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Abstract

Question generation (QG) approaches based
on large neural models require (i) large-scale
and (ii) high-quality training data. These two
requirements pose difficulties for specific ap-
plication domains where training data is ex-
pensive and difficult to obtain. The trained
QG models’ effectiveness can degrade signifi-
cantly when they are applied on a different do-
main due to domain shift. In this paper, we
explore an unsupervised domain adaptation
approach to combat the lack of training data
and domain shift issue with domain data selec-
tion and self-training. We first present a novel
answer-aware strategy for domain data selec-
tion to select data with the most similarity to a
new domain. The selected data are then used
as pseudo in-domain data to retrain the QG
model. We then present generation confidence-
guided self-training with two generation confi-
dence modeling methods: (i) generated ques-
tions’ perplexity and (ii) the fluency score.
We test our approaches on three large public
datasets with different domain similarities, us-
ing a transformer-based pre-trained QG model.
The results show that our proposed approaches
outperform the baselines, and show the via-
bility of unsupervised domain adaptation with
answer-aware data selection and self-training
on the QG task. The code is available at
https://github.com/zpeide/transfer_qg.

1 Introduction

Natural language Question Generation (QG) aims
to generate questions from given passages of text.
It has been applied to a wide range of applications,
such as question answering (Sultan et al., 2020;
Fabbri et al., 2020), conversational systems (Gu
et al., 2021), and education (Ma and Ma, 2019;
Kurdi et al., 2020). Recently, pre-trained language
models (LM) have advanced the state-of-the-art
across a variety of natural language processing
tasks (Devlin et al., 2018). Consequently, by mod-
eling QG as a sequence-to-sequence task and fine-
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Figure 1: 2D visualization of average-pool BERT hid-
den states of data from different domains using t-SNE.
(a) Datasets NQ and RACE. (b) NQ and SciQ.

tuning on task-specific data, pre-trained LMs have
substantially advanced the state-of-art performance
on QG (Dong et al., 2019; Bao et al., 2020).

However, with billions of parameters, the perfor-
mance of these deep neural models heavily relies on
the quantity and quality of available training data.
As the manual process of creating high-quality
questions is expensive in terms of time and money,
compared with abundant unlabeled data, the avail-
able data sources containing well-formed questions
are insufficient, especially in the educational do-
main, where a lot of expertise is required to create
questions geared towards human learning. To miti-
gate the lack of labeled training data, one solution
is to pre-train models for QG on a data-abundant
labeled domain (source domain) and transfer the
learned knowledge to the unlabeled target domain,
which is known as unsupervised domain adaptation
(UDA) (Tan et al., 2018). It is a common challenge
in machine learning research to learn knowledge
in one domain and apply it in other domains with
good generalization performance. One obstacle is
the domain shift (Gretton et al., 2006) between the
source domain and the target domain, as illustrated
in Figure 1, which violates the assumption that the
training set and the test set are independent and
identically distributed (i.i.d.). This in turn limits
the model’s generalization and portability. To un-
derstand the effect of differences among domains
on the performance of downstream QG tasks, fol-
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lowing previous research (Hu et al., 2019; Aharoni
and Goldberg, 2020), we perform a preliminary
cross-domain study. We first train the QG model
on all domains separately and evaluate them across
different domain test sets. As shown in Table 1, the
model achieves the best performance on the test set
from the same domain and degrades dramatically
on test sets of other domains, which poses a great
challenge to the transferring task. We argue that
based on these numbers further research into do-
main adaptation methods for QG is needed. There

Dataset NQ RACE SciQ

NQ 29.64 13.76 14.32
RACE 16.59 23.91 12.37
SciQ 17.36 13.02 29.47

Table 1: Impact of domain shift on QG. Each row rep-
resents the METEOR score of the UniLM (Dong et al.,
2019) model trained on one dataset (the row: NQ, SciQ
and RACE) and tested on the test sets (the column).

is a growing interest in applying unsupervised do-
main adaptation to tackle the domain shift issue in
natural language processing tasks, such as question
answering (QA) (Rennie et al., 2020; Cao et al.,
2020), or neural machine translation (NMT) (Van
Der Wees et al., 2017; Rauf et al., 2019; Hu et al.,
2019). However, UDA is under-examined in the
context of question generation. Unlike the QA task
which can be modeled as a multi-label classifica-
tion problem, QG is a sequence generation prob-
lem, where it is hard to model the confidence or
quality of generations (Niehues and Pham, 2019).
Therefore, UDA methods for QA like pseudo-label
generation and filtering cannot be directly extended
to the QG area. Moreover, data augmentation UDA
methods for the NMT task, such as domain mix-
ing (Britz et al., 2017), back-translation (Sennrich
et al., 2015), or target sentences copying (Currey
et al., 2017) are not directly applicable to QG.

In this paper, we propose a two-stage unsuper-
vised domain adaptation approach for QG to make
use of the labeled source domain data, and abun-
dant unlabeled data. In the first stage, we focus on
unsupervised domain data selection. Although the
definition of “domain” in QG is ambiguous, includ-
ing the distribution of vocabulary, stylistic prefer-
ences, answer types etc, we first confirm that the
learned BERT-based context paragraph representa-
tion can be used for robust domain data clustering
as shown in Figure 1, and use Gaussian Mixture
Models (GMMs) on the learned representations to

find clusters, using methods proposed by Aharoni
and Goldberg (2020). We perform domain data
selection based on the distance of data example to
cluster centers. To mitigate the gap of answer-type
distributions, we further propose an answer-type
aware data selection method (AADS) for pseudo
in-domain data selection. The selected pseudo in-
domain data are used to re-train the fine-tuned data
to mitigate the domain shift.

