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Abstract

Open relation extraction is the task to extract
relational facts without pre-defined relation
types from open-domain corpora. However,
since there are some hard or semi-hard in-
stances sharing similar context and entity in-
formation but belonging to different underlying
relation, current OpenRE methods always clus-
ter them into the same relation type. In this
paper, we propose a novel method based on
Instance Ranking and Label Calibration strate-
gies (IRLC) to learn discriminative represen-
tations for open relation extraction. Due to
lacking the original instance label, we provide
three surrogate strategies to generate the posi-
tive, hard negative, and semi-hard negative in-
stances for the original instance. Instance rank-
ing aims to refine the relational feature space
by pushing the hard and semi-hard negative in-
stances apart from the original instance with
different margins and pulling the original in-
stance and its positive instance together. To
refine the cluster probability distributions of
these instances, we introduce a label calibra-
tion strategy to model the constraint relation-
ship between instances. Experimental results
on two public datasets demonstrate that our pro-
posed method can significantly outperform the
previous state-of-the-art methods1

1 Introduction

Open relation extraction (OpenRE) has been pro-
posed to extract new relational facts where the
types of target relations are not pre-defined. Previ-
ous methods can be classified into two types: open
information extraction (OpenIE) and unsupervised
relation discovery. For OpenIE (Yates et al., 2007;
Etzioni et al., 2008; Fader et al., 2011), the rela-
tions are directly represented by relation phrases

∗The first three authors contribute equally. Yajing Xu is
the corresponding author.

1Our code and implementation details are publicly avail-
able at https://github.com/ShusenWang/NAACL2022-IRLC

Original(S1): Mike was born in Columbia

Positive(S2): Mike was born in Washington

Hard Negative(S3): Mike was born in 1998

Semi-hard Negative(S4): Bob was born in 1998
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Figure 1: (a) The distribution of baselines in the re-
lational feature space, where the similar context and
entities make the hard negative S3 and semi-hard nega-
tive S4 instance clustered into a wrong relation type. (b)
The distribution refined by our method, where these neg-
ative instances are separated from the original instance
and correctly predicted.

extracted in the sentence. However, the generaliza-
tion capabilities of these methods are limited since
they severely rely on surface-form relations and a
relation can be expressed by many surface forms.

Recently, much attention has been focused on un-
supervised relation discovery, which is commonly
formulated as a clustering task to learn effective
relation representations and cluster them (Yao et al.,
2011; Marcheggiani and Titov, 2016; Simon et al.,
2019). Hu et al. (2020) leverage BERT to extract
relational feature and propose a self-supervised
framework to learn relation representations from
pseudo labels. Because current methods are unsta-
ble and easily collapsed (Simon et al., 2019), Liu
et al. (2021) solve above-mentioned problems from
a causal view and propose element intervention to
alleviate the spurious correlations in OpenRE mod-
els. However, there are still some hard or semi-hard
samples wrongly predicted in the representation
space due to the spurious correlations from entities
and context to the relation type.

As shown in Figure 1(a), there are two
types of negative instances for the relation type
BORN_IN_PLACE: Hard negative and Semi-
hard negative. For Semi-hard negative instances
like S4, OpenRE models will assign S1 and S4 into
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the same relation type BORN_IN_PLACE since
S1 and S4 share similar context information. This
problem can be even more severe if the representa-
tion space exists some hard negative instances like
S3, because S3 possesses a similar context "was
born in "and similar entity "Jon" to S1. An intuitive
way to solve this problem is to refine the relational
feature space, as shown in Figure 1(b). Besides,
all instances should follow the same relative rela-
tionship in the label semantic space which means
the original and positive instances have a more sim-
ilar cluster probability distribution than the hard
and semi-hard negative instances. Therefore, it is
important to model the constraint relationship be-
tween these instances in the label semantic space.

In this paper, we propose a novel method based
on Instance Ranking and Label Calibration strate-
gies (IRLC) to better identify the hard and semi-
hard negative instances by learning discriminative
representations in relational feature and label se-
mantic space simultaneously. However, due to lack-
ing of the instance label, we cannot directly obtain
the positive, hard negative and semi-hard negative
instances of the original instance. To solve this, we
use three data augmentation strategies to generate
the positive, hard negative and semi-hard negative
instances for the original instance. To refine the
relational feature space, we introduce instance rank-
ing to make the original instance close to its posi-
tive instance and away from its hard and semi-hard
negative instances. To correct the cluster assign-
ment probabilities of hard and semi-hard negative
instances, and keep the probability distributions of
the original and positive instances aligned, in the
label semantic space, Label Calibration strategy is
designed to model two constraint relationships be-
tween the original and hard negative instance, and
between the hard and semi-hard negative instance.

