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Abstract

Matching model is essential for Image-Text Re-
trieval framework. Existing research usually
train the model with a triplet loss and explore
various strategy to retrieve hard negative sen-
tences in the dataset. We argue that current
retrieval-based negative sample construction
approach is limited in the scale of the dataset
thus fail to identify negative sample of high
difficulty for every image. We propose our
TAiloring neGative Sentences with Discrimi-
nation and Correction (TAGS-DC) to generate
synthetic sentences automatically as negative
samples. TAGS-DC is composed of masking
and refilling to generate synthetic negative sen-
tences with higher difficulty. To keep the dif-
ficulty during training, we mutually improve
the retrieval and generation through parameter
sharing. To further utilize fine-grained seman-
tic of mismatch in the negative sentence, we
propose two auxiliary tasks, namely word dis-
crimination and word correction to improve
the training. In experiments, we verify the ef-
fectiveness of our model on MS-COCO and
Flickr30K compared with current state-of-the-
art models and demonstrates its robustness and
faithfulness in the further analysis.

1 Introduction

The task of image-text retrieval takes a query image
(sentence) as input and finds out matched sentences
(images) from a candidate pool. The key compo-
nent of the retrieval framework is the similarity
computation of an image-sentence pair and it aims
to assign higher scores to positive pairs than nega-
tive ones. Triplet loss is widely applied for training.
Take image-to-text as example1, it constructs two
image-sentence pairs using an image and two sen-
tences (one is relevant and the other is not), and the
optimization process increases the similarity of the

1To keep the presentation simple and clear, we use image-
to-text as example to represent tasks in both ways throughout
the paper.
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(a) The diagram plots a triplet (image, positive sentence,
negative sentence) as a dot is defined by matching score of
the positive pair on the X-axis and that of the negative pair
on the Y-axis. The matching scores are also computed by
CLIP(ViT-B/32) (Radford et al., 2021).

Image Sentence Score
𝑃!: A man with a gray beard rides his bike on the 
beach of the ocean.
𝑁!: Man on bike, with bike clothing and helmet on, 
having trouble maneuvering through sand from beach.
𝐺!: A woman with a gray beard rides his bike on the 
beach of the ocean.
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0.34

0.41

𝑃": A little girl is posing on some pumpkins within an 
area surrounded by flowers.
𝑁": A girl wearing a red and black striped shirt is 
sitting on a brick wall near a flower garden .
𝐺": A little girl is posing on some pumpkins within a
beach surrounded by flowers.

0.47
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0.45

(b) Two images with the positive sentence (P), the most
difficult negative one (N) retrieved from dataset by CLIP
and the generated negative one (G). The score is the cosine
similarity computed by CLIP and larger is better. The under-
lined red words are non-correspondence ones to the image.

Figure 1: Diagram of matching scores (a) and two ex-
amples (b) in Flickr30K (Plummer et al., 2015).

positive pair while decreasing that of the negative
one. Previous research (Xuan et al., 2020) reveals
that models trained with harder negative samples,
i.e., sentences that are more difficult to be distin-
guished, can generally achieve better performance.
In this line of work, researchers explore various
strategies to search mismatched sentences for a
query image, from randomly choosing mismatched
sentences to using the most similar one. The search
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Figure 2: Framework of TAiloring neGative Sentences with word Discrimination and Correction (TAGS-DC).

scope moves from a single training batch (Karpa-
thy and Fei-Fei, 2015; Faghri et al., 2018; Kiros
et al., 2014; Socher et al., 2014; Lee et al., 2018;
Li et al., 2019) to the whole dataset (Chen et al.,
2020a; Zhang et al., 2020). Although promising
results have been reported by searching for harder
negative samples in a larger scope, the effectiveness
is limited by the scale of the dataset.

To compare the effectiveness of these strate-
gies, we randomly sample 3, 000 images in
Flickr30K (Plummer et al., 2015) and plot training
triples constructed in Figure 1. Each dot stands
for a triple (image, positive sentence, negative sen-
tence), and X-axis is the matching score of the
positive image-sentence pair while Y-axis is that of
the negative one. In general, triples located on the
left of the dotted line are more difficult to be dis-
tinguished because matching score of the negative
pair is higher than the positive one or comparable.
As we can see, triples obtained by searching the
most difficult mismatched sample in the batch are
largely located on the right of the dotted line, and
the matching scores of negative pairs are much
smaller with a gap larger than 0.05 on average
(in the right of the solid line). When enlarging
the searching scope to the whole dataset, triples
move up in positions, and around 40% of negative
pairs obtain higher matching scores than positive
ones. However, there are still 18% of images that
can only recruit negative samples with a matching
score 0.05 lower than its positive counterpart. This
confirms the limitation of retrieve-based negative
sample construction strategy.

