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Abstract

Text style transfer is an important task in con-
trollable language generation. Supervised ap-
proaches have pushed performance improve-
ment on style-oriented rewriting such as for-
mality conversion. However, challenges re-
main due to the scarcity of large-scale paral-
lel data in many domains. While unsupervised
approaches do not rely on annotated sentence
pairs for each style, they are often plagued
with instability issues such as mode collapse
or quality degradation. To take advantage of
both supervised and unsupervised paradigms
and tackle the challenges, in this work, we pro-
pose a semi-supervised framework for text style
transfer. First, the learning process is boot-
strapped with supervision guided by automat-
ically constructed pseudo-parallel pairs using
lexical and semantic-based methods. Then the
model learns from unlabeled data via reinforce-
ment rewards. Specifically, we propose to im-
prove the sequence-to-sequence policy gradi-
ent via stepwise reward optimization, provid-
ing fine-grained learning signals and stabiliz-
ing the reinforced learning process. Experi-
mental results show that the proposed approach
achieves state-of-the-art performance on multi-
ple datasets, and produces effective generation
with as minimal as 10% of training data.

1 Introduction

Text style transfer is a task in natural language gen-
eration, which aims to automatically control certain
attributes during sentence paraphrasing, such as for-
mality, sentiment, and humor (Rao and Tetreault,
2018; Li et al., 2018). Style transfer has many prac-
tical applications, such as altering emotions of spo-
ken utterances, removing biases in transcripts, and
conveying politeness in messages (Hovy, 1987).
The key for a successful rewrite is to preserve the
semantic content of the source sentence, while
transforming it to a particular target style with-
out sacrificing fluency and grammatical accuracy.

Therefore, the performance of style transfer mod-
els is commonly assessed on both style accuracy
and content preservation. When large-scale an-
notated sentence pairs are available, training neu-
ral sequence-to-sequence models via supervised
learning shows impressive generation quality (Rao
and Tetreault, 2018; Lai et al., 2021). However,
in many use cases, it is unfeasible to adopt su-
pervised approaches because parallel samples are
unavailable. To address data insufficiency bottle-
necks, various unsupervised approaches have been
proposed for text style transfer, including learning
disentangled representations of style and content
(Shen et al., 2017) and adopting pairwise back-
translation (Prabhumoye et al., 2018). Recently,
reinforcement learning (RL) is introduced to de-
velop unsupervised models such that rewards of
content preservation and style conversion are used
to optimize sequence generation (Luo et al., 2019;
Gong et al., 2019). However, RL-based methods
are often challenging to train in practice. For in-
stance, the rewards have high variance during early
stages when learning from scratch, which affects
the training stability; and they cannot provide fine-
grained learning signals as traditional token-level
maximum likelihood estimation, since they are of-
ten calculated on the entire generated sequence
(de Masson d’Autume et al., 2019). As a result,
models are prone to mode collapse and often fail
to produce acceptable generations in reality.

Herein, we propose a semi-supervised frame-
work for text style transfer, and optimize it on
training stability and signal fineness. Our semi-
supervised model uses a small amount of paral-
lel data for supervised learning, and gets further
improvement by learning from a large amount of
unlabeled data. In contrast to prior work that of-
ten relies on human-annotated parallel pairs like
(Chawla and Yang, 2020), the approach we propose
bootstraps the training process with automatically
constructed pseudo parallel data. Two pseudo pair
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matching methods are investigated: a lexical-based
strategy, which is straightforward by calculating
the token-level overlap; and a semantic-based strat-
egy, which uses semantic similarity as criteria and
would have better general potential.

Furthermore, to obtain fine-grained signals for
the RL-based sequence-to-sequence training pro-
cess, we propose a stepwise reward re-weighting
strategy. This is inspired by the observation that
the style transfer weights are not uniform across
tokens/spans in the source sentence: some tokens
weigh more during attribute-guided text style trans-
fer (Li et al., 2018). Therefore, instead of using the
reward (e.g., style strength scores) calculated from
the entire generated sentence (Luo et al., 2019;
Lai et al., 2021), we use the token-level reward.
Specifically, we extract attribute-related attentive
scores from a pre-trained style discriminator, obtain
a stepwise reward by re-weighting the sequence-
level score, and utilize it as a fine-grained signal
for policy gradient back-propagation.

We evaluate the proposed framework that incor-
porates both supervision and reward-based learning
on three style transfer corpora (Section 4). Exper-
iments show that our model achieves state-of-the-
art performance. Particularly, the proposed model
can produce reasonable generations with only 10%
training data on the Yelp and Amazon corpora, and
it also outperforms the supervised baselines when
applying on the well-annotated GYAFC dataset.

2 Related Work

Neural Text Style Transfer The aim of text style
transfer is to automatically convert text to a certain
style while preserving the content (McDonald and
Pustejovsky, 1985; Hovy, 1987). It has many ap-
plications, like persona-based dialogue generation
(Niu and Bansal, 2018). Recently, neural sequence-
to-sequence architectures becomes popular for this
task. When parallel data are available, supervised
training with cross-entropy loss is typically applied
(Rao and Tetreault, 2018). However, annotated data
are hard to obtain in many use cases, thus learn-
ing from non-parallel corpora has become an active
research area. There are two approaches: (1) Disen-
tangling style and content by learning a distinct rep-
resentation for each element. For example, varia-
tional autoencoders are first used to transform a sen-
tence into a low-dimension hidden state. Then the
attribute-related latent representation is extracted to
guide the decoder for target style generation (Shen

et al., 2017; Fu et al., 2018; John et al., 2019);
(2) Back translation, which uses cyclic reconstruc-
tion to improve content preservation (Zhang et al.,
2018; Prabhumoye et al., 2018; Lample et al., 2019;
Luo et al., 2019). For model optimization, some
studies focus on applying reinforcement learning
(RL), which defines a reward from a style classi-
fier or a reward from back-translation to enhance
style strength and content preservation (Gong et al.,
2019; Luo et al., 2019; Wu et al., 2019; Sancheti
et al., 2020). Recently, large-scale pre-trained lan-
guage models are introduced to improve generation
quality (Radford et al., 2019), and have been incor-
porated in both semi-supervised (Chawla and Yang,
2020) and supervised approaches (Lai et al., 2021).
In this work, we use the BART (Lewis et al., 2020)
as our language model backbone.