To summarize, the major contributions of our
work are as follows: (1) We propose a novel
method based on instance ranking and label cal-
ibration to learn discriminative representations in
relational feature and label semantic space simul-
taneously. (2) We introduce three surrogate strate-
gies to generate the positive, hard negative and
semi-hard negative instances under unsupervised
manner. (3) Experimental results show that our pro-
posed method significantly outperforms the previ-
ous state-of-the-art models with the improvements
of average performance of 11.1% and 11.8%, on
two datasets respectively.

Tokyo, Japan, contains many parks and gardens.Original

Positive

Hard Negative

Semi-hard Negative

In Tokyo, Japan, there are many parks and gardens.

Kyoto, Japan contains many parks and gardens.

Guangzhou, China contains many parks and gardens.
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Figure 2: Framework of our proposed method.

2 Method
In this work, we propose a novel method to learn re-
lation representations in feature and semantic space
simultaneously. As shown in Figure 2, our method
mainly consists of three components: data aug-
mentation, instance ranking, and label calibration
modules. We will introduce these module details
in the following subsections.

2.1 Data Augmentation

Since there are no pre-defined relation types, it is
difficult to directly obtain the positive, hard nega-
tive, and semi-hard negative instances of the origi-
nal instance. To solve this problem, we introduce
three surrogate data augmentation strategies to gen-
erate above-mentioned instances for the original
instance. Specifically, for an original relation in-
stance Xi, we use the following strategies:
Back Translation for Positive: To keep the rela-
tion type consistent with the original instance and
introduce minimal semantic impact, we use back
translation to generate the high-quality positive in-
stance by first translating the original instance to
another language and then back to English.
Entity Replacing for Hard Negative: We choose
T5 (Raffel et al., 2019) to generate the most similar
word to head or tail entity, and then replace the head
or tail entity with its augmented word to obtain the
hard negative instance, which possesses the similar
entity and context to original instance.
Entity Swap for Semi-Hard Negative: To con-
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struct a semi-hard negative instance for the original
instance, we follow the setting of Entity Swap (Cao
and Wang, 2021), which swaps the target entities
with other randomly selected entities of the same
entity type in the original instance.

2.2 Instance Ranking
After instance construction, we obtain a group of
augmented instances of the original instance. In-
stance Ranking aims to refine the relational feature
space. Specifically, given a group of instances (Xi,
Xp

i , Xhn
i , Xsn

i ), where Xp
i , Xhn

i , Xsn
i are positive,

hard negative, and semi-hard negative instances re-
spectively. We first encode them to obtain their
relation representations (ri, r

p
i , rhni , rsni ), and then

map these representations into the relational fea-
ture space with an instance-level head h to obtain
a group of relational feature (ti, t

p
i , thni , tsni ). Then

we can obtain the instance-level ranking loss:

LIR
i = max(0, D(ti, t

p
i )−D(ti, t

hn
i ) +mH)

+ max(0, D(ti, t
hn
i )−D(ti, t

sn
i ) +mS)

(1)
where D(x, y) is the euclidean distance between x
and y, mH and mS are two margins for instance-
level ranking loss. Optimized by the objective
LIR
i , model can make the original relation instance

closer to its positive instance and away from its
correspondingly hard and semi-hard negative in-
stances with different margins.

2.3 Label Calibration
In addition to refining the feature space, we in-
troduce Label Calibration to model the constraint
relationship between instances to correct the clus-
ter assignment probabilities of hard and semi-hard
negative instances and keep the probability distribu-
tions of the original and positive instance aligned
in the label semantic space. With a group of re-
lation representations (ri, r

p
i , rhni , rsni ) encoded

from their corresponding instances, we first gen-
erate the group of cluster representations (zi, z

p
i ,

zhni , zsni ) by mapping them into the label semantic
space with a cluster-level head g, and then obtain
the cluster-level ranking loss:

LLC
i = max(0, D(zi, z

p
i )−D(zi, z

hn
i ))

+ max(0, D(zi, z
hn
i )−D(zi, z

sn
i ) +mL)

(2)
where D(x, y) is the KL distance between x and
y to measure the difference between the cluster
assignment probabilities of the instances, mL is the

margin for cluster-level ranking loss. The first term
is to model the constraint relationship between the
original and hard negative instance, and the second
term is to the constraint relationship between the
hard and semi-hard negative instance. The final
loss function is as follows:

L = − 1

n

n∑

i=1

(LIR
i + LLC

i ) (3)

3 Experiments

3.1 Datasets

To assess the performance of our method, we con-
duct experiments on T-REx SPO and T-REx DS,
which both come from T-REx2 (Elsahar et al.,
2018) but differ in whether having surface-form
relations or not. Following the setup of Liu et al.
(2021), we use 80% of instances for model training
and 20% for validation on both two datasets.