To have a better understanding, we present two
triples in Figure 1 i.e., (P1, N1) and (P2, N2) (de-
noted as black cross). It shows that negative sen-
tences N1 and N2 describe scenes with significant

differences compared with the query images, there-
fore, they are easy to be distinguished. Given that a
high percentage of images obtain these low-quality
negative sentences in the dataset, we believe it is
necessary to collect negative samples beyond re-
trieval. Instead of searching for original sentences
in the dataset, we explore constructing artificial
negative samples by editing positive sentences. We
demonstrate two generated sentences in Figure 1,
G1 replaces “man" with “woman" on P1 and G2

replaces “area" with “beach" on P2. The generated
sentences obtain comparable or even higher match-
ing scores than positive ones. We further generate
artificial sentences for all images to form a new set
of triples. These triples are plotted in Figure 1 as
pink dots. We can see all of them located on the
left side of the dotted line, which means they are
more difficult to be distinguished.

In this paper, we propose TAiloring neGative
Sentences (TAGS) by rewriting keywords in posi-
tive sentences of a query image to construct nega-
tive samples automatically. In specific, we employ
the strategy of masking and refilling. In masking,
we construct scene graph for the positive sentence
and mask elements in the graph (objects, attributes,
and relations). Refilling replaces the masked origi-
nal words with mismatched ones to construct the
negative sample. In the training process, we further
propose two word-level tasks, word discrimination
and word correction, to incorporate fine-grained su-
pervision into consideration. Word discrimination
requires the model to distinguish which words lead
to the mismatch, and word correction demands the
regeneration of the original words. Both tasks eval-
uate the capability of the model to identify minor
differences between synthetic sentences and posi-
tive ones. During inference, the output of two tasks
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can provide fine-grained information through high-
lighting and revising mismatched words, and these
can be regarded as the explanation for the decision
made by the model to improve the interpretabil-
ity. We evaluate our model on MS-COCO (Lin
et al., 2014) and Flickr30K (Plummer et al., 2015).
Experiment results show the effectiveness of our
model.

Our contributions are three-fold: (1) We pro-
pose a generation-based method to construct nega-
tive samples to improve the training efficiency of
image-text retrieval model. (2) To fully exploit
the synthetic negative sentences, we propose two
training tasks, word discrimination and word cor-
rection, to incorporate the fine-grained supervision
to enhance the multi-modal local correspondence
modeling. (3) Our model generates state-of-the-
art performance on two public datasets MS-COCO
and Flickr30K.

2 Framework

The overall framework of TAiloring neGative Sen-
tences with word Discrimination and Correction
(TAGS-DC) is shown in Figure 2. For each positive
image-text pair (Ii, Ti), we first generate negative
sentences T−

i through scene-graph based masking
and refilling Ti on the basis of masked language
model (MLM) in §2.1. Second, we utilizes both
retrieved and synthetic negative sentences for the
training of image-text matching (IRTM and ISTM)
in §2.2, where synthetic negative sentences are ex-
ploited in sentence-level. Third, we propose to
train the synthetic sentence generator in a dynamic
way to keep pace with the upgrading of matching
model. Fourth, in §2.4, we apply word-level tasks
of word discrimination (WoD) and word correction
(WoC) on T−

i to discover their differences with Ti

for further training. MLM, IRTM, ISTM, WoC
and WoD share the same backbone Mθ and have
their own heads, namely, HMLM, HITM, HWoC and
HWoD. The detailed training step is illustrated in
Algorithm 1 in appendix.

2.1 Scene-graph based Sentence Generation
and Filtering

In general, negative sentences with more over-
lapped words with positive sentences tend to obtain
higher matching scores with the query image, thus
are more difficult to be distinguished. Therefore,
we propose to edit relevant sentences to construct
negative samples for a query image. After the sen-

tence generation, we control the quality by filtering
the false negative sentences. To ensure the editing
operates on key semantic units of the sentence, we
use a strategy based on scene-graph.

2.1.1 Scene-graph based Sentence Editing
The module of sentence editing takes a relevant
sentence of the query image as input and outputs
a synthetic sentence. It first identifies some key
semantic units in the sentence and replaces them
with other words. We employ a masked language
model for this process following two steps namely,
masking and refilling.