Pseudo Data Augmentation To tackle the data
scarcity challenge in text style transfer, one solution
is to build pseudo pairs from massive non-parallel
data. Zhang et al. (2020b) proposed several aug-
mentation methods for pre-training a Transformer-
based model and fine-tuning on human annota-
tions. Wang et al. (2019) proposed using harness-
rule-based pre-processing, and joint training of bi-
directional transfer and auto-encoder with two aux-
iliary losses (Wang et al., 2020). Jin et al. (2019)
and Nikolov and Hahnloser (2019) constructed the
pseudo corpora by iteratively matching via cosine
similarity of sentence embeddings and hierarchical
alignment. In this work, we use pseudo data as
weak-supervision to bootstrap the training process,
and further combine it with RL-based learning.

Attribute Salience Assessment In template-based
and prototype editing methods for text style trans-
fer, attribute marker detection is used to label the
salient words and spans (Li et al., 2018). Aside
from n-gram statistical features, neural attention-
based methods train attribute-related classifiers,
and consider words with attention weights higher
than average as markers (Bahdanau et al., 2015;
Xu et al., 2018; Sudhakar et al., 2019). Zhou et al.
(2020) use the attribute salient scores as one of
the model prediction output. To the best of our
knowledge, we are the first to employ token-level
attribute salience scores for reward re-weighting on
policy gradient for sequence generation, and prior
work only focuses on using attribute markers for
text manipulation such as token replacement and
template construction (Niu and Bansal, 2018).
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Figure 1: Overview of the proposed framework. Text samples in two different styles are in yellow and in blue. The
sequence-to-sequence model is shared by style transfer and cyclic generation. The MLE loss, reconstruction reward,
and style reward flows are in blue, yellow, and green arrow lines, respectively. See Algorithm 1 for training process.

3 Methodology

Define S as the source style and T as the target
style (e.g., S = negative, T = positive). Let DS

and DT be the two datasets which are comprised of
sentences in each style respectively. The style trans-
fer system, denoted as a text encoding-decoding
model G, is to generate sentences in the target style.
The goal is formulated to maximize P (y|x; θG),
where θG are the model parameters. In our setting,
we make the rewriting bidirectional, i.e. it can be
used to transfer source style to target style and verse
versa. In this case, an additional input c ∈ {S, T}
is fed to G specifying the style to which the sen-
tence is to be converted. Hence, the objective is to
maximize P (y|x, c; θG).

3.1 Framework Overview
The overview of our proposed semi-supervised
framework is shown in Figure 1. Given the non-
parallel datasets DS and DT , we use lexical or
semantic features for pseudo parallel pair matching.
The training process consists of two stages: (1) the
generator model G is trained on the pseudo parallel
samples, where cross-entropy loss over the target
sentence tokens is used to optimize generated out-
put probabilities, i.e. the bootstrapping step; (2)
we incorporate reconstruction and style rewards to
enhance attribute rewriting and content preserva-
tion, where reinforcement learning is used to opti-
mize the generation, i.e. the reward-based learn-
ing. Moreover, the second stage can use pseudo
parallel pairs as well as the non-parallel samples.

3.2 Pseudo Parallel Data Construction
To build the pseudo parallel data for bootstrapping,
we investigate lexical similarity and semantic simi-
larity for sentence matching.

Lexical Similarity In text style transfer, rewriting
is often accomplished by changing a few words
or phrases that are indicative of a particular at-
tribute in the source sentence, namely attribute
markers, while leaving the rest largely unaltered
(Li et al., 2018). For example, “Moving past the
shape, they were dry and truly tasteless.”, a sen-
tence with a negative sentiment style, can be trans-
ferred to a positive style by changing or replacing
sentiment-specific words “dry” and “tasteless”,
while keeping other words intact. This intuition
has inspired the template-based and editing-based
rewriting approaches (Li et al., 2018). Here we
employ it for the lexical feature extraction. First,
from unaligned corpora of two styled subsets (e.g.,
positive, negative), we identify attribute markers
by sorting phrases that occur with far higher fre-
quency within one attribute than the other (e.g.,

“worst” and “very disappointed” are negative mark-
ers). Second, for each sentence in the two subsets,
we remove those markers, and regard the remain-
ing words as its content-preserved spans. Then
we match the content-preserved spans of style S
to those of style T with the smallest Levenshtein
editing distance (see examples shown in Table 1).

Semantic Similarity While the lexical features
are straightforward and computationally-efficient,
it may not generalize well in some tasks like for-
mality conversion due to the ubiquitous span para-
phrasing. Therefore, in this paper, we introduce
semantic features for the pseudo data construction.
While samples in different styles stand in differ-
ent polarities, they are expected to be similar in
the content-level semantic space. More specifi-
cally, for a sample i in style S, we match it to
the closest sentence in style T in a semantic space.
We use an unsupervised sentence representation
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Source Sentence: if there were a way to put no stars, i would!
Lexical Match: i’d give it more stars if i could.
Semantic Match: love love love, if i could give you _num_
stars i would.

Source Sentence: the manager sat us at our table, and she
seemed very angry.
Lexical Match: the manager and employees are very nice.
Semantic Match: the manager alice herself came by our table
and greeted us as well.

Source Sentence: furthermore, i would rather drive _num_
minutes more to concord to race there.
Lexical Match: furthermore, they have a nice bar that goes
both indoor and outdoor.
Semantic Match: i drive _num_ minutes to get here and it is
definitely worth it!

Table 1: Pseudo parallel sentence pairs extracted from
Yelp sentiment transfer dataset. Source sentences are
from the negative polarity set, and are matched to sen-
tences from the positive set.

model with contrastive learning (Gao et al., 2021),
which achieves comparable performance to the su-
pervised sentence embedding models, and calcu-
late cosine similarity to measure the distance.1 As
shown in Table 1, the pseudo parallel data are sim-
ilar at the semantic level, and they can be used as
weak-supervision samples.

3.3 Learning with Supervision
With the pseudo parallel data, we can conduct su-
pervised learning with token-level maximum likeli-
hood estimation (MLE). In our framework, we use
a sequence-to-sequence neural network. Since the
large-scale pre-trained language models boost the
performance of various downstream tasks, we use
BART (Lewis et al., 2020) as the language back-
bone, which is a denoising autoencoder with strong
language generation capability. Given a source
sentence x and a reference sentence y, the cross-
entropy loss is calculated between the decoder’s
output and the reference sentence:

LMLE = −Σilog(p(yi|y1:i−1,x, c; θG)) (1)

Moreover, to avoid the generation becoming over-
fitting to the pseudo parallel data, we add the label
smoothing on the cross-entropy loss (Müller et al.,
2019), with the smoothing weight λ = 0.15.

