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Abstract

Few-shot relation classification is difficult be-
cause the few instances available may not rep-
resent well the relation patterns. Some ex-
isting approaches explored extra information
such as relation definition, in addition to the
instances, to learn a better relation representa-
tion. However, the encoding of the extra in-
formation has been performed independently
from the labeled instances. In this paper, we
propose to learn a prototype encoder from re-
lation definition text in a way that is useful for
relation instance classification. To this end, we
use a joint training approach to train both a
prototype encoder from definition and an in-
stance encoder. Extensive experiments on sev-
eral datasets demonstrate the effectiveness and
usefulness of our prototype encoder from defi-
nition text, enabling us to outperform state-of-
the-art approaches.

1 Introduction

Relation classification (RC) aims to determine the
relation expressed between two entities in a sen-
tence. Typical approaches to RC train a classifica-
tion model or a prototype from labeled sentences,
which are intended to represent the typical relation
patterns including various syntactic, semantic and
contextual features. In practical situations, we may
have only a few labeled examples, which are in-
sufficient for training a good classification model.
In some cases, the labeled examples may also be
atypical. For example, if a relation is exemplified
by sentences describing Obama’s presidency in the
US, the resulting prototype would be largely tuned
toward a political context, which would be difficult
to apply outside the political context. Even for a
human annotator, with only a relation ID and some
examples, it would be difficult to learn to classify
a relation correctly. This is exactly the same prob-
lem faced by a few-shot RC system: the best guess
based on the limited labeled examples may fail.

If, however, the human annotator is told that
the relation is named “position held”, then he/she
would have a better understanding of the relation
to better generalize the examples to other instances.
In this case, the human annotator indeed exploits
the prior knowledge about the relation (from its
name). If more information such as a description
of the relation is available, then the annotator would
do an even better job. The definition of a relation,
being it the name or the description, is important to
help the human annotator understand the relation.
It is the same for an automatic RC model.

Several previous studies have explored using
such extra knowledge about the relation (Qu et al.,
2020; Dong et al., 2020; Zhang et al., 2021). For
example, relation names have been used for bet-
ter initializing the relation prototype before being
trained with labeled instances (Dong et al., 2020).
However, Dong et al. only considered a limited
number of relations in the training data, making the
few-shot RC model prone to over-fitting. Inspired
by these studies and human behaviors, in this paper,
we leverage relation definitions to build high-level
prototype representations of the relations.

A second problem we consider in this paper is
the ability to construct prototypes for new relations,
i.e. zero-shot learning. In this case, if the new
relation has a description, then one would be able
to apply the same prototype encoder learned on
the other relations to the new relation. In other
words, the mechanism of building relation proto-
types from their definitions could be generalized
and transferred to a new relation. Some previous
work (Qu et al., 2020) has considered prototype
transfer based on a knowledge graph which pro-
vides relationships between relations. It is assumed
that a relation’s prototype can be partly transferred
to a related relation in the graph. While this could
be a possible way to generate a more reasonable
prototype for a relation, we believe that relation
definitions provide a better basis for constructing a
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Relation name Description Labeled data

language of work
language associated with creative work,
such as books, shows, songs, or websites

Nokta ("dot" in Turkish) was a leading Turkish weekly political news magazine
All Things Must Pass is a triple album by English musician George Harrison
It was performed in French by French singer France Gall

position held
subject currently or formerly holds
the object position or public office

Goebbels succeeded him as Chancellor of Germany
It is named after Justus, Archbishop of Canterbury from 624-627
He represented Central Lancashire as a Member of the European Parliament (MEP)

Table 1: Example of relation definitions (relation name and description) and weakly labeled data for relation P407
and P39 in Wikidata, both of which are used for prototypical representation learning.

relation prototype.
We propose to learn a general mapping function

from relation definitions to their prototypes. The
advantages of the approach come from the fact that
the definition text expresses the intrinsic seman-
tics of relation, which is not explicitly covered by
labeled instances. For example, as shown in Ta-
ble 1, the name of the relation “language of work”
provides a general idea of the relation. The de-
scription further specifies that it is the language
used for “creative work”. Such information is not
explicitly expressed, but only hinted, in the cor-
responding labeled examples. The definition and
labeled instances provide different but complemen-
tary information about the relation, therefore can
be combined to improve RC.