To identify the key semantic of a sentence, we
construct the scene graph for a relevant sentence
through scene graph parser of SPICE (Anderson
et al., 2016) following SGAE2 (Yang et al., 2019).
We then collect objects, relations, and attributes as
candidates for masking. To control the semantic
offset of the synthetic sentence T

(k)
i , we randomly

mask 15% tokens of sentence.
In the step of refilling, we use the output head

HMLM, which is a two-layer feed-forward network
(FFN), on top of the backbone Mθ for masked lan-
guage modeling. Thus, image Ii also gets involved
in MLM to guide the refilling later. The detailed
computation of LMLM is shown in Eq. (1), where ◦
is the function composition and NLL is the loss of
negative log-likelihood.

MLM : HMLM ◦ Mθ

(
Ii, T

(k)
i

)
→ Ti/T

(k)
i

LMLM = NLL
(
MLM

(
Ii, T

(k)
i

)
, Ti/T

(k)
i

) (1)

Then during refilling process, we put T (k)
i into

MLM to produce the logit scores, then sample the
synthetic sentence T

(k,l)
i following the distribution

which originates from the logit with temperature τ
as Eq. (2).

T
(k,l)
i ∼ Softmax

(
MLM

(
Ii, T

(k)
i

)
/τ

)
(2)

We conduct the masking and refilling steps for K
and L times to generate candidate synthetic sen-
tences.

2.1.2 False Negative Sample Filtering
It hurts the training of using sentences that are
relevant to the query image as negative sam-
ples (Chuang et al., 2020; Huynh et al., 2020).
Therefore we propose a filtering process to remove

2https://github.com/yangxuntu/SGAE
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false negative ones of synthetic sentences. In vi-
sion and language datasets, each image is annotated
with multiple descriptive sentences. For example,
there are five in MSCOCO and Flickr30K. For a
synthetic sentence, if its replaced tokens are com-
pletely included in these annotated sentences, we
will treat it as relevant. Based on this, we filter
synthetic sentences which are relevant.

2.2 Image Text Matching

Given an image Ii and a sentence Tj , the retrieval
model assigns a matching score s ∈ [0, 1] of
(Ii, Tj) with an output head HITM, which is a one-
layer FFN, as Eq. (3).

ITM : HITM ◦ Mθ(Ii, Tj) → s (3)

Triplet loss (TripL) is widely applied in image
text matching. With a hyper-parameter α, it takes a
query image (text) U as an anchor for the matched
(positive) image-text pair (U, V ) against the mis-
matched (negative) pair (U,W ) as the following
equation.

TripLα(U, V,W )

=max
(
α− ITM(U, V ) + ITM(U,W ), 0

) (4)

Matching on Retrieved Cases During training,
for each positive image-text pair (Ii, Ti), we re-
trieve a negative image I−i and a sentence T−

i , then
employ the loss of ITM in Eq. (5) for training,

LIRTM = TripLα

(
Ii, Ti, T

−
i

)
+ TripLα

(
Ti, Ii, I

−
i

)

(5)

Matching on Synthetic Sentences First, we pick
up these relatively better generated negative sen-
tences. In practice, we compute the matching score
between each synthetic negative sentence and Ii as
Eq. (6), and keep a synthetic negative sentence pool
T−
i to make each of them as difficult as possible.

T−
i = argmax-m

T−
t ∈{T (k,l)

i |T (k,l)
i ̸=Ti}

ITM(Ii, T
−
t ) (6)

where argmax-m is to pick out m sentences that
earn the top-m matching scores.

Second, with synthetic sentences T−
i in Eq. (6),

we utilize them and the positive one Ti to compute
the triplet loss, and get LISTM in Eq. (7).

LISTM =
1

|T−
i |

∑

T−
t ∈T−

i

TripLα

(
Ii, Ti, T

−
t

)
(7)

2.3 Dynamic Training Strategy of Negative
Sample Generation for Image-Text
Matching

The naive choice of MLM is to keep a pre-trained
static one: pre-training a MLM in advance and fix-
ing its parameters during the training of ITM. Re-
call that LISTM encourages the ITM model to learn
the pattern of synthetic sentences and keep them
away from the image, we consider that negative
sentences generated by the static MLM would be
no longer difficult for the ITM model as the train-
ing goes on. We propose to use the dynamic MLM
that shares the Mθ with ITM for mutual improve-
ment. Through the sharing, MLM continuously
learns what is more relevant to the positive sen-
tences and produces challenging negative ones for
the improvement of ITM. The stronger ITM helps
MLM to better identify the semantic alignment of
image and keywords. MLM achieves the improve-
ment synchronously with ITM through interaction.