3.4 Learning with Rewards
Upon the supervised learning from the pseudo par-
allel data, the model can be further improved by

1Additionally, we observed that in some corpora like Ama-
zon (Li et al., 2018), there are a number of samples labeled
with incorrect style due to data noise, and the semantic ap-
proach is sensitive on this issue. Therefore, we use a style
classifier to filter out the incorrectly clustered samples.

unsupervised learning from the massive unlabeled
data. For the unsupervised stage, we adopt rein-
forcement learning, and use two rewards to enhance
style rewriting and content preservation.

Reconstruction Reward Back translation has
proved effective to improve content preservation,
we feed the transferred sentence to model G for the
backward rewriting, and calculate reconstruction
reward on the cyclic generation. Here we measure
the reward based on BLEU (Papineni et al., 2002)
score as in (Sancheti et al., 2020) to foster con-
tent preservation, and adopt policy gradient (Sutton
et al., 1999) with Self-Critical Sequence Training
to reduce the variance (Rennie et al., 2017):
Rcyclic = score(G(y′),x)− score(G(ŷ),x) (2)

where x is the backward target, G(ŷ) is the back-
translated output from greedy decoding generation
ŷ, and G(y′) is the back-translated from sampling-
based generation y′ over a multi-nominal distri-
bution. Noted that the score function can also be
ROUGE and language model perplexity. The for-
mer is more suitable for summarization tasks; the
latter needs additional computation.

Style Classification Reward Aside from content
preservation, we use a style strength reward to opti-
mize the model. We train a Transformer model for
the binary style classification, and use it to evaluate
how well the transferred sentence y′ matches the
target style. The style reward is Rstyle defined as
the classification score:

p(sstyle|y′) = softmax(styleCLS(y′, ϕ)) (3)

where styleCLS denotes the style classifier, ϕ are
the parameters of the classifier, which are fixed
during the training of the generation framework.
y′ is the generated sentence by sampling from the
multi-nominal distribution at each step. Then, the
reward-based learning is conducted via Policy Gra-
dient (Sutton et al., 1999) back-propagation:

R = λcyclicRcyclic + λstyle(Rstyle − γ) (4)

∇θGJ = E[R · ∇θG log(P (y′|x, c; θG))] (5)

where R is the sum of cyclic and style reward, y′ is
the generated sentence by sampling from the multi-
nominal distribution at each step, θG are trainable
parameters of the generator, the weight ratio λ are
added on cyclic and style reward separately, and γ
is a style reward penalty (see Table 9). The overall
objectives for θG are the loss of the base model (Eq.
1) and the policy gradient of RL rewards (Eq. 5).
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Figure 2: Our proposed stepwise reward re-weighting.

Stepwise Reward Re-weighting When applying
reinforcement learning algorithms on sequence-to-
sequence training, it is difficult for models to con-
duct end-to-end back-propagation due to the dis-
crete nature of text. One of the common solutions
is adopting policy gradient optimization (Sutton
et al., 1999), where the rewards are generally cal-
culated on the whole output sequence. Since all
generated tokens obtain the same reward value, this
coarse-grained signal is suboptimal for learning
performance and stability (de Masson d’Autume
et al., 2019). For instance, when positive senti-
ment is targeted, the output sentence “I dislike this
movie!” will obtain a negative reward of style
strength if its gold reference is “I love this movie!”.
In this context, the word “dislike” should be pun-
ished more than the others in the sentence, but with
sequence-level reward all words receive the same
penalty. To address this drawback, we propose a
solution by granulating the sequence-level reward
with token-level salience scores, namely, stepwise
re-weighting.

To re-weight the coarse-grained reward, we use
the normalized attentive scores from the style
classification model as the token-level attribute-
salient scores. For the Transformer architecture,
it is shown that heavily attended tokens correlate
strongly with tokens that are indicative of the tar-
get style (Hewitt and Manning, 2019; Vig and Be-
linkov, 2019). Since the softmax linear layer is
used over the attention stack of the first token ⟨s⟩
in a ‘RoBERTa-base’ model, the attention weights
of other input tokens that correspond to ⟨s⟩ are of
special interest in identifying significant sentence
tokens. We inspect the attentions computed by the
Transformer with 12 multi-head layers, and empir-
ically observed that the attention weights of top
layers correlate strongly with salient tokens (see
the visualization in Appendix Figure 4). Given
the attention matrix Ai in the i-th multi-head layer,
aji represents the attention vector of the first to-
ken (e.g., ⟨s⟩ , “[CLS]”) from the j-th attention
head, which is normalized across all tokens. We

Corpus Train Valid Test

Yelp (Sentiment-Positive) 270K 2,000 500
Yelp (Sentiment-Negative) 180K 2,000 500

Amazon (Sentiment-Positive) 277K 985 500
Amazon (Sentiment-Negative) 278K 1,015 500

GYAFC E&M (Formality-Paired) 52.6K 2,877 1,416
GYAFC F&R (Formality-Paired) 51.9K 2,788 1,432

Table 2: Statistics of the style transfer datasets.
The GYAFC Entertainment&Music (E&M) and Fam-
ily&Relationships (F&R) are comprised of paired sam-
ples. For Yelp and Amazon, only their test sets include
human-written parallel references.

max-pool Ai over all attention heads to form ai,
which represents the maximum extent to which
each token was attended to by any head, and fur-
ther max-pool the weights across the top-2 layers
as the final stepwise attribute-salient scores (see
layer selection in Section 5.2), which are in the
range of (0, 1). Then sequence-level rewards are
expanded to the token length n, and re-weighted by
the stepwise scores (see Figure 2 and Algorithm 1),
and the policy gradient is formulated as following:

∇θGJ = E[
1

n

n∑

t=1

R′
t · ∇θG log(P (y′

t|y′
1:t−1,x, c; θG))]

(6)

4 Experiments

4.1 Experimental Datasets
For extensive experiments, in this paper, we se-
lect three representative text style transfer corpora:
Yelp (business reviews), Amazon (product reviews),
and Grammarly’s Yahoo Answers Formality Cor-
pus (GYAFC) (Li et al., 2018; Rao and Tetreault,
2018). The training, validation, and test split are the
same as previous work (Luo et al., 2019; Chawla
and Yang, 2020), and their task types and statistics
are shown in Table 2. In the non-annotated corpora
Yelp and Amazon, human-written references are
only available for the test set. Therefore, to build
the pseudo parallel data described in the previous
section, we filter out the sentence pairs with lexi-
cal or semantic similarity lower than a threshold,
and remove sentences that are shorter than 5 words.
The pseudo parallel set is used for the bootstrap-
ping training (Section 3.3), and the rest samples are
used for the unsupervised stage (Section 3.4).

