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Abstract

Pretrained masked language models (PLMs)
were shown to be inheriting a considerable
amount of relational knowledge from the
source corpora. In this paper, we present an
in-depth and comprehensive study concerning
specializing PLMs into relational models from
the perspective of network pruning. We show
that it is possible to find subnetworks capable
of representing grounded commonsense rela-
tions at non-trivial sparsity while being more
generalizable than original PLMs in scenarios
requiring knowledge of single or multiple com-
monsense relations.

1 Introduction

The past few years have witnessed the revolution
of NLP methods with the advent of pretrained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2019) and ROBERTA (Liu et al., 2019a). They are
first pretrained on vast amount of unlabeled text
corpora using masked language modeling (MLM)
objective and then fine-tuned on task-specific data,
offering a surge of improvements on a wealth of
NLP tasks. However, we know very little about
what and how much knowledge embedded in PLMs
actually contributes to the success. Notable endeav-
ors (Peters et al., 2018; Goldberg, 2019; Tenney
et al., 2019) toward this understanding focus on
probing linguistic knowledge therein. They demon-
strated that pretraining did impart useful linguistic
abstraction about syntax and semantics into PLMs.

More recently, several works presented intrigu-
ing results examining relational knowledge within
PLMs. Relational knowledge (Speer and Havasi,
2012; Vrandečić and Krötzsch, 2014) is typically
defined as describing the abstractive relationship
between a pair of concepts or entities, which
is crucial for facilitating language understanding.
Petroni et al. (2020) first posed the LAMA probe,
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an English benchmark comprising multiple sets
of prompts. Each prompt is a cloze-like sentence
transformed from a relational knowledge triple:
Knowledge Triple: <bus, HasA, ?>
Object Label: seats.
Prompt: you are likely to find in a bus.

By substituting with a special [MASK] token
and reusing the MLM head, prompt-based rela-
tional knowledge probing provides an estimated
lower bound of what PLMs know without train-
ing an additional layer which was used in the pre-
vious linguistic probes. They showed that, even
without grounded supervision, PLMs capture such
relational knowledge at a level competitive to su-
pervised alternatives. Subsequent works further
showed that some specific prompts, acquired ei-
ther through heuristical mining (Jiang et al., 2020)
or gradient-guided search (Shin et al., 2020), can
better trigger the models to correctly predict the
missing object.

Despite the mounting evidence for the existence
of relational knowledge in PLMs, it remains un-
clear how such knowledge is represented internally.
In light of this, we raise the core question in this
paper: Given the general language representation
space modeled by a PLM, can we extract its latent
representation subspaces for different relations and
specialize the PLM into relation-specific knowl-
edge models? These subspaces exclusively repre-
sent knowledge inherited from different subset of
MLM data, expressing different relations between
masked word and remaining context, thus can po-
tentially benefit applications where knowledge of
certain relations are explicitly required.

We study this question by first drawing inspi-
ration from recent findings (Saunshi et al., 2020;
Lee et al., 2020; Zhang and Hashimoto, 2021): the
more MLM pretraining simulates downstream task,
the more successful the transfer will be. For exam-
ple, filling like or hate into a cloze like “I [MASK]
this film, it’s great.” provide a clear way in which
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Figure 1: Querying original/pruned BERT-BASE with
prompts of relation HasA. The color spectrum indicates
the 12 attention heads in the last layer (Vig, 2019).

the model can implicitly learn to perform sentiment
classification. Similarly, we hypothesize that train-
ing on MLM data expressing certain relation r be-
tween masked word and remaining context would
lead to effective transfer on knowledge probing that
targets relation r.

By exploiting this correlation conversely, we of-
fer a new way for extracting representation sub-
spaces responsible for different relational knowl-
edge based on their transfer performance on knowl-
edge probing task. Instead of introducing addi-
tional parametric transformation upon the original
space, we restrict these subspaces to have corre-
spondence with subnetworks of PLMs and propose
an end-to-end differentiable weights pruning frame-
work. Our experiments show that it is possible to
find subnetworks capable of representing grounded
commonsense relations at non-trivial sparsity while
also exhibiting evident disentanglement. Figure 1
exemplifies a cloze prompt where the identified
subnetwork produces the valid answer seats by at-
tending to relevant context, i.e., bus, while the orig-
inal BERT fails. We then examine the knowledge
transfer ability of these subnetworks in scenarios
requiring knowledge of single or multiple common-
sense relations for reasoning. Experiment on com-
monsense knowledge base completion show that
the identified subnetworks even outperform strong
supervised knowledge base completion methods.
These subnetworks also outperform the original
PLMs in both many-shot and zero-shot common-
sense question answering tasks, when combined
properly.

Code and all pruned subnetworks are open-
sourced at https://github.com/DRSY/

LAMP.

2 Methodology

We first provide background on pretrained masked
language models and the formulation of cloze
prompt for querying these models, then we pro-
ceed to elaborate our proposed pruning procedure.

2.1 Pretrained Masked Language Models
Given a sequence of tokens w = [w1, w2, ..., wn]
with length n, the model outputs a sequence of
hidden states h = [h1, h2, ..., hn] corresponding to
each token. In standard MLM pretraining, hi is fed
into a MLM head for computing the reconstruction
probability P (wi|w−i) of the masked i-th token
wi, where w−i are all other unmasked tokens. We
denote the pretrained masked language model LM
with parameter θ as LMθ in the following sections.