In the second stage, we focus on self-training
on the unlabeled target domain with the QG model
trained in the first stage. The self-training approach
is substantially hindered by noisy and low-quality
generated pseudo labels. We first propose a normal-
ization method to avoid re-enforcing poorly gen-
erated questions. We also explore using sentence
perplexity and fluency scores to model the confi-
dence of sequence generation. We filter pseudo
labels with low sequence confidence during self-
training to prevent the model from being degraded
by wrong or low-quality predictions.

We conduct experiments across three domains,
including the Natural Question dataset as the source
domain, RACE as one target domain of education,
and SciQ as the target domain of science. Our
results show our proposed approach is effective
even when the target domain is substantially differ-
ent from the source domain and outperforms sev-
eral baselines including Latent Dirichlet Allocation
(LDA) (Druck et al., 2008), BERT discriminator
based data selection (Ma et al., 2019), and unsuper-
vised Gaussian mixture model(GMM) clustering
on pre-trained language model features (Aharoni
and Goldberg, 2020).

2 Background

In this section, we first present a short review for
UDA and question generation, then we briefly dis-
cuss how our work is different from recent related
research.

2.1 Unsupervised Domain Adaptation

The assumption that the training set and the test set
are independent and identically distributed (i.i.d.)
is a default assumption in many machine learning
algorithms. When the underlying distributions do
not match, the algorithms face the domain shift
problem (Gretton et al., 2008; Ramponi and Plank,
2020), i.e. the source domain and the target domain
data are not sampled from the same distribution.
This issue happens in real-world scenarios, where
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labeled training data are scarce while unlabeled
data may be abundant since annotations are time-
consuming and costly to acquire. It then translates
into performance degradation. Unsupervised do-
main adaptation provides an elegant and scalable
solution for mitigating this issue by learning only
from unlabeled target data. In this paper, we fo-
cus on the data-centric methods: data selection and
pseudo-labeling (Ramponi and Plank, 2020).

Data Selection for Domain Adaptation Not all
samples in the source domain are equally impor-
tant for adaptation. Data selection (Axelrod et al.,
2011) aims to select the data that are most related
to the target domain. It is attracting more atten-
tion, thanks to the abundance of data, and the large
pre-trained models (Gururangan et al., 2020). It
has been studied for several NLP tasks (Aharoni
and Goldberg, 2020; Ma et al., 2019; Guo et al.,
2020). Recently, Aharoni and Goldberg (2020)
showed that sentence representation learned by pre-
trained language models such as BERT (Devlin
et al., 2018) and Roberta (Liu et al., 2019b) are
capable of clustering textual data to domains in
an unsupervised way with high precision. In our
work, we follow this research and perform domain
clustering and selection with BERT.

Self-Training Self-training is a bootstrapping
method that has been used for domain adaptation
in multiple NLP tasks (McClosky et al., 2006;
Chattopadhyay et al., 2012; Bhatt et al., 2015;
Sachan and Xing, 2018). The main idea of self-
training (Lee et al., 2013) is to predict labels for
unlabeled samples with a trained classifier as their
‘pseudo’ ground-truth, and use the synthetic data
for further training.

2.2 Question Generation
Natural Question Generation (QG) aims to generate
questions from given passages. Various neural mod-
els have been proposed for QG by formulating it as
a sequence-to-sequence (Seq2Seq) learning prob-
lem (Du et al., 2017; Dong et al., 2019; Bao et al.,
2020). QG has been applied to a range of applica-
tion areas, such as conversational QA (Wang et al.,
2018; Gu et al., 2021) and education (Kurdi et al.,
2020). Although these approaches have made great
strides in improving QG effectiveness, they are
trained and tested with data from the same dataset.
When there is domain shift between training and
test data, the model performance deteriorates con-
siderably. Liao and Koh (2020) explore this using

supervised and semi-supervised domain adaptation
but ignore the unsupervised setting.

The most related recent work to ours is by Kul-
shreshtha et al. (2021), who propose a new training
protocol for UDA QG. However, it requires unla-
beled questions in the target domain, which is not
always available, and we focus on investigating a
more effective self-training method. We compare
this work in Appendix A.2.

In our work, we close the gap between source
and target domain distributions by performing
answer-type aware domain data selection.

3 Formalization

We now formulate the problem and present our no-
tation. The data in the source domain with ground-
truth questions are denoted as Ds = {(Cs,Qs)},
while unlabeled data in the target domain is Dt =
{(Ct}; here, C is denoting the context (the pas-
sages, and answer spans used for generating ques-
tions). The question generation task is then to gen-
erate a sequence Q̂ that maximizes the conditional
probability of the prediction P(Q|C, θ):

Q̂ = argmax
Q

P(Q|C, θ)

= argmin
Q

T∑

t=1

− logP(Qt|C, θ,Q<t)
(1)

where θ represents the parameters of the QG model,
which is initially learned from training data in the
source domain. In our work, we aim to learn to
adapt the θ from a source domain DS to the target
domain DT and achieve optimal performance.