4.2 Experiment Setup
The framework is implemented with Pytorch and
Hugging Face Transformers2. The ‘BART-base’

2https://github.com/huggingface/transformers
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Model Accuracy BLEU G2 H2 BertScore

Cross Aligned (Shen et al., 2017) 75.3 17.9 36.7 28.9 68.3
Back Translation (Prabhumoye et al., 2018) 95.4 5.0 21.9 9.6 61.0
Style Embedding (Fu et al., 2018) 8.7 42.3 19.2 14.4 78.1
Multi-Decoding (Fu et al., 2018) 50.2 27.9 37.4 35.9 69.4
Unpaired (Xu et al., 2018) 64.9 37.0 49.0 47.1 73.7
Delete+Retrive (Li et al., 2018) 89.0 31.1 52.6 46.1 71.3
Template-Based (Li et al., 2018) 81.8 45.5 61.0 58.5 73.7
Unsupervised MT (Zhang et al., 2018) 95.4 44.5 65.1 60.7 80.8
DualRL (Luo et al., 2019) 85.6 55.2 68.7 67.1 84.1
IterativeMatch (Jin et al., 2019) 91.7 23.3 46.2 37.1 71.4
Deep Latent w/ Language Models (He et al., 2019) 85.2 46.4 62.8 60.0 76.4
Direct Rewards w/ GPT-2 (Liu et al., 2021) 91.2 53.8 70.0 67.6 83.6

Only Lexical Pseudo Data Bootstrapping (30K Pairs) 81.3 26.5 46.4 39.9 72.1
Lexical Pseudo + Reward-Learning (30K) 81.1 50.4 63.9 62.1 82.1
Lexical Pseudo + Reward-Learning (100K) 86.2 59.4 71.5 70.3 87.3

Only Semantic Pseudo Data Bootstrapping (30K Pairs) 82.9 23.9 44.5 37.1 71.8
Semantic Pseudo + Reward-Learning (30K) 83.5 49.6 64.3 62.2 82.5
Semantic Pseudo + Reward-Learning (100K) 86.5 59.8 71.9 70.7 87.1

Table 3: Automatic evaluation scores on the Yelp sentiment style transfer task. Baseline results are reported with
the model generations provided in published studies. Text examples are shown in Appendix Table 11.

model is selected as the generator G. For style
classification, ‘RoBERTa-base’ is used. We fine-
tune models with AdamW (Kingma and Ba, 2015)
with batch size 32; initial learning rates are all
set at 2e−5. Style reward penalty γ is 0.2. Val-
ues for λ are set to 1.0 for style reward and 0.8
for cyclic reward. Beam search size is set at 6.
Test results are reported with best validation scores
(see Appendix Table 9 for environment and hyper-
parameter setting details, and Algorithm 1 for the
training process).

As previous work (Luo et al., 2019; He et al.,
2020; Sancheti et al., 2020), we adopt the following
evaluation metrics: (1) Style Accuracy is calcu-
lated via binary classification to measure the style
strength of re-writing. While the TextCNN (Kim,
2014) is used in previous studies, we also adopt
a Transformer ‘RoBERTa-base’ classifier, where
the reported scores are similar in our settings; (2)
BLEU score is calculated on the prediction and
human references to measure the content preser-
vation; (3) We also compute the geometric mean
(G2) and harmonic mean (H2) of style accuracy
and BLEU score; (4) Since recent metrics with
semantic similarity show better correlation with
human judgments than traditional lexical measures.
We also calculate BertScore between generation
and references (Zhang et al., 2020a).

4.3 Results on Yelp Corpus

A number of representative unsupervised baseline
models are selected for extensive comparison on
the Yelp corpus: (1) models that adopt content-

style disentanglement such as Cross Aligned (Shen
et al., 2017) and Style Embedding (Fu et al., 2018);
(2) models that adopt back-translation such as Un-
supervised MT (Zhang et al., 2018), and Dual RL
(Luo et al., 2019), and recent state-of-the-art mod-
els Deep Latent (He et al., 2019) and Direct Re-
wards w/ GPT-2 (Liu et al., 2021). For our semi-
supervised framework, we first (1) apply vanilla su-
pervised learning to assess the effectiveness of the
pseudo parallel data construction; (2) bootstrap the
model with 30K pseudo parallel pairs, then further
train it via reward-based learning; (3) apply semi-
supervised learning by bootstrapping the model
with 30K pseudo parallel pairs, and using 70K non-
parallel samples for the reward-based training. As
shown in Table 3, vanilla supervised training on the
30K pseudo parallel data lead to favorable scores of
style accuracy, though they do not perform well in
terms of BLEU scores, as the pseudo pairs empha-
size style converting rather than content preserva-
tion. Further training with rewards improves both
the style accuracy and BLEU score, and models
with both lexical and semantic pseudo data produce
comparable results with only 30k samples. Per-
formance is further improved by using additional
non-parallel data (70k samples), where our models
outperform state-of-the-art baselines significantly.

4.4 Results on Amazon Corpus

For the Amazon sentiment transfer corpus, we
adopt the same training strategies described in Sec-
tion 4.3. Aside from unsupervised models, we also
select the semi-supervised model Semi-LM-MMI
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Model Accuracy BLEU G2 H2 BertScore

Cross Aligned (Shen et al., 2017) 74.1 0.4 5.4 0.8 55.3
Style Embedding (Fu et al., 2018) 43.3 10.0 20.8 16.2 68.1
Multi-Decoding (Fu et al., 2018) 68.3 5.0 18.4 9.3 18.2
Template-Based (Li et al., 2018) 68.7 27.1 43.1 38.9 85.5
Delete+Retrieve (Li et al., 2018) 48.0 22.8 33.1 30.9 83.7
Word-level Conditional GAN (Lai et al., 2019) 77.4 6.7 22.7 12.3 -
Semi-LM-MMI w/ BART-Large (Chawla and Yang, 2020) 68.9 28.6 44.4 40.4 -
Direct Rewards w/ GPT-2 (Liu et al., 2021) 68.3 38.6 51.3 49.3 72.1

Only Lexical Pseudo Data Bootstrapping (30K Data) 79.8 16.4 36.1 27.2 63.3
Lexical Pseudo + Reward-Learning (30K) 71.2 36.1 50.6 47.9 73.4
Lexical Pseudo + Reward-Learning (100K) 73.1 46.3 58.1 56.6 78.4

Only Semantic Pseudo Data Bootstrapping (30K Data) 81.2 10.3 28.9 18.2 60.5
Semantic Pseudo + Reward-Learning (30K) 72.3 35.5 50.6 47.6 72.7
Semantic Pseudo + Reward-Learning (100K) 74.1 45.4 58.0 56.3 78.1

Table 4: Automatic evaluation scores on the Amazon sentiment style transfer task. Baseline results are calculated
and reported with the model generations provided in published studies. See examples in Appendix Table 12.