3.2 Baselines

For comparison, we consider the following base-
lines:

• rel-LDA A generative method proposed by
Yao et al. (2011), which treats unsupervised
relation discovery as a topic model. In our
experiment, we choose the full rel-LDA to
compare with our method.

• March A method (Marcheggiani and Titov,
2016) based on self-supervised signal from en-
tity link predictor to learn a VAE-based model.

• UIE A method proposed by Simon et al.
(2019) to solve instability and use two reg-
ularization to train a discriminative model for
OpenRE. In our experiments, we compare
our method with two versions of UIE, which
only differ in the relation encoding model, i.e.,
PCNN and BERT.

• SelfORE A self-supervised framework pro-
pose by Hu et al. (2020), which learn con-
textual relation representations from pseudo
labels.

• Element Intervention A method proposed by
Liu et al. (2021), which formulates OpenRE
by using a structural causal model.

2https://hadyelsahar.github.io/t-rex/
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Dataset Model
B3 V-measure

ARI Avg.
F1 Prec. Rec. F1 Homo. Comp.

T-REx SPO

rel-LDA-full (Yao et al., 2011) 18.5 14.3 26.1 19.4 16.1 24.5 8.6 15.5
March (Marcheggiani and Titov, 2016) 24.8 20.6 31.3 23.6 19.1 30.6 12.6 20.3
UIE-PCNN (Simon et al., 2019) 36.3 28.4 50.3 41.4 33.7 53.6 21.3 33.0
UIE-BERT (Simon et al., 2019) 38.1 30.7 50.3 39.1 37.6 40.8 23.5 33.6
SelfORE (Hu et al., 2020) 41.0 39.4 42.8 41.4 40.3 42.5 33.7 38.7
Element Intervention (Liu et al., 2021) 45.0 46.7 43.4 45.3 45.4 45.2 36.6 42.3
IRLC 57.4 77.1 45.7 60.4 71.1 52.5 42.3 53.4
IRLC w/o instance ranking 53.8 68.5 44.3 51.0 58.9 44.9 36.6 47.1
IRLC w/o label calibration 50.9 65.4 41.7 46.5 54.0 40.8 40.5 46.0

T-REx DS

rel-LDA-full (Yao et al., 2011) 12.7 8.3 26.6 17.0 13.3 23.5 3.4 11.0
March (Marcheggiani and Titov, 2016) 9.0 6.4 15.5 5.7 4.5 7.9 1.9 5.5
UIE-PCNN (Simon et al., 2019) 19.7 14.0 33.4 26.6 20.8 36.8 9.4 18.6
UIE-BERT (Simon et al., 2019) 22.4 17.6 30.8 31.2 26.3 38.3 12.3 22.0
SelfORE (Hu et al., 2020) 32.9 29.7 36.8 32.4 30.1 35.1 20.1 28.5
Element Intervention (Liu et al., 2021) 42.9 40.2 45.9 47.3 46.9 47.8 25.0 38.4
IRLC (ours) 58.5 77.1 47.2 47.0 58.1 39.4 45.0 50.2
IRLC w/o instance ranking 46.5 76.4 33.4 42.1 57.0 33.4 28.8 39.1
IRLC w/o label calibration 46.8 73.6 34.2 38.9 52.3 31.0 28.3 38.0

Table 1: Experimental results(%) produced by the baseline models and the proposed model IRLC on T-REx SPO
and T-REx DS in terms of B3, V-measure, ARI.

3.3 Evaluation Metrics

As the previous work (Simon et al., 2019; Hu
et al., 2020; Liu et al., 2021), we adopt B3 (Bagga
and Baldwin, 1998), V-measure (Rosenberg and
Hirschberg, 2007), and Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985) to evaluate different
methods. Considering that any of the three met-
rics can measure the clustering performance from
different angles, we take the average of B3 F1, V-
measure F1 and ARI for comprehensive evaluation.

3.4 Implementation Details

For fair comparison, all model are trained and eval-
uated on 10 relation types, same as (Simon et al.,
2019; Hu et al., 2020; Liu et al., 2021). We imple-
ment our model in PyTorch3 (Paszke et al., 2017)
with transformers package4 (Wolf et al.,
2020). We adopt bert-base-cased as back-
bone to generate contextual relation representations.
The output size of the instance-level head in in-
stance ranking is 128, while the size is set to 10
in the cluster-level head for label calibration, same
as the number of relation types. We use Adam
(Kingma and Ba, 2014) as optimizer with a learn-
ing rate of 1e-5 for backbone and a learning rate
of 1e-3 for two heads. The max length of input
sentence is 96 and the batch size is 32. All ex-
periments are conducted by using a GeForce RTX
3090Ti with 24 GB memory.