4 Domains

4.1 Source Domain

We use the open-domain question answering cor-
pus Natural Questions (NQ) (Kwiatkowski et al.,
2019) as our source domain. It consists of aggre-
gated questions issued to the Google search engine,
and answers annotated by crowd-workers from the
most related Wikipedia pages. It consists of a large
amount of unique passages, and covers a range of
topics, which makes it a good source domain for
transferring. As there are many examples in NQ
with tables as context, to use this dataset for QG,
we select a subset which contains 89,453 samples
in the training set and 3,726 samples in the test set,
from the original NQ dataset.
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4.2 Target Domains
Education The first target domain we choose is
education, for which we use the RACE (Lai et al.,
2017) dataset. RACE is a large dataset consisting
of questions, answers and associated passages in
English exams for middle-school and high-school
Chinese students. Questions in RACE are designed
by instructors (i.e. domain experts) for evaluating
students’ reading comprehension ability. There are
three types of questions: cloze, general and specific.
Following the practice of EQG-RACE (Jia et al.,
2020), we only keep the specific questions in our
work. For unsupervised QG, we use 18.6K data
examples in the training set. The original dev and
test sets are used for evaluation.

Science Our second target domain is science
where we make use of the SciQ (Welbl et al., 2017)
dataset. SciQ consists of 13.7K crowdsourced
multiple-choice science exam questions, including
11.7K questions in the training set, and 1K for dev
and test set each. Each SciQ question has an as-
sociated passage, the right answer, and the distrac-
tors. The SciQ passages are chosen from science
study textbooks of different topics including bi-
ology, chemistry, earth science and physics. For
unsupervised QG, we utilize the support passages
in the training set without questions as unlabeled
data; we use the original dev and test sets for QG
evaluation.

Table 2 lists the basic statistics of our three
datasets. On those datasets, we can make a thor-
ough evaluation of the QG model’s transfer perfor-
mance and the effectiveness of proposed approach.

Features NQ SciQ RACE

Question Search Logs Crowsourced Experts
Context Wikipedia Textbook Examinations
Train set 89,453 11,679 18,614
Test set 3,726 1,000 1036
#W/doc 106.27 78.05 318
#Sent./doc 4.43 4.84 17
#W/Sent. 26.81 16.13 17.96
#W/Q 10.20 14.31 10.8

Table 2: Overview of the source domain dataset NQ,
and the selected datasets for target domains SciQ and
RACE.

5 Domain Data Selection

Not all data are required or even useful for domain
adaptation. Irrelevant data samples can add noise,

and affect the learned model’s performance and ro-
bustness towards cross-domain application consid-
erably (Liu et al., 2019a). A solution to reduce the
impact of irrelevant data is domain data selection,
i.e. to retrieve the most appropriate data from the
source domain data given the target domain data.
Most proposed domain data selection approaches
consider ranking training examples from DS ac-
cording to a domain similarity measure and select
the top-n examples that are closest to DT .

We encode the context passage at the paragraph
level with BERT, and perform average pooling of
the last layer hidden state of each token to create its
vector representation. To show that this is a robust
representation for mapping sentences to domains
in an unsupervised, data-driven approach, we first
visualize them with t-SNE, as shown in Figure 1.
We can observe the encoding vector representa-
tion with BERT indeed can cluster data examples
to domains. Following the practice of Aharoni
and Goldberg (2020), we then perform unsuper-
vised clustering by fitting Gaussian Mixture Mod-
els (GMMs) to the vector context representations
with k predefined clusters. We assign each cluster
the domain class by measuring its purity (propor-
tion of examples belonging to each domain). We
use the Euclidean distance (Lee, 2001) of each ex-
ample to cluster center as the measure of domain
distance. Figure 2 shows the distribution of NQ
dataset examples’ distance to NQ’s, RACE’s and
SciQ’s domain center respectively. We sort source
data examples based on their distance to the target
domain center and select data examples with most
domain similarity as the pseudo-in-domain data.
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Figure 2: Distribution of the distance between each
data example to domain cluster center. (a) NQ and
RACE. (b) NQ and SciQ.

Table 3 shows the unsupervised domain clus-
tering results. We compare the proposed meth-
ods with Latent Dirichlet Allocation-based (LDA)
clustering (Druck et al., 2008). We also compare
different ways of creating paragraph vector repre-
sentations, including using BERT [CLS] token

2391



encoding (CLS), average pooling of all BERT layer
hidden states (All), and average pooling of the
last hidden states (Last). Besides GMM cluster-
ing methods, we also compare the GMM method
with K-Means (KM). To accelerate the clustering,
we perform PCA over the paragraph representa-
tion first. Our results show the GMM method with
pooling average of the last BERT hidden states to
outperform the other methods.

RACE SciQ
Method Acc F1 Rc Acc F1 Rc

LDA 0.79 0.76 0.72 0.69 0.61 0.55
KMCLS 0.37 0.35 0.98 0.33 0.25 0.97
KMAll 0.94 0.85 0.99 0.88 0.63 0.89
KMLast 0.97 0.91 0.97 0.91 0.72 0.99
GMMCLS 0.42 0.36 0.97 0.37 0.26 0.94
GMMAll 0.96 0.90 0.95 0.88 0.64 0.89
GMMLast 0.98 0.95 0.96 0.91 0.72 0.99

Table 3: Unsupervised Domain Clustering Results.