2.2 Knowledge Probing with Cloze Prompts
The natural language cloze prompts, such as
“you are likely to find a basement in below your
[MASK]”, offer a straightforward means of query-
ing pretrained masked language models that con-
form to their interfaces.

We follow the formulation of Petroni et al.
(2020), where relational knowledge is in the form
of triplets 〈subj, r, obj〉. Here subj refers to the
subject, obj refers to the object, and r indicates
their corresponding relation. To query a model
LMθ, each relation r is associated with a set of
cloze template prompts Tr, each of which con-
sists of a sequence of tokens, and two of which
are place-holders for subj and obj (e.g., “you are
likely to find [subj] in [obj]”). We can check the
existence of the knowledge inLMθ by substituting
the [subj] place-holder with the real subject and
asking the model to predict the missing object:

ˆobj = argmax
w∈V

PLMθ
([obj] = w|subj, Tr)

where V is the vocabulary of LMθ. We say that
LMθ carries the knowledge if ˆobj = obj.

2.3 Extracting Representation Subspaces by
Weights Pruning

Extracting representation subspaces for different
roles/functionalities has been explored by prior
works, such as attaining disentangled subspaces
of style and semantic content in text style transfer
task (John et al., 2019). The typical approach is
to apply parametric transformation function upon
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the original space and optimize through end-to-end
downstream fine-tuning. However, it induces addi-
tional parameters and cannot faithfully reveal the
relational knowledge originally present in PLMs
since such knowledge can be stored in the newly in-
troduced parameters outside of PLMs. We circum-
vent this issue by focusing on the representation
spaces modeled by subnetworks of LMθ. A sub-
network LMθr of relation r is obtained by setting
certain dimensions of θ to zero.

The next step is to identify LMθr such that the
representation space it corresponds to inherits its
knowledge from the MLM data expressing rela-
tion r. Based on the previous evidence (Zhang
and Hashimoto, 2021) that shows positive corre-
lation between downstream performance and task
similarity with MLM data, we propose to estimate
representation space for relation r by searching
for the LMθr that is the most predictive of the
prompts expressing relation r. Specifically, for
each weight matrix W l from the set of all weight
matrices W l in the l-th transformer layer, we as-
sign a learnable pruning mask generator Glr that is
element-wise initialized from a prior distribution
φ(·) . Each entry gli,j ∈ Glr is a real-valued scalar
that determines whether its corresponding weight
wli,j ∈W l should be pruned. We explore two dif-
ferent schemes of converting Glr into a masking
matrix M l

r from a probabilistic view.

2.3.1 Stochastic Pruning

The first variant is to establish a probabilistic formu-
lation for determining the importance of individual
weights. Formally, gli,j is taken as the input to a
sigmoid function for parametrizing a Bernoulli dis-
tribution B(σ(gli,j)), from which a binary masking
random variable ml

i,j is sampled:

ml
i,j ∼ B(σ(gli,j)) (1)

where ml
i,j ∈ M l

r. The resulting masking matrix
M l
r can then be used to select weights within origi-

nal linear layer W l by a Hadamard product:

W l
r =W l �M l

r (2)

Due to the non-differentiability introduced by sam-
pling, the gradient w.r.t. loss function (described
in Section 2.3.3) cannot be back-propagated to gli,j .
As a remedy, we use the re-parametrization tech-
nique by Li et al. (2018) to approximate ml

i,j with

another differentiable variable m̃l
i,j :

m̃l
i,j = σ(

gli,j + logU − log (1− U)

τ
) (3)

where U ∼ Uniform(0, 1) and τ is a small posi-
tive temperature parameter. As τ approaches zero,
m̃l
i,j will match sampled ml

i,j more accurately (de-
tailed proof can be found in Appendix A).

Consequently, Eq. (2) becomes:

W l
r =W l � M̃ l

r (4)

2.3.2 Deterministic Pruning
While our first probabilistic pruning formulation
considers flexible weights combination, the sec-
ond proposed variant utilizes a hard thresholding
function to directly generate the masking matrix.

Let t denote the predefined thresholding hyper-
parameter ranging from 0 to 1, then we have:

m̂l
i,j =

{
1, σ(gli,j) ≥ t
0, otherwise,

(5)

where σ is the sigmoid function. Similar to Section
2.3.1, the resulting binary masking matrix M̂ l

r is
then used to select weights relevant to relation r by
a Hadamard product:

W l
r =W l � M̂ l

r (6)

Note that the hard thresholding operation in Eq. (5)
also blocks the gradient propagation to gli,j . Here
we employ the Straight-Through gradient estima-
tor (Hubara et al., 2016; Zhao et al., 2020) and use
∂Lr
∂m̂li,j

as a proxy of ∂Lr
∂gli,j

. We elucidate the loss

function Lr w.r.t. relation r in the next section.