2.4 Auxiliary Tasks to Incorporate
Fine-grained Supervision

LISTM only provides sentence-level supervision and
we argue it does not fully exploit the synthetic neg-
ative sentence. We introduce two auxiliary tasks
to utilize the word-level difference and further en-
hance the model capability in multi-modal local
correspondence modeling.

Word Discrimination The task is to determine
whether each word of the synthetic sentence T−

t ∈
T−
i is matched with Ii, and we regard the replaced

words of T−
t as mismatched ones and others as

matched ones. The target label Gt of T−
t ∈ T−

i is
determined following Gt,j = 1 if si,j = st,j else
0, where si,j and st,j are the j-th token of Ti and
T−
t . We set up a new output head HWoD, and the

objective of word discrimination is in Eq. (8).

WoD : HWoD ◦ Mθ

(
Ii, T

−
t

)
→ Gt

LWoD = NLL
(
WoD

(
Ii, T

−
t

)
,Gt

) (8)

Word Correction This task is to correct these
mismatched words in T−

t as Eq. (9). The task
not only requires the model to comprehensively
understand the gap between the synthetic nega-
tive sentences and the original positive ones, but
also word-dependency knowledge and local cross-
modal alignment to fill the gap. HWoC is the out-
put head for word correction, and the objective is
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MS-COCO Flickr30K

Model
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

SCAN 50.4 82.2 90.0 38.6 69.3 80.4 410.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0
MMCA 54.0 82.5 90.7 38.7 69.7 80.8 416.4 74.2 92.8 96.4 54.8 81.4 87.8 487.4
AOQ 55.1 83.3 90.8 41.1 71.5 82.0 423.8 72.8 91.8 95.8 55.3 82.2 88.4 486.3

UNITER+DG 51.4 78.7 87.0 39.1 68.0 78.3 402.5 78.2 93.0 95.9 66.4 88.2 92.2 513.9
Unicoder-VL 62.3 87.1 92.8 46.7 76.0 85.3 450.2 86.2 96.3 99.0 71.5 90.9 94.9 538.8
LightningDOT(B) 64.6 87.6 93.5 50.3 78.7 87.5 462.2 86.5 97.5 98.9 72.6 93.1 96.1 544.7
ERNIE-ViL(B) - - - - - - - 86.7 97.8 99.1 75.1 93.4 96.3 548.4
UNITER(B) 64.4 87.4 93.1 50.3 78.5 87.2 460.9 85.9 97.1 98.8 72.5 92.3 96.1 542.7

TAGS-DC(B) 66.6 88.6 94.0 51.6 79.1 87.5 467.4 87.9 98.1 99.3 74.5 93.3 96.3 549.4

CLIP 58.4 81.5 88.1 37.8 62.4 72.2 400.4 88.0 98.7 99.4 68.7 90.6 95.2 540.6
LightningDOT(L) 65.7 89.0 93.7 53.0 80.1 88.0 469.5 87.2 98.3 99.0 75.6 94.0 96.5 550.6
ERNIE-ViL(L) - - - - - - - 89.2 98.5 99.2 76.7 94.1 96.7 554.4
UNITER(L) 65.7 88.6 93.8 52.9 79.9 88.0 468.9 87.3 98.0 99.2 75.6 94.1 96.8 551.0

TAGS-DC(L) 67.8 89.6 94.2 53.3 80.0 88.0 472.9 90.6 98.8 99.1 77.3 94.3 97.3 557.4

Table 1: Overall performance of the image-text retrieval. B and L are the base and large settings.

MS-COCO Flickr30K

Model
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 RSum R@1 R@5 R@10 R@1 R@5 R@10 RSum

TAGS w/ WM 64.9 87.8 93.3 51.1 78.9 87.4 463.4 85.9 97.6 99.1 74.2 93.0 96.1 545.9
TAGS w/ SG 64.1 87.6 93.4 50.9 78.8 87.3 462.1 85.5 97.4 98.9 73.3 92.6 96.0 543.7

TAGS 65.4 88.4 93.6 51.3 79.0 87.5 465.2 87.2 97.8 99.2 74.4 93.1 96.1 547.8

Table 2: Effectiveness of Different Modules. TAGS w/ WM means replace the scene-graph based masking with word
masking in TAGS. TAGS w/ SG means replace dynamic generator with static generator in TAGS.

shown in Eq. (9).

WoC : HWoC ◦ Mθ

(
Ii, T

−
t

)
→ Ti

LWoC = NLL
(
WoC

(
Ii, T

−
t

)
, Ti

) (9)

2.5 Overall Training
Details of our training step are shown in Algo-
rithm 1 in appendix. The overall training loss of
our model has five components as Eq. (10) with hy-
perparameters λIRTM, λMLM, λISTM, λWoD and λWoC.