5.1 Answer-Type Aware Data Selection
For different application domains, as shown in Fig-
ure 3a, the question type distributions vary a lot.
For example, in NQ, the ‘who’ questions account
for over 35% of all questions but in SciQ, 73.6%
of questions have the ‘what’ type. Traditional data
selection methods are based only on the similarity
of context passages, which may suffer from un-
balanced target label sampling. As there are no
questions available in the target domain, it is a chal-
lenge to perform data selection according to the
distribution of target question types. We first in-
vestigate the correlation between the answer types
and question types. The question types are identi-
fied by the interrogative ‘w’-word, such as ‘who’,
‘what’, etc. We identify the answer types such as
‘time’, ‘location’, etc. using the spacy1 NER and
POS tagger. The correlation matrix (expressed in
Pearson correlation coefficient) is shown in Fig-
ure 3b. We find question types and answer types
are strongly correlated to each other. For exam-
ple, the correlation coefficient between ‘time’ and
‘when’ is 0.67, between ‘person’ and ‘who’ it is
0.63. Thus, we propose a heuristic answer-type
aware data selection strategy for domain data selec-
tion from the source domain with a similar answer
type distribution, in order to mitigate the label di-
vergence. Specifically, we first group the data by
answer types, and then conduct data selection on
each group.

1https://spacy.io/
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Figure 3: (a) Question type distributions. (b) Correla-
tion between answer type and question types.

6 Self-Training

When training the QG model with pseudo-labels, it
is natural to put more emphasis on the labels that
the model is more confident about. An intuitive
solution is to weigh each pseudo-token according
to its estimated probability in order to avoid re-
enforcing poor predictions. Thus, we propose the
following normalized training objective for self-
training:

Q̂ = argmin
Q

T∑

t=1

− logαtP(Q
′
t|C, θ,Q

′
<t) (2)

where Q
′

is the pseudo-label, and αt is the pre-
dicted probability of the t-th word Q

′
t, and T is the

length of the pseudo-label.
We apply the QG model to generate questions on

unlabeled target-domain data, which are then used
as ‘pseudo’ gold labels for further training. The
self-training approach is substantially hindered by
noisy, low-quality labels. How to deal with noisy
pseudo labels is crucial to the final UDA effective-
ness. Classical pseudo label generation methods
(Mihalcea, 2004; Abney, 2007; Cui and Bollegala,
2019) filter generated labels by their ‘confidence’
which is the predicted probability of the label in
those classification tasks. How to represent confi-
dence of sequence generation in pseudo-labeling is
insufficiently explored. Traditionally, confidence
estimation has been defined as a task of assessing
the quality of the whole sequence of words in the
target sentence. Therefore, we propose a question
quality guided pseudo labeling method to address
this problem, with two confidence metrics: (i) the
sentence perplexity, and (ii) the BERT-based flu-
ency score.

Sentence Perplexity The first metric is the per-
plexity of the generated questions. The generation
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with higher confidence should have lower perplex-
ity. Here, perplexity (PPL) is defined as follows:

PPL(Q) = 2−
1
T
log

∏T
1 P(Qt|Q<t) (3)

BERT-based Fluency Score For our second
metric, we use fluency as the question quality met-
ric, which indicates whether the generation fol-
lows grammar rules and correct logic. The per-
plexity of a sentence under a well-trained language
model usually serves as a good indicator of its flu-
ency (Yang et al., 2018). We use a fine-tuned BERT
language model as evaluator. The fluency metric
Rfluency for question Q is calculated as follows:

Rfluency(Q) = exp (− 1

T

T∑

t=1

logBERT(Qt|Q<t)).

(4)
During the unsupervised self-training, after each
epoch, we perform beam search with the trained
model, and the generated questions are ranked ac-
cording to their fluency score. Only questions with
confidence metrics better than the threshold φ and
PPL are selected as pseudo-labels. If one data
sample got selected in the last epoch, but its gen-
erated question’s confidence metric in the current
epoch is not higher than before, it is removed. In
this way, only questions of high quality that im-
prove over time are chosen for training.

Algorithm 1: Self-Training
Input :Target domain data: Dt = {Ct}. QG model

MQG with parameters θ
repeat

for Ct ∈ Dt do
[Q

′
t, αt]

T
1 =MQG(C)

if Use Fluency Score then
f =
exp (− 1

T

∑T
t=1 logBERT (Q

′
t|Q

′
<t))

else if Use PPL then
f = 2−

1
T

log
∏T

1 P(Qt|Q<t)

if f > φ then
L =
L+

∑T
t=1− logαtP(Q

′
t|C, θ,Q

′
<t)

end
end
θ ← Adam(∇θL).

until Convergence or Reach Maximum Epochs;

7 Experiments

In this section, we describe the model and the train-
ing regime in more detail.

