
policy is trained by taking average over multiple
action values of target networks (Anschel et al.,
2017). (5) Maxmin DQN policy uses the minimum
of multiple maximums from different ensemble
units to estimate the ground truth maximal action
value in a selective process (Lan et al., 2020). (6)
SUNRISE policy trains with weighted Bellman
backups from multiple networks (Lee et al., 2021).
Our model DPAV uses a value function instead of
a combination of multiple value functions to tailor
the maximum and the minimum action value.

We conduct two λ searching schemes: neural
network (NN) searching and heuristic searching.
We also analyze the influence of different initial
value λ0 in the heuristic searching. So we have fol-
lowing models in the experiment: (1) LambdaX is

4(Zhao et al., 2021) argued that the three tasks have been
widely used in the research of dialogue policy.

the heuristic searching version of the DPAV DQN.
The floating number X is the initial value λ0 with
the range (0, 1). And LambdaX (e.g. Lambda0.5,
Lambda0.6) searches different floating numbers X
for initial λ0 in the heuristic searching. (2) Lamb-
daNet is the neural network searching version of
the DPAV DQN. It trains a NN to find a value for
λt for each dialogue state sk in the training process.
Here, λt means the value λ in the training episode
t, and sk represents the dialogue state k sampled
from the experience replay buffer of reinforcement
learning.

5.3 Implementation Details
This work is implemented with PyTorch toolkit.
Compared with the standard DQN algorithm, we
change the loss with the one defined by DPAV
DQN in Algorithm 1. For these RL-based di-
alogue policies, action value network Q(·) is a
MLP with one hidden layer of 80 hidden nodes.
ReLU is the activation function. A greedy policy is
used in the evaluation. All neural networks warm
start 120 episodes using the same rule-based pol-
icy before training and are trained with the same
hyper-parameters. We follow the default hyper-
parameters of the user simulator setting. The dis-
count factor γ for future reward is 0.9. The batch
size is 16, and the learning rate is 0.001. The test
set size in the movie domain and other domains
is set to 100 and 500, respectively. All baselines
are based on DQN for a fair comparison. We set
L = 40 as the maximum of dialogue turns in all
domains. The heuristically searched decay rate d
and decay interval of the DPAV estimator in the
movie domain and other domains are set to (0.75,
15 train iterations) and (0.9965, 30 train iterations),
respectively. For specific parameters of each model
and the user simulator, we refer to Appendix B.2.

5.4 Main Results
The main simulation results are reported in Fig-
ure 3, we evaluate each dialogue policy perfor-
mance in terms of success rate and averaged re-
ward. The top two rows of Figure 3 show DPAV
DQN consistently outperforms DQN. The overes-
timation error in target Q values gets propagated
into the DQN Q values, while DPAV DQN reduces
the overestimation error then its Q values will be
less biased. So it more correctly creates dialogue
utterances based on the Q values and achieves a
better success rate and averaged reward.

Our DPAV DQN method performs better than
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(c) Taxi domain success rate
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Figure 3: The top row shows the learning curves of dialogue policies. The X-axis is the number of training epochs
and the Y-axis is the success rate of dialogue policies on the test dataset. The second row shows the averaged reward
of each dialogue in the test dataset. The third row shows the influences of different initial λ values and value search
schemes. The X-axis and Y-axis are the same as those of the top row. Each learning curve is averaged over 3 runs
on the test dataset.