L = λIRTMLIRTM + λMLMLMLM

+λISTMLISTM + λWoDLWoD + λWoCLWoC
(10)

During inference, we employ the ITM to determine
the matching score of the query image (text) and
the candidate text (image) as Eq. (3).

3 Experiment

Dataset We evaluate our model on MS-
COCO (Lin et al., 2014) and Flickr30K (Plummer
et al., 2015). In MS-COCO, each image is accom-
panied with 5 human annotated captions. We split

the dataset following (Karpathy and Fei-Fei, 2015)
with 113,287 images in the training set and 5,000
images in the validation and test sets, respectively.
Flickr30K (Plummer et al., 2015) consists of 31000
images collected from the Flickr website, and ev-
ery image contains 5 text descriptions. We take
the same splits as in (Karpathy and Fei-Fei, 2015),
with 1000 images for validation and 1000 images
for testing, and the rest for training. 500

Models for Comparison We compare our model
with some competitive approaches, including
MMCA (Wei et al., 2020), and AOQ (Chen
et al., 2020a). We also compare with meth-
ods based on vision language pre-trained mod-
els: UNITER+DG (Zhang et al., 2020), Unicoder-
VL (Li et al., 2020), LightningDOT (Sun et al.,
2021), UNITER (Chen et al., 2020b), CLIP (Rad-
ford et al., 2021) and ERNIE-ViL (Yu et al., 2020).

Implementation We employ the pre-trained
UNITER (Chen et al., 2020b) with base (B) and
large (L) settings as our backbone.
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Evaluation Metrics We report recall at K (R@K)
and Rsum. R@K is the fraction of queries for
which the correct item is retrieved among the clos-
est K points to the query. RSum is the sum of
R@1+R@5+R@10 in both image-to-text and text-
to-image.

3.1 Overall Performance

The overall result is shown in Table 1. TAGS is
the model trained with generated negative sam-
ples, using the dynamic training strategy. TAGS-
DC is our model built on top of TAGS, further
trained using two auxiliary tasks. In the base set-
ting, our model achieves the best performance in
terms of all metrics except R@1 and R@5 of in
text-to-image on Flickr30K. In the large setting,
our model also outperforms other models across
all metrics except R@5 MS-COCO text-to-image
and Flickr30K image-to-image R@10. Compared
with UNITER(L), our model achieves an improve-
ment of 4.0 and 6.4 RSum points in MS-COCO
and Flickr30K.

3.2 Ablation Study

We further demonstrate the effectiveness of differ-
ent modules, namely, scene-graph based masking
(denoted as PM), dynamic sentence generation (de-
noted as DG), and fine-grained training tasks (de-
noted as WoD and WoC) in Flickr30K. Original
TAGS is trained with PM and DG. TAGS-DC is
further trained with WoD and WoC.

Scene-graph VS Word based Masking We re-
place the scene-graph based masking with word-
based masking (denoted as WM) to form TAGS
w/ WM. Detailed results are shown in Table 2.
WM follows the original sampling method of
UNITER (Chen et al., 2020b) that randomly sam-
ple 15% tokens to mask, and PM is introduced in
§2.1. TAGS outperforms TAGS w/ WM in terms
of all metrics, and this verifies the effectiveness of
PM.

Dynamic VS Static Generator We replace DG
with a static sentence generator (denoted as SG) to
form TAGS w/ SG. The difference between TAGS
and TAGS w/ SG lies in that the former shares
the parameters of ITM and MLM while the latter
does not. Both of them are initialized with the
pre-trained UNITER-base and share the same hy-
perparameters. In detail, we set λMLM = 0.1 and
λISTM = 0.001. The static generator is fixed as

a fine-tuned UNITER+MLM model. The perfor-
mance of TAGS w/ SG is not so good as TAGS.
This demonstrates the effectiveness of DG.

WoD and WoC In Table 2, TAGS-DC outper-
forms TAGS in both MS-COCO and Flickr30K.
This reveals that word discrimination and correc-
tion contribute to the performance of ITM.

4 Further Analysis

4.1 Difficulty Distribution of Samples from
Dynamic and Static Generator

To see the difficulty of negative samples con-
structed by various generation strategies, we plot
the value distribution of samples. To evaluate the
difficulty, we compute the similarity gap between
the positive pair ITM(Ii, Ti) and the negative one
ITM(Ii, T

−
t ). We plot the value of negative pair

minus positive one with respect to training steps
(X-axis). In general, higher value means higher dif-
ficulty. The result is shown in Figure 3 where the
darker color means more samples. The overall val-
ues of TAGS w/ SG (Figure 3 (a)) are higher than
TAGS w/ DG (Figure 3 (b)). This implies that the
static generator fails to provide negative sentences
close to the image for ITM during training while
our generator with dynamic generating strategy is
effective.