7.1 Experimental Settings
QG Model We use the state-of-art pre-trained
transformer-based sequence-to-sequence natural
language understanding and generating model
UniLM (Dong et al., 2019) for question gener-
ation. Specifically, we choose the uncased pre-
trained unilm1.2-base-uncased model for
fine-tuning. It has 12 transformer layers and
is jointly pre-trained on large amounts of text,
optimized for bidirectional, unidirectional, and
sequence-to-sequence language model objectives.
We use the s2s-ft package2 for fine-tuning. To
fine-tune our model, the input context passage,
the answer, and the generated question are com-
bined together into a sequence: “[CLS] con-
text passage[EOS] answer span [EOS] question
[EOS]”. Both the input passage and answer are
regarded as the first text segment, while the gener-
ated question is the second segment in the unified
LM.

Training Details The model is trained on a
server consisting of 4 GeForce GTX 1080 gpus
with a batch size of 32, a mask probabil-
ity of 0.8, and the label smoothing rate of
0.1. The max_source_seq_length is set 464, the
max_target_seq_length is 48. We first fine-tune
UniLM with the NQ dataset for 10 epochs. We use
the Adam optimizer with ε = 1e− 8, learning rate
is 1e− 4 with 500 warmup steps.

Unsupervised Domain Data Clustering We
use 4,500 examples randomly selected from NQ,
SciQ and RACE for unsupervised data clustering.
We set the number of clusters as 2, since we intend
to investigate the separability between the source
domain and the target domain.

Evaluation Metrics We compare the model per-
formance along three automatic evaluation met-
rics: BLEU (Papineni et al., 2002), which is com-
puted with the geometric average of the modi-
fied n-gram precision and the brevity penalty; Me-
teor (Denkowski and Lavie, 2014), which com-
pares the generation with the gold question in terms
of exact, stem, synonym, and paraphrase matches;
and Rouge-L (Lin, 2004), which measures the
shared longest common sub-sequence. We calcu-
late these metrics with the package released by Du
et al. (2017). We also conduct a human evalu-
ation.As a sanity check and to evaluate the QG

2https://github.com/microsoft/unilm/
tree/master/s2s-ft
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RACE SciQ
Method B-1 B-4 MT RG B-1 B-4 MT RG

None 21.99 4.11 13.68 21.31 25.94 8.67 15.53 26.59

DDS

random 21.91 4.02 13.74 21.26 26.15 8.97 15.56 26.62
LDA 21.97 4.29 13.72 21.47 26.57 8.88 15.67 27.07
BERT-DDS 22.06 3.99 13.61 21.30 26.43 9.08 15.70 26.70
KMeans 22.21 4.45 13.75 21.65 26.45 9.23? 15.72 27.15?
GMM 22.38 4.58 14.05 21.70 26.51 9.08 15.79? 27.05
AA-KMeans 22.28 4.40 13.92 21.71 26.26 8.85 15.66 26.82
AA-GMM 22.79? 4.79? 14.23? 22.15? 26.61? 9.09 15.73 26.90

ST

w/o-Norm 23.34 4.82 14.45 22.89 27.89 10.37 16.51 28.26
w/o-Filter 23.83 5.13 14.65 23.06 28.29 10.85 16.95 28.86
Fluency 24.20 5.11 14.74 23.66 28.22 10.76 16.92 28.92
PPL 24.38♥ 5.22♥ 14.85♥ 23.43 28.30 11.04 17.12 29.03
Fluency&PPL 24.32 5.14 14.73 23.52♥ 28.30♥ 11.04♥ 17.12♥ 29.03♥

DDS
+ST

w/o-Filter 23.43 4.93 14.43 22.78 28.21 11.00 16.90 28.93
Fluency 24.20 4.85 14.67 23.13 28.82 11.05 16.86 28.94
PPL 24.43 5.40♣ 15.08 23.49 29.12 11.04 16.92 29.38
Fluency&PPL 24.71 5.20 14.96 23.78 29.40♣ 11.23 17.13 29.52♣
AA-Fluency 24.14 5.17 14.79 23.07 28.10 10.82 16.69 28.54
AA-PPL 24.50 5.14 15.09♣ 23.60 28.84 11.65 17.22♣ 29.30
AA-Fluency&PPL 24.71♣ 5.16 14.87 23.80♣ 28.68 11.70♣ 17.17 29.36

Table 4: Results of unsupervised domain adaptation for QG with answer-type aware (AA-) domain data selec-
tion(DDS) and self-training(ST) on RACE and SciQ test set. We compare three baseline methods: LDA (Druck
et al., 2008), BERT-DDS (Ma et al., 2019) , GMM (Aharoni and Goldberg, 2020). ? denotes the best results for
DDS, ♥ denotes best results for ST, and ♣ denotes best results for DDS+ST.

Dataset B-1 B-4 MT RG

NQ 60.05 30.31 29.64 59.26
SciQ 46.99 33.22 29.47 42.73
RACE 37.86 17.90 23.91 37.56

Table 5: In-domain test results of the QG model (fine-
tuned and tested on the same dataset).

model’s ability to generate questions based on these
datasets, we first conduct in-domain tests on these
three datasets separately, i.e. we fine-tune and test
the model on the training/test set from the same
dataset. As shown in Table 5, we achieve results
comparable with state-of-art for the NQ, RACE and
SciQ datasets.