Mapping a relation definition to a prototype vec-
tor could be done naively using a pre-trained lan-
guage model such as BERT (Devlin et al., 2019),
but the resulting prototype may not be the most use-
ful for relation instance classification. We believe
that a good prototype encoded from a definition
should be the one that helps RC. Therefore, we pro-
pose to train a prototype encoder together with RC
of some examples. To tackle the problem of lim-
ited labeled examples, inspired by the RC-oriented
pre-training work (Baldini Soares et al., 2019), we
use abundant distantly labeled data to help train
a prototype representation. The pre-training will
generate the relation prototype vector that can best
classify the weakly labeled data.

To integrate the prototype representation learned
from relation definitions with the given limited
hand-labeled instances, we adapt the Bayesian
meta-learning approach (Qu et al., 2020) to learn
a posterior distribution of the prototype vectors of
relations based on both the initial prototype repre-
sentations and the labeled instances. This process
helps adapt the prototype to the labeled instances.

We test our approach on two few-shot RC
datasets. It outperforms previous competitive mod-
els that apply pre-trained instance encoder or rela-

tion definition text. We also show that the encoder
can be easily generalized to new relations in zero-
shot RC setting. Experimental results demonstrate
the effectiveness and generalization ability of our
pre-trained prototype encoder.

Our main contribution in this paper is twofold: 1.
We propose a new relation prototype construction
method from relation definition; 2. We experimen-
tally show that the approach is effective in few-shot
RC and can be generalized to new relations in zero-
shot RC.

2 Problem Definition

RC aims to predict whether a sentence (instance) x
expresses a pre-defined relation between two given
entities (e1, e2). Neural RC models usually con-
tain an instance encoder that encodes the relation
expressed by an instance into a dense vector and a
classification layer to classify the dense vector to
the relation which has the most similar prototype
vector. In this work, we leverage the definition text
denoted as y to help learn the relation prototype.

The prototype encoder is trained to help the clas-
sification of relation instances. Some training in-
stances are required. Inspired by the RC-oriented
pre-training work (Baldini Soares et al., 2019; Peng
et al., 2020), we leverage a large set of distantly la-
beled data. The distant labeling (Mintz et al., 2009)
is done as follows: given a known relation contain-
ing a pair of entities, any sentence mentioning the
same entity pair is labeled by the relation.

Let us denote the set of distantly labeled in-
stances as D : {(xi, e1i, e2i, ri)}zi=1 and a set of
definition texts for all relations in D denote as
T : {(yt, rt)}nt=1. The instance encoder (instance
relation encoder) RelEncφ, parameterized by φ,
produces an instance embedding s ∈ Rd by s =
RelEncφ(x, e1, e2), where d is the vector dimen-
sion of prototype representation. The prototype
encoder ProtoEncθ, parameterized by θ, produces
a set of definition representations {vt}nt=1, where
vt ∈ Rd is produced by vt = ProtoEncθ(yt). The
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Figure 1: Overview of the prototype encoder pretraining framework. On the right side, two modules encode
different text separately: the prototype encoder encodes the definition text as prototypes; the instance encoder
encodes the possible relation expressed by an instance as the instance embedding. On the left side, a multi-instance
learning method takes the representations from the two encoders for relation classification.

training goal is to map definition representations to
relation prototypes useful for classifying instances.

3 Methodology

In this section, we first explain how a relation proto-
type is learned with the help of a set of distantly la-
beled instances. Then we describe how the learned
prototype is further enhanced by the limited labeled
instances in a Bayesian meta-learning framework.

3.1 Pre-training Framework

Pre-training a general prototype encoder involves
two processes: generalizing contextual features of
distantly labeled data to prototypes and mapping
the relation definitions to their prototypes. As in-
stances and the definition text describe relations in
different forms, we adopt two pre-trained language
models based on BERT (Devlin et al., 2019), as
the backbones to encode them separately. The uti-
lization of two distinct encoders is motivated by
the different natures of the inputs: Relation defini-
tion provides a high-level, conceptual description
of the relation, while a relation instance provides a
concrete example about relation expression. From
the former, the encoder would be asked to capture
the general concepts, while from the latter, fea-
tures relating to the syntactic/semantic pattern or
the context can emerge. 1. To cope with the large
quantity of relations and the noisy labeling problem
of distantly labeled data, we propose a simple yet

1We also tested with the same encoder, but obtained poor
results.

effective design of instance encoder, prototype en-
coder and their joint training process, as illustrated
in Figure 1. The joint training process learns the
mapping function of prototype encoder by directly
regarding definition representations as relation pro-
totypes for classification. We elaborate the three
components of the pre-training framework in the
following parts.