-1.0

-0.6

-0.2

0.2

0 1000 2000 3000 4000 5000

-1.0

-0.6

-0.2

0.2

0 1000 2000 3000 4000 5000

(a) Dynamic

(b) Static

Figure 3: Value {ITM(Ii, T
−
t )− ITM(Ii, Ti)} distribu-

tion of triples generated by dynamic and static genera-
tors respectively during the training. X-axis is training
steps.
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4.2 Quality Evaluation of Synthetic Sentences

We evaluate the quality of generated synthetic sen-
tences in terms of automatic metrics and human
evaluation.

Fluency We utilize the pre-trained language
model GPT-2 (Radford et al., 2019) to compute
the perplexity of synthetic negative sentences for
the measurement of their fluency. We use positive
sentences in the test set of Flickr30K as original
ones and generate negative samples by TAGS and
VSE-C. Furthermore, we look into sentences after
correction. The overall results are shown in Table 3.
Compared with sentences produced by VSE-C, our
synthetic sentences have much smaller perplexity.
After correction, the fluency of synthetic sentences
can be improved.

Human Evaluation We perform a human evalu-
ation to see whether all negative sentences gener-
ated are true negative. We randomly sample 200
sentences generated by TAGS and ask two annota-
tors to determine whether the synthetic sentences
are mismatched to the corresponding images. The
result shows that 96.5% of synthetic sentences gen-
erated are true negative.

Positive Synthetic Corrected VSE-C

Perplexity 51.13 87.63 70.87 292.76

Table 3: Perplexity of synthetic negative sentences.

4.3 Negative Sentences Discrimination

In this section, we explore to see if the generator
can discriminate positive sentences from synthetic
ones. We compare UNITER and TAGS. For a pair
of sentences (one is positive and the other is a syn-
thetic negative one), the generator should assign
a higher score to the positive one. We report the
accuracy of discrimination. We utilize two negative
sentence generators TAGS and VSE-C (Shi et al.,
2018). Two versions of TAGS with different seeds
are used for cross-validation. Results are shown in
Table 4. We have several findings as follows. (1)
TAGS2 is trained with a different seed with TAGS1,
but the performance of TAGS1 almost makes no dif-
ference in discriminating their generated sentences.
(2) Although the synthetic sentences of VSE-C are
constructed with human efforts, TAGS also outper-
forms UNITER by about 9%. (3) Three generators

produce negative sentences with different distri-
butions, but TAGS performs better than UNITER
consistently. These facts validate the robustness of
TAGS.

Generator Discriminator Accuracy

TAGS1
TAGS1 98.7%

UNITER 2.3%

TAGS2
TAGS1 99.7%

UNITER 2.8%

VSE-C
TAGS1 96.3%

UNITER 87.5%

Table 4: Accuracy of TAGS1 and UNITER in discrim-
inating the negative sentences constructed by TAGS1,
TAGS2 and VSE-C (Shi et al., 2018).

4.4 Effectiveness of Two Auxiliary Tasks

Image Type Sentence U T

Positive
A man wearing a helmet,
floating in the water 92.35 99.90

Synthetic
A man carrying white helmet ,

swimming in the water 93.17 98.92

Corrected
A man wearing a helmet,
swimming in the water - -

Positive A young man about to throw
a football 89.54 99.90

Synthetic
A man playing playing to

catch a ball 90.61 75.39

Corrected
A man player about to throw

a ball - -

Figure 4: Examples of TAGS-DC. The second column
is the sentence type including positive one, synthetic
one and corrected one. The third column is the corre-
sponding sentence of the second column. The fourth
and fifth columns are the UNITER(U) and TAGS-DC(T)
scores for the sentence in the third column, respectively.
The word color in synthetic sentences from green to yel-
low means the increase of the word mismatching scores.
Words with underline mean the regenerated words are
different from the original ones.

We show the performance of our model in two
auxiliary tasks, namely, word discrimination and
correction in the testing set of Flickr30K. In word
discrimination, we use a threshold of 0.5 to split
the positive and negative ones in terms of probabil-
ity. The accuracy of word discrimination is 66.5%.
In word correction, the accuracy is 87.3%. With
the probability, we can provide additional support
information accompanied to the final decision of
our model.