7.2 Experiments on Data Selection

In this experiment, we compare the proposed
answer-type aware data selection with several base-
lines. We train the QG model with the selected
data and evaluate the data selection method by com-
paring its performance. The first baseline is ran-
dom data selection (random). With this baseline,
we randomly sample 1,000 samples from NQ. The
second baseline is LDA-based clustering (Druck
et al., 2008). We use the gensim (Řehůřek and So-
jka, 2010) LDA implementation for this baseline.

The third method (BERT-DDS) is proposed by Ma
et al. (2019), where a BERT-based domain dis-
criminator is used for data selection. The discrim-
inator is first trained with randomly sampled data
from the datasets. The baseline model achieved
99.85% for RACE and 92.35% accuracy for the
SciQ dataset. The last baseline method we com-
pare is adopted from the unsupervised domain clus-
tering method (GMM) proposed by Aharoni and
Goldberg (2020), as described in Section 5. We
use the BERT-base model implementation of hug-
gingface transformers (Wolf et al., 2020) to get the
context passage encoding. In addition to GMM, we
also compare the K-Means method (Sculley, 2010).
The results are presented in Table 4.

Impact of Domain Data Selection Re-training
with randomly selected data does not improve our
model’s generalization performance. All other data
selection methods outperform random data selec-
tion, except BERT-DDS. One reason is that BERT-
DDS training needs sampling data from different
domains, its performance relies on the sampled
data, and also label examples that are similar to
the target domain as source domain. Data se-
lection with unsupervised domain clustering with
BERT context encoding outperforms other methods,
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which confirms its effectiveness.
On the RACE dataset, answer-type aware

data selection with K-Means (AA-KMeans) and
GMM (AA-GMM) outperform the same selec-
tion method without answer-type awareness. We
note this result does not always hold for the SciQ
dataset. One possible reason is due to the extremely
unbalanced answer type distribution in SciQ: we
have to select examples with generally low domain
similarities wrt. the source domain to create the
same answer-type distributions.

7.3 Experiments on Self-Training
We conduct self-training with the target-domain
unlabeled data on the QG model fine-tuned on the
NQ dataset. We first verify the effectiveness of
the proposed normalized training objective. As
the results show in Table 4, self-training with nor-
malization (w/o-Filter) outperforms self-training
without any confidence filtering and normalization
(w/o-Norm), which indicates its effectiveness.

Impact of Generation Confidence Guided Self-
training We explore two generation confidence
metrics for self-training, the sentence perplexity,
and the question fluency score. To train the BERT
LM for generating fluency scores for question qual-
ity evaluation, we combine all questions from NQ
and the Quora Question Pairs dataset3, creating a
dataset consisting of 834,834 questions. The final
model achieves a perplexity of 9.27 on the evalu-
ation set. As the results in the ST part of Table 4
show, both proposed generation confidence metrics
improve the performance considerably up to 6%.
This can be explained by the removal of low-quality
and noisy data, which hinders model training. As
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Figure 4: Change of (a) average perplexity, and
(b) standard deviation of generations along iterations.

Figure 4 shows, with perplexity filtering—although
the changing curves of mean perplexity of the gen-
erated pseudo-labels in each iteration are similar—
the standard deviation drops faster and more steady.

3https://www.kaggle.com/c/
quora-question-pairs

As Figure 5 shows, the average fluency score im-
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Figure 5: Change of (a) average fluency score, and (b)
the percentage of generated questions whose fluency
score is higher than φ along iterations.

proves along iterations even without fluency filter-
ing, but with fluency filtering, the average fluency
score improves more steadily and increases towards
the threshold value φ. The proportion of questions
with higher fluency score than φ increase along
iterations. As reflected in Figure 5b and Table 6, if
the threshold value is too low, fewer noisy pseudo
examples can be filtered out. If the threshold is
too high, there would be less supervision for the
QG model. Both of these settings would lead to
performance degradation.

φ B-1 B-4 MT RG

RACE

8.5 23.83 5.12 14.65 23.06
9.5 24.20 5.11 14.74 23.66
10.5 24.23 5.06 14.68 23.29
11.5 23.93 5.10 14.46 23.09
12.5 23.78 4.55 14.41 23.05

Table 6: Influence of the fluency threshold (φ).

Impact of Joining Domain Data Selection and
Self-Training We also conduct domain adapta-
tion by joining domain data selection and self-
training (DDS+ST). As shown in Table 4, joining
DDS and self-training without filtering does not
show performance improvement on both datasets,
which implies with DDS, pseudo-labels during self-
training may be noisier. With the proposed filtering
with fluency score or question perplexity, the joint
method outperforms DDS and self-training. On the
RACE dataset, the answer-type aware joint methods
generally achieves the best performance across all
evaluation metrics.