E&M Domain F&R Domain
Model Accuracy* BLEU G2 H2 Accuracy* BLEU G2 H2

Human Reference (Rao and Tetreault, 2018) 81.5 100.0 90.2 89.8 80.5 100.0 89.7 89.2
Rule-Based (Rao and Tetreault, 2018) 29.7 72.4 46.4 42.1 82.1 65.8 73.4 73.1
Hybrid Annotations (Xu et al., 2019) 28.8 69.2 44.6 40.6 34.8 74.3 50.8 47.3
Semi-LM-MMI w/ BART-Large (Chawla and Yang, 2020) 30.4 76.5 48.2 43.5 30.6 79.9 49.4 44.2
Rewarded BART-Large (Lai et al., 2021) 75.1 76.5 75.7 75.7 74.6 79.2 76.8 76.8

Only Labeled Data Supervision (Full) 75.0 71.2 73.1 73.1 73.7 72.5 73.1 73.1
Labeled Data + Reward-Learning (30K) 75.7 71.4 73.5 73.4 72.4 74.4 73.3 73.4
Labeled Data + Reward-Learning (Full) 82.2 71.0 76.3 76.2 80.5 74.2 77.3 77.2

Table 5: Automatic evaluation scores on the GYAFC formality transfer task of baselines and our framework.
Baseline results are reported with the generations provided as in (Chawla and Yang, 2020). *The style accuracy is
calculated with a fine-tuned ‘RoBERTa-base’ model (see Appendix for the result with TextCNN classifier).

w/ BART (Chawla and Yang, 2020), which adopted
a language model-based discriminator for maximiz-
ing token-level conditional probabilities for train-
ing. Due to label noise in online-crawled data,
the style accuracy for all models becomes lower
than those trained on Yelp, and the classifier preci-
sion is only 86% (see Table 4). We also observed
that the lexical similarity of pseudo parallel pairs
is smaller than Yelp samples, and results in lower
BLEU scores, especially when we apply supervised
training on the 30K pseudo parallel data. On the
other hand, content preservation largely benefits
from the reward-based learning. Unsurprisingly,
after bootstrapping, training with rewards signif-
icantly improves the generation quality, and our
framework achieves state-of-the-art performance.
Moreover, bootstrapping with lexical-based and
semantic-based pseudo data resulted in a similar
final performance with reward learning.

4.5 Results on GYAFC Corpus

In recent work, it is shown that style transfer mod-
els trained on parallel data can benefit from ad-
ditional reward-based learning (Lai et al., 2021).

Here we conduct additional experiments to assess
our semi-supervised framework on the GYAFC for-
mality transfer corpus with well-annotated data.
We evaluate the proposed model on the informal-
to-formal task as previous work (Chawla and Yang,
2020), and compare them with strong baselines. As
shown in Table 5, while the baselines show impres-
sive BLEU scores on the formality transfer task,
our framework outperforms them significantly in
terms of style accuracy, approaching upper-bound
human performance. Moreover, compared with the
contemporary supervised work (Lai et al., 2021),
which also introduced additional RL-based opti-
mization, our model still achieves higher G2 and
H2 scores. The examples shown in Appendix Ta-
ble 13 demonstrate that our approach generates
sentences with accurate formality paraphrasing.

4.6 Human Assessment

Additionally, we conducted a human evaluation on
Yelp, Amazon and GYAFC datasets. Following
previous work (Chawla and Yang, 2020; Liu et al.,
2021), we evaluated the generated sentences from
three aspects: style transfer strength (Style), text flu-
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Yelp Data Amazon Data
Model Accuracy BLEU G2 H2 Accuracy BLEU G2 H2

Sequence-Level Reward (30K Data) 85.1 26.5 47.5 40.4 78.4 19.0 38.5 30.5
Stepwise Reward (30K Data) 81.1 50.4 63.9 62.1 71.2 36.1 50.6 47.9

Sequence-Level Reward (100K Data) 84.8 35.3 54.7 49.8 81.4 21.9 42.2 34.5
Stepwise Reward (100K Data) 86.2 59.4 71.5 70.3 73.1 46.3 58.1 56.6

Table 6: Ablation study on the proposed stepwise reward on the Yelp and Amazon dataset. Sequence-level denotes
the reward is calculated on the whole sequence, without the stepwise re-weighting.

Layer No. Accuracy BLEU G2 H2

Layer-12 78.5 46.2 60.2 58.1
Layer-11 81.1 45.5 60.7 58.2
Layer-10 84.2 38.7 57.0 53.0
Layer-9 72.3 43.8 56.2 54.5
Layer-8 76.1 44.5 58.1 56.1
Layer-7 70.3 41.6 54.0 52.2

Table 7: Layer selection for the proposed stepwise re-
ward re-weighting. The Yelp sentiment transfer dataset
and the semantic-based matching are used. We conduct
experiments on the last 6 Transformer layers of the style
classifier.

ency (Fluency), and content preservation (Content),
separately. The three aspects are rated with range
[1, 5], then their average value is calculated and
reported as Mean (see Table 14 in Appendix). For
each corpus, we randomly selected 80 test samples
and compared the outputs of representative and pre-
vious state-of-the-art models. Each candidate was
rated by three linguistic experts, and we report the
average scores. Our model achieves better overall
performance when considering all three evaluation
metrics on each dataset. Moreover, we observe that
leveraging the pre-trained language models such as
BART and GPT-2 is beneficial for the text fluency.

5 Analysis

To extensively assess the effectiveness of the pro-
posed methods, we conduct the following in-depth
analyses.

5.1 Ablation Study on Stepwise Re-weighting

We conduct an ablation experiment to assess the
effectiveness of stepwise reward re-weighting. As
shown in Table 6, the performance degrades signif-
icantly without the stepwise reward re-weighting,
especially the BLEU score. In particular, we ob-
served that when removing stepwise optimization,
the generator was prone to mode collapse. In
one manifestation of mode collapse, the model
appended a limited set of phrases to the source
sentences, resulting in generation with disfluency
and low diversity. It demonstrates that token-level

Train Size Accuracy BLEU G2 H2

1,000 62.9 31.6 44.5 42.0
5,000 68.2 36.8 50.0 47.8
10,000 73.3 43.6 56.5 54.6
15,000 76.1 45.5 58.8 56.9
30,000 83.5 49.6 64.3 62.2

Table 8: Results from different pseudo sample sizes
using the proposed framework. The Yelp sentiment
transfer dataset and semantic-based matching are used.

reward optimization provides finer-granularity for
policy gradient of sequence-to-sequence training.
This approach can also be potentially extended to
other text generation tasks.