the baselines in terms of general performance.
Since the training starts with the experience pool
initialized by the the same rule-based dialogue pol-
icy, the models’ performance in the very first few
episodes is very similar. After that, the perfor-
mance improved for all models, but much rapidly
for DPAV DQN, which finally converges to a higher
success rate and averaged reward. As we claimed
above, the DPAV estimator reduces the overesti-
mation error propagated into its model Q values
and results in better action values estimation. En-
semble models performance relies on its number
of networks. With a limited number of networks,
as mentioned in the Related Work, Averaged DQN
still suffers overestimation bias, Maxmin DQN has
estimation bias from the coarse estimator and SUN-
RISE only down-weights the biased estimation. For

non-ensemble models, Duel DQN suffers overesti-
mation with the Maximum Estimator, while Dou-
ble DQN has underestimation bias (Anschel et al.,
2017). These drawbacks of the baselines get their
biased loss propagated into the policy model Q val-
ues and hurt the accuracy of the policy models. So
their performance (i.e., success rate and averaged
reward) cannot improve further after reaching a
certain level. The training efficiency and perfor-
mance of DPAV DQN in comparison validate the
effectiveness of our model.

However, in the taxi domain, Duel DQN outper-
forms other dialogue policies. DPAV DQN only
slightly improves the results compared to DQN
but it converges faster than DQN. Because some-
times there is no explicitly preferable action for a
state, so the action values of the state will be sim-
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Figure 4: The learning curves of the averaged maximal
action value of the dialogue starting state when dialogue
policies are evaluated on the movie test set during the
training. The Y-axis means the averaged maximal action
value of the starting state.

ilar (Thrun and Schwartz, 1993), and the DPAV
estimator cannot notably reduce estimation bias
through averaging between maximum and mini-
mum action values. But the DPAV estimator still
could estimate better than other baselines (except
for Duel DQN) as shown in the results. Duel DQN
uses the duel network structure to estimate action
values (Wang et al., 2016), which is helpful for rec-
ognizing the correct action when confronted with
confusing states.

5.5 Influence of Parameter λ

Intuitively, the optimal λ should seek the best trade-
off between the estimated maximum and minimum
that could be used to train the dialogue policy prop-
erly. It is a non-trivial optimization problem be-
cause the distribution of action values Q (st, ·) at
state st is constantly updated, and the optimal λ
for st should be adjusted accordingly. The third
row of Figure 3 shows that with the neural network
(NN) searching almost each dialogue policy eval-
uation has zero success rate and can not converge.
Since the distribution and the optimal λ are chang-
ing for the same state st, the fixed λ searched by
the neural network does not work. This validates
that the λ for st is dynamic, and a fixed λ leads to
bad performances.

It is a difficult problem to calculate the exact
ground truth maximal action value, so existing
works use estimators to approximate it (Lan et al.,
2020; Lee et al., 2021; Anschel et al., 2017). DPAV
DQN uses the DPAV estimator for the approxima-
tion. In the heuristic searching version of DPAV

DQN, λ0 is a very important initial value for the
DPAV estimator. λ0 is the initial weight of the
minimum, because finally we will give the total
confidence to our model, the weight of the maxi-
mum will be nearly 1. So the lower bound for λ0

is 0. Since model reduces the overestimation of the
maximum through shifting the estimate towards
the minimum action value. It is a trade-off, so the
upper bound for λ0 is 1. It is problem dependent
and should be set in a range (0,1).

As shown in the third row of Figure 3, among
three dialogue datasets: movie, restaurant and
taxi, we empirically find that the initial value λ0

around 0.5 results in good performances. And other
heuristic values degrade the dialogue policy perfor-
mances. Since shifting the estimate towards the
minimum action value too much or too less both
causes the estimation bias of the ground truth maxi-
mal action value. These validate that λ0 is problem
dependent and λt should decay to proper values to
balance the maximum and the minimum along the
training.

5.6 Computational Complexity Comparison

All baselines and DPAV DQN use various estima-
tors or estimation tricks to approximate the ground
truth maximal action value Q∗(st+1). Given the
state st+1 as the input to all baselines and DPAV
DQN, the time complexity of the forward propaga-
tion of every model unit has a similar time complex-
ity besides the minor differences (e.g., addition).
In order to facilitate the comparison, we denote
the time complexity for the forward propagation of
every model unit as O(N), here, N means the dimen-
sion of the vector input for forward propagation. In
this comparison, we suppose each ensemble model
has K model units.