2.3.3 Training and Inference
The resultant subnetwork LMθr is expected to be-
have like a specialized neural knowledge base. That
is, given a prompt requiring knowledge about rela-
tion r, LMθr should be able to fill in the miss-
ing object more accurately than LMθ. Hence
the learning objective for pruning mask generator
{Gl

r}lb≤l≤lt , where lb and lt indicate the range of
transformer layers, is to find the subnetwork LMθr

that minimizes:

Lr = −E(subj,Tr,obj)∈Dr [logPLMθr
(obj|subj, Tr)]

(7)

where Dr is the collection of prompts under re-
lation r. The training procedure is conducted for
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each relation r ∈ R of interest. Finally, we ob-
tain a set of trained {Gr}r∈R for the designated
pretrained model LMθ.

During inference, for deterministic pruning, Mr

is obtained from Gr by Eq. (5). For stochastic
pruning, Mr is obtained by taking the expectation
value (i.e., σ(Gr)) of Bernoulli variables.

3 Experiments

We present our pruning setup and detailed analysis
in Section 3.1. Then we compare the knowledge
transfer ability of pruned subnetworks against orig-
inal PLMs in scenarios requiring knowledge of
single or multiple relations for reasoning in Section
3.2 and Section 3.3 respectively.

3.1 Pruning & Analysis

Data Split # Relations # Prompts

Train 16 20,841
Validation 16 5,955
Test 16 2,978

Table 1: Statistics of C-LAMA.

Dataset. We use the ConceptNet (Speer and
Havasi, 2012) subset of LAMA benchmark for
both pruning and evaluation, denoted as C-LAMA.
C-LAMA contains commonsense facts from the
English part of ConceptNet that has single-token
objects covering 16 relations. These facts are ex-
tracted from Open Mind Common Sense (OMCS).
Since C-LAMA has no official data splits, we con-
struct the train/validation/test splits with a ratio of
7:2:1. Detailed statistics are listed in Table 1.
Models. We experiment with the DistilBERT-
base (Sanh, 2019), BERT-base, RoBERTa-
base (Liu et al., 2019a), and the more recent
MPNet-base (Song et al., 2020) as the choices
of LM. After pruning, each LM will have 16
pruned subnetworks corresponding to the 16 com-
monsense relations. As a straightforward compar-
ison, for each LM we also obtain 16 fine-tuned
models corresponding to the same 16 relations. Pre-
cision P@K averaged across all relations is used to
evaluate the prompt filling performance.
Setup. The prior distribution φ(·) is a Gaussian
N (µ, 1) where µ is the mean that controls the ini-
tial sparsity of the pruned model (e.g., µ = 0 indi-
cates 50% initial sparsity). We set lt to be the top
layer of a given model and choose lb from {3, 4}
for DistilBERT, {6, 7, 8, 9} for BERT, RoBERTa,

Figure 2: Ablation on the pruning masks (left) and ef-
fect of initial sparsity and pruned layers (right).

and MPNet. The temperature τ is fixed as 0.1. The
threshold t is fixed as 0.5. We use Adam (Kingma
and Ba, 2015) with a batch size of 32 and a lin-
ear warm-up scheduler with 0.1 warm-up ratio for
training the mask up to 6 epochs. The learning
rate is fixed as 3× 10−4. We run all experiments
with three different random seeds and report the
averaged results. All experiments are conducted on
a GTX 1080 Ti GPU with 11GB RAM.
Factors impacting performance. To investigate
how µ and lb affect the performance, we perform a
preliminary experiment by applying deterministic
pruning on BERT-base with lb in {6, 7, 8, 9} and
the initial sparsity in {50%, 54%, 58%, 62%}. Fig-
ure 2 (right) shows that (i) increasing the number of
pruned layers helps distill more knowledge; and (ii)
larger initial sparsity is more likely to prune away
weights that are important to certain knowledge and
cannot be recovered in the later training process.
In general, we find an initial sparsity around 50%
yields a decent performance both in probing and
downstream applications. We adopt this setting in
the rest of this paper unless otherwise stated.
How specialized are these subnetworks? Ideally,
specialized subnetworks are expected to perform
poorly on relations other than their associated ones.
We verify this by instantiating the pruning mask
upon BERT-base with a set of mismatched masks.
Specifically, we corrupt the correspondence of re-
lation between masks and prompts by shuffling the
masks 15 times, as there are 16 relations in total.
Then we calculate the micro-averaged P@K for
each shift and average the results. As indicated by
the green curve in the left part of Figure 2, if we
apply the mismatched masks from other relations,
the P@1 score significantly drops to 3.8 from 43.8,
a performance even worse than the original model.
It suggests that the representation spaces for dif-
ferent commonsense relations modeled by these
subnetworks are highly disentangled.
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Model P@1 (%) P@2 (%) P@3 (%) Sparsity lb-lt # Param.