3.1.1 Instance Encoder

We use the entity marker strategy to extract the
instance relation following previous investiga-
tion about architectures of instance encoder (Bal-
dini Soares et al., 2019). An example is shown
in Figure 1. Four special entity markers -
[E1],[/E1], [E2], [/E2] are used to delimit
entity1 and entity2. Then the hidden vectors of
[E1] and [E2] at the last layer are concatenated
to represent the relation expressed by the instance.
Thus the hidden representation of an instance xi
is obtained as Hi = RelEncφ(xi, e1i, e2i) =<
he1 |he2 >, whereHi ∈ R2d and d is the the size of
the hidden representation space of the pre-trained
language model. The final instance embedding is
transformed into a d-dimensional representation by
a linear layer as si = HT

i Wt, where parameters
Wt ∈ R2d×d.

3.1.2 Prototype Encoder

Each relation from KBs typically has a name and
a description text. We use [SEP] to separate the
relation name and description, and add the special
token [CLS] at the beginning, another [SEP] at
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the end. Figure 1 shows an example. After tok-
enizing the input text, we feed the input tokens into
TinyBERT and use the hidden vector of [CLS]
(of dimension d) of the last layer as the definition
representation. We adopt TinyBERT (Jiao et al.,
2020) as the prototype encoder for its high effi-
ciency. We also experimented the alternative with
BERTBASE to update relation prototypes within a
mini batch. However, this alternative converges
much more slowly and at a higher final training
loss than using TinyBERT.

3.1.3 Joint Training with MIL
Multi-instance learning (MIL) has been widely
used to alleviate the noisy labeling problem (Ji
et al., 2017; Alt et al., 2019) in distantly labeled
data. It regards a set of instances containing the
same entity pair as a bag and assign the bag with
one relation label. Then relation classification is re-
laxed from sentence level to bag level. By selecting
the most reliable instance or assigning different at-
tention weights among the instances of the bag (Lin
et al., 2016), the impact of wrong labels is reduced.

In this work, we use the relation definition to
guide the instance attention learning among the
bag. We assume that instances that are semanti-
cally closer to the relation definition are more likely
to express such a relation. Let us denote a bag sam-
ple from the noisy dataset D as (Bk, rk, e1,k, e2,k),
where Bk = {x1,x2, . . . ,xm} is a set of instances
containing the entity pair (e1,k, e2,k), which are
encoded as {si}mi=1 (also called ‘instance embed-
dings’) using RelEncφ. The bag representation bk
is computed by aggregating all instances according
to the selective attention weights as follows:

bk =
m∑

i=1

aisi, ai =
exp(sTi vk)∑m
j=1 exp(s

T
j vk)

(1)

where the attention weight ai represents the con-
fidence score of instance xi expressing relation
rk. ai is calculated according to the similarity of
instance embedding si and the definition represen-
tation vk.

We use dot product to compute the similarity
of bk and candidate relation prototypes {vi}ni=1.
Then the bag-level prediction probability for rela-
tion rk is computed as follows:

p(rk|Bk,Wt, φ, θ) =
exp(bTk vk)∑n
j=1 exp(b

T
k vj)

. (2)

Standard cross entropy is used to compute RC loss.
We also add an auxiliary loss about language mod-

eling over training instances to avoid catastrophic
forgetting. We follow the same setting as previ-
ous work (Devlin et al., 2019; Baldini Soares et al.,
2019) to compute the masked language modeling
loss (LMLM). The final loss is defined as Eq. 3,

L = α ∗ LMLM + LRC, (3)

where α controls the importance of the language
modeling loss, set as 0.5 by default. We update the
parameters of {φ, θ,Wt} for both encoders at each
training iteration to minimize the final loss.

3.2 Application to Downstream RC

After the pre-training phase, we use the limited
labeled instances to further enhance the prototype
representation.