7.4 Human Evaluation

In addition to the automatic evaluation results
shown in Table 4, we also report on our human
evaluation in Table 7. We randomly sampled 50
generated questions from the RACE and SciQ test
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Method RACE SciQ

Syntax Relevance Answerability Syntax Relevance Answerability

w/o-UDA 2.60 (0.66) 2.00 (0.78) 0.43 (0.49) 2.83 (0.40) 2.40 (0.64) 0.57 (0.50)
ST 2.78 (0.51) 2.12 (0.73) 0.46 (0.50) 2.94 (0.26) 2.49 (0.64) 0.67 (0.47)
DDS+ST 2.81 (0.47) 2.12 (0.75) 0.51 (0.50) 2.92 (0.27) 2.53 (0.63) 0.67 (0.47)

Table 7: Human evaluation (mean and standard deviation) on RACE and SciQ datasets. Syntax and Relevance
evaluation adopt a 3-point scale. Higher is better; Answerability is boolean type (0-1).

set respectively and asked 3 domain experts (both
male and female, ages ranging from 25 to 35) to
rate the generated questions by the QG model with-
out UDA (w/o-UDA), with self-training (ST), and
self-training and domain data selection(DDS+ST).
The experts are also presented with the context
paragraphs, the answers, as shown in Figure 6 of
the appendix. The generated questions are shown
in Table 10 of the appendix. We rate questions
along three dimensions: (i) syntax, i.e. the syntax
correctness, in a 3-point scale, 1 for major syntax
issues, 2 meaning minor issue and 3 is correct; (ii)
relevance, i.e. whether the question is relevant to
the context and the answer, also in a 3-point scale,
1 irrelevance, 2 for partial relevance and 3 mean-
ing fully relevant; (iii) answerability, a boolean
type value, indicating whether the question can be
answered given the context and answer. As the
results show, all QG with UDA methods outper-
form the QG model without domain adaptation.
On the RACE dataset, the proposed unsupervised
domain adaptation for QG with data selection and
self-training (DDS+ST) achieves the best perfor-
mance along with all metrics; although the perfor-
mance of UDA with self-training only outperforms
DDS+ST slightly in terms of syntax and answer-
ability, DDS+ST outperforms self-training.

8 Conclusion

We proposed an unsupervised domain adaptation
approach for question generation. Our approach
includes an answer-type aware unsupervised do-
main data selection method and a sequence gen-
eration confidence guided self-training algorithm.
We conduct experiments on three domains. We use
the Natural Questions dataset as labeled source do-
main, RACE as target education domain and SciQ
as target science domain. Our results suggest our
approach is effective for this application settings.
We find that it significantly improves domain adap-
tation performance of our QG model. In future
work, we plan to expand our work to more domains

and additional QG model types.
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A Appendix

A.1 Examples Selected Data

Table 9 illustrates several data examples of selected
from NQ dataset that are most similar to education
domain, i.e. the RACE dataset, and to science do-
main, i.e. SciQ dataset using the GMMlast BERT
based domain data selection method. The RACE
dataset is a large dataset of English exams for
middle-school and high-school Chinese students.
Its vocabulary is middle-school and high-school
level. Many passages in it are story-style. As
NQ→RACE data examples show, the selected data
from NQ are close to SciQ in terms of both the
vocabulary and text style. Meanwhile, SciQ pas-
sages are chosen from science study textbooks of
different topics including biology, chemistry, earth
science and physics. The examples of selected data
(NQ→RACE) can be categorized into the biology
domain, which includes a lot of the biology terms,
elucidating biological processes. These examples
show the effectiveness of the data selection method.

Figure 6: The interface for human annotation.

A.2 Experiments on MLQuestions

We conduct unsupervised domain adaptation ex-
periments on MLQuestions (Kulshreshtha et al.,
2021). We first conduct unsupervised domain data
selection with GMMlast method and presents the
confusion matrix in Figure 7 and select 1,000 data

Dataset B-1 B-4 MT RG

w/o-UDA 30.06 7.96 18.62 31.60
DDS 29.89 8.27 18.63 31.64
ST 32.58 9.41 19.41 34.20

DDS+ST 34.76 10.57 20.41 37.02

Net Gain 4.7↑ 2.61↑ 1.79↑ 5.42↑

Table 8: Unsupervised domain adaptation results on
MLQuestions dataset.

NQ
MLQ

Predicted label

NQ

MLQ
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0.99 0.01

0.08 0.92

Figure 7: Confusion matrix for unsupervised do-
main data clustering results on MLQuestions and NQ
datasets. We use 3,000 data examples from NQ and
MLQuestions each.

examples from NQ that are most close to MLQues-
tions clustering center. We set number of clusters
as 2 because we want to directly investigate the un-
supervised separability between NQ and MLQues-
tions. We use the provided development set and the
test set of MLQuestions. Then we perform domain
adaptation for QG, and show results in Table 5.
Compared with the self-training method explored
in (Kulshreshtha et al., 2021), the proposed method
in this paper achieves more performance increase,
e.g. DDS+ST method achieved 5.42 and 4.7 net
gain in Rouge-L and BLEU-1 score respectively,
compared with 0.58 and 0.80 net gain with self-
training in (Kulshreshtha et al., 2021). We focus
on the self-training method in this paper, so we
consider conducting open-domain retrieval-based
methods like Back-Training in future research.
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NQ→ RACE NQ→ SciQ
To expand the number of women smokers Hill decided to
hire Edward Bernays, who today is known as the father of
public relations, to help him recruit women smokers. Bernays
decided to attempt to eliminate the social taboo against women
smoking in public. . . . The targeting of women in tobacco
advertising led to higher rates of smoking among women. In
1923 women only purchased 5% of cigarettes sold, in 1929
that percentage increased to 12%, in 1935 to 18.1%, peaking
in 1965 at 33.3%, and remaining at this level until 1977.