5.2 Attention Layer Selection for Stepwise
Reward Re-weighting

We utilize attentive scores from the top-2 multi-
head layers for stepwise reward re-weighting. To
study the effect of layer selection, we compared
the results using attention scores extracted from dif-
ferent Transformer layers in the style classifier de-
scribed in Section 3.4. As shown in Table 7, the per-
formance shows an overall increasing trend from
the 7-th to the 12-th layer, and we obtained better
results with the top layers. In scores of lower layers,
we found that the model tended to assure content
preservation rather than style accuracy. This is con-
sistent with the observations from recent linguistic
probing and model interpretation studies (Hewitt
and Manning, 2019; Xu et al., 2020): the informa-
tion modeled in the Transformer-based networks,
especially the pre-trained language backbones, is
represented in a hierarchical manner, and the higher
layers provide more effective information on scor-
ing the span importance for text classification (see
visualization in Appendix Figure 4).

5.3 Bootstrapping Sample Size
We investigate the effect of different pseudo par-
allel sample sizes. As shown in Table 8, the re-
sult shows that the evaluation result by automatic
metrics becomes acceptable when training reaches
10K samples. Results comparable to state-of-the-
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art are achieved with merely 30K data (10% of the
Yelp training set). We speculate that the relatively
weak performance with 10K samples is because
the BART model uses a denoising autoencoding
paradigm (Lewis et al., 2020), which is trained to
reconstruct the input sentence, and style strength of
sentence rewriting is strongly affected in this low
resource scenario.

Additionally, we conduct an ablation study on
the bootstrapping step, and the result shows that
with the same training sample size, the generation
performance (considering both style accuracy and
content preservation) obtained significant improve-
ment by adding the bootstrapping learning stage
(see Appendix Table 15).

6 Conclusions

In this paper, we proposed a framework for text
style transfer taking advantage of both supervised
and unsupervised paradigms. The training process
is bootstrapped with supervision guided by auto-
matically constructed pseudo parallel data. Both
lexical-based and semantic-based sentence match-
ing proved effective. Moreover, the stepwise re-
ward re-weighting significantly improved the gener-
ation performance, and is a generic design that can
be easily extended. Experimental results showed
that the proposed approach achieved state-of-the-
art performance in multiple datasets, while pro-
ducing reasonable generation even with minimal
training data (10% of original size).
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Algorithm 1 Training process of the proposed semi-supervised text style transfer framework.
1: Given non-labeled datasets DS and DT in two different styles S and T , construct pseudo parallel dataset Dpseudo with

sentence pairs matched with lexical-based or semantic-based similarity
2: Pre-train a binary style classifier styleCLS on the two datasets DS and DT

3: Pre-train the text style transfer model Gθ using pseudo-parallel sentence pairs in dataset Dpseudo, with MLE loss (Eq. 1).
4: for each iter i = 1, 2, ...,M do
5: Sample sentence x of source style S from DS

6: Generate sentence y′ of target style T via model Gθ by greedy decoding
7: Generate sentence ŷ of target style T via model Gθ by sampling-based decoding
8: ▷ Reconstruction Reward Calculation (Content Preservation)
9: Given y′, generate back-translated sentence x′ of source style S via model Gθ by greedy decoding

10: Given ŷ, generate back-translated sentence x̂ of source style S via model Gθ by greedy decoding
11: Compute reconstruction reward Rcyclic based on BLEU scores of the pair [x, x′] and the pair [x, x̂], following

Self-Critical Sequence Training (Eq. 2)
12: ▷ Style Reward Calculation (Style Strength)
13: Compute style reward Rstyle of generated sentence ŷ using the style classifier styleCLS
14: ▷ Stepwise Reward Re-weighting
15: Compute the stepwise re-weighting values by max-pooling attentive scores from style classifier styleCLS on the

generated sentence ŷ
16: Expand Rstyle and Rcyclic from 1-D (sequence level) to 2-D (token level), and re-weight Rstyle with stepwise values
17: Compute the total stepwise reward R′ by adding Rstyle and Rcyclic, based on Eq. 4
18: Update θ using reward R′ based on Eq. 6
19: end for

Environment Details

Sequence Generator BART-Base (12-layer, 768-hidden, 16-heads, 139M parameters).
Style Classifier RoBERTa-base (12-layer, 768-hidden, 12-heads, 125M parameters).
GPU Model Single Tesla A100 with 40 GB memory; CUDA version 11.0.
Library Version Pytorch==1.8.1; Transformers==4.8.2.
Computational Cost Average 5 hours training time for one round. Average 3 rounds for each reported

result (calculating mean of the result scores).

Hyper-parameter Setting Detail

Learning Rate and Batch Size We set the learning rate and batch size according to regular language model
fine-tuning strategy (Lewis et al., 2020).

Beam Search Size We evaluated models on beam search sizes from 3 to 10, and 6 provided the best
balance of performance and inference speed.

Style Reward Penalty γ (Eq. 4) (1) In our experiment, we observed that the style reward Rstyle values given
by the style classifier were up to 0.9 (indicating a high level of style transfer
strength), while the cyclic reconstruction reward Rcyclic values were at a lower
level (average was 0.5). Therefore, we added the γ to adjust the Rstyle to the
same level of Rcyclic. (2) We evaluated values from 0.1 to 0.4 (0.1 as step),
and empirically set the γ at 0.2. Training without the penalty γ did not produce
significantly degraded results.

λcyclic and λstyle (Eq. 4) We evaluated both values with 1.0 +/- 0.2, and empirically set λcyclic at 1.0,
λstyle at 0.8. Setting at 1.0 by default did not produce degraded results.

Sequence-Level & Stepwise Reward For the comparison of using sequence level and stepwise rewards, we run experi-
ments with the aforementioned parameter setting.

Combination of lexical and semantic
pseudo-parallel data

In our pilot experiment, we tried to combine both lexical and semantic pseudo-
parallel data, but this did not bring any improvement on the Yelp and Amazon.
Presumably this is because the semi-supervised model only requires weak super-
vision from the pseudo-parallel data, and either the lexical and semantic data can
provide sufficient information at the bootstrapping training stage.