DistilBERT-base 11.4 16.6 19.9 0% - 66M
DistilBERT-base w/ fine-tuning 27.9 36.3 41.4 0% - 66M
DistilBERT-base w/ stochastic pruning 14.8 21.5 26.3 ∼30% 4-6 66M
DistilBERT-base w/ deterministic pruning 34.0 41.8 46.0 ∼50% 4-6 56M

BERT-base 12.9 18.4 21.8 0% - 110M
BERT-base w/ fine-tuning 29.2 37.4 41.3 0% - 110M
BERT-base w/ stochastic pruning 17.2 25.1 29.6 ∼30% 7-12 110M
BERT-base w/ deterministic pruning 43.8 49.5 52.2 ∼50% 7-12 88M

RoBERTa-base 15.4 21.2 24.6 0% - 125M
RoBERTa-base w fine-tuning 11.7 14.4 16.4 0% - 125M
RoBERTa-base w/ stochastic pruning 16.6 22.2 25.8 ∼30% 7-12 125M
RoBERTa-base w/ deterministic pruning 38.3 42.8 44.6 ∼50% 7-12 100M

MPNet-base 14.8 20.7 24.0 0% - 110M
MPNet-base w/ fine-tuning 23.8 30.9 36.3 0% - 110M
MPNet-base w/ stochastic pruning 19.8 27.9 33.2 ∼30% 7-12 110M
MPNet-base w/ deterministic pruning 47.9 52.8 55.6 ∼50% 7-12 88M

Table 2: Relational knowledge probing results on C-LAMA test set.

Non-triviality of subnetworks. We also examine
the non-triviality of subnetworks by initializing the
masks with a Bernoulli distribution B(0.5) and av-
eraging the results from 5 different random seeds.
If we apply such random masks with sparsity com-
parable to the learned ones, the P@1 drops dras-
tically to 0.4 (red curve in the left part of Figure
2). This notable difference proves that the effective
subnetworks cannot be trivially identified through
random weights pruning.

Test set results. Table 10 summarizes the test
set results. Among all original PLMs, RoBERTa
achieves the highest P@1 score of 15.4 while Dis-
tilBERT gets the lowest 11.4. It indicates that
while PLMs are shown to be helpful for down-
stream learning, they cannot accurately complete
cloze-like prompts that require commonsense re-
lation knowledge. This observation also coincides
with previous finding (Zhang and Hashimoto, 2021)
that the uniform masking adopted by PLMs is bi-
ased towards extracting statistical dependencies.
Comparing the results for each pair of original and
pruned models, we consistently observe a signifi-
cant increase in pruned models, especially for deter-
ministically pruned ones (27.4% on average). The
pruned models also surpass their fine-tuned counter-
parts, which is likely due to that fine-tuning makes
aggressive updates to parameters and overfits to the
training set by memorizing spurious features.

To sum up, the substantial performance gains
provide new evidences for the existence of sparse
latent relational knowledge structures in PLMs.
These structures are previously weakened by other
pretrained weights reserved for more general-
purpose use and are exposed by the proposed prun-
ing method. It is worth noting that determinis-

tic pruning excels by a big margin compared to
stochastic one. It implies that successful extrac-
tion of relation-specific representation space relies
on ignoring the information in the input that is ir-
relavant to the relation. Therefore, we focus our
analysis on deterministically pruned PLMs and de-
note them by pruned in the rest of this paper.
Visualization of attention and representa-
tions. To explain how the subnetworks accom-
modate more accurate commonsense knowledge
despite having far fewer weights than the full-scale
models, we randomly sample several prompts that
the subnetworks correctly answered but the full-
scale model (BERT-base) failed to, and visualize
the attention patterns in the last layer.

Figure 3: Attention weight visualization. AtLoca-
tion/PartOf is required in the left/right column.

Specifically, we focus on the attention weights
between [MASK] and other tokens in the prompt.
A first glance of change of attention pattern was
given earlier in Figure 1, and now we show more
examples of other ConcetpNet relations in Figure 3.
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Method Development Set Test Set
MRR (%) P@1 (%) P@2 (%) P@3 (%) MRR (%) P@1 (%) P@2 (%) P@3 (%)

Supervised KB completion models
DistMult (Yang et al., 2015) 8.5 4.2 6.6 8.3 10.5 5.4 8.4 10.9
ComplEx (Trouillon et al., 2016) 10.7 6.5 9.0 11.0 13.6 8.2 12.4 15.7
ConvE (Dettmers et al., 2018) 18.9 11.5 16.6 19.0 21.9 13.5 18.9 24.0
TuckER (Balažević et al., 2019) 17.3 10.9 14.8 18.8 21.6 14.0 20.4 24.0
SACN (Shang et al., 2019) 21.2 13.2 19.8 23.2 24.2 14.4 22.1 28.0
InteractE (Vashishth et al., 2020) 19.8 11.2 17.3 21.2 23.3 14.9 21.9 26.5

Unsupervised PLMs
DistilBERT-base 9.0 3.1 6.9 10.3 10.8 5.8 9.6 11.2
BERT-base 12.4 7.2 10.0 13.7 14.3 8.3 13.7 16.6
RoBERTa-base 8.3 4.2 6.0 7.1 9.4 5.1 7.1 9.3
MPNet-base 11.7 7.2 9.4 11.1 11.1 6.0 9.9 11.7

DistilBERT-base (pruned) 24.1 15.8 24.1 26.4 23.4 14.8 22.2 26.5
BERT-base (pruned) 23.7 15.5 22.1 27.0 22.8 14.3 20.9 26.0
RoBERTa-base (pruned) 9.0 4.9 7.1 8.9 9.5 6.1 7.6 11.4
MPNet-base (pruned) 22.1 12.9 21.2 25.5 20.0 11.4 18.8 22.9

Table 3: One-hop link prediction results. Best results are marked with bold font and second best with underline.