We adopt the Bayesian meta-learning approach
proposed in (Qu et al., 2020), which models the
uncertainty of prototype vectors by regarding them
as random variables and learning the probability
distribution for each relation. It could effectively
learn the posterior distribution of the relation pro-
totypes by combining the prior knowledge and a
few labeled instances (i.e. the support set). In the
model of (Qu et al., 2020), the prior of prototype
vectors is derived from the structural relationship
of different relations in a knowledge graph. The as-
sumption is that a relation (a node in the graph) can
gain some information from its neighbors. Rela-
tion representations are derived by applying graph
neural network. In our case, prior relation proto-
types are obtained from relation definition texts. A
big advantage is that we do not require a relation
be included in the knowledge graph to be able to
handle it. A new relation can be handled if we have
a definition of it, which is often the case (or the
definition can be easily created) in practice. We
will show later that our prototype representation
performs better than that of (Qu et al., 2020).

The Bayesian meta-learning framework works
as follows. For each sample in few-shot learning,
given the candidate relations C, we denote their
labels and textual definitions as rC and yC ; given
a few supporting instances S, we denote their sen-
tences and relation labels as XS and rS , where
each relation rs ∈ rC . In Bayesian statistics, we
infer the posterior distribution of relation proto-
types as follows. Considering context variables
{XS , θ,yC}, we formulate a Bayesian formula for
p(vC |rS) in Eq. 5. Eq. 6 could be obtained when
we assume that rS is uniformly distributed. Since
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θ,yC are independent to rS and XS is independent
to vC , we could finally get Eq. 7.

p(vC |rS ;XS , θ,yC) (4)

=
p(rS |vC ;XS , θ,yC)p(vC |;XS , θ,yC)

p(rS |;XS , θ,yC)
(5)

∝ p(rS |vC ;XS , θ,yC)p(vC |;XS , θ,yC) (6)

∝ p(rS |vC ,XS)p(vC |θ,yC) (7)

Therefore, the posterior distribution of relation
prototypes could be factorized as the likelihood
of supporting instances and the prior knowledge
of relation prototypes, which is derived from the
definition text and pre-trained prototype encoder.
p(vC |θ,yC) is the prior distribution for relation
prototypes and each relation is assumed to fol-
low a Gaussian distribution independently (i.e.,
N (vc|ProtoEncθ(yc), I)). p(rS |XS ,vC) is the
likelihood of supporting instances computed by the
softmax function, where dot product is used to com-
pute the similarity of instance embeddings and the
final relation prototypes.

Following the implementation of (Qu et al.,
2020), we sample multiple prototypes for estimat-
ing the posterior distribution and each sampling is
obtained via multiple stochastic updates. The opti-
mization process is end-to-end and further details
can be found in the paper (Qu et al., 2020).

Given a query instance Xq and a list of candidate
relations C whose prototype vectors are denoted as
vC , the relation distribution of the query instance
over candidate relations can be computed by a soft-
max function as follows:

p(rq|Xq,vC) =
exp(E(Xq) · vq)∑

c∈C exp(E(Xq) · vc)
, (8)

where E is the instance encoder (like BERT or
RelEncφ).

4 Experiments

Pre-training details To run experiments with
limited computation resources, we use BERTBASE

2

as the backbone of instance encoder and a four-
layer TinyBERT 3 for the prototype encoder. We
obtain a large-scale distantly-labeled dataset by
processing the largest available alignments - T-
REx (Elsahar et al., 2018), which align the doc-
uments from Wikipedia and triplets from Wikidata.

2https://huggingface.co/bert-base-uncased
3https://github.com/huawei-noah/Pretrained-Language-

Model/tree/master/TinyBERT

We removed the relations that do not have the tex-
tual definition, i.e., all the relations in the distantly
labeled data have the textual definition. After re-
moving the repetitive instances, the final dataset
contains 636 relations and ∼ 8M instances. We get
the relation name and descriptions from Wikidata.

The hyper-parameters we used during the pre-
training process are: batch size is 96; the number
of training epochs is 3; optimizer is Adam with
a learning rate of 1e-4, which decays by 0.8 per
epoch. Our pre-training takes about 68 hours on
four V100 GPUs.

4.1 Few-Shot Relation Learning

Dataset and evaluation metrics We adopt two
few-shot RC datasets: FewRel 1.0 (Han et al.,
2018) and FewRel 2.0 (Gao et al., 2019b). FewRel
1.0 contains 100 relations split into training, vali-
dation and test sets with respectively 64, 16 and 20
relations without overlapping. Each relation has
700 instance sentences from Wikipedia. FewRel
2.0 is constructed to evaluate models for domain
adaption challenge and its validation data and test
data are from biomedical domain.