Table 9: The detailed environment settings and search strategy of training parameters in our experiment. It is
worth mentioned that our proposed semi-supervised approach with bootstrapping strategy and stepwise reward
re-weighting is targeted to tackle the unstable learning issue of RL-based models.
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E&M Domain F&R Domain
Model Accuracy* BLEU G2 H2 Accuracy* BLEU G2 H2

Human Reference (Rao and Tetreault, 2018) 58.7 100.0 76.6 73.9 51.4 100.0 71.6 67.8
Rule-Based (Rao and Tetreault, 2018) 11.4 72.4 28.7 19.6 52.1 65.8 58.5 58.1
Hybrid Annotations (Xu et al., 2019) 10.4 69.2 26.8 18.0 8.75 74.3 25.4 15.6
Semi-LM-MMI w/ BART (Chawla and Yang, 2020) 10.6 76.5 28.4 18.6 9.68 79.9 27.8 17.2
Rewarded BART-Large (Lai et al., 2021) 52.8 76.5 63.5 62.4 45.9 79.2 60.2 58.1

Only Labeled Data Supervision (Full) 55.2 71.2 62.6 62.1 47.3 72.5 58.5 57.2
Labeled Data + Reward-Learning (30K) 55.3 71.4 62.8 62.3 45.2 74.4 57.9 56.2
Labeled Data + Reward-Learning (Full) 58.1 71.0 64.2 63.9 50.3 74.2 61.0 59.9

Table 10: Automatic evaluation scores on the GYAFC formality style transfer task of baseline models and our
framework. Baseline results are reported with the model generations provided in published studies (Chawla and
Yang, 2020). * The style accuracy is calculated with a TextCNN classifier.

Model Text

Source Sentence ever since joes has changed hands it ’s just gotten worse and worse .
Human Reference ever since joes has changed hands it ’s gotten better and better .
Cross Aligned (Shen et al., 2017) i recommend that has out to it ’s always great and fun .
Delete+Retrieve (Li et al., 2018) ever since joes has changed hands it ’s just so good !
DualRL (Luo et al., 2019) ever since dedicated has changed hands it ’s just gotten better and better .
IterativeMatch (Jin et al., 2019) dominos has gotten better and better .
Deep Latent w/ LMs (He et al., 2019) just since their sausages has changed it ’s just gotten worse and worse .
Direct Rewards w/ GPT-2 (Liu et al., 2021) ever since joes has changed hands it ’s just gotten better and better .
Bootstrapping + Reward-Learning (Ours) ever since joes has changed hands it ’s just gotten better and better .

Source Sentence no , i ’m not at a scottsdale club .
Human Reference this was a great club.
Cross Aligned (Shen et al., 2017) great , i ’m so at a local business .
Delete+Retrieve (Li et al., 2018) this is a great place to get a scottsdale club .
DualRL (Luo et al., 2019) great job .
IterativeMatch (Jin et al., 2019) i ’m so glad i found this place .
Deep Latent w/ LMs (He et al., 2019) great food , great service at a scottsdale club .
Direct Rewards w/ GPT-2 (Liu et al., 2021) great , nice and a scottsdale club .
Bootstrapping + Reward-Learning (Ours) great , i ’m at a scottsdale club .

Source Sentence french toast plate was good , mom said , but eggs were cold .
Human Reference french toast plate was good , mom said , eggs were hot .
Cross Aligned (Shen et al., 2017) their food tasted was good , juicy , and fries are very clean .
Delete+Retrieve (Li et al., 2018) french toast plate was good , mom said , but eggs were amazing !
DualRL (Luo et al., 2019) french toast plate was good , mom said , but eggs were delicious .
IterativeMatch (Jin et al., 2019) the food was delicious and the eggs were fresh .
Deep Latent w/ LMs (He et al., 2019) wow !
Direct Rewards w/ GPT-2 (Liu et al., 2021) french toast plate was good , mom said , with amazing eggs are warm .
Bootstrapping + Reward-Learning (Ours) french toast plate was good , mom said , but eggs were amazing .

Source Sentence however , it turned out to be nothing like i thought it would .
Human Reference this turned out exactly how i thought it would .
Cross Aligned (Shen et al., 2017) however , it right out to be great , it is the place .
Delete+Retrieve (Li et al., 2018) it turned out to be nothing like i thought it was so good !
DualRL (Luo et al., 2019) however , it turned out to be nothing extraordinary it would thought it would
IterativeMatch (Jin et al., 2019) it turned out i worried about nothing .
Deep Latent w/ LMs (He et al., 2019) loved it !
Direct Rewards w/ GPT-2 (Liu et al., 2021) although , it turned out to be great with i thought it will .
Bootstrapping + Reward-Learning (Ours) however , it turned out to be great like i thought it would .

Table 11: Examples of human references and generated sentences on the Yelp corpus from representative baseline
models and our proposed framework. The text style is converted from negative to positive.
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Model Text

Source Sentence it makes a buzzing sound when devices are plugged in.
Human Reference it makes a useful buzzing sound when devices are plugged in.
Cross Aligned (Shen et al., 2017) it s a nice , and easy to clean out .
Style Embedding (Fu et al., 2018) it makes a bit different , while but num_extend mode .
Template-Based (Li et al., 2018) it makes a buzzing sound when devices are plugged in and use it to charge my .
Delete+Retrieve (Li et al., 2018) it makes a buzzing sound when the devices are plugged in .
Direct Rewards w/ GPT-2 (Liu et al., 2021) it makes a cooking faster than devices are plugged in .
Bootstrapping + Reward-Learning (Ours) it makes a great sound when devices are plugged in .

Source Sentence it was not as good as our much cheaper model .
Human Reference its a great as before .
Cross Aligned (Shen et al., 2017) it s not not worth the phone and very well .
Style Embedding (Fu et al., 2018) it was worth it size but at least my product , .
Template-Based (Li et al., 2018) it was not as good as our much cheaper model and works just .
Delete+Retrieve (Li et al., 2018) as using the much cheaper model as it is also much cheaper .
Direct Rewards w/ GPT-2 (Liu et al., 2021) it was excellent as our much cheaper model .
Bootstrapping + Reward-Learning (Ours) it was as good as our much cheaper model .

Source Sentence i received the wrong color and it shreds easily .
Human Reference i received the right color and it works well.
Cross Aligned (Shen et al., 2017) i bought the phone and it s easy to .
Style Embedding (Fu et al., 2018) i received the fact that and quickly is no clean .
Template-Based (Li et al., 2018) i received the wrong color and it shreds easily to order more .
Delete+Retrieve (Li et al., 2018) i received the wrong color and it looks very nice ! he would highly recommend it easily .
Direct Rewards w/ GPT-2 (Liu et al., 2021) i received the best cooking efficiently .
Bootstrapping + Reward-Learning (Ours) i received the right color and it shreds easily .