Combining the results of Figure 3 and Table 2,
DPAV DQN achieves better or comparable perfor-
mances with a lower time complexity. Although
the time complexity of ensemble models can be re-
duced by parallel computing, but that increases the
space complexity. So, the overall computational
complexity is still high and resource consuming.

5.7 Results on Maximum Action Value

In reinforcement learning, the action
value Q is the expectation of return Rt

that is the sum of the discounted re-
wards: Q(s, a) = E {Rt | st = s, at = a}
= E

{∑∞
k=0 γ

krt+k+1 | st = s, at = a
}

. Fig-
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Model Name Time Complexity
DQN O(N)
Double DQN O(N)
Duel DQN O(N)
Averaged DQN O(K*N)
Maxmin DQN O(K*N)
SUNRISE O(K*N)
DPAV DQN O(N)

Table 2: Time complexity comparison among baselines
and DPAV DQN. N refers to the dimension of the vector
input for the forward propagation. K means the number
of ensemble units. O measures the time complexity of
models.

ure 4 shows learning curves5 of the averaged
maximum action value for the starting state on the
test set, the value in dialogue context means how
much return the dialogue policy assumes it could
maximally receive from the starting state.

At the first few training epochs, we notice that
the averaged maximum value of DPAV DQN is neg-
ative which is consistent with the averaged reward
of its evaluation shown in Figure 3d, because at the
early training stage, the policy quality is too low to
finish most of the dialogues so the averaged reward
is low and the averaged maximum action value
should be low if the model Q values are accurate.
But the values of other models are not consistent
with and larger than the real averaged reward. Be-
cause the estimation bias of the loss makes that
these models have inaccurate Q values, the max-
imum action value of these models is larger than
the ground truth.

The policy training based on these inaccurate Q
values will be negatively affected. Only using Max-
imum Estimator (ME) will cause overestimation
bias and even lead to worse policy quality, it can be
observed from the curves of DQN and Duel DQN
in Figure 4. Averaged DQN and Maxmin DQN use
ME in their single unit so the bias leads their Q
functions to converge into inaccurate values, which
prevents averaged maximum action values from
improving further. SUNRISE down-weights the
biased estimation and it is trained in such a way
so that SUNRISE dialogue policy receives more
rewards during the evaluation 3d. As shown in the
Figure 4, the averaged maximal action value of
DPAV DQN remains the highest among the three
datasets because its model gets trained better with

5To save space, we only present the results on the movie
dataset, and the results on other datasets are similar.

the less biased loss and receives more return from
successful dialogues during evaluation. This also
coincides with the averaged reward from test dia-
logues in Figure 3d. This empirically validates that
DPAV is a better estimator than others because of
less estimation bias.

6 Conclusion

This paper is the first to investigate the nega-
tive effects of the overestimation problem in task-
completion dialogue systems. We propose the
DPAV estimator to mitigate this problem of Q-
learning. We also theoretically prove convergence
and derive the upper and lower bounds of the esti-
mation bias compared with those of other methods.
The resulting DPAV DQN model is empirically
evaluated on three dialogue datasets and achieves
better or comparable results with lower computa-
tional load compared to state-of-the-art baselines.
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A Appendix

A.1 Lemma

Lemma 1 (Hasselt, 2010). Let (βt,∆t, Ft) be a
stochastic process, where βt,∆t, Ft : X 7→ R
satisfy,

∆t+1 (xt) = (1− βt (xt))∆t (xt)+βt (xt)Ft (xt)

where xt ∈ X and t = 0, 1, 2, . . .. Let Pt be
a sequence of increasing σ-fields such that β0
and ∆0 are P0− measurable and βt,∆t, and Ft−1

are Pt-measurable, with t ≥ 1. Assume that the
following conditions are satisfied:
1. The set X is finite ( i.e. |X| <∞).
2. βt (xt) ∈ [0, 1],