The typical N-way K-shot setting means each
evaluation episode will sample N relations, each
of which has K labeled instances, and some query
instances. The models are asked to classify query
instances into the sampled N relations given the
N×K labeled data. Accuracy is used to evaluate the
classification performance. Note that we exclude
entity pairs in test set of FewRel 1.0 that appear in
the pre-training dataset to avoid data leakage.

Baselines We choose the following representa-
tive and strong baselines for comparison. (1)
few-shot learning methods relying only on given
training instances: ProtoNet (Snell et al., 2017),
Pair (Han et al., 2018) ; (2) methods that integrate
extra information: REGRAB (Qu et al., 2020)
uses structural relationship between different re-
lations in KBs, MIML (Dong et al., 2020) uses
class semantic information from relation names;
(3) RC-oriented pre-training methods that provide
new instance encoders: MTB (Baldini Soares et al.,
2019) constructs sentence pairs as training samples
based on entity linking techniques, COL (Ding
et al., 2021) uses relation prototypes for regular-
ization assuming they are uniformly dispersed in
a unit ball. CP (Peng et al., 2020) conducts con-
trastive pre-training over distantly labeled data. CP
achieves state-of-the-art performance. For fair com-
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Method
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

ProtoNet† 80.68 89.60 71.48 82.89
Pair† 88.32 93.22 80.63 87.02
REGRAB† 90.30 94.25 84.09 89.93
MIML† 92.55 96.03 87.47 93.22
MTB† 89.09 95.32 82.17 91.73
COL† 92.51 95.88 86.39 92.76
BERT-EM 88.12 95.55 83.44 91.19
CP-RI 93.03 96.10 88.69 93.09

REGRAB+Proto 90.72 94.87 84.44 90.43
REGRAB+Rel+Proto 93.20 96.50 87.32 92.80
Rel+Proto 96.69 97.52 93.43 94.64

Table 2: Classification accuracies (%) on FewRel 1.0
test set. Results with † are reported as published.

parison, we re-run CP model with our pre-training
dataset and denote the model as CP-RI. We also
implement a baseline BERT-EM that is optimized
by the cross-entropy loss on every instance dur-
ing pre-training and uses exemplar comparison for
few-shot classification (Baldini Soares et al., 2019).

Our model and variants Based on the Bayesian
meta-learning approach (Qu et al., 2020), we
present two kinds of implementations:
(1) Models denoted as REGRAB+* construct a
global relation graph with relation embeddings.
Detailed ablation analysis is conducted on those
variations. REGRAB+Proto only replaces the
original relation embeddings with definition repre-
sentations by our ProtoEnc. Based on this, RE-
GRAB+Rel+Proto further replaces original in-
stance encoder with our pre-trained RelEnc.
(2) Other models that discard the global graph
construction as introduced in section 3.2. Those
models are denoted as “instance encoder” +Proto,
e.g., Rel+Proto uses both of our pre-trained en-
coders, CP+Proto applies the public instance en-
coder CP (Peng et al., 2020) to our approach.

Results and analysis Table 2 shows the perfor-
mance of different models. Our model Rel+Proto
achieves state-of-the-art performance over strong
baselines. This demonstrates the advantages of
leveraging both extra knowledge from the defini-
tion text and pre-trained instance encoder.

Table 3 shows that our approach can further im-
prove other strong pre-trained instance encoder
CP by a large margin on both FewRel 1.0 and
FewRel 2.0, verifying the wide applicability of our
approach. We empirically found that REGRAB
cannot be easily applied to FewRel 2.0 and MIML

Method
5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

FewRel 1.0

MTB 91.10 95.40 84.30 91.80
CP 95.10 97.10 91.20 94.70
CP+Proto 96.64 98.14 93.76 96.48

FewRel 2.0 Domain Adaptation

MTB 74.70 87.90 62.50 81.10
CP 79.70 84.90 68.10 79.80
CP+Proto 83.11 90.80 73.02 83.08

Table 3: Accuracy (%) on FewRel datsets. Our pro-
totype learning method improves previous best pre-
trained RC model (CP) and the reported baseline results
are from their paper (Peng et al., 2020).

often produced unstable results.
Ablation analysis of the pre-trained proto-

type encoder and instance encoder is conducted
with REGRAB. Compared with REGRAB, RE-
GRAB+Proto consistently improves the perfor-
mance on four settings, indicating the semantic rela-
tionship by our prototype encoder is more effective
than the structural relationship from KBs. Com-
pared with REGRAB+Proto, REGRAB+Rel+Proto
achieves obvious improvements over four settings,
showing the importance of pre-trained instance en-
coder. Besides, removing the operation of explic-
itly constructing a global relation graph, Rel+Proto
further improves REGRAB+Rel+Proto, verifying
our assumption that relation definitions could im-
ply semantic similarities of different relations, and
they provide a better way to construct representa-
tions for relations than through the relationships
between them.