Source Sentence i am actually afraid to open the remaining jars .
Human Reference I look forward to opening the remaining jars.
Cross Aligned (Shen et al., 2017) i have to say and the other ones .
Style Embedding (Fu et al., 2018) i am actually used the right over a container .
Template-Based (Li et al., 2018) i am actually afraid to open the remaining jars highly recommend .
Delete+Retrieve (Li et al., 2018) i am actually afraid to open the remaining jars this is great .
Direct Rewards w/ GPT-2 (Liu et al., 2021) i am actually faster cooking than items .
Bootstrapping + Reward-Learning (Ours) i am actually happy to open the remaining jars .

Table 12: Examples of human references and generated sentences on the Amazon corpus from representative
baseline models and our proposed framework. The text style is converted from negative to positive.

Model Text

Source Sentence my dad likes action,my mom likes romance,but for me i like comedy.
Human Reference My father likes action, my mother likes romance, but for me I prefer comedy.
Rule-Based (Rao and Tetreault, 2018) My dad likes action , my mom likes romance , but for me I like comedy .
Hybrid Annotations (Xu et al., 2019) My father likes action , my mother likes romance , but I like comedy .
Semi-LM-MMI w/ BART-large (Chawla and Yang, 2020) My dad likes action , my mom likes romance , but for me I like comedy .
Rewarded BART-Large (Lai et al., 2021) My dad likes action , my mom likes romance , but for me I like comedy .
Labeled Data + Reward-Learning (Ours) My father likes action, my mother likes romance, but for me I prefer comedy.

Source Sentence I want to be on TV!
Human Reference I would like to be on television.
Rule-Based (Rao and Tetreault, 2018) I want to be on television !
Hybrid Annotations (Xu et al., 2019) I want to be on television .
Semi-LM-MMI w/ BART-large (Chawla and Yang, 2020) I want to be on TV .
Rewarded BART-Large (Lai et al., 2021) I would like to be on television.
Labeled Data + Reward-Learning (Ours) I would like to be on television.

Source Sentence BUT IT IS OKAY TO KISS ON THE FIRST DATE.
Human Reference It is okay to kiss on the first date.
Rule-Based (Rao and Tetreault, 2018) However, it is okay to kiss on the first date.
Hybrid Annotations (Xu et al., 2019) It is okay to kiss on the first date .
Semi-LM-MMI w/ BART-large (Chawla and Yang, 2020) It is okay to kiss on the first date .
Rewarded BART-Large (Lai et al., 2021) However, it is acceptable to kiss on the first date.
Labeled Data + Reward-Learning (Ours) However, it is acceptable to kiss on the first date.

Source Sentence The same guy you wanna be in a relationship with?
Human Reference Do you want to be in a relationship with the same man?
Rule-Based (Rao and Tetreault, 2018) The same man with whom you would like to be in a relationship?
Hybrid Annotations (Xu et al., 2019) The same guy you want to be in a relationship with ?
Semi-LM-MMI w/ BART-large (Chawla and Yang, 2020) The same guy you want to be in a relationship with ?
Rewarded BART-Large (Lai et al., 2021) The same man you want to be in a relationship with ?
Labeled Data + Reward-Learning (Ours) Is this the same man you want to be in a relationship with?

Table 13: Examples of human references and generated sentences on the GYAFC corpus from representative
baseline models and our proposed framework. The text style is converted from informal to formal.
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I. Scoring result on the Yelp corpus

Model Style Fluency Content Mean

Delete+Retrieve (Li et al., 2018) 3.25 2.72 2.86 2.94
IterativeMatch (Jin et al., 2019) 3.40 2.88 2.69 2.99
Direct Rewards w/ GPT-2 (Liu et al., 2021) 3.51 3.15 3.18 3.28
Bootstrapping + Reward-Learning (Ours) 3.49 3.29 3.25 3.34

II. Scoring result on the Amazon corpus

Model Style Fluency Content Mean

Template-Based (Li et al., 2018) 2.78 2.36 2.55 2.56
Delete+Retrieve (Li et al., 2018) 2.94 3.08 2.73 2.91
Direct Rewards w/ GPT-2 (Liu et al., 2021) 3.20 3.23 2.21 2.88
Bootstrapping + Reward-Learning (Ours) 3.31 3.28 3.12 3.23

III. Scoring result on the GYAFC corpus

Model Style Fluency Content Mean

Hybrid Annotations (Xu et al., 2019) 2.56 3.15 3.13 2.95
Semi-LM-MMI w/ BART (Chawla and Yang, 2020) 3.12 3.47 3.22 3.27
Rewarded BART-Large (Lai et al., 2021) 3.36 3.60 3.33 3.43
Labeled Data + Reward-Learning (Ours) 3.37 3.67 3.37 3.47

Table 14: Human evaluation are conducted on the Yelp, Amazon, and GYAFC style transfer datasets. Following
previous work (Chawla and Yang, 2020; Liu et al., 2021), we evaluated the generated sentences from three aspects:
style transfer strength (Style), text fluency (Fluency), and content preservation (Content), separately. The three
aspects are rated with range [1, 5], then their average value is calculated and reported as Mean. For each corpus, we
randomly selected 80 test samples and compared the outputs of representative and previous state-of-the-art models.
Each candidate was rated by three linguistic experts, and we report the average scores. Our model achieves better
overall performance when considering all three evaluation metrics on each dataset. Moreover, we observe that
leveraging the pre-trained language models such as BART and GPT-2 is beneficial for the text fluency.

Figure 3: Rating interface for the human evaluation. Text candidates are shuffled for each sample.
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Yelp Data Amazon Data
Model Accuracy BLEU G2 H2 Accuracy BLEU G2 H2

Lexical Pseudo + Reward-Learning (30K) 81.1 50.4 63.9 62.1 71.2 36.1 50.6 47.9
Pure Reward Learning (30K) 70.8 41.3 54.0 52.1 61.2 26.1 39.9 36.5

Lexical Pseudo + Reward-Learning (100K) 86.2 59.4 71.5 70.2 73.1 46.3 58.1 56.6
Pure Reward Learning (100K) 75.5 46.1 58.9 57.2 65.6 26.5 41.6 37.7

Table 15: Ablation study of the proposed bootstrapping on the Yelp and Amazon datasets. Models are running in a
RL-based unsupervised manner, and we used the same data sizes as the experiments in Table 3 and Table 4.

Figure 4: Attention heatmap examples of the attention scores with layer-level max-pooling. The ‘RoBERTa-base’
model is fine-tuned on the Yelp data for style classification. The higher scores denotes higher attention weights on
the tokens, and the top layers (especially the 11-th layer) shows better attribute-specified correlation. At the token
level, the attention values and the max-pooled step-wise values described in Section 3.4 are all in the range of (0, 1).
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