Two examples are presented in Figure 4. (1)
TAGS-DC assigns lower scores for synthetic neg-
ative sentences than positive ones, but UNITER
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fails. (2) Color of “carrying” and “playing playing”
are yellow which means that our word discrimina-
tion successfully detects these mismatched words.
Our model finds the local alignment in word-level
and grammatical errors, then generates “wearing”
and “man player” for correction. In the examples,
word discrimination marks the mismatched com-
ponents and word correction provides reasons for
mismatching. (3) Our model fails to identify two
mismatched words, “swimming”, and “ball”. Con-
sidering they are partially related to the image, our
model is less effective in determining the relevance
of these fuzzy words.

5 Related Work

Image-Text Retrieval Most works in image-text
retrieval focus on better feature extraction and
cross-modal interaction. Nam et al. (2017) and Ji
et al. (2019) represent the image by semantics
gathered from block-based attention. A line of
research (Lee et al., 2018; Li et al., 2019; Wang
et al., 2020; Wei et al., 2020; Li et al., 2021; Chen
et al., 2022; Zheng et al., 2021; Fan et al., 2019,
2021b) detects features by pre-trained Faster R-
CNN (Ren et al., 2015). Some other methods also
focus on enhancing cross-modality relationship
modeling, such as the dual attention network (Nam
et al., 2017), the stacked cross attention (Lee et al.,
2018; Liu et al., 2019; Hu et al., 2019), the graph
structure attention (Liu et al., 2020), and the multi-
modal transformer modeling (Wei et al., 2020; Fan
et al., 2021a). UNITER (Chen et al., 2020b), Uni-
coder (Li et al., 2020) and ERNIE-ViL (Yu et al.,
2020) follow BERT (Devlin et al., 2019) to pre-
train the vision-language transformer model on
the large-scale image-text datasets, and finetune
in image-text retrieval.

Negative Samples in Contrastive Learning Se-
lection strategies for negative samples have been
widely studied in metric learning (Schroff et al.,
2015; Oh Song et al., 2016; Harwood et al., 2017;
Suh et al., 2019; Zhang et al., 2020; Chen et al.,
2020a). Wu et al. (2017) employ distance weighted
sampling to select more informative and stable ex-
amples. Ge (2018) present a novel hierarchical
triplet loss capable of automatically collecting in-
formative training samples. In image-text retrieval,
early works (Kiros et al., 2014; Karpathy and Fei-
Fei, 2015; Socher et al., 2014) utilize random neg-
ative samples for training. VSE++ (Faghri et al.,
2018) incorporates difficult negative ones in the

multi-modal embedding learning. The method is
widely applied in the following works (Lee et al.,
2018; Wei et al., 2020), and achieves significant
performance improvement. UNITER (Chen et al.,
2020b) randomly samples a portion of texts (∼512)
from the dataset and picks up the hardest ones.
AOQ (Chen et al., 2020a) selects these hard-to-
distinguish cases from the whole dataset through
a pre-trained ITM model and assigns hierarchical
and adaptive penalties for samples with different
difficulties. UNITER+DG (Zhang et al., 2020) sam-
ples hard negative sentences according to the struc-
ture relevance based on denotation graph (Plummer
et al., 2015). These methods are retrieval-based
and inspire us to find more difficult negative sen-
tences through generation. Chuang et al. (2020)
propose a method for debiasing, i.e., correcting
for the fact that some negative pairs may be false
negatives. In our work, we mask keywords (ob-
jects, attributes, and relationships) in the positive
sentence then refilling, and exclude these sentences
of which each token is included in image anno-
tated sentences. This method introduces new key-
words and alleviates the generation of false nega-
tive samples. Kalantidis et al. (2020) consider ap-
plying mixup to produce hard negatives in latent
space. In our work, we directly rewrite the pos-
itive sentences that is missing in the latent space
based method, and this improves the robustness and
faithfulness. The most similar work is VSE-C (Shi
et al., 2018) that attacks the VSE++ (Faghri et al.,
2018) through replacing the nouns, numerals, and
relations according to language priors of human
and the WordNet knowledge base. Compare with
VSE-C (Shi et al., 2018), our method has three ad-
vantages. (1) Our model does not depend on rules.
(2) Our model is more flexible and can generate
negative sentences with any number, but this is in-
tractable for VSE-C. (3) The generated sentences
of our model are more fluent than these of VSE-C
as the results in Table 4.