3https://pytorch.org/
4https://github.com/huggingface/transformers

3.5 Main Results

We summarize the performances of the baselines
and our method in Table 1. From the experimental
results, we can see that our method IRLC signif-
icantly outperforms baselines by a large margin
and achieves new state-of-the-art results on both
two datasets. For T-REx SPO, compared with the
previous SOTA model, IRLC improves the average
performance by 11.1%, B3 F1-score by 12.4%, V-
measure F1-score by 15.1%, and ARI by 5.7%. The
results confirm IRLC can learn discriminative rep-
resentations to help model extract novel relations.
For T-REx DS, our method IRLC outperforms the
SOTA model with an average performance gain
of 11.8%, proving the effectiveness of IRLC for
OpenRE.

3.6 Ablation Study

To study the effect of instance ranking and label
calibration in the proposed method, we conduct
ablation experiments on two datasets and report
the results in Table 1. We find that the perfor-
mance of IRLC will severely degrade without in-
stance ranking or label calibration. It proves both
two strategies proposed in our method are impor-
tant and effective, and combining these two strate-
gies can achieve a noticeable performance gain.
More specifically, we can observe that instance
ranking or label calibration is effective enough to
outperform previous SOTA models with an aver-
age performance gain of at least 3.7% in T-REx
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Model Min Max Mean Median

T-REx SPO
SelfORE 0.38 0.84 0.63 0.67
IRLC 0.16 0.37 0.27 0.28

T-REx DS
SelfORE 0.49 0.90 0.69 0.62
IRLC 0.25 0.54 0.41 0.40

Table 2: The intra-class variance statistics between Self-
ORE and our proposed method.
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Figure 3: Inter-class distance statistics with different
number of the nearest class centers.

SPO dataset, showing the effectiveness of these
two strategies.

3.7 Qualitative Analysis

In this section, we first analyse the representa-
tion distribution of novel relations on two datasets
from two perspectives, intra-class and inter-class,
to study how our method refines the representation
space. And then we visualize the representations
of novel relations to show the effectiveness of our
method.
IRLC leads to smaller intra-class distance. Ta-
ble 2 shows the intra-class variance statistics.
Specifically, we use intra-class variance to indi-
cate the intra-class distance of relation type. Each
cluster intra-class variance is obtained by calculat-
ing the average variances of all normalized relation
representations corresponding to the same relation
type, and we report the min/max/mean/median vari-
ance values on all relation types. From the results,
we can see that the intra-class variance are much
smaller than compared method in four aspects. It
confirms IRLC can make the relation representa-
tions from same relation type closer.
IRLC leads to larger inter-class distance. Fig-
ure 3 shows the inter-class distance statistics. The
X-axis is the number of the nearest class centers.
We obtain the euclidean distances between each
class center and its nearest class centers with differ-
ent number, and then average these distances of all
relation types as the inter-class distance. From the
results, we can observe that IRLC significant in-
creases the inter-class distance with different num-
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Figure 4: Visualization of the relation representations
on T-REx SPO.

ber of the nearest class centers, especially in T-REx
SPO. In summary, IRLC can obtain a better relation
representation space with smaller intra-class dis-
tance and larger inter-class distance for OpenRE.
Visualization of Relation Representations. To
intuitively show how our method helps to refine
the relation representation space, we visualize the
representations of novel relations by using t-SNE
(Van der Maaten and Hinton, 2008) to reduce the
dimension to 2. We randomly choose 5 relations
and sample 200 instances in each relation. As
shown in Figure 4(a), the relation representation
space of compared model is chaotic and somewhat
dense. However, the relation representations from
different types are mostly separated in our proposed
method, as shown in Figure 4(b).

4 Conclusion

In this paper, we propose a novel method based on
instance ranking and label calibration (IRLC) to
learn discriminative representations for better iden-
tifying the hard and semi-hard negative intances,
in the relational feature and label semantic space
simultaneously. Due to lacking the label of each
instance, we introduce three surrogate strategies to
generate the augmented views for the original in-
stance. And then instance ranking is used to refine
the relational feature space, and label calibration
is designed to model the constraint relationship be-
tween instances. Experiments and analysis confirm
the effectiveness of IRLC for OpenRE.
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