From Table 2, we observe CP-RI, whose instance
encoder is pre-trained with the open-sourced code
on our pre-training dataset, performs worse than the
published results of CP, indicating our pre-training
dataset may be noisier. Compared with CP-RI,
BERT-EM performs more poorly, implying that the
model using the label of each instance may suffer
from noisy labels. Thus our design to leverage MIL
algorithm is necessary.

4.2 Generalizability in Zero-Shot Relation
Learning

To test how generalizable the prototype encoder is,
we apply it to unseen relations in zero-shot RC to
construct the prototype representation from their
definitions. We test how effective such a relation
prototype representation is.
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# relations 2 5 10 15 25

BERT-Def 48.98 19.83 9.34 7.98 3.98
ZS-BERT 87.60 57.84 38.54 30.73 24.05
BERT-Proto 84.01 65.60 52.46 44.80 34.72

Table 4: Zero-shot classification accuracies (%) on
NYT-25 with increasing candidate relations.

Dataset and evaluation setting We use two
datasets, NYT-25 and PubMed-10, whose relations
are nonoverlapping with FewRel training data and
are obtained from the FewRel website4. NYT-25
contains 25 relations from Wikidata and its sen-
tences are from New York Times; PubMed-10
contains 10 relations and both its relations and in-
stances are from the biomedical domain. Each rela-
tion in the two datasets has 100 manually labeled
instances. Relations from Wikidata have names
and descriptions as the definition text, while the
relations in PubMed-10 have only relation names
as the definition text.

For N-way zero-shot RC setting, the classifica-
tion difficulty is increased with the increase of can-
didate relation number N. We vary N from 2 to
the max number. In each setting, a candidate set
is made of N-1 negative relations and a positive
relation.

Compared models We denote our combined RC
model by the pre-trained prototype encoder and in-
stance encoder as BERT-Proto, whose pre-training
data exclude relations in NYT-25. To verify if the
pre-trained language models understand the defini-
tion text for RC, we present a baseline BERT-Def
that has the same model structure as BERT-Proto
but does not perform the joint training with the
instance encoder and prototype encoder.

We also present a competitive baseline ZS-
BERT (Chen and Li, 2021) that classifies sentences
based on embedding similarity. Similar to BERT-
Proto, ZS-BERT learns two functions to project
instances and relation definitions into an embed-
ding space. The difference is that it uses a fixed
pre-trained model, sentenceBERT (Reimers and
Gurevych, 2019), to encode the definition text into
an attribute vector. The attribute vectors are used
to regularize the instance encoder during training
and to compare with instance embeddings for clas-
sification during testing. We train ZS-BERT with
FewRel training data for adapting to RC tasks.

4https://github.com/thunlp/FewRel

# relations 2 5 8 10

BERT-Def 45.68 21.92 11.80 12.10
ZS-BERT 50.00 23.32 13.60 13.00
BERT-Proto 63.78 32.82 21.40 18.00

Table 5: Zero-shot classification accuracies (%) on
PubMed-10 with increasing candidate relations.
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Figure 2: The t-SNE visualization of instance embed-
dings and definition representations (indicated by ar-
rows) by our pre-trained BERT-Proto on selected rela-
tions. Each relation are represented by one color and
the relations seen in pre-training are in circles and the
unseen are crosses.

Zero-shot results and discussion From Table 4
and Table 5, we see BERT-Proto outperforms ZS-
BERT, showing that our model is competitive for
zero-shot RC even applied to a new domain and
under the most difficult setting, while ZS-BERT
performs slightly better than random on PubMed-
10. We believe the advantages are mainly generated
by the pre-training technique that helps learn a gen-
eral mapping function, i.e. the prototype encoder.
Note that BERT-Def presents almost random re-
sults, implying the ineffective encoding of relation
definitions when no joint training is performed.

4.3 Visualization

To figure out how relation representations are dis-
tributed in the semantic space, we visualize the
representations by our pre-trained instance encoder
and prototype encoder with TSNE (Van der Maaten
and Hinton, 2008) method. We also present rela-
tions of seen and unseen in the same space. The
seen relations are selected from the FewRel train-
ing data and the unseen are from NYT-25.