The lysosomes also act as the waste disposal system of the
cell by digesting unwanted materials in the cytoplasm, both
from outside the cell and obsolete components inside the cell.
Material from outside the cell is taken - up through endocy-
tosis, while material from the inside of the cell is digested
through autophagy. Their sizes can be very different. They
were discovered and named by Belgian biologist Christian de
Duve, who eventually received the Nobel Prize in Physiology
or Medicine in 1974.

A man named Bailey intends to take his family from Georgia
to Florida for a summer vacation , but his mother , (referred
to as “the grandmother” in the story) wants him to drive to
East Tennessee , where the grandmother has friends (“connec-
tions”). She argues that his children, John Wesley and June
Star, have never been to East Tennessee, and she shows him a
news article in the Atlanta Journal Constitution . . . He and the
grandmother agree that things were much better in the past
and that the world at present is degenerate; she concurs with
Sammy’s remark that “a good man is hard to find.”

Decomposition is the process by which organic substances
are broken down into simpler matter. The process is a part
of nutrient cycle and is essential for recycling the finite mat-
ter that occupies physical space in the biosphere. Bodies
of living organisms begin to decompose shortly after death.
Animals, such as worms, also help decompose the organic
materials. Organisms that do this are known as decomposers.
Although no two organisms decompose in the same way, they
all undergo the same sequential stages of decomposition. The
science which studies decomposition is generally referred to
as taphonomy from the Greek word taphos, meaning tomb.

The next day, just before Lincoln and Sara board a boat
to escape to the Dominican Republic, Sucre gives Sara the
$100,000 they stole from the General, apologizing for not be-
ing able to wire the money to them the night before as planned.
Mahone gives Sara the paper Michael asked him to deliver,
. . . , but don’t ever, say. He then says what he wants to say is
that he loves them both, very much. He tells them to make
sure his child is told every day how much he is loved and how
lucky he is to be free. The video, and the entire series

An elater is a cell (or structure attached to a cell) that is
hygroscopic, and therefore will change shape in response
to changes in moisture in the environment. Elaters come
in a variety of forms, but are always associated with plant
spores. In many plants that do not have seeds, they function in
dispersing the spores to a new location. Mosses do not have
elaters, but peristome which also change shape with changes
in humidity or moisture to allow for a gradual release of spores

Table 9: Examples of selected data from NQ dataset that are most similar to RACE dataset (NQ→RACE) and SciQ
dataset (NQ→RACE).
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RACE SciQ

Context

Jenny was a pretty five-year-old girl. One day when
she and her mother were checking out at the grocery
store , Jenny saw a plastic pearl necklace priced at
$2.50. Her mother bought the necklace for her on
condition that she had to do some homework to pay
it off. Jenny agreed. She worked very hard every
day, and soon Jenny paid off the necklace. Jenny
loved it so much that she wore it everywhere except
when she was in the shower. Her mother had told
her it would turn her neck green! Jenny had a very
loving daddy. When Jenny went to bed, he would
read Jenny her favorite story. One night when he
finished the story, he said, "Jenny, could you give
me your necklace?" "Oh! Daddy, not my necklace!"
Jenny said." But you can have Rosy, my favorite
doll. Remember her?

Gamma rays are produced when radioactive ele-
ments decay. Radioactive elements are elements
with unstable nuclei. To become more stable, the
nuclei undergo radioactive decay. In this process,
the nuclei give off energy and may also emit charged
particles of matter. Types of radioactive decay in-
clude alpha, beta, and gamma decay. In alpha and
beta decay, both particles and energy are emitted. In
gamma decay, only energy, in the form of gamma
rays, is emitted.

Answer She had to help her mother do some housework. radioactive

w/o-UDA what’s the meaning of the name jenny? where do gamma rays come from when they decay?

ST what is the name of jenny’s necklace? what type of element is the source of gamma rays?

DDS+ST how did jenny get her necklace in the movie? what type of elements give off gamma rays?

Context

Lawmakers in the United States have expanded an
investigation into the use of location-tracking sys-
tems on mobile devices. The action follows recent
reports about the storing of information on the Ap-
ple iPhone. Some people consider location tracking
to be a threat to personal privacy and security. Allan
Friedman, the research director, says, "All wireless
companies do some location tracking as part of their
networks. This information is usually stored by the
companies, not the devices, and there are laws to
protect it. Law enforcement agencies, . . . There’s
the idea that because it’s on my phone and on my
computer, rogue applications that I pay for or that
I’m tricked into downloading may be able to access
this data and somehow misuse it." Apple says it
is "not tracking the location of your iPhone". It is
simply keeping a database of Wi-Fi hotspots and
cell phone towers near the user’s location.

Not all wetlands are alike, as you can see below
(Figure below). Wetlands vary in how wet they are
and how much of the year they are soaked. Wet-
lands also vary in the kinds of plants that live in
them. This depends mostly on the climate where
the wetland is found. Types of wetlands include
marshes, swamps, and bogs.

Answer Because it is thought to threaten users’ privacy. wetland

w/o-UDA why is there a tracking system on my phone? what do you call a place that is covered with water?

ST why is there a location tracking system on apple? what do you call marshes that are wet?

DDS+ST why do we not use location tracking on iphone? what are marshes and bogs called?

Table 10: Examples of generated questions with different methods.
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