∑
t βt (xt) =∞,

∑
t β

2
t (xt) <

∞ w.p. 1 , and ∀x ̸= xt : βt(x) = 0. βt (xt) is the
step size of the update.
3. ∥E {Ft | Pt}∥ ≤ κ ∥∆t∥+ ct, where κ ∈ [0, 1)
and ct → 0 w.p.1.
4. V {Ft (xt) | Pt} ≤ C (1 + κ ∥∆t∥)2, where C
is some constant.
where V{·} denotes the variance and ∥ · ∥ denotes
the maximum norm. Then ∆t converges to zero
with probability one.

Proof. See (Singh et al., 2000).

A.2 DPAV Q-learning Convergence Proof
Proof. We apply Lemma 1 with X = S × A,
∆t = Qt(st, at)−q∗(st, at), βt = αt, βt is also the
step size, Pt = {Q0, s0, a0, α0, r1, s1, . . . , st, at}
and

Ft (st, at) = rt+1+γQdpav (st+1, ·)−q∗ (st, at) ,
(8)

where

Qdpav (st+1, ·) = (1− λt)Qt (st+1, amax)

+ λtQt (st+1, amin) .
(9)

And amax = argmaxa′ Qt (st+1, a
′) while

amin = argmina′′ Qt (st+1, a
′′). The first condi-

tion of the Lemma 1 is satisfied because |S ×A| <
∞. The second condition of Lemma 1 is met
by the third condition of Theorem 1. Because
the absolute value of reward |r| < ∞ =⇒ ∀t :
V {rt+1 | Pt} < ∞. Since Qt is the expected cu-
mulative reward in Q-learning and Ft (st, at) is
composed of reward r, so ∀t : V {rt+1 | Pt} <
∞ =⇒ ∀t : V {Ft (st, at) | Pt} < ∞, the fourth
condition of the Lemma 1 is sufficed. This leaves
to show that the third condition of the Lemma 1 on
the expected contraction of Ft holds. We can write

Ft (st, at) = rt+1 + γ((1− λt)Qt (st+1, amax)

+ λtQt (st+1, amin))− q∗ (st, at)

= rt+1 + γ(Qt (st+1, amax)− λtQt (st+1, amax)

+ λtQt (st+1, amin))− q∗ (st, at)

= rt+1 + γQt (st+1, amax)− q∗ (st, at)

+ γλt (Qt (st+1, amin)−Qt (st+1, amax))

= rt+1 + γQt (st+1, amax)− q∗ (st, at)

+ γλtQsub

= F ′
t (st, at) + γλtQsub,

where F ′
t is the value of Ft if normal Q-

learning would be under consideration, and
Qsub = Qt (st+1, amin) − Qt (st+1, amax). Since
it is well known that ∀t : ∥E {F ′

t | Pt}∥ ≤
γ ∥∆t∥ (Hasselt, 2010), it follows that,
∥E {Ft | Pt}∥
=

∥∥E
{
F ′
t | Pt

}∥∥+ γλt ∥E {Qsub | Pt}∥
≤ γ ∥∆t∥+ γλt ∥E {Qsub | Pt}∥

Since in DPAV Q-learning, the λt will de-
cay as λt+1 = λt ∗ d. When t → ∞, given
ε > 0,∃t0 : ∀t ≥ t0 =⇒ λt < ε =⇒
limt→∞ λt = 0. Therefore, it suffices to show
that ct = γλtQsub → 0 w.p.1. Since all the
conditions of lemma 1 are satisfied, it holds that,
∀s, a : Qt(s, a)→ q∗(s, a) w.p.1.
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B Appendix

B.1 Dataset details

Table 1 lists the number of intents, slots and users
goals in the three datasets used in the evaluation.
And Table 3 shows all annotated dialogue acts and
slots in details. Task-oriented dialogue systems are
designed to help users to complete a specific goal
G. Even though the dialogue system knows nothing
about the user goal explicitly, the whole dialogue
progresses around this user goal G implicitly. In
order to explain the user goal better, we take a user
goal as an example from the movie domain:

Goal =


C =




moviename = Enter
the Dragon
actor = BruceLee
date = today


 ,

R =

[
theater =
starttime =

])
.