We observe that while the original pretrained model
tends to attend to special tokens like period and
[SEP], the subnetwork successfully grasps the rele-
vant concepts (i.e., apple, worms, and basement) in
the prompt hence produces the correct object. We
also use t-SNE (van der Maaten and Hinton, 2008)
to visualize the last layer’s representation of [CLS]
for each prompt. From Figure 4, the representa-
tions computed by original pretrained model are
hardly separable as different types of knowledge
are mixed together. In contrast, the pruned subnet-
work can extract meaningful and disentangled rep-
resentations for different commonsense relations.

Figure 4: t-SNE visualization of [CLS] representation
from original (left) and pruned (right) BERT-base.

3.2 Single-Relation Scenario
In this section, we compare the transfer ability of
pruned subnetworks against original PLMs in a sce-
nario that explicitly requires knowledge of single
commonsense relation, i.e., commonsense knowl-
edge base completion (CKBC), which aims at pop-
ulating a CKB with valid relational triples. We use
the ConceptNet-100K benchmark provided by Li
et al. (2016). To ensure a fair evaluation, we manu-
ally create a subset of ConceptNet-100K consisting
of triples with single-token subject/object. We also

ensure that its dev/test set has no overlap with C-
LAMA. Each relation is associated with a sentence
template (provided in Appendix B) of which the
wording is distinct from those in C-LAMA. The
resulting dataset contains 17,891 training instances,
349 development instances, and 446 test instances.

One-hop link prediction. We first formulate
CKBC as a link prediction task, i.e., predicting
the missing object given the subject and relation.
We regard the pruned subnetworks and the origi-
nal PLMs as the unsupervised off-the-shelf neural
knowledge base and include the results of several
strong KB completion methods for reference.

Table 3 shows most of the supervised models out-
perform full-scale PLMs by a large margin, which
suggests the inefficacy of directly using PLMs to
perform link prediction. However, the subnetworks
identified by our pruning procedure can acquire per-
formance on par with or better than the state-of-the-
art supervised models, which shows the potential
of language models as neural knowledge base that
is underestimated by previous studies. Surprisingly,
pruned DistilBERT get the highest MRR, outper-
forming other larger and more advanced PLMs.
RoBERTa struggles to predict correct objects, per-
haps due to its larger vocabulary size compared
to WordPiece (50,265 vs 30,522) and less lexicon
overlap (53% vs. 59%) with the dataset.

Two-hop extrapolation. Sometimes, a pair
of commonsense relations can be combined
to derive a new relational knowledge triple.
For example, the two triples 〈s1, IsA, o1〉 and
〈s2, HasProperty, o2〉, where o1 equals to
s2, can be combined into a new test triple
〈s1, HasProperty, o2〉. Based on this rule,
we construct 5,151 new test triples (absent in
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ConceptNet-100K) with HasProperty relation,
which allows us to compare the two-hop extrap-
olation ability of pruned subnetworks with orig-
inal PLMs. Table 4 shows that pruned subnet-
works exhibit significantly better ability of ex-
trapolating from known relational knowledge to
novel knowledge, with an average improvement of
23.2/24.8/24.0 in terms of P@1/P@2/P@3.

Model P@1 P@2 P@3

DistilBERT-base 10.6 17.8 23.0
DistilBERT-base (pruned) 28.2 36.5 44.6

BERT-base 11.9 18.5 21.9
BERT-base (pruned) 42.9 52.1 58.4

RoBERTa-base 16.8 24.1 28.0
RoBERTa-base (pruned) 21.5 28.7 31.0

MPNet-base 16.6 24.8 29.3
MPNet-base (pruned) 56.2 64.2 67.7

Table 4: Two-hop extrapolation results (%).

Model < linen, IsA, ? > < sing, Causes, ? >

DistilBERT
surname

commodity
profession

death
disease
trouble

DistilBERT(pruned)
cloth
fabric

garment

happiness
joy

peace

Table 5: Top-3 predictions of two triples sampled from
CKBC dev set. The predictions are ranked by proba-
bility in descending order with ground-truth marked in
green and other plausible answers underlined.

Case Study. We present a case study of link
prediction examples from both pre-trained and
pruned DistilBERT in Table 5. In both examples,
the pre-trained DistilBERT makes completely un-
related predictions (e.g.,surname, profession, and
death) and only two predictions (i.e., commodity
and trouble) can be hardly considered as plausible.
In contrast, the model pruned for IsA/Causes are
specialized in accurately representing these rela-
tions and can even produce reasonable answers in
addition to the ground-truth.

3.3 Multi-relation Scenario

In this section, we compare the transfer ability of
pruned subnetworks against original PLMs in a
scenario that implicitly requires knowledge of mul-
tiple commonsense relations, i.e., commonsense
question answering (CQA).