6 Conclusion

In this paper, we focus on the image-text retrieval
task and find that retrieve-based negative sentence
construction methods are limited by the dataset
scale. To further improve the performance, we
propose TAiloring neGative Sentences (TAGS). It
utilizes masking and refilling to produce synthetic
negative sentences as negative samples. We also
set up the word discrimination and word correction
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to introduce word-level supervision to better ex-
ploit the synthetic negative sentences. Our model
shows competitive performance in MS-COCO and
Flickr30k compared with current state-of-the-art
models. We also demonstrate the behavior of our
model is robust and faithful.
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A Appendix

A.1 Implementation Details
We have two settings, base and large. The base
setting of model has 12-layers, 768 hidden size and
12 attention heads and the large one has 24-layers,
1024 hidden size and 16 attention heads.

We utilize grid search to determine the hyper-
parameters. In retrieval-based matching, we ran-
domly samples 399 negative sentence (image) from
the whole dataset for the query image (sentence),
and pick out the top 31 ones from them according to
the matching scores. In the masked language mod-
eling, we utilize the scene graph parser in SPICE
to extract the phrases of objects, relationships and
attributes from the positive sentence, and take these
phrases as a whole to sample and mask. The mask
probability is 0.15. In the generation enhanced
matching, the temperature τ ∈ {1.0, 1.5}, and we
set K = L = 20 and |T−

i | = 31/23 for the base
and large settings. λITM, λMLM, λISTM, λWoD and
λWoC is sampled from {1.0}, {5e-2, 1e-1}, {1e-4,
5e-4, 1e-3}, {5e-4, 1e-3} and {5e-4, 1e-3}, where
we set λWoD = λWoC.

Our training is composed of two steps, (1) we
train with ITM, MLM and ISTM with 5,000 steps as
NSG; (2) we further train the model with the whole
loss function as NSGDC with 1,500 steps. The
learning rate lr is sampled from {5e-5, 4e-5, 1e-5}.
We use a linear learning rate scheduler with 10%
warmup proportion. The Adam with β1 = 0.9 and
β2 = 0.98 is taken as the optimizer. The dropout
is 0.1.

Our code is implemented with pytorch. For base
setting in Flickr30K, we utilize 8 V100 for training
and the computation time is about 8 hours.

A.2 Algorithm of TAGS-DC

Algorithm 1 Training step of TAGS-DC
Input: A positive image-text pair (Ii, Ti).
Parameter: Backbone Mθ, the head of masked
language model HMLM , image-text matching HITM ,
word discrimination HWoD and word correction
HWoC.

1: # negative sentence generation.
2: Initializing T̂−

i := {}.
3: for k in 1, . . . ,K do
4: Randomly masking Ti to get the masked one

T(k)
i .

5: Computing LMLM in Eq. (1) with Mθ and
HMLM.

6: for l in 1, . . . ,L do
7: Refilling T(k)

i to generate a synthetic sen-
tence T(k,l)

i following Eq. (2).
8: if T(k,l)

i satisfies criteria C1 then
9: Adding T(k,l)

i to T̂−
i and computing its

matching score with Ii.
10: end if
11: end for
12: end for
13: # image text matching.
14: Sampling negative image I−i and negative sen-

tence T−
i to compute LIRTM in Eq. (5) with Mθ

and HITM.
15: Picking out top-m synthetic sentences from

T̂−
i by the matching scores to constitute T−

i .
16: Utilizing T−

i and Ii to compute LISTM in
Eq. (7) with Mθ and HITM.

17: # word discrimination and word correction.
18: for T−

t in T−
i do

19: Utilizing T−
t and Ii to compute LWoD in

Eq. (8) with Mθ and HWoD.
20: Utilizing T−

t and Ii to compute LWoC in
Eq. (9) with Mθ and HWoC.

21: end for
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Dataset Model lr α τ |T−
i | λITM λMLM λISTM λWoD λWoC

Flickr30k

NSG(B) 5e-5 0.2 1.5 31 1.0 1e-1 1e-3 - -
NSGDC(B) 1e-5 0.2 1.5 31 1.0 1e-1 1e-3 1e-3 1e-3

NSG(L) 4e-5 0.2 1.5 23 1.0 1e-1 5e-4 - -
NSGDC(L) 1e-5 0.2 1.5 23 1.0 1e-1 5e-4 5e-4 5e-4

MS-COCO

NSG(B) 5e-5 0.2 1.5 31 1.0 5e-2 1e-4 - -
NSGDC(B) 1e-5 0.2 1.5 31 1.0 5e-2 1e-4 5e-4 5e-4

NSG(L) 4e-5 0.2 1.5 23 1.0 5e-2 5e-4 - -
NSGDC(L) 1e-5 0.2 1.5 23 1.0 5e-2 5e-4 5e-4 5e-4

Table 5: Hyper-parameters
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