(10)
In this user goal, a user inquires the dialogue sys-
tem about the theater and start time of a today’s
movie about the Enter the Dragon by Bruce Lee.
The user goals are generated from the annotated
datasets mentioned in Table 3. The user goals ex-
tracted from the same dataset are then aggregated
into a user goal set for that task. The user goals ex-
tracted from the same dataset are then aggregated
into a user goal set for that task. When running a
dialogue, the user simulator (Li et al., 2016) ran-
domly samples a user goal from the user goal set
to converse with the dialogue system. Helping the
user to achieve specific user goals is the task to
complete for dialogue systems. In this paper, we
use the success rate and averaged reward as our
main evaluation criteria. We do not use averaged
turns into our criteria because overestimation bias
mainly prevents the dialogue system from complet-
ing a task in a dialogue. This is explicitly with
success rate and averaged reward, and this is not
directly related with averaged turns. If and only
if the dialogue system recognizes all constraints
provided by users and informs all information that
users want, and finally books the desired tickets
successfully, the user goal is viewed as successful,
and the dialogue policy received positive reward
for success. The averaged reward means the av-
eraged cumulative discounted reward received by
dialogue system per dialogue.

B.2 Implementation details
The size of the experience replay pool in the movie
domain and other domains is set to 8000 and 10000,
respectively. The number of target networks in Av-
eraged DQN, Maxmin DQN and SUNRISE is set
to 4. The temperature parameter of SUNRISE is
set to 2. The target network update period for Av-
eraged DQN is set to 4. In the experiment, we use
a user simulator to interact with dialogue systems.
In the movie domain, the dialogue system receives
a 2L reward if the dialogue finishes successfully
and receives -L if it fails. Also, a fixed reward (-1)
is given to the dialogue system for each dialogue
turn. In the restaurant and taxi domains, the dia-
logue system receives a 2L reward if the dialogue
finishes successfully and receives 0 if it fails. Also,
a fixed reward (0) is given to the dialogue system
for each dialogue turn. Under this setup, the dia-
logue datasets for experiments have varieties (Li
et al., 2016).
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Task Intents Slots Dialogues

Movie

request,inform,
confirm_question,
confirm_answer,
greeting,closing,
deny,not_sure,
multiple_choice,
thanks,welcome

city,closing,
data,greeting,
distanceconstraints,
moviename,price,
numberofpeople,
starttime,state,
taskcomplete,theater,
teater_chain,ticket,
video_format,zip

280

Restaurant

request,inform,
confirm_question,
confirm_answer,
greeting,closing,
deny,not_sure,
multiple_choice,
thanks,welcome,

address,atmosphere,
choice,city,closing,
cuisine,date,food,
dress_code,greeting,
distanceconstraints,
numberofkids,mealtype,
numberofpeople,
other,personfullname,
phonenumber,pricing,
rating,restaurantname,
restauranttype,seating,
starttime,state,zip,
result,occasion,
taskcomplete,reservation

4103

Taxi

request_inform,
comfirm_question,
confirm_answer,
greeting,closing,
deny,not_sure,
multiple_choice,
thanks,welcome,

car_type,city,speed,
closing,car_level,date,
distanceconstraints,
dropoff_location,
zip,result,numberofkids,
greeting,name,driver_id,
numberofpeople,other,
pickup_location,state,
dropoff_location_city,
pickup_location_city,
pickup_time,cost,
taxi_company,mc_list,
taskcomplete,taxi,budget,
emergency degree,drive_level

3094

Table 3: The details of the datasets. (Li et al., 2016, 2018)
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