From Figure 2, we observe that: (1) The defini-
tion representations of seen relations are close to
instance embeddings of the same relation, show-
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ing that the prototype encoder could effectively
map the definition text to its prototype vector. For
some unseen relations, their own definition repre-
sentations could also be the closest to their instance
embeddings, providing effective prior knowledge
for RC. (2) The distance between different relations
reflects their similarities, which are mainly deter-
mined by contextual features, such as entity types,
sentence structures and context semantics. For ex-
ample, the relations of “performer”, “screenwriter”
and “present in work” all express the relationship
between a person and an artwork. Their instance
embeddings are much closer to each other than
with the relations about locations such as “head-
quarters location”, even though “present in work”
is the unseen relation. This shows that pre-trained
instance encoder could extract effective contextual
features for relation representations and build a
meaningful semantic space to guide our prototype
encoder learning. (3) For new-emerging relations,
their prototype vectors are determined by both the
definition text and labeled instances, so as to benefit
from the possible connections with seen relations
through pre-trained prototype encoder and instance
encoder.

5 Related Work

Relation classification (RC) is pivotal for natu-
ral language understanding and has been studied
for a long time (Chieu and Ng, 2002). Super-
vised machine learning approaches achieve remark-
able progress on RC (Kambhatla, 2004; Hendrickx
et al., 2009), but rely on high-quality labeled data.
To relieve the heavy burden of manual annota-
tion, researchers study RC under distant supervi-
sion (Mintz et al., 2009) or few-shot RC (Han et al.,
2018; Gao et al., 2019b). The former focuses on
robust classifier training with automatically labeled
noisy data (Lin et al., 2016; Li et al., 2020). Our
work belongs to the latter, which aims to learn gen-
eral knowledge transferable to new relations.

Few-shot learning methods have been well stud-
ied for image classification (Ravi and Larochelle,
2017) and some classical approaches such as pro-
totype network (Snell et al., 2017), model-agnostic
meta-learning (Finn et al., 2017) have been applied
for RC (Han et al., 2018). Two types of efforts have
been devoted to improving few-shot RC. Firstly,
some approaches (Ye and Ling, 2019; Gao et al.,
2019a; Wang et al., 2020; Han et al., 2021; Ren
et al., 2020; Ohashi et al., 2021) design specific

model architectures such as using attention mech-
anism to model complex interactions between la-
beled instances. However, these approaches are
still limited when the few labeled instances are
atypical and does not reflect the general patterns
of the relation. Secondly, researchers leverage ex-
tra information to complement the insufficient la-
beled data (Qu et al., 2020; Dong et al., 2020). Our
method belongs to this line.

Some methods (Qu et al., 2020; Zhang et al.,
2021) leverage extra knowledge from KBs but they
cannot deal with relations not covered by the KBs,
showing limited applicability. Similar to our work,
some studies (Dong et al., 2020; Yang et al., 2020)
use relation names or descriptions as extra infor-
mation. They design specific modules to integrate
the extra information, but the whole few-shot RC
model suffers from over-fitting and unstable perfor-
mance due to the limited number of training rela-
tions. In contrast, our method adopts pre-training
techniques to learn a general mapping function,
which is more applicable and proven effective for
domain adaptation.

Some recent studies (Baldini Soares et al., 2019;
Ding et al., 2021; Peng et al., 2020) conduct RC-
oriented pre-training to learn a general-purpose
instance encoder. Such instance encoders improve
RC on both supervised and few-shot learning set-
tings. We adopt the same idea of pre-training but
focus on learning the general function of mapping
relation definitions to the prototype space for rela-
tion classification.

6 Conclusion

This paper studies prototypical representation learn-
ing for few-shot relation classification, and the
key idea is to encode the definition text as prior
knowledge to help classify new relations. We pro-
posed to train a general-purpose prototype encoder
that could encode the definition text of any rela-
tion into the prototype space. An instance encoder
and the prototype encoder are trained jointly with
a multi-instance learning method on distantly la-
beled data. Applying our prior prototypes with a
Bayesian meta-learning approach, our method out-
performs previous state-of-the-art models by using
pre-trained instance encoder on two datasets, veri-
fying its wide applicability. Our prototype model
also presents competitive performance on the zero-
shot learning setting.
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