Stand-alone fine-tuning. We conduct stand-
alone fine-tuning using BERT/DistilBERT
and their pruned subnetworks on 6 widely

adopted CQA tasks: RTE (Dagan et al., 2009),
COPA (Roemmele et al., 2011), Common-
senseQA (Talmor et al.), SWAG (Zellers et al.,
2018), aNLI (Bhagavatula et al., 2020) and
CosmosQA (Huang et al., 2019). For each task, we
identify the commonsense knowledge that might
be required with a simple yet effective heuristic:
we obtain the five most frequent relations measured
by how many times the subject and object holding
certain relation in ConceptNet appear in the
context or the answer. Then we take the union of
masks for each relation and apply the resultant
mask to BERT/DistilBERT as the initialization
for fine-tuning. Intuitively, such union operation
would preserve all relational knowledge of interest.
We repeat training three times with different
random seeds for each task using hyperparameters
suggested in the original papers. The detail of
mask combination for each task is in Appendix B.

Task BERT DistilBERT

RTE 69.2±2.3⇒69.8±2.0 61.2±1.2⇒62.1±1.2
COPA 62.4±5.0⇒63.1±4.7 54.0±2.0⇒56.0±2.0
CommonsenseQA 53.1±0.6⇒54.1±0.7 47.9±0.7⇒48.6±0.7
SWAG 73.9±0.3⇒74.2±0.1 70.1±0.3⇒70.4±0.1
aNLI 63.7±0.4⇒64.0±0.4 60.1±0.4⇒60.4±0.4
CosmosQA 61.3±1.0⇒61.8±0.2 56.4±0.8⇒57.2±0.4

Table 6: Stand-alone fine-tuning accuracy (original⇒
pruned) of BERT and DistilBERT.

Figure 5: Results on COPA with varying portion of
data.

Table 8 shows that, when initialized with proper
subnetworks, the model can better transfer to com-
monsense question answering tasks via more rel-
evant prior knowledge. We further analyze the
change of performance under the low-resource
regime. Figure 5 shows that the pruned BERT
exhibits a notable advantage when training data is
extremely scarce. As more training data is seen,
the benefit of the pruned model is reduced but still
significant.

Integrated fine-tuning. We also integrate the
pruned subnetworks to QA-GNN (Yasunaga et al.,
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Model COPA-Tra. COPA-Val. CSQA CA WSC SM ARCT1 ARCT2 Avg. ∆

DistilBERT-base 58.3 60.0 29.6 84.6 53.3 71.6 48.6 50.4 57.0 -
DistilBERT-base (pruned) 61.5 69.0 31.5 89.6 56.9 72.1 53.4 51.6 60.7 +3.7

BERT-base 60.2 54.0 26.5 89.0 57.3 69.7 46.8 50.3 56.7 -
BERT-base (pruned) 63.0 64.0 28.5 91.8 59.0 71.7 50.0 52.0 60.0 +3.3

RoBERTa-base 60.7 59.0 39.9 90.1 61.8 73.1 48.6 53.1 60.7 -
RoBERTa-base (pruned) 65.3 72.0 40.4 93.4 62.9 74.4 53.2 55.1 64.6 +3.9

MPNet-base 66.5 69.0 40.0 94.5 64.3 75.8 52.9 56.7 64.9 -
MPNet-base (pruned) 71.0 74.0 41.7 97.3 66.4 77.5 56.1 57.7 67.7 +3.2

Table 7: Zero-shot accuracy (%) for commonsense question answering. Better results of each pair is in bold.

2021), a state-of-the-art hybrid question answering
system in which a PLM and GNN are employed
for joint reasoning over text and knowledge graph.
We follow their official implementation with the
only modification on the PLM part. With the same
set of masks as in the stand-alone fine-tuning on
CommonsenseQA, the pruned BERT achieves an
accuracy of 60.9% versus 60.1% of original model,
suggesting a generally stronger knowledge trans-
fer ability not only in stand-alone but also in the
integrated settings.

Zero-shot learning. We then assess the ability
of pruned subnetworks to perform zero-shot com-
monsense reasoning, a setting where the knowl-
edge relied on to complete the task is solely
determined by the model itself. We focus on
the following 8 multiple-choice CQA datasets:
training set of COPA (COPA-Tra.), validation set
of COPA (COPA-Val.), CommonsneseQA, Con-
junction Acceptability (CA) (Zhou et al., 2020),
Winograd Schema Challenge (WSC) (Levesque
et al., 2012), SenseMaking (SM) (Wang et al.,
2019), ARCT1 (Habernal et al., 2018) and
ARCT2 (Niven and Kao, 2019). Each sam-
ple in the above datasets can be formulated
as {[CLS] context [SEP ] choicei [SEP ]}Ni=1,
whereN is the number of choices. We compute the
plausibility score of each choice using the MLM
head. The choice of the maximum plausibility
score is chosen as the answer.

Since multiple types of knowledge are typically
required for effective commonsense reasoning, We
employ the same heuristic used in many-shot learn-
ing setting for determining the set of the most im-
portant relations for each task as well as the same
mask union operation to obtain parameter initial-
ization. It can be observed from Table 7 that the
pruned models can actually surpass their full-size
counterparts in all tasks considered in our experi-
ments. Our explanation is that knowledge irrele-
vant to the specific task in the original PLMs hurt

the in-domain zero-shot reasoning capability. It
also demonstrates that the most important relational
knowledge vary from task to task.

4 Related Work

Since the emergence of large pre-trained language
models, much work has focused on understanding
their internal contextual representations. Most prior
work (Shi et al., 2016; Belinkov et al., 2017) pays
attention to either using extraneous probing tasks to
examine whether certain linguistic properties can
be identified from those representations, or ablating
the models to observe how behavior changes. More
recently, some studies (Goldberg, 2019; Tenney
et al., 2019) have shown the existence of linguistic
knowledge (e.g., syntax) in various but generally
lower layers of pre-trained transformers.

To shed more light on how PLMs mem-
orize abstract knowledge rather than statisti-
cal co-occurrence patterns, we extend previous
probe (Petroni et al., 2020) on relational knowledge.
Specifically, we are concerned with commonsense
knowledge that is grounded on ConceptNet rela-
tions. Our work differs in that we focus on not only
probing but also bringing latent relational knowl-
edge to the surface and unleashing more potential
for better relation reasoning.

Another relevant line of research is network
pruning (Liu et al., 2019b; Lin et al., 2020) and
lottery ticket hypothesis (Frankle and Carbin, 2019;
Prasanna et al., 2020; Chen et al., 2020). The for-
mer aims at reducing the size of model parameters
without compromising accuracy and the latter re-
veals subnetworks whose initializations made them
capable of being trained effectively comparable
to the original model. In contrast, we seek to un-
cover subnetworks in over-parametrized PLMs that
specializes on commonsense knowledge tailored
for downstream tasks rather than focusing on good
global initialization, and achieve good results.
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5 Conclusion

This study investigated specializing PLMs for bet-
ter relational reasoning via network pruning. In the
pilot experiment we find evidence of latent sparse
subnetworks capable of representing grounded
commonsense relations in various PLMs. Further
experiments revealed that such subnetworks pos-
sess stronger relational reasoning capability than
original PLMs. Our work provides a new vantage
point about the internal mechanism as well as prac-
tical utilization of relational knowledge in PLMs,
opening up avenues to better understanding and
adapting pretrained language representations.
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A Derivation for Stochastic Pruning

To re-parametrize the discrete binary Bernoulli
variable ml

i,j ∼ B(σ(gli,j)), denote the ap-
proaximate differentiable variable as m̃l

i,j =

σ(
gli,j+logU−log (1−U)

τ ) where τ is a real-valued
temperature value, we have the following deriva-
tion holds for arbitrary ε ∈ (0, 0.5):

P (ml
i,j = 1)− P (m̃l

i,j ≥ 1− ε) ≤ (
τ

4
) log

1

ε

Specifically, when temperature τ approaches 0,
m̃l
i,j = ml

i,j .
Lemma 1: σ−1(x) = log x

1−x .

Lemma 2: σ(x)−σ(y)
x−y ≤ 1

4 .
Proof:

P (m̃l
i,j ≥ 1− ε)

=P (σ(
gli,j + logU − log (1− U)

τ
) ≥ 1− ε)

=P (
gli,j + logU − log (1− U)

τ
≥ log (

1

ε
− 1))

=P (gli,j − τ log (
1

ε
− 1) ≥ log (

1

U
− 1))

=P (eg
l
i,j−τ log ( 1ε−1) ≥ 1

U
− 1)

=P (U ≥ 1

1 + eg
l
i,j−τ log ( 1ε−1)

)

=σ(gli,j − τ log (
1

ε
− 1))

Then:

P (ml
i,j = 1)− P (m̃l

i,j ≥ 1− ε)

=σ(gli,j)− σ(gli,j − τ log
1

ε
− 1)

≤τ
4
log (

1

ε
− 1)

≤τ
4
log

1

ε

The process for deriving P (ml
i,j = 0)−P (m̃l

i,j ≤
ε) ≤ ( τ4 ) log

1
ε can be analogously obtained. �

B Implementaiton Details

B.1 Templates

The templates we used in single-relation scenario
for different commonsense relations are defined as
follows:
AtLocation: Something you find at 〈obj〉 is 〈subj〉.
CapableOf : 〈subj〉 can 〈obj〉.

Causes: 〈subj〉 causes 〈obj〉.
CausesDesire: 〈subj〉 would make you want to
〈obj〉.
Desires: 〈subj〉 wants to 〈obj〉.
HasPrerequisite: 〈subj〉 requires 〈obj〉.
HasProperty: 〈subj〉 can be 〈obj〉.
HasSubevent: when 〈subj〉, 〈obj〉.
HasA: 〈subj〉 contains 〈obj〉.
IsA: 〈subj〉 is a 〈obj〉.
MadeOf : 〈subj〉 can be made of 〈obj〉.
MotivatedByGoal: you would 〈subj〉 because
〈obj〉.
NotDesires: 〈subj〉 does not want 〈obj〉.
PartOf : 〈subj〉 is part of 〈obj〉.
ReceivesAction: 〈subj〉 can be 〈obj〉.
UsedFor: 〈subj〉 may be used for 〈obj〉.
When performing CKBC task, we first fetch the
template based on the relation of the triple to be
complete and fill in the 〈subj〉 and let the model
predict the missing 〈obj〉. Concretely, the 〈obj〉
placeholder is replaced by the mask token corre-
sponding to different pre-trained language models.

B.2 Notation for Knowledge Type

HasSubevent: 0
MadeOf : 1
HasPrerequisite: 2
MotivatedByGoal: 3
AtLocation: 4
CausesDesire: 5
IsA: 6
NotDesires: 7
Desires: 8
CapableOf : 9
PartOf : 10
HasA: 11
UsedFor: 12
ReceivesAction: 13
Causes: 14
HasProperty: 15
In the remainder of this section, we use ∪ to indi-
cate mask union operation upon multiple common-
sense relations.

B.3 Stand-alone Fine-tuning

For fine-tuning on commonsense reasonging tasks,
we only experiments with BERT-base due and per-
form hyper-parameter search only in terms of batch
size in the range of {8, 16, 32} and learning rate in
the range of {3e−5, 4e−5, 5e−5} due to computa-
tional budget. We also adopt early stopping based

2206



Model/Task RTE COPA CSQA SWAG HellaSWAG aNLI CosmosQA

BERT 0 ∪ 6 ∪ 14 5 ∪ 8 ∪ 14 3 ∪ 4 ∪ 8 ∪ 14 1 ∪ 6 ∪ 10 ∪ 11 0 ∪ 3 ∪ 8 ∪ 14 3 ∪ 5 ∪ 8 ∪ 14 3 ∪ 5 ∪ 8

Table 8: Optimal fine-tuning knowledge type combination for BERT-base on commonsense reasoning tasks.

Model/Task COPA (Dev.) CSQA CA WSC SM ARCT1 ARCT2

DistilBERT 1 ∪ 6 ∪ 14 2 ∪ 3 ∪ 13 0 ∪ 1 ∪ 9 6 ∪ 7 ∪ 10 2 ∪ 8 ∪ 13 2 ∪ 3 ∪ 14 1 ∪ 2 ∪ 7

BERT 4 ∪ 11 ∪ 15 1 ∪ 2 ∪ 15 6 ∪ 8 ∪ 12 2 ∪ 9 ∪ 14 6 ∪ 12 ∪ 15 1 ∪ 9 ∪ 10 1 ∪ 5 ∪ 8

RoBERTa 2 ∪ 3 ∪ 8 0 ∪ 2 ∪ 5 0 ∪ 1 ∪ 8 1 ∪ 2 ∪ 4 ∪ 5 ∪ 11 8 ∪ 11 ∪ 12 2 ∪ 5 ∪ 11 ∪ 13 0 ∪ 8 ∪ 11

MPNet 1 ∪ 6 ∪ 8 6 ∪ 12 ∪ 13 2 ∪ 3 ∪ 10 1 ∪ 3 ∪ 4 6 ∪ 10 ∪ 13 2 ∪ 5 ∪ 6 5 ∪ 6 ∪ 7

Table 9: Optimal zero-shot knowledge type combination for each PLM on each commonsense reasoning tasks.

Model P@1 P@2 P@3 Sparsity lb − lt # Param.

BERT-large w/o pruning 15.1 20.9 24.6 0% - 336M
BERT-large w/ stochastic pruning 22.1 30.1 35.4 ∼30% 17-24 336M
BERT-large w/ deterministic pruning 69.2 74.1 76.3 ∼50% 17-24 284M

Table 10: Macro-averaged precision metrics of BERT-large on C-LAMA test set

on accuracy on the devlopment set. The combina-
tion achieving highest accuracy is shown in Table
8.

B.4 Zero-shot Learning

In constrast with fine-tuning, zero-shot evaluation
is deterministic as long as the model does not in-
volve any stochastic module, thereby averting ex-
tensive hyperparameter tuning. Instead we perform
exaustive search over knowledge combinations for
each pretrained language model with number of
knowledge types in {3, 4, 5}. The ConceptNet-
grounded knowledge type combination achieving
highest accuracy is listed in Table 9.

C Extracted Commonsense Triples

Here we present the additional experiment result of
extracting novel relaitonal triples based on our spe-
cialized relation-specific knowledge models. Ap-
plying the pruned DistilBERT-base model to pre-
dict missing objects for triples in ConceptNet-100K
test set, we obtain commonsense triples deemed to
be novel by three human annotators with Flessi’s
Kappa score κ of 0.65. We further filtered out
triples that are included in the training or develop-
ment set of ConceptNet-100K. Here we show some
representative cases categorized by their relations:
CapableOf:
(computer, crash), (computer, communicate)
IsA:
(sex, relationship), (submarine, weapon),

(submarine, vessel)
AtLocation:
(knife, war), (knife, dinner), (crab, dinner)
UsedFor:
(stage, fun), (stage, performance),
(literature, education), (literature, research)
HasA:
(book, index), (book, information)
HasProperty:
(music, loud)
Future work involves using seed triples beyond
ConceptNet-100K dataset, e.g., the whole Con-
ceptNet knowledge graph , and mining more novel
and plausible commonsense knowledge.

D Limitations

The major limitations of our work lie in how do
we choose and combine the representation sub-
spaces/subnetworks in multi-relation scenario. We
proposed a simple heuristic (i.e., based on statistics
of dataset and union operation upon masks) in the
paper and it empirically works well, but more prin-
cipled and optimal method should be further stud-
ied. Another potential limitation is that we limit
our scope to commonsense relations only in this
paper. We leave other binary relations (e.g., factual
relations defined in WikiData) as future work.
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